251
|
Ogola E, Villinger J, Mabuka D, Omondi D, Orindi B, Mutunga J, Owino V, Masiga DK. Composition of Anopheles mosquitoes, their blood-meal hosts, and Plasmodium falciparum infection rates in three islands with disparate bed net coverage in Lake Victoria, Kenya. Malar J 2017; 16:360. [PMID: 28886724 PMCID: PMC5591540 DOI: 10.1186/s12936-017-2015-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 09/04/2017] [Indexed: 11/10/2022] Open
Abstract
Background Small islands serve as potential malaria reservoirs through which new infections might come to the mainland and may be important targets in malaria elimination efforts. This study investigated malaria vector species diversity, blood-meal hosts, Plasmodium infection rates, and long-lasting insecticidal net (LLIN) coverage on Mageta, Magare and Ngodhe Islands of Lake Victoria in western Kenya, a region where extensive vector control is implemented on the mainland. Results From trapping for six consecutive nights per month (November 2012 to March 2015) using CDC light traps, pyrethrum spray catches and backpack aspiration, 1868 Anopheles mosquitoes were collected. Based on their cytochrome oxidase I (COI) and intergenic spacer region PCR and sequencing, Anopheles gambiae s.l. (68.52%), Anopheles coustani (19.81%) and Anopheles funestus s.l. (11.67%) mosquitoes were differentiated. The mean abundance of Anopheles mosquitoes per building per trap was significantly higher (p < 0.001) in Mageta than in Magare and Ngodhe. Mageta was also the most populated island (n = 6487) with low LLIN coverage of 62.35% compared to Ngodhe (n = 484; 88.31%) and Magare (n = 250; 98.59%). Overall, 416 (22.27%) engorged Anopheles mosquitoes were analysed, of which 41 tested positive for Plasmodium falciparum infection by high-resolution melting (HRM) analysis of 18S rRNA and cytochrome b PCR products. Plasmodium falciparum infection rates were 10.00, 11.76, 0, and 18.75% among blood-fed An. gambiae s.s. (n = 320), Anopheles arabiensis (n = 51), An. funestus s.s. (n = 29), and An. coustani (n = 16), respectively. Based on HRM analysis of vertebrate cytochrome b, 16S rRNA and COI PCR products, humans (72.36%) were the prominent blood-meal hosts of malaria vectors, but 20.91% of blood-meals were from non-human vertebrate hosts. Conclusions These findings demonstrate high Plasmodium infection rates among the primary malaria vectors An. gambiae s.s. and An. arabiensis, as well as in An. coustani for the first time in the region, and that non-human blood-meal sources play an important role in their ecology. Further, the higher Anopheles mosquito abundances on the only low LLIN coverage island of Mageta suggests that high LLIN coverage has been effective in reducing malaria vector populations on Magare and Ngodhe Islands.
Collapse
Affiliation(s)
- Edwin Ogola
- International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772, Nairobi, 00100, Kenya.,Department of Biochemistry and Molecular Biology, Egerton University Njoro Campus, P.O. Box 536, Egerton, 20115, Kenya
| | - Jandouwe Villinger
- International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772, Nairobi, 00100, Kenya.
| | - Danspaid Mabuka
- International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772, Nairobi, 00100, Kenya
| | - David Omondi
- International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772, Nairobi, 00100, Kenya.,Department of Biochemistry and Molecular Biology, Egerton University Njoro Campus, P.O. Box 536, Egerton, 20115, Kenya
| | - Benedict Orindi
- International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772, Nairobi, 00100, Kenya
| | - James Mutunga
- International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772, Nairobi, 00100, Kenya
| | - Vincent Owino
- International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772, Nairobi, 00100, Kenya.,Department of Biochemistry and Molecular Biology, Egerton University Njoro Campus, P.O. Box 536, Egerton, 20115, Kenya
| | - Daniel K Masiga
- International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772, Nairobi, 00100, Kenya
| |
Collapse
|
252
|
Mburu MM, Mweresa CK, Omusula P, Hiscox A, Takken W, Mukabana WR. 2-Butanone as a carbon dioxide mimic in attractant blends for the Afrotropical malaria mosquitoes Anopheles gambiae and Anopheles funestus. Malar J 2017; 16:351. [PMID: 28836977 PMCID: PMC5571623 DOI: 10.1186/s12936-017-1998-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 08/20/2017] [Indexed: 11/21/2022] Open
Abstract
Background Most odour baits designed to attract host-seeking mosquitoes contain carbon dioxide (CO2), which enhances trap catches, given its role as a mosquito flight activator. However, the use of CO2 is expensive and logistically demanding for prolonged area-wide use. Methods This study explored the possibility of replacing organically-produced CO2 with 2-butanone in odour blends targeting host-seeking malaria mosquitoes. During semi-field and field experiments MM-X traps were baited with a human odour mimic (MB5 blend) plus CO2 or 2-butanone at varying concentrations. Unbaited traps formed a control. The attraction of Anopheles gambiae s.s., Anopheles arabiensis and Anopheles funestus to these differently baited traps was measured and mean catch sizes were compared to determine whether 2-butanone could form a viable replacement for CO2 for these target species. Results Under semi-field conditions significantly more female An. gambiae mosquitoes were attracted to a reference attractant blend (MB5 + CO2) compared to MB5 without CO2 (P < 0.001), CO2 alone (P < 0.001), or a trap without a bait (P < 0.001). Whereas MB5 + CO2 attracted significantly more mosquitoes than its variants containing MB5 plus different dilutions of 2-butanone (P = 0.001), the pure form (99.5%) and the 1.0% dilution of 2-butanone gave promising results. In the field mean indoor catches of wild female An. gambiae s.l. in traps containing MB5 + CO2 (5.07 ± 1.01) and MB5 + 99.5% 2-butanone (3.10 ± 0.65) did not differ significantly (P = 0.09). The mean indoor catches of wild female An. funestus attracted to traps containing MB5 + CO2 (3.87 ± 0.79) and MB5 + 99.5% 2-butanone (3.37 ± 0.70) were also similar (P = 0.635). Likewise, the mean outdoor catches of An. gambiae and An. funestus associated with MB5 + CO2 (1.63 ± 0.38 and 0.53 ± 0.17, respectively) and MB5 + 99.5% 2-butanone (1.33 ± 0.32 and 0.40 ± 0.14, respectively) were not significantly different (P = 0.544 and P = 0.533, respectively). Conclusion These results demonstrate that 2-butanone can serve as a good replacement for CO2 in synthetic blends of attractants designed to attract host-seeking An. gambiae s.l. and An. funestus mosquitoes. This development underscores the possibility of using odour-baited traps (OBTs) for monitoring and surveillance as well as control of malaria vectors and potentially other mosquito species.
Collapse
Affiliation(s)
- Monicah M Mburu
- International Centre of Insect Physiology and Ecology, P.O. Box 30772, Nairobi, 00100, Kenya.,School of Biological Sciences, University of Nairobi, P.O. Box 30197, Nairobi, 00100, Kenya.,Laboratory of Entomology, Wageningen University and Research, P.O. Box 16, 6700 AA, Wageningen, The Netherlands
| | - Collins K Mweresa
- International Centre of Insect Physiology and Ecology, P.O. Box 30772, Nairobi, 00100, Kenya.,School of Biological and Physical Sciences, Jaramogi Oginga Odinga University of Science and Technology, P.O. Box 210, Bondo, 40601, Kenya.,Science for Health, P.O. Box 44970, Nairobi, 00100, Kenya
| | - Philemon Omusula
- International Centre of Insect Physiology and Ecology, P.O. Box 30772, Nairobi, 00100, Kenya.,International Centre for Aids Care and Treatment Program, Ministry of Health, Jaramogi Oginga Odinga Teaching and Referral Hospital, P.O. Box 849, Kisumu, 50100, Kenya
| | - Alexandra Hiscox
- Laboratory of Entomology, Wageningen University and Research, P.O. Box 16, 6700 AA, Wageningen, The Netherlands
| | - Willem Takken
- Laboratory of Entomology, Wageningen University and Research, P.O. Box 16, 6700 AA, Wageningen, The Netherlands
| | - Wolfgang R Mukabana
- International Centre of Insect Physiology and Ecology, P.O. Box 30772, Nairobi, 00100, Kenya. .,School of Biological Sciences, University of Nairobi, P.O. Box 30197, Nairobi, 00100, Kenya. .,Science for Health, P.O. Box 44970, Nairobi, 00100, Kenya.
| |
Collapse
|
253
|
Irving H, Wondji CS. Investigating knockdown resistance (kdr) mechanism against pyrethroids/DDT in the malaria vector Anopheles funestus across Africa. BMC Genet 2017; 18:76. [PMID: 28793859 PMCID: PMC5549319 DOI: 10.1186/s12863-017-0539-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 07/18/2017] [Indexed: 12/29/2022] Open
Abstract
Background Understanding the molecular basis of insecticide resistance is key to improve the surveillance and monitoring of malaria vector populations under control. In the major malaria vector Anopheles funestus, little is currently known about the role of the knockdown resistance (kdr) mechanism. Here, we investigated the presence and contribution of knockdown resistance (kdr) to pyrethroids/DDT resistance observed in Anopheles funestus across Africa. Results Pyrosequencing genotyping and sequencing of the voltage gated sodium channel (VGSC) gene did not detect the common L1014F mutation in field collected An. funestus across Africa. Amplification and cloning of the full-length of the sodium channel gene in pyrethroid resistant mosquitoes revealed evidences of alternative splicing events with three transcripts of 2092, 2061 and 2117 amino acids (93% average similarity to An. gambiae). Several amino acid changes were detected close to the domain II of the protein such as L928R, F938 W, I939S, L802S and T1008 M. However, all these mutations are found at low frequency and their role in pyrethroid resistance could not be established. The presence of the exclusive alternative splicing at exon 19 was not associated with resistance phenotype. Analysis of patterns of genetic diversity of the VGSC gene revealed a high polymorphism level of this gene across Africa with no evidence of directional selection suggesting a limited role for knockdown resistance in pyrethroid resistance in An. funestus. Patterns of genetic differentiation correlate with previous observations of the existence of barriers to gene flow Africa-wide with southern population significantly differentiated from other regions. Conclusion Despite an apparent limited role of knockdown resistance in An. funestus, it is necessary to continue to monitor the contribution of the mutations detected here as increasing selection from insecticide-based interventions may change the dynamic in field populations as previously observed in other vectors. Electronic supplementary material The online version of this article (doi:10.1186/s12863-017-0539-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Helen Irving
- Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Charles S Wondji
- Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK. .,LSTM research Unit at the Organisation de Coordination pour la lutte contre les Endemies en Afrique Centrale, P.O Box 288, Yaoundé, Cameroon.
| |
Collapse
|
254
|
Mzilahowa T, Luka-Banda M, Uzalili V, Mathanga DP, Campbell CH, Mukaka M, Gimnig JE. Risk factors for Anopheles mosquitoes in rural and urban areas of Blantyre District, southern Malawi. Malawi Med J 2017; 28:154-158. [PMID: 28321278 DOI: 10.4314/mmj.v28i4.2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Although urban malaria transmission is low and seasonal, it remains a major public health problem. This study aimed at demonstrating the presence of Anopheles mosquitoes and their potential to transmit malaria in urban settings. METHODS Two cross-sectional surveys were carried out in Blantyre District, Malawi, during the dry and wet seasons of 2008 and 2010, respectively. A map of Blantyre was divided into a grid of 400 cells, of which 60 cells were randomly selected. Five households located within 100 m from the centre of each selected cell were enrolled, a standard questionnaire was administered, and indoor resting mosquitoes were sampled. RESULTS In 2008 and 2010, a total of 960 and 1045 mosquitoes were collected, respectively. Anopheles funestus comprised 9.9% (n = 95) and 10.3% (n = 108) during the two surveys, respectively. Anopheles gambiae sensu lato (s.l.) was rarely detected during the second survey (n = 6; 0.6%). Molecular identification was performed on samples collected during the first survey, and An. funestus sensu stricto (s.s.) was the only sibling species detected. All the Anopheles mosquitoes were collected from households located in rural areas of Blantyre and none from urban areas. In univariate analysis, the presence of open eaves was associated with increased Anopheles prevalence, both during the dry (incidence rate ratio, IRR = 4.3; 95% CI 2.4 - 7.6) and wet (IRR = 2.47; 95% CI 1.7 - 3.59) seasons. Chances of detecting Anopheles spp. decreased with increasing altitude (IRR = 0.996; 95% CI 0.995 - 0.997) and during the dry season, but increased during the wet season (IRR = 1.0017; 95% CI 1.0012 - 1.0023). These factors remained significant following a multiple Poisson regression analysis. No association was found between insecticide-treated bednet ownership and the number of Anopheles mosquitoes detected. CONCLUSIONS The presence of An. funestus s.s and An. gambiae s.l. in the periphery of Blantyre city was an indication that malaria transmission was potentially taking place in these areas.
Collapse
Affiliation(s)
- Themba Mzilahowa
- Malaria Alert Centre, College of Medicine, University of Malawi, Blantyre, Malawi
| | - Madalitso Luka-Banda
- Malaria Alert Centre, College of Medicine, University of Malawi, Blantyre, Malawi
| | - Veronica Uzalili
- Malaria Alert Centre, College of Medicine, University of Malawi, Blantyre, Malawi
| | - Don P Mathanga
- Malaria Alert Centre, College of Medicine, University of Malawi, Blantyre, Malawi
| | - Carl H Campbell
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, USA
| | - Mavuto Mukaka
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi
| | - John E Gimnig
- Entomology Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
255
|
Samuels AM, Awino N, Odongo W, Abong'o B, Gimnig J, Otieno K, Shi YP, Were V, Allen DR, Were F, Sang T, Obor D, Williamson J, Hamel MJ, Patrick Kachur S, Slutsker L, Lindblade KA, Kariuki S, Desai M. Community-based intermittent mass testing and treatment for malaria in an area of high transmission intensity, western Kenya: study design and methodology for a cluster randomized controlled trial. Malar J 2017; 16:240. [PMID: 28592250 PMCID: PMC5463392 DOI: 10.1186/s12936-017-1883-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Accepted: 05/29/2017] [Indexed: 01/13/2023] Open
Abstract
Most human Plasmodium infections in western Kenya are asymptomatic and are believed to contribute importantly to malaria transmission. Elimination of asymptomatic infections requires active treatment approaches, such as mass testing and treatment (MTaT) or mass drug administration (MDA), as infected persons do not seek care for their infection. Evaluations of community-based approaches that are designed to reduce malaria transmission require careful attention to study design to ensure that important effects can be measured accurately. This manuscript describes the study design and methodology of a cluster-randomized controlled trial to evaluate a MTaT approach for malaria transmission reduction in an area of high malaria transmission. Ten health facilities in western Kenya were purposively selected for inclusion. The communities within 3 km of each health facility were divided into three clusters of approximately equal population size. Two clusters around each health facility were randomly assigned to the control arm, and one to the intervention arm. Three times per year for 2 years, after the long and short rains, and again before the long rains, teams of community health volunteers visited every household within the intervention arm, tested all consenting individuals with malaria rapid diagnostic tests, and treated all positive individuals with an effective anti-malarial. The effect of mass testing and treatment on malaria transmission was measured through population-based longitudinal cohorts, outpatient visits for clinical malaria, periodic population-based cross-sectional surveys, and entomological indices.
Collapse
Affiliation(s)
- Aaron M Samuels
- Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, 30333, USA. .,Centers for Disease Control and Prevention, Kisian Campus, Off Busia Road, P O Box 1578, Kisumu, 40100, Kenya.
| | - Nobert Awino
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Wycliffe Odongo
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Benard Abong'o
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - John Gimnig
- Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, 30333, USA
| | - Kephas Otieno
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Ya Ping Shi
- Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, 30333, USA
| | - Vincent Were
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Denise Roth Allen
- Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, 30333, USA
| | - Florence Were
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Tony Sang
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - David Obor
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - John Williamson
- Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, 30333, USA
| | - Mary J Hamel
- Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, 30333, USA
| | - S Patrick Kachur
- Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, 30333, USA
| | - Laurence Slutsker
- Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, 30333, USA
| | - Kim A Lindblade
- Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, 30333, USA
| | - Simon Kariuki
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Meghna Desai
- Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, 30333, USA
| |
Collapse
|
256
|
Genome-Wide Transcription and Functional Analyses Reveal Heterogeneous Molecular Mechanisms Driving Pyrethroids Resistance in the Major Malaria Vector Anopheles funestus Across Africa. G3-GENES GENOMES GENETICS 2017; 7:1819-1832. [PMID: 28428243 PMCID: PMC5473761 DOI: 10.1534/g3.117.040147] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Pyrethroid resistance in malaria vector, An. funestus is increasingly reported across Africa, threatening the sustainability of pyrethroid-based control interventions, including long lasting insecticidal nets (LLINs). Managing this problem requires understanding of the molecular basis of the resistance from different regions of the continent, to establish whether it is being driven by a single or independent selective events. Here, using a genome-wide transcription profiling of pyrethroid resistant populations from southern (Malawi), East (Uganda), and West Africa (Benin), we investigated the molecular basis of resistance, revealing strong differences between the different African regions. The duplicated cytochrome P450 genes (CYP6P9a and CYP6P9b) which were highly overexpressed in southern Africa are not the most upregulated in other regions, where other genes are more overexpressed, including GSTe2 in West (Benin) and CYP9K1 in East (Uganda). The lack of directional selection on both CYP6P9a and CYP6P9b in Uganda in contrast to southern Africa further supports the limited role of these genes outside southern Africa. However, other genes such as the P450 CYP9J11 are commonly overexpressed in all countries across Africa. Here, CYP9J11 is functionally characterized and shown to confer resistance to pyrethroids and moderate cross-resistance to carbamates (bendiocarb). The consistent overexpression of GSTe2 in Benin is coupled with a role of allelic variation at this gene as GAL4-UAS transgenic expression in Drosophila flies showed that the resistant 119F allele is highly efficient in conferring both DDT and permethrin resistance than the L119. The heterogeneity in the molecular basis of resistance and cross-resistance to insecticides in An. funestus populations throughout sub-Saharan African should be taken into account in designing resistance management strategies.
Collapse
|
257
|
Kaindoa EW, Matowo NS, Ngowo HS, Mkandawile G, Mmbando A, Finda M, Okumu FO. Interventions that effectively target Anopheles funestus mosquitoes could significantly improve control of persistent malaria transmission in south-eastern Tanzania. PLoS One 2017; 12:e0177807. [PMID: 28542335 PMCID: PMC5436825 DOI: 10.1371/journal.pone.0177807] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 05/03/2017] [Indexed: 11/26/2022] Open
Abstract
Malaria is transmitted by many Anopheles species whose proportionate contributions vary across settings. We re-assessed the roles of Anopheles arabiensis and Anopheles funestus, and examined potential benefits of species-specific interventions in an area in south-eastern Tanzania, where malaria transmission persists, four years after mass distribution of long-lasting insecticide-treated nets (LLINs). Monthly mosquito sampling was done in randomly selected households in three villages using CDC light traps and back-pack aspirators, between January-2015 and January-2016, four years after the last mass distribution of LLINs in 2011. Multiplex polymerase chain reaction (PCR) was used to identify members of An. funestus and Anopheles gambiae complexes. Enzyme-linked immunosorbent assay (ELISA) was used to detect Plasmodium sporozoites in mosquito salivary glands, and to identify sources of mosquito blood meals. WHO susceptibility assays were done on wild caught female An. funestus s.l, and physiological ages approximated by examining mosquito ovaries for parity. A total of 20,135 An. arabiensis and 4,759 An. funestus were collected. The An. funestus group consisted of 76.6% An. funestus s.s, 2.9% An. rivulorum, 7.1% An. leesoni, and 13.4% unamplified samples. Of all mosquitoes positive for Plasmodium, 82.6% were An. funestus s.s, 14.0% were An. arabiensis and 3.4% were An. rivulorum. An. funestus and An. arabiensis contributed 86.21% and 13.79% respectively, of annual entomological inoculation rate (EIR). An. arabiensis fed on humans (73.4%), cattle (22.0%), dogs (3.1%) and chicken (1.5%), but An. funestus fed exclusively on humans. The An. funestus populations were 100% susceptible to organophosphates, pirimiphos methyl and malathion, but resistant to permethrin (10.5% mortality), deltamethrin (18.7%), lambda-cyhalothrin (18.7%) and DDT (26.2%), and had reduced susceptibility to bendiocarb (95%) and propoxur (90.1%). Parity rate was higher in An. funestus (65.8%) than An. arabiensis (44.1%). Though An. arabiensis is still the most abundant vector species here, the remaining malaria transmission is predominantly mediated by An. funestus, possibly due to high insecticide resistance and high survival probabilities. Interventions that effectively target An. funestus mosquitoes could therefore significantly improve control of persistent malaria transmission in south–eastern Tanzania.
Collapse
Affiliation(s)
- Emmanuel W. Kaindoa
- Ifakara Health Institute, Environmental Health and Ecological Sciences Thematic Group, Morogoro, Tanzania
- University of the Witwatersrand, School of Public Health, Faculty of Health Science, Johannesburg, South Africa
- * E-mail:
| | - Nancy S. Matowo
- Ifakara Health Institute, Environmental Health and Ecological Sciences Thematic Group, Morogoro, Tanzania
- Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Halfan S. Ngowo
- Ifakara Health Institute, Environmental Health and Ecological Sciences Thematic Group, Morogoro, Tanzania
- Institute of Biodiversity, Animal Health and Comparative Medicine, G12 8QQ, University of Glasgow, Glasgow, United Kingdom
| | - Gustav Mkandawile
- Ifakara Health Institute, Environmental Health and Ecological Sciences Thematic Group, Morogoro, Tanzania
| | - Arnold Mmbando
- Ifakara Health Institute, Environmental Health and Ecological Sciences Thematic Group, Morogoro, Tanzania
- Swiss Tropical and Public Health Institute, University of Basel, Basel, Switzerland
| | - Marcelina Finda
- Ifakara Health Institute, Environmental Health and Ecological Sciences Thematic Group, Morogoro, Tanzania
| | - Fredros O. Okumu
- Ifakara Health Institute, Environmental Health and Ecological Sciences Thematic Group, Morogoro, Tanzania
- University of the Witwatersrand, School of Public Health, Faculty of Health Science, Johannesburg, South Africa
- Institute of Biodiversity, Animal Health and Comparative Medicine, G12 8QQ, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
258
|
Masalu JP, Finda M, Okumu FO, Minja EG, Mmbando AS, Sikulu-Lord MT, Ogoma SB. Efficacy and user acceptability of transfluthrin-treated sisal and hessian decorations for protecting against mosquito bites in outdoor bars. Parasit Vectors 2017; 10:197. [PMID: 28427437 PMCID: PMC5397833 DOI: 10.1186/s13071-017-2132-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 04/05/2017] [Indexed: 11/16/2022] Open
Abstract
Background A number of mosquito vectors bite and rest outdoors, which contributes to sustained residual malaria transmission in endemic areas. Spatial repellents are thought to create a protective “bubble” within which mosquito bites are reduced and may be ideal for outdoor use. This study builds on previous studies that proved efficacy of transfluthrin-treated hessian strips against outdoor biting mosquitoes. The goal of this study was to modify strips into practical, attractive and acceptable transfluthrin treated sisal and hessian emanators that confer protection against potential infectious bites before people use bed nets especially in the early evening and outdoors. This study was conducted in Kilombero Valley, Ulanga District, south-eastern Tanzania. Results The protective efficacy of hand-crafted transfluthrin-treated sisal decorative baskets and hessian wall decorations against early evening outdoor biting malaria vectors was measured by human landing catches (HLC) in outdoor bars during peak outdoor mosquito biting activity (19:00 to 23:00 h). Treated baskets and wall decorations reduced bites of Anopheles arabiensis mosquitoes by 89% (Relative Rate, RR = 0.11, 95% confidence interval, CI: 0.09–0.15, P < 0.001) and 86% (RR = 0.14, 95% CI: 0.11–0.18, P < 0.001), respectively. In addition, they significantly reduced exposure to outdoor bites of Culex spp. by 66% (RR = 0.34, 95% CI: 0.22–0.52, P < 0.001) and 56% (RR = 0.44, 95% CI: 0.29–0.66, P < 0.001), respectively. Conclusion Locally hand-crafted transfluthrin-treated sisal decorative baskets and hessian wall decorations are readily acceptable and confer protection against outdoor biting malaria vectors in the early evening and outdoors: when people are resting on the verandas, porches or in outdoor social places such as bars and restaurants. Additional research can help support the use of such items as complementary interventions to expand protection to communities currently experiencing outdoor transmission of mosquito-borne pathogens.
Collapse
Affiliation(s)
- John P Masalu
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Off Mlabani Passage, Ifakara, P.O Box 53, Morogoro, United Republic of Tanzania.
| | - Marceline Finda
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Off Mlabani Passage, Ifakara, P.O Box 53, Morogoro, United Republic of Tanzania
| | - Fredros O Okumu
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Off Mlabani Passage, Ifakara, P.O Box 53, Morogoro, United Republic of Tanzania.,School of Public Health, University of the Witwatersrand, Johannesburg, South Africa.,Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Elihaika G Minja
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Off Mlabani Passage, Ifakara, P.O Box 53, Morogoro, United Republic of Tanzania
| | - Arnold S Mmbando
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Off Mlabani Passage, Ifakara, P.O Box 53, Morogoro, United Republic of Tanzania
| | | | - Sheila B Ogoma
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Off Mlabani Passage, Ifakara, P.O Box 53, Morogoro, United Republic of Tanzania.,US National Research Council, National Academies of Sciences, Engineering and Medicine, Washington, DC, USA
| |
Collapse
|
259
|
Charlwood JD. Some like it hot: a differential response to changing temperatures by the malaria vectors Anopheles funestus and An. gambiae s.l. PeerJ 2017; 5:e3099. [PMID: 28367367 PMCID: PMC5372839 DOI: 10.7717/peerj.3099] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 02/16/2017] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND With the possible implications of global warming, the effect of temperature on the dynamics of malaria vectors in Africa has become a subject of increasing interest. Information from the field is, however, relatively sparse. We describe the effect of ambient temperature over a five-year period on the dynamics of An. funestus and An. gambiae s.l., collected from a single village in southern Mozambique where temperatures varied from a night-time minimum of 6 °C in the cool season to a daytime maximum of 35 °C in the hot season. RESULTS Mean daily air temperatures varied from 34 °C to 20 °C and soil temperatures varied from 26 °C to 12 °C. Diurnal variation was greatest in the cooler months of the year and were greater in air temperatures than soil temperatures. During the study 301, 705 female An. funestus were collected in 6,043 light-trap collections, 161, 466 in 7,397 exit collections and 16, 995 in 1,315 resting collections. The equivalent numbers for An. gambiae s.l. are 72,475 in light-traps, 33, 868 in exit collections and 5,333 from indoor resting collections. Numbers of mosquito were greatest in the warmer months. Numbers of An. gambiae s.l. went through a one hundredfold change (from a mean of 0.14 mosquitoes a night to 14) whereas numbers of An. funestus merely doubled (from a mean of 20 to 40 a night). The highest environmental correlations and mosquito numbers were between mean air temperature (r2 = 0.52 for An. funestus and 0.77 for An. gambiae s.l.). Numbers of mosquito collected were not related to rainfall with lags of up to four weeks. Numbers of both gravid and unfed An. gambiae complex females in exit collections continued to increase at all temperatures recorded but gravid females of An. funestus decreased at temperatures above 28 °C. Overall the numbers of gravid and unfed An. funestus collected in exit collections were not correlated (p = 0.07). For an unknown reason the number of An. gambiae s.l. fell below monitoring thresholds during the study. CONCLUSIONS Mean air temperature was the most important environmental parameter affecting both vectors in this part of Mozambique. Numbers of An. gambiae s.l. increased at all temperatures recorded whilst An. funestus appeared to be adversely affected by temperatures of 28 °C and above. These differences may influence the distribution of the vectors as the planet warms.
Collapse
Affiliation(s)
- Jacques Derek Charlwood
- Instituto de Higiene e Medicina Tropical, IHMT, Universidade Nova de Lisboa, UNL, Rua da Junqueira, Global Health and Tropical Medicine, GHTM, Lisbon, Portugal; MOZDAN (Mozambican-Danish Rural Malaria Initiative), Morrumbene, Inhambane Province, Mozambique; Centre for Health Research and Development, University of Copenhagen, Copenhagen, Denmark; National Institute of Health, Maputo, Mozambique
| |
Collapse
|
260
|
Preliminary survey on Anopheles species distribution in Botswana shows the presence of Anopheles gambiae and Anopheles funestus complexes. Malar J 2017; 16:106. [PMID: 28270213 PMCID: PMC5339988 DOI: 10.1186/s12936-017-1756-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 02/26/2017] [Indexed: 11/10/2022] Open
Abstract
Background Botswana is one of the four front line malaria elimination countries in Southern Africa, with malaria control activities that include routine vector control. Past and recent studies have shown that Anopheles arabiensis is the only known vector of Plasmodium parasites in the country. This report presents a preliminary evaluation on Anopheles species composition in seven districts of Botswana with some inferences on their vectorial role. Results Overall, 404 Anopheles mosquito females were collected, of which 196 were larvae collected from several breeding sites, and 208 were adults obtained from indoor pyrethrum spray catches (PSC). Anopheles arabiensis (58.9%) accounted for the highest relative frequency in 5 out of 7 districts sampled. The other species collected, among those identified, were barely represented: Anopheles longipalpis type C (16.3%), Anopheles parensis (8.9%), Anopheles quadriannulatus (5.4%), and Anopheles leesoni (0.2%). PCR test for human β-globin on mosquitoes collected by PSC showed that An. arabiensis and An. parensis had bitten human hosts. Moreover, An. arabiensis showed a non-negligible Plasmodium falciparum infection rate in two sites (3.0% and 2.5% in Chobe and Kweneng West districts, respectively). Conclusions This work provides first time evidence of Anopheles diversity in several areas of Botswana. Anopheles arabiensis is confirmed to be widespread in all the sampled districts and to be vector of P. falciparum. Moreover, the presence of Anopheles funestus group in Botswana has been assessed. Further research, entomological surveillance activities and possibly vector control programmes need to be better developed and implemented as well as targeting outdoors resting vectors.
Collapse
|
261
|
Burke A, Dandalo L, Munhenga G, Dahan-Moss Y, Mbokazi F, Ngxongo S, Coetzee M, Koekemoer L, Brooke B. A new malaria vector mosquito in South Africa. Sci Rep 2017; 7:43779. [PMID: 28262811 PMCID: PMC5338325 DOI: 10.1038/srep43779] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 01/30/2017] [Indexed: 11/08/2022] Open
Abstract
South Africa aims to eliminate malaria within its borders by 2018. Despite well-coordinated provincial vector control programmes that are based on indoor residual insecticide spraying, low-level residual malaria transmission continues in the low-altitude border regions of the north-eastern sector of the country. In order to identify the underlying causes of residual transmission, an enhanced vector surveillance system has been implemented at selected sites in the Mpumalanga and KwaZulu-Natal (KZN) provinces. The collection periods for the data presented are March 2015 to April 2016 for Mpumalanga and January 2014 to December 2015 for KZN. The mosquito collection methods used included indoor and outdoor traps based on the use of traditional ceramic pots, modified plastic buckets and exit window traps (KZN only). All Anopheles funestus species group mosquitoes collected were identified to species and all females were screened for the presence of Plasmodium falciparum sporozoites. Two An. vaneedeni females, one from each surveillance site, tested positive for P. falciparum sporozoites. These are the first records of natural populations of An. vaneedeni being infective with P. falciparum. As both specimens were collected from outdoor-placed ceramic pots, these data show that An. vaneedeni likely contributes to residual malaria transmission in South Africa.
Collapse
Affiliation(s)
- Ashley Burke
- Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Centre for Opportunistic, Tropical & Hospital Infections, National Institute for Communicable Diseases, Johannesburg, South Africa
| | - Leonard Dandalo
- Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Centre for Opportunistic, Tropical & Hospital Infections, National Institute for Communicable Diseases, Johannesburg, South Africa
| | - Givemore Munhenga
- Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Centre for Opportunistic, Tropical & Hospital Infections, National Institute for Communicable Diseases, Johannesburg, South Africa
| | - Yael Dahan-Moss
- Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Centre for Opportunistic, Tropical & Hospital Infections, National Institute for Communicable Diseases, Johannesburg, South Africa
| | - Frans Mbokazi
- Malaria Elimination Programme, Mpumalanga Department of Health, Ehlanzeni District, South Africa
| | - Sifiso Ngxongo
- Environmental Health, Malaria and Communicable Disease Control, KwaZulu-Natal Department of Health, South Africa
| | - Maureen Coetzee
- Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Centre for Opportunistic, Tropical & Hospital Infections, National Institute for Communicable Diseases, Johannesburg, South Africa
| | - Lizette Koekemoer
- Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Centre for Opportunistic, Tropical & Hospital Infections, National Institute for Communicable Diseases, Johannesburg, South Africa
| | - Basil Brooke
- Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Centre for Opportunistic, Tropical & Hospital Infections, National Institute for Communicable Diseases, Johannesburg, South Africa
| |
Collapse
|
262
|
Barnes KG, Weedall GD, Ndula M, Irving H, Mzihalowa T, Hemingway J, Wondji CS. Genomic Footprints of Selective Sweeps from Metabolic Resistance to Pyrethroids in African Malaria Vectors Are Driven by Scale up of Insecticide-Based Vector Control. PLoS Genet 2017; 13:e1006539. [PMID: 28151952 PMCID: PMC5289422 DOI: 10.1371/journal.pgen.1006539] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 12/15/2016] [Indexed: 01/10/2023] Open
Abstract
Insecticide resistance in mosquito populations threatens recent successes in malaria prevention. Elucidating patterns of genetic structure in malaria vectors to predict the speed and direction of the spread of resistance is essential to get ahead of the ‘resistance curve’ and to avert a public health catastrophe. Here, applying a combination of microsatellite analysis, whole genome sequencing and targeted sequencing of a resistance locus, we elucidated the continent-wide population structure of a major African malaria vector, Anopheles funestus. We identified a major selective sweep in a genomic region controlling cytochrome P450-based metabolic resistance conferring high resistance to pyrethroids. This selective sweep occurred since 2002, likely as a direct consequence of scaled up vector control as revealed by whole genome and fine-scale sequencing of pre- and post-intervention populations. Fine-scaled analysis of the pyrethroid resistance locus revealed that a resistance-associated allele of the cytochrome P450 monooxygenase CYP6P9a has swept through southern Africa to near fixation, in contrast to high polymorphism levels before interventions, conferring high levels of pyrethroid resistance linked to control failure. Population structure analysis revealed a barrier to gene flow between southern Africa and other areas, which may prevent or slow the spread of the southern mechanism of pyrethroid resistance to other regions. By identifying a genetic signature of pyrethroid-based interventions, we have demonstrated the intense selective pressure that control interventions exert on mosquito populations. If this level of selection and spread of resistance continues unabated, our ability to control malaria with current interventions will be compromised. Malaria control currently relies heavily on insecticide-based vector control interventions. Unfortunately, resistance to insecticides threatens the continued effectiveness of these measures. Metabolic resistance, caused by increased detoxification of insecticides, presents the greatest threat to vector control, yet it remains unclear how these mechanisms are linked to underlying genetic changes driven by the massive selection pressure from these interventions, such as the widespread use of Long Lasting Insecticide Nets (LLINs) across Africa. Therefore, understanding the direction and speed at which this operationally important form of resistance spreads through mosquito populations is essential if we are to get ahead of the ‘resistance curve’ and avert a public health catastrophe. Here, using microsatellite markers, whole genome sequencing and fine-scale sequencing at a major resistance locus, we elucidated the Africa-wide population structure of Anopheles funestus, a major African malaria vector, and detected a strong selective sweep occurring in a genomic region controlling cytochrome P450-based metabolic pyrethroid resistance in this species. Furthermore, we demonstrated that this selective sweep is driven by the scale-up of insecticide-based malaria control in Africa, highlighting the risk that if this level of selection and spread of resistance continues unabated, our ability to control malaria with current interventions will be compromised.
Collapse
Affiliation(s)
- Kayla G. Barnes
- Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- FAS Center for Systems Biology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States of America
- Broad Institute, Cambridge, Massachusetts, United States of America
| | - Gareth D. Weedall
- Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Miranda Ndula
- Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Helen Irving
- Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Themba Mzihalowa
- Malaria Alert Centre, College of Medicine, University of Malawi, Blantyre, Malawi
| | - Janet Hemingway
- Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Charles S. Wondji
- Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale, Yaoundé, Cameroon
- * E-mail:
| |
Collapse
|
263
|
Das S, Muleba M, Stevenson JC, Pringle JC, Norris DE. Beyond the entomological inoculation rate: characterizing multiple blood feeding behavior and Plasmodium falciparum multiplicity of infection in Anopheles mosquitoes in northern Zambia. Parasit Vectors 2017; 10:45. [PMID: 28122597 PMCID: PMC5267472 DOI: 10.1186/s13071-017-1993-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Accepted: 01/19/2017] [Indexed: 11/16/2022] Open
Abstract
Background A commonly used measure of malaria transmission intensity is the entomological inoculation rate (EIR), defined as the product of the human biting rate (HBR) and sporozoite infection rate (SIR). The EIR excludes molecular parameters that may influence vector control and surveillance strategies. The purpose of this study was to investigate Anopheles multiple blood feeding behavior (MBF) and Plasmodium falciparum multiplicity of infection (MOI) within the mosquito host in Nchelenge District, northern Zambia. Mosquitoes were collected from light traps and pyrethroid spray catch in Nchelenge in the 2013 wet season. All anophelines were tested for blood meal host, P. falciparum, and MOI using PCR. Circumsporozoite (CSP) ELISA and microsatellite analysis were performed to detect parasites in the mosquito and MBF, respectively. Statistical analyses used regression models to assess MBF and MOI and exact binomial test for human sex bias. Both MBF and MOI can enhance our understanding of malaria transmission dynamics beyond what is currently understood through conventional EIR estimates alone. Results The dominant malaria vectors collected in Nchelenge were Anopheles funestus (sensu stricto) and An. gambiae (s.s.) The EIRs of An. funestus (s.s.) and An. gambiae (s.s.) were 39.6 infectious bites/person/6 months (ib/p/6mo) and 5.9 ib/p/6mo, respectively, and took multiple human blood meals at high rates, 23.2 and 25.7% respectively. There was no bias in human host sex preference in the blood meals. The SIR was further characterized for parasite genetic diversity. The overall P. falciparum MOI was 6.4 in infected vectors, exceeding previously reported average MOIs in humans in Africa. Conclusions Both Anopheles MBF rates and P. falciparum MOI in Nchelenge were among some of the highest reported in sub-Saharan Africa. The results suggest an underestimation of the EIR and large numbers of circulating parasite clones. Together, the results describe important molecular aspects of transmission excluded from the traditional EIR measurement. These elements may provide more sensitive measures with which to assess changes in transmission intensity and risk in vector and parasite surveillance programs.
Collapse
Affiliation(s)
- Smita Das
- The W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore, MD, 21205, USA
| | - Mbanga Muleba
- Tropical Disease Research Centre, P.O. Box 71769, Ndola, Zambia
| | - Jennifer C Stevenson
- The W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore, MD, 21205, USA.,Macha Research Trust, P.O. Box 630166, Choma, Zambia
| | - Julia C Pringle
- The W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore, MD, 21205, USA
| | - Douglas E Norris
- The W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore, MD, 21205, USA.
| |
Collapse
|
264
|
Stevenson JC, Norris DE. Implicating Cryptic and Novel Anophelines as Malaria Vectors in Africa. INSECTS 2016; 8:E1. [PMID: 28025486 PMCID: PMC5371929 DOI: 10.3390/insects8010001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Revised: 12/09/2016] [Accepted: 12/12/2016] [Indexed: 11/24/2022]
Abstract
Entomological indices and bionomic descriptions of malaria vectors are essential to accurately describe and understand malaria transmission and for the design and evaluation of appropriate control interventions. In order to correctly assign spatio-temporal distributions, behaviors and responses to interventions to particular anopheline species, identification of mosquitoes must be accurately made. This paper reviews the current methods and their limitations in correctly identifying anopheline mosquitoes in sub-Saharan Africa, and highlights the importance of molecular methods to discriminate cryptic species and identify lesser known anophelines. The increasing number of reports of Plasmodium infections in assumed "minor", non-vector, and cryptic and novel species is reviewed. Their importance in terms of evading current control and elimination strategies and therefore maintaining malaria transmission is emphasized.
Collapse
Affiliation(s)
- Jennifer C Stevenson
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA.
- Macha Research Trust, Choma P.O. Box 630166, Southern Province, Zambia.
| | - Douglas E Norris
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA.
| |
Collapse
|
265
|
Restriction to gene flow is associated with changes in the molecular basis of pyrethroid resistance in the malaria vector Anopheles funestus. Proc Natl Acad Sci U S A 2016; 114:286-291. [PMID: 28003461 PMCID: PMC5240677 DOI: 10.1073/pnas.1615458114] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Resistance to pyrethroids, the sole insecticide class recommended for treating bed nets, threatens the control of major malaria vectors, including Anopheles funestus Effective management of resistance requires an understanding of the dynamics and mechanisms driving resistance. Here, using genome-wide transcription and genetic diversity analyses, we show that a shift in the molecular basis of pyrethroid resistance in southern African populations of this species is associated with a restricted gene flow. Across the most highly endemic and densely populated regions in Malawi, An. funestus is resistant to pyrethroids, carbamates, and organochlorides. Genome-wide microarray-based transcription analysis identified overexpression of cytochrome P450 genes as the main mechanism driving this resistance. The most up-regulated genes include cytochrome P450s (CYP) CYP6P9a, CYP6P9b and CYP6M7. However, a significant shift in the overexpression profile of these genes was detected across a south/north transect, with CYP6P9a and CYP6P9b more highly overexpressed in the southern resistance front and CYP6M7 predominant in the northern front. A genome-wide genetic structure analysis of southern African populations of An. funestus from Zambia, Malawi, and Mozambique revealed a restriction of gene flow between populations, in line with the geographical variation observed in the transcriptomic analysis. Genetic polymorphism analysis of the three key resistance genes, CYP6P9a, CYP6P9b, and CYP6M7, support barriers to gene flow that are shaping the underlying molecular basis of pyrethroid resistance across southern Africa. This barrier to gene flow is likely to impact the design and implementation of resistance management strategies in the region.
Collapse
|
266
|
Djouaka R, Akoton R, Tchigossou GM, Atoyebi SM, Irving H, Kusimo MO, Djegbe I, Riveron JM, Tossou E, Yessoufou A, Wondji CS. Mapping the distribution of Anopheles funestus across Benin highlights a sharp contrast of susceptibility to insecticides and infection rate to Plasmodium between southern and northern populations. Wellcome Open Res 2016. [PMID: 28191507 DOI: 10.12688/wellcomeopenres.10213.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Background. Malaria remains an important public health issue in Benin, with Anopheles gambiae s.l. and Anopheles funestus s.s being the predominant vectors. This study was designed to generate information on An. funestus distribution, molecular speciation, Plasmodium infection rate and insecticide susceptibility status across Benin. Methods. Mosquito samples were collected from December 2014 to January 2016 in 46 localities in Benin. These samples were mapped and An. funestus collected were speciated to the molecular level. Plasmodium infection rate was determined using a Taqman assay and susceptibility to insecticides was assessed using the WHO guidelines. The genotyping of the L119F- Gste2 mutation was also carried out. Results. An. funestus was found in 8 out of the 46 localities surveyed with a high presence in Tanongou (wet Sudanese ecological zone), Kpome, Doukonta and Pahou (sub-equatorial ecological zone). Molecular identifications revealed that only An. funestuss.s was present in southern Benin, whereas in Tanongou (northern Benin) An. funestus s.s. and An. leesoni were found in sympatry at proportions of 77.7% and 22.3% respectively. Plasmodium infection rate of An. funestus was higher in southern Benin at a range of 13 to 18% compared to 5.6% recorded in Tanongou. High DDT (8±0.5%) and permethrin (11±0.5%) resistance were observed in Doukonta, Kpome and Pahou, contrasting with relatively low resistance profiles: mortality-DDT=90±3.18% and mortality-permethrin=100% in Tanongou. Genotyping analysis revealed high frequency of the resistant 119F allele in the South (Kpome and Doukonta) compared to the North (Tanongou). Discussion and Conclusion. The high presence of An. funestus in the South compared to the North could be due to favorable environmental and climatic conditions found in both regions. A significant Plasmodium infection rate was recorded across the country. A high resistance profile was recorded in the southern Benin; this raises the need for further investigations on resistance selection factors.
Collapse
Affiliation(s)
| | - Romaric Akoton
- International Institute of Tropical Agriculture, Cotonou, Benin.,University of Abomey-Calavi, Cotonou, Benin
| | - Genevieve M Tchigossou
- International Institute of Tropical Agriculture, Cotonou, Benin.,University of Abomey-Calavi, Cotonou, Benin
| | - Seun M Atoyebi
- International Institute of Tropical Agriculture, Cotonou, Benin.,Cell Biology and Genetics Unit, Department of Zoology, University of Ibadan, Ibadan, Nigeria
| | - Helen Irving
- Liverpool School of Tropical Medicine, Liverpool, UK
| | | | - Innocent Djegbe
- University of Sciences, Arts and Techniques of Natitingou, Ecole Normale Supérieure de Natitingou, Natitingou, Benin
| | | | - Eric Tossou
- International Institute of Tropical Agriculture, Cotonou, Benin.,University of Abomey-Calavi, Cotonou, Benin
| | | | | |
Collapse
|
267
|
Djouaka R, Akoton R, Tchigossou GM, Atoyebi SM, Irving H, Kusimo MO, Djegbe I, Riveron JM, Tossou E, Yessoufou A, Wondji CS. Mapping the distribution of Anopheles funestus across Benin highlights a sharp contrast of susceptibility to insecticides and infection rate to Plasmodium between southern and northern populations. Wellcome Open Res 2016; 1:28. [PMID: 28191507 PMCID: PMC5300096 DOI: 10.12688/wellcomeopenres.10213.2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2017] [Indexed: 11/20/2022] Open
Abstract
Background. Malaria remains an important public health issue in Benin, with Anopheles gambiae s.l. and Anopheles funestus s.s being the predominant vectors. This study was designed to generate information on An. funestus distribution, molecular speciation, Plasmodium infection rate and insecticide susceptibility status across Benin. Methods. Mosquito samples were collected from December 2014 to January 2016 in 46 localities in Benin. These samples were mapped and An. funestus collected were speciated to the molecular level. Plasmodium infection rate was determined using a Taqman assay and susceptibility to insecticides was assessed using the WHO guidelines. The genotyping of the L119F- Gste2 mutation was also carried out. Results. An. funestus was found in 8 out of the 46 localities surveyed with a high presence in Tanongou (wet Sudanese ecological zone), Kpome, Doukonta and Pahou (sub-equatorial ecological zone). Molecular identifications revealed that only An. funestuss.s was present in southern Benin, whereas in Tanongou (northern Benin) An. funestus s.s. and An. leesoni were found in sympatry at proportions of 77.7% and 22.3% respectively. Plasmodium infection rate of An. funestus was higher in southern Benin at a range of 13 to 18% compared to 5.6% recorded in Tanongou. High DDT (8±0.5%) and permethrin (11±0.5%) resistance were observed in Doukonta, Kpome and Pahou, contrasting with relatively low resistance profiles: mortality-DDT=90±3.18% and mortality-permethrin=100% in Tanongou. Genotyping analysis revealed high frequency of the resistant 119F allele in the South (Kpome and Doukonta) compared to the North (Tanongou). Discussion and Conclusion. The high presence of An. funestus in the South compared to the North could be due to favorable environmental and climatic conditions found in both regions. A significant Plasmodium infection rate was recorded across the country. A high resistance profile was recorded in the southern Benin; this raises the need for further investigations on resistance selection factors.
Collapse
Affiliation(s)
| | - Romaric Akoton
- International Institute of Tropical Agriculture, Cotonou, Benin
- University of Abomey-Calavi, Cotonou, Benin
| | - Genevieve M. Tchigossou
- International Institute of Tropical Agriculture, Cotonou, Benin
- University of Abomey-Calavi, Cotonou, Benin
| | - Seun M. Atoyebi
- International Institute of Tropical Agriculture, Cotonou, Benin
- Cell Biology and Genetics Unit, Department of Zoology, University of Ibadan, Ibadan, Nigeria
| | - Helen Irving
- Liverpool School of Tropical Medicine, Liverpool, UK
| | | | - Innocent Djegbe
- University of Sciences, Arts and Techniques of Natitingou, Ecole Normale Supérieure de Natitingou, Natitingou, Benin
| | | | - Eric Tossou
- International Institute of Tropical Agriculture, Cotonou, Benin
- University of Abomey-Calavi, Cotonou, Benin
| | | | | |
Collapse
|
268
|
Evidence of a multiple insecticide resistance in the malaria vector Anopheles funestus in South West Nigeria. Malar J 2016; 15:565. [PMID: 27876039 PMCID: PMC5120565 DOI: 10.1186/s12936-016-1615-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 11/15/2016] [Indexed: 11/30/2022] Open
Abstract
Background Knowing the extent and spread of insecticide resistance in malaria vectors is vital to successfully manage insecticide resistance in Africa. This information in the main malaria vector, Anopheles funestus sensu stricto, is completely lacking in the most populous country in Africa, Nigeria. This study reports the insecticide susceptibility status and the molecular basis of resistance of An. funestus as well as its involvement in malaria transmission in Akaka-Remo, a farm settlement village in southwest Nigeria. Results Plasmodium infection analysis using TaqMan protocol coupled with a nested PCR revealed an infection rate of 8% in An. funestus s.s. from Akaka-Remo. WHO susceptibility tests showed this species has developed multiple resistance to insecticides in the study area. Anopheles funestus s.s. population in Akaka-Remo is highly resistant to organochlorines: dieldrin (8%) and DDT (10%). Resistance was also observed against pyrethroids: permethrin (68%) and deltamethrin (87%), and the carbamate bendiocarb (84%). Mortality rate with DDT slightly increased (from 10 to 30%, n = 45) after PBO pre-exposure indicating that cytochrome P450s play little role in DDT resistance while high mortalities were recorded after PBO pre-exposure with permethrin (from 68 to 100%, n = 70) and dieldrin (from 8 to 100%, n = 48) suggesting the implication of P450s in the observed permethrin and dieldrin resistance. High frequencies of resistant allele, 119F in F0 (77%) and F1 (80% in resistant and 72% in susceptible) populations with an odd ratio of 1.56 (P = 0.1859) show that L119F-GSTe2 mutation is almost fixed in the population. Genotyping of the A296S-RDL mutation in both F0 and F1 samples shows an association with dieldrin resistance with an odd ratio of 81 (P < 0.0001) (allelic frequency (R) = 76% for F0; for F1, 90 and 10% were observed in resistant and susceptible populations, respectively) as this mutation is not yet fixed in the population. Conclusion The study reports multiple insecticide resistance in An. funestus from Akaka Remo. It is, therefore, necessary to pay more attention to this major malaria vector for effective malaria control in Nigeria.
Collapse
|
269
|
Swai JK, Finda MF, Madumla EP, Lingamba GF, Moshi IR, Rafiq MY, Majambere S, Okumu FO. Studies on mosquito biting risk among migratory rice farmers in rural south-eastern Tanzania and development of a portable mosquito-proof hut. Malar J 2016; 15:564. [PMID: 27876050 PMCID: PMC5120485 DOI: 10.1186/s12936-016-1616-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 11/15/2016] [Indexed: 11/19/2022] Open
Abstract
Background Subsistence rice farmers in south-eastern Tanzania are often migratory, spending weeks or months tending to crops in distant fields along the river valleys and living in improvised structures known as Shamba huts, not fully protected from mosquitoes. These farmers also experience poor access to organized preventive and curative services due to long distances. Mosquito biting exposure in these rice fields, relative to main village residences was assessed, then a portable mosquito-proof hut was developed and tested for protecting these migratory farmers. Methods Pair-wise mosquito surveys were conducted in four villages in Ulanga district, south-eastern Tanzania in 20 randomly-selected Shamba huts located in the distant rice fields and in 20 matched houses within the main villages, to assess biting densities and Plasmodium infection rates. A portable mosquito-proof hut was designed and tested in semi-field and field settings against Shamba hut replicas, and actual Shamba huts. Also, semi-structured interviews were conducted, timed-participant observations, and focus-group discussions to assess experiences and behaviours of the farmers regarding mosquito-bites and the mosquito-proof huts. Results There were equal numbers of mosquitoes in Shamba huts and main houses [RR (95% CI) 27 (25.1–31.2), and RR (95% CI) 30 (27.5–33.4)], respectively (P > 0.05). Huts having >1 occupant had more mosquitoes than those with just one occupant, regardless of site [RR (95% CI) 1.57 (1.30–1.9), P < 0.05]. Open eaves [RR (95% CI) 1.15 (1.08–1.23), P < 0.05] and absence of window shutters [RR (95% CI) 2.10 (1.91–2.31), P < 0.05] increased catches of malaria vectors. All Anopheles mosquitoes caught were negative for Plasmodium. Common night-time outdoor activities in the fields included cooking, eating, fetching water or firewood, washing dishes, bathing, and storytelling, mostly between 6 and 11 p.m., when mosquitoes were also biting most. The prototype hut provided 100% protection in semi-field and field settings, while blood-fed mosquitoes were recaptured in Shamba huts, even when occupants used permethrin-impregnated bed nets. Conclusion Though equal numbers of mosquitoes were caught between main houses and normal Shamba huts, the higher proportions of blood-fed mosquitoes, reduced access to organized healthcare and reduced effectiveness of LLINs, may increase vulnerability of the itinerant farmers. The portable mosquito-proof hut offered sufficient protection against disease-transmitting mosquitoes. Such huts could be improved to expand protection for migratory farmers and possibly other disenfranchised communities.
Collapse
Affiliation(s)
- Johnson K Swai
- Environmental Health and Ecological Sciences Thematic Group, Ifakara Health Institute, Ifkara, Tanzania.
| | - Marceline F Finda
- Environmental Health and Ecological Sciences Thematic Group, Ifakara Health Institute, Ifkara, Tanzania
| | - Edith P Madumla
- Environmental Health and Ecological Sciences Thematic Group, Ifakara Health Institute, Ifkara, Tanzania
| | - Godfrey F Lingamba
- Environmental Health and Ecological Sciences Thematic Group, Ifakara Health Institute, Ifkara, Tanzania
| | - Irene R Moshi
- Environmental Health and Ecological Sciences Thematic Group, Ifakara Health Institute, Ifkara, Tanzania.,School of Public Health, University of the Witwatersrand, Parktown, Johannesburg, Republic of South Africa
| | - Mohamed Y Rafiq
- Environmental Health and Ecological Sciences Thematic Group, Ifakara Health Institute, Ifkara, Tanzania
| | - Silas Majambere
- Environmental Health and Ecological Sciences Thematic Group, Ifakara Health Institute, Ifkara, Tanzania.,Innovative Vector Control Consortium, Liverpool, UK
| | - Fredros O Okumu
- Environmental Health and Ecological Sciences Thematic Group, Ifakara Health Institute, Ifkara, Tanzania.,School of Public Health, University of the Witwatersrand, Parktown, Johannesburg, Republic of South Africa
| |
Collapse
|
270
|
Mzilahowa T, Chiumia M, Mbewe RB, Uzalili VT, Luka-Banda M, Kutengule A, Mathanga DP, Ali D, Chiphwanya J, Zoya J, Mulenga S, Dodoli W, Bergeson-Lockwood J, Troell P, Oyugi J, Lindblade K, Gimnig JE. Increasing insecticide resistance in Anopheles funestus and Anopheles arabiensis in Malawi, 2011-2015. Malar J 2016; 15:563. [PMID: 27876046 PMCID: PMC5120501 DOI: 10.1186/s12936-016-1610-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 11/09/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Susceptibility of principal Anopheles malaria vectors to common insecticides was monitored over a 5-year period across Malawi to inform and guide the national malaria control programme. METHODS Adult blood-fed Anopheles spp. and larvae were collected from multiple sites in sixteen districts across the country between 2011 and 2015. First generation (F1) progeny aged 2-5 days old were tested for susceptibility, using standard WHO procedures, against pyrethroids (permethrin and deltamethrin), carbamates (bendiocarb and propoxur), organophosphates (malathion and pirimiphos-methyl) and an organochlorine (DDT). RESULTS Mortality of Anopheles funestus to deltamethrin, permethrin, bendiocarb and propoxur declined significantly over the 5-year (2011-2015) monitoring period. There was wide variation in susceptibility to DDT but it was not associated with time. In contrast, An. funestus exhibited 100% mortality to the organophosphates (malathion and pirimiphos-methyl) at all sites tested. There was reduced mortality of Anopheles arabiensis to deltamethrin over time though this was not statistically significant. However, mortality of An. arabiensis exposed to permethrin declined significantly over time. Anopheles arabiensis exposed to DDT were more likely to be killed if there was high ITN coverage in the mosquito collection area the previous year. There were no other associations between mosquito mortality in a bioassay and ITN coverage or IRS implementation. Mortality of An. funestus from four sites exposed to deltamethrin alone ranged from 2 to 31% and from 41 to 94% when pre-exposed to the synergist piperonyl butoxide followed by deltamethrin. For permethrin alone, mortality ranged from 2 to 13% while mortality ranged from 63 to 100% when pre-exposed to PBO. CONCLUSION Pyrethroid resistance was detected in An. funestus and An. arabiensis populations across Malawi and has worsened over the last 5 years. New insecticides and control strategies are urgently needed to reduce the burden of malaria in Malawi.
Collapse
Affiliation(s)
- Themba Mzilahowa
- Malaria Alert Centre, Malawi College of Medicine, Chichiri, P/Bag 360, Blantyre 3, Malawi.
| | - Martin Chiumia
- Malaria Alert Centre, Malawi College of Medicine, Chichiri, P/Bag 360, Blantyre 3, Malawi
| | - Rex B Mbewe
- Malaria Alert Centre, Malawi College of Medicine, Chichiri, P/Bag 360, Blantyre 3, Malawi
| | - Veronica T Uzalili
- Malaria Alert Centre, Malawi College of Medicine, Chichiri, P/Bag 360, Blantyre 3, Malawi
| | - Madalitso Luka-Banda
- Malaria Alert Centre, Malawi College of Medicine, Chichiri, P/Bag 360, Blantyre 3, Malawi
| | - Anna Kutengule
- Malaria Alert Centre, Malawi College of Medicine, Chichiri, P/Bag 360, Blantyre 3, Malawi
| | - Don P Mathanga
- Malaria Alert Centre, Malawi College of Medicine, Chichiri, P/Bag 360, Blantyre 3, Malawi
| | - Doreen Ali
- Community Health Services Unit, National Malaria Control Programme, Ministry of Health, Lilongwe, Malawi
| | - John Chiphwanya
- Community Health Services Unit, National Malaria Control Programme, Ministry of Health, Lilongwe, Malawi
| | - John Zoya
- Community Health Services Unit, National Malaria Control Programme, Ministry of Health, Lilongwe, Malawi
| | - Shadreck Mulenga
- Community Health Services Unit, National Malaria Control Programme, Ministry of Health, Lilongwe, Malawi
| | | | | | - Peter Troell
- President's Malaria Initiative, Centers for Disease Control and Prevention, Lilongwe, Malawi
| | - Jessica Oyugi
- Division of Parasitic Diseases and Malaria, Centers for Diseases Control and Prevention, Atlanta, GA, USA
| | - Kim Lindblade
- Division of Parasitic Diseases and Malaria, Centers for Diseases Control and Prevention, Atlanta, GA, USA
| | - John E Gimnig
- Division of Parasitic Diseases and Malaria, Centers for Diseases Control and Prevention, Atlanta, GA, USA
| |
Collapse
|
271
|
Stevenson JC, Simubali L, Mbambara S, Musonda M, Mweetwa S, Mudenda T, Pringle JC, Jones CM, Norris DE. Detection of Plasmodium falciparum Infection in Anopheles squamosus (Diptera: Culicidae) in an Area Targeted for Malaria Elimination, Southern Zambia. JOURNAL OF MEDICAL ENTOMOLOGY 2016; 53:1482-1487. [PMID: 27297214 PMCID: PMC5106822 DOI: 10.1093/jme/tjw091] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 05/11/2016] [Indexed: 05/21/2023]
Abstract
Southern Zambia is the focus of strategies to create malaria-free zones. Interventions being rolled out include test and treat strategies and distribution of insecticide-treated bed nets that target vectors that host-seek indoors and late at night. In Macha, Choma District, collections of mosquitoes were made outdoors using barrier screens within homesteads or UV bulb light traps set next to goats, cattle, or chickens during the rainy season of 2015. Anopheline mosquitoes were identified to species using molecular methods and Plasmodium falciparum infectivity was determined by ELISA and real-time qPCR methods. More than 40% of specimens caught were identified as Anopheles squamosus Theobald, 1901 of which six were found harboring malaria parasites. A single sample, morphologically identified as Anopheles coustani Laveran, 1900, was also found to be infectious. All seven specimens were caught outdoors next to goat pens. Parasite-positive specimens as well as a subset of An. squamosus specimens from either the same study or archive collections from the same area underwent sequencing of the mitochondrial cytochrome oxidase subunit I gene. Maximum parsimony trees constructed from the aligned sequences indicated presence of at least two clades of An. squamosus with infectious specimens falling in each clade. The single infectious specimen identified morphologically as An. coustani could not be matched to reference sequences. This is the first report from Zambia of infections in An. squamosus, a species which is described in literature to display exophagic traits. The bionomic characteristics of this species needs to be studied further to fully evaluate the implications for indoor-targeted vector control.
Collapse
Affiliation(s)
- Jennifer C Stevenson
- The W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe St., Baltimore, MD 21205 (; ; ; )
- Macha Research Trust, Choma, Zambia (; ; ; ; ), and
| | | | | | | | | | - Twig Mudenda
- Macha Research Trust, Choma, Zambia (; ; ; ; ), and
| | - Julia C Pringle
- The W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe St., Baltimore, MD 21205 (; ; ; )
| | - Christine M Jones
- The W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe St., Baltimore, MD 21205 (; ; ; )
| | - Douglas E Norris
- The W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe St., Baltimore, MD 21205 (; ; ; )
| |
Collapse
|
272
|
Menze BD, Riveron JM, Ibrahim SS, Irving H, Antonio-Nkondjio C, Awono-Ambene PH, Wondji CS. Multiple Insecticide Resistance in the Malaria Vector Anopheles funestus from Northern Cameroon Is Mediated by Metabolic Resistance Alongside Potential Target Site Insensitivity Mutations. PLoS One 2016; 11:e0163261. [PMID: 27723825 PMCID: PMC5056689 DOI: 10.1371/journal.pone.0163261] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Accepted: 09/05/2016] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Despite the recent progress in establishing the patterns of insecticide resistance in the major malaria vector Anopheles funestus, Central African populations of this species remain largely uncharacterised. To bridge this important gap and facilitate the implementation of suitable control strategies against this vector, we characterised the resistance patterns of An. funestus population from northern Cameroon. METHODS AND FINDINGS Collection of indoor-resting female mosquitoes in Gounougou (northern Cameroon) in 2012 and 2015 revealed a predominance of An. funestus during dry season. WHO bioassays performed using F1 An. funestus revealed that the population was multiple resistant to several insecticide classes including pyrethroids (permethrin, deltamethrin, lambda-cyhalothrin and etofenprox), carbamates (bendiocarb) and organochlorines (DDT and dieldrin). However, a full susceptibility was observed against the organophosphate malathion. Bioassays performed with 2015 collection revealed that resistance against pyrethroids and DDT is increasing. PBO synergist assays revealed a significant recovery of susceptibility for all pyrethroids but less for DDT. Analysis of the polymorphism of a portion of the voltage-gated sodium channel gene (VGSC) revealed the absence of the L1014F/S kdr mutation but identified 3 novel amino acid changes I877L, V881L and A1007S. However, no association was established between VGSC polymorphism and pyrethroid/DDT resistance. The DDT resistant 119F-GSTe2 allele (52%) and the dieldrin resistant 296S-RDL allele (45%) were detected in Gounougou. Temporal analysis between 2006, 2012 and 2015 collections revealed that the 119F-GSTe2 allele was relatively stable whereas a significant decrease is observed for 296S-RDL allele. CONCLUSION This multiple resistance coupled with the temporal increased in resistance intensity highlights the need to take urgent measures to prolong the efficacy of current insecticide-based interventions against An. funestus in this African region.
Collapse
Affiliation(s)
- Benjamin D. Menze
- Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool, Merseyside, United Kingdom
- LSTM/OCEAC Research Unit. Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale, Yaoundé, Centre Region, Cameroon
| | - Jacob M. Riveron
- Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool, Merseyside, United Kingdom
- LSTM/OCEAC Research Unit. Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale, Yaoundé, Centre Region, Cameroon
| | - Sulaiman S. Ibrahim
- Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool, Merseyside, United Kingdom
- Biochemistry Department, Bayero University Kano, Kano, Kano State, Nigeria
| | - Helen Irving
- Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool, Merseyside, United Kingdom
| | - Christophe Antonio-Nkondjio
- LSTM/OCEAC Research Unit. Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale, Yaoundé, Centre Region, Cameroon
| | - Parfait H. Awono-Ambene
- LSTM/OCEAC Research Unit. Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale, Yaoundé, Centre Region, Cameroon
| | - Charles S. Wondji
- Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool, Merseyside, United Kingdom
- LSTM/OCEAC Research Unit. Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale, Yaoundé, Centre Region, Cameroon
- * E-mail:
| |
Collapse
|
273
|
Stevenson JC, Pinchoff J, Muleba M, Lupiya J, Chilusu H, Mwelwa I, Mbewe D, Simubali L, Jones CM, Chaponda M, Coetzee M, Mulenga M, Pringle JC, Shields T, Curriero FC, Norris DE. Spatio-temporal heterogeneity of malaria vectors in northern Zambia: implications for vector control. Parasit Vectors 2016; 9:510. [PMID: 27655231 PMCID: PMC5031275 DOI: 10.1186/s13071-016-1786-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 09/01/2016] [Indexed: 11/16/2022] Open
Abstract
Background Despite large reductions in malaria burden across Zambia, some regions continue to experience extremely high malaria transmission. In Nchelenge District, Luapula Province, northern Zambia, almost half the human population carries parasites. Intervention coverage has increased substantially over the past decade, but comprehensive district-wide entomological studies to guide delivery of vector control measures are lacking. This study describes the bionomics and spatio-temporal patterns of malaria vectors in Nchelenge over a two and a half year period, investigates what household factors are associated with high vector densities and determines why vector control may not have been effective in the past to better guide future control efforts. Methods Between April 2012 and September 2014, twenty-seven households from across Nchelenge District were randomly selected for monthly light trap collections of mosquitoes. Anopheline mosquitoes were identified morphologically and molecularly to species. Foraging rates were estimated and sporozoite rates were determined by circumsporozoite ELISAs to calculate annual entomological inoculation rates. Blood feeding rates and host preference were determined by PCR. Zero-inflated negative binomial models measured environmental and household factors associated with mosquito abundance at study households such as season, proximity to the lake, and use of vector control measures. Results The dominant species in Nchelenge was An. funestus (s.s.) with An. gambiae (s.s.) as a secondary vector. Both vectors were found together in large numbers across the district and the combined EIRs of the two vectors exceeded 80 infectious bites per person per annum. An. funestus household densities increased in the dry season whilst An. gambiae surged during the rains. Presence of insecticide treated nets (ITNs) and closed eaves in the houses were found to be associated with fewer numbers of An. gambiae but not An. funestus. There was no association with indoor residual spraying (IRS). Conclusion In Nchelenge, the co-existence of two highly anthropophagic vectors, present throughout the year, is likely to be driving the high malaria transmission evident in the district. The vectors here have been shown to be highly resistant to pyrethroids used for IRS during the study. Vector control interventions in this area would have to be multifaceted and district-wide for effective control of malaria. Electronic supplementary material The online version of this article (doi:10.1186/s13071-016-1786-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jennifer C Stevenson
- The W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore, MD, 21205, USA. .,Macha Research Trust, P.O. Box 630166, Choma, Zambia.
| | - Jessie Pinchoff
- The W. Harry Feinstone Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore, MD, 21205, USA
| | - Mbanga Muleba
- Tropical Diseases Research Centre Room 727, Ndola Central Hospital, P.O. Box 71769, Ndola, Zambia
| | - James Lupiya
- Tropical Diseases Research Centre Room 727, Ndola Central Hospital, P.O. Box 71769, Ndola, Zambia
| | - Hunter Chilusu
- Tropical Diseases Research Centre Room 727, Ndola Central Hospital, P.O. Box 71769, Ndola, Zambia
| | - Ian Mwelwa
- Tropical Diseases Research Centre Room 727, Ndola Central Hospital, P.O. Box 71769, Ndola, Zambia
| | - David Mbewe
- Tropical Diseases Research Centre Room 727, Ndola Central Hospital, P.O. Box 71769, Ndola, Zambia
| | | | - Christine M Jones
- The W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore, MD, 21205, USA
| | - Mike Chaponda
- Tropical Diseases Research Centre Room 727, Ndola Central Hospital, P.O. Box 71769, Ndola, Zambia
| | - Maureen Coetzee
- Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Modest Mulenga
- Tropical Diseases Research Centre Room 727, Ndola Central Hospital, P.O. Box 71769, Ndola, Zambia
| | - Julia C Pringle
- The W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore, MD, 21205, USA
| | - Tim Shields
- The W. Harry Feinstone Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore, MD, 21205, USA
| | - Frank C Curriero
- The W. Harry Feinstone Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore, MD, 21205, USA
| | - Douglas E Norris
- The W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore, MD, 21205, USA
| | | |
Collapse
|
274
|
Riveron JM, Osae M, Egyir-Yawson A, Irving H, Ibrahim SS, Wondji CS. Multiple insecticide resistance in the major malaria vector Anopheles funestus in southern Ghana: implications for malaria control. Parasit Vectors 2016; 9:504. [PMID: 27628765 PMCID: PMC5024453 DOI: 10.1186/s13071-016-1787-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 09/01/2016] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Understanding the dynamics of insecticide resistance in African malaria vectors is crucial for successful implementation of resistance management strategies in the continent. This study reports a high and multiple insecticide resistance in Anopheles funestus from southern Ghana which could compromise the Malaria Operational Plan in this country, if not tackled. Adult Anopheles mosquitoes were collected in Obuasi and Adawukwa, in southern Ghana. Plasmodium infection rates, susceptibility to the main insecticides used in public health and the molecular basis of insecticide resistance were established. RESULTS An. funestus (sensu stricto) (s.s.) was the predominant mosquito species found resting inside the houses in Obuasi, while at Adawukwa it was found together with An. coluzzii. Parasite rates were high in An. funestus (s.s.) populations from both localities, with Plasmodium infection rates greater than 12.5 %. Both, An. funestus (s.s.) and An. coluzzii, from the two sites exhibited high resistance to the insecticide from various classes including the pyrethroids, carbamates and DDT, but remained fully susceptible to the organophosphates. A preliminary characterization of the underlying molecular mechanisms of resistance in An. funestus (s.s.) populations from both sites revealed that CYP6P9a, CYP6P9b, CYP6M7 and GSTe2 genes are upregulated, markedly higher in Obuasi (between 3.35 and 1.83 times) than in Adawukwa population. The frequency of L119F-GSTe2 and A296S-RDL resistance markers were also higher in Obuasi (42.5 and 68.95 % higher), compared with An. funestus (s.s.) populations from Adawukwa. These findings suggest that the similar resistance pattern observed in both An. funestus (s.s.) populations are driven by different mechanisms. CONCLUSIONS Resistance to multiple insecticides in public health use is present in malaria vectors from Ghana with major resistance genes already operating in the field. This should be taken into consideration in the design of resistance management strategies to avoid operational failure.
Collapse
Affiliation(s)
- Jacob M. Riveron
- Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, UK
- Research Unit Liverpool School of Tropical Medicine, Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale, P.O Box 288, Yaoundé, Cameroon
| | | | | | - Helen Irving
- Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, UK
| | - Sulaiman S. Ibrahim
- Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, UK
- Department of Biochemistry, Bayero University, PMB 3011 Kano, Nigeria
| | - Charles S. Wondji
- Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, UK
- Research Unit Liverpool School of Tropical Medicine, Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale, P.O Box 288, Yaoundé, Cameroon
| |
Collapse
|
275
|
Wragge SE, Toure D, Coetzee M, Gilbert A, Christian R, Segoea G, Hunt RH, Coetzee M. Malaria control at a gold mine in Sadiola District, Mali, and impact on transmission over 10 years. Trans R Soc Trop Med Hyg 2016; 109:755-62. [PMID: 26626339 DOI: 10.1093/trstmh/trv089] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND The SEMOS gold mine's malaria vector control programme forms part of the company's community responsibilities with the programme being managed by the mine's health department since 2005. METHODS Data from approximately 10 years of malaria vector control for the Sadiola District are given: namely malaria vector control methods used by the control programme, positive malaria case data and entomological surveys from 2006, 2011 and 2014. RESULTS Distribution of pyrethroid-treated bed nets and indoor residual spraying (IRS) with deltamethrin were implemented by the programme from 2005-2011. No IRS was done in 2012. Spraying with the organophosphate, pirimiphos-methyl resumed in 2013 and 2014 and was followed by a 70% drop in malaria cases in 2014. Anopheles arabiensis was the major vector present in 2006 and was susceptible to deltamethrin. In 2011 and 2014, An. gambiae s.s. was the most abundant vector with deltamethrin 24 h mortality of 68% and 19%, respectively. CONCLUSIONS Resistance to the pyrethroid deltamethrin has increased in An. gambiae s.s. since 2011, possibly due to the scale-up in distribution of long-lasting insecticide-treated bed nets. Resistance management strategies are recommended using different classes of insecticides for IRS, and including the distribution of new-generation bed nets.
Collapse
Affiliation(s)
- Sue-Ellen Wragge
- SEMOS Gold Mine, Health Department, Sadiola, Hamdallaye ACI 2000 pres' des Assurance LAFIA, B.P.E-1194, Bamako, Mali
| | - Dramane Toure
- SEMOS Gold Mine, Health Department, Sadiola, Hamdallaye ACI 2000 pres' des Assurance LAFIA, B.P.E-1194, Bamako, Mali
| | - Marelize Coetzee
- SEMOS Gold Mine, Health Department, Sadiola, Hamdallaye ACI 2000 pres' des Assurance LAFIA, B.P.E-1194, Bamako, Mali
| | - Allison Gilbert
- Wits Research Institute for Malaria, Faculty of Health Sciences, University of the Witwatersrand, 7 York Avenue, Johannesburg 2001, South Africa Centre for Opportunistic, Tropical and Hospital Infections, National Institute for Communicable Diseases, Private Bag X4, Sandringham 2131, South Africa
| | - Riann Christian
- Wits Research Institute for Malaria, Faculty of Health Sciences, University of the Witwatersrand, 7 York Avenue, Johannesburg 2001, South Africa Centre for Opportunistic, Tropical and Hospital Infections, National Institute for Communicable Diseases, Private Bag X4, Sandringham 2131, South Africa
| | - Godira Segoea
- Wits Research Institute for Malaria, Faculty of Health Sciences, University of the Witwatersrand, 7 York Avenue, Johannesburg 2001, South Africa Centre for Opportunistic, Tropical and Hospital Infections, National Institute for Communicable Diseases, Private Bag X4, Sandringham 2131, South Africa
| | - Richard H Hunt
- Wits Research Institute for Malaria, Faculty of Health Sciences, University of the Witwatersrand, 7 York Avenue, Johannesburg 2001, South Africa Centre for Opportunistic, Tropical and Hospital Infections, National Institute for Communicable Diseases, Private Bag X4, Sandringham 2131, South Africa
| | - Maureen Coetzee
- Wits Research Institute for Malaria, Faculty of Health Sciences, University of the Witwatersrand, 7 York Avenue, Johannesburg 2001, South Africa Centre for Opportunistic, Tropical and Hospital Infections, National Institute for Communicable Diseases, Private Bag X4, Sandringham 2131, South Africa
| |
Collapse
|
276
|
Djouaka R, Riveron JM, Yessoufou A, Tchigossou G, Akoton R, Irving H, Djegbe I, Moutairou K, Adeoti R, Tamò M, Manyong V, Wondji CS. Multiple insecticide resistance in an infected population of the malaria vector Anopheles funestus in Benin. Parasit Vectors 2016; 9:453. [PMID: 27531125 PMCID: PMC4987972 DOI: 10.1186/s13071-016-1723-y] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 07/25/2016] [Indexed: 11/10/2022] Open
Abstract
Background Knowledge on the spread and distribution of insecticide resistance in major malaria vectors such as Anopheles funestus is key to implement successful resistance management strategies across Africa. Here, by assessing the susceptibility status of an inland population of An. funestus Giles (Kpome) and investigating molecular basis of resistance, we show that multiple resistance and consistent plasmodium infection rate are present in Anopheles funestus populations from Kpome. Methods The insecticide susceptibility level of collected Anopheles funestus was assessed. Synergist (PBO) was used to screen resistance mechanisms. The TaqMan technique was used for genotyping of insecticide resistant alleles and detecting plasmodium infection levels. The nested PCR was used to further assess the plasmodium infection rate. Results The TaqMan analysis of plasmodial infections revealed an infection rate (18.2 %) of An. funestus in this locality. The WHO bioassays revealed a multiple phenotypic resistance profile for An. funestus in Kpome. This population is highly resistant to pyrethroids (permethrin and deltamethrin), organochlorines (DDT), and carbamates (bendiocarb). A reduced susceptibility was observed with dieldrin. Mortalities did not vary after pre-exposure to PBO for DDT indicating that cytochrome P450s play little role in DDT resistance in Kpome. In contrast, we noticed, a significant increase in mortalities when PBO was combined to permethrin suggesting the direct involvement of P450s in pyrethroid resistance. A high frequency of the L119F-GSTe2 DDT resistance marker was observed in the wild DDT resistant population (9 %RS and 91 %RR) whereas the A296S mutation was detected at a low frequency (1 %RS and 99 %SS). Conclusion The presence of multiple resistance in An. funestus populations in the inland locality of Kpome is established in this study as recently documented in the costal locality of Pahou. Data from both localities suggest that resistance could be widespread in Benin and this highlights the need for further studies to assess the geographical distribution of insecticide resistance across Benin and neighboring countries as well as a more comprehensive analysis of the resistance mechanisms involved. Electronic supplementary material The online version of this article (doi:10.1186/s13071-016-1723-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rousseau Djouaka
- International Institute of Tropical Agriculture, Cotonou, 08 BP 0932, Benin.
| | - Jacob M Riveron
- Liverpool School of Tropical Medicine, Pembroke Place, L3 5QA, Liverpool, UK
| | | | - Genevieve Tchigossou
- International Institute of Tropical Agriculture, Cotonou, 08 BP 0932, Benin.,University of Abomey, Calavi BP 526, Cotonou, Benin
| | - Romaric Akoton
- International Institute of Tropical Agriculture, Cotonou, 08 BP 0932, Benin.,University of Abomey, Calavi BP 526, Cotonou, Benin
| | - Helen Irving
- Liverpool School of Tropical Medicine, Pembroke Place, L3 5QA, Liverpool, UK
| | - Innocent Djegbe
- University of Sciences, Arts and Techniques of Natitingou, Ecole Normale Supérieure de Natitingou, Natitingou, BP 123, Benin
| | | | - Razack Adeoti
- International Institute of Tropical Agriculture, Cotonou, 08 BP 0932, Benin
| | - Manuele Tamò
- International Institute of Tropical Agriculture, Cotonou, 08 BP 0932, Benin
| | - Victor Manyong
- International Institute of Tropical Agriculture, Dar Es Salaam, Tanzania
| | - Charles S Wondji
- Liverpool School of Tropical Medicine, Pembroke Place, L3 5QA, Liverpool, UK
| |
Collapse
|
277
|
Samb B, Konate L, Irving H, Riveron JM, Dia I, Faye O, Wondji CS. Investigating molecular basis of lambda-cyhalothrin resistance in an Anopheles funestus population from Senegal. Parasit Vectors 2016; 9:449. [PMID: 27519696 PMCID: PMC4983014 DOI: 10.1186/s13071-016-1735-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 07/28/2016] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Anopheles funestus is one of the major malaria vectors in tropical Africa, notably in Senegal. The highly anthropophilic and endophilic behaviours of this mosquito make it a good target for vector control operations through the use of insecticide treated nets, long-lasting insecticide nets and indoor residual spraying. However, little is known about patterns of resistance to insecticides and the underlying resistance mechanisms in field populations of this vector in Senegal. METHODS Here, we assessed the susceptibility status of An. funestus populations from Gankette Balla, located in northern Senegal and investigated the potential resistance mechanisms. RESULTS WHO bioassays indicated that An. funestus is resistant to lambda-cyhalothrin 0.05 % (74.64 % mortality), DDT 4 % (83.36 % mortality) and deltamethrin 0.05 % (88.53 % mortality). Suspected resistance was observed to permethrin 0.75 % (91.19 % mortality), bendiocarb 0.1 % (94.13 % mortality) and dieldrin 4 % (96.41 % mortality). However, this population is fully susceptible to malathion 5 % (100 % mortality) and fenitrothion 1 % (100 % mortality). The microarray and qRT-PCR analysis indicated that the lambda-cyhalothrin resistance in Gankette Balla is conferred by metabolic resistance mechanisms under the probable control of cytochrome P450 genes among which CYP6M7 is the most overexpressed. The absence of overexpression of the P450 gene, CYP6P9a, indicates that the resistance mechanism in Senegal is different to that observed in southern Africa. CONCLUSIONS This study represents the first report of pyrethroid and DDT resistance in An. funestus from Senegal and shows that resistance to insecticides is not only confined to An. gambiae as previously thought. Therefore, urgent action should be taken to manage the resistance in this species to ensure the continued effectiveness of malaria control.
Collapse
Affiliation(s)
- Badara Samb
- Laboratoire d'Écologie Vectorielle et Parasitaire, Département de Biologie Animale, Faculté des Sciences et Techniques, Université Cheikh Anta Diop de Dakar, Dakar-Fann, BP, 5005, Sénégal.
| | - Lassana Konate
- Laboratoire d'Écologie Vectorielle et Parasitaire, Département de Biologie Animale, Faculté des Sciences et Techniques, Université Cheikh Anta Diop de Dakar, Dakar-Fann, BP, 5005, Sénégal
| | - Helen Irving
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Jacob M Riveron
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK.,Research Unit Liverpool School of Tropical Medicine, Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale, P.O Box 288, Yaoundé, Cameroon
| | - Ibrahima Dia
- Unité d'Entomologie Médicale, Institut Pasteur de Dakar, 36 Avenue Pasteur, BP, 220, Dakar, Sénégal
| | - Ousmane Faye
- Laboratoire d'Écologie Vectorielle et Parasitaire, Département de Biologie Animale, Faculté des Sciences et Techniques, Université Cheikh Anta Diop de Dakar, Dakar-Fann, BP, 5005, Sénégal
| | - Charles S Wondji
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK.,Research Unit Liverpool School of Tropical Medicine, Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale, P.O Box 288, Yaoundé, Cameroon
| |
Collapse
|
278
|
Hiscox A, Homan T, Mweresa CK, Maire N, Di Pasquale A, Masiga D, Oria PA, Alaii J, Leeuwis C, Mukabana WR, Takken W, Smith TA. Mass mosquito trapping for malaria control in western Kenya: study protocol for a stepped wedge cluster-randomised trial. Trials 2016; 17:356. [PMID: 27460054 PMCID: PMC4962350 DOI: 10.1186/s13063-016-1469-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 06/30/2016] [Indexed: 11/17/2022] Open
Abstract
Background Increasing levels of insecticide resistance as well as outdoor, residual transmission of malaria threaten the efficacy of existing vector control tools used against malaria mosquitoes. The development of odour-baited mosquito traps has led to the possibility of controlling malaria through mass trapping of malaria vectors. Through daily removal trapping against a background of continued bed net use it is anticipated that vector populations could be suppressed to a level where continued transmission of malaria will no longer be possible. Methods/design A stepped wedge cluster-randomised trial design was used for the implementation of mass mosquito trapping on Rusinga Island, western Kenya (the SolarMal project). Over the course of 2 years (2013–2015) all households on the island were provided with a solar-powered mosquito trapping system. A continuous health and demographic surveillance system combined with parasitological surveys three times a year, successive rounds of mosquito monitoring and regular sociological studies allowed measurement of intervention outcomes before, during and at completion of the rollout of traps. Data collection continued after achieving mass coverage with traps in order to estimate the longer term effectiveness of this novel intervention. Solar energy was exploited to provide electric light and mobile phone charging for each household, and the impacts of these immediate tangible benefits upon acceptability of and adherence to the use of the intervention are being measured. Discussion This study will be the first to evaluate whether the principle of solar-powered mass mosquito trapping could be an effective tool for elimination of malaria. If proven to be effective, this novel approach to malaria control would be a valuable addition to the existing strategies of long-lasting insecticide-treated nets and case management. Sociological studies provide a knowledge base for understanding the usage of this novel tool. Trial registration Trialregister.nl: NTR3496 – SolarMal. Registered on 20 June 2012. Electronic supplementary material The online version of this article (doi:10.1186/s13063-016-1469-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alexandra Hiscox
- Laboratory of Entomology, Wageningen University Research Centre, Wageningen, The Netherlands.
| | - Tobias Homan
- Laboratory of Entomology, Wageningen University Research Centre, Wageningen, The Netherlands
| | - Collins K Mweresa
- Human Health Division, International Centre of Insect Physiology and Ecology, Nairobi, Kenya
| | - Nicolas Maire
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Aurelio Di Pasquale
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Daniel Masiga
- Human Health Division, International Centre of Insect Physiology and Ecology, Nairobi, Kenya
| | - Prisca A Oria
- Human Health Division, International Centre of Insect Physiology and Ecology, Nairobi, Kenya.,Knowledge, Technology and Innovation Group, Wageningen University and Research Centre, Wageningen, The Netherlands
| | - Jane Alaii
- Human Health Division, International Centre of Insect Physiology and Ecology, Nairobi, Kenya.,Context Factor Solutions, Nairobi, Kenya
| | - Cees Leeuwis
- Knowledge, Technology and Innovation Group, Wageningen University and Research Centre, Wageningen, The Netherlands
| | | | - Willem Takken
- Laboratory of Entomology, Wageningen University Research Centre, Wageningen, The Netherlands
| | - Thomas A Smith
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| |
Collapse
|
279
|
Ndiath MO, Eiglmeier K, Olé Sangba ML, Holm I, Kazanji M, Vernick KD. Composition and genetics of malaria vector populations in the Central African Republic. Malar J 2016; 15:387. [PMID: 27456078 PMCID: PMC4960874 DOI: 10.1186/s12936-016-1431-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 07/05/2016] [Indexed: 11/30/2022] Open
Abstract
Background In many African countries malaria has declined sharply due to a synergy of actions marked by the introduction of vector control strategies, but the disease remains a leading cause of morbidity and mortality in Central African Republic (CAR). An entomological study was initiated with the aim to characterize the malaria vectors in Bangui, the capital of CAR, and determine their vector competence. Methods A cross-sectional entomological study was conducted in 15 sites of the district of Bangui, the capital of CAR, in September–October 2013 and a second collection was done in four of those sites between November and December 2013. Mosquitoes were collected by human landing catch (HLC) indoors and outdoors and by pyrethrum spray catch of indoor-resting mosquitoes. Mosquitoes were analysed for species and multiple other attributes, including the presence of Plasmodium falciparum circumsporozoite protein or DNA, blood meal source, 2La inversion karyotype, and the L1014F kdr insecticide resistance mutation. Results Overall, 1292 anophelines were analysed, revealing a predominance of Anopheles gambiae and Anopheles funestus, with a small fraction of Anopheles coluzzii. Molecular typing of the An. gambiae complex species showed that An. gambiae was predominant (95.7 %) as compared to An. coluzzii (2.1 %), and Anopheles arabiensis was not present. In some areas the involvement of secondary vectors, such as Anopheles coustani, expands the risk of infection. By HLC sampling, An. funestus displayed a stronger endophilic preference than mosquitoes from the An. gambiae sister taxa, with a mean indoor-capture rate of 54.3 % and 67.58 % for An. gambiae sister taxa and An. funestus, respectively. Human biting rates were measured overall for each of the species with 28 or 29 bites/person/night, respectively. Both vectors displayed a strong human feeding preference as determined by blood meal source, which was not different between the different sampling sites. An. coustani appears to be highly exophilic, with 92 % of HLC samples captured outdoors. The mean CSP rate in head-thorax sections of all Anopheles was 5.09 %, and was higher in An. gambiaes.l. (7.4 %) than in An. funestus (3.3 %). CSP-positive An. coustani were also detected in outdoor HLC samples. In the mosquitoes of the An. gambiae sister taxa the kdr-w mutant allele was nearly fixed, with 92.3 % resistant homozygotes, and no susceptible homozygotes detected. Conclusions This study collected data on anopheline populations in CAR, behaviour of vectors and transmission levels. Further studies should investigate the biting behaviour and susceptibility status of the anophelines to different insecticides to allow the establishment of appropriate vector control based on practical entomological knowledge. Electronic supplementary material The online version of this article (doi:10.1186/s12936-016-1431-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mamadou Ousmane Ndiath
- G4 Malaria Group, Institut Pasteur of Bangui, BP 923, Bangui, Central African Republic.,G4 Malaria Group, Institut Pasteur of Madagascar, BP 1274, Ambohitrakely, 101, Antananarivo, Madagascar
| | - Karin Eiglmeier
- Unit of Insect Vector Genetics and Genomics, Department of Parasites and Insect Vectors, Institut Pasteur, 28 rue du Docteur Roux, 75015, Paris, France. .,Unit of Hosts, Vectors and Pathogens (URA3012), CNRS, 28 rue du Docteur Roux, 75015, Paris, France.
| | - Marina Lidwine Olé Sangba
- G4 Malaria Group, Institut Pasteur of Bangui, BP 923, Bangui, Central African Republic.,Faculté des Sciences et Techniques, Université d'Abomey Calavi, Cotonou, Benin
| | - Inge Holm
- Unit of Insect Vector Genetics and Genomics, Department of Parasites and Insect Vectors, Institut Pasteur, 28 rue du Docteur Roux, 75015, Paris, France.,Unit of Hosts, Vectors and Pathogens (URA3012), CNRS, 28 rue du Docteur Roux, 75015, Paris, France
| | - Mirdad Kazanji
- Virology Department, Institut Pasteur de Bangui, Bangui, Central African Republic.,Institut Pasteur de la Guyane, 23 Avenue Pasteur, BP 6010, 97306, Cayenne Cedex, French-Guiana
| | - Kenneth D Vernick
- Unit of Insect Vector Genetics and Genomics, Department of Parasites and Insect Vectors, Institut Pasteur, 28 rue du Docteur Roux, 75015, Paris, France.,Unit of Hosts, Vectors and Pathogens (URA3012), CNRS, 28 rue du Docteur Roux, 75015, Paris, France
| |
Collapse
|
280
|
Mtove G, Mugasa JP, Messenger LA, Malima RC, Mangesho P, Magogo F, Plucinski M, Hashimu R, Matowo J, Shepard D, Batengana B, Cook J, Emidi B, Halasa Y, Kaaya R, Kihombo A, Lindblade KA, Makenga G, Mpangala R, Mwambuli A, Mzava R, Mziray A, Olang G, Oxborough RM, Seif M, Sambu E, Samuels A, Sudi W, Thomas J, Weston S, Alilio M, Binkin N, Gimnig J, Kleinschmidt I, McElroy P, Moulton LH, Norris L, Ruebush T, Venkatesan M, Rowland M, Mosha FW, Kisinza WN. The effectiveness of non-pyrethroid insecticide-treated durable wall lining to control malaria in rural Tanzania: study protocol for a two-armed cluster randomized trial. BMC Public Health 2016; 16:633. [PMID: 27456339 PMCID: PMC4960851 DOI: 10.1186/s12889-016-3287-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Accepted: 07/09/2016] [Indexed: 11/16/2022] Open
Abstract
Background Despite considerable reductions in malaria achieved by scaling-up long-lasting insecticidal nets (LLINs) and indoor residual spraying (IRS), maintaining sustained community protection remains operationally challenging. Increasing insecticide resistance also threatens to jeopardize the future of both strategies. Non-pyrethroid insecticidetreated wall lining (ITWL) may represent an alternate or complementary control method and a potential tool to manage insecticide resistance. To date no study has demonstrated whether ITWL can reduce malaria transmission nor provide additional protection beyond the current best practice of universal coverage (UC) of LLINs and prompt case management. Methods/design A two-arm cluster randomized controlled trial will be conducted in rural Tanzania to assess whether non-pyrethroid ITWL and UC of LLINs provide added protection against malaria infection in children, compared to UC of LLINs alone. Stratified randomization based on malaria prevalence will be used to select 22 village clusters per arm. All 44 clusters will receive LLINs and half will also have ITWL installed on interior house walls. Study children, aged 6 months to 11 years old, will be enrolled from each cluster and followed monthly to estimate cumulative incidence of malaria parasitaemia (primary endpoint), time to first malaria episode and prevalence of anaemia before and after intervention. Entomological inoculation rate will be estimated using indoor CDC light traps and outdoor tent traps followed by detection of Anopheles gambiae species, sporozoite infection, insecticide resistance and blood meal source. ITWL bioefficacy and durability will be monitored using WHO cone bioassays and household surveys, respectively. Social and cultural factors influencing community and household ITWL acceptability will be explored through focus-group discussions and in-depth interviews. Cost-effectiveness, compared between study arms, will be estimated per malaria case averted. Discussion This protocol describes the large-scale evaluation of a novel vector control product, designed to overcome some of the known limitations of existing methods. If ITWL is proven to be effective and durable under field conditions, it may warrant consideration for programmatic implementation, particularly in areas with long transmission seasons and where pyrethroid-resistant vectors predominate. Trial findings will provide crucial information for policy makers in Tanzania and other malaria-endemic countries to guide resource allocations for future control efforts. Trial registration NCT02533336 registered on 13 July 2014.
Collapse
Affiliation(s)
- George Mtove
- National Institute for Medical Research, Amani Research Centre, Muheza, Tanzania.
| | - Joseph P Mugasa
- National Institute for Medical Research, Amani Research Centre, Muheza, Tanzania
| | - Louisa A Messenger
- Department of Disease Control, London School of Hygiene and Tropical Medicine, London, UK
| | - Robert C Malima
- National Institute for Medical Research, Amani Research Centre, Muheza, Tanzania
| | - Peter Mangesho
- National Institute for Medical Research, Amani Research Centre, Muheza, Tanzania
| | - Franklin Magogo
- National Institute for Medical Research, Amani Research Centre, Muheza, Tanzania
| | - Mateusz Plucinski
- US President's Malaria Initiative, Atlanta, GA, USA.,Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Ramadhan Hashimu
- National Institute for Medical Research, Amani Research Centre, Muheza, Tanzania
| | | | - Donald Shepard
- National Institute for Medical Research, Headquarters, Dar es Salaam, Tanzania
| | - Bernard Batengana
- National Institute for Medical Research, Amani Research Centre, Muheza, Tanzania
| | - Jackie Cook
- Department of Disease Control, London School of Hygiene and Tropical Medicine, London, UK
| | - Basiliana Emidi
- Kilimanjaro Christian Medical College, Moshi, Tanzania.,National Institute for Medical Research, Headquarters, Dar es Salaam, Tanzania
| | - Yara Halasa
- Brandeis University, Heller School, Waltham, Massachusetts, USA
| | - Robert Kaaya
- Kilimanjaro Christian Medical College, Moshi, Tanzania
| | - Aggrey Kihombo
- National Institute for Medical Research, Amani Research Centre, Muheza, Tanzania
| | - Kimberly A Lindblade
- Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Geofrey Makenga
- National Institute for Medical Research, Amani Research Centre, Muheza, Tanzania
| | - Robert Mpangala
- National Institute for Medical Research, Amani Research Centre, Muheza, Tanzania
| | - Abraham Mwambuli
- National Institute for Medical Research, Amani Research Centre, Muheza, Tanzania
| | - Ruth Mzava
- National Institute for Medical Research, Amani Research Centre, Muheza, Tanzania
| | - Abubakary Mziray
- National Institute for Medical Research, Amani Research Centre, Muheza, Tanzania
| | - George Olang
- National Institute for Medical Research, Amani Research Centre, Muheza, Tanzania
| | | | - Mohammed Seif
- National Institute for Medical Research, Amani Research Centre, Muheza, Tanzania
| | - Edward Sambu
- National Institute for Medical Research, Amani Research Centre, Muheza, Tanzania
| | - Aaron Samuels
- Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Wema Sudi
- National Institute for Medical Research, Amani Research Centre, Muheza, Tanzania
| | - John Thomas
- Phoenix Ordinary LLC, Bridgewater, New Jersey, USA
| | - Sophie Weston
- Department of Disease Control, London School of Hygiene and Tropical Medicine, London, UK
| | - Martin Alilio
- President's Malaria Initiative, United States Agency for International Development, Washington DC, USA
| | - Nancy Binkin
- Translating Research into Action Project (TRAction) University Research Co., LLC, Bethesda, Maryland, USA
| | - John Gimnig
- Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Immo Kleinschmidt
- Department of Disease Control, London School of Hygiene and Tropical Medicine, London, UK
| | - Peter McElroy
- US President's Malaria Initiative, Atlanta, GA, USA.,Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Lawrence H Moulton
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Laura Norris
- President's Malaria Initiative, United States Agency for International Development, Washington DC, USA
| | - Trenton Ruebush
- Translating Research into Action Project (TRAction) University Research Co., LLC, Bethesda, Maryland, USA
| | - Meera Venkatesan
- President's Malaria Initiative, United States Agency for International Development, Washington DC, USA
| | - Mark Rowland
- Department of Disease Control, London School of Hygiene and Tropical Medicine, London, UK
| | | | - William N Kisinza
- National Institute for Medical Research, Amani Research Centre, Muheza, Tanzania
| |
Collapse
|
281
|
Sande S, Zimba M, Chinwada P, Masendu HT, Makuwaza A. Insights Into Resting Behavior of Malaria Vector Mosquitoes in Mutare and Mutasa Districts of Manicaland Province, Zimbabwe. JOURNAL OF MEDICAL ENTOMOLOGY 2016; 53:866-872. [PMID: 27134207 DOI: 10.1093/jme/tjw044] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 03/17/2016] [Indexed: 06/05/2023]
Abstract
A study was conducted to investigate the current resting behavior of malaria vectors in Mutare and Mutasa districts, Zimbabwe. Mosquitoes were captured using pyrethrum spray collection, prokopac aspirator, pit shelter, and exit trap methods. Mosquitoes were sorted and identified using morphological key and polymerase chain reaction (PCR) techniques. The Anopheles funestus group constituted 97%, whereas Anopheles gambiae complex mosquitoes were few (3%). Endophilic collections in both species were five times greater than exophilic catches. The endophilic trait was further demonstrated by gravid to fed index (gravid/fed) of constantly more than 1. Nearly 90% endophilic An. funestus populations were collected on sprayable and 10% collected on unsprayable surfaces. Of the sprayable surfaces, 56% were collected on the roofs, with 44% on the walls. Of those on the walls, 44, 22, and 34% were caught on wall heights >1, 1.0-1.5, <1.5 m from the ground, respectively. Of the gravid An. funestus caught, nearly two-thirds were collected exiting pyrethroid-treated structures, with a 24-h mortality of less than 10%. The PCR analysis of 120 specimens taken randomly from the An. funestus group was all An. funestus s.s. The present work indicates that for effective malaria control in Mutare and Mutasa districts using indoor residual spraying, both walls and roofs must be sprayed.
Collapse
Affiliation(s)
- S Sande
- Department of Biological Science, University of Zimbabwe, Harare, Zimbabwe (; ; ),
| | - M Zimba
- Department of Biological Science, University of Zimbabwe, Harare, Zimbabwe (; ; )
| | - P Chinwada
- Department of Biological Science, University of Zimbabwe, Harare, Zimbabwe (; ; )
| | - H T Masendu
- Abt Associates Inc. Number 1 Erskine Rd., Mount Pleasant, Harare, Zimbabwe , and
| | - A Makuwaza
- National Institute of Health Research, Causeway, Harare, Zimbabwe
| |
Collapse
|
282
|
Lozano-Fuentes S, Kading RC, Hartman DA, Okoth E, Githaka N, Nene V, Poché RM. Evaluation of a topical formulation of eprinomectin against Anopheles arabiensis when administered to Zebu cattle (Bos indicus) under field conditions. Malar J 2016; 15:324. [PMID: 27317557 PMCID: PMC4912782 DOI: 10.1186/s12936-016-1361-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Accepted: 05/27/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Although vector control strategies, such as insecticide-treated bed nets (ITNs) and indoor residual spraying (IRS) have been effective in Kenya the transmission of malaria continues to afflict western Kenya. This residual transmission is driven in part by Anopheles arabiensis, known for its opportunistic blood feeding behaviour and propensity to feed outdoors. The objective of this research was to evaluate the efficacy of the drug eprinomectin at reducing malaria vector density when applied to cattle (Bos indicus), the primary source of blood for An. arabiensis, under field conditions. METHODS A pilot study was carried out in the Samia District of western Kenya from September to October of 2014. Treatment and control areas were randomly designated and comprised of 50 homes per study area. Before cattle treatments, baseline mosquito counts were performed after pyrethrum spray. Cows in the treatment area were administered topical applications of eprinomectin at 0.5 mg/kg once a week for two consecutive weeks. Mosquito collections were performed once each week for two weeks following the eprinomectin treatments. Mosquitoes were first identified morphologically and with molecular confirmation, then screened for sporozoite presence and host blood using PCR-based methods. RESULTS The indoor resting density of An. arabiensis was significantly reduced by 38 % in the treatment area compared to the control area at one-week post-treatment (Control mean females per hut = 1.33 95 % CI [1.08, 1.64]; Treatment = 0.79 [0.56, 1.07]). An increase in the indoor resting density of Anopheles gambiae s.s. and Anopheles funestus s.s. was observed in the treatment area in the absence of An. arabiensis. At two weeks post-treatment, the total number of mosquitoes for any species per hut was not significantly different between the treatment and control areas. No change was observed in An. arabiensis host preference as a result of treatment. CONCLUSIONS Systemic drugs may be an important tool by which to supplement existing vector control interventions by significantly impacting outdoor malaria transmission driven by An. arabiensis through the treatment of cattle.
Collapse
Affiliation(s)
| | - Rebekah C Kading
- Genesis Laboratories, 10122 NE Frontage Rd, Wellington, CO, USA.,Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | | | - Edward Okoth
- International Livestock Research Institute, P.O. Box 30709, Nairobi, Kenya
| | - Naftaly Githaka
- International Livestock Research Institute, P.O. Box 30709, Nairobi, Kenya
| | - Vishvanath Nene
- International Livestock Research Institute, P.O. Box 30709, Nairobi, Kenya
| | - Richard M Poché
- Genesis Laboratories, 10122 NE Frontage Rd, Wellington, CO, USA
| |
Collapse
|
283
|
Ndo C, Kopya E, Menze-Djantio B, Toto JC, Awono-Ambene P, Lycett G, Wondji CS. High susceptibility of wild Anopheles funestus to infection with natural Plasmodium falciparum gametocytes using membrane feeding assays. Parasit Vectors 2016; 9:341. [PMID: 27301693 PMCID: PMC4908716 DOI: 10.1186/s13071-016-1626-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 06/07/2016] [Indexed: 01/15/2023] Open
Abstract
Background Anopheles funestus is a major vector of malaria in sub-Saharan Africa. However, because it is difficult to colonize, research on this mosquito species has lagged behind other vectors, particularly the understanding of its susceptibility and interactions with the Plasmodium parasite. The present study reports one of the first experimental infections of progeny from wild-caught An. funestus with the P. falciparum parasite providing a realistic avenue for the characterisation of immune responses associated with this infection. Methods Wild-fed resting An. funestus females were collected using electric aspirators and kept in cages for four days until they were fully gravid and ready to oviposit. The resulting eggs were reared to adults F1 mosquitoes under insectary conditions. Three to five day-old An. funestus F1 females were fed with infected blood taken from gametocyte carriers using an artificial glass-parafilm feeding system. Feeding rate was recorded and fed mosquitoes were dissected at day 7 to count oocysts in midguts. Parallel experiments were performed with the known Plasmodium-susceptible An. coluzzii Ngousso laboratory strain, to monitor our blood handling procedures and infectivity of gametocytes. Results The results revealed that An. funestus displays high and similar level of susceptibility to Plasmodium infection compared to An. coluzzii, and suggest that our methodology produces robust feeding and infection rates in wild An. funestus progeny. The prevalence of infection in An. funestus mosquitoes was 38.52 % (range 6.25–100 %) and the median oocyst number was 12.5 (range 1–139). In parallel, the prevalence in An. coluzzii was 39.92 % (range 6.85–97.5 %), while the median oocyst number was 32.1 (range 1–351). Conclusions Overall, our observations are in line with the fact that both species are readily infected with P. falciparum, the most common and dangerous malaria parasite in sub-Saharan Africa, and since An. funestus is widespread throughout Africa, malaria vector control research and implementation needs to seriously address this vector species too. Additionally, the present work indicates that it is feasible to generate large number of wild F1 infected An. funestus mosquitoes using membrane feeding assays, which can be used for comprehensive study of interactions with the Plasmodium parasite. Electronic supplementary material The online version of this article (doi:10.1186/s13071-016-1626-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Cyrille Ndo
- Malaria Research Laboratory, Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale (OCEAC), P.O. Box 288, Yaoundé, Cameroon. .,Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK. .,Faculty of Medicine and Pharmaceutical Sciences, University of Douala, P.O. Box 2701, Douala, Cameroon.
| | - Edmond Kopya
- Malaria Research Laboratory, Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale (OCEAC), P.O. Box 288, Yaoundé, Cameroon.,Faculty of Sciences, University of Yaoundé I, P.O. Box 337, Yaoundé, Cameroon
| | - Benjamin Menze-Djantio
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK.,Research Unit Liverpool School of Tropical Medicine, OCEAC, P.O. Box 288, Yaoundé, Cameroon
| | - Jean Claude Toto
- Malaria Research Laboratory, Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale (OCEAC), P.O. Box 288, Yaoundé, Cameroon
| | - Parfait Awono-Ambene
- Malaria Research Laboratory, Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale (OCEAC), P.O. Box 288, Yaoundé, Cameroon
| | - Gareth Lycett
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Charles S Wondji
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK.,Research Unit Liverpool School of Tropical Medicine, OCEAC, P.O. Box 288, Yaoundé, Cameroon
| |
Collapse
|
284
|
Brisco KK, Cornel AJ, Lee Y, Mouatcho J, Braack L. Comparing efficacy of a sweep net and a dip method for collection of mosquito larvae in large bodies of water in South Africa. F1000Res 2016; 5:713. [PMID: 28413606 PMCID: PMC5390499 DOI: 10.12688/f1000research.8351.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/05/2016] [Indexed: 11/20/2022] Open
Abstract
In this study we tested an alternative method for collecting mosquito larvae called the sweep net catch method and compared its efficiency to that of the traditional dip method. The two methods were compared in various water bodies within Kruger National Park and Lapalala Wilderness area, South Africa. The sweep net catch method performed 5 times better in the collection of
Anopheles larvae and equally as well as the dip method in the collection of
Culex larvae (p =8.58 x 10
-5). Based on 15 replicates the collector’s experience level did not play a significant role in the relative numbers of larvae collected using either method. This simple and effective sweep net catch method will greatly improve the mosquito larval sampling capacity in the field setting.
Collapse
Affiliation(s)
- Katherine K Brisco
- Mosquito Control Research Laboratory, Kearney Agricultural Center, Department of Entomology and Nematology, UC Davis, Parlier, CA, USA
| | - Anthony J Cornel
- Mosquito Control Research Laboratory, Kearney Agricultural Center, Department of Entomology and Nematology, UC Davis, Parlier, CA, USA
| | - Yoosook Lee
- Vector Genetics Laboratory, Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, UC Davis, Davis, CA, USA
| | - Joel Mouatcho
- Centre for Sustainable Malaria Control, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Leo Braack
- Centre for Sustainable Malaria Control, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
285
|
Kaindoa EW, Mkandawile G, Ligamba G, Kelly-Hope LA, Okumu FO. Correlations between household occupancy and malaria vector biting risk in rural Tanzanian villages: implications for high-resolution spatial targeting of control interventions. Malar J 2016; 15:199. [PMID: 27067147 PMCID: PMC4828883 DOI: 10.1186/s12936-016-1268-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 04/01/2016] [Indexed: 11/14/2022] Open
Abstract
Background Fine-scale targeting of interventions is increasingly important where epidemiological disease profiles depict high geographical stratifications. This study verified correlations between household biomass and mosquito house-entry using experimental hut studies, and then demonstrated how geographical foci of mosquito biting risk can be readily identified based on spatial distributions of household occupancies in villages. Methods A controlled 4 × 4 Latin square experiment was conducted in rural Tanzania, in which no, one, three or six adult male volunteers slept under intact bed nets, in experimental huts. Mosquitoes entering the huts were caught using exit interception traps on eaves and windows. Separately, monthly mosquito collections were conducted in 96 randomly selected households in three villages using CDC light traps between March-2012 and November-2013. The number of people sleeping in the houses and other household and environmental characteristics were recorded. ArcGIS 10 (ESRI-USA) spatial analyst tool, Gi* Ord Statistic was used to analyse clustering of vector densities and household occupancy. Results The densities of all mosquito genera increased in huts with one, three or six volunteers, relative to huts with no volunteers, and direct linear correlations within tested ranges (P < 0.001). Significant geographical clustering of indoor densities of malaria vectors, Anopheles arabiensis and Anopheles funestus, but not Culex or Mansonia species occurred in locations where households with highest occupancy were also most clustered (Gi* P ≤ 0.05, and Gi* Z-score ≥1.96). Conclusions This study demonstrates strong correlations between household occupancy and malaria vector densities in households, but also spatial correlations of these variables within and between villages in rural southeastern Tanzania. Fine-scale clustering of indoor densities of vectors within and between villages occurs in locations where houses with highest occupancy are also clustered. The study indicates potential for using household census data to preliminarily identify households with greatest Anopheles mosquito biting risk.
Collapse
Affiliation(s)
- Emmanuel W Kaindoa
- Environmental Health and Ecological Sciences Thematic Group, Ifakara Health Institute, Morogoro, Tanzania. .,Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, UK. .,School of Public Health, University of the Witwatersrand, Johannesburg, South Africa.
| | - Gustav Mkandawile
- Environmental Health and Ecological Sciences Thematic Group, Ifakara Health Institute, Morogoro, Tanzania
| | - Godfrey Ligamba
- Environmental Health and Ecological Sciences Thematic Group, Ifakara Health Institute, Morogoro, Tanzania
| | | | - Fredros O Okumu
- Environmental Health and Ecological Sciences Thematic Group, Ifakara Health Institute, Morogoro, Tanzania.,School of Public Health, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
286
|
Das S, Muleba M, Stevenson JC, Norris DE. Habitat Partitioning of Malaria Vectors in Nchelenge District, Zambia. Am J Trop Med Hyg 2016; 94:1234-44. [PMID: 27001755 DOI: 10.4269/ajtmh.15-0735] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 02/07/2016] [Indexed: 11/07/2022] Open
Abstract
Nchelenge District in Luapula Province, northern Zambia, experiences holoendemic malaria despite implementation of vector control programs. The major Anopheles vectors that contribute to Plasmodium falciparum transmission in this area had not previously been well defined. Three collections performed during the 2012 wet and dry seasons and the 2013 wet season revealed Anopheles funestus sensu stricto and Anopheles gambiae sensu stricto as the main vectors, where 80-85% of each collection was composed of An. funestus Both vectors were found to be highly anthropophilic, and An. funestus has higher sporozoite infection rates (SIRs) and entomological inoculation rates (EIRs) year-round compared with An. gambiae: SIRs of 1.8-3.0% and 0-2.5%, respectively, and EIRs of 3.7-41.5 infectious bites per 6-month period (ib/p/6mo) and 0-5.9 ib/p/6mo, respectively. Spatial and temporal changes in each vector's dynamics and bionomics were also observed. Anopheles funestus was the predominant vector in the villages near Kenani Stream in both wet and dry seasons, whereas An. gambiae was found to be the main vector in areas near Lake Mweru during the wet season. The vector data illustrate the need for broader temporal and spatial sampling in Nchelenge and present unique opportunities to further our understanding of malarial transmission and implications for malarial control in high-risk areas.
Collapse
Affiliation(s)
- Smita Das
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland; Tropical Disease Research Centre, Ndola Central Hospital, Ndola, Zambia; Macha Research Trust, Choma, Zambia
| | - Mbanga Muleba
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland; Tropical Disease Research Centre, Ndola Central Hospital, Ndola, Zambia; Macha Research Trust, Choma, Zambia
| | - Jennifer C Stevenson
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland; Tropical Disease Research Centre, Ndola Central Hospital, Ndola, Zambia; Macha Research Trust, Choma, Zambia
| | | | | |
Collapse
|
287
|
Menger DJ, Omusula P, Wouters K, Oketch C, Carreira AS, Durka M, Derycke JL, Loy DE, Hahn BH, Mukabana WR, Mweresa CK, van Loon JJA, Takken W, Hiscox A. Eave Screening and Push-Pull Tactics to Reduce House Entry by Vectors of Malaria. Am J Trop Med Hyg 2016; 94:868-78. [PMID: 26834195 DOI: 10.4269/ajtmh.15-0632] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 10/31/2015] [Indexed: 11/07/2022] Open
Abstract
Long-lasting insecticidal nets and indoor residual spraying have contributed to a decline in malaria over the last decade, but progress is threatened by the development of physiological and behavioral resistance of mosquitoes against insecticides. Acknowledging the need for alternative vector control tools, we quantified the effects of eave screening in combination with a push-pull system based on the simultaneous use of a repellent (push) and attractant-baited traps (pull). Field experiments in western Kenya showed that eave screening, whether used in combination with an attractant-baited trap or not, was highly effective in reducing house entry by malaria mosquitoes. The magnitude of the effect varied for different mosquito species and between two experiments, but the reduction in house entry was always considerable (between 61% and 99%). The use of outdoor, attractant-baited traps alone did not have a significant impact on mosquito house entry but the high number of mosquitoes trapped outdoors indicates that attractant-baited traps could be used for removal trapping, which would enhance outdoor as well as indoor protection against mosquito bites. As eave screening was effective by itself, addition of a repellent was of limited value. Nevertheless, repellents may play a role in reducing outdoor malaria transmission in the peridomestic area.
Collapse
Affiliation(s)
- David J Menger
- Laboratory of Entomology, Wageningen University and Research Centre, Wageningen, The Netherlands; International Centre of Insect Physiology and Ecology, Nairobi, Kenya; Chemical Process Engineering and Forest Products Research Centre, Department of Chemical Engineering, University of Coimbra, Coimbra, Portugal; Devan-Micropolis, Tecmaia-Parque da Ciência e Tecnologia da Maia, Maia, Portugal; Devan Chemicals NV, Ronse, Belgium; Utexbel NV, Ronse, Belgium; Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; School of Biological Sciences, University of Nairobi, Nairobi, Kenya
| | - Philemon Omusula
- Laboratory of Entomology, Wageningen University and Research Centre, Wageningen, The Netherlands; International Centre of Insect Physiology and Ecology, Nairobi, Kenya; Chemical Process Engineering and Forest Products Research Centre, Department of Chemical Engineering, University of Coimbra, Coimbra, Portugal; Devan-Micropolis, Tecmaia-Parque da Ciência e Tecnologia da Maia, Maia, Portugal; Devan Chemicals NV, Ronse, Belgium; Utexbel NV, Ronse, Belgium; Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; School of Biological Sciences, University of Nairobi, Nairobi, Kenya
| | - Karlijn Wouters
- Laboratory of Entomology, Wageningen University and Research Centre, Wageningen, The Netherlands; International Centre of Insect Physiology and Ecology, Nairobi, Kenya; Chemical Process Engineering and Forest Products Research Centre, Department of Chemical Engineering, University of Coimbra, Coimbra, Portugal; Devan-Micropolis, Tecmaia-Parque da Ciência e Tecnologia da Maia, Maia, Portugal; Devan Chemicals NV, Ronse, Belgium; Utexbel NV, Ronse, Belgium; Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; School of Biological Sciences, University of Nairobi, Nairobi, Kenya
| | - Charles Oketch
- Laboratory of Entomology, Wageningen University and Research Centre, Wageningen, The Netherlands; International Centre of Insect Physiology and Ecology, Nairobi, Kenya; Chemical Process Engineering and Forest Products Research Centre, Department of Chemical Engineering, University of Coimbra, Coimbra, Portugal; Devan-Micropolis, Tecmaia-Parque da Ciência e Tecnologia da Maia, Maia, Portugal; Devan Chemicals NV, Ronse, Belgium; Utexbel NV, Ronse, Belgium; Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; School of Biological Sciences, University of Nairobi, Nairobi, Kenya
| | - Ana S Carreira
- Laboratory of Entomology, Wageningen University and Research Centre, Wageningen, The Netherlands; International Centre of Insect Physiology and Ecology, Nairobi, Kenya; Chemical Process Engineering and Forest Products Research Centre, Department of Chemical Engineering, University of Coimbra, Coimbra, Portugal; Devan-Micropolis, Tecmaia-Parque da Ciência e Tecnologia da Maia, Maia, Portugal; Devan Chemicals NV, Ronse, Belgium; Utexbel NV, Ronse, Belgium; Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; School of Biological Sciences, University of Nairobi, Nairobi, Kenya
| | - Maxime Durka
- Laboratory of Entomology, Wageningen University and Research Centre, Wageningen, The Netherlands; International Centre of Insect Physiology and Ecology, Nairobi, Kenya; Chemical Process Engineering and Forest Products Research Centre, Department of Chemical Engineering, University of Coimbra, Coimbra, Portugal; Devan-Micropolis, Tecmaia-Parque da Ciência e Tecnologia da Maia, Maia, Portugal; Devan Chemicals NV, Ronse, Belgium; Utexbel NV, Ronse, Belgium; Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; School of Biological Sciences, University of Nairobi, Nairobi, Kenya
| | - Jean-Luc Derycke
- Laboratory of Entomology, Wageningen University and Research Centre, Wageningen, The Netherlands; International Centre of Insect Physiology and Ecology, Nairobi, Kenya; Chemical Process Engineering and Forest Products Research Centre, Department of Chemical Engineering, University of Coimbra, Coimbra, Portugal; Devan-Micropolis, Tecmaia-Parque da Ciência e Tecnologia da Maia, Maia, Portugal; Devan Chemicals NV, Ronse, Belgium; Utexbel NV, Ronse, Belgium; Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; School of Biological Sciences, University of Nairobi, Nairobi, Kenya
| | - Dorothy E Loy
- Laboratory of Entomology, Wageningen University and Research Centre, Wageningen, The Netherlands; International Centre of Insect Physiology and Ecology, Nairobi, Kenya; Chemical Process Engineering and Forest Products Research Centre, Department of Chemical Engineering, University of Coimbra, Coimbra, Portugal; Devan-Micropolis, Tecmaia-Parque da Ciência e Tecnologia da Maia, Maia, Portugal; Devan Chemicals NV, Ronse, Belgium; Utexbel NV, Ronse, Belgium; Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; School of Biological Sciences, University of Nairobi, Nairobi, Kenya
| | - Beatrice H Hahn
- Laboratory of Entomology, Wageningen University and Research Centre, Wageningen, The Netherlands; International Centre of Insect Physiology and Ecology, Nairobi, Kenya; Chemical Process Engineering and Forest Products Research Centre, Department of Chemical Engineering, University of Coimbra, Coimbra, Portugal; Devan-Micropolis, Tecmaia-Parque da Ciência e Tecnologia da Maia, Maia, Portugal; Devan Chemicals NV, Ronse, Belgium; Utexbel NV, Ronse, Belgium; Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; School of Biological Sciences, University of Nairobi, Nairobi, Kenya
| | - Wolfgang R Mukabana
- Laboratory of Entomology, Wageningen University and Research Centre, Wageningen, The Netherlands; International Centre of Insect Physiology and Ecology, Nairobi, Kenya; Chemical Process Engineering and Forest Products Research Centre, Department of Chemical Engineering, University of Coimbra, Coimbra, Portugal; Devan-Micropolis, Tecmaia-Parque da Ciência e Tecnologia da Maia, Maia, Portugal; Devan Chemicals NV, Ronse, Belgium; Utexbel NV, Ronse, Belgium; Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; School of Biological Sciences, University of Nairobi, Nairobi, Kenya
| | - Collins K Mweresa
- Laboratory of Entomology, Wageningen University and Research Centre, Wageningen, The Netherlands; International Centre of Insect Physiology and Ecology, Nairobi, Kenya; Chemical Process Engineering and Forest Products Research Centre, Department of Chemical Engineering, University of Coimbra, Coimbra, Portugal; Devan-Micropolis, Tecmaia-Parque da Ciência e Tecnologia da Maia, Maia, Portugal; Devan Chemicals NV, Ronse, Belgium; Utexbel NV, Ronse, Belgium; Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; School of Biological Sciences, University of Nairobi, Nairobi, Kenya
| | - Joop J A van Loon
- Laboratory of Entomology, Wageningen University and Research Centre, Wageningen, The Netherlands; International Centre of Insect Physiology and Ecology, Nairobi, Kenya; Chemical Process Engineering and Forest Products Research Centre, Department of Chemical Engineering, University of Coimbra, Coimbra, Portugal; Devan-Micropolis, Tecmaia-Parque da Ciência e Tecnologia da Maia, Maia, Portugal; Devan Chemicals NV, Ronse, Belgium; Utexbel NV, Ronse, Belgium; Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; School of Biological Sciences, University of Nairobi, Nairobi, Kenya
| | - Willem Takken
- Laboratory of Entomology, Wageningen University and Research Centre, Wageningen, The Netherlands; International Centre of Insect Physiology and Ecology, Nairobi, Kenya; Chemical Process Engineering and Forest Products Research Centre, Department of Chemical Engineering, University of Coimbra, Coimbra, Portugal; Devan-Micropolis, Tecmaia-Parque da Ciência e Tecnologia da Maia, Maia, Portugal; Devan Chemicals NV, Ronse, Belgium; Utexbel NV, Ronse, Belgium; Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; School of Biological Sciences, University of Nairobi, Nairobi, Kenya
| | - Alexandra Hiscox
- Laboratory of Entomology, Wageningen University and Research Centre, Wageningen, The Netherlands; International Centre of Insect Physiology and Ecology, Nairobi, Kenya; Chemical Process Engineering and Forest Products Research Centre, Department of Chemical Engineering, University of Coimbra, Coimbra, Portugal; Devan-Micropolis, Tecmaia-Parque da Ciência e Tecnologia da Maia, Maia, Portugal; Devan Chemicals NV, Ronse, Belgium; Utexbel NV, Ronse, Belgium; Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; School of Biological Sciences, University of Nairobi, Nairobi, Kenya
| |
Collapse
|
288
|
Matowo NS, Koekemoer LL, Moore SJ, Mmbando AS, Mapua SA, Coetzee M, Okumu FO. Combining Synthetic Human Odours and Low-Cost Electrocuting Grids to Attract and Kill Outdoor-Biting Mosquitoes: Field and Semi-Field Evaluation of an Improved Mosquito Landing Box. PLoS One 2016; 11:e0145653. [PMID: 26789733 PMCID: PMC4720432 DOI: 10.1371/journal.pone.0145653] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 12/07/2015] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND On-going malaria transmission is increasingly mediated by outdoor-biting vectors, especially where indoor insecticidal interventions such as long-lasting insecticide treated nets (LLINs) are widespread. Often, the vectors are also physiologically resistant to insecticides, presenting major obstacles for elimination. We tested a combination of electrocuting grids with synthetic odours as an alternative killing mechanism against outdoor-biting mosquitoes. METHODS An odour-baited device, the Mosquito Landing Box (MLB), was improved by fitting it with low-cost electrocuting grids to instantly kill mosquitoes attracted to the odour lure, and automated photo switch to activate attractant-dispensing and mosquito-killing systems between dusk and dawn. MLBs fitted with one, two or three electrocuting grids were compared outdoors in a malaria endemic village in Tanzania, where vectors had lost susceptibility to pyrethroids. MLBs with three grids were also tested in a large semi-field cage (9.6 × 9.6 × 4.5m), to assess effects on biting-densities of laboratory-reared Anopheles arabiensis on volunteers sitting near MLBs. RESULTS Significantly more mosquitoes were killed when MLBs had two or three grids, than one grid in wet and dry seasons (P<0.05). The MLBs were highly efficient against Mansonia species and malaria vector, An. arabiensis. Of all mosquitoes, 99% were non-blood fed, suggesting host-seeking status. In the semi-field, the MLBs reduced mean number of malaria mosquitoes attempting to bite humans fourfold. CONCLUSION The improved odour-baited MLBs effectively kill outdoor-biting malaria vector mosquitoes that are behaviourally and physiologically resistant to insecticidal interventions e.g. LLINs. The MLBs reduce human-biting vector densities even when used close to humans, and are insecticide-free, hence potentially antiresistance. The devices could either be used as surveillance tools or complementary mosquito control interventions to accelerate malaria elimination where outdoor transmission is significant.
Collapse
Affiliation(s)
- Nancy S. Matowo
- Environmental and Ecological Sciences Thematic Group, Ifakara Health Institute, Dar es Salaam, Tanzania
- Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Lizette L. Koekemoer
- Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Centre for Opportunistic, Tropical and Hospital Infections, National Institute for Communicable Diseases, Johannesburg, South Africa
| | - Sarah J. Moore
- Environmental and Ecological Sciences Thematic Group, Ifakara Health Institute, Dar es Salaam, Tanzania
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Arnold S. Mmbando
- Environmental and Ecological Sciences Thematic Group, Ifakara Health Institute, Dar es Salaam, Tanzania
| | - Salum A. Mapua
- Environmental and Ecological Sciences Thematic Group, Ifakara Health Institute, Dar es Salaam, Tanzania
| | - Maureen Coetzee
- Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Centre for Opportunistic, Tropical and Hospital Infections, National Institute for Communicable Diseases, Johannesburg, South Africa
| | - Fredros O. Okumu
- Environmental and Ecological Sciences Thematic Group, Ifakara Health Institute, Dar es Salaam, Tanzania
- School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
289
|
St Laurent B, Cooke M, Krishnankutty SM, Asih P, Mueller JD, Kahindi S, Ayoma E, Oriango RM, Thumloup J, Drakeley C, Cox J, Collins FH, Lobo NF, Stevenson JC. Molecular Characterization Reveals Diverse and Unknown Malaria Vectors in the Western Kenyan Highlands. Am J Trop Med Hyg 2016; 94:327-35. [PMID: 26787150 DOI: 10.4269/ajtmh.15-0562] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 11/03/2015] [Indexed: 12/21/2022] Open
Abstract
The success of mosquito-based malaria control is dependent upon susceptible bionomic traits in local malaria vectors. It is crucial to have accurate and reliable methods to determine mosquito species composition in areas subject to malaria. An unexpectedly diverse set of Anopheles species was collected in the western Kenyan highlands, including unidentified and potentially new species carrying the malaria parasite Plasmodium falciparum. This study identified 2,340 anopheline specimens using both ribosomal DNA internal transcribed spacer region 2 and mitochondrial DNA cytochrome oxidase subunit 1 loci. Seventeen distinct sequence groups were identified. Of these, only eight could be molecularly identified through comparison to published and voucher sequences. Of the unidentified species, four were found to carry P. falciparum by circumsporozoite enzyme-linked immunosorbent assay and polymerase chain reaction, the most abundant of which had infection rates comparable to a primary vector in the area, Anopheles funestus. High-quality adult specimens of these unidentified species could not be matched to museum voucher specimens or conclusively identified using multiple keys, suggesting that they may have not been previously described. These unidentified vectors were captured outdoors. Diverse and unknown species have been incriminated in malaria transmission in the western Kenya highlands using molecular identification of unusual morphological variants of field specimens. This study demonstrates the value of using molecular methods to compliment vector identifications and highlights the need for accurate characterization of mosquito species and their associated behaviors for effective malaria control.
Collapse
Affiliation(s)
- Brandyce St Laurent
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana; Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom; Centre for Global Health Research, Kenya Medical Research Institute/Centers for Disease Control and Prevention, Kisumu, Kenya; Western Triangle Research Center, Montana State University, Conrad, Montana; Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Mary Cooke
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana; Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom; Centre for Global Health Research, Kenya Medical Research Institute/Centers for Disease Control and Prevention, Kisumu, Kenya; Western Triangle Research Center, Montana State University, Conrad, Montana; Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Sindhu M Krishnankutty
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana; Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom; Centre for Global Health Research, Kenya Medical Research Institute/Centers for Disease Control and Prevention, Kisumu, Kenya; Western Triangle Research Center, Montana State University, Conrad, Montana; Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Puji Asih
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana; Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom; Centre for Global Health Research, Kenya Medical Research Institute/Centers for Disease Control and Prevention, Kisumu, Kenya; Western Triangle Research Center, Montana State University, Conrad, Montana; Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - John D Mueller
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana; Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom; Centre for Global Health Research, Kenya Medical Research Institute/Centers for Disease Control and Prevention, Kisumu, Kenya; Western Triangle Research Center, Montana State University, Conrad, Montana; Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Samuel Kahindi
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana; Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom; Centre for Global Health Research, Kenya Medical Research Institute/Centers for Disease Control and Prevention, Kisumu, Kenya; Western Triangle Research Center, Montana State University, Conrad, Montana; Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Elizabeth Ayoma
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana; Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom; Centre for Global Health Research, Kenya Medical Research Institute/Centers for Disease Control and Prevention, Kisumu, Kenya; Western Triangle Research Center, Montana State University, Conrad, Montana; Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Robin M Oriango
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana; Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom; Centre for Global Health Research, Kenya Medical Research Institute/Centers for Disease Control and Prevention, Kisumu, Kenya; Western Triangle Research Center, Montana State University, Conrad, Montana; Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Julie Thumloup
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana; Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom; Centre for Global Health Research, Kenya Medical Research Institute/Centers for Disease Control and Prevention, Kisumu, Kenya; Western Triangle Research Center, Montana State University, Conrad, Montana; Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Chris Drakeley
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana; Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom; Centre for Global Health Research, Kenya Medical Research Institute/Centers for Disease Control and Prevention, Kisumu, Kenya; Western Triangle Research Center, Montana State University, Conrad, Montana; Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Jonathan Cox
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana; Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom; Centre for Global Health Research, Kenya Medical Research Institute/Centers for Disease Control and Prevention, Kisumu, Kenya; Western Triangle Research Center, Montana State University, Conrad, Montana; Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Frank H Collins
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana; Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom; Centre for Global Health Research, Kenya Medical Research Institute/Centers for Disease Control and Prevention, Kisumu, Kenya; Western Triangle Research Center, Montana State University, Conrad, Montana; Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Neil F Lobo
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana; Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom; Centre for Global Health Research, Kenya Medical Research Institute/Centers for Disease Control and Prevention, Kisumu, Kenya; Western Triangle Research Center, Montana State University, Conrad, Montana; Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Jennifer C Stevenson
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana; Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom; Centre for Global Health Research, Kenya Medical Research Institute/Centers for Disease Control and Prevention, Kisumu, Kenya; Western Triangle Research Center, Montana State University, Conrad, Montana; Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| |
Collapse
|
290
|
Sande S, Zimba M, Chinwada P, Masendu HT, Mazando S, Makuwaza A. The emergence of insecticide resistance in the major malaria vector Anopheles funestus (Diptera: Culicidae) from sentinel sites in Mutare and Mutasa Districts, Zimbabwe. Malar J 2015; 14:466. [PMID: 26589891 PMCID: PMC4654866 DOI: 10.1186/s12936-015-0993-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 11/05/2015] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Insecticide resistance in major malaria vectors poses severe challenges for stakeholders responsible for controlling the disease. During the 2013/14 season, malaria vector sentinel sites in Mutare and Mutasa Districts, Zimbabwe, experienced high presence of gravid malaria vector mosquitoes resting indoors in recently pyrethroid-sprayed structures. Subsequently, an evaluation of insecticide resistance in Anopheles funestus populations, the major malaria vector, was conducted to better inform the Zimbabwe National Malaria Control Programme. METHODS Indoor-resting mosquitoes were collected in randomly selected pyrethroid-sprayed houses around Burma Valley and Zindi sentinel sites in Mutare and Mutasa Districts, respectively, using prokopac aspirator in February 2014. A. funestus mosquitoes were identified in the field using morphological keys and divided into two cohorts. One cohort was used immediately for WHO susceptibility tests and the other batch was transferred to the National Institute of Health Research insectary in Harare for oviposition. Susceptibility and intensity resistance assays were carried out on polymerase chain reaction-assayed, 3-5 days old, A. funestus s.s. F1 progeny females. RESULTS Eight-hundred and thirty-six A. funestus and seven Anopheles gambiae complex mosquitoes were collected resting inside living structures. Wild caught females showed resistance to lambda-cyhalothrin (3.3% mortality), deltamethrin (12.9% mortality), etofenprox (9.2% mortality), and bendiocarb (11.7% mortality). F1 A. funestus female progeny indicated resistance to deltamethrin (14.5% mortality), lambda-cyhalothrin (6.9% mortality), etofenprox (8.3% mortality), and bendiocarb (16.8% mortality). Wild caught and female progeny were susceptible to DDT and pirimiphos-methyl (100% mortality). Intensity resistance assay to bendiocarb was 100% mortality, while deltamethrin, lambda-cyhalothrin, and etofenprox had increased knockdown times with mortalities ranging between 66.7 and 92.7% after 24-h exposures. CONCLUSION This study is the first report of pyrethroid and carbamate resistance in A. funestus populations from Burma Valley and Zindi areas and indicates a major threat to the gains made in malaria vector control in Zimbabwe. In view of the current extension and intensity of such resistance, there is urgent need to set up a periodic and systematic insecticide resistance-monitoring programme which will form the basis for guiding the selection of insecticides for indoor residual spraying and distribution of pyrethroid-treated mosquito nets.
Collapse
Affiliation(s)
- Shadreck Sande
- Department of Biological Science, University of Zimbabwe, Harare, Zimbabwe.
- Abt Associates Inc., 1 Erskine Road, Mt Pleasant, Harare, Zimbabwe.
| | - Moses Zimba
- Department of Biological Science, University of Zimbabwe, Harare, Zimbabwe.
| | - Peter Chinwada
- Department of Biological Science, University of Zimbabwe, Harare, Zimbabwe.
| | | | - Sungai Mazando
- Department of Biological Science, University of Zimbabwe, Harare, Zimbabwe.
| | - Aramu Makuwaza
- National Institute of Health Research, Causeway, Harare, Zimbabwe.
| |
Collapse
|
291
|
Fabrigar DJ, Hubbart C, Miles A, Rockett K. High-throughput genotyping of Anopheles mosquitoes using intact legs by Agena Biosciences iPLEX. Mol Ecol Resour 2015; 16:480-6. [PMID: 26426152 DOI: 10.1111/1755-0998.12473] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 09/16/2015] [Accepted: 09/25/2015] [Indexed: 11/28/2022]
Abstract
Recent developments in genotyping technologies coupled with the growing desire to characterize genome variation in Anopheles populations open the opportunity to develop more effective genotyping strategies for high-throughput screening. A major bottleneck of this goal is nucleic acid extraction. Here, we examined the feasibility of using intact portions of a mosquito's leg as sources of template DNA for whole-genome amplification (WGA) by primer-extension preamplification. We used the Agena Biosciences MassARRAY(®) platform (formerly Sequenom) to genotype 78 SNPs for 265 WGA leg samples. We performed nucleic acid extraction on 36 mosquito carcasses and compared the genotype call concordance with their corresponding legs and observed full concordance. Using three legs instead of one improved genotyping success rates (96% vs. 89%, respectively), although this difference was not significant. We provide a proof of concept that WGA reactions can be performed directly on mosquito legs, thereby eliminating the need to extract nucleic acid. This approach is straightforward and sensitive and allows both species determination and genotyping of Anopheles mosquitoes to be performed in a high-throughput manner. Our protocol also leaves the mosquito body intact facilitating other experimental analysis to be undertaken on the same sample. Based on our findings, this method would also be suitable for use with other insect species.
Collapse
Affiliation(s)
- Danica Joy Fabrigar
- Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK
| | - Christina Hubbart
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Headington, Oxford, OX3 7BN, UK
| | - Alistair Miles
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Headington, Oxford, OX3 7BN, UK
| | - Kirk Rockett
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Headington, Oxford, OX3 7BN, UK
| |
Collapse
|
292
|
Helinski MEH, Nuwa A, Protopopoff N, Feldman M, Ojuka P, Oguttu DW, Abeku TA, Meek S. Entomological surveillance following a long-lasting insecticidal net universal coverage campaign in Midwestern Uganda. Parasit Vectors 2015; 8:458. [PMID: 26382583 PMCID: PMC4574096 DOI: 10.1186/s13071-015-1060-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 08/27/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND A universal coverage campaign (UCC) with long-lasting insecticidal nets (LLINs) was implemented in four districts in Midwestern Uganda in 2009-2010. Entomological surveys were carried out to monitor changes in vector density, behaviour and malaria transmission following this intervention. METHODS Anopheles mosquitoes were collected using CDC light traps quarterly and human landing catch twice a year in four sites. Collections were done at baseline before the campaign and over a three-year period following the campaign. Plasmodium falciparum circumsporozoite enzyme-linked immunosorbent assays were performed. A subset of anophelines were molecularly identified to species, and kdr L1014S frequencies were determined. RESULTS The prevailing malaria vector in three sites was Anopheles gambiae s.l. (>97 %), with An. funestus s.l. being present in low numbers only. An. gambiae s.s. dominated (> 95 %) over An. arabiensis within A. gambiae s.l. In the remaining site, all three vector species were observed, although their relative densities varied among seasons and years. Vector densities were low in the year following the UCC but increased over time. Vector infectivity was 3.2 % at baseline and 1.8 % three years post-distribution (p = 0.001). The daily entomological inoculation rate (EIR) in 2012 varied between 0.0-0.98 for the different sites compared to a baseline EIR that was between 0.0-5.8 in 2009. There was no indication of a change in indoor feeding times, and both An. gambiae s.l. and An. funestus s.l. continued to feed primarily after midnight with vectors being active until the early morning. Kdr L1014S frequencies were already high at baseline (53-85 %) but increased significantly in all sites over time. CONCLUSIONS The entomological surveys indicate that there was a reduction in transmission intensity coinciding with an increase in use of LLINs and other antimalarial interventions in areas of high malaria transmission. There was no change in feeding behaviour, and human-vector contact occurred indoors and primarily after midnight constantly throughout the study. Although the study was not designed to evaluate the effectiveness of the intervention compared to areas with no such intervention, the reduction in transmission occurred in an area with previously stable malaria, which seems to indicate a substantial contribution of the increased LLIN coverage.
Collapse
Affiliation(s)
- M E H Helinski
- Malaria Consortium, Plot 25, Upper Naguru East Rd, PO Box 8045, Kampala, Uganda.
| | - A Nuwa
- Malaria Consortium, Plot 25, Upper Naguru East Rd, PO Box 8045, Kampala, Uganda.
| | - N Protopopoff
- Malaria Consortium, Plot 25, Upper Naguru East Rd, PO Box 8045, Kampala, Uganda. .,Present affiliation: Department of Disease Control, London School of Hygiene & Tropical Medicine, Keppel Street, London, WC1E 7HT, UK.
| | - M Feldman
- Malaria Consortium, Plot 25, Upper Naguru East Rd, PO Box 8045, Kampala, Uganda. .,Present affiliation: Independent public health consultant, #303, 30 River Walk Gardens, London, SE10 0GA, UK.
| | - P Ojuka
- Vector Control Division, Ministry of Health, P.O. Box 1661, Kampala, Uganda.
| | - D W Oguttu
- Vector Control Division, Ministry of Health, P.O. Box 1661, Kampala, Uganda.
| | - T A Abeku
- Malaria Consortium, Development House, 56-64 Leonard Street, London, EC2A 4LT, UK.
| | - S Meek
- Malaria Consortium, Development House, 56-64 Leonard Street, London, EC2A 4LT, UK.
| |
Collapse
|
293
|
Abílio AP, Marrune P, de Deus N, Mbofana F, Muianga P, Kampango A. Bio-efficacy of new long-lasting insecticide-treated bed nets against Anopheles funestus and Anopheles gambiae from central and northern Mozambique. Malar J 2015; 14:352. [PMID: 26377825 PMCID: PMC4574012 DOI: 10.1186/s12936-015-0885-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 09/03/2015] [Indexed: 11/10/2022] Open
Abstract
Background Long-lasting insecticide-treated nets (LLINs) are one of the main methods used for controlling malaria transmission in Mozambique. The proliferation of several types of LLINs and the re-emergence of insecticide resistance in the local vector populations poses challenges to the local malaria control programme on selecting suitable insecticide-based vector control products. Therefore, this study evaluated the insecticide susceptibility and bio-efficacy of selected new LLINs against wild populations of Anopheles funestus sensu lato and A. gambiae s.l. from Northern and Central Mozambique. The study also investigated whether the insecticide contents on the LINNs fabrics were within the WHOPES recommended target range. Methods The susceptibility of 2–5 day old wild female A. funestus and A. gambiae sensu stricto against the major classes of insecticides used for vector control, viz: deltamethrin (0.05 %), permethrin (0.75 %), propoxur (0.1 %), bendiocarb (0.1 %) and DDT (4 %), was determined using WHO cylinder susceptibility tests. WHO cone bioassays were conducted to determine the bio-efficacy of both pyrethroid–only LLINs (Olyset®, Permanet 2.0®, NetProtect® and Interceptor®) and, Permanet 3.0® a combination LLIN against A. funestus s.s, from Balama, Mocuba and Milange districts, respectively. The bio-efficacy of LLINs against the insectary-susceptible A. arabiensis (Durban strain) was assessed, as well. Untreated bed net swatches were used as negative controls. Chemical analyses, by high performance liquid chromatography, were undertaken to assess whether the insecticide contents on the LLINs fabrics fell within recommended target dose ranges. The frequency of kdr gene mutations was determined from a random sample of A. gambiaes.s. from both WHO susceptibility and cone bioassay experiments. Results Anopheles funestus from Balama district showed resistance to deltamethrin and possible resistance to permethrin, propoxur and bendiocarb, whilst A. gambiae from Mocuba district was susceptible to deltamethrin, bendiocarb and propoxur. There were no kdr mutants found in the sample of 256 A. gambiae tested. Overall, 186 LLIN swatches were tested. Mosquitoes exposed to Olyset® had the lowest knockdown (±standard error) and mortality rate (±standard error) in all studied sites regardless of vectors species tested. Permanet 3.0 showed the highest bio-efficacy independent of vector species tested and level of insecticide resistance detected. All types of LLINs effectively killed susceptible A. arabiensis Durban strain. The insecticide content of Olyset® and Permanet 2.0® was higher than the target dose but NetProtect® had a lower insecticide content than the target dose. Conclusion The study shows evidence of considerable heterogeneity in both insecticide susceptibility and the level of bio-efficacy of commonly available types of LLINs against wild A. funestus and A. gambiae from Balama, Mocuba and Milange districts, located in north and centre of Mozambique. The findings suggest that vector control approaches combining different types of insecticides might help to tackle the apparent problem of pyrethroid resistance in the vector populations from these three sites. Results from bioassays on laboratory-susceptible A. arabiensis strongly suggest that LLINs can offer some protection against susceptible malaria vectors. Electronic supplementary material The online version of this article (doi:10.1186/s12936-015-0885-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ana Paula Abílio
- Laboratório de Entomologia, Instituto Nacional de Saúde (INS), Av. Eduardo Mondlane/Salvador Allende, no 1008, C.P. 246, Maputo, Mozambique.
| | - Pelágio Marrune
- Programa Nacional de Controlo da Malária (PNCM), Direcção Provincial de Saúde de Cabo Delgado, Cabo Delgado Province, Mozambique.
| | - Nilsa de Deus
- Departamento de Pesquisa, Instituto Nacional de Saúde (INS), Av. Eduardo Mondlane/Salvador Allende, no 1008, C.P. 246, Maputo, Mozambique.
| | - Francisco Mbofana
- Direcção Nacional de Saúde Pública (DNSP), Av. Eduardo Mondlane/Salvador Allende, no 1008, C.P. 246, Maputo, Mozambique.
| | - Pedro Muianga
- Abt Associates Inc/AIRS, Zambezia Province, Mozambique.
| | - Ayubo Kampango
- Laboratório de Entomologia, Instituto Nacional de Saúde (INS), Av. Eduardo Mondlane/Salvador Allende, no 1008, C.P. 246, Maputo, Mozambique.
| |
Collapse
|
294
|
Riveron JM, Chiumia M, Menze BD, Barnes KG, Irving H, Ibrahim SS, Weedall GD, Mzilahowa T, Wondji CS. Rise of multiple insecticide resistance in Anopheles funestus in Malawi: a major concern for malaria vector control. Malar J 2015; 14:344. [PMID: 26370361 PMCID: PMC4570681 DOI: 10.1186/s12936-015-0877-y] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 08/28/2015] [Indexed: 11/25/2022] Open
Abstract
Background Deciphering the dynamics and evolution of insecticide resistance in malaria vectors is crucial for successful vector control. This study reports an increase of resistance
intensity and a rise of multiple insecticide resistance in Anopheles funestus in Malawi leading to reduced bed net efficacy. Methods Anopheles funestus group mosquitoes were collected in southern Malawi and the species composition, Plasmodium infection rate, susceptibility to insecticides and molecular bases of the resistance were analysed. Results Mosquito collection revealed a predominance of An. funestus group mosquitoes with a high hybrid rate (12.2 %) suggesting extensive species hybridization. An. funestus sensu stricto was the main Plasmodium vector (4.8 % infection). Consistently high levels of resistance to pyrethroid and carbamate insecticides were recorded and had increased between 2009 and 2014. Furthermore, the 2014 collection exhibited multiple insecticide resistance, notably to DDT, contrary to 2009. Increased pyrethroid resistance correlates with reduced efficacy of bed nets (<5 % mortality by Olyset® net), which can compromise control efforts. This change in resistance dynamics is mirrored by prevalent resistance mechanisms, firstly with increased over-expression of key pyrethroid resistance genes (CYP6Pa/b and CYP6M7) in 2014 and secondly, detection of the A296S-RDL dieldrin resistance mutation for the first time. However, the L119F-GSTe2 and kdr mutations were absent. Conclusions Such increased resistance levels and rise of multiple resistance highlight the need to rapidly implement resistance management strategies to preserve the effectiveness of existing insecticide-based control interventions. Electronic supplementary material The online version of this article (doi:10.1186/s12936-015-0877-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jacob M Riveron
- Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, UK.
| | - Martin Chiumia
- Malaria Alert Centre, College of Medicine, University of Malawi, Blantyre, Malawi.
| | - Benjamin D Menze
- Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, UK. .,Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale, PO Box 288, Yaoundé, Cameroon.
| | - Kayla G Barnes
- Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, UK.
| | - Helen Irving
- Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, UK.
| | - Sulaiman S Ibrahim
- Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, UK.
| | - Gareth D Weedall
- Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, UK.
| | - Themba Mzilahowa
- Malaria Alert Centre, College of Medicine, University of Malawi, Blantyre, Malawi.
| | - Charles S Wondji
- Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, UK.
| |
Collapse
|
295
|
Glunt KD, Abílio AP, Bassat Q, Bulo H, Gilbert AE, Huijben S, Manaca MN, Macete E, Alonso P, Paaijmans KP. Long-lasting insecticidal nets no longer effectively kill the highly resistant Anopheles funestus of southern Mozambique. Malar J 2015; 14:298. [PMID: 26242977 PMCID: PMC4524426 DOI: 10.1186/s12936-015-0807-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 07/10/2015] [Indexed: 11/17/2022] Open
Abstract
Background Chemical insecticides are crucial to malaria control and elimination programmes. The frontline vector control interventions depend mainly on pyrethroids; all long-lasting insecticidal nets (LLINs) and more than 80% of indoor residual spraying (IRS) campaigns use chemicals from this class. This extensive use of pyrethroids imposes a strong selection pressure for resistance in mosquito populations, and so continuous resistance monitoring and evaluation are important. As pyrethroids have also been used for many years in the Manhiça District, an area in southern Mozambique with perennial malaria transmission, an assessment of their efficacy against the local malaria vectors was conducted. Methods Female offspring of wild-caught Anopheles funestus s.s. females were exposed to deltamethrin, lambda-cyhalothrin and permethrin using the World Health Organization (WHO) insecticide-resistance monitoring protocols. The 3-min WHO cone bioassay was used to evaluate the effectiveness of the bed nets distributed or available for purchase in the area (Olyset, permethrin LLIN; PermaNet 2.0, deltamethrin LLIN) against An. funestus. Mosquitoes were also exposed to PermaNet 2.0 for up to 8 h in time-exposure assays. Results Resistance to pyrethroids in An. funestus s.s. was extremely high, much higher than reported in 2002 and 2009. No exposure killed more than 25.8% of the mosquitoes tested (average mortality, deltamethrin: 6.4%; lambda-cyhalothrin: 5.1%; permethrin: 19.1%). There was no significant difference in the mortality generated by 3-min exposure to any net (Olyset: 9.3% mortality, PermaNet 2.0: 6.0%, untreated: 2.0%; p = 0.2). Six hours of exposure were required to kill 50% of the An. funestuss.s. on PermaNet 2.0. Conclusions Anopheles funestus s.s. in Manhiça is extremely resistant to pyrethroids, and this area is clearly a pyrethroid-resistance hotspot. This could severely undermine vector control in this district if no appropriate countermeasures are undertaken. The National Malaria Control Programme (NMCP) of Mozambique is currently improving its resistance monitoring programme, to design and scale up new management strategies. These actions are urgently needed, as the goal of the NMCP and its partners is to reach elimination in southern Mozambique by 2020. Electronic supplementary material The online version of this article (doi:10.1186/s12936-015-0807-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Katey D Glunt
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic, Universitat de Barcelona, Barcelona, Spain.
| | - Ana Paula Abílio
- National Institute of Health (INS), Ministry of Health, Maputo, Mozambique.
| | - Quique Bassat
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic, Universitat de Barcelona, Barcelona, Spain. .,Centro de Investigação em Saúde de Manhiça (CISM), Manhiça, Mozambique.
| | - Helder Bulo
- Centro de Investigação em Saúde de Manhiça (CISM), Manhiça, Mozambique.
| | - Allison E Gilbert
- Vector Control Reference Laboratory, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa.
| | - Silvie Huijben
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic, Universitat de Barcelona, Barcelona, Spain.
| | | | - Eusebio Macete
- Centro de Investigação em Saúde de Manhiça (CISM), Manhiça, Mozambique. .,National Directorate of Public Health, Ministry of Health, Maputo, Mozambique.
| | - Pedro Alonso
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic, Universitat de Barcelona, Barcelona, Spain. .,Centro de Investigação em Saúde de Manhiça (CISM), Manhiça, Mozambique.
| | - Krijn P Paaijmans
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic, Universitat de Barcelona, Barcelona, Spain. .,Centro de Investigação em Saúde de Manhiça (CISM), Manhiça, Mozambique.
| |
Collapse
|
296
|
Kweka EJ, Munga S, Himeidan Y, Githeko AK, Yan G. Assessment of mosquito larval productivity among different land use types for targeted malaria vector control in the western Kenya highlands. Parasit Vectors 2015; 8:356. [PMID: 26142904 PMCID: PMC4491214 DOI: 10.1186/s13071-015-0968-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Accepted: 06/27/2015] [Indexed: 11/10/2022] Open
Abstract
Background Mosquito larval source management (LSM) is likely to be more effective when adequate information such as dominant species, seasonal abundance, type of productive habitat, and land use type are available for targeted sites. LSM has been an effective strategy for reducing malaria morbidity in both urban and rural areas in Africa where sufficient proportions of larval habitats can be targeted. In this study, we conducted longitudinal larval source surveillance in the western Kenya highlands, generating data which can be used to establish cost-effective targeted intervention tools. Methods One hundred and twenty-four (124) positive larval habitats were monitored weekly and sampled for mosquito larvae over the 85-week period from 28 July 2009 to 3 March 2011. Two villages in the western Kenya highlands, Mbale and Iguhu, were included in the study. After preliminary sampling, habitats were classified into four types: hoof prints (n = 21; 17 % of total), swamps (n = 32; 26 %), abandoned goldmines (n = 35; 28 %) and drainage ditches (n = 36; 29 %). Positive habitats occurred in two land use types: farmland (66) and pasture (58). No positive larval habitats occurred in shrub land or forest. Results A total of 46,846 larvae were sampled, of which 44.1 % (20,907) were from abandoned goldmines, 30.9 % (14,469) from drainage ditches, 22.4 % (10,499) from swamps and 2.1 % (971) from hoof prints. In terms of land use types, 57.2 % (26,799) of the sampled larvae were from pasture and 42.8 % (20,047) were from farmland. Of the specimens identified morphologically, 24,583 (52.5 %) were Anopheles gambiae s.l., 11,901 (25.4 %) were Culex quinquefasciatus, 5628 (12 %) were An. funestus s.l. and 4734 (10.1 %) were other anopheline species (An. coustani, An. squamosus, An. ziemanni or An. implexus). Malaria vector dynamics varied seasonally, with An.gambiae s.s. dominating during wet season and An.arabiensis during dry season. An increased proportion of An. arabiensis was observed compared to previous studies. Conclusion These results suggest that long-term monitoring of larval habitats can establish effective surveillance systems and tools. Additionally, the results suggest that larval control is most effective in the dry season due to habitat restriction, with abandoned goldmines, drainage ditches and swamps being the best habitats to target. Both farmland and pasture should be targeted for effective larval control. An increased proportion of An. arabiensis in the An. gambiae complex was noticed in this study for the very first time in the western Kenya highlands; hence, further control tools should be in place for effective control of An. arabiensis.
Collapse
Affiliation(s)
- Eliningaya J Kweka
- Division of Livestock and Human Health Disease Vector Control, Tropical Pesticides Research Institute, P.O. Box 3024, Arusha, Tanzania. .,Department of Medical Parasitology and Entomology, School of Medicine, Catholic University of Health and Allied Sciences, P.O. Box 1464, Mwanza, Tanzania. .,Pan African Mosquito Control Association (PAMCA), P.O. Box 9653, Dar es Salaam, Tanzania.
| | - Stephen Munga
- Centre for Global Health Research, Kenya Medical Research Institute, P.O. Box 1578, Kisumu, Kenya.
| | - Yousif Himeidan
- Pan African Mosquito Control Association (PAMCA), P.O. Box 9653, Dar es Salaam, Tanzania. .,Entomology Unit, Faculty of Agriculture and Natural Resources, University of Kassala, P.O. Box 71, New Halfa, Sudan.
| | - Andrew K Githeko
- Centre for Global Health Research, Kenya Medical Research Institute, P.O. Box 1578, Kisumu, Kenya.
| | - Guyuin Yan
- Program in Public Health, University of California, Irvine, CA, 92697, USA.
| |
Collapse
|
297
|
Norris LC, Norris DE. Phylogeny of anopheline (Diptera: Culicidae) species in southern Africa, based on nuclear and mitochondrial genes. JOURNAL OF VECTOR ECOLOGY : JOURNAL OF THE SOCIETY FOR VECTOR ECOLOGY 2015; 40:16-27. [PMID: 26047180 PMCID: PMC4882763 DOI: 10.1111/jvec.12128] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 09/25/2014] [Indexed: 05/21/2023]
Abstract
A phylogeny of anthropophilic and zoophilic anopheline mosquito species was constructed, using the nuclear internal transcribed spacer 2 (ITS2) and mitochondrial cytochrome oxidase subunit I (COI) genes. The ITS2 alignment, typically difficult due to its noncoding nature and large size variations, was aided by using predicted secondary structure, making this phylogenetically useful gene more amenable to investigation. This phylogeny is unique in explicitly including zoophilic, non-vector anopheline species in order to illustrate their relationships to malaria vectors. Two new, cryptic species, Anopheles funestus-like and Anopheles rivulorum-like, were found to be present in Zambia for the first time. Sequences from the D3 region of the 28S rDNA suggest that the Zambian An. funestus-like may be a hybrid or geographical variant of An. funestus-like, previously reported in Malawi. This is the first report of An. rivulorum-like sympatric with An. rivulorum (Leeson), suggesting that these are separate species rather than geographic variants.
Collapse
Affiliation(s)
- Laura C Norris
- Pathology, Microbiology, and Immunology Department, University of California, Davis, Davis, CA 95616, U.S.A..
| | - Douglas E Norris
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, U.S.A
| |
Collapse
|
298
|
Menger DJ, Omusula P, Holdinga M, Homan T, Carreira AS, Vandendaele P, Derycke JL, Mweresa CK, Mukabana WR, van Loon JJA, Takken W. Field evaluation of a push-pull system to reduce malaria transmission. PLoS One 2015; 10:e0123415. [PMID: 25923114 PMCID: PMC4414508 DOI: 10.1371/journal.pone.0123415] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 02/18/2015] [Indexed: 11/24/2022] Open
Abstract
Malaria continues to place a disease burden on millions of people throughout the tropics, especially in sub-Saharan Africa. Although efforts to control mosquito populations and reduce human-vector contact, such as long-lasting insecticidal nets and indoor residual spraying, have led to significant decreases in malaria incidence, further progress is now threatened by the widespread development of physiological and behavioural insecticide-resistance as well as changes in the composition of vector populations. A mosquito-directed push-pull system based on the simultaneous use of attractive and repellent volatiles offers a complementary tool to existing vector-control methods. In this study, the combination of a trap baited with a five-compound attractant and a strip of net-fabric impregnated with micro-encapsulated repellent and placed in the eaves of houses, was tested in a malaria-endemic village in western Kenya. Using the repellent delta-undecalactone, mosquito house entry was reduced by more than 50%, while the traps caught high numbers of outdoor flying mosquitoes. Model simulations predict that, assuming area-wide coverage, the addition of such a push-pull system to existing prevention efforts will result in up to 20-fold reductions in the entomological inoculation rate. Reductions of such magnitude are also predicted when mosquitoes exhibit a high resistance against insecticides. We conclude that a push-pull system based on non-toxic volatiles provides an important addition to existing strategies for malaria prevention.
Collapse
Affiliation(s)
- David J. Menger
- Laboratory of Entomology, Wageningen University, P.O. Box 8031, 6700 EH, Wageningen, The Netherlands
- * E-mail:
| | - Philemon Omusula
- International Centre of Insect Physiology and Ecology, P.O. Box 30772, GPO Nairobi, Kenya
| | - Maarten Holdinga
- Laboratory of Entomology, Wageningen University, P.O. Box 8031, 6700 EH, Wageningen, The Netherlands
| | - Tobias Homan
- Laboratory of Entomology, Wageningen University, P.O. Box 8031, 6700 EH, Wageningen, The Netherlands
| | - Ana S. Carreira
- CIEPQPF, Department of Chemical Engineering, University of Coimbra, Rua Sílvio Lima, 3030–790, Coimbra, Portugal
- Devan—Micropolis, Tecmaia-Parque da Ciência e Tecnologia da Maia, Rua Eng. Frederico Ulrich, 2650, 4470–605, Maia, Portugal
| | | | | | - Collins K. Mweresa
- Laboratory of Entomology, Wageningen University, P.O. Box 8031, 6700 EH, Wageningen, The Netherlands
- International Centre of Insect Physiology and Ecology, P.O. Box 30772, GPO Nairobi, Kenya
| | - Wolfgang Richard Mukabana
- International Centre of Insect Physiology and Ecology, P.O. Box 30772, GPO Nairobi, Kenya
- School of Biological Sciences, University of Nairobi, P.O. Box 30197–00100, GPO Nairobi, Kenya
| | - Joop J. A. van Loon
- Laboratory of Entomology, Wageningen University, P.O. Box 8031, 6700 EH, Wageningen, The Netherlands
| | - Willem Takken
- Laboratory of Entomology, Wageningen University, P.O. Box 8031, 6700 EH, Wageningen, The Netherlands
| |
Collapse
|
299
|
Busula AO, Takken W, Loy DE, Hahn BH, Mukabana WR, Verhulst NO. Mosquito host preferences affect their response to synthetic and natural odour blends. Malar J 2015; 14:133. [PMID: 25889954 PMCID: PMC4381365 DOI: 10.1186/s12936-015-0635-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 03/01/2015] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND The anthropophilic malaria mosquito Anopheles gambiae sensu stricto (hereafter termed Anopheles gambiae) primarily takes blood meals from humans, whereas its close sibling Anopheles arabiensis is more opportunistic. Previous studies have identified several compounds that play a critical role in the odour-mediated behaviour of An. gambiae. This study determined the effect of natural and synthetic odour blends on mosquitoes with different host preferences to better understand the host-seeking behaviour of mosquitoes and the potential of synthetic odour blends for standardized monitoring. METHODS Odour blends were initially tested for their attractiveness to An. gambiae and An. arabiensis in a semi-field system with MM-X traps baited with natural and synthetic odours. Natural host odours were collected from humans, cows and chickens. The synthetic odour blends consisted of three or five previously identified compounds released with carbon dioxide. These studies were continued under natural conditions where odour blends were tested outdoors to determine their effect on species with different host preferences. RESULTS In the semi-field experiments, human odour attracted significantly higher numbers of both mosquito species. However, An. arabiensis was also attracted to cow and chicken odours, which confirms its opportunistic behaviour. A five-component synthetic blend was highly attractive to both mosquito species. In the field, the synthetic odour blend caught significantly more An. funestus than traps baited with human odour, while no difference was found for An. arabiensis. Catches of An. arabiensis and Culex spp. contained large numbers of blood-fed mosquitoes, mostly from cows, which indicates that these mosquitoes had fed outdoors. CONCLUSIONS Different odour baits elicit varying responses among mosquito species. Synthetic odour blends are highly effective for trapping mosquitoes; however, not all mosquitoes respond equally to the same odour blend. Combining fermenting molasses with synthetic blends in a trap represents the most effective tool to catch blood-fed mosquitoes outside houses, which is essential for understanding outdoor malaria transmission.
Collapse
Affiliation(s)
- Annette O Busula
- International Centre of Insect Physiology and Ecology, PO Box 30772-00100 GPO, Nairobi, Kenya. .,Laboratory of Entomology, Wageningen University, PO Box 8031, 6700 EH, Wageningen, The Netherlands.
| | - Willem Takken
- Laboratory of Entomology, Wageningen University, PO Box 8031, 6700 EH, Wageningen, The Netherlands.
| | - Dorothy E Loy
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, 3610 Hamilton Walk, Philadelphia, PA, 19104-6076, USA.
| | - Beatrice H Hahn
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, 3610 Hamilton Walk, Philadelphia, PA, 19104-6076, USA.
| | - Wolfgang R Mukabana
- International Centre of Insect Physiology and Ecology, PO Box 30772-00100 GPO, Nairobi, Kenya. .,School of Biological Sciences, University of Nairobi, PO Box 30197-00100 GPO, Nairobi, Kenya.
| | - Niels O Verhulst
- Laboratory of Entomology, Wageningen University, PO Box 8031, 6700 EH, Wageningen, The Netherlands.
| |
Collapse
|
300
|
Lindh JM, Okal MN, Herrera-Varela M, Borg-Karlson AK, Torto B, Lindsay SW, Fillinger U. Discovery of an oviposition attractant for gravid malaria vectors of the Anopheles gambiae species complex. Malar J 2015; 14:119. [PMID: 25885703 PMCID: PMC4404675 DOI: 10.1186/s12936-015-0636-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 03/02/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND New strategies are needed to manage malaria vector populations that resist insecticides and bite outdoors. This study describes a breakthrough in developing 'attract and kill' strategies targeting gravid females by identifying and evaluating an oviposition attractant for Anopheles gambiae s.l. METHODS Previously, the authors found that gravid An. gambiae s.s. females were two times more likely to lay eggs in lake water infused for six days with soil from a natural oviposition site in western Kenya compared to lake water alone or to the same but autoclaved infusion. Here, the volatile chemicals released from these substrates were analysed with a gas-chromatograph coupled to a mass-spectrometer (GC-MS). Furthermore, the behavioural responses of gravid females to one of the compounds identified were evaluated in dual choice egg-count bioassays, in dual-choice semi-field experiments with odour-baited traps and in field bioassays. RESULTS One of the soil infusion volatiles was readily identified as the sesquiterpene alcohol cedrol. Its widespread presence in natural aquatic habitats in the study area was confirmed by analysing the chemical headspace of 116 water samples collected from different aquatic sites in the field and was therefore selected for evaluation in oviposition bioassays. Twice as many gravid females were attracted to cedrol-treated water than to water alone in two choice cage bioassays (odds ratio (OR) 1.84; 95% confidence interval (CI) 1.16-2.91) and in experiments conducted in large-screened cages with free-flying mosquitoes (OR 1.92; 95% CI 1.63-2.27). When tested in the field, wild malaria vector females were three times more likely to be collected in the traps baited with cedrol than in the traps containing water alone (OR 3.3; 95% CI 1.4-7.9). CONCLUSION Cedrol is the first compound confirmed as an oviposition attractant for gravid An. gambiae s.l. This finding paves the way for developing new 'attract and kill strategies' for malaria vector control.
Collapse
Affiliation(s)
- Jenny M Lindh
- Department of Chemistry, Royal Institute of Technology, SE-100 44, Stockholm, Sweden.
| | - Michael N Okal
- Disease Control Department, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK.
- Behavioural and Chemical Ecology Department, International Centre of Insect Physiology and Ecology, 00100, Nairobi, Kenya.
| | - Manuela Herrera-Varela
- Disease Control Department, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK.
- Behavioural and Chemical Ecology Department, International Centre of Insect Physiology and Ecology, 00100, Nairobi, Kenya.
| | | | - Baldwyn Torto
- Behavioural and Chemical Ecology Department, International Centre of Insect Physiology and Ecology, 00100, Nairobi, Kenya.
| | - Steven W Lindsay
- School of Biological & Biomedical Sciences, Durham University, Durham, DH1 3LE, UK.
| | - Ulrike Fillinger
- Disease Control Department, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK.
- Behavioural and Chemical Ecology Department, International Centre of Insect Physiology and Ecology, 00100, Nairobi, Kenya.
| |
Collapse
|