3401
|
Koelzer VH, Steuer K, Gross UC, Zimmermann D, Paasinen-Sohns A, Mertz KD, Cathomas G. Colorectal Choriocarcinoma in a Patient with Probable Lynch Syndrome. Front Oncol 2016; 6:252. [PMID: 27965933 PMCID: PMC5126084 DOI: 10.3389/fonc.2016.00252] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Accepted: 11/11/2016] [Indexed: 01/10/2023] Open
Abstract
Background Personalized therapy of colorectal cancer is influenced by morphological, molecular, and host-related factors. Here, we report the comprehensive clinicopathological and molecular analysis of an extra-gestational colorectal choriocarcinoma in a patient with probable Lynch syndrome. Case presentation A 61-year-old female with history of gastric cancer at age 36 presented with a transmurally invasive tumor of the right hemicolon and liver metastasis. A right hemicolectomy was performed. Histopathological analysis showed a mixed trophoblastic and syncytiotrophoblastic differentiation, consistent with choriocarcinoma. Disease progression was rapid under oxaliplatin, capecitabine, irinotecan, and bevacizumab. Molecular phenotyping identified loss of mismatch-repair protein immunostaining for PMS2, microsatellite instability, a lack of MLH1 promoter methylation, and lack of BRAF mutation suggestive of Lynch syndrome. Targeted next-generation sequencing revealed an ataxia telangiectasia mutated (p.P604S) missense mutation. A bleomycin, etoposide, and cisplatin treatment protocol targeting germ cell neoplasia lead to disease remission and prolonged survival of 34 months. Conclusion Comprehensive immunohistochemical and genetic testing is essential to identify uncommon cancers possibly related to Lynch syndrome. For rare tumors, personalized therapeutic approaches should take both molecular and morphological information into account.
Collapse
Affiliation(s)
- Viktor H Koelzer
- Cantonal Hospital Baselland, Institute of Pathology, Liestal, Switzerland; Translational Research Unit (TRU), Institute of Pathology, University of Bern, Bern, Switzerland
| | - Karl Steuer
- Radio Onkologie Allschwil , Allschwil , Switzerland
| | - Ulrike Camenisch Gross
- Division of Diagnostic Molecular Pathology, University Hospital Zürich , Zürich , Switzerland
| | - Dieter Zimmermann
- Division of Diagnostic Molecular Pathology, University Hospital Zürich , Zürich , Switzerland
| | | | - Kirsten D Mertz
- Cantonal Hospital Baselland, Institute of Pathology , Liestal , Switzerland
| | - Gieri Cathomas
- Cantonal Hospital Baselland, Institute of Pathology , Liestal , Switzerland
| |
Collapse
|
3402
|
Bradley CA, Dunne PD, Bingham V, McQuaid S, Khawaja H, Craig S, James J, Moore WL, McArt DG, Lawler M, Dasgupta S, Johnston PG, Van Schaeybroeck S. Transcriptional upregulation of c-MET is associated with invasion and tumor budding in colorectal cancer. Oncotarget 2016; 7:78932-78945. [PMID: 27793046 PMCID: PMC5346688 DOI: 10.18632/oncotarget.12933] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 10/19/2016] [Indexed: 12/12/2022] Open
Abstract
c-MET and its ligand HGF are frequently overexpressed in colorectal cancer (CRC) and increased c-MET levels are found in CRC liver metastases. This study investigated the role of the HGF/c-MET axis in regulating migration/invasion in CRC, using pre-clinical models and clinical samples. Pre-clinically, we found marked upregulation of c-MET at both protein and mRNA levels in several invasive CRC cells. Down-regulation of c-MET using RNAi suppressed migration/invasion of parental and invasive CRC cells. Stimulation of CRC cells with rh-HGF or co-culture with HGF-expressing colonic myofibroblasts, resulted in significant increases in their migratory/invasive capacity. Importantly, HGF-induced c-MET activation promoted rapid downregulation of c-MET protein levels, while the MET transcript remained unaltered. Using RNA in situ hybridization (RNA ISH), we further showed that MET mRNA, but not protein levels, were significantly upregulated in tumor budding foci at the invasive front of a cohort of stage III CRC tumors (p < 0.001). Taken together, we show for the first time that transcriptional upregulation of MET is a key molecular event associated with CRC invasion and tumor budding. This data also indicates that RNA ISH, but not immunohistochemistry, provides a robust methodology to assess MET levels as a potential driving force of CRC tumor invasion and metastasis.
Collapse
Affiliation(s)
- Conor A. Bradley
- Drug Resistance Group, Centre for Cancer Research and Cell Biology, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, UK
| | - Philip D. Dunne
- Drug Resistance Group, Centre for Cancer Research and Cell Biology, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, UK
| | - Victoria Bingham
- Drug Resistance Group, Centre for Cancer Research and Cell Biology, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, UK
| | - Stephen McQuaid
- Drug Resistance Group, Centre for Cancer Research and Cell Biology, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, UK
- Tissue Pathology, Belfast Health and Social Care Trust, Belfast City Hospital, Belfast, UK
| | - Hajrah Khawaja
- Drug Resistance Group, Centre for Cancer Research and Cell Biology, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, UK
| | - Stephanie Craig
- Drug Resistance Group, Centre for Cancer Research and Cell Biology, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, UK
| | - Jackie James
- Drug Resistance Group, Centre for Cancer Research and Cell Biology, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, UK
- Tissue Pathology, Belfast Health and Social Care Trust, Belfast City Hospital, Belfast, UK
| | - Wendy L. Moore
- Drug Resistance Group, Centre for Cancer Research and Cell Biology, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, UK
| | - Darragh G. McArt
- Drug Resistance Group, Centre for Cancer Research and Cell Biology, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, UK
| | - Mark Lawler
- Drug Resistance Group, Centre for Cancer Research and Cell Biology, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, UK
| | - Sonali Dasgupta
- Drug Resistance Group, Centre for Cancer Research and Cell Biology, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, UK
| | - Patrick G. Johnston
- Drug Resistance Group, Centre for Cancer Research and Cell Biology, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, UK
| | - Sandra Van Schaeybroeck
- Drug Resistance Group, Centre for Cancer Research and Cell Biology, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, UK
| |
Collapse
|
3403
|
Kopp HG, Hofheinz RD. Targeted Treatment of Esophagogastric Cancer. Oncol Res Treat 2016; 39:788-794. [PMID: 27889780 DOI: 10.1159/000452877] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 10/27/2016] [Indexed: 11/19/2022]
Abstract
Adenocarcinoma of the esophagogastric junction (EGJ) and stomach remains one of the most common causes of cancer-related death worldwide. Although there is increasing data on the mutational landscape of esophagogastric cancer, phase III trials often yield negative results, and there is a paucity of approved targeted agents. For the time being, the subset of patients carrying HER2-positive metastatic tumors can receive trastuzumab in addition to chemotherapy. Furthermore, ramucirumab has been found to be active both as a single agent and in combination with paclitaxel. Herein, we give an overview of currently approved targeted treatments for locally advanced/resectable as well as unresectable/metastatic EGJ/gastric adenocarcinoma, summarizing the underlying clinical studies. Moreover, further potential targets still under investigation are presented.
Collapse
Affiliation(s)
- Hans-Georg Kopp
- Department of Oncology and Hematology, Eberhard Karls University, Tübingen, Germany
| | | |
Collapse
|
3404
|
Jia D, Liu Z, Deng N, Tan TZ, Huang RYJ, Taylor-Harding B, Cheon DJ, Lawrenson K, Wiedemeyer WR, Walts AE, Karlan BY, Orsulic S. A COL11A1-correlated pan-cancer gene signature of activated fibroblasts for the prioritization of therapeutic targets. Cancer Lett 2016; 382:203-214. [PMID: 27609069 PMCID: PMC5077659 DOI: 10.1016/j.canlet.2016.09.001] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Revised: 08/30/2016] [Accepted: 09/01/2016] [Indexed: 12/18/2022]
Abstract
Although cancer-associated fibroblasts (CAFs) are viewed as a promising therapeutic target, the design of rational therapy has been hampered by two key obstacles. First, attempts to ablate CAFs have resulted in significant toxicity because currently used biomarkers cannot effectively distinguish activated CAFs from non-cancer associated fibroblasts and mesenchymal progenitor cells. Second, it is unclear whether CAFs in different organs have different molecular and functional properties that necessitate organ-specific therapeutic designs. Our analyses uncovered COL11A1 as a highly specific biomarker of activated CAFs. Using COL11A1 as a 'seed', we identified co-expressed genes in 13 types of primary carcinoma in The Cancer Genome Atlas. We demonstrated that a molecular signature of activated CAFs is conserved in epithelial cancers regardless of organ site and transforming events within cancer cells, suggesting that targeting fibroblast activation should be effective in multiple cancers. We prioritized several potential pan-cancer therapeutic targets that are likely to have high specificity for activated CAFs and minimal toxicity in normal tissues.
Collapse
MESH Headings
- Actins/metabolism
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Cancer-Associated Fibroblasts/metabolism
- Cancer-Associated Fibroblasts/pathology
- Carcinoma, Ovarian Epithelial
- Cell Line, Tumor
- Coculture Techniques
- Collagen Type I/genetics
- Collagen Type I/metabolism
- Collagen Type I, alpha 1 Chain
- Databases, Genetic
- Disease-Free Survival
- Gene Expression Profiling/methods
- Gene Expression Regulation, Neoplastic
- Humans
- Kaplan-Meier Estimate
- Myofibroblasts/metabolism
- Myofibroblasts/pathology
- Neoplasm Grading
- Neoplasm Staging
- Neoplasms, Glandular and Epithelial/genetics
- Neoplasms, Glandular and Epithelial/metabolism
- Neoplasms, Glandular and Epithelial/pathology
- Neoplasms, Glandular and Epithelial/therapy
- Ovarian Neoplasms/genetics
- Ovarian Neoplasms/metabolism
- Ovarian Neoplasms/pathology
- Ovarian Neoplasms/therapy
- Time Factors
- Transcriptome
- Tumor Microenvironment
Collapse
Affiliation(s)
- Dongyu Jia
- Women's Cancer Program, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Zhenqiu Liu
- Biostatistics and Bioinformatics Research Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Nan Deng
- Biostatistics and Bioinformatics Research Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Tuan Zea Tan
- Cancer Science Institute of Singapore, Center for Translational Medicine, National University of Singapore, Singapore
| | - Ruby Yun-Ju Huang
- Cancer Science Institute of Singapore, Center for Translational Medicine, National University of Singapore, Singapore
| | - Barbie Taylor-Harding
- Women's Cancer Program, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Dong-Joo Cheon
- Center for Cell Biology and Cancer Research, Albany Medical College, Albany, NY, USA
| | - Kate Lawrenson
- Women's Cancer Program, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Wolf R Wiedemeyer
- Women's Cancer Program, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Ann E Walts
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Beth Y Karlan
- Women's Cancer Program, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA
| | - Sandra Orsulic
- Women's Cancer Program, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
3405
|
Alex AK, Siqueira S, Coudry R, Santos J, Alves M, Hoff PM, Riechelmann RP. Response to Chemotherapy and Prognosis in Metastatic Colorectal Cancer With DNA Deficient Mismatch Repair. Clin Colorectal Cancer 2016; 16:228-239. [PMID: 28063788 DOI: 10.1016/j.clcc.2016.11.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 10/01/2016] [Accepted: 11/14/2016] [Indexed: 01/28/2023]
Abstract
BACKGROUND DNA deficient mismatch repair (dMMR) genes are associated with microsatellite instability and good prognosis in early-stage colorectal cancer (CRC). However dMMR is rare in metastatic CRC (mCRC) and little is known about its influence on treatment response rate (RR). The primary objective of this study was to compare the RR of patients with mCRC according to dMMR status. METHODS This was a retrospective study that compared the RR by Response Evaluation Criteria In Solid Tumors 1.1 criteria in patients with mCRC treated with chemotherapy according to dMMR status. All digital images were retrieved for RR evaluation by a single radiologist blinded to dMMR results. dMMR was defined as loss of immunohistochemistry expression of at least 1 of the MMR genes (MLH1, MSH2, MSH6, or PMS2). Cases were dMMR patients, and controls were proficient MMR (pMMR) patients (1:2 fashion). Based on clinical and molecular features, dMMR patients were classified as probable Lynch or sporadic. RESULTS From January 2009 to January 2013, 762 out of 1270 patients were eligible and screened for dMMR: n = 27 (3.5%) had dMMR mCRC and n = 735 (96.5%) had pMMR mCRC. Given the rarity, 14 dMMR cases outside the inclusion period were included (total 41 dMMR cases) and 84 controls (pMMR). By intention-to-treat analysis, considering all patients who received at least 1 dose of oxaliplatin-based chemotherapy (N dMMR = 34), those with dMMR had lower RR compared with those with pMMR (RR, 11.7% vs. 28.6%; odds ratio, 0.33; 95% confidence interval, 0.08-1.40; P = .088); patients with probable Lynch-related mCRC presented higher RR than subjects with probable sporadic dMMR (22.2% vs. 0%). dMMR was associated with BRAF mutations and poor prognosis, particularly in the sporadic subgroup (median survival, 29.8 vs. 5.9 months; P = .025). CONCLUSION This study suggests that the dMMR phenotype is predictive of resistance to oxaliplatin-based chemotherapy. Apparently, such resistance is more pronounced in the sporadic dMMR phenotype, suggesting biological heterogeneity within the dMMR mCRC subgroup.
Collapse
Affiliation(s)
- Alexandra Khichfy Alex
- Instituto do Câncer do Estado de São Paulo (ICESP), Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Sheila Siqueira
- Instituto do Câncer do Estado de São Paulo (ICESP), Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Renata Coudry
- Instituto do Câncer do Estado de São Paulo (ICESP), Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Juliana Santos
- Instituto do Câncer do Estado de São Paulo (ICESP), Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Michel Alves
- Instituto do Câncer do Estado de São Paulo (ICESP), Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Paulo M Hoff
- Instituto do Câncer do Estado de São Paulo (ICESP), Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Rachel P Riechelmann
- Instituto do Câncer do Estado de São Paulo (ICESP), Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil.
| |
Collapse
|
3406
|
Dietel M. Molecular Pathology: A Requirement for Precision Medicine in Cancer. Oncol Res Treat 2016; 39:804-810. [PMID: 27889782 DOI: 10.1159/000453085] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 11/07/2016] [Indexed: 12/26/2022]
Abstract
The increasing importance of targeting drugs and check-point inhibitors in the treatment of several tumor entities (breast, colon, lung, malignant melanoma, lymphoma, etc.) and the necessity of a companion diagnostic (HER2, (pan)RAS, EGFR, ALK, BRAF, ROS1, MET, PD-L1, etc.) is leading to new challenges for surgical pathology. Since almost all the biomarkers to be specifically detected are tissue based, a precise and reliable diagnostic is absolutely crucial. To meet this challenge surgical pathology has adapted a number of molecular methods (semi-quantitative immunohistochemistry, fluorescence in situ hybridization, PCR and its multiple variants, (pyro/Sanger) sequencing, next generation sequencing (amplicon, whole exome, whole genome), DNA arrays, methylation analyses, etc.) to be applicable for formalin-fixed paraffin-embedded tissue. Reading a patient's tissue as 'deeply' as possible and obtaining information on the morphological, genetic, proteomic and epigenetic background are the tasks of pathologists and molecular biologists and provide the clinicians with information relevant for precision medicine. Intensified cooperation between clinicians and pathologists will provide the basis of improved clinical drug selection and guide development of new cancer gene therapies and molecularly targeted drugs by research units and the pharmaceutical industry.
Collapse
Affiliation(s)
- Manfred Dietel
- Institute of Pathology, Charité, University Medicine Berlin, Berlin, Germany
| |
Collapse
|
3407
|
Solinas C, Pusole G, Demurtas L, Puzzoni M, Mascia R, Morgan G, Giampieri R, Scartozzi M. Tumor infiltrating lymphocytes in gastrointestinal tumors: Controversies and future clinical implications. Crit Rev Oncol Hematol 2016; 110:106-116. [PMID: 28109400 DOI: 10.1016/j.critrevonc.2016.11.016] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 11/06/2016] [Accepted: 11/23/2016] [Indexed: 02/08/2023] Open
Abstract
Chronic inflammation following infections, autoimmune diseases or exposure to environmental irritants plays a crucial role in tumor development and influences the host immune response to neoplastic cells. The presence of an anti-tumor immune infiltrate is often associated with better outcomes in gastro-intestinal primary cancers, particularly in those with high microsatellite instability (MSI-H). Immunotherapeutic drugs inhibiting the PD-1 and PD-L1 pathway showed promising results in the treatment of these patients in the metastatic setting. The aim of this review is to resume the role tumor infiltrating lymphocytes (TILs) play in gastrointestinal tumors, underlining their potential value as a prognostic and predictive biomarker. TILs assessment could identify subsets of patients with high extent of TILs and better prognosis, that could be spared from adjuvant systemic treatments. Immune infiltration parameters might be additional predictors of a greater benefit from the immunotherapy with the immune checkpoint blockade.
Collapse
Affiliation(s)
- Cinzia Solinas
- Molecular Immunology Unit, Institut Jules Bordet and Université Libre de Bruxelles, Boulevard de Waterloo, 127 1000 Brussels, Belgium.
| | - Grazia Pusole
- Medical Oncology, University of Cagliari, Policlinico Universitario ss 554 bivio Sestu km 4.5, Monserrato, CA, Italy.
| | - Laura Demurtas
- Medical Oncology, University of Cagliari, Policlinico Universitario ss 554 bivio Sestu km 4.5, Monserrato, CA, Italy.
| | - Marco Puzzoni
- Medical Oncology, University of Cagliari, Policlinico Universitario ss 554 bivio Sestu km 4.5, Monserrato, CA, Italy.
| | - Roberta Mascia
- Medical Oncology, University of Cagliari, Policlinico Universitario ss 554 bivio Sestu km 4.5, Monserrato, CA, Italy.
| | | | | | - Mario Scartozzi
- Medical Oncology, University of Cagliari, Policlinico Universitario ss 554 bivio Sestu km 4.5, Monserrato, CA, Italy.
| |
Collapse
|
3408
|
Expression profiling of budding cells in colorectal cancer reveals an EMT-like phenotype and molecular subtype switching. Br J Cancer 2016; 116:58-65. [PMID: 27884016 PMCID: PMC5220148 DOI: 10.1038/bjc.2016.382] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 09/18/2016] [Accepted: 10/21/2016] [Indexed: 12/23/2022] Open
Abstract
Background: Tumour budding, described as the presence of single cells or small clusters of up to five tumour cells at the invasive margin, is established as a prognostic marker in colorectal carcinoma. In the present study, we aimed to investigate the molecular signature of tumour budding cells and the corresponding tumour bulk. Methods: Tumour bulk and budding areas were microdissected and processed for RNA-sequencing. As little RNA was obtained from budding cells, a special low-input mRNA library preparation protocol was used. Gene expression profiles of budding as compared with tumour bulk were investigated for established EMT signatures, consensus molecular subtype (CMS), gene set enrichment and pathway analysis. Results: A total of 296 genes were differentially expressed with an FDR <0.05 and a twofold change between tumour bulk and budding regions. Genes that were upregulated in the budding signature were mainly involved in cell migration and survival while downregulated genes were important for cell proliferation. Supervised clustering according to an established EMT gene signature categorised budding regions as EMT-positive, whereas tumour bulk was considered EMT-negative. Furthermore, a shift from CMS2 (epithelial) to CMS4 (mesenchymal) was observed as tumour cells transit from the tumour bulk to the budding regions. Conclusions: Tumour budding regions are characterised by a phenotype switch compared with the tumour bulk, involving the acquisition of migratory characteristics and a decrease in cell proliferation. In particular, most tumour budding signatures were EMT-positive and switched from an epithelial subtype (CMS2) in the tumour bulk to a mesenchymal subtype (CMS4) in budding cells.
Collapse
|
3409
|
Colangelo T, Polcaro G, Muccillo L, D'Agostino G, Rosato V, Ziccardi P, Lupo A, Mazzoccoli G, Sabatino L, Colantuoni V. Friend or foe? The tumour microenvironment dilemma in colorectal cancer. Biochim Biophys Acta Rev Cancer 2016; 1867:1-18. [PMID: 27864070 DOI: 10.1016/j.bbcan.2016.11.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 10/21/2016] [Accepted: 11/14/2016] [Indexed: 12/13/2022]
Abstract
The network of bidirectional homotypic and heterotypic interactions established among parenchymal tumour cells and surrounding mesenchymal stromal cells generates the tumour microenvironment (TME). These intricate crosstalks elicit both beneficial and adverse effects on tumour initiation and progression unbalancing the signals and responses from the neighbouring cells. Here, we highlight the structure, activities and evolution of TME cells considering a novel colorectal cancer (CRC) classification based on differential stromal composition and gene expression profiles. In this scenario, we scrutinise the molecular pathways that either change or become corrupted during CRC development and their relative prognostic value. Finally, we survey the therapeutic molecules directed against TME components currently available in clinical trials as well as those with stronger potential in preclinical studies. Elucidation of dynamic variations in the CRC TME cell composition and their relative contribution could provide novel diagnostic or prognostic biomarkers and allow more personalised therapeutic strategies.
Collapse
Affiliation(s)
- Tommaso Colangelo
- Department of Sciences and Technologies, University of Sannio, 82100 Benevento, Italy; present address: Institute for Stem-cell Biology, Regenerative Medicine and Innovative Therapies (ISBReMIT), Casa Sollievo della Sofferenza-IRCCS, 71013 San Giovanni Rotondo (FG), Italy
| | - Giovanna Polcaro
- Department of Sciences and Technologies, University of Sannio, 82100 Benevento, Italy
| | - Livio Muccillo
- Department of Sciences and Technologies, University of Sannio, 82100 Benevento, Italy
| | - Giovanna D'Agostino
- Department of Sciences and Technologies, University of Sannio, 82100 Benevento, Italy
| | - Valeria Rosato
- Department of Sciences and Technologies, University of Sannio, 82100 Benevento, Italy
| | - Pamela Ziccardi
- Department of Sciences and Technologies, University of Sannio, 82100 Benevento, Italy
| | - Angelo Lupo
- Department of Sciences and Technologies, University of Sannio, 82100 Benevento, Italy
| | - Gianluigi Mazzoccoli
- Department of Medical Sciences, Division of Internal Medicine and Chronobiology Unit, IRCCS Scientific Institute and Regional General Hospital "Casa Sollievo della Sofferenza", 71013 San Giovanni Rotondo (FG), Italy
| | - Lina Sabatino
- Department of Sciences and Technologies, University of Sannio, 82100 Benevento, Italy.
| | - Vittorio Colantuoni
- Department of Sciences and Technologies, University of Sannio, 82100 Benevento, Italy.
| |
Collapse
|
3410
|
Sztupinszki Z, Győrffy B. Colon cancer subtypes: concordance, effect on survival and selection of the most representative preclinical models. Sci Rep 2016; 6:37169. [PMID: 27849044 PMCID: PMC5111107 DOI: 10.1038/srep37169] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 10/25/2016] [Indexed: 12/12/2022] Open
Abstract
Multiple gene-expression-based subtypes have been proposed for the molecular subdivision of colon cancer in the last decade. We aimed to cross-validate these classifiers to explore their concordance and their power to predict survival. A gene-chip-based database comprising 2,166 samples from 12 independent datasets was set up. A total of 22 different molecular subtypes were re-trained including the CCHS, CIN25, CMS, ColoGuideEx, ColoGuidePro, CRCassigner, MDA114, Meta163, ODXcolon, Oncodefender, TCA19, and V7RHS classifiers as well as subtypes established by Budinska, Chang, DeSousa, Marisa, Merlos, Popovici, Schetter, Yuen, and Watanabe (first authors). Correlation with survival was assessed by Cox proportional hazards regression for each classifier using relapse-free survival data. The highest efficacy at predicting survival in stage 2-3 patients was achieved by Yuen (p = 3.9e-05, HR = 2.9), Marisa (p = 2.6e-05, HR = 2.6) and Chang (p = 9e-09, HR = 2.35). Finally, 61 colon cancer cell lines from four independent studies were assigned to the closest molecular subtype.
Collapse
Affiliation(s)
- Zsófia Sztupinszki
- MTA TTK Lendület Cancer Biomarker Research Group, 1117, Budapest, Hungary
- 2 Dept. of Pediatrics, Semmelweis University, 1094, Budapest, Hungary
| | - Balázs Győrffy
- MTA TTK Lendület Cancer Biomarker Research Group, 1117, Budapest, Hungary
- 2 Dept. of Pediatrics, Semmelweis University, 1094, Budapest, Hungary
| |
Collapse
|
3411
|
Verissimo CS, Overmeer RM, Ponsioen B, Drost J, Mertens S, Verlaan-Klink I, Gerwen BV, van der Ven M, Wetering MVD, Egan DA, Bernards R, Clevers H, Bos JL, Snippert HJ. Targeting mutant RAS in patient-derived colorectal cancer organoids by combinatorial drug screening. eLife 2016; 5. [PMID: 27845624 PMCID: PMC5127645 DOI: 10.7554/elife.18489] [Citation(s) in RCA: 188] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Accepted: 11/14/2016] [Indexed: 12/17/2022] Open
Abstract
Colorectal cancer (CRC) organoids can be derived from almost all CRC patients and therefore capture the genetic diversity of this disease. We assembled a panel of CRC organoids carrying either wild-type or mutant RAS, as well as normal organoids and tumor organoids with a CRISPR-introduced oncogenic KRAS mutation. Using this panel, we evaluated RAS pathway inhibitors and drug combinations that are currently in clinical trial for RAS mutant cancers. Presence of mutant RAS correlated strongly with resistance to these targeted therapies. This was observed in tumorigenic as well as in normal organoids. Moreover, dual inhibition of the EGFR-MEK-ERK pathway in RAS mutant organoids induced a transient cell-cycle arrest rather than cell death. In vivo drug response of xenotransplanted RAS mutant organoids confirmed this growth arrest upon pan-HER/MEK combination therapy. Altogether, our studies demonstrate the potential of patient-derived CRC organoid libraries in evaluating inhibitors and drug combinations in a preclinical setting.
Collapse
Affiliation(s)
- Carla S Verissimo
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, Netherlands.,Cancer Genomics Netherlands, Utrecht, Netherlands
| | - René M Overmeer
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, Netherlands.,Cancer Genomics Netherlands, Utrecht, Netherlands
| | - Bas Ponsioen
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, Netherlands.,Cancer Genomics Netherlands, Utrecht, Netherlands
| | - Jarno Drost
- Cancer Genomics Netherlands, Utrecht, Netherlands.,Hubrecht Institute - KNAW, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Sander Mertens
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, Netherlands.,Cancer Genomics Netherlands, Utrecht, Netherlands
| | - Ingrid Verlaan-Klink
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, Netherlands.,Cancer Genomics Netherlands, Utrecht, Netherlands
| | - Bastiaan van Gerwen
- Mouse Clinic for Cancer and Aging, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Marieke van der Ven
- Mouse Clinic for Cancer and Aging, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Marc van de Wetering
- Cancer Genomics Netherlands, Utrecht, Netherlands.,Hubrecht Institute - KNAW, University Medical Center Utrecht, Utrecht, The Netherlands
| | - David A Egan
- Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - René Bernards
- Cancer Genomics Netherlands, Utrecht, Netherlands.,Division of Molecular Carcinogenesis, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Hans Clevers
- Cancer Genomics Netherlands, Utrecht, Netherlands.,Hubrecht Institute - KNAW, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Johannes L Bos
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, Netherlands.,Cancer Genomics Netherlands, Utrecht, Netherlands
| | - Hugo J Snippert
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, Netherlands.,Cancer Genomics Netherlands, Utrecht, Netherlands
| |
Collapse
|
3412
|
Domingo E, Freeman-Mills L, Rayner E, Glaire M, Briggs S, Vermeulen L, Fessler E, Medema JP, Boot A, Morreau H, van Wezel T, Liefers GJ, Lothe RA, Danielsen SA, Sveen A, Nesbakken A, Zlobec I, Lugli A, Koelzer VH, Berger MD, Castellví-Bel S, Muñoz J, de Bruyn M, Nijman HW, Novelli M, Lawson K, Oukrif D, Frangou E, Dutton P, Tejpar S, Delorenzi M, Kerr R, Kerr D, Tomlinson I, Church DN. Somatic POLE proofreading domain mutation, immune response, and prognosis in colorectal cancer: a retrospective, pooled biomarker study. Lancet Gastroenterol Hepatol 2016; 1:207-216. [PMID: 28404093 DOI: 10.1016/s2468-1253(16)30014-0] [Citation(s) in RCA: 235] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 05/26/2016] [Accepted: 05/31/2016] [Indexed: 12/16/2022]
Abstract
BACKGROUND Precision cancer medicine depends on defining distinct tumour subgroups using biomarkers that may occur at very modest frequencies. One such subgroup comprises patients with exceptionally mutated (ultramutated) cancers caused by mutations that impair DNA polymerase epsilon (POLE) proofreading. METHODS We examined the association of POLE proofreading domain mutation with clinicopathological variables and immune response in colorectal cancers from clinical trials (VICTOR, QUASAR2, and PETACC-3) and colorectal cancer cohorts (Leiden University Medical Centre 1 and 2, Oslo 1 and 2, Bern, AMC-AJCC-II, and Epicolon-1). We subsequently investigated its association with prognosis in stage II/III colorectal cancer by Cox regression of pooled individual patient data from more than 4500 cases from these studies. FINDINGS Pathogenic somatic POLE mutations were detected in 66 (1·0%) of 6517 colorectal cancers, and were mutually exclusive with mismatch repair deficiency (MMR-D) in the 6277 cases for whom both markers were determined (none of 66 vs 833 [13·4%] of 6211; p<0·0001). Compared with cases with wild-type POLE, cases with POLE mutations were younger at diagnosis (median 54·5 years vs 67·2 years; p<0·0001), were more frequently male (50 [75·8%] of 66 vs 3577 [55·5%] of 6445; p=0·0010), more frequently had right-sided tumour location (44 [68·8%] of 64 vs 2463 [39·8%] of 6193; p<0·0001), and were diagnosed at an earlier disease stage (p=0·006, χ2 test for trend). Compared with mismatch repair proficient (MMR-P) POLE wild-type tumours, POLE-mutant colorectal cancers displayed increased CD8+ lymphocyte infiltration and expression of cytotoxic T-cell markers and effector cytokines, similar in extent to that observed in immunogenic MMR-D cancers. Both POLE mutation and MMR-D were associated with significantly reduced risk of recurrence compared with MMR-P colorectal cancers in multivariable analysis (HR 0·34 [95% CI 0·11-0·76]; p=0·0060 and 0·72 [0·60-0·87]; p=0·00035), although the difference between the groups was not significant. INTERPRETATION POLE proofreading domain mutations identify a subset of immunogenic colorectal cancers with excellent prognosis. This association underscores the importance of rare biomarkers in precision cancer medicine, but also raises important questions about how to identify and implement them in practice. FUNDING Cancer Research UK, Academy of Medical Sciences, Health Foundation, EU, ERC, NIHR, Wellcome Trust, Dutch Cancer Society, Dutch Digestive Foundation.
Collapse
Affiliation(s)
- Enric Domingo
- Molecular and Population Genetics Laboratory, University of Oxford, Oxford, UK; Oxford Centre for Cancer Gene Research and NIHR Comprehensive Biomedical Research Centre, The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK; Department of Oncology, University of Oxford, Oxford, UK
| | - Luke Freeman-Mills
- Molecular and Population Genetics Laboratory, University of Oxford, Oxford, UK
| | - Emily Rayner
- Molecular and Population Genetics Laboratory, University of Oxford, Oxford, UK
| | - Mark Glaire
- Cancer Genomics and Immunology Group, University of Oxford, Oxford, UK
| | - Sarah Briggs
- Molecular and Population Genetics Laboratory, University of Oxford, Oxford, UK
| | - Louis Vermeulen
- Academic Medical Center Amsterdam, Center for Experimental Molecular Medicine, Amsterdam, Netherlands
| | - Evelyn Fessler
- Academic Medical Center Amsterdam, Center for Experimental Molecular Medicine, Amsterdam, Netherlands
| | - Jan Paul Medema
- Academic Medical Center Amsterdam, Center for Experimental Molecular Medicine, Amsterdam, Netherlands
| | - Arnoud Boot
- Department of Pathology, Leiden, Netherlands
| | | | | | | | - Ragnhild A Lothe
- K G Jebsen Colorectal Cancer Research Centre, Oslo, Norway; Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Stine A Danielsen
- K G Jebsen Colorectal Cancer Research Centre, Oslo, Norway; Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Anita Sveen
- K G Jebsen Colorectal Cancer Research Centre, Oslo, Norway; Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Arild Nesbakken
- K G Jebsen Colorectal Cancer Research Centre, Oslo, Norway; Department of Gastrointestinal Surgery, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Inti Zlobec
- Institute of Pathology, University of Bern, Bern, Switzerland
| | | | - Viktor H Koelzer
- Molecular and Population Genetics Laboratory, University of Oxford, Oxford, UK; Institute of Pathology, University of Bern, Bern, Switzerland
| | - Martin D Berger
- Department of Medical Oncology, University Hospital of Bern, Bern, Switzerland
| | - Sergi Castellví-Bel
- Gastroenterology Department, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), University of Barcelona, Barcelona, Spain
| | - Jenifer Muñoz
- Gastroenterology Department, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), University of Barcelona, Barcelona, Spain
| | - Marco de Bruyn
- Department of Obstetrics and Gynecology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Hans W Nijman
- Department of Obstetrics and Gynecology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | | | - Kay Lawson
- Department of Histopathology, UCL, London, UK
| | | | - Eleni Frangou
- Centre for Statistics in Medicine, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Peter Dutton
- Centre for Statistics in Medicine, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Sabine Tejpar
- Department of Molecular Digestive Oncology, University of Leuven, Leuven, Belgium
| | - Mauro Delorenzi
- Ludwig Center for Cancer Research, University of Lausanne, Epalinges, Switzerland; Department of Oncology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland; SIB Swiss Institute Bioinformatics, Lausanne, Switzerland
| | - Rachel Kerr
- Department of Oncology, University of Oxford, Oxford, UK; Oxford Cancer Centre, Churchill Hospital, Oxford Radcliffe Hospitals NHS Trust, University of Oxford, Oxford, UK
| | - David Kerr
- Oxford Cancer Centre, Churchill Hospital, Oxford Radcliffe Hospitals NHS Trust, University of Oxford, Oxford, UK; Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Ian Tomlinson
- Molecular and Population Genetics Laboratory, University of Oxford, Oxford, UK; Oxford Centre for Cancer Gene Research and NIHR Comprehensive Biomedical Research Centre, The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - David N Church
- Cancer Genomics and Immunology Group, University of Oxford, Oxford, UK; Oxford Cancer Centre, Churchill Hospital, Oxford Radcliffe Hospitals NHS Trust, University of Oxford, Oxford, UK.
| |
Collapse
|
3413
|
Shi W, Ye Z, Zhuang L, Li Y, Shuai W, Zuo Z, Mao X, Liu R, Wu J, Chen S, Huang W. Olfactomedin 1 negatively regulates NF-κB signalling and suppresses the growth and metastasis of colorectal cancer cells. J Pathol 2016; 240:352-365. [PMID: 27555280 DOI: 10.1002/path.4784] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 08/02/2016] [Accepted: 08/18/2016] [Indexed: 01/05/2023]
Abstract
Uncontrolled growth and distant metastasis are hallmarks of colorectal cancer (CRC), but the mechanisms are poorly understood. Olfactomedin 1 (OLFM1), a member of the olfactomedin domain-containing protein family, plays an important role in the development of neurogenic tissues. Recently, OLFM1 deregulation was frequently observed in several cancers, and it was induced in colon cell lines after treatment with the demethylating agent 5-aza-2'-deoxycytidine. However, the function of OLFM1 in CRC remains unknown. In this study, we reanalysed published microarray data and found that OLFM1 was significantly down-regulated in primary CRC samples compared to adjacent non-cancerous tissues. The results of immunohistochemistry indicated that decreased OLFM1 expression was significantly associated with lymph node status (p = 0.023), distant metastasis (p < 0.001), and AJCC/TNM stage (p = 0.013), and CRC patients with low OLFM1 expression had consistently poor overall survival (OS; p < 0.001) and progression-free survival (PFS; p < 0.001). Further analysis demonstrated that OLFM1 was epigenetically silenced in CRC tissues and cell lines via promoter hypermethylation. Overexpression and knockdown of OLFM1 attenuated and increased, respectively, CRC cells' proliferation, migration, and invasion in vitro and metastasis to the lung and liver in vivo. Mechanistically, the promotion of growth and metastasis of CRC cells by silencing of OLFM1 was associated with the activation of the non-canonical NF-κB signalling pathway. OLFM1 interacted with NF-κB-inducing kinase (NIK; MAP3K14) and repressed the phosphorylation of its downstream substrate Ikappa B kinase alpha (IKKα). OLFM1 expression was negatively correlated with the phosphorylation level of IKKα in CRC tissue samples. Knockdown of NIK impaired the ability of OLFM1 to repress NF-κB signalling, cell growth or migration. Thus, OLFM1 may be a valuable biomarker and therapeutic target for CRC patients. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Wei Shi
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, PR China
- The Second Department of Internal Medicine, The Third Affiliated Hospital of Kunming Medical University, Yunnan Tumour Hospital, Kunming, Yunnan, PR China
| | - Zhihua Ye
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, PR China
| | - Li Zhuang
- The Second Department of Internal Medicine, The Third Affiliated Hospital of Kunming Medical University, Yunnan Tumour Hospital, Kunming, Yunnan, PR China
| | - Yingchang Li
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, PR China
| | - Wendi Shuai
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, PR China
| | - Zhixiang Zuo
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, PR China
| | - Xueli Mao
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Guangdong Province Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, PR China
| | - Ranyi Liu
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, PR China
| | - Jiangxue Wu
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, PR China
| | - Shuai Chen
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, PR China.
| | - Wenlin Huang
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, PR China.
- Guangdong Provincial Key Laboratory of Tumour Targeted Drugs and Guangzhou Enterprise Key Laboratory of Gene Medicine, Guangzhou Double Bioproducts Co Ltd, Guangzhou, PR China.
| |
Collapse
|
3414
|
Martínez-Cardús A, Moran S, Musulen E, Moutinho C, Manzano JL, Martinez-Balibrea E, Tierno M, Élez E, Landolfi S, Lorden P, Arribas C, Müller F, Bock C, Tabernero J, Esteller M. Epigenetic Homogeneity Within Colorectal Tumors Predicts Shorter Relapse-Free and Overall Survival Times for Patients With Locoregional Cancer. Gastroenterology 2016; 151:961-972. [PMID: 27521480 DOI: 10.1053/j.gastro.2016.08.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 07/25/2016] [Accepted: 08/02/2016] [Indexed: 12/21/2022]
Abstract
BACKGROUND & AIMS There are few validated biomarkers that can be used to predict outcomes for patients with colorectal cancer. Part of the challenge is the genetic and molecular heterogeneity of colorectal tumors not only among patients, but also within tumors. We have explored intratumor heterogeneity at the epigenetic level, due to its dynamic nature. We analyzed DNA methylation profiles of the digestive tract surface and the central bulk and invasive front regions of colorectal tumors. METHODS We determined the DNA methylation profiles of >450,000 CpG sites in 3 macrodissected regions of 79 colorectal tumors and 23 associated liver metastases, obtained from 2 hospitals in Spain. We also analyzed samples for KRAS and BRAF mutations, 499,170 single nucleotide polymorphisms, and performed immunohistochemical analyses. RESULTS We observed differences in DNA methylation among the 3 tumor sections; regions of tumor-host interface differed the most from the other tumor sections. Interestingly, tumor samples collected from areas closer to the gastrointestinal transit most frequently shared methylation events with metastases. When we calculated individual coefficients to quantify heterogeneity, we found that epigenetic homogeneity was significantly associated with short time of relapse-free survival (log-rank P = .037) and short time of overall survival (log-rank P = .026) in patients with locoregional colorectal cancer. CONCLUSIONS In an analysis of 79 colorectal tumors, we found significant heterogeneity in patterns of DNA methylation within each tumor; the level of heterogeneity correlates with times of relapse-free and overall survival.
Collapse
Affiliation(s)
- Anna Martínez-Cardús
- Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute, L'Hospitalet, Barcelona, Catalonia, Spain
| | - Sebastian Moran
- Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute, L'Hospitalet, Barcelona, Catalonia, Spain
| | - Eva Musulen
- Pathology Department, Germans Trias i Pujol University Hospital, Badalona, Catalonia, Spain
| | - Cátia Moutinho
- Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute, L'Hospitalet, Barcelona, Catalonia, Spain
| | - Jose L Manzano
- Medical Oncology Department, Germans Trias i Pujol University Hospital, Badalona, Catalonia, Spain
| | - Eva Martinez-Balibrea
- Catalan Institute of Oncology, Health Sciences Research Institute of the Germans Trias i Pujol Foundation, Barcelona, Catalonia, Spain
| | - Montserrat Tierno
- Catalan Institute of Oncology, Health Sciences Research Institute of the Germans Trias i Pujol Foundation, Barcelona, Catalonia, Spain
| | - Elena Élez
- Medical Oncology Department, Vall d'Hebron University Hospital and Institute of Oncology, Universitat Autònoma de Barcelona, Barcelona, Catalonia, Center affiliated with the Spanish Cancer Research Network (Institute of Health Carlos III), Spain
| | - Stefania Landolfi
- Pathology Department, Vall d'Hebron University Hospital, Barcelona, Catalonia, Spain
| | - Patricia Lorden
- Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute, L'Hospitalet, Barcelona, Catalonia, Spain
| | - Carles Arribas
- Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute, L'Hospitalet, Barcelona, Catalonia, Spain
| | - Fabian Müller
- Max Planck Institute for Informatics, Saarbrücken, Germany
| | - Christoph Bock
- Max Planck Institute for Informatics, Saarbrücken, Germany; Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria; Department of Laboratory Medicine, Medical University of Vienna, 1090 Vienna, Austria
| | - Josep Tabernero
- Medical Oncology Department, Vall d'Hebron University Hospital and Institute of Oncology, Universitat Autònoma de Barcelona, Barcelona, Catalonia, Center affiliated with the Spanish Cancer Research Network (Institute of Health Carlos III), Spain
| | - Manel Esteller
- Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute, L'Hospitalet, Barcelona, Catalonia, Spain; Department of Physiological Sciences II, School of Medicine, University of Barcelona, Barcelona, Catalonia, Spain; Institucio Catalana de Recerca i Estudis Avançats, Barcelona, Catalonia, Spain.
| |
Collapse
|
3415
|
Wali RK, Momi N, Dela Cruz M, Calderwood AH, Stypula-Cyrus Y, Almassalha L, Chhaparia A, Weber CR, Radosevich A, Tiwari AK, Latif B, Backman V, Roy HK. Higher Order Chromatin Modulator Cohesin SA1 Is an Early Biomarker for Colon Carcinogenesis: Race-Specific Implications. Cancer Prev Res (Phila) 2016; 9:844-854. [PMID: 27549371 PMCID: PMC5093027 DOI: 10.1158/1940-6207.capr-16-0054] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Accepted: 08/08/2016] [Indexed: 12/18/2022]
Abstract
Alterations in high order chromatin, with concomitant modulation in gene expression, are one of the earliest events in the development of colorectal cancer. Cohesins are a family of proteins that modulate high-order chromatin, although the role in colorectal cancer remains incompletely understood. We, therefore, assessed the role of cohesin SA1 in colorectal cancer biology and as a biomarker focusing in particular on the increased incidence/mortality of colorectal cancer among African-Americans. Immunohistochemistry on tissue arrays revealed dramatically decreased SA1 expression in both adenomas (62%; P = 0.001) and adenocarcinomas (75%; P = 0.0001). RT-PCR performed in endoscopically normal rectal biopsies (n = 78) revealed a profound decrease in SA1 expression in adenoma-harboring patients (field carcinogenesis) compared with those who were neoplasia-free (47%; P = 0.03). From a racial perspective, colorectal cancer tissues from Caucasians had 56% higher SA1 expression than in African-Americans. This was mirrored in field carcinogenesis where healthy Caucasians expressed more SA1 at baseline compared with matched African-American subjects (73%; P = 0.003). However, as a biomarker for colorectal cancer risk, the diagnostic performance as assessed by area under ROC curve was greater in African-Americans (AUROC = 0.724) than in Caucasians (AUROC = 0.585). From a biologic perspective, SA1 modulation of high-order chromatin was demonstrated with both biophotonic (nanocytology) and chromatin accessibility [micrococcal nuclease (MNase)] assays in SA1-knockdown HT29 colorectal cancer cells. The functional consequences were underscored by increased proliferation (WST-1; P = 0.0002, colony formation; P = 0.001) in the SA1-knockdown HT29 cells. These results provide the first evidence indicating a tumor suppressor role of SA1 in early colon carcinogenesis and as a risk stratification biomarker giving potential insights into biologic basis of racial disparities in colorectal cancer. Cancer Prev Res; 9(11); 844-54. ©2016 AACR.
Collapse
Affiliation(s)
- Ramesh K Wali
- Department of Medicine, Boston University Medical Center, Boston, Massachusetts
| | - Navneet Momi
- Department of Medicine, Boston University Medical Center, Boston, Massachusetts
| | - Mart Dela Cruz
- Department of Medicine, Boston University Medical Center, Boston, Massachusetts
| | - Audrey H Calderwood
- Department of Medicine, Boston University Medical Center, Boston, Massachusetts
| | | | - Luay Almassalha
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois
| | - Anuj Chhaparia
- Department of Medicine, Boston University Medical Center, Boston, Massachusetts
| | | | - Andrew Radosevich
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois
| | - Ashish K Tiwari
- Department of Medicine, Boston University Medical Center, Boston, Massachusetts
| | - Bilal Latif
- Department of Medicine, Boston University Medical Center, Boston, Massachusetts
| | - Vadim Backman
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois
| | - Hemant K Roy
- Department of Medicine, Boston University Medical Center, Boston, Massachusetts.
| |
Collapse
|
3416
|
Koppens MAJ, Bounova G, Cornelissen-Steijger P, de Vries N, Sansom OJ, Wessels LFA, van Lohuizen M. Large variety in a panel of human colon cancer organoids in response to EZH2 inhibition. Oncotarget 2016; 7:69816-69828. [PMID: 27634879 PMCID: PMC5342517 DOI: 10.18632/oncotarget.12002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 09/04/2016] [Indexed: 01/28/2023] Open
Abstract
EZH2 inhibitors have gained great interest for their use as anti-cancer therapeutics. However, most research has focused on EZH2 mutant cancers and recently adverse effects of EZH2 inactivation have come to light. To determine whether colorectal cancer cells respond to EZH2 inhibition and to explore which factors influence the degree of response, we treated a panel of 20 organoid lines derived from human colon tumors with different concentrations of the EZH2 inhibitor GSK126. The resulting responses were associated with mutation status, gene expression and responses to other drugs. We found that the response to GSK126 treatment greatly varied between organoid lines. Response associated with the mutation status of ATRX and PAX2, and correlated with BIK expression. It also correlated well with response to Nutlin-3a which inhibits MDM2-p53 interaction thereby activating p53 signaling. Sensitivity to EZH2 ablation depended on the presence of wild type p53, as tumor organoids became resistant when p53 was mutated or knocked down. Our exploratory study provides insight into which genetic factors predict sensitivity to EZH2 inhibition. In addition, we show that the response to EZH2 inhibition requires wild type p53. We conclude that a subset of colorectal cancer patients may benefit from EZH2-targeting therapies.
Collapse
Affiliation(s)
- Martijn AJ Koppens
- Division of Molecular Genetics, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Gergana Bounova
- Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | - Nienke de Vries
- Division of Molecular Genetics, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Owen J Sansom
- Cancer Research UK Beatson Institute, Glasgow, United Kingdom
| | - Lodewyk FA Wessels
- Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Department of EEMCS, Delft University of Technology, Delft, The Netherlands
- Cancer Genomics Centre Netherlands (CGC.nl), The Netherlands
| | - Maarten van Lohuizen
- Division of Molecular Genetics, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Cancer Genomics Centre Netherlands (CGC.nl), The Netherlands
| |
Collapse
|
3417
|
Araujo RLC, Riechelmann RP, Fong Y. Patient selection for the surgical treatment of resectable colorectal liver metastases. J Surg Oncol 2016; 115:213-220. [PMID: 27778357 DOI: 10.1002/jso.24482] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Accepted: 09/30/2016] [Indexed: 12/14/2022]
Abstract
Advances in surgery and chemotherapy regimens have increased the long-term survival of patients with colorectal liver metastases (CRLM). Although liver resection remains an essential part of any curative strategy for resectable CRLM, chemotherapy regimens have also improved the long-term outcomes. However, the optimal timing for chemotherapy regimens remains unclear. Thus, this review addressed key points to aid the decision-making process regarding the timing of chemotherapy and surgery for patients with resectable CRLM. J. Surg. Oncol. 2017;115:213-220. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Raphael L C Araujo
- Department of Upper Gastrointestinal and Hepato-Pancreato-Biliary Surgery, Barretos Cancer Hospital, Barretos, São Paulo, Brazil
| | - Rachel P Riechelmann
- Department of Radiology and Oncology, Instituto do Câncer do Estado de São Paulo, University of São Paulo Medical School, São Paulo, Brazil
| | - Yuman Fong
- Department of Surgery, City of Hope National Medical Center, Duarte, California
| |
Collapse
|
3418
|
Voest EE, Bernards R. DNA-Guided Precision Medicine for Cancer: A Case of Irrational Exuberance? Cancer Discov 2016; 6:130-2. [PMID: 26851184 DOI: 10.1158/2159-8290.cd-15-1321] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Precision treatment with targeted cancer drugs requires the selection of patients who are most likely to benefit from a given therapy. We argue here that the use of a combination of both DNA and transcriptome analyses will significantly improve drug response prediction.
Collapse
Affiliation(s)
- Emile E Voest
- Division of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Rene Bernards
- Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, the Netherlands.
| |
Collapse
|
3419
|
Brown JAL, Ni Chonghaile T, Matchett KB, Lynam-Lennon N, Kiely PA. Big Data-Led Cancer Research, Application, and Insights. Cancer Res 2016; 76:6167-6170. [PMID: 27803103 DOI: 10.1158/0008-5472.can-16-0860] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 07/31/2016] [Indexed: 11/16/2022]
Abstract
Insights distilled from integrating multiple big-data or "omic" datasets have revealed functional hierarchies of molecular networks driving tumorigenesis and modifiers of treatment response. Identifying these novel key regulatory and dysregulated elements is now informing personalized medicine. Crucially, although there are many advantages to this approach, there are several key considerations to address. Here, we examine how this big data-led approach is impacting many diverse areas of cancer research, through review of the key presentations given at the Irish Association for Cancer Research Meeting and importantly how the results may be applied to positively affect patient outcomes. Cancer Res; 76(21); 6167-70. ©2016 AACR.
Collapse
Affiliation(s)
- James A L Brown
- Discipline of Surgery, School of Medicine, The Lambe Institute for Translational Research, National University of Ireland Galway, Galway, Ireland.
| | - Triona Ni Chonghaile
- Physiology & Medical Physics Department, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Kyle B Matchett
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, United Kingdom
| | - Niamh Lynam-Lennon
- Trinity Translational Medicine Institute, Department of Surgery, Trinity College Dublin, Dublin, Ireland
| | - Patrick A Kiely
- Graduate Entry Medical School, University of Limerick, Limerick, Ireland
| |
Collapse
|
3420
|
Ohtsuka M, Ling H, Ivan C, Pichler M, Matsushita D, Goblirsch M, Stiegelbauer V, Shigeyasu K, Zhang X, Chen M, Vidhu F, Bartholomeusz GA, Toiyama Y, Kusunoki M, Doki Y, Mori M, Song S, Gunther JR, Krishnan S, Slaby O, Goel A, Ajani JA, Radovich M, Calin GA. H19 Noncoding RNA, an Independent Prognostic Factor, Regulates Essential Rb-E2F and CDK8-β-Catenin Signaling in Colorectal Cancer. EBioMedicine 2016; 13:113-124. [PMID: 27789274 PMCID: PMC5264449 DOI: 10.1016/j.ebiom.2016.10.026] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 10/16/2016] [Accepted: 10/18/2016] [Indexed: 02/06/2023] Open
Abstract
High H19 expression in primary tumors is an independent predictor of short overall survival in CRC patients. RB1-E2F and CDK8-β-catenin signaling are essential in mediating the oncogenic activity of H19 in CRC. Combined analysis of H19 and its targets further improved the prediction power on overall survival of CRC patients.
Long noncoding RNAs (lncRNAs) are transcripts at least 200 nucleotides long that do not code for proteins. The clinical relevance of lncRNAs in colorectal cancer (CRC) is largely unknown. Here we identified that H19 expression in primary tumors is an independent prognostic predictor of poor prognosis of CRC patients and further proved its oncogenic role. To characterize the mechanisms, we profiled gene expression changes following H19 modulation in CRC cell lines and analyzed gene expression association in clinical datasets. Our data revealed important cancer-signaling pathways, including the RB1-E2F and the CDK8-β-catenin signaling, underlying H19 function. The clinical significance of long noncoding RNAs (lncRNAs) in colorectal cancer (CRC) remains largely unexplored. Here, we analyzed a large panel of lncRNA candidates with The Cancer Genome Atlas (TCGA) CRC dataset, and identified H19 as the most significant lncRNA associated with CRC patient survival. We further validated such association in two independent CRC cohorts. H19 silencing blocked G1-S transition, reduced cell proliferation, and inhibited cell migration. We profiled gene expression changes to gain mechanism insight of H19 function. Transcriptome data analysis revealed not only previously identified mechanisms such as Let-7 regulation by H19, but also RB1-E2F1 function and β-catenin activity as essential upstream regulators mediating H19 function. Our experimental data showed that H19 affects phosphorylation of RB1 protein by regulating gene expression of CDK4 and CCND1. We further demonstrated that reduced CDK8 expression underlies changes of β-catenin activity, and identified that H19 interacts with macroH2A, an essential regulator of CDK8 gene transcription. However, the relevance of H19-macroH2A interaction in CDK8 regulation remains to be experimentally determined. We further explored the clinical relevance of above mechanisms in clinical samples, and showed that combined analysis of H19 with its targets improved prognostic value of H19 in CRC.
Collapse
Affiliation(s)
- Masahisa Ohtsuka
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hui Ling
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Cristina Ivan
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Martin Pichler
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Research Unit for non-coding RNA and genome editing, Division of Oncology, Medical University of Graz, Austria
| | - Daisuke Matsushita
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Matthew Goblirsch
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Verena Stiegelbauer
- Research Unit for non-coding RNA and genome editing, Division of Oncology, Medical University of Graz, Austria
| | - Kunitoshi Shigeyasu
- Center for Gastrointestinal Research, Baylor Research Institute and Charles A. Sammons Cancer Center, Baylor University Medical Center, Dallas, TX, USA
| | - Xinna Zhang
- Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Meng Chen
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Fnu Vidhu
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Geoffrey A Bartholomeusz
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yuji Toiyama
- Department of Gastrointestinal and Pediatric Surgery, Division of Reparative Medicine, Institute of Life Sciences, Mie University Graduate School of Medicine, Mie, Japan
| | - Masato Kusunoki
- Department of Gastrointestinal and Pediatric Surgery, Division of Reparative Medicine, Institute of Life Sciences, Mie University Graduate School of Medicine, Mie, Japan
| | - Yuichiro Doki
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Masaki Mori
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Shumei Song
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jillian R Gunther
- Department of Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sunil Krishnan
- Department of Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ondrej Slaby
- Central European Institute of Technology, Molecular Oncology II, Masaryk University, Brno, Czech Republic
| | - Ajay Goel
- Center for Gastrointestinal Research, Baylor Research Institute and Charles A. Sammons Cancer Center, Baylor University Medical Center, Dallas, TX, USA
| | - Jaffer A Ajani
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Milan Radovich
- Department of Surgery, Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - George A Calin
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
3421
|
Fontana E, Homicsko K, Eason K, Sadanandam A. Molecular Classification of Colon Cancer: Perspectives for Personalized Adjuvant Therapy. CURRENT COLORECTAL CANCER REPORTS 2016. [DOI: 10.1007/s11888-016-0341-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
3422
|
Sefrioui D, Michel P. [Surgery for lung metastases, the colossus with feet of clay?]. Rev Mal Respir 2016; 33:831-833. [PMID: 27743825 DOI: 10.1016/j.rmr.2016.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 08/17/2016] [Indexed: 11/20/2022]
Affiliation(s)
- D Sefrioui
- Service d'hépatogastroentérologie, hôpital Charles-Nicolle, CHU de Rouen, 1, rue de Germont, 76031 Rouen, France; Unité Inserm U1079, université de Rouen, 76000 Rouen, France
| | - P Michel
- Service d'hépatogastroentérologie, hôpital Charles-Nicolle, CHU de Rouen, 1, rue de Germont, 76031 Rouen, France; Unité Inserm U1079, université de Rouen, 76000 Rouen, France.
| |
Collapse
|
3423
|
Hollins AJ, Parry L. Long-Term Culture of Intestinal Cell Progenitors: An Overview of Their Development, Application, and Associated Technologies. CURRENT PATHOBIOLOGY REPORTS 2016; 4:209-219. [PMID: 27882268 PMCID: PMC5101250 DOI: 10.1007/s40139-016-0119-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
PURPOSE OF REVIEW Long-term culture of adult progenitor cells in 3D is a recently emerging technology that inhabits the space between 2D cell lines and organ slice culture. RECENT FINDINGS Adaptations to defined media components in the wake of advances in ES and iPS cell culture has led to the identification of conditions that maintained intestinal cell progenitors in culture. These conditions retain cellular heterogeneity of the normal or tumour tissue, and the cultures have been shown to be genetically stable, such that substantial biobanks are being created from patient derived material. This coupled with advances in analytical tools has generated a field, characterized by the term "organoid culture", that has huge potential for advancing drug discovery, regenerative medicine, and furthering the understanding of fundamental intestinal biology. SUMMARY In this review, we describe the approaches available for the long-term culture of intestinal cells from normal and diseased tissue, the current challenges, and how the technology is likely to develop further.
Collapse
Affiliation(s)
| | - Lee Parry
- European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Cardiff, CF24 4HQ UK
| |
Collapse
|
3424
|
Improving definition of the term "synchronous liver metastases" from colorectal cancer. Hepatobiliary Pancreat Dis Int 2016; 15:458-460. [PMID: 27733314 DOI: 10.1016/s1499-3872(16)60125-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
3425
|
Park JH, van Wyk H, McMillan DC, Quinn J, Clark J, Roxburgh CS, Horgan PG, Edwards J. Signal Transduction and Activator of Transcription-3 (STAT3) in Patients with Colorectal Cancer: Associations with the Phenotypic Features of the Tumor and Host. Clin Cancer Res 2016; 23:1698-1709. [DOI: 10.1158/1078-0432.ccr-16-1416] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Revised: 08/30/2016] [Accepted: 09/19/2016] [Indexed: 11/16/2022]
|
3426
|
Al-Mosauwi H, Ryan E, McGrane A, Riveros-Beltran S, Walpole C, Dempsey E, Courtney D, Fearon N, Winter D, Baird A, Stewart G. Differential protein abundance of a basolateral MCT1 transporter in the human gastrointestinal tract. Cell Biol Int 2016; 40:1303-1312. [PMID: 27634412 DOI: 10.1002/cbin.10684] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 09/05/2016] [Indexed: 11/06/2022]
Abstract
Bacterially derived short chain fatty acids (SCFAs), such as butyrate, are vital in maintaining the symbiotic relationship that exists between humans and their gastrointestinal microbial populations. A key step in this process is the transport of SCFAs across colonic epithelial cells via MCT1 transporters. This study investigated MCT1 protein abundance in various human intestinal tissues. Initial RT-PCR analysis confirmed the expected MCT1 RNA expression pattern of colon > small intestine > stomach. Using surgical resection samples, immunoblot analysis detected higher abundance of a 45 kDa MCT1 protein in colonic tissue compared to ileum tissue (P < 0.001, N = 4, unpaired t-test). Importantly, MCT1 abundance was found to be significantly lower in sigmoid colon compared to ascending colon (P < 0.01, N = 8-11, ANOVA). Finally, immunolocalization studies confirmed MCT1 to be abundant in the basolateral membranes of surface epithelial cells of the ascending, transverse, and descending colon, but significantly less prevalent in the sigmoid colon (P < 0.05, N = 5-21, ANOVA). In conclusion, these data confirm that basolateral MCT1 protein abundance is correlated to levels of bacterially derived SCFAs along the human gastrointestinal tract. These findings highlight the importance of precise tissue location in studies comparing colonic MCT1 abundance between normal and diseased states.
Collapse
Affiliation(s)
- Hashemeya Al-Mosauwi
- School of Biology and Environmental Science, Science Centre West, University College Dublin, Room 2.55, Belfield, Dublin 4, Ireland
| | - Elizabeth Ryan
- Institute for Clinical Outcomes Research and Education, St.Vincent's University Hospital, Dublin, Ireland.,College of Life Sciences and Conway Institute of Biomedical and Biomolecular Science, University College Dublin, Dublin, Ireland
| | - Alison McGrane
- School of Biology and Environmental Science, Science Centre West, University College Dublin, Room 2.55, Belfield, Dublin 4, Ireland
| | - Stefanie Riveros-Beltran
- School of Biology and Environmental Science, Science Centre West, University College Dublin, Room 2.55, Belfield, Dublin 4, Ireland
| | - Caragh Walpole
- School of Biology and Environmental Science, Science Centre West, University College Dublin, Room 2.55, Belfield, Dublin 4, Ireland
| | - Eugene Dempsey
- School of Biology and Environmental Science, Science Centre West, University College Dublin, Room 2.55, Belfield, Dublin 4, Ireland
| | - Danielle Courtney
- Institute for Clinical Outcomes Research and Education, St.Vincent's University Hospital, Dublin, Ireland.,College of Life Sciences and Conway Institute of Biomedical and Biomolecular Science, University College Dublin, Dublin, Ireland
| | - Naomi Fearon
- Institute for Clinical Outcomes Research and Education, St.Vincent's University Hospital, Dublin, Ireland.,College of Life Sciences and Conway Institute of Biomedical and Biomolecular Science, University College Dublin, Dublin, Ireland
| | - Desmond Winter
- Institute for Clinical Outcomes Research and Education, St.Vincent's University Hospital, Dublin, Ireland
| | - Alan Baird
- College of Life Sciences and Conway Institute of Biomedical and Biomolecular Science, University College Dublin, Dublin, Ireland
| | - Gavin Stewart
- School of Biology and Environmental Science, Science Centre West, University College Dublin, Room 2.55, Belfield, Dublin 4, Ireland
| |
Collapse
|
3427
|
van der Stok EP, Smid M, Sieuwerts AM, Vermeulen PB, Sleijfer S, Ayez N, Grünhagen DJ, Martens JWM, Verhoef C. mRNA expression profiles of colorectal liver metastases as a novel biomarker for early recurrence after partial hepatectomy. Mol Oncol 2016; 10:1542-1550. [PMID: 27692894 DOI: 10.1016/j.molonc.2016.09.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 08/31/2016] [Accepted: 09/12/2016] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Identification of specific risk groups for recurrence after surgery for isolated colorectal liver metastases (CRLM) remains challenging due to the heterogeneity of the disease. Classical clinicopathologic parameters have limited prognostic value. The aim of this study was to identify a gene expression signature measured in CRLM discriminating early from late recurrence after partial hepatectomy. METHODS CRLM from two patient groups were collected: I) with recurrent disease ≤12 months after surgery (N = 33), and II) without recurrences and disease free for ≥36 months (N = 30). The patients were clinically homogeneous; all had a low clinical risk score (0-2) and did not receive (neo-) adjuvant chemotherapy. Total RNA was hybridised to Illumina arrays, and processed for analysis. A leave-one-out cross validation (LOOCV) analysis was performed to identify a prognostic gene expression signature. RESULTS LOOCV yielded an 11-gene profile with prognostic value in relation to recurrent disease ≤12 months after partial hepatectomy. This signature had a sensitivity of 81.8%, with a specificity of 66.7% for predicting recurrences (≤12 months) versus no recurrences for at least 36 months after surgery (X2 P < 0.0001). CONCLUSION The current study yielded an 11-gene signature at mRNA level in CRLM discriminating early from late or no relapse after partial hepatectomy.
Collapse
Affiliation(s)
- E P van der Stok
- Department of Surgical Oncology, Erasmus MC Cancer Institute, Groene Hilledijk 301, 3075 EA Rotterdam, The Netherlands.
| | - M Smid
- Department of Medical Oncology and Cancer Genomics Netherlands, Erasmus MC Cancer Institute, 's-Gravendijkwal 230, 3015 CE Rotterdam, The Netherlands
| | - A M Sieuwerts
- Department of Medical Oncology and Cancer Genomics Netherlands, Erasmus MC Cancer Institute, 's-Gravendijkwal 230, 3015 CE Rotterdam, The Netherlands
| | - P B Vermeulen
- Translational Cancer Research Group, Sint-Augustinus (GZA Hospitals) & CORE (Antwerp University), Oosterveldlaan 24, 2610 Wilrijk-Antwerp, Belgium
| | - S Sleijfer
- Department of Medical Oncology and Cancer Genomics Netherlands, Erasmus MC Cancer Institute, 's-Gravendijkwal 230, 3015 CE Rotterdam, The Netherlands
| | - N Ayez
- Department of Surgical Oncology, Erasmus MC Cancer Institute, Groene Hilledijk 301, 3075 EA Rotterdam, The Netherlands
| | - D J Grünhagen
- Department of Surgical Oncology, Erasmus MC Cancer Institute, Groene Hilledijk 301, 3075 EA Rotterdam, The Netherlands
| | - J W M Martens
- Department of Medical Oncology and Cancer Genomics Netherlands, Erasmus MC Cancer Institute, 's-Gravendijkwal 230, 3015 CE Rotterdam, The Netherlands
| | - C Verhoef
- Department of Surgical Oncology, Erasmus MC Cancer Institute, Groene Hilledijk 301, 3075 EA Rotterdam, The Netherlands
| |
Collapse
|
3428
|
Pistamaltzian NF, Perez SA, Baxevanis CN. Reinstating endogenous antitumor immunity: The concept of therapeutic management of cancer. FORUM OF CLINICAL ONCOLOGY 2016. [DOI: 10.1515/fco-2016-0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
Strong evidence points to the role of cancer immunoediting and tumor immune infiltrates in regulating cancer progression. By understanding the immune tumor microenvironment, we can now target key pathways that suppress endogenous antitumor responses, thereby re-instating such immune responses and identifying novel targets for immune therapies. Therapies targeting oncogenic pathways and checkpoint blockades turn on a new paradigm shift in immune-therapy for cancer with remarkable clinical efficacy seen in various malignancies. However, a lot of cancer patients will fail to respond and therefore, it becomes crucial to identify biomarkers to predict who of the patients will most likely benefit from these therapies.
Collapse
Affiliation(s)
- Nikolaos F. Pistamaltzian
- Cancer Immunology and Immunotherapy Center, Saint Savas Cancer Hospital, Athens, Greece
- MITERA Hospital, Maroussi, Greece
| | - Sonia A. Perez
- Cancer Immunology and Immunotherapy Center, Saint Savas Cancer Hospital, Athens, Greece
| | | |
Collapse
|
3429
|
Abstract
Increased dietary iron intake and elevated systemic iron levels are associated with increased cancer risk. In this issue, Xue et al. (2016) have identified an unexpected link between intracellular iron accumulation and pro-inflammatory signaling that provides, at least in part, a molecular explanation for the tumor-promoting effects of iron.
Collapse
Affiliation(s)
- Florian R Greten
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Paul-Ehrlich-Str. 42-44, 60596 Frankfurt am Main, Germany.
| |
Collapse
|
3430
|
Lee KS, Kwak Y, Nam KH, Kim DW, Kang SB, Choe G, Kim WH, Lee HS. Favorable prognosis in colorectal cancer patients with co-expression of c-MYC and ß-catenin. BMC Cancer 2016; 16:730. [PMID: 27619912 PMCID: PMC5020485 DOI: 10.1186/s12885-016-2770-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Accepted: 09/06/2016] [Indexed: 12/12/2022] Open
Abstract
Background The purpose of our research was to determine the prognostic impact and clinicopathological feature of c-MYC and β-catenin overexpression in colorectal cancer (CRC) patients. Methods Using immunohistochemistry (IHC), we measured the c-MYC and β-catenin expression in 367 consecutive CRC patients retrospectively (cohort 1). Also, c-MYC expression was measured by mRNA in situ hybridization. Moreover, to analyze regional heterogeneity, three sites of CRC including the primary, distant and lymph node metastasis were evaluated in 176 advanced CRC patients (cohort 2). Results In cohort 1, c-MYC protein and mRNA overexpression and ß-catenin nuclear expression were found in 201 (54.8 %), 241 (65.7 %) and 221 (60.2 %) of 367 patients, respectively, each of which was associated with improved prognosis (P = 0.011, P = 0.012 and P = 0.033, respectively). Moreover, co-expression of c-MYC and ß-catenin was significantly correlated with longer survival by univariate (P = 0.012) and multivariate (P = 0.048) studies. Overexpression of c-MYC protein was associated with mRNA overexpression (ρ, 0.479; P < 0.001) and nuclear ß-catenin expression (ρ, 0.282; P < 0.001). Expression of c-MYC and ß-catenin was heterogeneous depending on location in advanced CRC patients (cohort 2). Nevertheless, both c-MYC and ß-catenin expression in primary cancer were significantly correlated with improved survival in univariate (P = 0.001) and multivariate (P = 0.002) analyses. c-MYC and ß-catenin expression of lymph node or distant metastatic tumor was not significantly correlated with patients’ prognosis (P > 0.05). Conclusions Co-expression of c-MYC and ß-catenin was independently correlated with favorable prognosis in CRC patient. We concluded that the expression of c-MYC and ß-catenin might be useful predicting indicator of CRC patient’s prognosis. Electronic supplementary material The online version of this article (doi:10.1186/s12885-016-2770-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kyu Sang Lee
- Department of Pathology, Seoul National University Bundang Hospital, 173-82 Gumi-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 463-707, Republic of Korea
| | - Yoonjin Kwak
- Department of Pathology, Seoul National University Bundang Hospital, 173-82 Gumi-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 463-707, Republic of Korea.,Department of Pathology, Seoul National University College of Medicine, 103 Daehak-ro (Yongon-dong), Jongno-gu, Seoul, 110-799, Republic of Korea
| | - Kyung Han Nam
- Department of Pathology, Haeundae Paik Hospital, Inje University College of Medicine, 875, Haeun-daero, Haeundae-gu, Busan, 612-896, Republic of Korea
| | - Duck-Woo Kim
- Department of Surgery, Seoul National University Bundang Hospital, 173-82 Gumi-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 463-707, Republic of Korea
| | - Sung-Bum Kang
- Department of Surgery, Seoul National University Bundang Hospital, 173-82 Gumi-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 463-707, Republic of Korea
| | - Gheeyoung Choe
- Department of Pathology, Seoul National University Bundang Hospital, 173-82 Gumi-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 463-707, Republic of Korea.,Department of Pathology, Seoul National University College of Medicine, 103 Daehak-ro (Yongon-dong), Jongno-gu, Seoul, 110-799, Republic of Korea
| | - Woo Ho Kim
- Department of Pathology, Seoul National University College of Medicine, 103 Daehak-ro (Yongon-dong), Jongno-gu, Seoul, 110-799, Republic of Korea
| | - Hye Seung Lee
- Department of Pathology, Seoul National University Bundang Hospital, 173-82 Gumi-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 463-707, Republic of Korea.
| |
Collapse
|
3431
|
A potential role for CCN2/CTGF in aggressive colorectal cancer. J Cell Commun Signal 2016; 10:223-227. [PMID: 27613407 PMCID: PMC5055504 DOI: 10.1007/s12079-016-0347-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Accepted: 08/02/2016] [Indexed: 12/15/2022] Open
Abstract
CCN2, also known as connective tissue growth factor (CTGF) is a transcriptional target of TGF-β signaling. Unlike its original name (“CTGF”) suggested, CCN2 is not an actual growth factor but a matricellular protein that plays an important role in fibrosis, inflammation and connective tissue remodeling in a variety of diseases, including cancer. In pancreatic ductal adenocarcinoma, CCN2 signaling induces stromal infiltration and facilitates a strong tumor-stromal interaction. In many types of cancer, CCN2 overexpression has been associated with poor outcome. CMS4 (Consensus Molecular Subtype 4) is a recently identified aggressive colorectal cancer subtype, that is characterized by up-regulation of genes involved in epithelial-to-mesenchymal transition, TGF-β signaling, angiogenesis, complement activation, and extracellular matrix remodeling. In addition, a high influx of stromal fibroblasts contributes to the mesenchymal-like gene expression profile of this subtype. Furthermore, compared with the other three CMS groups, CMS4 tumors have the worst prognosis. Based on these observations, we postulated that CCN2 might contribute to colorectal cancer progression, especially in the CMS4 subtype. This review discusses the available literature on the role of CCN2 in colorectal cancer, with a focus on the ‘fibrotic subtype’ CMS4.
Collapse
|
3432
|
Tauriello DV, Batlle E. Targeting the Microenvironment in Advanced Colorectal Cancer. Trends Cancer 2016; 2:495-504. [DOI: 10.1016/j.trecan.2016.08.001] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 07/20/2016] [Accepted: 08/02/2016] [Indexed: 02/06/2023]
|
3433
|
Fessler E, Medema JP. Colorectal Cancer Subtypes: Developmental Origin and Microenvironmental Regulation. Trends Cancer 2016; 2:505-518. [DOI: 10.1016/j.trecan.2016.07.008] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 07/28/2016] [Accepted: 07/29/2016] [Indexed: 12/21/2022]
|
3434
|
Lordick F, Gockel I. Chances, risks and limitations of neoadjuvant therapy in surgical oncology. Innov Surg Sci 2016; 1:3-11. [PMID: 31579713 PMCID: PMC6753981 DOI: 10.1515/iss-2016-0004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 07/04/2016] [Indexed: 01/19/2023] Open
Abstract
Over the last decades, neoadjuvant treatment has been established as a standard of care for a variety of tumor types in visceral oncology. Neoadjuvant treatment is recommended in locally advanced esophageal and gastric cancer as well as in rectal cancer. In borderline resectable pancreatic cancer, neoadjuvant therapy is an emerging treatment concept, whereas in resectable colorectal liver metastases, neoadjuvant treatment is often used, although the evidence for improvement of survival outcomes is rather weak. What makes neoadjuvant treatment attractive from a surgical oncology viewpoint is its ability to shrink tumors to a smaller size and to increase the chances for complete resection with clear surgical margins, which is a prerequisite for cure. Studies suggest that local tumor control is increased in some visceral tumor types, especially with neoadjuvant chemoradiotherapy. In some other studies, a better control of systemic disease has contributed to significantly improved survival rates. Additionally, delaying surgery offers the chance to bring the patient into a better general condition for major surgery, but it also confers the risk of progression. Although it is a relatively rare event, cancers may progress locally during neoadjuvant treatment or distant metastases may occur, jeopardizing a curative surgical treatment approach. Although this is seen as risk of neoadjuvant treatment, it can also be seen as a chance to select only those patients for surgery who have a better control of systemic disease. Some studies showed increased perioperative morbidity in patients who underwent neoadjuvant treatment, which is another potential disadvantage. Optimal multidisciplinary teamwork is key to controlling that risk. Meanwhile, the neoadjuvant treatment period is also used as a "window of opportunity" for studying the activity of novel drugs and for investigating predictive and prognostic biomarkers of chemoradiotherapy and radiochemotherapy. Although the benefits of neoadjuvant treatment have been clearly established, the risk of overtreatment of cancers with an unfavorable prognosis remains an issue. All indications for neoadjuvant treatment are based on clinical staging. Even if staging is done meticulously, making use of all recommended diagnostic modalities, the risk of overstaging and understaging remains considerable and may lead to false indications for neoadjuvant treatment. Finally, despite all developments and emerging concepts in medical oncology, many cancers remain resistant to the currently available drugs and radiation. This may in part be due to specific molecular resistance mechanisms that are marginally understood thus far. Neoadjuvant treatment has been one of the major advances in multidisciplinary oncology in the last decades, requiring a dedicated treatment team and an optimal infrastructure for complex oncology care. This article discusses the goals and novel directions as well as limitations in neoadjuvant treatment of visceral cancers.
Collapse
Affiliation(s)
- Florian Lordick
- University Cancer Center Leipzig (UCCL), University Hospital Leipzig, Liebigstr. 20, Leipzig 04103, Germany
| | - Ines Gockel
- Department of Visceral, Transplant, Thoracic and Vascular Surgery, University Medicine Leipzig, Leipzig, Germany
| |
Collapse
|
3435
|
Loree JM, Cheung WY. Optimizing adjuvant therapy and survivorship care of stage III colon cancer. Future Oncol 2016; 12:2021-35. [DOI: 10.2217/fon-2016-0109] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The MOSAIC trial demonstrated nearly a decade ago that the addition of oxaliplatin to 5-fluorouracil improves outcomes in the adjuvant treatment of colon cancer, but no new agents have been shown to be superior to standard FOLFOX therapy. Oncologists have refined the use of oxaliplatin containing regimens to optimize outcomes, improved patient selection for multi-agent chemotherapy and expanded survivorship care to meet the needs of the growing number of survivors. In this article, we review the historical contexts of current therapy, appropriate staging investigations, the importance of timely initiation of therapy and key survivorship issues. We also discuss exciting opportunities for change, including reduced duration of adjuvant chemotherapy and the use of circulating tumor cells and DNA in surveillance.
Collapse
Affiliation(s)
- Jonathan M Loree
- Division of Medical Oncology, University of British Columbia, British Columbia Cancer Agency, 600 West 10th Avenue, Vancouver, British Columbia, V5Z 4E6, Canada
| | - Winson Y Cheung
- Division of Medical Oncology, University of British Columbia, British Columbia Cancer Agency, 600 West 10th Avenue, Vancouver, British Columbia, V5Z 4E6, Canada
| |
Collapse
|
3436
|
Nearchou A, Pentheroudakis G. The significance of tumor-associated immune response in molecular taxonomy, prognosis and therapy of colorectal cancer patients. ANNALS OF TRANSLATIONAL MEDICINE 2016; 4:271. [PMID: 27563658 DOI: 10.21037/atm.2016.05.54] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The importance of host immune response in colorectal cancer (CRC) has been constantly revealed through the last 10 years. A number of relevant immune markers have been introduced as prognostic and are now been used alone or in combination with each other in clinical practice. Efforts establishing a worldwide consensus on the implications of immune-profiles in conjunction to other factors are designed in the right direction in order to more effectively categorize patients with CRC in groups that might benefit from currently used or future applied therapies. On the other hand, a number of clinical trials have evolved the application of immunotherapies in patients with CRC both in the adjuvant and palliative setting.
Collapse
Affiliation(s)
- Andreas Nearchou
- Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden
| | | |
Collapse
|
3437
|
Morris JS, Kopetz S. Tumor Microenvironment in Gene Signatures: Critical Biology or Confounding Noise? Clin Cancer Res 2016; 22:3989-91. [PMID: 27334836 PMCID: PMC4987158 DOI: 10.1158/1078-0432.ccr-16-1044] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 06/02/2016] [Indexed: 12/16/2022]
Abstract
The tumor microenvironment contributes important information in gene expression signatures but may be susceptible to sampling variance. Mesenchymal signatures in particular may be influenced by sampling of nonrepresentative regions with high stromal content. Appropriate pathology quality control is required to ensure reproducibility of gene expression signatures. Clin Cancer Res; 22(16); 3989-91. ©2016 AACRSee related article by Dunne et al., p. 4095.
Collapse
Affiliation(s)
- Jeffrey S Morris
- The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Scott Kopetz
- The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
3438
|
Dunne PD, McArt DG, Bradley CA, O'Reilly PG, Barrett HL, Cummins R, O'Grady T, Arthur K, Loughrey MB, Allen WL, McDade SS, Waugh DJ, Hamilton PW, Longley DB, Kay EW, Johnston PG, Lawler M, Salto-Tellez M, Van Schaeybroeck S. Challenging the Cancer Molecular Stratification Dogma: Intratumoral Heterogeneity Undermines Consensus Molecular Subtypes and Potential Diagnostic Value in Colorectal Cancer. Clin Cancer Res 2016; 22:4095-104. [PMID: 27151745 DOI: 10.1158/1078-0432.ccr-16-0032] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 04/16/2016] [Indexed: 12/21/2022]
Abstract
PURPOSE A number of independent gene expression profiling studies have identified transcriptional subtypes in colorectal cancer with potential diagnostic utility, culminating in publication of a colorectal cancer Consensus Molecular Subtype classification. The worst prognostic subtype has been defined by genes associated with stem-like biology. Recently, it has been shown that the majority of genes associated with this poor prognostic group are stromal derived. We investigated the potential for tumor misclassification into multiple diagnostic subgroups based on tumoral region sampled. EXPERIMENTAL DESIGN We performed multiregion tissue RNA extraction/transcriptomic analysis using colorectal-specific arrays on invasive front, central tumor, and lymph node regions selected from tissue samples from 25 colorectal cancer patients. RESULTS We identified a consensus 30-gene list, which represents the intratumoral heterogeneity within a cohort of primary colorectal cancer tumors. Using a series of online datasets, we showed that this gene list displays prognostic potential HR = 2.914 (confidence interval 0.9286-9.162) in stage II/III colorectal cancer patients, but in addition, we demonstrated that these genes are stromal derived, challenging the assumption that poor prognosis tumors with stem-like biology have undergone a widespread epithelial-mesenchymal transition. Most importantly, we showed that patients can be simultaneously classified into multiple diagnostically relevant subgroups based purely on the tumoral region analyzed. CONCLUSIONS Gene expression profiles derived from the nonmalignant stromal region can influence assignment of colorectal cancer transcriptional subtypes, questioning the current molecular classification dogma and highlighting the need to consider pathology sampling region and degree of stromal infiltration when employing transcription-based classifiers to underpin clinical decision making in colorectal cancer. Clin Cancer Res; 22(16); 4095-104. ©2016 AACRSee related commentary by Morris and Kopetz, p. 3989.
Collapse
Affiliation(s)
- Philip D Dunne
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, United Kingdom
| | - Darragh G McArt
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, United Kingdom
| | - Conor A Bradley
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, United Kingdom
| | - Paul G O'Reilly
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, United Kingdom
| | - Helen L Barrett
- Department of Histopathology, Beaumont Hospital and Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Robert Cummins
- Department of Histopathology, Beaumont Hospital and Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Tony O'Grady
- Department of Histopathology, Beaumont Hospital and Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Ken Arthur
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, United Kingdom
| | - Maurice B Loughrey
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, United Kingdom. Department of Histopathology, Royal Victoria Hospital, Belfast Health and Social Care Trust, Belfast, United Kingdom
| | - Wendy L Allen
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, United Kingdom
| | - Simon S McDade
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, United Kingdom
| | - David J Waugh
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, United Kingdom
| | - Peter W Hamilton
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, United Kingdom
| | - Daniel B Longley
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, United Kingdom
| | - Elaine W Kay
- Department of Histopathology, Beaumont Hospital and Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Patrick G Johnston
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, United Kingdom
| | - Mark Lawler
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, United Kingdom.
| | - Manuel Salto-Tellez
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, United Kingdom
| | - Sandra Van Schaeybroeck
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, United Kingdom
| |
Collapse
|
3439
|
Matos I, Elez E, Capdevila J, Tabernero J. Emerging tyrosine kinase inhibitors for the treatment of metastatic colorectal cancer. Expert Opin Emerg Drugs 2016; 21:267-82. [PMID: 27578253 DOI: 10.1080/14728214.2016.1220535] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Colorectal cancer (CRC) is a leading cause of cancer death worldwide. Over the last decade, the addition of antibodies that block the epidermal growth factor receptor (EGFR) or angiogenesis to the classic chemotherapy backbone has improved overall survival in metastatic colorectal cancer (mCRC). However, the role of the other major targeted therapy, the tyrosine kinase inhibitors (TKIs), is not yet fully clarified. AREAS COVERED This review discusses key published and ongoing studies with TKIs in mCRC, the mechanisms of resistance to standard treatments that are potentially targetable with these small molecules, along with the role of biomarkers in therapeutic decision-making process. EXPERT OPINION The current effectiveness of TKIs is limited by two principal reasons, firstly the use of combination chemotherapy necessitates lower dose-density to manage the toxicity profile and secondly, development of these drugs has mainly been performed in molecularly unselected populations. mCRC is a heterogeneous and dynamic disease, and clinical trials with TKIs must be designed on the basis of specific molecular alterations targeted by these drugs. Success with this approach relies on identifying mutations at the time of progression, raising the importance of minimally-invasive monitoring tools. Liquid biopsies are a promising option, although this technique remains to be validated. Overall, this approach contributes to the move towards personalized and precision therapeutic strategies.
Collapse
Affiliation(s)
- Ignacio Matos
- a Spain - Medical Oncology Department , Vall d'Hebron University Hospital , Barcelona , Spain
| | - Elena Elez
- a Spain - Medical Oncology Department , Vall d'Hebron University Hospital , Barcelona , Spain
| | - Jaume Capdevila
- a Spain - Medical Oncology Department , Vall d'Hebron University Hospital , Barcelona , Spain
| | - Josep Tabernero
- a Spain - Medical Oncology Department , Vall d'Hebron University Hospital , Barcelona , Spain
| |
Collapse
|
3440
|
Matos P, Gonçalves V, Jordan P. Targeting the serrated pathway of colorectal cancer with mutation in BRAF. Biochim Biophys Acta Rev Cancer 2016; 1866:51-63. [DOI: 10.1016/j.bbcan.2016.06.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 06/15/2016] [Accepted: 06/19/2016] [Indexed: 12/19/2022]
|
3441
|
Huang MY, Tsai HL, Huang JJ, Wang JY. Clinical Implications and Future Perspectives of Circulating Tumor Cells and Biomarkers in Clinical Outcomes of Colorectal Cancer. Transl Oncol 2016; 9:340-347. [PMID: 27567958 PMCID: PMC5006809 DOI: 10.1016/j.tranon.2016.06.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Revised: 06/30/2016] [Accepted: 06/30/2016] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is a major public health problem. Early CRC detection, pretherapeutic responsiveness prediction, and postoperative micrometastasis monitoring are the hallmarks for successful CRC treatment. Here, the methodologies used for detecting circulating tumor cells (CTCs) from CRC are reviewed. In addition to the traditional CRC biomarkers, the persistent presence of posttherapeutic CTCs indicates resistance to adjuvant chemotherapy and/or radiotherapy; hence, CTCs also play a decisive role in the subsequent relapse of CRC. Moreover, the genetic and phenotypic profiling of CTCs often differs from that of the primary tumor; this difference can be used to select the most effective targeted therapy. Consequently, studying CTCs can potentially individualize treatment strategies for patients with CRC. Therefore, CTC detection and characterization may be valuable tools for refining prognosis, and CTCs can be used in a real-time tumor biopsy for designing individually tailored therapy against CRC.
Collapse
Affiliation(s)
- Ming-Yii Huang
- Department of Radiation Oncology, Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; Department of Radiation Oncology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; Center for Biomarkers and Biotech Drugs, Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Hsiang-Lin Tsai
- Division of General Surgery Medicine, Department of Surgery, Kaohsiung Medical University, Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan; Division of Gastroenterology and General Surgery, Department of Surgery, Kaohsiung Medical University, Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Joh-Jong Huang
- Department of Family Medicine and Department of Community Medicine, Kaohsiung Medical University, Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Jaw-Yuan Wang
- Center for Biomarkers and Biotech Drugs, Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; Division of Gastroenterology and General Surgery, Department of Surgery, Kaohsiung Medical University, Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan; Graduate Institute of Clinical Medicine, Department of Surgery, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| |
Collapse
|
3442
|
Moretto R, Cremolini C, Rossini D, Pietrantonio F, Battaglin F, Mennitto A, Bergamo F, Loupakis F, Marmorino F, Berenato R, Marsico VA, Caporale M, Antoniotti C, Masi G, Salvatore L, Borelli B, Fontanini G, Lonardi S, De Braud F, Falcone A. Location of Primary Tumor and Benefit From Anti-Epidermal Growth Factor Receptor Monoclonal Antibodies in Patients With RAS and BRAF Wild-Type Metastatic Colorectal Cancer. Oncologist 2016; 21:988-94. [PMID: 27382031 PMCID: PMC4978565 DOI: 10.1634/theoncologist.2016-0084] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 04/14/2016] [Indexed: 01/05/2023] Open
Abstract
INTRODUCTION Right- and left-sided colorectal cancers (CRCs) differ in clinical and molecular characteristics. Some retrospective analyses suggested that patients with right-sided tumors derive less benefit from anti-epidermal growth factor receptor (EGFR) antibodies; however, molecular selection in those studies was not extensive. PATIENTS AND METHODS Patients with RAS and BRAF wild-type metastatic CRC (mCRC) who were treated with single-agent anti-EGFRs or with cetuximab-irinotecan (if refractory to previous irinotecan) were included in the study. Differences in outcome between patients with right- and left-sided tumors were investigated. RESULTS Of 75 patients, 14 and 61 had right- and left-sided tumors, respectively. None of the right-sided tumors responded according to RECIST, compared with 24 left-sided tumors (overall response rate: 0% vs. 41%; p = .0032), and only 2 patients with right-sided tumors (15%) versus 47 patients with left-sided tumors (80%) achieved disease control (p < .0001). The median duration of progression-free survival was 2.3 and 6.6 months in patients with right-sided and left-sided tumors, respectively (hazard ratio: 3.97; 95% confidence interval: 2.09-7.53; p < .0001). CONCLUSION Patients with right-sided RAS and BRAF wild-type mCRC seemed to derive no benefit from single-agent anti-EGFRs. IMPLICATIONS FOR PRACTICE Right- and left-sided colorectal tumors have peculiar epidemiological and clinicopathological characteristics, distinct gene expression profiles and genetic alterations, and different prognoses. This study assessed the potential predictive impact of primary tumor site with regard to anti-epidermal growth factor receptor (EGFR) monoclonal antibody treatment in patients with RAS and BRAF wild-type metastatic colorectal cancer. The results demonstrated the lack of activity of anti-EGFRs in RAS and BRAF wild-type, right-sided tumors, thus suggesting a potential role for primary tumor location in driving treatment choices.
Collapse
Affiliation(s)
- Roberto Moretto
- Polo Oncologico, Azienda Ospedaliero-Universitaria Pisana, Istituto Toscano Tumori, Pisa, Italy University of Pisa, Pisa, Italy
| | - Chiara Cremolini
- Polo Oncologico, Azienda Ospedaliero-Universitaria Pisana, Istituto Toscano Tumori, Pisa, Italy University of Pisa, Pisa, Italy
| | - Daniele Rossini
- Polo Oncologico, Azienda Ospedaliero-Universitaria Pisana, Istituto Toscano Tumori, Pisa, Italy University of Pisa, Pisa, Italy
| | - Filippo Pietrantonio
- Medical Oncology Department, Fondazione Istituti di Ricovero e Cura a Carattere Scientifico, Istituto Nazionale dei Tumori, Milan, Italy
| | - Francesca Battaglin
- Unit of Medical Oncology 1, Istituto Oncologico Veneto, Istituti di Ricovero e Cura a Carattere Scientifico, Padua, Italy
| | - Alessia Mennitto
- Medical Oncology Department, Fondazione Istituti di Ricovero e Cura a Carattere Scientifico, Istituto Nazionale dei Tumori, Milan, Italy
| | - Francesca Bergamo
- Unit of Medical Oncology 1, Istituto Oncologico Veneto, Istituti di Ricovero e Cura a Carattere Scientifico, Padua, Italy
| | - Fotios Loupakis
- Polo Oncologico, Azienda Ospedaliero-Universitaria Pisana, Istituto Toscano Tumori, Pisa, Italy University of Pisa, Pisa, Italy
| | - Federica Marmorino
- Polo Oncologico, Azienda Ospedaliero-Universitaria Pisana, Istituto Toscano Tumori, Pisa, Italy University of Pisa, Pisa, Italy
| | - Rosa Berenato
- Medical Oncology Department, Fondazione Istituti di Ricovero e Cura a Carattere Scientifico, Istituto Nazionale dei Tumori, Milan, Italy
| | - Valentina Angela Marsico
- Unit of Medical Oncology 1, Istituto Oncologico Veneto, Istituti di Ricovero e Cura a Carattere Scientifico, Padua, Italy
| | - Marta Caporale
- Medical Oncology Department, Fondazione Istituti di Ricovero e Cura a Carattere Scientifico, Istituto Nazionale dei Tumori, Milan, Italy
| | - Carlotta Antoniotti
- Polo Oncologico, Azienda Ospedaliero-Universitaria Pisana, Istituto Toscano Tumori, Pisa, Italy University of Pisa, Pisa, Italy
| | - Gianluca Masi
- Polo Oncologico, Azienda Ospedaliero-Universitaria Pisana, Istituto Toscano Tumori, Pisa, Italy University of Pisa, Pisa, Italy
| | - Lisa Salvatore
- Polo Oncologico, Azienda Ospedaliero-Universitaria Pisana, Istituto Toscano Tumori, Pisa, Italy University of Pisa, Pisa, Italy
| | - Beatrice Borelli
- Polo Oncologico, Azienda Ospedaliero-Universitaria Pisana, Istituto Toscano Tumori, Pisa, Italy University of Pisa, Pisa, Italy
| | - Gabriella Fontanini
- Division of Pathology, Department of Surgical, Medical, Molecular Pathology, and Critical Area, University of Pisa, Pisa, Italy
| | - Sara Lonardi
- Unit of Medical Oncology 1, Istituto Oncologico Veneto, Istituti di Ricovero e Cura a Carattere Scientifico, Padua, Italy
| | - Filippo De Braud
- Medical Oncology Department, Fondazione Istituti di Ricovero e Cura a Carattere Scientifico, Istituto Nazionale dei Tumori, Milan, Italy
| | - Alfredo Falcone
- Polo Oncologico, Azienda Ospedaliero-Universitaria Pisana, Istituto Toscano Tumori, Pisa, Italy University of Pisa, Pisa, Italy
| |
Collapse
|
3443
|
Van Cutsem E, Cervantes A, Adam R, Sobrero A, Van Krieken JH, Aderka D, Aranda Aguilar E, Bardelli A, Benson A, Bodoky G, Ciardiello F, D'Hoore A, Diaz-Rubio E, Douillard JY, Ducreux M, Falcone A, Grothey A, Gruenberger T, Haustermans K, Heinemann V, Hoff P, Köhne CH, Labianca R, Laurent-Puig P, Ma B, Maughan T, Muro K, Normanno N, Österlund P, Oyen WJG, Papamichael D, Pentheroudakis G, Pfeiffer P, Price TJ, Punt C, Ricke J, Roth A, Salazar R, Scheithauer W, Schmoll HJ, Tabernero J, Taïeb J, Tejpar S, Wasan H, Yoshino T, Zaanan A, Arnold D. ESMO consensus guidelines for the management of patients with metastatic colorectal cancer. Ann Oncol 2016; 27:1386-422. [PMID: 27380959 DOI: 10.1093/annonc/mdw235] [Citation(s) in RCA: 2406] [Impact Index Per Article: 267.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 05/31/2016] [Indexed: 02/11/2024] Open
Abstract
Colorectal cancer (CRC) is one of the most common malignancies in Western countries. Over the last 20 years, and the last decade in particular, the clinical outcome for patients with metastatic CRC (mCRC) has improved greatly due not only to an increase in the number of patients being referred for and undergoing surgical resection of their localised metastatic disease but also to a more strategic approach to the delivery of systemic therapy and an expansion in the use of ablative techniques. This reflects the increase in the number of patients that are being managed within a multidisciplinary team environment and specialist cancer centres, and the emergence over the same time period not only of improved imaging techniques but also prognostic and predictive molecular markers. Treatment decisions for patients with mCRC must be evidence-based. Thus, these ESMO consensus guidelines have been developed based on the current available evidence to provide a series of evidence-based recommendations to assist in the treatment and management of patients with mCRC in this rapidly evolving treatment setting.
Collapse
Affiliation(s)
- E Van Cutsem
- Digestive Oncology, University Hospitals Gasthuisberg Leuven and KU Leuven, Leuven, Belgium
| | - A Cervantes
- Medical Oncology Department, INCLIVA University of Valencia, Valencia, Spain
| | - R Adam
- Hepato-Biliary Centre, Paul Brousse Hospital, Villejuif, France
| | - A Sobrero
- Medical Oncology, IRCCS San Martino Hospital, Genova, Italy
| | - J H Van Krieken
- Research Institute for Oncology, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | - D Aderka
- Division of Oncology, Sheba Medical Center, Tel Aviv University, Tel Aviv, Israel
| | - E Aranda Aguilar
- Medical Oncology Department, University Hospital Reina Sofia, Cordoba, Spain
| | - A Bardelli
- School of Medicine, University of Turin, Turin, Italy
| | - A Benson
- Division of Hematology/Oncology, Northwestern Medical Group, Chicago, USA
| | - G Bodoky
- Department of Oncology, St László Hospital, Budapest, Hungary
| | - F Ciardiello
- Division of Medical Oncology, Seconda Università di Napoli, Naples, Italy
| | - A D'Hoore
- Abdominal Surgery, University Hospitals Gasthuisberg Leuven and KU Leuven, Leuven, Belgium
| | - E Diaz-Rubio
- Medical Oncology Department, Hospital Clínico San Carlos, Madrid, Spain
| | - J-Y Douillard
- Medical Oncology, Institut de Cancérologie de l'Ouest (ICO), St Herblain
| | - M Ducreux
- Department of Medical Oncology, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - A Falcone
- Department of Medical Oncology, University of Pisa, Pisa, Italy Division of Medical Oncology, Department of Oncology, University Hospital 'S. Chiara', Istituto Toscano Tumori, Pisa, Italy
| | - A Grothey
- Division of Medical Oncology, Mayo Clinic, Rochester, USA
| | - T Gruenberger
- Department of Surgery I, Rudolfstiftung Hospital, Vienna, Austria
| | - K Haustermans
- Department of Radiation Oncology, University Hospitals Gasthuisberg and KU Leuven, Leuven, Belgium
| | - V Heinemann
- Comprehensive Cancer Center, University Clinic Munich, Munich, Germany
| | - P Hoff
- Instituto do Câncer do Estado de São Paulo, University of São Paulo, São Paulo, Brazil
| | - C-H Köhne
- Northwest German Cancer Center, University Campus Klinikum Oldenburg, Oldenburg, Germany
| | - R Labianca
- Cancer Center, Ospedale Giovanni XXIII, Bergamo, Italy
| | - P Laurent-Puig
- Digestive Oncology Department, European Hospital Georges Pompidou, Paris, France
| | - B Ma
- Department of Clinical Oncology, Prince of Wales Hospital, State Key Laboratory in Oncology in South China, Chinese University of Hong Kong, Shatin, Hong Kong
| | - T Maughan
- CRUK/MRC Oxford Institute for Radiation Oncology, Gray Laboratories, University of Oxford, Oxford, UK
| | - K Muro
- Department of Clinical Oncology and Outpatient Treatment Center, Aichi Cancer Center Hospital, Nagoya, Japan
| | - N Normanno
- Cell Biology and Biotherapy Unit, I.N.T. Fondazione G. Pascale, Napoli, Italy
| | - P Österlund
- Helsinki University Central Hospital, Comprehensive Cancer Center, Helsinki, Finland Department of Oncology, University of Helsinki, Helsinki, Finland
| | - W J G Oyen
- The Institute of Cancer Research and The Royal Marsden Hospital, London, UK
| | - D Papamichael
- Department of Medical Oncology, Bank of Cyprus Oncology Centre, Nicosia, Cyprus
| | - G Pentheroudakis
- Department of Medical Oncology, University of Ioannina, Ioannina, Greece
| | - P Pfeiffer
- Department of Oncology, Odense University Hospital, Odense, Denmark
| | - T J Price
- Haematology and Medical Oncology Unit, Queen Elizabeth Hospital, Woodville, Australia
| | - C Punt
- Department of Medical Oncology, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - J Ricke
- Department of Radiology and Nuclear Medicine, University Clinic Magdeburg, Magdeburg, Germany
| | - A Roth
- Digestive Tumors Unit, Geneva University Hospitals (HUG), Geneva, Switzerland
| | - R Salazar
- Catalan Institute of Oncology (ICO), Barcelona, Spain
| | - W Scheithauer
- Department of Internal Medicine I and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - H J Schmoll
- Department of Internal Medicine IV, University Clinic Halle, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - J Tabernero
- Medical Oncology Department, Vall d' Hebron University Hospital, Vall d'Hebron Institute of Oncology (V.H.I.O.), Barcelona, Spain
| | - J Taïeb
- Digestive Oncology Department, European Hospital Georges Pompidou, Paris, France
| | - S Tejpar
- Digestive Oncology, University Hospitals Gasthuisberg Leuven and KU Leuven, Leuven, Belgium
| | - H Wasan
- Department of Cancer Medicine, Hammersmith Hospital, Imperial College Healthcare NHS Trust, London, UK
| | - T Yoshino
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Chiba, Japan
| | - A Zaanan
- Digestive Oncology Department, European Hospital Georges Pompidou, Paris, France
| | - D Arnold
- Instituto CUF de Oncologia (ICO), Lisbon, Portugal
| |
Collapse
|
3444
|
Leedham SJ, Chetty R. Wnt disruption in colorectal polyps - the traditional serrated adenoma enters the fray. J Pathol 2016; 239:387-90. [PMID: 27172330 DOI: 10.1002/path.4741] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 05/06/2016] [Indexed: 12/14/2022]
Abstract
The adenoma-carcinoma sequence describes the development of colorectal carcinoma (CRC) from benign colorectal precursor lesions. Molecular classification of established CRC has demonstrated considerable disease heterogeneity; however, as an emerging cancer frequently outgrows and destroys the initial precursor lesion, CRC molecular taxonomy can only be partially reconciled with histologically classified polyps. Thus, the molecular pathogenesis of some colorectal polyp types, including the traditional serrated adenoma (TSA), is still unclear. Now, candidate driver gene analysis of a cohort of different polyps reveals characteristic, but highly variable, mutations disrupting the Wnt signalling pathway across different histological polyp subtypes. How and when different precursor lesions acquire Wnt disruption reflects important distinctions in polyp biology, dependent on a combination of the dominant molecular pathway and the cell of origin of individual lesions. TSAs preferentially acquire ligand-dependent Wnt activating mutations, which means that the cancers that arise from these aggressive polyps may be sensitive to targeted Wnt inhibition. This paper demonstrates that applying next-generation sequencing technology to improve our understanding of colorectal precursor lesion molecular pathogenesis could also give important and translationally relevant insights into colorectal cancer biology. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Simon J Leedham
- Gastrointestinal Stem Cell Biology Laboratory, Oxford Centre for Cancer Gene Research, Wellcome Trust Centre for Human Genetics, University of Oxford, UK
| | - Runjan Chetty
- Department of Pathology, Laboratory Medicine Program, University Health Network/University of Toronto, Canada
| |
Collapse
|
3445
|
Hanna DL, Lenz HJ. Novel therapeutics in metastatic colorectal cancer: molecular insights and pharmacogenomic implications. Expert Rev Clin Pharmacol 2016; 9:1091-108. [PMID: 27031164 PMCID: PMC7493705 DOI: 10.1586/17512433.2016.1172961] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Although the survival of metastatic colorectal cancer (mCRC) patients has improved five-fold over the last century, CRC remains a significant global health burden. Impressive strides have been made in identifying new regimens, employing maintenance strategies to limit treatment toxicities, and combining multidisciplinary approaches to achieve cure in oligometastatic disease. Attempts at personalized integration of targeted agents have been limited by the ability to identify molecularly enriched patient populations most likely to benefit. In this review, we discuss novel therapeutics and regimens recently approved and in development for mCRC. In addition, we discuss using older agents in novel combination and maintenance strategies, and highlight evidence for implementing pharmacogenomic data and non-invasive monitoring into the personalized management of mCRC patients.
Collapse
Affiliation(s)
- Diana L. Hanna
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Hoag Family Cancer Institute, Newport Beach, CA, USA
| | - Heinz-Josef Lenz
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
3446
|
Müller MF, Ibrahim AEK, Arends MJ. Molecular pathological classification of colorectal cancer. Virchows Arch 2016; 469:125-134. [PMID: 27325016 PMCID: PMC4978761 DOI: 10.1007/s00428-016-1956-3] [Citation(s) in RCA: 261] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 05/04/2016] [Accepted: 05/09/2016] [Indexed: 12/12/2022]
Abstract
Colorectal cancer (CRC) shows variable underlying molecular changes with two major mechanisms of genetic instability: chromosomal instability and microsatellite instability. This review aims to delineate the different pathways of colorectal carcinogenesis and provide an overview of the most recent advances in molecular pathological classification systems for colorectal cancer. Two molecular pathological classification systems for CRC have recently been proposed. Integrated molecular analysis by The Cancer Genome Atlas project is based on a wide-ranging genomic and transcriptomic characterisation study of CRC using array-based and sequencing technologies. This approach classified CRC into two major groups consistent with previous classification systems: (1) ∼16 % hypermutated cancers with either microsatellite instability (MSI) due to defective mismatch repair (∼13 %) or ultramutated cancers with DNA polymerase epsilon proofreading mutations (∼3 %); and (2) ∼84 % non-hypermutated, microsatellite stable (MSS) cancers with a high frequency of DNA somatic copy number alterations, which showed common mutations in APC, TP53, KRAS, SMAD4, and PIK3CA. The recent Consensus Molecular Subtypes (CMS) Consortium analysing CRC expression profiling data from multiple studies described four CMS groups: almost all hypermutated MSI cancers fell into the first category CMS1 (MSI-immune, 14 %) with the remaining MSS cancers subcategorised into three groups of CMS2 (canonical, 37 %), CMS3 (metabolic, 13 %) and CMS4 (mesenchymal, 23 %), with a residual unclassified group (mixed features, 13 %). Although further research is required to validate these two systems, they may be useful for clinical trial designs and future post-surgical adjuvant treatment decisions, particularly for tumours with aggressive features or predicted responsiveness to immune checkpoint blockade.
Collapse
Affiliation(s)
- Mike F Müller
- Division of Pathology, Centre for Comparative Pathology, Edinburgh Cancer Research Centre, Institute of Genetics & Molecular Medicine, Western General Hospital, University of Edinburgh, Crewe Road South, Edinburgh, EH4 2XR, UK
| | - Ashraf E K Ibrahim
- Department of Pathology, Addenbrooke's Hospital, University of Cambridge, Hills Road, Cambridge, CB2 0QQ, UK
- Bedford Hospital NHS Trust, Viapath Cellular Pathology, Kempston Road, Bedford, MK42 9DJ, UK
| | - Mark J Arends
- Division of Pathology, Centre for Comparative Pathology, Edinburgh Cancer Research Centre, Institute of Genetics & Molecular Medicine, Western General Hospital, University of Edinburgh, Crewe Road South, Edinburgh, EH4 2XR, UK.
| |
Collapse
|
3447
|
Dragani TA, Castells A, Kulasingam V, Diamandis EP, Earl H, Iams WT, Lovly CM, Sedelaar JPM, Schalken JA. Major milestones in translational oncology. BMC Med 2016; 14:110. [PMID: 27469586 PMCID: PMC4964079 DOI: 10.1186/s12916-016-0654-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 07/13/2016] [Indexed: 11/16/2022] Open
Abstract
Translational oncology represents a bridge between basic research and clinical practice in cancer medicine. Today, translational research in oncology benefits from an abundance of knowledge resulting from genome-scale studies regarding the molecular pathways involved in tumorigenesis. In this Forum article, we highlight the state of the art of translational oncology in five major cancer types. We illustrate the use of molecular profiling to subtype colorectal cancer for both diagnosis and treatment, and summarize the results of a nationwide screening program for ovarian cancer based on detection of a tumor biomarker in serum. Additionally, we discuss how circulating tumor DNA can be assayed to safely monitor breast cancer over the course of treatment, and report on how therapy with immune checkpoint inhibitors is proving effective in advanced lung cancer. Finally, we summarize efforts to use molecular profiling of prostate cancer biopsy specimens to support treatment decisions. Despite encouraging early successes, we cannot disregard the complex genetics of individual susceptibility to cancer nor the enormous complexity of the somatic changes observed in tumors, which urge particular attention to the development of personalized therapies.
Collapse
Affiliation(s)
- Tommaso A. Dragani
- Fondazione IRCCS Istituto Nazionale dei Tumori, Via G.A. Amadeo 42, I-20133 Milan, Italy
| | - Antoni Castells
- Department of Gastroenterology, Hospital Clinic, University of Barcelona, IDIBAPS, CIBERehd, Barcelona, Catalonia Spain
| | - Vathany Kulasingam
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario Canada
- Department of Clinical Biochemistry, University Health Network, Toronto, Ontario Canada
| | - Eleftherios P. Diamandis
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario Canada
- Department of Clinical Biochemistry, University Health Network, Toronto, Ontario Canada
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Ontario Canada
| | - Helena Earl
- Deptartment of Oncology, University of Cambridge, Cambridge, UK
- NIHR Cambridge Biomedical Research Centre, Addenbrooke’s Hospital, Cambridge Biomedical Campus, Cambridge, UK
| | - Wade T. Iams
- Department of Medicine Vanderbilt University Medical Center, Nashville, TN USA
| | - Christine M. Lovly
- Department of Medicine Vanderbilt University Medical Center, Nashville, TN USA
- Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, TN USA
- Vanderbilt-Ingram Cancer Center, Nashville, TN USA
| | | | - Jack A. Schalken
- Department of Urology, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
3448
|
Kranz LM, Birtel M, Hilscher L, Grunwitz C, Petschenka J, Vascotto F, Vormehr M, Voss RH, Kreiter S, Diken M. CIMT 2016: Mechanisms of efficacy in cancer immunotherapy - Report on the 14th Annual Meeting of the Association for Cancer Immunotherapy May 10-12 2016, Mainz, Germany. Hum Vaccin Immunother 2016; 12:2805-2812. [PMID: 27435168 PMCID: PMC5137546 DOI: 10.1080/21645515.2016.1206677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Affiliation(s)
- Lena M Kranz
- a TRON-Translational Oncology at the University Medical Center of the Johannes Gutenberg University Mainz gGmbH , Mainz , Germany.,b Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg University , Mainz , Germany
| | - Matthias Birtel
- a TRON-Translational Oncology at the University Medical Center of the Johannes Gutenberg University Mainz gGmbH , Mainz , Germany.,b Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg University , Mainz , Germany
| | - Lina Hilscher
- a TRON-Translational Oncology at the University Medical Center of the Johannes Gutenberg University Mainz gGmbH , Mainz , Germany
| | - Christian Grunwitz
- a TRON-Translational Oncology at the University Medical Center of the Johannes Gutenberg University Mainz gGmbH , Mainz , Germany.,c BioNTech RNA Pharmaceuticals GmbH , Mainz , Germany
| | - Jutta Petschenka
- a TRON-Translational Oncology at the University Medical Center of the Johannes Gutenberg University Mainz gGmbH , Mainz , Germany
| | - Fulvia Vascotto
- a TRON-Translational Oncology at the University Medical Center of the Johannes Gutenberg University Mainz gGmbH , Mainz , Germany
| | - Mathias Vormehr
- a TRON-Translational Oncology at the University Medical Center of the Johannes Gutenberg University Mainz gGmbH , Mainz , Germany.,c BioNTech RNA Pharmaceuticals GmbH , Mainz , Germany
| | - Ralf-Holger Voss
- a TRON-Translational Oncology at the University Medical Center of the Johannes Gutenberg University Mainz gGmbH , Mainz , Germany
| | - Sebastian Kreiter
- a TRON-Translational Oncology at the University Medical Center of the Johannes Gutenberg University Mainz gGmbH , Mainz , Germany
| | - Mustafa Diken
- a TRON-Translational Oncology at the University Medical Center of the Johannes Gutenberg University Mainz gGmbH , Mainz , Germany
| |
Collapse
|
3449
|
Tong M, Zheng W, Li H, Li X, Ao L, Shen Y, Liang Q, Li J, Hong G, Yan H, Cai H, Li M, Guan Q, Guo Z. Multi-omics landscapes of colorectal cancer subtypes discriminated by an individualized prognostic signature for 5-fluorouracil-based chemotherapy. Oncogenesis 2016; 5:e242. [PMID: 27429074 PMCID: PMC5399173 DOI: 10.1038/oncsis.2016.51] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 05/27/2016] [Accepted: 06/17/2016] [Indexed: 12/11/2022] Open
Abstract
Until recently, few prognostic signatures for colorectal cancer (CRC) patients receiving 5-fluorouracil (5-FU)-based chemotherapy could be used in clinical practice. Here, using transcriptional profiles for a panel of cancer cell lines and three cohorts of CRC patients, we developed a prognostic signature based on within-sample relative expression orderings (REOs) of six gene pairs for stage II-III CRC patients receiving 5-FU-based chemotherapy. This REO-based signature had the unique advantage of being insensitive to experimental batch effects and free of the impractical data normalization requirement. After stratifying 184 CRC samples with multi-omics data from The Cancer Genome Atlas into two prognostic groups using the REO-based signature, we further revealed that patients with high recurrence risk were characterized by frequent gene copy number aberrations reducing 5-FU efficacy and DNA methylation aberrations inducing distinct transcriptional alternations to confer 5-FU resistance. In contrast, patients with low recurrence risk exhibited deficient mismatch repair and carried frequent gene mutations suppressing cell adhesion. These results reveal the multi-omics landscapes determining prognoses of stage II-III CRC patients receiving 5-FU-based chemotherapy.
Collapse
Affiliation(s)
- M Tong
- Department of Bioinformatics, Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| | - W Zheng
- Department of Bioinformatics, Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| | - H Li
- Department of Bioinformatics, Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| | - X Li
- Department of Bioinformatics, Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| | - L Ao
- Department of Bioinformatics, Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| | - Y Shen
- Department of Bioinformatics, Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| | - Q Liang
- Department of Bioinformatics, Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| | - J Li
- Department of Bioinformatics, Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| | - G Hong
- Department of Bioinformatics, Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| | - H Yan
- Department of Bioinformatics, Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| | - H Cai
- Department of Bioinformatics, Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| | - M Li
- Department of Bioinformatics, Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| | - Q Guan
- Department of Bioinformatics, Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| | - Z Guo
- Department of Bioinformatics, Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| |
Collapse
|
3450
|
Lam K, Pan K, Linnekamp JF, Medema JP, Kandimalla R. DNA methylation based biomarkers in colorectal cancer: A systematic review. Biochim Biophys Acta Rev Cancer 2016; 1866:106-20. [PMID: 27385266 DOI: 10.1016/j.bbcan.2016.07.001] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 06/30/2016] [Accepted: 07/01/2016] [Indexed: 12/11/2022]
Abstract
Since genetic and epigenetic alterations influence the development of colorectal cancer (CRC), huge potential lies in the use of DNA methylation as biomarkers to improve the current diagnosis, screening, prognosis and treatment prediction. Here we performed a systematic review on DNA methylation-based biomarkers published in CRC, and discussed the current state of findings and future challenges. Based on the findings, we then provide a perspective on future studies. Genome-wide studies on DNA methylation revealed novel biomarkers as well as distinct subgroups that exist in CRC. For diagnostic purposes, the most independently validated genes to study further are VIM, SEPT9, ITGA4, OSM4, GATA4 and NDRG4. These hypermethylated biomarkers can even be combined with LINE1 hypomethylation and the performance of markers should be examined in comparison to FIT further to find sensitive combinations. In terms of prognostic markers, myopodin, KISS1, TMEFF2, HLTF, hMLH1, APAF1, BCL2 and p53 are independently validated. Most prognostic markers published lack both a multivariate analysis in comparison to clinical risk factors and the appropriate patient group who will benefit by adjuvant chemotherapy. Methylation of IGFBP3, mir148a and PTEN are found to be predictive markers for 5-FU and EGFR therapy respectively. For therapy prediction, more studies should focus on finding markers for chemotherapeutic drugs as majority of the patients would benefit. Translation of these biomarkers into clinical utility would require large-scale prospective cohorts and randomized clinical trials in future. Based on these findings and consideration we propose an avenue to introduce methylation markers into clinical practice in near future. For future studies, multi-omics profiling on matched tissue and non-invasive cohorts along with matched cohorts of adenoma to carcinoma is indispensable to concurrently stratify CRC and find novel, robust biomarkers. Moreover, future studies should examine the timing and heterogeneity of methylation as well as the difference in methylation levels between epithelial and stromal tissues.
Collapse
Affiliation(s)
- Kevin Lam
- Laboratory for Experimental Oncology and Radiobiology (LEXOR), Center for Experimental Molecular Medicine (CEMM), Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
| | - Kathy Pan
- Laboratory for Experimental Oncology and Radiobiology (LEXOR), Center for Experimental Molecular Medicine (CEMM), Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
| | - Janneke Fiona Linnekamp
- Laboratory for Experimental Oncology and Radiobiology (LEXOR), Center for Experimental Molecular Medicine (CEMM), Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
| | - Jan Paul Medema
- Laboratory for Experimental Oncology and Radiobiology (LEXOR), Center for Experimental Molecular Medicine (CEMM), Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
| | - Raju Kandimalla
- Laboratory for Experimental Oncology and Radiobiology (LEXOR), Center for Experimental Molecular Medicine (CEMM), Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|