251
|
Sedighi-Pirsaraei N, Tamimi A, Sadeghi Khamaneh F, Dadras-Jeddi S, Javaheri N. Boron in wound healing: a comprehensive investigation of its diverse mechanisms. Front Bioeng Biotechnol 2024; 12:1475584. [PMID: 39539690 PMCID: PMC11557333 DOI: 10.3389/fbioe.2024.1475584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Chronic wounds present a significant clinical challenge due to their prolonged healing time and susceptibility to infection. Boron, a trace element with diverse biological functions, has emerged as a promising therapeutic agent in wound healing. This review article comprehensively investigates the mechanisms underlying the beneficial effects of boron compounds in wound healing. Boron exerts its healing properties through multiple pathways, including anti-inflammatory, antimicrobial, antioxidant, and pro-proliferative effects. Inflammation is a crucial component of the wound-healing process, and boron has been shown to modulate inflammatory responses by inhibiting pro-inflammatory cytokines and promoting the resolution of inflammation. Furthermore, boron exhibits antimicrobial activity against a wide range of pathogens commonly associated with chronic wounds, thereby reducing the risk of infection and promoting wound closure. The antioxidant properties of boron help protect cells from oxidative stress, a common feature of chronic wounds that can impair healing. Additionally, boron stimulates cell proliferation and migration, as well as essential tissue regeneration and wound closure processes. Overall, this review highlights the potential of boron as a novel therapeutic approach for treating chronic wounds, offering insights into its diverse mechanisms of action and clinical implications.
Collapse
|
252
|
Bao S, Wang Y, Yao L, Chen S, Wang X, Luo Y, Lyu H, Yu Y, Zhou P, Zhou Y. Research trends and hot topics of wearable sensors in wound care over past 18 years: A bibliometric analysis. Heliyon 2024; 10:e38762. [PMID: 39512323 PMCID: PMC11541681 DOI: 10.1016/j.heliyon.2024.e38762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 09/24/2024] [Accepted: 09/30/2024] [Indexed: 11/15/2024] Open
Abstract
Objective This study determined the development trends, analyzed collaboration networks, and identified research hotspots in the field of wearable sensors for wound care from 2007 to 2024 using a rigorous bibliometric analysis approach. Methods Bibliometric and scientometric analyses were performed utilizing data sourced from the Web of Science Core Collection database. This study examined publication trends, contributions from various countries and institutions, author productivity, keyword prevalence, and citation patterns to discern research hotspots and potential future avenues in the application of wearable sensors for wound care. Results This study included 1177 articles, which demonstrated a marked increase in publications since 2016 and underscores the burgeoning interest in wearable sensors for wound care. China and the United States have emerged as prominent contributors to the research field, exhibiting numerous international collaborations. An analysis of keywords and citation bursts highlighted wound healing, hydrogels, and sensors as the key research foci with recent trends shifting towards the integration of wearable technology with advanced materials and artificial intelligence for advanced wound management. The research landscape is characterized by a diverse network of international collaborations and an emphasis on interdisciplinary approaches that integrate materials science, sensor technology, and clinical applications. Conclusion The utilization of wearable sensors in wound care constitutes a rapidly progressing area of research, garnering significant interest and promising avenues for future advances. The integration of wearable sensors with advanced materials and AI technologies presents a frontier of opportunity for innovating wound care methodologies, enhancing patient outcomes, and optimizing the allocation of healthcare resources.
Collapse
Affiliation(s)
- Shuilan Bao
- School of Nursing, Southwest Medical University, Luzhou 646000, China
- Wound Healing Basic Research and Clinical Applications Key Laboratory of Luzhou, School of Nursing, Southwest Medical University, Luzhou 646000, China
| | - Yiren Wang
- School of Nursing, Southwest Medical University, Luzhou 646000, China
- Wound Healing Basic Research and Clinical Applications Key Laboratory of Luzhou, School of Nursing, Southwest Medical University, Luzhou 646000, China
| | - Li Yao
- School of Nursing, Southwest Medical University, Luzhou 646000, China
- Wound Healing Basic Research and Clinical Applications Key Laboratory of Luzhou, School of Nursing, Southwest Medical University, Luzhou 646000, China
| | - Shouying Chen
- School of Nursing, Southwest Medical University, Luzhou 646000, China
- Wound Healing Basic Research and Clinical Applications Key Laboratory of Luzhou, School of Nursing, Southwest Medical University, Luzhou 646000, China
| | - Xiuting Wang
- College School of Intelligent Manufacturing and Automotive Engineering, Luzhou Vocational & Technical College, Luzhou 646000, China
| | - Yamei Luo
- School of Medical Information and Engineering, Southwest Medical University, Luzhou 646000, China
| | - Hongbin Lyu
- Department of Ophthalmology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Yang Yu
- School of Basic Medical Science, Southwest Medical University, Luzhou 646000, China
| | - Ping Zhou
- Wound Healing Basic Research and Clinical Applications Key Laboratory of Luzhou, School of Nursing, Southwest Medical University, Luzhou 646000, China
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Yun Zhou
- Wound Healing Basic Research and Clinical Applications Key Laboratory of Luzhou, School of Nursing, Southwest Medical University, Luzhou 646000, China
- School of Medical Information and Engineering, Southwest Medical University, Luzhou 646000, China
- Department of Psychiatric, The Zigong Affiliated Hospital of Southwest Medical University, Zigong 643000, China
| |
Collapse
|
253
|
Korn P, Melnikov A, Kuhn M, Farahzadi S, Lauer G, Schröder TA. Proximal tibia for alveolar augmentation and augmentative rhinoplasty-a suitable option? A retrospective clinical study on donor and recipient site morbidity. Head Face Med 2024; 20:66. [PMID: 39478607 PMCID: PMC11523599 DOI: 10.1186/s13005-024-00470-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 10/20/2024] [Indexed: 11/03/2024] Open
Abstract
BACKGROUND Autologous bone grafts are essential in reconstructive oral and maxillofacial surgery, and depending on the donor site, they can be associated with specific harvesting morbidities. One of the most commonly applied bone grafts is the iliac crest bone graft, irrespective of other grafts, which might be associated with an easier surgical procedure or the possibility of harvesting them under local anaesthesia. Objective of the study is the clinical evaluation of proximal tibia bone grafts regarding their eligibility for maxillofacial bone grafting. METHODS In this retrospective study, proximal tibia bone grafts were examined with regard to associated donor and recipient site morbidity and their suitability for alveolar ridge augmentation and rhinoplasty. RESULTS In total, 21 tibia grafts were included. Fifty-seven percent of the bone grafts were used for alveolar ridge reconstruction, and 43% were used for augmentative rhinoplasty. No significant complications occurred during or after harvesting, but in 14.3% of the patients, minor wound healing disorders were recorded at the donor site, and in 19% of the patients, they were recorded at the recipient site. Statistically, patient sex, age, nicotine and alcohol abuse and metabolic diseases had no significant influence on the complication rate. Graft harvesting under local anaesthesia and at summer temperatures was associated with significantly more complications at the harvesting site (p < 0.05). In cases of dental implant insertion into augmented sites, the implants (n = 31) were followed up for a median period of 40.5 months, during this time 86.7% of the implants survived. CONCLUSION The proximal tibia is a suitable donor site for harvesting autologous bone grafts for alveolar ridge augmentation or rhinoplasty because the donor site morbidity is low, and in contrast to iliac crest bone grafts, they can be harvested under local anaesthesia, which might be advantageous for outpatient surgeries.
Collapse
Affiliation(s)
- Paula Korn
- Department of Oral and Maxillofacial Surgery, University Hospital and Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
| | - Anastasia Melnikov
- Department of Oral and Maxillofacial Surgery, University Hospital and Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Matthias Kuhn
- Institute for Medical Informatics and Biometry, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Samaneh Farahzadi
- Department of Oral and Maxillofacial Surgery, University Hospital and Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Günter Lauer
- Department of Oral and Maxillofacial Surgery, University Hospital and Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Tom Alexander Schröder
- Department of Oral and Maxillofacial Surgery, University Hospital and Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
254
|
Wang M, Zhang J, Qiao C, Yan S, Wu G. Comparative analysis of human and mouse transcriptomes during skin wound healing. Front Cell Dev Biol 2024; 12:1486493. [PMID: 39534398 PMCID: PMC11554618 DOI: 10.3389/fcell.2024.1486493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Skin wound healing is a complex process which involves multiple molecular events and the underlying mechanism is not fully understood. We presented a comparative transcriptomic analysis of skin wound healing in humans and mice to identify shared molecular mechanisms across species. We analyzed transcriptomes from three distinct stages of the healing process and constructed protein-protein interaction networks to elucidate commonalities in the healing process. A substantial number of differentially expressed genes (DEGs) were identified in human transcriptomes, particularly upregulated genes before and after wound injury, and enriched in processes related to extracellular matrix organization and leukocyte migration. Similarly, the mouse transcriptome revealed thousands of DEGs, with shared biological processes and enriched KEGG pathways, highlighting a conserved molecular signature in skin wound healing. A total of 21 common DEGs were found across human comparisons, and 591 in mouse comparisons, with four genes (KRT2, MARCKSL1, MMP1, and TNC) consistently differentially expressed in both species, suggesting critical roles in mammalian skin wound healing. The expression trends of these genes were consistent, indicating their potential as therapeutic targets. The molecular network analysis identified five subnetworks associated with collagen synthesis, immunity, cell-cell adhesion, and extracellular matrix, with hub genes such as COL4A1, TLR7, TJP3, MMP13, and HIF1A exhibited significant expression changes before and after wound injury in humans and mice. In conclusion, our study provided a detailed molecular network for understanding the healing process in humans and mice, revealing conserved mechanisms that could help the development of targeted therapies across species.
Collapse
Affiliation(s)
- Maochun Wang
- Department of Plastic Surgery, The Affiliated Friendship Plastic Surgery Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | | | | | | | - Guoping Wu
- Department of Plastic Surgery, The Affiliated Friendship Plastic Surgery Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
255
|
Jin YX, Ngoc Chien P, Thi Nga P, Zhang XR, Ngan Giang N, Thi Thuy Le L, Trinh TTT, Zhou SY, Nam SY, Heo CY. Enhancing wound healing through innovative technologies: microneedle patches and iontophoresis. Front Bioeng Biotechnol 2024; 12:1468423. [PMID: 39530061 PMCID: PMC11550992 DOI: 10.3389/fbioe.2024.1468423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024] Open
Abstract
Introduction Wound healing is a complex process involving multiple stages, including inflammation, proliferation, and remodeling. Effective wound management strategies are essential for accelerating healing and improving outcomes. The CELLADEEP patch, incorporating iontophoresis therapy and microneedle technology, was evaluated for its potential to enhance the wound healing process. Methods This study utilized a full-thickness skin defect model in Sprague-Dawley rats, researchers compared wound healing outcomes between rats treated with the CELLADEEP Patch and those left untreated. Various histological staining techniques were employed to examine and assess the wound healing process, such as H&E, MT and immunofluorescence staining. Furthermore, the anti-inflammatory and proliferative capabilities were further investigated using biochemical assays. Results Macroscopic and microscopic analyses revealed that the CELLADEEP patch significantly accelerated wound closure, reduced wound width, and increased epidermal thickness and collagen deposition compared to an untreated group. The CELLADEEP patch decreased nitric oxide and reactive oxygen species levels, as well as pro-inflammatory cytokines IL-6 and TNF-α, indicating effective modulation of the inflammatory response. Immunofluorescence staining showed reduced markers of macrophage activity (CD68, F4/80, MCP-1) in the patch group, suggesting a controlled inflammation process. Increased levels of vimentin, α-SMA, VEGF, collagen I, and TGF-β1 were observed, indicating enhanced fibroblast activity, angiogenesis, and extracellular matrix production. Discussion The CELLADEEP patch demonstrated potential in promoting effective wound healing by accelerating wound closure, modulating the inflammatory response, and enhancing tissue proliferation and remodeling. The CELLADEEP patch offers a promising non-invasive treatment option for improving wound healing outcomes.
Collapse
Affiliation(s)
- Yong Xun Jin
- Department of Plastic and Reconstructive Surgery, College of Medicine, Seoul National University, Seoul, Republic of Korea
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Pham Ngoc Chien
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
- Korean Institute of Nonclinical Study, Seongnam, Republic of Korea
| | - Pham Thi Nga
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
- Korean Institute of Nonclinical Study, Seongnam, Republic of Korea
| | - Xin Rui Zhang
- Department of Plastic and Reconstructive Surgery, College of Medicine, Seoul National University, Seoul, Republic of Korea
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Nguyen Ngan Giang
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
- Department of Medical Device Development, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Linh Thi Thuy Le
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
- Department of Biomedical Science, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Thuy-Tien Thi Trinh
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
- Korean Institute of Nonclinical Study, Seongnam, Republic of Korea
| | - Shu Yi Zhou
- Department of Plastic and Reconstructive Surgery, College of Medicine, Seoul National University, Seoul, Republic of Korea
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Sun Young Nam
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
- Korean Institute of Nonclinical Study, Seongnam, Republic of Korea
| | - Chan Yeong Heo
- Department of Plastic and Reconstructive Surgery, College of Medicine, Seoul National University, Seoul, Republic of Korea
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
- Department of Medical Device Development, College of Medicine, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
256
|
de Miranda-Filho FV, Barbosa S, Panigali OA, Silva MC, da Costa MG, Flores FDS, Ervolino E, Theodoro LH, Magro-Filho O, Faverani LP. Effect of local and systemic administration of atorvastatin for improving bone healing on critical defects. Braz Dent J 2024; 35:e246114. [PMID: 39476113 PMCID: PMC11506307 DOI: 10.1590/0103-6440202406114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/06/2024] [Indexed: 11/03/2024] Open
Abstract
This study aimed to evaluate the impact of atorvastatin, administered both locally and systemically, on critical defects in the calvaria of rats. Thirty-six adult rats were randomly assigned to three groups, with all bone defects covered by a collagen membrane. The groups received different treatments: distilled water (GAD), where membranes were soaked in distilled water; systemic application of atorvastatin (GAS) at a dosage of 3.6mg/kg/day through gavage; and local application of atorvastatin (GAL). After 14 and 28 days, all animals were euthanized, and various assessments were conducted, including histometric analysis, measurement of linear residual defect, evaluation of newly formed bone area, determination of membrane and soft tissue area, cell count, and immunohistochemical analysis. Group GAS exhibited a significant reduction in residual defect compared to the other groups (p<0.05) and a lower number of osteocytes (p<0.05) in comparison with other groups. On day 28, both GAL and GAS groups showed a higher number of inflammatory cells compared to GAD (p<0.05). Immunolabeling of CD31 was similar for both groups, but in the case of osteocalcin, there was a significant increase in labeling for groups GAS and GAL between days 14 and 28 postoperative (p<0.05). In conclusion, systemic atorvastatin demonstrated enhanced osteogenesis in critical calvaria defects in rats, suggesting its efficacy in promoting bone regeneration without exerting a notable anti-inflammatory effect.
Collapse
Affiliation(s)
- Fábio Vieira de Miranda-Filho
- Department of Diagnosis and Surgery. Sao Paulo State University-Unesp. Aracatuba School of Dentistry, Sao Paulo16015-050, Brazil
| | - Stéfany Barbosa
- Department of Diagnosis and Surgery. Sao Paulo State University-Unesp. Aracatuba School of Dentistry, Sao Paulo16015-050, Brazil
| | - Olavo Alcalde Panigali
- Department of Diagnosis and Surgery. Sao Paulo State University-Unesp. Aracatuba School of Dentistry, Sao Paulo16015-050, Brazil
| | - Mirela Caroline Silva
- Department of Diagnosis and Surgery. Sao Paulo State University-Unesp. Aracatuba School of Dentistry, Sao Paulo16015-050, Brazil
| | - Monique Gonçalves da Costa
- Department of Diagnosis and Surgery. Sao Paulo State University-Unesp. Aracatuba School of Dentistry, Sao Paulo16015-050, Brazil
| | - Franciele da Silva Flores
- Department of Diagnosis and Surgery. Sao Paulo State University-Unesp. Aracatuba School of Dentistry, Sao Paulo16015-050, Brazil
| | - Edilson Ervolino
- Department of Basic Sciences. Sao Paulo State University-Unesp. Aracatuba School of Dentistry, Sao Paulo 16015-050, Brazil
| | - Letícia Helena Theodoro
- Department of Diagnosis and Surgery. Sao Paulo State University-Unesp. Aracatuba School of Dentistry, Sao Paulo16015-050, Brazil
| | - Osvaldo Magro-Filho
- Department of Diagnosis and Surgery. Sao Paulo State University-Unesp. Aracatuba School of Dentistry, Sao Paulo16015-050, Brazil
| | - Leonardo Perez Faverani
- Department of Diagnosis and Surgery. Sao Paulo State University-Unesp. Aracatuba School of Dentistry, Sao Paulo16015-050, Brazil
| |
Collapse
|
257
|
Wang F, Li S, Wang X, Yang Q, Duan J, Yang Y, Mu H. Gellan gum-based multifunctional hydrogel with enduring sterilization and ROS scavenging for infected wound healing. Int J Biol Macromol 2024; 282:136888. [PMID: 39490880 DOI: 10.1016/j.ijbiomac.2024.136888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/09/2024] [Accepted: 10/22/2024] [Indexed: 11/05/2024]
Abstract
The progression of severe skin injury healing can be easily impeded by bacterial infections and the resultant overproduction of reactive oxygen species (ROS) within the wound microenvironment. In this study, we developed a multifunctional antibacterial hydrogel by integrating gallium ion-tannic acid and polydopamine particles into gellan gum via a facile heat-cooling process. By harnessing the synergistic effects of polydopamine for short-term photothermal therapy and gallium ion for long-term chemotherapy, the hydrogel obtained shows outstanding antibacterial activities. Sustained release of gallium ion and tannic acid ensures a prolonged sterilization along with ROS-scavenging benefits. Moreover, this hydrogel demonstrates superior cytocompatibility, hemostatic properties, as well as capabilities including promoting cell migration, and adsorption to bacterial cells and toxin. The therapeutic efficacy of the hydrogel was validated using a mouse model of MRSA-induced cutaneous infections. Overall, this work introduces a straightforward yet highly efficient multifunctional hydrogel platform that combines synergetic antibacterial actions, ROS scavenging, and hemostasis to enhance the healing of bacteria-associated wounds.
Collapse
Affiliation(s)
- Fei Wang
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, China; Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, Xinjiang, China
| | - Siwei Li
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xing Wang
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Qisen Yang
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jinyou Duan
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yu Yang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, Xinjiang, China.
| | - Haibo Mu
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
258
|
Cheng XC, Tong WZ, Rui W, Feng Z, Shuai H, Zhe W. Single-cell sequencing technology in skin wound healing. BURNS & TRAUMA 2024; 12:tkae043. [PMID: 39445224 PMCID: PMC11497848 DOI: 10.1093/burnst/tkae043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 01/24/2024] [Accepted: 01/29/2024] [Indexed: 10/25/2024]
Abstract
Skin wound healing is a complicated biological process that mainly occurs in response to injury, burns, or diabetic ulcers. It can also be triggered by other conditions such as dermatitis and melanoma-induced skin cancer. Delayed healing or non-healing after skin injury presents an important clinical issue; therefore, further explorations into the occurrence and development of wound healing at the cellular and molecular levels are necessary. Single-cell sequencing (SCS) is used to sequence and analyze the genetic messages of a single cell. Furthermore, SCS can accurately detect cell expression and gene sequences. The use of SCS technology has resulted in the emergence of new concepts pertaining to wound healing, making it an important tool for studying the relevant mechanisms and developing treatment strategies. This article discusses the application value of SCS technology, the effects of the latest research on skin wound healing, and the value of SCS technology in clinical applications. Using SCS to determine potential biomarkers for wound repair will serve to accelerate wound healing, reduce scar formation, optimize drug delivery, and facilitate personalized treatments.
Collapse
Affiliation(s)
- Xu Cheng Cheng
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, No. 36 Sanhao Street, Shenyang 110004, China
| | - Wang Zi Tong
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, No. 36 Sanhao Street, Shenyang 110004, China
| | - Wang Rui
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, No. 36 Sanhao Street, Shenyang 110004, China
| | - Zhao Feng
- Department of Stem Cells and Regenerative Medicine, China Medical University, No. 77 Puhe Road, Shenyang 110013, China
| | - Hou Shuai
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, No. 36 Sanhao Street, Shenyang 110004, China
| | - Wang Zhe
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, No. 36 Sanhao Street, Shenyang 110004, China
| |
Collapse
|
259
|
Jayasuriya R, Ganesan K, Ramkumar KM. Mangiferin Represses Inflammation in Macrophages Under a Hyperglycemic Environment Through Nrf2 Signaling. Int J Mol Sci 2024; 25:11197. [PMID: 39456979 PMCID: PMC11508804 DOI: 10.3390/ijms252011197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/14/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Inflammation in macrophages is exacerbated under hyperglycemic conditions, contributing to chronic inflammation and impaired wound healing in diabetes. This study investigates the potential of mangiferin, a natural polyphenol, to alleviate this inflammatory response by targeting a redox-sensitive transcription factor, nuclear factor erythroid 2-related factor 2 (Nrf2). Mangiferin, a known Nrf2 activator, was evaluated for its ability to counteract the hyperglycemia-induced inhibition of Nrf2 and enhance antioxidant defenses. The protective effects of mangiferin on macrophages in a hyperglycemic environment were assessed by examining the expression of Nrf2, NF-κB, NLRP3, HO-1, CAT, COX-2, IL-6, and IL-10 through gene and protein expression analyses using qPCR and immunoblotting, respectively. The mangiferin-mediated nuclear translocation of Nrf2 was evidenced, leading to a robust antioxidant response in macrophages exposed to a hyperglycemic microenvironment. This activation suppressed NF-κB signaling, reducing the expression of pro-inflammatory mediators such as COX-2 and IL-6. Additionally, mangiferin decreased NLRP3 inflammasome activation and reactive oxygen species accumulation in hyperglycemia exposed macrophages. Our findings revealed that mangiferin alleviated hyperglycemia-induced reductions in AKT phosphorylation, highlighting its potential role in modulating key signaling pathways. Furthermore, mangiferin significantly enhanced the invasiveness and migration of macrophages in a hyperglycemic environment, indicating its potential to improve wound healing. In conclusion, this study suggests that mangiferin may offer a promising therapeutic approach for managing inflammation and promoting wound healing in diabetic patients by regulating Nrf2 activity in hyperglycemia-induced macrophages.
Collapse
Affiliation(s)
- Ravichandran Jayasuriya
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India;
| | - Kumar Ganesan
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong 999077, China;
| | - Kunka Mohanram Ramkumar
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India;
| |
Collapse
|
260
|
Cussons D, Sullivan J, Frew Q, Barnes D. Suprathel Versus Hypafix in the Management of Split-Thickness Donor Site Wounds in the Elderly: A Randomised Controlled Trial. EUROPEAN BURN JOURNAL 2024; 5:335-345. [PMID: 39727907 PMCID: PMC11727311 DOI: 10.3390/ebj5040031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/16/2024] [Accepted: 09/05/2024] [Indexed: 12/28/2024]
Abstract
(1) Background: Effective wound management aims for expedited healing, improved functional and scar outcomes, and reduced complications including infection. Delayed wound healing remains a prevalent problem in the elderly. Suprathel is a synthetic absorbable skin substitute and an attractive option in partial thickness wounds. The objective of this randomised controlled study was to assess the effect of skin substitute dressings on elderly split-skin graft (STSG) donor sites, evaluating time to heal, pain, itch and scar outcome. (2) Methods: 40 patients over 65 undergoing split-thickness skin grafting for non-melanoma skin cancer excision were randomised to STSG donor site dressings with either Suprathel or Hypafix. Patients were followed up weekly until healed and at 13 weeks post-procedure. (3) Results: There was no significant difference in time to healing, pain, itch, or scar outcome at 13 weeks between the two groups. The mean time to healing was 31.7 days for the skin substitute group and 27.3 days for the adhesive tape control group (p = 0.182). (4) Conclusions: Both dressings are appropriate for STSG donor sites. Hypafix remains a cost-effective dressing of choice for donor sites. Benefits demonstrated in other studies using skin substitutes have not translated into the elderly population. There remains scope in developing dressings that reduce elderly donor site morbidity.
Collapse
Affiliation(s)
- David Cussons
- St. Andrew’s Centre for Plastic Surgery and Burns, Mid and South Essex NHS Foundation Trust, Chelmsford CM1 7E, UK
| | | | | | | |
Collapse
|
261
|
Chen S, Yao J, Huo S, Xu C, Yang R, Tao D, Fang B, Ma G, Zhu Z, Zhang Y, Guo J. Designing injectable dermal matrix hydrogel combined with silver nanoparticles for methicillin-resistant Staphylococcus aureus infected wounds healing. NANO CONVERGENCE 2024; 11:41. [PMID: 39417974 PMCID: PMC11486888 DOI: 10.1186/s40580-024-00447-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 10/01/2024] [Indexed: 10/19/2024]
Abstract
Hydrogel-based delivery systems have now emerged as a pivotal platform for addressing chronic tissue defects, leveraging their innate capacity to suppress pathogenic infections and facilitate expedited tissue regeneration. In this work, an injectable hydrogel dressing, termed AgNPs-dermal matrix hydrogel (Ag@ADMH), has been designed to expedite the healing process of wounds afflicted with methicillin-resistant Staphylococcus aureus (MRSA), featuring sustained antibacterial efficacy. The synthesis of the hydrogel dressing entailed a self-assembly process of collagen fibers within an acellular dermal matrix to construct a three-dimensional scaffold, encapsulated with plant polyphenol-functionalized silver nanoparticles (AgNPs). The Ag@ADMH demonstrated exceptional biocompatibility, and enables a sustained release of AgNPs, ensuring prolonged antimicrobial activity. Moreover, the in vitro RT-qPCR analysis revealed that compared with ADMH, Ag@ADMH diminish the expression of iNOS while augmenting CD206 expression, thereby mitigating the inflammatory response and fostering wound healing. Especially, the Ag@ADMH facilitated a reduction in M1 macrophage polarization, as evidenced by a significant decrement in the M1 polarization trend and an enhanced M2/M1 ratio in dermal matrix hydrogels laden with AgNPs, corroborated by confocal microscopy and flow cytometry analyses of macrophage phenotypes. The in vivo assessments indicated that Ag@ADMH minimized fibrous capsule formation. In a full-thickness skin defect model of MRSA infection, the formulation significantly attenuated the inflammatory response by reducing MPO and CD68 expression levels, concurrently promoting collagen synthesis and CD34 expression, pivotal for vasculogenesis, thereby accelerating the resolution of MRSA-infected wounds. These attributes underscore the injectable extracellular matrix hydrogel as a formidable strategy for the remediation and regeneration of infected wounds.
Collapse
Affiliation(s)
- Sunfang Chen
- Department of Orthopedic Surgery, Spine Center, the Central Hospital Affiliated to Shaoxing University, Shaoxing, 321030, China
| | - Jun Yao
- Department of Orthopedic Surgery, Spine Center, the Central Hospital Affiliated to Shaoxing University, Shaoxing, 321030, China
| | - Shicheng Huo
- Department of Orthopedic Surgery, Spine Center, Changzheng Hospital, Navy Medical University, Shanghai, 200003, China
| | - Chennan Xu
- Department of Orthopedic Surgery, Spine Center, the Central Hospital Affiliated to Shaoxing University, Shaoxing, 321030, China
| | - Ruting Yang
- Department of Orthopedic Surgery, Spine Center, the Central Hospital Affiliated to Shaoxing University, Shaoxing, 321030, China
| | - Danhua Tao
- Department of Pathology, the Central Hospital Affiliated to Shaoxing University, Shaoxing, 321030, China
| | - Bin Fang
- Department of Orthopedic Surgery, Spine Center, the Central Hospital Affiliated to Shaoxing University, Shaoxing, 321030, China
| | - Gaoxiang Ma
- Department of Orthopedic Surgery, Spine Center, the Central Hospital Affiliated to Shaoxing University, Shaoxing, 321030, China
| | - Zaihua Zhu
- Division of Rheumatology and Immunology, Huashan Hospital, Fudan University, Shanghai, 200040, China.
| | - Ye Zhang
- Department of Orthopedic Surgery, Spine Center, the Central Hospital Affiliated to Shaoxing University, Shaoxing, 321030, China.
| | - JingJing Guo
- Department of Pharmacy, the Central Hospital Affiliated to Shaoxing University, Shaoxing, 321030, China.
| |
Collapse
|
262
|
Chang M. Targeting Matrix Metalloproteinase-9 for Therapeutic Intervention in Diabetic Foot Ulcers. ACS Pharmacol Transl Sci 2024; 7:2901-2911. [PMID: 39421656 PMCID: PMC11480886 DOI: 10.1021/acsptsci.4c00263] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/26/2024] [Accepted: 06/28/2024] [Indexed: 10/19/2024]
Abstract
Diabetic foot ulcers (DFUs) are a complication of diabetes that have long been neglected. To date, a single drug (becaplermin containing platelet-derived growth factor, PDGF) has been approved by the FDA 27 years ago; however, it is seldom used because of its modest efficacy. The standard-of-care for DFUs is debridement, off-loading, and infection control with antibiotics, with hyperbaric oxygen (HBO) therapy being the treatment of last recourse. The paucity of understanding what accelerates diabetic wound healing results in more than 150,000 lower-limb amputations in the United States every year. A new paradigm for treatment of DFUs is proposed based on the higher levels of active matrix metalloproteinase (MMP)-9 with the more severe and infected human DFUs, and the demonstrated detrimental role of MMP-9 and the beneficial repair role of MMP-8 in diabetic mice. Selective inhibition of MMP-9 with the small molecule (R)-ND-336 lowered inflammation, reduced reactive oxygen species (ROS), and increased angiogenesis, without affecting MMP-8 to allow the natural repair mechanisms to take place. (R)-ND-336 showed better efficacy than becaplermin in diabetic mice. Becaplermin (PDGF) and HBO therapy work by decreasing MMP-9, but they do not completely suppress MMP-9 activity.
Collapse
Affiliation(s)
- Mayland Chang
- Department of Chemistry and
Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
263
|
Yudintceva NM, Kolesnichenko YV, Shatrova AN, Aksenov ND, Yartseva NM, Shevtsov MA, Fedorov VS, Khotin MG, Ziganshin RH, Mikhailova NA. Characterization and Physiological Differences of Two Primary Cultures of Human Normal and Hypertrophic Scar Dermal Fibroblasts: A Pilot Study. Biomedicines 2024; 12:2295. [PMID: 39457608 PMCID: PMC11504723 DOI: 10.3390/biomedicines12102295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 10/28/2024] Open
Abstract
Background/Objectives: Dermal fibroblasts (DFs) are key participants in skin hypertrophic scarring, and their properties are being studied to identify the molecular and cellular mechanisms underlying the pathogenesis of skin scarring. Methods: In the present work, we performed a comparative analysis of DFs isolated from normal skin (normal dermal fibroblasts, NDFs), and hypertrophic scar skin (hypertrophic scar fibroblasts, HTSFs). The fibroblasts were karyotyped and phenotyped, and experiments on growth rate, wound healing, and single-cell motility were conducted. Results: Comparative analysis revealed a minor karyotype difference between cells. However, HTSFs are characterized by higher proliferation level and motility compared to NDFs. These significant differences may be associated with quantitative and qualitative differences in the cell secretome. A proteomic comparison of NDF and HTSF found that differences were associated with metabolic proteins reflecting physiological differences between the two cells lines. Numerous unique proteins were found only in the vesicular phase of vHTSFs. Some proteins involved in cell proliferation (protein-glutamine gamma-glutamyltransferase K) and cell motility (catenin delta-1), which regulate gene transcription and the activity of Rho family GTPases and downstream cytoskeletal dynamics, were identified. A number of proteins which potentially play a role in fibrosis and inflammation (mucin-5B, CD97, adhesion G protein-coupled receptor E2, antileukoproteinase, protein S100-A8 and S100-A9, protein caspase recruitment domain-containing protein 14) were detected in vHTSFs. Conclusions: A comparative analysis of primary cell cultures revealed their various properties, especially in the cell secretome. These proteins may be considered promising target molecules for developing treatment or prevention strategies for pathological skin scarring.
Collapse
Affiliation(s)
- Natalia M. Yudintceva
- Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky 4, 194064 Saint-Petersburg, Russia; (Y.V.K.); (A.N.S.); (N.D.A.); (N.M.Y.); (M.A.S.); (V.S.F.); (M.G.K.); (N.A.M.)
| | - Yulia V. Kolesnichenko
- Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky 4, 194064 Saint-Petersburg, Russia; (Y.V.K.); (A.N.S.); (N.D.A.); (N.M.Y.); (M.A.S.); (V.S.F.); (M.G.K.); (N.A.M.)
| | - Alla N. Shatrova
- Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky 4, 194064 Saint-Petersburg, Russia; (Y.V.K.); (A.N.S.); (N.D.A.); (N.M.Y.); (M.A.S.); (V.S.F.); (M.G.K.); (N.A.M.)
| | - Nikolay D. Aksenov
- Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky 4, 194064 Saint-Petersburg, Russia; (Y.V.K.); (A.N.S.); (N.D.A.); (N.M.Y.); (M.A.S.); (V.S.F.); (M.G.K.); (N.A.M.)
| | - Natalia M. Yartseva
- Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky 4, 194064 Saint-Petersburg, Russia; (Y.V.K.); (A.N.S.); (N.D.A.); (N.M.Y.); (M.A.S.); (V.S.F.); (M.G.K.); (N.A.M.)
| | - Maxim A. Shevtsov
- Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky 4, 194064 Saint-Petersburg, Russia; (Y.V.K.); (A.N.S.); (N.D.A.); (N.M.Y.); (M.A.S.); (V.S.F.); (M.G.K.); (N.A.M.)
- School of Medicine and Life Sciences, Far Eastern Federal University, Campus 10 Ajax Bay, Russky Island, 690922 Vladivostok, Russia
| | - Viacheslav S. Fedorov
- Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky 4, 194064 Saint-Petersburg, Russia; (Y.V.K.); (A.N.S.); (N.D.A.); (N.M.Y.); (M.A.S.); (V.S.F.); (M.G.K.); (N.A.M.)
| | - Mikhail G. Khotin
- Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky 4, 194064 Saint-Petersburg, Russia; (Y.V.K.); (A.N.S.); (N.D.A.); (N.M.Y.); (M.A.S.); (V.S.F.); (M.G.K.); (N.A.M.)
| | - Rustam H. Ziganshin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences, Miklukho-Maklaya Street 16/10, 117997 Moscow, Russia;
| | - Natalia A. Mikhailova
- Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky 4, 194064 Saint-Petersburg, Russia; (Y.V.K.); (A.N.S.); (N.D.A.); (N.M.Y.); (M.A.S.); (V.S.F.); (M.G.K.); (N.A.M.)
| |
Collapse
|
264
|
Preetam S, Ghosh A, Mishra R, Pandey A, Roy DS, Rustagi S, Malik S. Electrical stimulation: a novel therapeutic strategy to heal biological wounds. RSC Adv 2024; 14:32142-32173. [PMID: 39399261 PMCID: PMC11467653 DOI: 10.1039/d4ra04258a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 09/02/2024] [Indexed: 10/15/2024] Open
Abstract
Electrical stimulation (ES) has emerged as a powerful therapeutic modality for enhancing biological wound healing. This non-invasive technique utilizes low-level electrical currents to promote tissue regeneration and expedite the wound healing process. ES has been shown to accelerate wound closure, reduce inflammation, enhance angiogenesis, and modulate cell migration and proliferation through various mechanisms. The principle goal of wound management is the rapid recovery of the anatomical continuity of the skin, to prevent infections from the external environment and maintain homeostasis conditions inside. ES at the wound site is a compelling strategy for skin wound repair. Several ES applications are described in medical literature like AC, DC, and PC to improve cutaneous perfusion and accelerate wound healing. This review aimed to evaluate the primary factors and provides an overview of the potential benefits and mechanisms of ES in wound healing, and its ability to stimulate cellular responses, promote tissue regeneration, and improve overall healing outcomes. We also shed light on the application of ES which holds excellent promise as an adjunct therapy for various types of wounds, including chronic wounds, diabetic ulcers, and surgical incisions.
Collapse
Affiliation(s)
- Subham Preetam
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST) Daegu 42988 Republic of Korea
| | - Arka Ghosh
- KIIT School of Biotechnology, Kalinga Institute of Industrial Technology Bhubaneswar 751003 Odisha India
| | - Richa Mishra
- Department of Computer Engineering, Parul Institute of Engineering and Technology (PIET), Parul University Ta. Waghodia Vadodara Gujarat 391760 India
| | - Arunima Pandey
- KIIT School of Biotechnology, Kalinga Institute of Industrial Technology Bhubaneswar 751003 Odisha India
| | - Debanjan Singha Roy
- KIIT School of Biotechnology, Kalinga Institute of Industrial Technology Bhubaneswar 751003 Odisha India
| | - Sarvesh Rustagi
- School of Applied and Life Sciences, Uttaranchal University 22 Dehradun Uttarakhand India
| | - Sumira Malik
- Amity Institute of Biotechnology, Amity University Jharkhand Ranchi Jharkhand 834001 India
- Department of Biotechnology, University Center for Research & Development (UCRD) Chandigarh University Ludhiana Highway Mohali 140413 Punjab India
| |
Collapse
|
265
|
Manzoor T, Farooq N, Sharma A, Shiekh PA, Hassan A, Dar LA, Nazir J, Godha M, Sheikh FA, Gugjoo MB, Saleem S, Ahmad SM. Exosomes in nanomedicine: a promising cell-free therapeutic intervention in burn wounds. Stem Cell Res Ther 2024; 15:355. [PMID: 39385310 PMCID: PMC11462792 DOI: 10.1186/s13287-024-03970-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 10/01/2024] [Indexed: 10/12/2024] Open
Abstract
Burn injuries are serious injuries that have a big impact on a person's health and can even cause death. Incurring severe burns can incite an immune response and inflammation within the body, alongside metabolic changes. It is of utmost importance to grasp the fact that the effects of the burn injury extend beyond the body, affecting the mind and overall well-being. Burn injuries cause long-lasting changes that need to be taken care of in order to improve their quality of life. The intricate process of skin regeneration at the site of a burn wound involves a complex and dynamic interplay among diverse cells, growth factors, nerves, and blood vessels. Exciting opportunities have arisen in the field of stem cells and regenerative medicine, allowing us to explore the development of cell-free-based alternatives that can aid in the treatment of burn injuries. These cell-free-based therapies have emerged as a promising facet within regenerative medicine. Exosomes, also referred to as naturally occurring nanoparticles, are small endosome-derived vesicles that facilitate the delivery of molecular cargo between the cells, thus allowing intercellular communication. The knowledge gained in this field has continued to support their therapeutic potential, particularly in the domains of wound healing and tissue regeneration. Notably, exosomes derived from mesenchymal stem cells (MSCs) can be safely administered in the system, which is then adeptly uptaken and internalized by fibroblasts/epithelial cells, subsequently accelerating essential processes such as migration, proliferation, and collagen synthesis. Furthermore, exosomes released by immune cells, specifically macrophages, possess the capability to modulate inflammation and effectively diminish it in adjacent cells. Exosomes also act as carriers when integrated with a scaffold, leading to scarless healing of cutaneous wounds. This comprehensive review examines the role of exosomes in burn wound healing and their potential utility in regeneration and repair.
Collapse
Affiliation(s)
- Tasaduq Manzoor
- Division of Animal Biotechnology, Faculty of Veterinary Sciences & Animal Husbandry, SKUAST, Srinagar, Kashmir, 190006, India
- School of Life and Basic Sciences, Jaipur National University, Jagatpura, Jaipur, India
| | - Nida Farooq
- Division of Animal Biotechnology, Faculty of Veterinary Sciences & Animal Husbandry, SKUAST, Srinagar, Kashmir, 190006, India
| | - Arushi Sharma
- Centre for Biomedical Engineering, Indian Institute of Technology-Delhi, New Delhi, India
| | - Parvaiz A Shiekh
- Centre for Biomedical Engineering, Indian Institute of Technology-Delhi, New Delhi, India
| | - Amreena Hassan
- Division of Animal Biotechnology, Faculty of Veterinary Sciences & Animal Husbandry, SKUAST, Srinagar, Kashmir, 190006, India
| | - Lateef Ahmad Dar
- Division of Animal Biotechnology, Faculty of Veterinary Sciences & Animal Husbandry, SKUAST, Srinagar, Kashmir, 190006, India
| | - Junaid Nazir
- Division of Animal Biotechnology, Faculty of Veterinary Sciences & Animal Husbandry, SKUAST, Srinagar, Kashmir, 190006, India
| | - Meena Godha
- School of Life and Basic Sciences, Jaipur National University, Jagatpura, Jaipur, India
| | - Faheem A Sheikh
- Department of Nanotechnology, University of Kashmir, Srinagar, Kashmir, India
| | - Mudasir Bashir Gugjoo
- Veterinary Clinical Services Complex, Faculty of Veterinary Sciences & Animal Husbandry, SKUAST- Srinagar, Kashmir, India
| | - Sahar Saleem
- Division of Animal Biotechnology, Faculty of Veterinary Sciences & Animal Husbandry, SKUAST, Srinagar, Kashmir, 190006, India
| | - Syed Mudasir Ahmad
- Division of Animal Biotechnology, Faculty of Veterinary Sciences & Animal Husbandry, SKUAST, Srinagar, Kashmir, 190006, India.
| |
Collapse
|
266
|
Espíndola-Rodríguez NH, Muñoz-Cázares N, Serralta-Peraza LEDS, Díaz-Nuñez JL, Montoya-Reyes F, García-Contreras R, Díaz-Guerrero M, Rivera-Chávez JA, Gutiérrez J, Sotelo-Barrera M, Castillo-Juárez I. Antivirulence and antipathogenic activity of Mayan herbal remedies against Pseudomonas aeruginosa. JOURNAL OF ETHNOPHARMACOLOGY 2024; 332:118373. [PMID: 38782309 DOI: 10.1016/j.jep.2024.118373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/11/2024] [Accepted: 05/19/2024] [Indexed: 05/25/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The Yucatan Peninsula has a privileged wealth of vascular plants with which various Mayan herbal formulations have been developed. However, studies on their antipathogenic and antivirulence properties are scarce. AIM OF THE STUDY Identify antivirulence properties in Mayan herbal remedies and determine their antipathogenic capacity in burn wounds infected with Pseudomonas aeruginosa. MATERIALS AND METHODS An ethnobotanical study was conducted in Mayan communities in central and southern Quintana Roo, Mexico. Furthermore, the antipathogenic capacity of three Mayan herbal remedies was analyzed using an animal model of thermal damage and P. aeruginosa infection. Antivirulence properties were determined by inhibiting phenotypes regulated by quorum sensing (pyocyanin, biofilm, and swarming) and by the secretion of the ExoU toxin. The chemical composition of the most active herbal remedy was analyzed using molecular network analysis. RESULTS It was found that topical administration of the remedy called "herbal soap" (HS) for eleven days maintained 100% survival of the animals, reduced establishment of the bacteria in the burn and prevented its systemic dispersion. Although no curative effect was recorded on tissue damaged by HS treatment, its herbal composition strongly reduced swarming and ExoU secretion. Through analysis of Molecular Networks, it was possible to carry out a global study of its chemical components, and identify the family of oxindole monoterpenoid alkaloids and carboline and tetrahydropyrididole alkaloids. In addition, flavonols, flavan-3-ols, and quinic acid derivatives were detected. CONCLUSIONS The antipathogenic and antivirulence capacity of ancient Mayan remedies makes them a potential resource for developing new antibacterial therapies to treat burns infected by P. aeruginosa.
Collapse
Affiliation(s)
- Nadine Heidi Espíndola-Rodríguez
- Laboratorio de Investigación y Aplicación de Fitoquímicos Bioactivos, Posgrado en Botánica, Colegio de Postgraduados, Texcoco, 56230, Mexico.
| | - Naybi Muñoz-Cázares
- Campo Experimental Chetumal, Instituto de Investigaciones Forestales, Agrícolas y Pecuarias, Quintana Roo, 77963, Mexico; Investigadora Posdoctoral CONAHCYT Comisionada al Colegio de Postgraduados-Campus Tabasco, Cárdenas, Tabasco, C. P. 86500, Mexico.
| | | | - José Luis Díaz-Nuñez
- Laboratorio de Investigación y Aplicación de Fitoquímicos Bioactivos, Posgrado en Botánica, Colegio de Postgraduados, Texcoco, 56230, Mexico.
| | - Francisco Montoya-Reyes
- Campo Experimental Chetumal, Instituto de Investigaciones Forestales, Agrícolas y Pecuarias, Quintana Roo, 77963, Mexico.
| | - Rodolfo García-Contreras
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, CDMX, 04510, Mexico.
| | - Miguel Díaz-Guerrero
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, CDMX, 04510, Mexico.
| | - José Alberto Rivera-Chávez
- Departamento de Productos Naturales, Instituto de Química, Universidad Nacional Autónoma de México, CDMX, 04510, Mexico.
| | - Jorge Gutiérrez
- Área de Biología, Departamento de Preparatoria Agrícola, Universidad Autónoma Chapingo, Texcoco, 56230, Mexico.
| | - Mireya Sotelo-Barrera
- Laboratorio de Investigación y Aplicación de Fitoquímicos Bioactivos, Posgrado en Botánica, Colegio de Postgraduados, Texcoco, 56230, Mexico.
| | - Israel Castillo-Juárez
- Laboratorio de Investigación y Aplicación de Fitoquímicos Bioactivos, Posgrado en Botánica, Colegio de Postgraduados, Texcoco, 56230, Mexico; Conahcyt-Instituto de Ciencias Básicas e Ingeniería, Universidad Autónoma del Estado de Hidalgo, Mineral de la Reforma, Hidalgo, 42184, Mexico.
| |
Collapse
|
267
|
Meagher H. Undertaking a structured assessment of a hard-to-heal wound. Nurs Stand 2024; 39:33-38. [PMID: 39188256 DOI: 10.7748/ns.2024.e12224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/01/2023] [Indexed: 08/28/2024]
Abstract
A thorough, holistic wound assessment is essential to identify the aetiology of a hard-to-heal wound and formulate a diagnosis, which will underpin the treatment plan. This article describes the fundamental elements of assessing a patient with a hard-to-heal wound holistically, including taking a patient history, performing a clinical examination and investigations, and considering the patient's physical, psychological, spiritual and social needs. The author also outlines the aspects of the TIMERS (tissue, infection/inflammation, moisture, edge, regeneration and social factors) wound assessment tool in detail, and explains some of the challenges associated with accurately assessing a wound.
Collapse
Affiliation(s)
- Helen Meagher
- University Hospital Limerick, UL Hospitals Group, Limerick, Republic of Ireland
| |
Collapse
|
268
|
Nasra S, Pramanik S, Oza V, Kansara K, Kumar A. Advancements in wound management: integrating nanotechnology and smart materials for enhanced therapeutic interventions. DISCOVER NANO 2024; 19:159. [PMID: 39354172 PMCID: PMC11445205 DOI: 10.1186/s11671-024-04116-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/23/2024] [Indexed: 10/03/2024]
Abstract
Wound management spans various techniques and materials tailored to address acute and chronic non-healing wounds, with the primary objective of achieving successful wound closure. Chronic wounds pose additional challenges, often necessitating dressings to prepare the wound bed for subsequent surgical procedures like skin grafting. Ideal dressing materials should not only expedite wound healing but also mitigate protein, electrolyte, and fluid loss while minimizing pain and infection risk. Nanotechnology has emerged as a transformative tool in wound care, revolutionizing the landscape of biomedical dressings. Its application offers remarkable efficacy in accelerating wound healing and combating bacterial infections, representing a significant advancement in wound care practices. Integration of nanotechnology into dressings has resulted in enhanced properties, including improved mechanical strength and controlled drug release, facilitating tailored therapeutic interventions. This review article comprehensively explores recent breakthroughs in wound healing therapies, with a focus on innovative medical dressings such as nano-enzymes. Additionally, the utilization of smart materials, like hydrogels and electroactive polymers, in wound dressings offers dynamic functionalities to promote tissue regeneration. Emerging concepts such as bio-fabrication, microfluidic systems, bio-responsive scaffolds, and personalized therapeutics show promise in expediting wound healing and minimizing scarring. Through an in-depth exploration of these advancements, this review aims to catalyze a paradigm shift in wound care strategies, promoting a patient-centric approach to therapeutic interventions.
Collapse
Affiliation(s)
- Simran Nasra
- Biological and Life Sciences, School of Arts a Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad, Gujarat, 380009, India
| | - Sanjali Pramanik
- Biological and Life Sciences, School of Arts a Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad, Gujarat, 380009, India
| | - Vidhi Oza
- Biological and Life Sciences, School of Arts a Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad, Gujarat, 380009, India
| | - Krupa Kansara
- Biological Engineering Discipline, Indian Institute of Technology Gandhinagar, Palaj, Gujarat, 382355, India.
| | - Ashutosh Kumar
- Biological and Life Sciences, School of Arts a Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad, Gujarat, 380009, India.
| |
Collapse
|
269
|
Münter KC, Lázaro-Martínez JL, Kanya S, Sawade L, Schwenke C, Pegalajar-Jurado A, Swanson T, Leaper D. Clinical efficacy and safety of a silver ion-releasing foam dressing on hard-to-heal wounds: a meta-analysis. J Wound Care 2024; 33:726-736. [PMID: 39388210 DOI: 10.12968/jowc.2024.0149] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
OBJECTIVE Delayed or stalled healing in open wounds can result from persisting chronic inflammation related to infection and/or persistent bacterial colonisation and biofilm. Treatment of hard-to-heal wounds focuses on debridement and exudate management, but also on infection prevention and control. Silver dressings have been evaluated in randomised clinical trials (RCTs); this meta-analysis evaluated the efficacy and safety of a silver ion-releasing foam dressing (Biatain Ag; Coloplast A/S, Denmark) to treat hard-to-heal wounds. METHOD Literature databases (PubMed and Cochrane Library) were searched for studies on silver ion-releasing foam dressings in the treatment of hard-to-heal wounds. Individual patient data from four RCTs were obtained and included in the meta-analysis. RESULTS Findings showed that treatment with the silver ion-releasing foam dressing was associated with a significantly higher relative reduction in wound area after four (least squares-mean difference (LS-MD): -12.55%, 95% confidence interval (CI): (-15.95, -9.16); p<0.01) and six weeks of treatment (LS-MD: -11.94%, 95%CI: (-17.21, -6.68); p<0.01) compared with controls. Significant benefits were also observed for time to disappearance of odour (hazard ratio: 1.61, 95%CI: (1.31, 1.98); p<0.01), relative reduction of exudate (LS-MD: -5.15, 95%CI: (-7.36, -2.94); p<0.01), proportion of patients with periwound erythema (relative risk (RR): 0.81, 95%CI: (0.69; 0.94); p<0.01), and less pain at dressing removal (LS-MD: -0.35, 95%CI: (-0.63, -0.06); p=0.02). No differences regarding safety outcomes were identified. CONCLUSION This meta-analysis has demonstrated beneficial outcomes and a good tolerability profile for silver ion-releasing foam dressings in the treatment of moderate-to-highly exuding wounds with delayed healing compared with control dressings.
Collapse
Affiliation(s)
| | | | - Susanne Kanya
- Wound and Skin Care Region DACH, Coloplast GmbH, Hamburg, Germany
| | | | | | | | - Terry Swanson
- South West Healthcare, Warrnambool, Victoria, Australia
| | - David Leaper
- University of Newcastle, UK
- University of Huddersfield, UK
| |
Collapse
|
270
|
Ibiyeye TT, Taiwo JO, Nasir AA, Popoola AA. Wound Healing and Cosmetic Outcomes in Neonatal Circumcision Using Three Different Techniques. Afr J Paediatr Surg 2024; 21:223-227. [PMID: 38520233 PMCID: PMC11493224 DOI: 10.4103/ajps.ajps_13_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/18/2023] [Accepted: 04/03/2023] [Indexed: 03/25/2024] Open
Abstract
BACKGROUND Circumcision of a male child is an integral part of some African cultures. An ideal technique of neonatal circumcision should be simple, safe and heal satisfactorily with good cosmetic appeal. The aim was to compare conventional dissection (CD), Plastibell (PB) and Gomco (GM) techniques of circumcision in neonates in terms of wound healing, wound healing complications, cosmetic outcome and parental satisfaction. MATERIALS AND METHODS A total of 144 male neonates were randomised into three study groups: CD, GM and PB groups. All procedures were performed under local anaesthesia as day case. Superficial wound healing was assessed on the 7 th post-operative day. The cosmetic outcome of the three techniques was assessed by a plastic surgeon and the parents using a 4-point Likert scale on the 4 th post-operative week. RESULTS The three groups were comparable in terms of age ( P = 0.207) and weight ( P = 0.098) at circumcision. There was satisfactory wound healing in 48 (100%) patients in the GM group, compared to 47 (97.8%) in the CD group and 45 (93.8%) in the PB group ( P = 0.324). Wound healing complications were recorded in seven patients, 1 (2.1%) in the CD group with wound infection, 5 (10.4%) in the PB group with moderate pain despite the use of analgesia and 1 (2.1%) patient with skin bridge in the CD group. The plastic surgeon and the parents rated the cosmetic outcome of CD higher than the other two techniques. CONCLUSION There is no significant difference in superficial wound healing amongst the three circumcision techniques. The cosmetic outcome of CD was significantly better than that of GM and PB circumcisions.
Collapse
Affiliation(s)
| | | | - Abdulrasheed A. Nasir
- Department of Surgery, University of Ilorin Teaching Hospital, University of Ilorin, Ilorin, Nigeria
| | - Ademola A. Popoola
- Department of Surgery, University of Ilorin Teaching Hospital, University of Ilorin, Ilorin, Nigeria
| |
Collapse
|
271
|
Sen CK. Standardized Wound Care: Patchwork Practices? Adv Wound Care (New Rochelle) 2024; 13:485-493. [PMID: 38940743 DOI: 10.1089/wound.2024.0130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024] Open
Abstract
Standardized care is crucial in health care for ensuring consistent, safe, high-quality, efficient, and evidence-based practices. Care pathways that standardize procedures promote adherence to best practices, reduce variability in treatment, and encourage collaboration among health care teams. This approach ultimately improves patient outcomes, enhances safety, and boosts the overall effectiveness of health care services. However, despite these benefits being widespread across most of the U.S. health care system, wound care stands out as an area where standards can vary significantly. The inconsistency in wound care standards in the United States can be traced to several factors. These include limited structured clinical wound care education, the discretion of health care providers in different business environments, differences in wound care settings, varying access to advanced treatments and technology, patient demographics and socioeconomic status, as well as differences in state laws and regional or institutional practices. Addressing these disparities requires a comprehensive approach that considers the complex interplay of the abovementioned factors. Active measures are needed to improve access, equity, and the quality of wound care services for all patients, regardless of where they live, their socioeconomic status, their health care coverage, or the business interests of providers and their institutions as well as of vendors marketing wound care products inconsistent with evidence-based practice. By understanding and actively addressing these factors, we can work toward achieving more standardized, evidence-based, and patient-centered practices in wound care across the nation.
Collapse
Affiliation(s)
- Chandan K Sen
- PittMcGowan Wound Research Consortium, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
272
|
Pan H, Song J, An Q, Chen J, Zheng W, Zhang L, Gu J, Deng C, Yang B. Inhibition of Ubiquitin C-Terminal Hydrolase L1 Facilitates Cutaneous Wound Healing via Activating TGF-β/Smad Signalling Pathway in Fibroblasts. Exp Dermatol 2024; 33:e15186. [PMID: 39367569 DOI: 10.1111/exd.15186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 07/27/2024] [Accepted: 09/20/2024] [Indexed: 10/06/2024]
Abstract
Ubiquitin C-terminal hydrolase L1 (UCHL1) plays vital roles in cell proliferation, angiogenesis, inflammation and oxidative stress. Nevertheless, it is unclear whether UCHL1 could regulate the biologic behaviour of cells and ultimately influences wound healing. We aim to illustrate the roles and the underlying mechanism of UCHL1 in cutaneous wound healing. Murine full-thickness excisional wound model was utilised to study the effects of UCHL1 on wound healing through topical administration of the UCHL1 inhibitor LDN57444, followed by assessment of wound areas and histological alterations. Subsequently, ethynyldeoxyuridine, scratch and transwell assays were performed to examine fibroblast migration and proliferation. The extracellular matrix (ECM)-related genes expression and transforming growth factor-β (TGF-β)/Smad signalling pathways activation were investigated by immuno-fluorescent staining, Western blots and quantitative reverse transcription polymerase chain reaction. We identified elevated UCHL1 expression in non-healing wound tissues. The UCHL1 expression displayed a dynamic change and reached a peak on Day-7 post-wounding during the healing process in mice. Cutaneous administration of LDN57444 promoted wound healing by facilitating collagen deposition, myofibroblast activation and angiogenesis. In vitro experiments demonstrated that UCHL1 concentration dependently inhibited migration, ECM synthesis and activation of human dermal fibroblasts, which was mechanistically related to downregulation of TGF-β/Smad signalling. Furthermore, these effects could be reversed by TGF-β inhibitor SB431542. Our findings reveal that UCHL1 is a negative regulator of cutaneous wound healing and considered as a novel prospective therapeutic target for effective wound healing.
Collapse
Affiliation(s)
- Huihui Pan
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Jinru Song
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Qing An
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Junyi Chen
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Wenyue Zheng
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Litian Zhang
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Jingjing Gu
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Chengcheng Deng
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Bin Yang
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
273
|
Arunim, Sarita, Mishra R, Bajpai S. Natural biopolymer-based hydrogels: an advanced material for diabetic wound healing. Diabetol Int 2024; 15:719-731. [PMID: 39469550 PMCID: PMC11512956 DOI: 10.1007/s13340-024-00737-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 05/26/2024] [Indexed: 10/30/2024]
Abstract
A diabetic foot ulcer (DFU) is an open sore or wound that typically develops on the bottom of the foot. Almost 15% of people with diabetes are suffering from delayed wound healing worldwide. The main vehicle for the development of ulcers in the diabetic population is poor circulation and peripheral neuropathy. Chronic injuries from diabetes frequently lead to traumatic lower leg amputations. Hydrogels are three-dimensional gels that can be fabricated from natural polymers and synthetic polymers. Biopolymers are flexible, elastic, or fibrous materials that come from a natural source, such as plants, animals, bacteria, or other living things. Some of the naturally occurring polymers that are frequently employed in wound dressing applications include polysaccharides and proteins. These polymers can be employed for many therapeutic applications because of their inherent biocompatibility, low immunogenicity, non-toxicity, and biodegradability. They represent a tuneable platform for enhancing skin healing. Therefore, this review paper interprets how natural biopolymers and their various hydrogel forms can be potentially used for diabetic wound healing.
Collapse
Affiliation(s)
- Arunim
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Rajasthan Tonk, 304022 India
| | - Sarita
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Rajasthan Tonk, 304022 India
| | - Rakesh Mishra
- Advance Center for Medical Genetics (ACMG), Haematology Tower, Sri Ram Cancer Superspeciality, Mahatma Gandhi Hospital, Sitapura Industrial Area, Rajasthan Jaipur, India
| | - Surabhi Bajpai
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Rajasthan Tonk, 304022 India
| |
Collapse
|
274
|
Zhu Z, Deng X, Xie W, Li H, Li Y, Deng Z. Pharmacological effects of bioactive agents in earthworm extract: A comprehensive review. Animal Model Exp Med 2024; 7:653-672. [PMID: 38957072 PMCID: PMC11528390 DOI: 10.1002/ame2.12465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 06/17/2024] [Indexed: 07/04/2024] Open
Abstract
This review compiles information from the literature on the chemical composition, pharmacological effects, and molecular mechanisms of earthworm extract (EE) and suggests possibilities for clinical translation of EE. We also consider future trends and concerns in this domain. We summarize the bioactive components of EE, including G-90, lysenin, lumbrokinase, antimicrobial peptides, earthworm serine protease (ESP), and polyphenols, and detail the antitumor, antithrombotic, antiviral, antibacterial, anti-inflammatory, analgesic, antioxidant, wound-healing, antifibrotic, and hypoglycemic activities and mechanisms of action of EE based on existing in vitro and in vivo studies. We further propose the potential of EE for clinical translation in anticancer and lipid-modifying therapies, and its promise as source of a novel agent for wound healing and resistance to antibiotic tolerance. The earthworm enzyme lumbrokinase embodies highly effective anticoagulant and thrombolytic properties and has the advantage of not causing bleeding phenomena due to hyperfibrinolysis. Its antifibrotic properties can reduce the excessive accumulation of extracellular matrix. The glycolipoprotein extract G-90 can effectively scavenge reactive oxygen groups and protect cellular tissues from oxidative damage. Earthworms have evolved a well-developed defense mechanism to fight against microbial infections, and the bioactive agents in EE have shown good antibacterial, fungal, and viral properties in in vitro and in vivo experiments and can alleviate inflammatory responses caused by infections, effectively reducing pain. Recent studies have also highlighted the role of EE in lowering blood glucose. EE shows high medicinal value and is expected to be a source of many bioactive compounds.
Collapse
Affiliation(s)
- Zihan Zhu
- Department of OrthopedicsXiangya Hospital, Central South UniversityChangshaHunanChina
- Xiangya School of MedicineCentral South UniversityChangshaHunanChina
| | - Xinyi Deng
- Department of OrthopedicsXiangya Hospital, Central South UniversityChangshaHunanChina
- Xiangya School of MedicineCentral South UniversityChangshaHunanChina
| | - Wenqing Xie
- Department of OrthopedicsXiangya Hospital, Central South UniversityChangshaHunanChina
- National Clinical Research Center for Geriatric DisordersXiangya Hospital, Central South UniversityChangshaHunanChina
| | - Hengzhen Li
- Department of OrthopedicsXiangya Hospital, Central South UniversityChangshaHunanChina
- National Clinical Research Center for Geriatric DisordersXiangya Hospital, Central South UniversityChangshaHunanChina
| | - Yusheng Li
- Department of OrthopedicsXiangya Hospital, Central South UniversityChangshaHunanChina
- National Clinical Research Center for Geriatric DisordersXiangya Hospital, Central South UniversityChangshaHunanChina
| | - Zhenhan Deng
- Department of Orthopaedic SurgeryThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
| |
Collapse
|
275
|
Garoosi K, Yoon Y, Winocour J, Mathes DW, Kaoutzanis C. The Effects of Body Mass Index on Postoperative Complications in Patients Undergoing Autologous Free Flap Breast Reconstruction. J Reconstr Microsurg 2024; 40:601-610. [PMID: 38395056 DOI: 10.1055/s-0044-1780518] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
BACKGROUND The prevalence of obesity in the United States exceeds 40%, yet perioperative effects of higher body mass index (BMI) in autologous breast reconstruction remain poorly studied. The purpose of this study was to investigate BMI's impact on postop complications in abdominal and gluteal-based autologous breast reconstruction. METHODS We conducted a retrospective study using TriNetX, a health care database containing de-identified data from more than 250 million patients. Patients undergoing autologous breast reconstruction were identified by Current Procedural Terminology codes. Four cohorts were established by BMI class: <24.99, 25 to 29.99, 30 to 34.99, and 35 to 39.99 kg/m2. Outcomes of interest were defined by International Classification of Diseases, Tenth Revision (ICD-10) codes. A two-sample t-test was performed to compare incidence of postoperative complications between cohorts within 3 months of surgery. Patients with a BMI < 24.99 kg/m2 served as the control. Cohorts were balanced on age, race, and ethnicity. RESULTS We identified 8,791 patients who underwent autologous breast reconstruction. Of those, 1,143 had a BMI < 24.99 kg/m2, 1,867 had a BMI of 25 to 29.99 kg/m2, 1,396 had a BMI of 30 to 34.99 kg/m2, and 559 had a BMI of 35 to 39.99 kg/m2. Patients with a BMI of 25 to 29.99 kg/m2 had a significantly increased risk of cellulitis. Patients with a BMI of 30 to 34.99 and 35 to 39.99 kg/m2 had a significantly increased risk of cellulitis, surgical site infection, need for debridement, wound dehiscence, and flap failure. CONCLUSION Our study illustrates that there is an increased risk of postoperative complications associated with higher BMI classes. Understanding these data are imperative for providers to adequately stratify patients and guide the procedural decision-making.
Collapse
Affiliation(s)
- Kassra Garoosi
- School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - YooJin Yoon
- School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Julian Winocour
- Division of Plastic and Reconstructive Surgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - David W Mathes
- Division of Plastic and Reconstructive Surgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Christodoulos Kaoutzanis
- Division of Plastic and Reconstructive Surgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
276
|
Chu AS, Delmore B, Chiu ES. High-Quality Dietary Protein: The Key to Healthy Granulation Tissue. Adv Skin Wound Care 2024; 37:520-527. [PMID: 39481059 DOI: 10.1097/asw.0000000000000210] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
GENERAL PURPOSE To review the role of nutrition and high-quality dietary protein intake in creating healthy granulation tissue and optimize wound healing in patients with chronic wounds. TARGET AUDIENCE This continuing education activity is intended for physicians, physician assistants, nurse practitioners, and registered nurses with an interest in skin and wound care. LEARNING OBJECTIVES/OUTCOMES After participating in this educational activity, the participant will:1. Summarize the structure and composition of proteins. 2. Specify the role of proteins in generating healthy granulation tissue and wound healing. 3. Explain the physiologic pathways involved in the wound healing process. 4. Describe evidence-based interventions to support nutrition in wound healing.
Collapse
|
277
|
Yadav VS, Makker K, Tewari N, Monga N, Balachandran R, Bhawal UK, Mahajan A. Expression of wound healing markers in gingival crevicular fluid following root-coverage procedures: A systematic review of randomized clinical trials. Arch Oral Biol 2024; 166:106035. [PMID: 39002181 DOI: 10.1016/j.archoralbio.2024.106035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/20/2024] [Accepted: 06/24/2024] [Indexed: 07/15/2024]
Abstract
OBJECTIVE Although several surgical techniques have been developed for treatment of gingival recession (GR), the underlying wound healing process remains relatively unexplored. This systematic review aimed to investigate the expression of wound healing markers in gingival crevicular fluid (GCF) before and after surgical treatment of GR. DESIGN Randomized clinical trials (RCTs) reporting changes in the expression of GCF markers following any root coverage surgical procedure were identified from 4 electronic databases and manual searches followed by data extraction and result synthesis. The risk of bias (RoB) was assessed using Cochrane RoB 2.0 tool. Overall certainty of evidence was summarized using the Grading of Recommendations Assessment, Development and Evaluation (GRADE) tool. RESULTS Four RCTs comprising 100 patients and investigating 15 biomarkers were included. Post-surgery, GCF levels of cytokines and inflammatory proteins were raised during the first 2-10 days of healing. MMP-8 levels increased during the first week followed by a gradual decline. RoB was found to be high for all studies and the overall certainty of evidence was very low. CONCLUSION A limited number of studies with large methodological variations precluded reliable conclusions. Well-designed studies powered for GCF markers' levels that follow a standardized protocol for GCF sampling and processing are needed to draw conclusive evidence.
Collapse
Affiliation(s)
- Vikender Singh Yadav
- Division of Periodontics, Centre for Dental Education and Research, All India Institute of Medical Sciences, New Delhi, India.
| | - Kanika Makker
- Division of Periodontics, Centre for Dental Education and Research, All India Institute of Medical Sciences, New Delhi, India
| | - Nitesh Tewari
- Division of Pedodontics and Preventive Dentistry, Centre for Dental Education and Research, All India Institute of Medical Sciences, New Delhi, India
| | - Nitika Monga
- Division of Non-communicable diseases, Indian Council of Medical Research, New Delhi, India
| | - Rajiv Balachandran
- Division of Orthodontics and Dentofacial Deformities, Centre for Dental Education and Research, All India Institute of Medical Sciences, New Delhi, India
| | - Ujjal Kumar Bhawal
- Research Institute of Oral Science, Nihon University School of Dentistry at Matsudo, Chiba, Japan
| | - Ajay Mahajan
- Department of Periodontology, H.P. Government Dental College and Hospital, Shimla, Himachal Pradesh, India
| |
Collapse
|
278
|
Fatahzadeh M, Ravi A, Thomas P, Ziccardi VB. Systemic Factors Affecting Healing in Dentistry. Dent Clin North Am 2024; 68:799-812. [PMID: 39244258 DOI: 10.1016/j.cden.2024.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2024]
Abstract
Healing process in the oral cavity is influenced by a range of systemic factors. More specifically, patient health status, medications, habits, and nutritional state play crucial roles in dental healing. Additionally, the body's immune response, inflammation, and overall well-being are key determinants in wound repair. Understanding these systemic factors is essential for dental professionals to optimize patient care, minimize complications, and achieve successful healing.
Collapse
Affiliation(s)
- Mahnaz Fatahzadeh
- Division of Oral Medicine, Department of Diagnostic Sciences, Rutgers School of Dental Medicine, 110 Bergen Street, Newark, NJ 07103, USA
| | - Anjali Ravi
- University of Pittsburgh School of Dental Medicine, 341 Darragh Street, Unit 313, Pittsburgh, PA 15213, USA.
| | - Prisly Thomas
- Diplomate American Board of Orofacial Pain, Believers Church Medical College Hospital, St. Thomas Nagar Kuttapuzha, Thiruvalla Kerala-689103, India
| | - Vincent B Ziccardi
- Department of Oral and Maxillofacial Surgery, Rutgers School of Dental Medicine, Room B854, 110 Bergen Street, Newark, NJ 07103, USA
| |
Collapse
|
279
|
Rao D, Kumar P, Prabhu V. Advancements in seawater immersion wound management: Current treatments and innovations. Int Wound J 2024; 21:e70070. [PMID: 39353589 PMCID: PMC11444725 DOI: 10.1111/iwj.70070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/11/2024] [Indexed: 10/04/2024] Open
Abstract
With advancements in naval warfare, the number and severity of seawater injuries have skyrocketed, necessitating effective seawater immersion (SWI) wound management. The unique marine pathogens, salinity, low temperature and alkalinity of seawater are the main environmental factors that can influence SWI wound healing. The current treatment strategy for SWI wounds follows a standard protocol based on terrestrial wound conditions, neglecting seawater conditions. The key requirements for ideal SWI treatment include good adhesion to the wound surface to minimize further exposure to seawater, enhanced wound healing properties to minimize wound healing time and antibacterial properties to prevent infections from marine pathogens. Current SWI wound-specific treatments range from elaborate techniques like vacuum-sealed drainage and vacuum-assisted closure for severe blast injuries to simple application of hydrogels or collagen dressings for minor injuries. This review discusses the current status and development of various treatment modalities for SWI wounds. The development of these treatment strategies and an understanding of their mechanisms of action make us better prepared to manage and treat SWI injuries.
Collapse
Affiliation(s)
- Devika Rao
- Photoceutics and Regeneration Laboratory, Centre for Microfluidics, Biomarkers, Photoceutics and Sensors (μBioPS), Department of Biotechnology, Manipal Institute of TechnologyManipal Academy of Higher EducationManipalIndia
| | - Praveen Kumar
- Photoceutics and Regeneration Laboratory, Centre for Microfluidics, Biomarkers, Photoceutics and Sensors (μBioPS), Department of Biotechnology, Manipal Institute of TechnologyManipal Academy of Higher EducationManipalIndia
| | - Vijendra Prabhu
- Photoceutics and Regeneration Laboratory, Centre for Microfluidics, Biomarkers, Photoceutics and Sensors (μBioPS), Department of Biotechnology, Manipal Institute of TechnologyManipal Academy of Higher EducationManipalIndia
| |
Collapse
|
280
|
Hu D, Long D, Xia T, Wang Y, Zhang S, Wang J, Shi X, Wang Y. Accelerated healing of intractable biofilm-infected diabetic wounds by trypsin-loaded quaternized chitosan hydrogels that disrupt extracellular polymeric substances and eradicate bacteria. Int J Biol Macromol 2024; 278:134677. [PMID: 39142478 DOI: 10.1016/j.ijbiomac.2024.134677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/09/2024] [Accepted: 08/09/2024] [Indexed: 08/16/2024]
Abstract
Complex and stubborn bacterial biofilm infections significantly hinder diabetic wound healing and threaten public health. Therefore, a dressing material that effectively clears biofilms and promotes wound healing is urgently required. Herein, we introduce a novel strategy for simultaneously dispersing extracellular polymeric substances and eradicating drug-resistant bacteria. We prepared an ultrabroad-spectrum and injectable quaternized chitosan (QCS) hydrogel loaded with trypsin, which degrades biofilm extracellular proteins. Increased temperature initiated QCS gelation to form the hydrogel, enabling the sustained release of trypsin and effective adherence of the hydrogel to irregularly shaped wounds. To reproduce clinical scenarios, biofilms formed by a mixture of Staphylococcus aureus (S. aureus), Methicillin-resistant S. aureus, and Pseudomonas aeruginosa were administered to the wounds of rats with streptozotocin-induced diabetes. Under these severe infection conditions, the hydrogel efficiently suppressed inflammation, promoted angiogenesis, and enhanced collagen deposition, resulting in accelerated healing of diabetic wounds. Notably, the hydrogel demonstrates excellent biocompatibility without cytotoxicity. In summary, we present a trypsin-loaded QCS hydrogel with tremendous clinical applications potential for the treatment of chronic infected wounds.
Collapse
Affiliation(s)
- Di Hu
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer based Medical Materials, Wuhan 430072, China
| | - Dakun Long
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer based Medical Materials, Wuhan 430072, China
| | - Tian Xia
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yunhao Wang
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer based Medical Materials, Wuhan 430072, China
| | - Shicheng Zhang
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer based Medical Materials, Wuhan 430072, China
| | - Jianjie Wang
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer based Medical Materials, Wuhan 430072, China
| | - Xiaowen Shi
- School of Resource and Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Engineering Center of Natural Polymers-Based Medical Materials, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan, 430079, China.
| | - Yanfeng Wang
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer based Medical Materials, Wuhan 430072, China.
| |
Collapse
|
281
|
Patel M, Patel V, Shah U, Patel A. Molecular pathology and therapeutics of the diabetic foot ulcer; comprehensive reviews. Arch Physiol Biochem 2024; 130:591-598. [PMID: 37294861 DOI: 10.1080/13813455.2023.2219863] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 04/24/2023] [Accepted: 05/19/2023] [Indexed: 06/11/2023]
Abstract
Diabetes mellitus (DM) is a chronic metabolic condition linked to high blood sugar levels. Diabetes causes complications like neuropathy, nephropathy, and retinopathy. Diabetes foot ulcer (DFU) is a significant and serious wound healing issue resulting from uncontrolled DM. The main causes of the development of the DFU are oxidative stress brought on by the NO moiety, release of pro-inflammatory cytokines like tumour necrosis factor (TNF)-α and interleukin (IL-1), cellular dysfunction, and pathogenic microorganisms including staphylococcus and streptococcus species. The two main types of wounds that are prevalent in DFU patients are neuropathic and neuroischemic. If this wound is not properly treated or cared for, a lower limb may have to be amputated. There are several therapy options for DFU, including antibiotics, debridement, dressings, nano formulations, and growth factor preparations like PDGF-BB, to help the wound heal and prevent amputation. Other novel approaches involved the use of nerve taps, microneedle patches, nanotechnology-based formulations and stem cell applications to promote healing. There are possibilities of drug repurposing for the DFU treatment based on targeting specific enzymes. This article summarises the current pathophysiological aspects of DFU and its probable future targets.
Collapse
Affiliation(s)
- Mansi Patel
- Ramanbhai Patel College of Pharmacy, CHARUSAT, Changa, Gujarat, India
| | - Vaibhav Patel
- Vedmultispeciality Hospitals, Khatraj, Gujarat, India
| | - Umang Shah
- Ramanbhai Patel College of Pharmacy, CHARUSAT, Changa, Gujarat, India
| | - Alkeshkumar Patel
- Ramanbhai Patel College of Pharmacy, CHARUSAT, Changa, Gujarat, India
| |
Collapse
|
282
|
Summer M, Ali S, Fiaz U, Hussain T, Khan RRM, Fiaz H. Revealing the molecular mechanisms in wound healing and the effects of different physiological factors including diabetes, age, and stress. J Mol Histol 2024; 55:637-654. [PMID: 39120834 DOI: 10.1007/s10735-024-10223-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 07/05/2024] [Indexed: 08/10/2024]
Abstract
Wounds are the common fates in various microbial infections and physical damages including accidents, surgery, and burns. In response, a healthy body with a potent immune system heals that particular site within optimal time by following the coagulation, inflammation, proliferation, and remodeling phenomenon. However, certain malfunctions in the body due to various diseases particularly diabetes and other physiological factors like age, stress, etc., prolong the process of wound healing through various mechanisms including the Akt, Polyol, and Hexosamine pathways. The current review thoroughly explains the wound types, normal wound healing mechanisms, and the immune system's role. Moreover, the mechanistic role of diabetes is also elaborated comprehensively.
Collapse
Affiliation(s)
- Muhammad Summer
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, GC University Lahore, Lahore, 54000, Pakistan.
| | - Shaukat Ali
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, GC University Lahore, Lahore, 54000, Pakistan.
| | - Umaima Fiaz
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, GC University Lahore, Lahore, 54000, Pakistan
| | - Tauqeer Hussain
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, GC University Lahore, Lahore, 54000, Pakistan
| | | | - Hashim Fiaz
- Ammer-ud-Din Medical College, Lahore, 54000, Pakistan
| |
Collapse
|
283
|
Raza A, Chohan TA, Zaidi SHH, Hai A, Alzahrani AR, Abida, Imran M, Saleem H. A Systematic Review on Biochemical Perspectives on Natural Products in Wound Healing: Exploring Phytochemicals in Tissue Repair and Scar Prevention. Chem Biodivers 2024; 21:e202400615. [PMID: 38958197 DOI: 10.1002/cbdv.202400615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/20/2024] [Accepted: 06/28/2024] [Indexed: 07/04/2024]
Abstract
Wound healing is a critical process in tissue repair following injury, and traditional herbal therapies have long been utilized to facilitate this process. This review delves into the mechanistic understanding of the significant contribution of pharmacologically demonstrated natural products in wound healing. Natural products, often perceived as complex yet safely consumed compared to synthetic chemicals, play a crucial role in enhancing the wound-healing process. Drawing upon a comprehensive search strategy utilizing databases such as PubMed, Scopus, Web of Science, and Google Scholar, this review synthesizes evidence on the role of natural products in wound healing. While the exact pharmacological mechanisms of secondary metabolites in wound healing remain to be fully elucidated, compounds from alkaloids, phenols, terpenes, and other sources are explored here to delineate their specific roles in wound repair. Each phytochemical group exerts distinct actions in tissue repair, with some displaying multifaceted roles in various pathways, potentially enhancing their therapeutic value, supported by reported safety profiles. Additionally, these compounds exhibit promise in the prevention of keloids and scars. Their potential alongside economic feasibility may propel them towards pharmaceutical product development. Several isolated compounds, including chlorogenic acid, thymol, and eugenol from natural sources, are undergoing investigation in clinical trials, with many reaching advanced stages. This review provides mechanistic insights into the significant role of pharmacologically demonstrated natural products in wound healing processes.
Collapse
Affiliation(s)
- Ali Raza
- Institute of Pharmaceutical Sciences (IPS), University of Veterinary and Animal Sciences (UVAS), Lahore, Pakistan
| | - Tahir Ali Chohan
- Institute of Pharmaceutical Sciences (IPS), University of Veterinary and Animal Sciences (UVAS), Lahore, Pakistan
| | - Syeda Huma H Zaidi
- Department of Chemistry, Faculty of Science, Northern Border University, Arar, 91431, Saudi Arabia
| | - Abdul Hai
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Northern Border University, Arar, 91431, Saudi Arabia
| | - Abdullah R Alzahrani
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, P.O. Box 13578, Al-Abidiyah, Makkah, 21955, Saudi Arabia
| | - Abida
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, Rafha, 91911, Saudi Arabia
| | - Mohd Imran
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, Rafha, 91911, Saudi Arabia
| | - Hammad Saleem
- Institute of Pharmaceutical Sciences (IPS), University of Veterinary and Animal Sciences (UVAS), Lahore, Pakistan
| |
Collapse
|
284
|
Gonçalves RR, Peixoto D, Costa RR, Franco AR, Castro VIB, Pires RA, Reis RL, Pashkuleva I, Maniglio D, Tirella A, Motta A, Alves NM. Antibacterial properties of photo-crosslinked chitosan/methacrylated hyaluronic acid nanoparticles loaded with bacitracin. Int J Biol Macromol 2024; 277:134250. [PMID: 39089541 DOI: 10.1016/j.ijbiomac.2024.134250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 07/25/2024] [Accepted: 07/27/2024] [Indexed: 08/04/2024]
Abstract
The current treatments for wounds often fail to induce adequate healing, leaving wounds vulnerable to persistent infections and development of drug-resistant microbial biofilms. New natural-derived nanoparticles were studied to impair bacteria colonization and hinder the formation of biofilms in wounds. The nanoparticles were fabricated through polyelectrolyte complexation of chitosan (CS, polycation) and hyaluronic acid (HA, polyanion). UV-induced photo-crosslinking was used to enhance the stability of the nanoparticles. To achieve this, HA was methacrylated (HAMA, degree of modification of 20 %). Photo-crosslinked nanoparticles obtained from HAMA and CS had a diameter of 478 nm and a more homogeneous size distribution than nanoparticles assembled solely through complexation (742 nm). The nanoparticles were loaded with the antimicrobial agent bacitracin (BC), resulting in nanoparticles with a diameter of 332 nm. The encapsulation of BC was highly efficient (97 %). The BC-loaded nanoparticles showed significant antibacterial activity against gram-positive bacteria Staphylococcus aureus, Methicillin-resistant S. aureus and S. epidermidis. Photo-crosslinked HAMA/CS nanoparticles loaded with BC demonstrated inhibition of biofilm formation and a positive effect on the proliferation of mammalian cells (L929). These crosslinked nanoparticles have potential for the long-term treatment of wounds and controlled antibiotic delivery at the location of a lesion.
Collapse
Affiliation(s)
- Raquel R Gonçalves
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal; BIOtech Research Center, Department of Industrial Engineering, University of Trento, Via Delle Regole 101, 38123 Trento, Italy
| | - Daniela Peixoto
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rui R Costa
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Albina R Franco
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Vânia I B Castro
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Ricardo A Pires
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Iva Pashkuleva
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Devid Maniglio
- BIOtech Research Center, Department of Industrial Engineering, University of Trento, Via Delle Regole 101, 38123 Trento, Italy
| | - Annalisa Tirella
- BIOtech Research Center, Department of Industrial Engineering, University of Trento, Via Delle Regole 101, 38123 Trento, Italy
| | - Antonella Motta
- BIOtech Research Center, Department of Industrial Engineering, University of Trento, Via Delle Regole 101, 38123 Trento, Italy
| | - Natália M Alves
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
285
|
Kaussikaa S, Prasad MK, Ramkumar KM. Nrf2 Activation in Keratinocytes: A Central Role in Diabetes-Associated Wound Healing. Exp Dermatol 2024; 33:e15189. [PMID: 39373525 DOI: 10.1111/exd.15189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/28/2024] [Accepted: 09/21/2024] [Indexed: 10/08/2024]
Abstract
Wound healing is a complex biological process crucial for tissue repair, wherein keratinocytes play a pivotal role in initiating, sustaining and completing the cascade. Various local and systemic factors, such as lifestyle, age metabolic disorders and vascular insufficiency, can influence this process, and in the context of diabetic wounds, disrupted biological mechanisms, including inflammation, tissue hypoxia, decrease in collagen production along with increased oxidative stress and keratinocyte dysfunction, contribute to delayed healing. During re-epithelialisation, keratinocytes undergo rapid multiplication and migration, forming a dense hyperproliferative epithelial layer that restores the epidermal barrier. Nuclear factor-erythroid 2-related factor (Nrf2), a vital transcription factor, emerges as a central regulator in managing antioxidant proteins and detoxifying enzymes, serving as a guardian against elevated reactive oxygen species (ROS) levels during stress. Nrf2 also orchestrates angiogenesis and anti-inflammatory responses crucial for wound repair. Studies demonstrate that under high-glucose conditions, Nrf2 activation promotes wound healing by enhancing cell proliferation and migration while reducing apoptosis. Nrf2 activators stimulate endogenous antioxidant production, thereby mitigating oxidative stress. Furthermore, Nrf2 upregulation is associated with decreased expression of cytokines such as TNF-α and IL- 6. Recent research underscores the potential of bioactive molecules, including dietary polyphenols, traditional medicinal compounds and pharmacological agents, in activating Nrf2 and preventing diseases such as diabetes due to their robust antioxidative properties. This review aims to investigate the activation of Nrf2 by these bioactive molecules in cultured keratinocytes and animal models, elucidating the key molecular regulatory mechanisms involved in alleviating oxidative stress and facilitating the diabetic wound healing process. Understanding these complex pathways may offer insights into novel therapeutic strategies for enhanced wound healing in diabetes-associated complications.
Collapse
Affiliation(s)
- Srinivasan Kaussikaa
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Murali Krishna Prasad
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Kunka Mohanram Ramkumar
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| |
Collapse
|
286
|
Liu D, Chen J, Gao L, Chen X, Lin L, Wei X, Liu Y, Cheng H. Injectable Photothermal PDA/Chitosan/β-Glycerophosphate Thermosensitive Hydrogels for Antibacterial and Wound Healing Promotion. Macromol Biosci 2024; 24:e2400080. [PMID: 38752628 DOI: 10.1002/mabi.202400080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 05/02/2024] [Indexed: 05/24/2024]
Abstract
Controlling infections while reducing the use of antibiotics is what doctors as well as researchers are looking for. As innovative smart materials, photothermal materials can achieve localized heating under light excitation for broad-spectrum bacterial inhibition. A polydopamine/chitosan/β-glycerophosphate temperature-sensitive hydrogel with excellent antibacterial ability is synthesized here. Initially, the hydrogel has good biocompatibility. In vitro experiments reveal its noncytotoxic property when cocultured with gingival fibroblasts and nonhemolytic capability. Concurrently, the in vivo biocompatibility is confirmed through liver and kidney blood markers and staining of key organs. Crucially, the hydrogel has excellent photothermal conversion performance, which can realize the photothermal conversion of hydrogel up to 3 mm thickness. When excited by near-infrared light, localized heating is attainable, resulting in clear inhibition impacts on both Staphylococcus aureus and Escherichia coli, with the inhibition rates of 91.22% and 96.69%, respectively. During studies on mice's infected wounds, it is observed that the hydrogel can decrease S. aureus' presence in the affected area when exposed to near-infrared light, and also lessen initial inflammation and apoptosis, hastening tissue healing. These findings provide valuable insights into the design of antibiotic-free novel biomaterials with good potential for clinical applications.
Collapse
Affiliation(s)
- Dingkun Liu
- Fujian Key Laboratory of Oral Diseases and Fujian Provincial Engineering Research Center of Oral Biomaterial and Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, 88 Jiaotong Road, Fuzhou, Fujian, 350004, China
| | - Jinbing Chen
- Fujian Key Laboratory of Oral Diseases and Fujian Provincial Engineering Research Center of Oral Biomaterial and Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, 88 Jiaotong Road, Fuzhou, Fujian, 350004, China
| | - Linjuan Gao
- Fujian Key Laboratory of Oral Diseases and Fujian Provincial Engineering Research Center of Oral Biomaterial and Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, 88 Jiaotong Road, Fuzhou, Fujian, 350004, China
| | - Xing Chen
- Fujian Key Laboratory of Oral Diseases and Fujian Provincial Engineering Research Center of Oral Biomaterial and Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, 88 Jiaotong Road, Fuzhou, Fujian, 350004, China
| | - Liujun Lin
- Fujian Key Laboratory of Oral Diseases and Fujian Provincial Engineering Research Center of Oral Biomaterial and Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, 88 Jiaotong Road, Fuzhou, Fujian, 350004, China
| | - Xia Wei
- Fujian Key Laboratory of Oral Diseases and Fujian Provincial Engineering Research Center of Oral Biomaterial and Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, 88 Jiaotong Road, Fuzhou, Fujian, 350004, China
| | - Yuan Liu
- Fujian Key Laboratory of Oral Diseases and Fujian Provincial Engineering Research Center of Oral Biomaterial and Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, 88 Jiaotong Road, Fuzhou, Fujian, 350004, China
| | - Hui Cheng
- Fujian Key Laboratory of Oral Diseases and Fujian Provincial Engineering Research Center of Oral Biomaterial and Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, 88 Jiaotong Road, Fuzhou, Fujian, 350004, China
- Institute of Stomatology and Research Center of Dental Esthetics and Biomechanics, School and Hospital of Stomatology, Fujian Medical University, 246 Yangqiao Zhong Road, Fuzhou, Fujian, 350002, China
| |
Collapse
|
287
|
Sowbhagya R, Muktha H, Ramakrishnaiah TN, Surendra AS, Sushma SM, Tejaswini C, Roopini K, Rajashekara S. Collagen as the extracellular matrix biomaterials in the arena of medical sciences. Tissue Cell 2024; 90:102497. [PMID: 39059131 DOI: 10.1016/j.tice.2024.102497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 06/26/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
Collagen is a multipurpose material that has several applications in the health care, dental care, and pharmaceutical industries. Crosslinked compacted solids or lattice-like gels can be made from collagen. Biocompatibility, biodegradability, and wound-healing properties make collagen a popular scaffold material for cardiovascular, dentistry, and bone tissue engineering. Due to its essential role in the control of several of these processes, collagen has been employed as a wound-healing adjunct. It forms a major component of the extracellular matrix and regulates wound healing in its fibrillar or soluble forms. Collagen supports cardiovascular and other soft tissues. Oral wounds have been dressed with resorbable forms of collagen for closure of graft and extraction sites, and to aid healing. This present review is concentrated on the use of collagen in bone regeneration, wound healing, cardiovascular tissue engineering, and dentistry.
Collapse
Affiliation(s)
- Ramachandregowda Sowbhagya
- Department of Biotechnology and Genetics, M.S. Ramaiah College of Arts, Science and Commerce, 7th Main Rd, MSRIT, M S R Nagar, Mathikere, Bengaluru, Karnataka 560054, India
| | - Harsha Muktha
- Department of Biotechnology and Genetics, M.S. Ramaiah College of Arts, Science and Commerce, 7th Main Rd, MSRIT, M S R Nagar, Mathikere, Bengaluru, Karnataka 560054, India
| | - Thippenahalli Narasimhaiah Ramakrishnaiah
- Department of Biotechnology and Genetics, M.S. Ramaiah College of Arts, Science and Commerce, 7th Main Rd, MSRIT, M S R Nagar, Mathikere, Bengaluru, Karnataka 560054, India
| | - Adagur Sudarshan Surendra
- Department of Biochemistry, M.S. Ramaiah College of Arts, Science and Commerce, 7th Main Rd, MSRIT, M S R Nagar, Mathikere, Bengaluru, Karnataka 560054, India
| | - Subhas Madinoor Sushma
- Department of Biotechnology and Genetics, M.S. Ramaiah College of Arts, Science and Commerce, 7th Main Rd, MSRIT, M S R Nagar, Mathikere, Bengaluru, Karnataka 560054, India
| | - Chandrashekar Tejaswini
- Department of Biotechnology and Genetics, M.S. Ramaiah College of Arts, Science and Commerce, 7th Main Rd, MSRIT, M S R Nagar, Mathikere, Bengaluru, Karnataka 560054, India
| | - Karunakaran Roopini
- Department of Biotechnology and Genetics, M.S. Ramaiah College of Arts, Science and Commerce, 7th Main Rd, MSRIT, M S R Nagar, Mathikere, Bengaluru, Karnataka 560054, India
| | - Somashekara Rajashekara
- Department of Studies in Zoology, Centre for Applied Genetics, Bangalore University, Jnana Bharathi Campus, Off Mysuru Road, Bengaluru, Karnataka 560056, India.
| |
Collapse
|
288
|
Islam RK, Tong VT, Robicheaux C, Tageant H, Haas CJ, Kline RJ, Islam KN. The Impact of Anesthesia on Dermatological Outcomes: A Narrative Review. Cureus 2024; 16:e72321. [PMID: 39583513 PMCID: PMC11585352 DOI: 10.7759/cureus.72321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2024] [Indexed: 11/26/2024] Open
Abstract
Anesthesia is an essential component of dermatologic procedures, influencing pain management and patient outcomes, including wound healing, infection control, and cosmetic appearance. This review examines the impact of various anesthetic techniques, topical, local, regional, and general, on dermatological outcomes. The findings reveal that while local anesthesia is preferred due to its efficacy and safety, specialized considerations are necessary for pediatric, geriatric, and high-risk patients. Anesthesia-related complications, such as allergic reactions, systemic toxicity, and delayed healing, require careful selection of agents and techniques. Innovations in anesthetic technology, including nanotechnology, microneedle patches, and cryoanesthesia, promise to improve pain management and minimize complications. Personalized anesthesia approaches, informed by genetic and proteomic analyses, offer the potential to optimize individual patient care. However, further research is needed to understand the long-term effects of anesthetic agents on wound healing and scarring, especially in patients with comorbidities. Overall, this review emphasizes the evolving role of anesthesia in dermatology and highlights the need for ongoing innovation to enhance patient care, minimize risks, and improve procedural outcomes.
Collapse
Affiliation(s)
- Rahib K Islam
- School of Medicine, Louisiana State University (LSU) Health Sciences Center New Orleans, New Orleans, USA
| | - Victoria T Tong
- School of Medicine, Louisiana State University (LSU) Health Sciences Center New Orleans, New Orleans, USA
| | - Cameron Robicheaux
- School of Medicine, Louisiana State University (LSU) Health Sciences Center Shreveport, Shreveport, USA
| | - Hayden Tageant
- School of Medicine, Louisiana State University Health Sciences Center Shreveport, Shreveport, USA
| | - Christopher J Haas
- Dermatology, Louisiana State University (LSU) Health Sciences Center New Orleans, New Orleans, USA
| | - Ryan J Kline
- Anesthesiology, Louisiana State University (LSU) Health Sciences Center New Orleans, New Orleans, USA
| | - Kazi N Islam
- Agricultural Research Development Program, Central State University, Wilberforce, USA
| |
Collapse
|
289
|
Zhou Z, Tian J, Li S, Fei L, Dai M, Long N. The ever-changing microenvironment of Staphylococcus aureus in cutaneous infections. Animal Model Exp Med 2024; 7:707-716. [PMID: 38695685 PMCID: PMC11528387 DOI: 10.1002/ame2.12413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 04/12/2024] [Indexed: 11/02/2024] Open
Abstract
BACKGROUND Staphylococcus aureus is responsible for the majority of skin and soft tissue infections, which are often diagnosed at a late stage, thereby impacting treatment efficacy. Our study was designed to reveal the physiological changes at different stages of infection by S. aureus through the combined analysis of variations in the skin microenvironment, providing insights for the diagnosis and treatment of S. aureus infections. METHODS We established a murine model of skin and soft tissue infection with S. aureus as the infectious agent to investigate the differences in the microenvironment at different stages of infection. By combining analysis of the host immune status and histological observations, we elucidate the progression of S. aureus infection in mice. RESULTS The results indicate that the infection process in mice can be divided into at least two stages: early infection (1-3 days post-infection) and late infection (5-7 days post-infection). During the early stage of infection, notable symptoms such as erythema and abundant exudate at the infection site were observed. Histological examination revealed infiltration of numerous neutrophils and bacterial clusters, accompanied by elevated levels of cytokines (IL-6, IL-10). There was a decrease in microbial alpha diversity within the microenvironment (Shannon, Faith's PD, Chao1, Observed species, Simpson, Pielou's E). In contrast, during the late stage of infection, a reduction or even absence of exudate was observed at the infected site, accompanied by the formation of scabs. Additionally, there was evidence of fibroblast proliferation and neovascularization. The levels of cytokines and microbial composition gradually returned to a healthy state. CONCLUSION This study reveals synchrony between microbial composition and histological/immunological changes during S. aureus-induced SSTIs.
Collapse
Affiliation(s)
- Zhenru Zhou
- Sichuan Provincial Engineering Laboratory for Prevention and Control Technology of Veterinary Drug Residue in Animal‐Origin FoodChengdu Medical CollegeChengduPR China
- School of Laboratory MedicineChengdu Medical CollegeChengduPR China
| | - Jing Tian
- Sichuan Provincial Engineering Laboratory for Prevention and Control Technology of Veterinary Drug Residue in Animal‐Origin FoodChengdu Medical CollegeChengduPR China
- School of Laboratory MedicineChengdu Medical CollegeChengduPR China
| | - Shi Li
- Sichuan Provincial Engineering Laboratory for Prevention and Control Technology of Veterinary Drug Residue in Animal‐Origin FoodChengdu Medical CollegeChengduPR China
- School of Laboratory MedicineChengdu Medical CollegeChengduPR China
| | - Liyue Fei
- Sichuan Provincial Engineering Laboratory for Prevention and Control Technology of Veterinary Drug Residue in Animal‐Origin FoodChengdu Medical CollegeChengduPR China
- School of Laboratory MedicineChengdu Medical CollegeChengduPR China
| | - Min Dai
- Sichuan Provincial Engineering Laboratory for Prevention and Control Technology of Veterinary Drug Residue in Animal‐Origin FoodChengdu Medical CollegeChengduPR China
- School of Laboratory MedicineChengdu Medical CollegeChengduPR China
| | - Nana Long
- Sichuan Provincial Engineering Laboratory for Prevention and Control Technology of Veterinary Drug Residue in Animal‐Origin FoodChengdu Medical CollegeChengduPR China
- School of Laboratory MedicineChengdu Medical CollegeChengduPR China
| |
Collapse
|
290
|
Rubino F, Brahimaj B, Hanna EY, Su SY, Phan J, Grosshans DR, DeMonte F, Raza SM. Does Time to Initiation of Adjuvant Radiotherapy Affect Reconstruction Outcomes after Endoscopic Resection of Skull Base Malignancies? J Neurol Surg B Skull Base 2024; 85:445-457. [PMID: 39228888 PMCID: PMC11368463 DOI: 10.1055/a-2114-4563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 06/19/2023] [Indexed: 09/05/2024] Open
Abstract
Introduction and Objective It is unclear if the length of the time interval to initiation of adjuvant radiation therapy (RT) after endoscopic endonasal surgery affects reconstruction outcomes. In this study we present our experience with adjuvant RT after endoscopic endonasal procedures, to determine if the time to RT after surgery impacts post-RT reconstruction complication rates. Methods A retrospective cohort study of 164 patients who underwent endoscopic endonasal surgery between 1998 and 2021 was conducted. Using Cox proportional hazard ratios (HRs), we evaluated several variables and the complications that occurred during the 1-year period after starting RT. Results Seventy-eight (47.5%) and eighty-six patients (52.5%) received RT before and after the sixth postoperative week, respectively. The overall post-RT complication rates were 28%, most of these were severe infections ( n = 20, 12.2%) and delayed CSF leak ( n = 4, 2.5%). There was no significant difference in the post-RT complications between the patients who received postoperative RT before or after the sixth operative week (HR: 1.13; 95% confidence interval: 0.63-2.02; p = 0.675 ). Univariate analysis demonstrated negative impact associated with smoking history ( p = 0.015 ), the use of neoadjuvant chemotherapy ( p = 0.0001 ), and the use of photon therapy ( p = 0.012 ); and we found a positive impact with the use of multilayer reconstruction techniques (overall, p = 0.041 ; with fat, p = 0.038 ; and/or fascia graft, p = 0.035 ). After a multivariate analysis only, smoking history was an independent risk factor for post-RT complications ( p = 0.012 ). Conclusion Delaying RT for more than 6 weeks after endoscopic endonasal surgery does not provide a significant benefit for reconstruction outcomes. However, special attention may be warranted in patients with smoking history who have received neoadjuvant chemotherapy, or in patients who will receive photon-based RT after surgery as these groups were found to have increased complication rates post-RT.
Collapse
Affiliation(s)
- Franco Rubino
- Division of Surgery, Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States
| | - Bledi Brahimaj
- Division of Surgery, Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States
| | - Ehab Y. Hanna
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States
| | - Shirley Y. Su
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States
| | - Jack Phan
- Division of Radiation Oncology, Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, United States
| | - David R. Grosshans
- Division of Radiation Oncology, Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, United States
| | - Franco DeMonte
- Division of Surgery, Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States
| | - Shaan M. Raza
- Division of Surgery, Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States
| |
Collapse
|
291
|
Gandolfi S, Sanouj A, Chaput B, Coste A, Sallerin B, Varin A. The role of adipose tissue-derived stromal cells, macrophages and bioscaffolds in cutaneous wound repair. Biol Direct 2024; 19:85. [PMID: 39343924 PMCID: PMC11439310 DOI: 10.1186/s13062-024-00534-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 09/12/2024] [Indexed: 10/01/2024] Open
Abstract
Skin healing is a complex and dynamic physiological process that follows mechanical alteration of the skin barrier. Under normal conditions, this complex process can be divided into at least three continuous and overlapping phases: an inflammatory reaction, a proliferative phase that leads to tissue reconstruction and a phase of tissue remodeling. Macrophages critically contribute to the physiological cascade for tissue repair. In fact, as the inflammatory phase progresses, macrophage gene expression gradually shifts from pro-inflammatory M1-like to pro-resolutive M2-like characteristics, which is critical for entry into the repair phase. A dysregulation in this macrophage' shift phenotype leads to the persistence of the inflammatory phase. Mesenchymal stromal cells and specifically the MSC-derived from adipose tissue (ADSCs) are more and more use to treat inflammatory diseases and several studies have demonstrated that ADSCs promote the wound healing thanks to their neoangiogenic, immunomodulant and regenerative properties. In several studies, ADSCs and macrophages have been injected directly into the wound bed, but the delivery of exogenous cells directly to the wound raise the problem of cell engraftment and preservation of pro-resolutive phenotype and viability of the cells. Complementary approaches have therefore been explored, such as the use of biomaterials enriched with therapeutic cell to improve cell survival and function. This review will present a background of the current scaffold models, using adipose derived stromal-cells and macrophage as therapeutic cells for wound healing, through a discussion on the potential impact for future applications in skin regeneration. According to the PRISMA statement, we resumed data from investigations reporting the use ADSCs and bioscaffolds and data from macrophages behavior with functional biomaterials in wound healing models. In the era of tissue engineering, functional biomaterials, that can maintain cell delivery and cellular viability, have had a profound impact on the development of dressings for the treatment of chronic wounds. Promising results have been showed in pre-clinical reports using ADSCs- and macrophages-based scaffolds to accelerate and to improve the quality of the cutaneous healing.
Collapse
Affiliation(s)
- S Gandolfi
- FLAMES Team, Restore Institute, Inserm, Toulouse III Paul Sabatier University, 4Bis Av. H. Curien, 31100, Toulouse, France.
- Department of Plastic and Reconstructive Surgery, Toulouse University Hospital, 1 Av. Pr.Jean Poulhès, 31400, Toulouse, France.
| | - A Sanouj
- FLAMES Team, Restore Institute, Inserm, Toulouse III Paul Sabatier University, 4Bis Av. H. Curien, 31100, Toulouse, France
| | - B Chaput
- Department of Plastic and Reconstructive Surgery, Toulouse University Hospital, 1 Av. Pr.Jean Poulhès, 31400, Toulouse, France
| | - A Coste
- FLAMES Team, Restore Institute, Inserm, Toulouse III Paul Sabatier University, 4Bis Av. H. Curien, 31100, Toulouse, France
| | - B Sallerin
- FLAMES Team, Restore Institute, Inserm, Toulouse III Paul Sabatier University, 4Bis Av. H. Curien, 31100, Toulouse, France
- Department of Pharmacology, Toulouse University Hospital, 1 Av Pr.Jean Poulhès, 31400, Toulouse, France
| | - A Varin
- FLAMES Team, Restore Institute, Inserm, Toulouse III Paul Sabatier University, 4Bis Av. H. Curien, 31100, Toulouse, France
| |
Collapse
|
292
|
Hajj J, Sizemore B, Singh K. Impact of Epigenetics, Diet, and Nutrition-Related Pathologies on Wound Healing. Int J Mol Sci 2024; 25:10474. [PMID: 39408801 PMCID: PMC11476922 DOI: 10.3390/ijms251910474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/20/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
Chronic wounds pose a significant challenge to healthcare. Stemming from impaired wound healing, the consequences can be severe, ranging from amputation to mortality. This comprehensive review explores the multifaceted impact of chronic wounds in medicine and the roles that diet and nutritional pathologies play in the wound-healing process. It has been well established that an adequate diet is crucial to proper wound healing. Nutrients such as vitamin D, zinc, and amino acids play significant roles in cellular regeneration, immune functioning, and collagen synthesis and processing. Additionally, this review discusses how patients with chronic conditions like diabetes, obesity, and nutritional deficiencies result in the formation of chronic wounds. By integrating current research findings, this review highlights the significant impact of the genetic make-up of an individual on the risk of developing chronic wounds and the necessity for adequate personalized dietary interventions. Addressing the nutritional needs of individuals, especially those with chronic conditions, is essential for improving wound outcomes and overall patient care. With new developments in the field of genomics, there are unprecedented opportunities to develop targeted interventions that can precisely address the unique metabolic needs of individuals suffering from chronic wounds, thereby enhancing treatment effectiveness and patient outcomes.
Collapse
Affiliation(s)
- John Hajj
- Indiana Center for Regenerative Medicine and Engineering, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (J.H.); (B.S.)
| | - Brandon Sizemore
- Indiana Center for Regenerative Medicine and Engineering, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (J.H.); (B.S.)
| | - Kanhaiya Singh
- Indiana Center for Regenerative Medicine and Engineering, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (J.H.); (B.S.)
- McGowan Institute for Regenerative Medicine, Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15219, USA
| |
Collapse
|
293
|
Kim SH, Shin HL, Son TH, Lim SA, Kim D, Yoon JH, Choi H, Kim HG, Choi SW. Quercus glauca Acorn Seed Coat Extract Promotes Wound Re-Epithelialization by Facilitating Fibroblast Migration and Inhibiting Dermal Inflammation. BIOLOGY 2024; 13:775. [PMID: 39452084 PMCID: PMC11505045 DOI: 10.3390/biology13100775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/23/2024] [Accepted: 09/26/2024] [Indexed: 10/26/2024]
Abstract
The skin, recognized as the largest organ in the human body, serves a vital function in safeguarding against external threats. Severe damage to the skin can pose significant risks to human health. There is an urgent requirement for safe and effective therapies for wound healing. While phytotherapy has been widely utilized for various health conditions, the potential of Quercus glauca in promoting wound healing has not been thoroughly explored. Q. glauca is a cultivated crop known for its abundance of bioactive compounds. This study examined the wound-healing properties of Quercus glauca acorn seed coat water extract (QGASE). The findings from the study suggest that QGASE promotes wound closure in HF cells by upregulating essential markers related to the wound-healing process. Additionally, QGASE demonstrates antioxidant effects, mitigating oxidative stress and aiding in recovery from injuries induced by H2O2. In vivo experiments provide additional substantiation supporting the efficacy of QGASE in enhancing wound healing. The collective results indicate that QGASE may be a promising candidate for the development of innovative therapeutic strategies aimed at enhancing skin wound repair.
Collapse
Affiliation(s)
- Shin-Hye Kim
- Forest Biomaterials Research Center, National Institute of Forest Science (NIFoS), Jinju 52817, Republic of Korea; (S.-H.K.); (H.-L.S.); (T.H.S.); (D.K.); (J.-H.Y.)
| | - Hye-Lim Shin
- Forest Biomaterials Research Center, National Institute of Forest Science (NIFoS), Jinju 52817, Republic of Korea; (S.-H.K.); (H.-L.S.); (T.H.S.); (D.K.); (J.-H.Y.)
- Department of Biological Sciences, Jeonbuk National University, Jeonju 54896, Republic of Korea;
| | - Tae Hyun Son
- Forest Biomaterials Research Center, National Institute of Forest Science (NIFoS), Jinju 52817, Republic of Korea; (S.-H.K.); (H.-L.S.); (T.H.S.); (D.K.); (J.-H.Y.)
| | - So-An Lim
- Pharmacogenomics Research Center, Inje University College of Medicine, Busan 47392, Republic of Korea;
| | - Dongsoo Kim
- Forest Biomaterials Research Center, National Institute of Forest Science (NIFoS), Jinju 52817, Republic of Korea; (S.-H.K.); (H.-L.S.); (T.H.S.); (D.K.); (J.-H.Y.)
| | - Jun-Hyuck Yoon
- Forest Biomaterials Research Center, National Institute of Forest Science (NIFoS), Jinju 52817, Republic of Korea; (S.-H.K.); (H.-L.S.); (T.H.S.); (D.K.); (J.-H.Y.)
| | - Hyunmo Choi
- Department of Forest Bioresources, National Institute of Forest Science (NIFoS), Suwon 16631, Republic of Korea;
| | - Hwan-Gyu Kim
- Department of Biological Sciences, Jeonbuk National University, Jeonju 54896, Republic of Korea;
| | - Sik-Won Choi
- Forest Biomaterials Research Center, National Institute of Forest Science (NIFoS), Jinju 52817, Republic of Korea; (S.-H.K.); (H.-L.S.); (T.H.S.); (D.K.); (J.-H.Y.)
| |
Collapse
|
294
|
Arero AG, Dassie GA. Preoperative bioelectrical impedance, measured phase angle, and hand-grip strength as predictors of postoperative outcomes in patients undergoing cardiac surgery: a systematic review. BMC Cardiovasc Disord 2024; 24:515. [PMID: 39333863 PMCID: PMC11430153 DOI: 10.1186/s12872-024-04182-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Postoperative problems are a major danger for patients after heart surgery. Predicting postoperative outcomes for cardiac surgery is limited by current preoperative evaluations. Handgrip strength (HGS) testing and bioelectrical impedance analysis (BIA) may provide extra ways to identify individuals at risk of surgical problems, enhancing risk assessment and results. OBJECTIVE The purpose of this systematic review is to assess the utility of measured phase angle (PA), HGS, and bioelectrical impedance as perioperative risk markers in adult patients undergoing elective heart surgery. METHOD The PRISMA principles were followed in this review. We searched all available electronic databases, including the Science Direct search engine and PubMed, MEDLINE, EMBASE, Cochrane Library, Web of Science, PsycINFO, CINAHL, Google Scholar, Scopus, and the Science Direct search engine, from their creation to the present, as well as the medRxiv pre-print site. We considered studies with adult subjects undergoing elective heart surgery who were monitored for problems after surgery and had perioperative BIA and HGS testing. RESULTS As a result, out of the 1544 pieces of research that were discovered, eight studies were deemed suitable for inclusion in the review and supplied data from 2781 people. The findings demonstrated a substantial correlation between poor preoperative PA and a higher risk of serious postoperative morbidity, as well as prolonged hospital stays. Furthermore, poor HGS and low PA were linked to greater death rates. Additionally, there was a strong correlation found between low PA and HGS and longer stays in the ICU, as well as an increased chance of dying from all causes in a year. In conclusion these results imply that preoperative HGS and PA may be significant indicators of postoperative results and may assist in identifying patients who are more vulnerable to problems and death.
Collapse
Affiliation(s)
| | - Gadana Arero Dassie
- Department of Public Health, Adama Hospital Medical College, Baltimore, MD, USA.
| |
Collapse
|
295
|
Saeki K, Nakagama H, Tanaka Y, Goto Y, Kaneshiro K, Kono H, Yanai K, Yamamoto H, Yoneda R, Shimakawa T, Ueki T. Rectum necrosis in a patient with severe COVID19 infection after CAR-T therapy: a case report. Surg Case Rep 2024; 10:227. [PMID: 39325308 PMCID: PMC11427651 DOI: 10.1186/s40792-024-02026-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 09/14/2024] [Indexed: 09/27/2024] Open
Abstract
BACKGROUND Coronavirus disease 2019 (COVID19) can cause gastrointestinal complications as well as respiratory tract disease. Coagulation abnormalities and thrombosis frequently occur in COVID19, especially in cases with severe clinical outcome. The relationship between gastrointestinal perforation and coagulopathy due to COVID19 remains unclear. CASE PRESENTATION A 49-year-old female received Chimeric antigen receptor T (CAR-T) therapy for an early recurrence of diffuse large B-cell lymphoma (DLBCL) that was refractory to chemotherapy. She was diagnosed with cytokine release syndrome (CRS) because of a fever and oxygen desaturation, and administered tocilizumab. Forty days after completing CAR-T therapy, she was infected with COVID19 and transferred to our hospital. Her general condition worsened and she developed COVID19 pneumonia, and then steroid pulse therapy was started. While her respiratory condition improved, she experienced pain in the anal region and computed tomography (CT) revealed a rectal perforation. An emergency surgery was undertaken, and the lower rectum wall was found to be completely necrotic. Removal of the necrotic part of the rectum tissue, and drainage and lavage of necrotic tissue in the pelvic cavity were performed. The remaining rectum was resected with partial sigmoidectomy, but we could not make the anal stump closed. In addition, an end colostomy in the sigmoid colon was performed. Histopathological findings showed thromboses in the rectal mesentery veins. After the first surgery, the pelvic abscess cavity persisted and her high-grade fever continued. Reoperation was laparoscopically performed, and she underwent a resection of anal canal with residual necrotic rectal and mesorectal tissue, and a drainage of the pelvic abscess. After the reoperation, her general condition improved and CT showed that the abscess cavity had significantly improved. CONCLUSIONS Gastrointestinal perforation, especially rectal necrosis due to coagulopathy caused by severe COVID19 infection, is a rare but life-threatening complication. Physicians should have a high degree of clinical suspicion for timely diagnosis and management, and surgical intervention is necessary in cases of rectal necrosis.
Collapse
Affiliation(s)
- Kiyoshi Saeki
- Department of Surgery, Hamanomachi General Hospital, 3-3-1, Nagahama, Fukuoka, 810-8539, Japan.
| | - Hidenobu Nakagama
- Department of Surgery, Hamanomachi General Hospital, 3-3-1, Nagahama, Fukuoka, 810-8539, Japan
| | - Yuichi Tanaka
- Department of Surgery, Hamanomachi General Hospital, 3-3-1, Nagahama, Fukuoka, 810-8539, Japan
| | - Yoshitaka Goto
- Department of Surgery, Hamanomachi General Hospital, 3-3-1, Nagahama, Fukuoka, 810-8539, Japan
| | - Kazuhisa Kaneshiro
- Department of Surgery, Hamanomachi General Hospital, 3-3-1, Nagahama, Fukuoka, 810-8539, Japan
| | - Hiroshi Kono
- Department of Surgery, Hamanomachi General Hospital, 3-3-1, Nagahama, Fukuoka, 810-8539, Japan
| | - Kosuke Yanai
- Department of Surgery, Hamanomachi General Hospital, 3-3-1, Nagahama, Fukuoka, 810-8539, Japan
| | - Hirofumi Yamamoto
- Department of Surgery, Hamanomachi General Hospital, 3-3-1, Nagahama, Fukuoka, 810-8539, Japan
| | - Reiko Yoneda
- Department of Pathology, Hamanomachi General Hospital, Fukuoka, Japan
| | - Takashi Shimakawa
- Department of Hematology, Hamanomachi General Hospital, Fukuoka, Japan
| | - Takashi Ueki
- Department of Surgery, Hamanomachi General Hospital, 3-3-1, Nagahama, Fukuoka, 810-8539, Japan
| |
Collapse
|
296
|
Liu X, Jiang Q, Yin Y, Liang G. Phe-Phe-Based Macroscopic Supramolecular Hydrogel Construction Strategies and Biomedical Applications. CHEM & BIO ENGINEERING 2024; 1:664-677. [PMID: 39974324 PMCID: PMC11792915 DOI: 10.1021/cbe.4c00110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 02/21/2025]
Abstract
Since the phenylalanine (Phe) dipeptide moiety is referred to as an essential structure for building amyloid-β peptide from Alzheimer's disease, its wonderful assembly ability to form nanofibers has been extensively studied. Cross-linked Phe-Phe-based peptide nanofibers can construct networks, thus encapsulating the drugs to form supramolecular hydrogels. Recently, scientists have proposed a variety of Phe-Phe-based macroscopic supramolecular hydrogels and used them in biomedical applications. Therefore, we summarize the construction strategies of Phe-Phe-based macroscopic supramolecular hydrogels and list their represented biomedical applications (e.g., wound healing, eye protection, cancer therapy, etc.) since the birth of Phe-Phe-based supramolecular hydrogels. In addition, we present the perspectives and challenges of Phe-Phe-based macroscopic peptide hydrogels.
Collapse
Affiliation(s)
- Xiaoyang Liu
- State
Key Laboratory of Digital Medical Engineering, School of Biological
Science and Medical Engineering, Southeast
University, 2 Southeast University Road, Nanjing 211189, China
| | - Qiaochu Jiang
- State
Key Laboratory of Digital Medical Engineering, School of Biological
Science and Medical Engineering, Southeast
University, 2 Southeast University Road, Nanjing 211189, China
| | - Yun Yin
- Collaborative
Innovation Center of Tumor Marker Detection Technology, Equipment
and Diagnosis Therapy Integration in Universities of Shandong, Shandong
Province Key Laboratory of Detection Technology for Tumor Makers,
School of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China
| | - Gaolin Liang
- State
Key Laboratory of Digital Medical Engineering, School of Biological
Science and Medical Engineering, Southeast
University, 2 Southeast University Road, Nanjing 211189, China
- Handan
Norman Technology Company, Limited, Guantao 057750, China
| |
Collapse
|
297
|
Gu Y, You Y, Yang Y, Liu X, Yang L, Li Y, Zhang C, Yang H, Sha Z, Ma Y, Pang Y, Liu Y. Multifunctional EGCG@ZIF-8 Nanoplatform with Photodynamic Therapy/Chemodynamic Therapy Antibacterial Properties Promotes Infected Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2024; 16:50238-50250. [PMID: 39284745 DOI: 10.1021/acsami.4c08169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Damaged skin is susceptible to invasion by harmful microorganisms, especially Staphylococcus aureus and Escherichia coli, which can delay healing. Epigallocatechin-3-gallate (EGCG) is a natural compound known for effectively promoting wound healing and its potent anti-inflammatory effects. However, its application is limited due to its susceptibility to oxidation and isomerization, which alter its structure. The use of zeolitic imidazolate framework-8 (ZIF-8) can effectively tackle these issues. This study introduces an oxygen (O2) and hydrogen peroxide (H2O2) self-supplying ZIF-8 nanoplatform designed to enhance the bioavailability of EGCG, combining photodynamic therapy (PDT) and chemodynamic therapy (CDT) to improve antibacterial properties and ultimately accelerate wound healing. For this purpose, EGCG and indocyanine green (ICG), a photosensitizer, were successively integrated into a ZIF-8, and coated with bovine serum albumin (BSA) to enhance biocompatibility. The outer layer of this construct was further modified with manganese dioxide (MnO2) to promote CDT and calcium peroxide (CaO2) to supply H2O2 and O2, resulting in the final nanoplatform EGCG-ICG@ZIF-8/BSA-MnO2/CaO2 (EIZBMC). In in vitro experiments under 808 nm laser, EIZBMC exhibited synergistic antibacterial effects through PDT and CDT. This combination effectively released reactive oxygen species (ROS), which mediated oxidative stress to inhibit the bacteria. Subsequently, in a murine model of wound infection, EIZBMC not only exerted antibacterial effects through PDT and CDT but also alleviated the inflammatory condition and promoted the regeneration of collagen fibers, which led to accelerated wound healing. Overall, this research presents a promising approach to enhancing the therapeutic efficacy of EGCG by leveraging the synergistic antibacterial effects of PDT and CDT. This multifunctional nanoplatform maximizes EGCG's anti-inflammatory properties, offering a potent solution for promoting infected wound healing.
Collapse
Affiliation(s)
- Yufan Gu
- Department of Biophysics, School of Life Sciences, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Yuxin You
- Department of Biophysics, School of Life Sciences, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Yijia Yang
- Department of Biophysics, School of Life Sciences, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Xinyi Liu
- Department of Biophysics, School of Life Sciences, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Luyuan Yang
- Department of Biophysics, School of Life Sciences, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Yanzhu Li
- Department of Biophysics, School of Life Sciences, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Chaoyi Zhang
- Department of Biophysics, School of Life Sciences, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Huan Yang
- Department of Biophysics, School of Life Sciences, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Ziqi Sha
- Department of Biophysics, School of Life Sciences, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Youzhen Ma
- Department of Biophysics, School of Life Sciences, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Yipeng Pang
- Department of Biophysics, School of Life Sciences, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Yi Liu
- Department of Biophysics, School of Life Sciences, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| |
Collapse
|
298
|
Wang S, Xu X, Zhu X, Tan X, Xie B. Electrospun Carvacrol-Loaded Polyacrylonitrile/Poly(ethylene oxide) Nanofibrous Films as Wound Dressings. ACS OMEGA 2024; 9:39472-39483. [PMID: 39346841 PMCID: PMC11425651 DOI: 10.1021/acsomega.4c03140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 08/17/2024] [Accepted: 09/02/2024] [Indexed: 10/01/2024]
Abstract
Preventing microbial infections and accelerating wound closure are essential in the process of wound healing. In this study, various concentrations of carvacrol (CA) were loaded into polyacrylonitrile/poly(ethylene oxide) (PAN/PEO) nanofiber membranes to develop potential wound dressing materials via an electrospinning technique. The morphology and structure of the PAN/PEO/CA nanofiber membrane were analyzed by scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR), respectively. Subsequently, antimicrobial performance testing showed that the PAN/PEO/CA nanofiber membrane exhibited antimicrobial activity in a concentration-dependent manner. Moreover, SEM and transmission electron microscopy revealed that the number of Staphylococcus aureus decreased significantly and the microstructure of the biofilm was seriously damaged. Next, compared with the control and PAN/PEO groups, the PAN/PEO/5% CA group in a full-thickness skin infection model not only exhibited reduced wound exudate on day 2 after infection but also displayed a greater ability to achieve complete skin regeneration, with faster wound healing. Finally, the Kyoto Encyclopedia of Genes and Genomes pathway analysis revealed that the downregulated differentially expressed genes between PAN/PEO- and PAN/PEO/5% CA-treated S. aureus were enriched in the two-component system and S. aureus infection. In conclusion, the antimicrobial materials of PAN/PEO/CA inhibited microbial growth and promoted wound healing with potential applications in the clinical management of wounds.
Collapse
Affiliation(s)
- Shuo Wang
- Puai
Medical School, Shaoyang University, Shaoyang 422000, China
| | - Xinyuan Xu
- Diagnostic
Molecular Laboratory, Shaoyang University, Shaoyang 422000, China
| | - Xiangyu Zhu
- Diagnostic
Molecular Laboratory, Shaoyang University, Shaoyang 422000, China
| | - Xiao Tan
- Diagnostic
Molecular Laboratory, Shaoyang University, Shaoyang 422000, China
| | - Bei Xie
- Changde
Hospital, Xiangya School of Medicine, Central South University (The
First People’s Hospital of Changde City), Changde 415000, China
| |
Collapse
|
299
|
Anbar HS, Shehab NG, Yasin A, Shaar LM, Ashraf R, Rahi Z, Alamir R, Alsabbagh D, Thabet A, Altaas I, Lozon YA, El Rouby NMM, Shahiwala A. The wound healing and hypoglycemic activates of date palm (Phoenix dactylifera) leaf extract and saponins in diabetic and normal rats. PLoS One 2024; 19:e0308879. [PMID: 39312526 PMCID: PMC11419346 DOI: 10.1371/journal.pone.0308879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 07/28/2024] [Indexed: 09/25/2024] Open
Abstract
INTRODUCTION Indigenous plants have historically been crucial in treating human diseases across various cultures worldwide. Research continues to uncover new therapeutic uses for indigenous plants, from treating infectious diseases to managing chronic conditions such as diabetes and wound care. This study aimed to examine the effect of palm tree leaves "Phoenix dactylifera L" extract and its topical film formulation on wound healing and blood glucose levels. METHODS Palm leaves were collected, authenticated, powdered, and extracted with ethanol by cold maceration. Saponins were isolated. The dried extract was analyzed using reverse-phase high-pressure liquid chromatography to identify the phytochemicals present. Diabetes mellitus was induced by a single intraperitoneal injection of Streptozotocin (40mg/kg). Rats with blood glucose levels ≥ 200 mg/dl were used to determine the reduction in blood glucose with or without the oral extract. Incision and excision wounds were induced in both diabetic and normal rats. Topical films containing extract or saponin and inert films were applied to the wounds every other day, and wound sizes were recorded until the wound was completely healed. RESULTS The presence of six flavonoids, Naringin, Rutin, Quercetin, Kaempferol, Apigenin, and Catechin, and five phenolic acids, Syringic acid, p Coumaric acid, Caffeic acid, Ferulic acid, Ellagic acid were detected in the dried extract. A significant reduction in blood sugar in diabetic rats and wound diameter in the treated group compared to the control group in both diabetic and normal rats was observed, confirming the promising role of palm leaf extract on diabetes and wound care. Macroscopic, morphometric, and histological data suggested that the cutaneous wound healing in rats treated with the leaf extract was better and faster than the control or inert groups. CONCLUSIONS Our research findings highlight the marked effect of Phoenix dactylifera extract as a supportive or alternative treatment for both hyperglycemia and incision or excision wounds. Further research and clinical trials are warranted to validate these findings and explore the underlying mechanisms of action.
Collapse
Affiliation(s)
- Hanan S. Anbar
- Department of Pharmaceutical Sciences, Dubai Pharmacy College for Girls, Dubai, United Arab Emirates
| | - Naglaa Gamil Shehab
- Department of Pharmaceutical Sciences, Dubai Pharmacy College for Girls, Dubai, United Arab Emirates
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Ayah Yasin
- Undergraduate Student, Dubai Pharmacy College for Girls, Dubai, United Arab Emirates
| | - Lana Mazen Shaar
- Undergraduate Student, Dubai Pharmacy College for Girls, Dubai, United Arab Emirates
| | - Ruba Ashraf
- Undergraduate Student, Dubai Pharmacy College for Girls, Dubai, United Arab Emirates
| | - Zahraa Rahi
- Undergraduate Student, Dubai Pharmacy College for Girls, Dubai, United Arab Emirates
| | - Raneem Alamir
- Undergraduate Student, Dubai Pharmacy College for Girls, Dubai, United Arab Emirates
| | - Deema Alsabbagh
- Undergraduate Student, Dubai Pharmacy College for Girls, Dubai, United Arab Emirates
| | - Aya Thabet
- Undergraduate Student, Dubai Pharmacy College for Girls, Dubai, United Arab Emirates
| | - Israa Altaas
- Undergraduate Student, Dubai Pharmacy College for Girls, Dubai, United Arab Emirates
| | - Yosra A. Lozon
- Department of Pharmaceutical Sciences, Dubai Pharmacy College for Girls, Dubai, United Arab Emirates
| | - Nadia M. M. El Rouby
- Department of Biomedical Sciences, Dubai Medical College for Girls, Dubai, United Arab Emirates
| | - Aliasgar Shahiwala
- Department of Pharmaceutical Sciences, Dubai Pharmacy College for Girls, Dubai, United Arab Emirates
| |
Collapse
|
300
|
OuYang H, Yang J, Wan H, Huang J, Yin Y. Effects of different treatment measures on the efficacy of diabetic foot ulcers: a network meta-analysis. Front Endocrinol (Lausanne) 2024; 15:1452192. [PMID: 39377075 PMCID: PMC11456420 DOI: 10.3389/fendo.2024.1452192] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 08/29/2024] [Indexed: 10/09/2024] Open
Abstract
Introduction Through a network meta-analysis, we compared different treatment measures for patients with diabetic foot ulcers (DFU), assessing their impact on the healing of DFU and ranking them accordingly. Methods We searched the PubMed, the China National Knowledge Infrastructure (CNKI), Embase, the WanFang and the WeiPu database. The retrieval time was from database establishment to January 2024, and retrieval entailed subject and free words. Randomized controlled trials (RCTs) with different treatment measures for DFU were included. Data extraction and evaluation were based on the PRISMA guidelines. Meta-analyses using pairwise and network methods were employed to compare and rank the effectiveness of different treatments for DFU. Results Ultimately, we included 57 RCTs involving a total of 4,826 patients with DFU. When it comes to ulcer healing rates, compared to standard of care(SOC),platelet-rich plasma(PRP), hyperbaric oxygen therapy(HBOT), topical oxygen therapy(TOT), acellular dermal matrix(ADM), and stem cells(SCs) in both direct meta-analysis(DMA) and network meta-analysis(NMA) can effectively increase the complete healing rate. For Scs+PRP, a statistically significant improvement was only observed in the NMA. Moreover, when compared to the negative pressure wound therapy(NPWT) group, the PRP+NPWT group was more effective in promoting the complete healing of ulcers. In terms of promoting the reduction of ulcer area, no statistical differences were observed among various treatment measures. When it comes to ulcer healing time, both PRP and NPWT can effectively shorten the healing time compared to SOC. Furthermore, when compared to the NPWT group, the combined treatment of PRP and ultrasonic debridement(UD) with NPWT is more effective in reducing healing time. In terms of amputation rates and adverse reactions, the PRP group effectively reduced the amputation rate and adverse reactions for patients with DFU. Additionally, compared to the NPWT group, the combined treatment of PRP and UD with NPWT reduced the incidence of adverse reactions. However, no significant differences were observed among other treatment measures in terms of amputation rates and adverse reactions. The ranking results showed that the efficacy of PRP+NPWT and UD+NPWT in promoting ulcer healing, reducing ulcer area, shortening healing time, decreasing amputation rates and adverse reactions is superior to that of the alone PRP group, NPWT group, and UD group. Conversely, the SOC group demonstrates the least effective performance in all aspects. Conclusion Due to the particularity of the wound of DFU, the standard of care is not effective, but the new treatment scheme has a remarkable effect in many aspects. And the treatment of DFU is not a single choice, combined with a variety of methods often achieve better efficacy, and will not bring more adverse reactions.
Collapse
Affiliation(s)
- Hong OuYang
- Geriatric Diseases Institute of Chengdu, Department of Endocrine and Metabolism, Chengdu Fifth People’s Hospital(The Second Clinical Medical College, Affiliated Fifth People’s Hospital of Chengdu University of Traditional Chinese Medicine), Chengdu, China
| | - Jing Yang
- Geriatric Diseases Institute of Chengdu, Department of Endocrine and Metabolism, Chengdu Fifth People’s Hospital(The Second Clinical Medical College, Affiliated Fifth People’s Hospital of Chengdu University of Traditional Chinese Medicine), Chengdu, China
| | - Haiyan Wan
- Geriatric Diseases Institute of Chengdu, Department of Endocrine and Metabolism, Chengdu Fifth People’s Hospital(The Second Clinical Medical College, Affiliated Fifth People’s Hospital of Chengdu University of Traditional Chinese Medicine), Chengdu, China
| | - Jiali Huang
- Geriatric Diseases Institute of Chengdu, Department of Endocrine and Metabolism, Chengdu Fifth People’s Hospital(The Second Clinical Medical College, Affiliated Fifth People’s Hospital of Chengdu University of Traditional Chinese Medicine), Chengdu, China
| | - Yifan Yin
- Department of Nephrology, Chengdu Third People’s hospital, Chengdu, China
| |
Collapse
|