301
|
Heo HJ, Kim DO, Choi SJ, Shin DH, Lee CY. Potent Inhibitory effect of flavonoids in Scutellaria baicalensis on amyloid beta protein-induced neurotoxicity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2004; 52:4128-4132. [PMID: 15212458 DOI: 10.1021/jf049953x] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The free radical scavenging activities of two major flavonoids (baicalein and baicalin) in Scutellaria baicalensis were determined. The antioxidant capacities of baicalein and baicalin were determined by the 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid)(*)(-) scavenging assay and showed about 110 and 70% vitamin C equivalent antioxidant capacity, respectively. Because amyloid beta (Abeta) protein is known to increase free radical production and lipid peroxidation in PC12 nerve cells, leading to apoptosis and cell death, treatment with baicalein and baicalin may result in the prevention of cellular damage by the Abeta-induced reactive oxygen species. We found that baicalein and baicalin resulted in a dose-dependent anti-Abeta toxicity by means of three different assays [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide reduction, lactate dehydrogenase release, and trypan blue exclusion assays]. These results suggest that baicalein as well as baicalin can reduce the cytotoxicity of Abeta protein in PC12 cells, possibly by a reduction of oxidative stress, and these flavonoids may be useful in the chemoprevention of Alzheimer's disease.
Collapse
Affiliation(s)
- Ho Jin Heo
- Department of Food Science and Technology, Cornell University, Geneva, New York 14456, USA
| | | | | | | | | |
Collapse
|
302
|
Praticò D, Zhukareva V, Yao Y, Uryu K, Funk CD, Lawson JA, Trojanowski JQ, Lee VMY. 12/15-lipoxygenase is increased in Alzheimer's disease: possible involvement in brain oxidative stress. THE AMERICAN JOURNAL OF PATHOLOGY 2004; 164:1655-62. [PMID: 15111312 PMCID: PMC1615676 DOI: 10.1016/s0002-9440(10)63724-8] [Citation(s) in RCA: 184] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/22/2004] [Indexed: 11/25/2022]
Abstract
Alzheimer's disease (AD) is a chronic neurodegenerative disorder that impairs cognition and behavior. Although the initiating molecular events are not known, increasing evidence suggests that oxidative stress could play a functional role in its pathogenesis. Lipoxygenase (LOX) enzymes by oxidizing polyunsaturated fatty acids synthesize hydroperoxyacids, which are potent pro-oxidant mediators. Because circumstantial evidence suggests that 12/15-LOX is a major source of oxidative stress, we investigated the protein levels and activity of this enzyme in different brain regions of histopathologically confirmed AD and control cases. Using quantitative Western blot analysis we demonstrated that in affected frontal and temporal regions of AD brains the amount of 12/15-LOX was higher compared with controls, whereas no difference between the two groups was detected in the cerebellum. This observation was confirmed by immunohistochemical studies. Levels of 12/15-hydroxyeicosatetraenoic acids, metabolic products of 12/15-LOX, were also markedly elevated in AD brains compared to controls. This increase directly correlated with brain lipid peroxidation, and inversely with vitamin E levels. Finally, genetic deletion of this enzyme in vitro resulted in a reduction of the cellular oxidative stress response after incubation with H2O2 or amyloid beta. These data show that the 12/15-LOX metabolic pathway is increased and correlates with an oxidative imbalance in the AD brain, implying that this enzyme might contribute to the pathogenesis of this neurodegenerative disorder.
Collapse
Affiliation(s)
- Domenico Praticò
- Center for Experimental Therapeutics, Institute on Aging, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA.
| | | | | | | | | | | | | | | |
Collapse
|
303
|
Heo HJ, Kim DO, Shin SC, Kim MJ, Kim BG, Shin DH. Effect of antioxidant flavanone, naringenin, from Citrus junoson neuroprotection. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2004; 52:1520-5. [PMID: 15030205 DOI: 10.1021/jf035079g] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Amyloid beta protein (Abeta)-induced free radical-mediated neurotoxicity is known as a leading hypothesis for a cause of Alzheimer's disease. Abeta increased free radical production and lipid peroxidation in PC12 nerve cells, resulting in apoptosis and cell death. The protective effect of naringenin, a major flavanone constituent isolated from Citrus junos, against Abeta-induced neurotoxicity was investigated using PC12 cells. Pretreatment with isolated naringenin and vitamin C prevented the generation of the Abeta-induced reactive oxygen species. Naringenin resulted in the decrease of Abeta toxicity in a manner of concentration dependence, which was assessed by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. However, treatment with these antioxidants inhibited the Abeta-induced neurotoxic effect. The antiamnestic activity of naringenin in vivo was also evaluated using ICR mice with amnesia induced by scopolamine (1 mg/kg body weight). Naringenin, when administered to ICR mice at 4.5 mg/kg body weight, significantly ameliorated scopolamine-induced amnesia as measured in the passive avoidance test. Therefore, these results indicate that micromolecular Abeta-induced in vitro oxidative cell stress is reduced by naringenin and naringenin may be a useful chemopreventive agent against a neurodegenerative disease such as Alzheimer's disease.
Collapse
Affiliation(s)
- Ho Jin Heo
- Department of Food Science and Technology, Cornell University, Geneva, New York 14456, USA
| | | | | | | | | | | |
Collapse
|
304
|
Dudas B, Hanin I, Rose M, Wülfert E. Protection against inflammatory neurodegeneration and glial cell death by 7β-hydroxy epiandrosterone, a novel neurosteroid. Neurobiol Dis 2004; 15:262-8. [PMID: 15006696 DOI: 10.1016/j.nbd.2003.11.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2003] [Revised: 10/03/2003] [Accepted: 11/03/2003] [Indexed: 10/26/2022] Open
Abstract
It has been demonstrated that neuroprotective effects of dehydroepiandrosterone (DHEA) may be mediated by its 7alpha- and 7beta-hydroxy derivatives. Epiandrosterone is also converted to 7beta-hydroxy epiandrosterone (7beta-OH EPIA) in numerous tissues. The aim of the present study was to establish whether treatment with 7beta-hydroxy epiandrosterone has a neuroprotective effect in animal models of Alzheimer's disease (AD) lesions. Intra-amygdaloid administration of amyloid beta [Abeta(25-35)] increased the number of tau-positive cells in the ipsilateral hippocampus. Intracerebroventricular administration of ethylcholine aziridinium (AF64A) caused cholinergic damage in the septum, and glial lesions in the lateral septal nucleus and in the lateral zones of the hippocampus. These effects were almost completely prevented when animals were treated subcutaneously (b.i.d.) for 10 days with 0.1 mg/kg 7beta-hydroxy epiandrosterone. These findings indicate that 7beta-hydroxy epiandrosterone has powerful cytoprotective effects suggesting that (a) this neurosteroid may have therapeutic potential in various neurodegenerative conditions such as Alzheimer's disease, and (b) 7beta-hydroxy steroids may constitute a novel class of endogenous neuroprotective agents.
Collapse
Affiliation(s)
- Bertalan Dudas
- Lake Erie College of Osteopathic Medicine, Maywood, IL 16509, USA.
| | | | | | | |
Collapse
|
305
|
Abstract
Cerebral amyloid angiopathy (CAA) is the result of the deposition of an amyloidogenic protein in cortical and leptomeningeal vessels. The most common type of CAA is caused by amyloid beta-protein (Abeta), which is particularly associated with Alzheimer's disease (AD). Excessive Abeta-CAA formation can be caused by several mutations in the Abeta precursor protein and presenilin genes. The origin of Abeta in CAA is likely to be neuronal, although cerebrovascular cells or the circulation cannot be excluded as a source. Despite the apparent similarity, the pathogenesis of CAA appears to differ from that of senile plaques in several aspects, including the mechanism of Abeta-induced cellular toxicity, the extent of inflammatory reaction and the role of oxidative stress. Therefore, therapeutic strategies for AD should, at least in part, also target CAA. Moreover, CAA and cerebrovascular disease (CVD) may set a lower threshold for AD-like changes to cause dementia and may even cause dementia on its own, since patients with AD and CAA and/or CVD appear to be more cognitively impaired than patients with only AD. In conclusion, the precise impact of CAA on AD or dementia remains unclear, however, its role may have been underestimated in the past, and more extensive studies of in vitro and in vivo models for CAA will be needed to elucidate the importance of CAA-specific approaches in designing intervention strategies for AD.
Collapse
Affiliation(s)
- Annemieke A M Rensink
- Department of Neurology, Laboratory of Pediatrics and Neurology, University Medical Center, 319, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | | | | | | |
Collapse
|
306
|
Chan YC, Hsu CK, Wang MF, Su TY. A diet containing yam reduces the cognitive deterioration and brain lipid peroxidation in mice with senescence accelerated. Int J Food Sci Technol 2004. [DOI: 10.1046/j.0950-5423.2003.00751.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
307
|
Ferretti G, Bacchetti T, Moroni C, Vignini A, Curatola G. Copper-induced oxidative damage on astrocytes: protective effect exerted by human high density lipoproteins. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1635:48-54. [PMID: 14642776 DOI: 10.1016/j.bbalip.2003.10.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In the present study, we confirmed that copper ions induce oxidative damage in human astrocytes in culture, as demonstrated by the significant increase in the levels of hydroperoxides and in the fluorescence intensity of the fluorescent probe dichloro-dihydrofluorescein diacetate (H(2)DCFDA). The compositional changes were associated with a significant decrease in cell viability in astrocytes treated with 10 microM Cu(++) with respect to control cells. Astrocytes incubated with copper ions in the presence of high density lipoproteins (HDL) isolated from plasma of normolipemic subjects showed lower levels of hydroperoxides and a higher cell viability with respect to cells oxidized alone. Moreover, a significant decrease in the levels of hydroperoxides was observed in oxidized astrocytes treated with HDL. These results demonstrate that HDL exert a protective role against lipid peroxidation. The protective effect could be related to the ability of HDL to bind metal ions at the lipoprotein surface and/or to a stimulation of the efflux of lipid hydroperoxides from cell membranes as demonstrated in other cell types. Oxidative damage of astrocytes was induced at a copper concentration similar to that observed in cerebrospinal fluid (CSF) of patients affected by neurodegenerative diseases such as Alzheimer's (AD) and Parkinson's diseases (PD). Lipoprotein particles similar for density and chemical composition to plasma HDL were recently isolated in human CSF, therefore, the protective role exerted by HDL against Cu(++)-induced oxidative damage of astrocytes could be of physiological relevance.
Collapse
Affiliation(s)
- Gianna Ferretti
- Istituto di Biochimica, Facoltà of Medicina, Università Politecnica delle Marche, Via Ranieri, I-60131 Ancona, Italy
| | | | | | | | | |
Collapse
|
308
|
Kim HC, Yamada K, Nitta A, Olariu A, Tran MH, Mizuno M, Nakajima A, Nagai T, Kamei H, Jhoo WK, Im DH, Shin EJ, Hjelle OP, Ottersen OP, Park SC, Kato K, Mirault ME, Nabeshima T. Immunocytochemical evidence that amyloid beta (1-42) impairs endogenous antioxidant systems in vivo. Neuroscience 2003; 119:399-419. [PMID: 12770555 DOI: 10.1016/s0306-4522(02)00993-4] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Amyloid beta, the major constituent of the senile plaques in the brains of patients with Alzheimer's disease, is cytotoxic to neurons and has a central role in the pathogenesis of the disease. We have previously demonstrated that potent antioxidants idebenone and alpha-tocopherol prevent learning and memory impairment in rats which received a continuous intracerebroventricular infusion of amyloid beta, suggesting a role for oxidative stress in amyloid beta-induced learning and memory impairment. To test the hypothesis, in the present study, we investigated alterations in the immunoreactivity of endogenous antioxidant systems such as mitochondrial Mn-superoxide dismutase, glutathione, glutathione peroxidase and glutathione-S-transferase following the continuous intracerebroventricular infusion of amyloid beta for 2 weeks. The infusion of amyloid beta (1-42) resulted in a significant reduction of the immunoreactivity of these antioxidant substances in such brain areas as the hippocampus, parietal cortex, piriform cortex, substantia nigra and thalamus although the same treatment with amyloid beta (40-1) had little effect. The alterations induced by amyloid beta (1-42) were not uniform, but rather specific for each immunoreactive substance in a brain region-dependent manner. These results demonstrate a cytological effect of oxidative stress induced by amyloid beta (1-42) infusion. Furthermore, our findings may indicate a heterogeneous susceptibility to the oxidative stress produced by amyloid beta.
Collapse
Affiliation(s)
- H-C Kim
- Department of Pharmacy, College of Pharmacy, Kangwon National University, Korea Institute of Drug Abuse, Chunchon 200-701, South Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
309
|
Gegg ME, Beltran B, Salas-Pino S, Bolanos JP, Clark JB, Moncada S, Heales SJR. Differential effect of nitric oxide on glutathione metabolism and mitochondrial function in astrocytes and neurones: implications for neuroprotection/neurodegeneration? J Neurochem 2003; 86:228-37. [PMID: 12807442 DOI: 10.1046/j.1471-4159.2003.01821.x] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Primary culture rat astrocytes exposed to the long acting nitric oxide donor (Z)-1-[2-aminoethyl)-N-(2-ammonioethyl)amino]diazen-1-ium-1,2-diolate (DETA-NO) for 24 h approximately double their concentration of glutathione (GSH) and show no sign of cell death. In contrast, GSH was depleted by 48%, and significant loss of mitochondrial respiratory chain complex activity and cell death were observed in primary culture rat neurones subjected to DETA-NO for 18 h. Northern blot analysis suggested that mRNA amounts of both subunits of glutamate-cysteine ligase (GCL), the rate-limiting enzyme in GSH synthesis, were elevated in astrocytes following nitric oxide (NO) exposure. This correlated with an increase in astrocytic GCL activity. Neurones on the other hand did not exhibit increased GCL activity when exposed to NO. In addition, the rate of GSH efflux was doubled and gamma-glutamyltranspeptidase (gamma-GT) activity was increased by 42% in astrocytes treated with NO for 24 h. These results suggest that astrocytes, but not neurones, up-regulate GSH synthesis as a defence mechanism against excess NO. It is possible that the increased rate of GSH release and activity of gamma-GT in astrocytes may have important implications for neuroprotection in vivo by optimizing the supply of GSH precursors to neurones in close proximity.
Collapse
Affiliation(s)
- M E Gegg
- Department of Molecular Pathogenesis, Division of Neurochemistry, Institute of Neurology, London, UK
| | | | | | | | | | | | | |
Collapse
|
310
|
Rougemont M, Do KQ, Castagné V. New model of glutathione deficit during development: Effect on lipid peroxidation in the rat brain. J Neurosci Res 2002; 70:774-83. [PMID: 12444599 DOI: 10.1002/jnr.10439] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Glutathione is a major regulator of the redox equilibrium, so its deficit weakens tissue resistance to oxidants. The nervous system is particularly susceptible to oxidative insults and is therefore very dependent on its glutathione content, especially during development, when brain metabolism and growth are maximal. In addition, various pathologies affecting the nervous system involve oxidative stress, possibly associated with a diminution of glutathione concentrations. To study the involvement of glutathione in brain redox homeostasis, we set up an experimental model of chronic glutathione deficit. Developing rats were treated daily with L-buthionine-(S,R)-sulfoximine (BSO), an inhibitor of glutathione synthesis, and their brain levels of glutathione and lipid peroxidation products (TBARS) were measured. BSO induced a 40-50% glutathione deficit in the cortex, diencephalon, and pons/medulla. Despite the glutathione deficit induced by BSO, we did not observe any signs of oxidative stress. Because it is known that rats compensate for a glutathione deficit by enhancing their synthesis and tissue levels of ascorbic acid (AA), we performed the same experiment in osteogenic-disorder Shionogi (ODS) rats, a mutant strain that cannot synthetize AA. Although BSO induced a glutathione deficit of comparable intensity in the two strains of rats, it elevated TBARS levels in the diencephalon and pons/medulla only in ODS and not in nonmutant rats. These results suggest that ODS rats, which closely mimic the human redox regulation, will allow study of the long-term consequences of chronic glutathione deficit observed in various clinical situations.
Collapse
Affiliation(s)
- Michaël Rougemont
- Centre de Recherche en Neurosciences Psychiatriques, Hôpital Psychiatrique Universitaire de Cery, Prilly-Lausanne, Switzerland
| | | | | |
Collapse
|
311
|
Lotharius J, Brundin P. Pathogenesis of Parkinson's disease: dopamine, vesicles and alpha-synuclein. Nat Rev Neurosci 2002; 3:932-42. [PMID: 12461550 DOI: 10.1038/nrn983] [Citation(s) in RCA: 902] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Julie Lotharius
- Section for Neuronal Survival, Wallenberg Neuroscience Center, Department of Physiological Sciences, Lund University, BMC A10, 221 84 Lund, Sweden.
| | | |
Collapse
|
312
|
Cecchi C, Fiorillo C, Sorbi S, Latorraca S, Nacmias B, Bagnoli S, Nassi P, Liguri G. Oxidative stress and reduced antioxidant defenses in peripheral cells from familial Alzheimer's patients. Free Radic Biol Med 2002; 33:1372-9. [PMID: 12419469 DOI: 10.1016/s0891-5849(02)01049-3] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We have measured the levels of typical end products of the processes of lipid peroxidation, protein oxidation, and total antioxidant capacity (TAC) in skin fibroblasts and lymphoblasts taken from patients with familial Alzheimer's disease (FAD), sporadic Alzheimer's disease (AD), and age-matched healthy controls. Compared to controls, the fibroblasts and lymphoblasts carrying amyloid precursor protein (APP) and presenilin-1 (PS-1) gene mutations showed a clear increase in lipoperoxidation products, malondialdehyde (MDA), and 4-hydroxynonenal (4-HNE). In contrast, the antioxidant defenses of cells from FAD patients were lower than those from normal subjects. Lipoperoxidation and antioxidant capacity in lymphoblasts from patients affected by sporadic AD were virtually indistinguishable from the basal values of normal controls. An oxidative attack on protein gave rise to greater protein carbonyl content in FAD patients than in age-matched controls. Furthermore, ADP ribosylation levels of poly(ADP-ribose) polymerase (PARP) nuclear substrates were significantly raised, whereas the PARP content did not differ significantly between fibroblasts carrying gene mutations and control cells. These results indicate that peripheral cells carrying APP and PS-1 gene mutations show altered levels of oxidative markers even though they are not directly involved in the neurodegenerative process of AD. These results support the hypothesis that oxidative damage to lipid, protein, and DNA is an important early event in the pathogenesis of AD.
Collapse
Affiliation(s)
- Cristina Cecchi
- Department of Biochemical Sciences, University of Florence, Florence, Italy
| | | | | | | | | | | | | | | |
Collapse
|
313
|
Rensink AAM, Verbeek MM, Otte-Höller I, ten Donkelaar HT, de Waal RMW, Kremer B. Inhibition of amyloid-beta-induced cell death in human brain pericytes in vitro. Brain Res 2002; 952:111-21. [PMID: 12363410 DOI: 10.1016/s0006-8993(02)03218-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Amyloid-beta protein (A beta) deposition in the cerebral vascular walls is one of the key features of Alzheimer's disease and hereditary cerebral hemorrhage with amyloidosis-Dutch type (HCHWA-D). A beta(1-40) carrying the 'Dutch' mutation (HCHWA-D A beta(1-40)) induces pronounced degeneration of cultured human brain pericytes. In this study, we aimed to identify inhibitors of A beta-induced toxicity in human brain pericytes. The toxic effect of HCHWA-D A beta(1-40) on human brain pericytes was inhibited by co-incubation with catalase, but not with superoxide dismutase, glutathione or vitamin E analogue Trolox. Catalase interacts with A beta, both in cell cultures and in cell-free assays, and has a prominent effect on the amount and conformational state of A beta binding to the cell surface of human brain pericytes. This activity of catalase is likely based on its ability to bind and slowly degrade A beta and not by its usual capacity to convert hydrogen peroxide. Our data confirm that assembly of A beta at the cell surface of human brain pericytes is a crucial step in A beta-induced cellular degeneration of human brain pericytes. Inhibition of fibril formation at the cell surface could be an important factor in therapy aimed at reducing cerebral amyloid angiopathy.
Collapse
Affiliation(s)
- Annemieke A M Rensink
- Department of Neurology, University Medical Centre, PO Box 9101, 6500 HB, Nijmegen, The Netherlands.
| | | | | | | | | | | |
Collapse
|
314
|
Montilla-López P, Muñoz-Agueda MC, Feijóo López M, Muñoz-Castañeda JR, Bujalance-Arenas I, Túnez-Fiñana I. Comparison of melatonin versus vitamin C on oxidative stress and antioxidant enzyme activity in Alzheimer's disease induced by okadaic acid in neuroblastoma cells. Eur J Pharmacol 2002; 451:237-43. [PMID: 12242084 DOI: 10.1016/s0014-2999(02)02151-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
We demonstrated that exposure of cells to 50 nM okadaic acid for 2 h induced a reduction in cellular glutathione transferase, glutathione reductase and catalase activity. Likewise, this acid prompted an increase in lipid peroxidation. Treatment of cells with 10(-5) M melatonin or 0.5 microg/ml vitamin C prevented the effects of okadaic acid. These results indicate that okadaic acid induces an oxidative stress imbalance, while melatonin and vitamin C prevent the oxidative stress induced by okadaic acid. Likewise, these data indicate the great importance of oxidative stress in both this experimental model and in the development and course of neurodegenerative disease, especially Alzheimer's disease. They show that melatonin is much more efficient than vitamin C in reducing the extent of oxidative stress. This phenomenon was demonstrated by the smaller dose of melatonin needed to obtain effects similar to those obtained with vitamin C on lipid peroxidation and by the protective effect of melatonin on antioxidant enzyme activity.
Collapse
Affiliation(s)
- Pedro Montilla-López
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Córdoba, Avda Menéndez Pidal s/n, 14004 Córdoba, Spain.
| | | | | | | | | | | |
Collapse
|
315
|
Uberti D, Carsana T, Bernardi E, Rodella L, Grigolato P, Lanni C, Racchi M, Govoni S, Memo M. Selective impairment of p53-mediated cell death in fibroblasts from sporadic Alzheimer's disease patients. J Cell Sci 2002; 115:3131-8. [PMID: 12118068 DOI: 10.1242/jcs.115.15.3131] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this study, we evaluated the response of different human skin fibroblast cultures obtained from eight probable Alzheimer's disease patients and eight non-Alzheimer's disease subjects to an acute oxidative injury elicited by H(2)O(2). This treatment generates reactive oxygen species, which are responsible for DNA damage and apoptosis. To compare the sensitivity of fibroblasts from Alzheimer's disease or non-Alzheimer's disease patients to H(2)O(2) exposure, we evaluated different parameters, including cell viability, the extension of DNA damage and the ability of the cells to arrest proliferation and to activate an apoptotic program. We found that fibroblasts from Alzheimer's disease patients were more resistant that those from control subjects to H(2)O(2) treatment, although the extent of DNA damage induced by the oxidative injury was similar in both experimental groups. The protective mechanism of Alzheimer's disease fibroblasts was related to an impairment of H(2)O(2)-induced cell cycle arrest and characterized by an accelerated re-entry into the cell cycle and a diminished induction of apoptosis. Fibroblasts from Alzheimer's disease patients also have a profound impairment in the H(2)O(2)-activated, p53-dependent pathway, which results in a lack of activation of p53 or p53-target genes, including p21, GADD45 and bax. This study demonstrates a specific alteration of an intracellular pathway involved in sensing and repairing DNA damage in peripheral cells from Alzheimer's disease patients.
Collapse
Affiliation(s)
- Daniela Uberti
- Department of Biomedical Sciences and Biotechnologies, University of Brescia, Brescia, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
316
|
Butterfield DA, Kanski J. Methionine residue 35 is critical for the oxidative stress and neurotoxic properties of Alzheimer's amyloid beta-peptide 1-42. Peptides 2002; 23:1299-309. [PMID: 12128086 DOI: 10.1016/s0196-9781(02)00066-9] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Amyloid beta-peptide 1-42 [Abeta(1-42)] is central to the pathogenesis of Alzheimer's disease (AD), and the AD brain is under intense oxidative stress. Our laboratory combined these two aspects of AD into the Abeta-associated free radical oxidative stress model for neurodegeneration in AD brain. Abeta(1-42) caused protein oxidation, lipid peroxidation, reactive oxygen species formation, and cell death in neuronal and synaptosomal systems, all of which could be inhibited by free radical antioxidants. Recent studies have been directed at discerning molecular mechanisms by which Abeta(1-42)-associated free radical oxidative stress and neurotoxicity arise. The single methionine located in residue 35 of Abeta(1-42) is critical for these properties. This review presents the evidence supporting the role of methionine in Abeta(1-42)-associated free radical oxidative stress and neurotoxicity. This work is of obvious relevance to AD and provides a coupling between the centrality of Abeta(1-42) in the pathogenesis of AD and the oxidative stress under which the AD brain exists.
Collapse
Affiliation(s)
- D Allan Butterfield
- Department of Chemistry, Center of Membrane Sciences, and Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40506, USA.
| | | |
Collapse
|
317
|
Giasson BI, Ischiropoulos H, Lee VMY, Trojanowski JQ. The relationship between oxidative/nitrative stress and pathological inclusions in Alzheimer's and Parkinson's diseases. Free Radic Biol Med 2002; 32:1264-75. [PMID: 12057764 DOI: 10.1016/s0891-5849(02)00804-3] [Citation(s) in RCA: 201] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Alzheimer's (AD) and Parkinson's diseases (PD) are late-onset neurodegenerative diseases that have tremendous impact on the lives of affected individuals, their families, and society as a whole. Remarkable efforts are being made to elucidate the dominant factors that result in the pathogenesis of these disorders. Extensive postmortem studies suggest that oxidative/nitrative stresses are prominent features of these diseases, and several animal models support this notion. Furthermore, it is likely that protein modifications resulting from oxidative/nitrative damage contribute to the formation of intracytoplasmic inclusions characteristic of each disease. The frequent presentation of both AD and PD in individuals and the co-occurrence of inclusions characteristic of AD and PD in several other neurodegenerative diseases suggests the involvement of a common underlying aberrant process. It can be surmised that oxidative/nitrative stress, which is cooperatively influenced by environmental factors, genetic predisposition, and senescence, may be a link between these disorders.
Collapse
Affiliation(s)
- Benoit I Giasson
- Center for Neurodegenerative Disease Research and Department of Pathology and Laboratory Medicine, The University of Pennsylvania, Philadelphia, PA 19104-4283, USA
| | | | | | | |
Collapse
|
318
|
Yavin E, Brand A, Green P. Docosahexaenoic acid abundance in the brain: a biodevice to combat oxidative stress. Nutr Neurosci 2002; 5:149-57. [PMID: 12041873 DOI: 10.1080/10284150290003159] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Docosahexaenoic acid (DHA) (22:6) is a polyunsaturated fatty acid of the n - 3 series which is believed to be a molecular target for lipid peroxides (LPO) formation. Its ubiquitous nature in the nervous tissue renders it particularly vulnerable to oxidative stress, which is high in brain during normal activity because of high oxygen consumption and generation of reactive oxygen species (ROS). Under steady state conditions potentially harmful ROS and LPO are maintained at low levels due to a strong antioxidant defense mechanism, which involves several enzymes and low molecular weight reducing compounds. The present review emphasizes a paradox: a discrepancy between the expected high oxidability of the DHA molecule due to its high degree of unsaturation and certain experimental results which would indicate no change or even decreased lipid peroxidation when brain tissue is supplied or enriched with DHA. The following is a critical review of the experimental data relating DHA levels in the brain to lipid peroxidation and oxidative damage there. A neuroprotective role for DHA, possibly in association with the vinyl ether (VE) linkage of plasmalogens (pPLs) in combating free radicals is proposed.
Collapse
Affiliation(s)
- Ephraim Yavin
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel.
| | | | | |
Collapse
|
319
|
Butterfield DA, Lauderback CM. Lipid peroxidation and protein oxidation in Alzheimer's disease brain: potential causes and consequences involving amyloid beta-peptide-associated free radical oxidative stress. Free Radic Biol Med 2002; 32:1050-60. [PMID: 12031889 DOI: 10.1016/s0891-5849(02)00794-3] [Citation(s) in RCA: 756] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Amyloid beta-peptide (A(beta)) is heavily deposited in the brains of Alzheimer's disease (AD) patients, and free radical oxidative stress, particularly of neuronal lipids and proteins, is extensive. Recent research suggests that these two observations may be linked by A(beta)-induced oxidative stress in AD brain. This review summarizes current knowledge on phospholipid peroxidation and protein oxidation in AD brain, one potential cause of this oxidative stress, and consequences of A(beta)-induced lipid peroxidation and protein oxidation in AD brain.
Collapse
Affiliation(s)
- D Allan Butterfield
- Department of Chemistry, Center of Membrane Sciences, and Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40506-0055, USA.
| | | |
Collapse
|
320
|
Abstract
Oxidative damage is present within the brains of patients with Alzheimer's disease (AD), and is observed within every class of biomolecule, including nucleic acids, proteins, lipids and carbohydrates. Oxidative injury may develop secondary to excessive oxidative stress resulting from beta-amyloid-induced free radicals, mitochondrial abnormalities, inadequate energy supply, inflammation or altered antioxidant defences. Treatment with antioxidants is a promising approach for slowing disease progression to the extent that oxidative damage may be responsible for the cognitive and functional decline observed in AD. Although not a uniformly consistent observation, a number of epidemiological studies have found a link between antioxidant intake and a reduced incidence of dementia, AD and cognitive decline in elderly populations. In AD clinical trials molecules with antioxidant properties such as vitamin E and Ginkgo biloba extract have shown modest benefit. A clinical trial with vitamin E is currently ongoing to determine if it can delay progression to AD in individuals with mild cognitive impairment. Combinations of antioxidants might be of even greater potential benefit for AD, especially if the agents worked in different cellular compartments or had complementary activity (e.g. vitamins E, C and ubiquinone). Naturally-occurring compounds with antioxidant capacity are available and widely marketed (e.g. vitamin C, ubiquinone, lipoic acid, beta-carotene, creatine, melatonin, curcumin) and synthetic compounds are under development by industry. Nevertheless, the clinical value of these agents for AD prevention and treatment is ambiguous, and will remain so until properly designed human trials have been performed.
Collapse
Affiliation(s)
- Michael Grundman
- Alzheimer's Disease Cooperative Study, University of California, San Diego, 8950 Villa La Jolla Drive, Suite 2200, La Jolla, California 92037, USA.
| | | | | |
Collapse
|
321
|
Tendi EA, Bosetti F, Dasgupta SF, Stella AMG, Drieu K, Rapoport SI. Ginkgo biloba extracts EGb 761 and bilobalide increase NADH dehydrogenase mRNA level and mitochondrial respiratory control ratio in PC12 cells. Neurochem Res 2002; 27:319-23. [PMID: 11958534 DOI: 10.1023/a:1014963313559] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In the present study, we investigated the effect of Ginkgo biloba extract, EGb 761, and one of its components, bilobalide, on gene expression of subunit 1 of mitochondrial NADH dehydrogenase (ND1) in PC12 cells. By Northern blot analysis we found a approximately 2-fold significant increase in NDI mRNA level, after 48 and 72 h exposure to 100 microg/ml EGb 761 and to 10 microg/ml bilobalide. We also evaluated, by oxygraphy measurements, mitochondrial respiration during state 3 and state 4. In cells treated with EGb 761 and bilobalide for 48 and 72 h, state 4 respiration was significantly decreased, and the respiratory control ratio was increased. These results provide evidence that EGb 761 and bilobalide exert their protective effects by up-regulating mitochondrial ND1 gene expression and by decreasing state 4 respiration, whose increase is thought to be responsible for oxidative damage.
Collapse
Affiliation(s)
- Elisabetta A Tendi
- Brain Physiology and Metabolism Section, National Institute on Aging. National Institutes of Health. Bethesda, MD 20892, USA.
| | | | | | | | | | | |
Collapse
|
322
|
Abstract
Alzheimer's disease (AD) is the most common form of neurodegenerative disease, with dementia, in the elderly. In addition to the presence of senile plaques and neurofibrillary tangles, the AD brain exhibits evidence for oxygen radical-mediated damage, a situation commonly known as oxidative stress. However, the ability to directly implicate this mechanism in AD has been a difficult task for several reasons. First, most of the analytical approaches used to investigate oxidative stress turned out to be unreliable. Second, the majority of the published studies have been performed in post-mortem tissues with advanced disease, leaving open the question as to whether oxidative stress is an early event or a common final step secondary to the degenerative process. The discovery of the isoprostanes, recent studies performed in living patients, and the development of transgenic animal models of AD-amyloidosis are three important factors that are helping us to better understand and define the role that oxygen radicals might play in AD pathogenesis. Here we review some of the most recent works that have supported the importance of oxygen radical-mediated damage in AD. The accumulated information points toward an earlier involvement than previously thought of oxidative stress in the pathogenesis of the disease, making this a potential target for therapeutic intervention, especially in subjects at high risk for developing AD.
Collapse
Affiliation(s)
- Domenico Praticò
- Department of Pharmacology, Center for Experimental Therapeutics School of Medicine, University of Pennsylvania, 421 Curie Blvd., BRB 2/3, Room 812, Philadelphia, PA 19104, USA.
| |
Collapse
|
323
|
Mórocz M, Kálmán J, Juhász A, Sinkó I, McGlynn AP, Downes CS, Janka Z, Raskó I. Elevated levels of oxidative DNA damage in lymphocytes from patients with Alzheimer's disease. Neurobiol Aging 2002; 23:47-53. [PMID: 11755018 DOI: 10.1016/s0197-4580(01)00257-3] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Previous studies have provided evidence of the involvement of oxidative damage in the pathogenesis of Alzheimer's disease (AD). Although the role of oxidative stress in the aetiology of the disease is still not clear, the detection of an increased damage status in the cells of patients could have important therapeutic implications. The level of oxidative damage and repair capacity in peripheral lymphocytes of AD patients and of age-matched controls was determined by the Comet assay applied to freshly isolated blood samples with oxidative lesion-specific DNA repair endonucleases. This is less prone to errors arising from oxidative artifacts than chemical analytical methods; and is therefore a relatively reliable, as well as rapid method for assay of oxidative DNA damage in cells. Statistically significant elevations (P < 0.05) of oxidized purines were observed in nuclear DNA of peripheral lymphocytes from AD patients, compared to age matched control subjects, both at basal level and after oxidative stress induced by H(2)O(2.) AD patients also showed a diminished repair of H(2)O(2) -induced oxidized purines.
Collapse
Affiliation(s)
- Mónika Mórocz
- Biological Research Centre of Hungarian Academy of Sciences, Institute of Genetics, POB 521, H-6701, Szeged, Hungary.
| | | | | | | | | | | | | | | |
Collapse
|
324
|
Pang ZJ, Chen Y, Zhou M. Polysaccharide Krestin enhances manganese superoxide dismutase activity and mRNA expression in mouse peritoneal macrophages. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2001; 28:331-41. [PMID: 11154046 DOI: 10.1142/s0192415x00000398] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Manganese superoxide dismutase (MnSOD), an inductive antioxidant enzyme, can protect cells from oxidative injury to the mitochondria. The elevation of MnSOD activity in cells can effectively prevent many diseases associated with oxidative stress. Polysaccharide Krestin (PSK), a kind of protein-bound polysaccharide extracted from Coriolus versicolor, is used as an immune response modifier in anti-tumor therapy. We have previously found that PSK could alleviate the oxidative injury that oxidized low density lipoprotein (Ox-LDL) brought to monocytes/macrophages, and therefore had some preventive or therapeutic effect on atherosclerosis. In order to find out if the effects of PSK were associated with the alteration ofantioxidant enzymes, we investigated its effect on MnSOD activity and gene expression in mouse peritoneal macrophages. The results showed that PSK could enhance SOD activity and increase the contents ofMnSOD mRNA in mouse peritoneal macrophages. Furthermore, the induction of MnSOD by PSK could be blocked by cycloheximide and actinomycin D.
Collapse
Affiliation(s)
- Z J Pang
- Research Laboratory of Free Radical Medicine, The First Military Medical University, Guangzhou, China
| | | | | |
Collapse
|
325
|
Campbell A, Smith MA, Sayre LM, Bondy SC, Perry G. Mechanisms by which metals promote events connected to neurodegenerative diseases. Brain Res Bull 2001; 55:125-32. [PMID: 11470308 DOI: 10.1016/s0361-9230(01)00455-5] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Although the exact causative phenomenon responsible for the onset and progression of neurodegenerative disorders is at present unresolved, there are some clues as to the mechanisms underlying these chronic diseases. This review addresses mechanisms by which endogenous or environmental factors, through interaction with redox active metals, may initiate a common cascade of events terminating in neurodegeneration.
Collapse
Affiliation(s)
- A Campbell
- Department of Community and Environmental Medicine, University of California, Irvine, Irvine, CA 92697-1825, USA.
| | | | | | | | | |
Collapse
|
326
|
Aksenov MY, Markesbery WR. Changes in thiol content and expression of glutathione redox system genes in the hippocampus and cerebellum in Alzheimer's disease. Neurosci Lett 2001; 302:141-5. [PMID: 11290407 DOI: 10.1016/s0304-3940(01)01636-6] [Citation(s) in RCA: 504] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In this report, we compared total and protein-bound thiol levels in the hippocampus and cerebellum of six Alzheimer's disease (AD) patients and six age-matched control subjects. Total level of sulfhydryl (SH) groups, determined using the 5,5'-dithiobis(2-nitrobenzoic acid) method, was not significantly altered in the hippocampus and cerebellum of AD patients. The level of protein-bound SH groups, determined by labeling with 3-(N-maleimido-propionyl) biocytin, was decreased in the AD hippocampus compared with controls. Reverse transcription-polymerase chain reaction analysis of the expression of key glutathione redox system genes demonstrated the induction of glutathione reductase and glutathione peroxidase messages in the AD hippocampus. Levels of glutathione transferase mu and A4-4 messages were unchanged. This study suggests that protective antioxidant gene responses are insufficient to counteract the increased oxidative damage of proteins in a vulnerable region of the AD brain.
Collapse
Affiliation(s)
- M Y Aksenov
- Sanders-Brown Center on Aging, University of Kentucky, 101 Sanders-Brown Building, 800 South Limestone, Lexington, KY 40536-0230, USA
| | | |
Collapse
|
327
|
Karelson E, Bogdanovic N, Garlind A, Winblad B, Zilmer K, Kullisaar T, Vihalemm T, Kairane C, Zilmer M. The cerebrocortical areas in normal brain aging and in Alzheimer's disease: noticeable differences in the lipid peroxidation level and in antioxidant defense. Neurochem Res 2001; 26:353-61. [PMID: 11495345 DOI: 10.1023/a:1010942929678] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The markers of oxidative stress were measured in four cerebrocortical regions of Alzheimer's disease (AD) and age-matched control brains. In controls the levels of diene conjugates (DC) and lipid peroxides (LOOH) were significantly higher in the sensory postcentral and occipital primary cortex than in the temporal inferior or frontal inferior cortex. The antioxidant capacity (AOC) was highest in the temporal, and GSH in the frontal inferior cortex. The highest activity of superoxide dismutase (SOD) and catalase (CAT) was found in the occipital primary cortex. Compared with controls, significantly higher level of DC and LOOH and attenuated AOC were evident in AD temporal inferior cortex. In AD frontal inferior cortex moderate increase in LOOH was associated with positive correlation between SOD activity and counts of senile plaques. Our data suggest that in AD cerebral cortex, the oxidative stress is expressed in the reducing sequence: temporal inferior cortex > frontal inferior cortex > sensory postcentral cortex approximately = occipital primary cortex, corresponding to the histopathological spreading of AD from the associative to primary cortical areas.
Collapse
Affiliation(s)
- E Karelson
- Department of Biochemistry, Faculty of Medicine, University of Tartu, Estonia.
| | | | | | | | | | | | | | | | | |
Collapse
|
328
|
Tuppo EE, Forman LJ, Spur BW, Chan-Ting RE, Chopra A, Cavalieri TA. Sign of lipid peroxidation as measured in the urine of patients with probable Alzheimer's disease. Brain Res Bull 2001; 54:565-8. [PMID: 11397549 DOI: 10.1016/s0361-9230(01)00450-6] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Free radical-induced oxidative damage may be involved in the neurodegenerative process associated with Alzheimer's disease (AD). 8-Isoprostaglandin F(2alpha) (iPF(2alpha)-III) is an isoprostane derived from free radical-induced non-enzymatic oxidation of arachidonic acid. It is formed in vivo and is an indicator of lipid peroxidation. Measurements were made of iPF(2alpha)-III in the urine of patients with mild to moderate dementia associated with probable AD and compared to those in the urine of non-demented subjects, who were similar in age and gender. 2,3-Dinor thromboxane B(2) (dinor TXB(2)), a urinary metabolite of TXB(2) was also measured, and served as an indicator of the enzymatic transformation of a product of arachidonic acid. Enzyme linked immunoassays were used to measure iPF(2alpha)-III and dinor TXB(2) in the urine. The concentration of iPF(2alpha)-III was significantly elevated in urine of patients assessed to have mild to moderate dementia as compared to non-demented patients. The concentration of urinary dinor TXB(2) was also significantly elevated in the patients with dementia and probable AD as compared to the non-demented subjects. There was considerable overlap of values obtained for demented and non-demented patients for iPF(2alpha)-III and dinor TXB(2), respectively. The observed elevation of iPF(2alpha)-III suggests that patients with mild to moderate dementia associated with probable AD are experiencing significant oxidative stress. This finding is consistent with current data suggesting that oxidative stress may be occurring in patients with dementia and probable AD. The increase of dinor TXB(2) may indicate that enzymatic processes related to the metabolism of arachidonic acid-derived products are also increased in demented patients with probable AD.
Collapse
Affiliation(s)
- E E Tuppo
- Center for Aging, University of Medicine Dentistry of New Jersey, School of Osteopathic Medicine, Stratford, NJ 08084, USA
| | | | | | | | | | | |
Collapse
|
329
|
Albers DS, Beal MF. Mitochondrial dysfunction and oxidative stress in aging and neurodegenerative disease. JOURNAL OF NEURAL TRANSMISSION. SUPPLEMENTUM 2001; 59:133-54. [PMID: 10961426 DOI: 10.1007/978-3-7091-6781-6_16] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A major risk factor for neurodegenerative diseases such as Parkinson's disease (PD), Huntington's disease (HD), amyotrophic lateral sclerosis (ALS), Alzheimer's disease (AD) and progressive supranuclear palsy (PSP) is aging. Two processes that have been implicated in aging are free radical-induced oxidative damage and mitochondrial dysfunction. A progressive impairment of mitochondrial function and/or increased oxidative damage has been suggested to play critical roles in the pathogenesis of these neurodegenerative diseases. For example, decreased complex I activity, increased oxidative damage and altered activities of antioxidant defense enzymes have been demonstrated in PD. In AD, decrements in complex IV activity and increased oxidative damage have been reported. Reductions in complex II activity, increased cortical lactate levels and oxidative damage have been described in HD. Some familial ALS cases are associated with mutations in the gene for Cu,Zn superoxide dismutase (SOD1) while increased oxidative damage is observed in sporadic ALS. Studies in PSP have demonstrated regionally specific reductions in brain and muscle mitochondrial function, hypofrontality and increased oxidative damage. Altogether, the age-dependent onset and progressive course of these neurodegenerative diseases may ultimately highlight an association between aging, mitochondrial impairment and oxidative stress.
Collapse
Affiliation(s)
- D S Albers
- Department of Neurology and Neuroscience, Weill Medical College of Cornell University, New York, NY 10021, USA
| | | |
Collapse
|
330
|
The human DIMINUTO/DWARF1 homolog seladin-1 confers resistance to Alzheimer's disease-associated neurodegeneration and oxidative stress. J Neurosci 2001. [PMID: 11007892 DOI: 10.1523/jneurosci.20-19-07345.2000] [Citation(s) in RCA: 205] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
In Alzheimer's disease (AD) brains, selected populations of neurons degenerate heavily, whereas others are frequently spared from degeneration. To address the cellular basis for this selective vulnerability of neurons in distinct brain regions, we compared gene expression between the severely affected inferior temporal lobes and the mostly unaffected fronto-parietal cortices by using an mRNA differential display. We identified seladin-1, a novel gene, which was downregulated in large pyramidal neurons in vulnerable regions in AD but not control brains. Seladin-1 is a human homolog of the DIMINUTO/DWARF1 gene described in plants and Caenorhabditis elegans. Its sequence shares similarities with flavin-adenin-dinucleotide (FAD)-dependent oxidoreductases. In human control brain, seladin-1 was highly expressed in almost all neurons. In PC12 cell clones that were selected for resistance against AD-associated amyloid-beta peptide (Abeta)-induced toxicity, both mRNA and protein levels of seladin-1 were approximately threefold higher as compared with the non-resistant wild-type cells. Functional expression of seladin-1 in human neuroglioma H4 cells resulted in the inhibition of caspase 3 activation after either Abeta-mediated toxicity or oxidative stress and protected the cells from apoptotic cell death. In apoptotic cells, however, endogenous seladin-1 was cleaved to a 40 kDa derivative in a caspase-dependent manner. These results establish that seladin-1 is an important factor for the protection of cells against Abeta toxicity and oxidative stress, and they suggest that seladin-1 may be involved in the regulation of cell survival and death. Decreased expression of seladin-1 in specific neurons may be a cause for selective vulnerability in AD.
Collapse
|
331
|
Abstract
Brain aging, Alzheimer disease and stroke share common elements of deficits in calcium regulation, declines in mitochondrial function, increases in generation of reactive oxygen species (ROS), accumulated damage from ROS and immune system dysfunction. The problem is to distinguish less significant side reactions, such as gray hair, from aspects of aging that contribute to disease. Toward establishing cause and effect relationships, a neuron cell culture system is described that allows comparisons with age under uniform environmental conditions. This neuron culture model indicates that susceptibility to death by apoptosis and consequences of the inflammatory response from beta-amyloid are age-related and an inherent characteristic of the neurons. Further mechanistic investigations are possible. New therapeutic approaches are suggested that combine inhibition of calcium overloads (calcium channel blockers), reduced ROS damage (melatonin, N-acetyl-cysteine), and bolstered mitochondrial function and energy generation (creatine). Together with newly demonstrated capabilities for adult and aged neuron regeneration and multiplication, i.e. plasticity, these approaches offer new hope toward reversing age-related decrements and damage from neurodegenerative disease.
Collapse
Affiliation(s)
- G J Brewer
- Department of Neurology, School of Medicine, Southern Illinois University, Springfield, IL, 62794-9626, USA.
| |
Collapse
|
332
|
Miranda S, Opazo C, Larrondo LF, Muñoz FJ, Ruiz F, Leighton F, Inestrosa NC. The role of oxidative stress in the toxicity induced by amyloid beta-peptide in Alzheimer's disease. Prog Neurobiol 2000; 62:633-48. [PMID: 10880853 DOI: 10.1016/s0301-0082(00)00015-0] [Citation(s) in RCA: 279] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
One of the theories involved in the etiology of Alzheimer's disease (AD) is the oxidative stress hypothesis. The amyloid beta-peptide (A beta), a hallmark in the pathogenesis of AD and the main component of senile plaques, generates free radicals in a metal-catalyzed reaction inducing neuronal cell death by a reactive oxygen species mediated process which damage neuronal membrane lipids, proteins and nucleic acids. Therefore, the interest in the protective role of different antioxidants in AD such as vitamin E, melatonin and estrogens is growing up. In this review we summarize data that support the involvement of oxidative stress as an active factor in A beta-mediated neuropathology, by triggering or facilitating neurodegeneration, through a wide range of molecular events that disturb neuronal cell homeostasis.
Collapse
Affiliation(s)
- S Miranda
- Centro de Regulación Celular y Patología, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, P.O. Box 114-D, Santiago, Chile
| | | | | | | | | | | | | |
Collapse
|
333
|
Abstract
Alzheimer's disease is one of the most challenging brain disorders and has profound medical and social consequences. It affects approximately 15 million persons worldwide, and many more family members and care givers are touched by the disease. The initiating molecular event(s) is not known, and its pathophysiology is highly complex. However, free radical injury appears to be a fundamental process contributing to the neuronal death seen in the disorder, and this hypothesis is supported by many (although not all) studies using surrogate markers of oxidative damage. In vitro and animal studies suggest that various compounds with antioxidant ability can attenuate the oxidative stress induced by beta-amyloid. Recently, clinical trials have demonstrated potential benefits from treatment with the antioxidants, vitamin E, selegiline, extract of Gingko biloba, and idebenone. Further studies are warranted to confirm these findings and explore the optimum timing and antioxidant combination of such treatments in this therapeutically frustrating disease.
Collapse
Affiliation(s)
- D Praticò
- Department of Pharmacology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | |
Collapse
|
334
|
Schulz JB, Lindenau J, Seyfried J, Dichgans J. Glutathione, oxidative stress and neurodegeneration. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:4904-11. [PMID: 10931172 DOI: 10.1046/j.1432-1327.2000.01595.x] [Citation(s) in RCA: 871] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
There is significant evidence that the pathogenesis of several neurodegenerative diseases, including Parkinson's disease, Alzheimer's disease, Friedreich's ataxia and amyotrophic lateral sclerosis, may involve the generation of reactive oxygen species and mitochondrial dysfunction. Here, we review the evidence for a disturbance of glutathione homeostasis that may either lead to or result from oxidative stress in neurodegenerative disorders. Glutathione is an important intracellular antioxidant that protects against a variety of different antioxidant species. An important role for glutathione was proposed for the pathogenesis of Parkinson's disease, because a decrease in total glutathione concentrations in the substantia nigra has been observed in preclinical stages, at a time at which other biochemical changes are not yet detectable. Because glutathione does not cross the blood-brain barrier other treatment options to increase brain concentrations of glutathione including glutathione analogs, mimetics or precursors are discussed.
Collapse
Affiliation(s)
- J B Schulz
- Neurodegeneration Laboratory, Department of Neurology, University of Tübingen, Germany.
| | | | | | | |
Collapse
|
335
|
Varadarajan S, Yatin S, Aksenova M, Butterfield DA. Review: Alzheimer's amyloid beta-peptide-associated free radical oxidative stress and neurotoxicity. J Struct Biol 2000; 130:184-208. [PMID: 10940225 DOI: 10.1006/jsbi.2000.4274] [Citation(s) in RCA: 556] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Alzheimer's disease, the major dementing disorder of the elderly that affects over 4 million Americans, is related to amyloid beta-peptide, the principal component of senile plaques in Alzheimer's disease brain. Oxidative stress, manifested by protein oxidation and lipid peroxidation, among other alterations, is a characteristic of Alzheimer's disease brain. Our laboratory united these two observations in a model to account for neurodegeneration in Alzheimer's disease brain, the amyloid beta-peptide-associated oxidative stress model for neurotoxicity in Alzheimer's disease. Under this model, the aggregated peptide, perhaps in concert with bound redox metal ions, initiates free radical processes resulting in protein oxidation, lipid peroxidation, reactive oxygen species formation, cellular dysfunction leading to calcium ion accumulation, and subsequent neuronal death. Free radical antioxidants abrogate these findings. This review outlines the substantial evidence from multiidisciplinary approaches for amyloid beta-peptide-associated free radical oxidative stress and neurotoxicity and protection against these oxidative processes and cell death by free radical scavengers. In addition, we review the strong evidence supporting the notion that the single methionine residue of amyloid beta-peptide is vital to the oxidative stress and neurotoxicological properties of this peptide. Further, we discuss studies that support the hypothesis that aggregated soluble amyloid beta-peptide and not fibrils per se are necessary for oxidative stress and neurotoxicity associated with amyloid beta-peptide.
Collapse
Affiliation(s)
- S Varadarajan
- Department of Chemistry, University of Kentucky, Lexington, Kentucky, 40506-0055, USA
| | | | | | | |
Collapse
|
336
|
Abstract
Research in the field of molecular biology has helped to provide a better understanding of both the cascade of biochemical events that occurs with Alzheimer disease (AD) and the heterogeneous nature of the disease. One hypothesis that accounts for both the heterogeneous nature of AD and the fact that aging is the most obvious risk factor is that free radicals are involved. The probability of this involvement is supported by the fact that neurons are extremely sensitive to attacks by destructive free radicals. Furthermore, lesions are present in the brains of AD patients that are typically associated with attacks by free radicals (eg, damage to DNA, protein oxidation, lipid peroxidation, and advanced glycosylation end products), and metals (eg, iron, copper, zinc, and aluminum) are present that have catalytic activity that produce free radicals. beta-Amyloid is aggregated and produces more free radicals in the presence of free radicals; beta-amyloid toxicity is eliminated by free radical scavengers. Apolipoprotein E is subject to attacks by free radicals, and apolipoprotein E peroxidation has been correlated with AD. In contrast, apolipoprotein E can act as a free radical scavenger and this behavior is isoform dependent. AD has been linked to mitochondrial anomalies affecting cytochrome-c oxidase, and these anomalies may contribute to the abnormal production of free radicals. Finally, many free radical scavengers (eg, vitamin E, selegeline, and Ginkgo biloba extract EGb 761) have produced promising results in relation to AD, as has desferrioxamine-an iron-chelating agent-and antiinflammatory drugs and estrogens, which also have an antioxidant effect.
Collapse
Affiliation(s)
- Y Christen
- Fondation Ipsen, 24 rue Erlanger, 75016 Paris, France.
| |
Collapse
|
337
|
Abstract
BACKGROUND Vitamin E is a dietary compound that functions as an antioxidant scavenging toxic free radicals. Evidence that free radicals may contribute to the pathological processes in Alzheimer's disease has led to interest in the use of vitamin E in the treatment of this disorder. OBJECTIVES To examine the effects of vitamin E treatment for people with Alzheimer's disease. SEARCH STRATEGY The Cochrane Dementia Group Register of Clinical Trials was searched with the following terms: vitamin E, Alzheimer's disease, dementia, alpha-tocopherol, cognitive impairment, cognitive function and controlled trials. The latest search was carried out in July 2000. SELECTION CRITERIA All unconfounded, double blind, randomized trials in which treatment with vitamin E at any dose was compared with placebo for patients with Alzheimer's disease. DATA COLLECTION AND ANALYSIS Two reviewers independently applied the selection criteria an assessed study quality. One reviewer extracted and analysed the data. For each outcome measure data were sought on every patient randomized. Where such data were not available an analysis of patients who completed treatment was conducted. MAIN RESULTS Only one study was identified which met the inclusion criteria (Sano 1997). The primary outcome used in this study of 341 participants was survival time to the first of 4 endpoints, death, institutionalisation, loss of 2 out of 3 basic activities of daily living, or severe dementia, defined as a global Clinical Dementia Rating of 3. The investigators reported the total numbers in each group who reached the primary endpoint within two years for participants completing the study ("completers"). There appeared to be some benefit from vitamin E with fewer participants reaching endpoint - 58% (45/77) of completers compared with 74% (58/78) - a Peto odds ratio of 0.49, 95% confidence interval 0.25 to 0.96. However, more participants taking vitamin E suffered a fall (12/77 compared with 4/78; odds ratio 3.07, 95% CI 1.09 to 8.62). It was not possible to interpret the reported results for specific endpoints or for secondary outcomes of cognition, dependence, behavioural disturbance and activities of daily living. REVIEWER'S CONCLUSIONS There is insufficient evidence of efficacy of vitamin E in the treatment of people with with Alzheimer's disease. The one published trial of acceptable methodology (Sano 1997) was restricted to patients with moderate disease, and the published results are difficult to interpret. There is sufficient evidence of possible benefit to justify further studies. There was an excess of falls in the vitamin E group compared with placebo which requires further evaluation.
Collapse
Affiliation(s)
- N Tabet
- Old Age Psychiatry, The Maudsley Hospital, Denmark Hill, London, UK, SE5 8AZ.
| | | |
Collapse
|
338
|
Cecchi C, Latorraca S, Sorbi S, Iantomasi T, Favilli F, Vincenzini MT, Liguri G. Gluthatione level is altered in lymphoblasts from patients with familial Alzheimer's disease. Neurosci Lett 1999; 275:152-4. [PMID: 10568522 DOI: 10.1016/s0304-3940(99)00751-x] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Intracellular levels of glutathione (GSH), glutathione disulphide (GSSG), glutamic acid and gamma-glutamyl cysteine synthetase (gamma-GCS) were measured in lymphoblast lines from patients with familial and sporadic Alzheimer's disease (AD) and from age-matched controls. Lymphoblasts carrying presenilins (PS) and amyloid precursor protein (APP) genes mutations showed significantly decreased GSH content with respect to controls. Levels of GSSG and glutamic acid, as well as the activity of gamma-GCS were not significantly different in lymphoblasts carrying genes mutations as compared with control cells. These results indicate that even peripheral cells not involved in the neurodegenerative process of AD show altered GSH content when carrying PS and APP genes mutations. The provided data appear to be in accordance with the known alteration of GSH levels in central nervous system and strengthen the hypothesis of oxidative stress as an important, possibly crucial mechanism in the pathogenesis of AD.
Collapse
Affiliation(s)
- C Cecchi
- Department of Biochemical Sciences, University of Florence, Italy
| | | | | | | | | | | | | |
Collapse
|
339
|
Ramassamy C, Averill D, Beffert U, Bastianetto S, Theroux L, Lussier-Cacan S, Cohn JS, Christen Y, Davignon J, Quirion R, Poirier J. Oxidative damage and protection by antioxidants in the frontal cortex of Alzheimer's disease is related to the apolipoprotein E genotype. Free Radic Biol Med 1999; 27:544-53. [PMID: 10490274 DOI: 10.1016/s0891-5849(99)00102-1] [Citation(s) in RCA: 164] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
A great number of epidemiological studies have demonstrated that the frequency of the epsilon4 allele of the apolipoprotein E gene (APOE) is markedly higher in sporadic and in familial late onset Alzheimer disease (AD). In the frontal cortex of AD patients, oxidative damage is elevated. We address the hypothesis that the APOE genotype and reactive oxygen-mediated damage are linked in the frontal cortex of AD patients. We have related the APOE genotype to the levels of lipid oxidation (LPO) and to the antioxidant status, in frontal cortex tissues from age-matched control and AD cases with different APOE genotypes. LPO levels were significantly elevated in tissues from Alzheimer's cases which are homozygous for the epsilon4 allele of APOE, compared to AD epsilon3/epsilon3 cases and controls. Activities of enzymatic antioxidants, such as catalase and glutathione peroxidase (GSH-PX), were also higher in AD cases with at least one epsilon4 allele of APOE, while superoxide dismutase (SOD) activity was unchanged. In the frontal cortex, the concentration of apoE protein was not different between controls and AD cases, and was genotype independent. The Ginkgo biloba extract (EGb 761), the neurosteroid dehydroepiandrosterone (DHEA) and human recombinant apoE3 (hapoE3rec) were able to protect control, AD epsilon3/epsilon3 and epsilon3/epsilon4 cases against hydrogen peroxide/iron-induced LPO, while hapoE4rec was completely ineffective. Moreover, EGb 761 and DHEA had no effect in homozygous epsilon4 cases. These results demonstrate that oxidative stress-induced injury and protection by antioxidants in the frontal cortex of AD cases are related to the APOE genotype.
Collapse
Affiliation(s)
- C Ramassamy
- Neuroscience Division, Douglas Hospital Research Center, Verdun, Quebec, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
340
|
Volicer L, Wells JM, McKee AC, Kowall NW. Enhanced inhibition of free radical-induced deoxyribose breakdown by Alzheimer brain homogenates. Neurosci Lett 1999; 270:169-72. [PMID: 10462121 DOI: 10.1016/s0304-3940(99)00498-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The ability of homogenates from Alzheimer and control brains to inhibit formation of thiobarbituric acid reactive products (TBAR) induced by free radicals was compared. The assay for TBAR was modified by adding 1% sodium dodecyl sulfate (SDS) to prevent chromogen adsorption by biological matrices, and by extending the incubation time. The inhibitory activities required smaller equivalents of Alzheimer brain homogenates than control homogenates. Similar inhibitory activities were seen in homogenates from amygdala, temporal cortex and cerebellum. The inhibitory activities were similar in brain homogenates from individuals with different apolipoprotein E status. These results indicate that Alzheimer brain tissue has either increased content of free radical scavengers or is more sensitive to free radical attack than control brains.
Collapse
Affiliation(s)
- L Volicer
- E.N. Rogers Memorial Veterans Hospital, Geriatric Research Education Clinical Center, Bedford, MA 01730, USA.
| | | | | | | |
Collapse
|
341
|
Feillet-Coudray C, Tourtauchaux R, Niculescu M, Rock E, Tauveron I, Alexandre-Gouabau MC, Rayssiguier Y, Jalenques I, Mazur A. Plasma levels of 8-epiPGF2alpha, an in vivo marker of oxidative stress, are not affected by aging or Alzheimer's disease. Free Radic Biol Med 1999; 27:463-9. [PMID: 10468223 DOI: 10.1016/s0891-5849(99)00096-9] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Free radicals are likely involved in the aging process and there is a growing body of evidence that free radical damage to cellular function is associated with a number of age-related diseases such as atherosclerosis, cancer, and neurologic disorders. The present study was designed to evaluate in a healthy population the evolution with age of 8-epiPGF2alpha plasma levels, a recently proposed marker of in vivo lipid peroxidation. Moreover we investigated this marker of oxidative stress in patients with Alzheimer's disease (AD), an age-related neurodegenerative disorder in the development of which free radicals have been involved. Our results show that in the healthy population studied, despite decreased antioxidant defenses with increasing age as monitored by antioxidant capacity measurement, plasma 8-epiPGF2alpha levels were not correlated with age. Moreover, we have demonstrated that AD patients presented no modification of plasma 8-epiPGF2alpha level and no major alteration of the antioxidant status. In conclusion, the measurement of plasma 8-epiPGF2alpha did not allow us to detect alterations in oxidative stress with aging or in AD.
Collapse
Affiliation(s)
- C Feillet-Coudray
- Centre de Recherche en Nutrition Humaine d'Auvergne, Unité Maladies Métaboliques et Micronutriments, Theix, St. Genés Champanelle, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
342
|
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder with a deadly outcome. AD is the leading cause of senile dementia and although the pathogenesis of this disorder is not known, various hypotheses have been developed based on experimental data accumulated since the initial description of this disease by Alois Alzheimer about 90 years ago. Most approaches to explain the pathogenesis of AD focus on its two histopathological hallmarks, the amyloid beta protein- (A(beta)-) loaded senile plaques and the neurofibrillary tangles, which consist of the filament protein tau. Various lines of genetic evidence support a central role of A(beta) in the pathogenesis of AD and an increasing number of studies show that oxidation reactions occur in AD and that A(beta) may be one molecular link between oxidative stress and AD-associated neuronal cell death. A(beta) itself can be neurotoxic and can induce oxidative stress in cultivated neurons. A(beta) is, therefore, one player in the concert of oxidative reactions that challenge neurons besides inflammatory reactions which are also associated with the AD pathology. Consequently, antioxidant approaches for the prevention and therapy of AD are of central interest. Experimental as well as clinical data show that lipophilic antioxidants, such as vitamin E and estrogens, are neuroprotective and may help patients suffering from AD. While an additional intensive elucidation of the cellular and molecular events of neuronal cell death in AD will, ultimately, lead to novel drug targets, various antioxidants are already available for a further exploitation of their preventive and therapeutic potential. reserved
Collapse
Affiliation(s)
- C Behl
- Max Planck Institute of Psychiatry, Munich, Germany.
| |
Collapse
|
343
|
|
344
|
Abstract
There is increasing evidence that free radical damage to brain lipids, carbohydrates, proteins, and DNA is involved in neuron death in neurodegenerative disorders. The largest number of studies have been performed in Alzheimer's disease (AD) where there is considerable support for the oxidative stress hypothesis in the pathogenesis of neuron degeneration. In autopsied brain there is an increase in lipid peroxidation, a decline in polyunsaturated fatty acids (PUFA) and an increase in 4-hydroxynonenal (HNE), a neurotoxic aldehyde product of PUFA oxidation. Increased protein oxidation and a marked decline in oxidative-sensitive enzymes, glutamine synthetase and creatinine kinase, are found in the brain in AD. Increased DNA oxidation, especially 8-hydroxy-2'-deoxyguanosine (8-OHdG) is present in the brain in AD. Immunohistochemical studies show the presence of oxidative stress products in neurofibrillary tangles and senile plaques in AD. Markers of lipid peroxidation (HNE, isoprostanes) and DNA (8-OHdG) are increased in CSF in AD. In addition, inflammatory response markers (the complement cascade, cytokines, acute phase reactants and proteases) are present in the brain in AD. These findings, coupled with epidemiologic studies showing that anti-inflammatory agents slow the progression or delay the onset of AD, suggest that inflammation plays a role in AD. Overall these studies indicate that oxidative stress and the inflammatory cascade, working in concert, are important in the pathogenetic cascade of neurodegeneration in AD, suggesting that therapeutic efforts aimed at both of these mechanisms may be beneficial.
Collapse
Affiliation(s)
- W R Markesbery
- Sanders-Brown Center on Aging and Alzheimer's Disease Research Center, Department of Pathology, University of Kentucky Medical Center, Lexington, USA.
| | | |
Collapse
|
345
|
Urmoneit B, Turner J, Dyrks T. Cationic lipids (lipofectamine) and disturbance of cellular cholesterol and sphingomyelin distribution modulates gamma-secretase activity within amyloid precursor protein in vitro. Prostaglandins Other Lipid Mediat 1998; 55:331-43. [PMID: 9653771 DOI: 10.1016/s0090-6980(98)00032-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
To study beta-amyloid protein generation we expressed different amyloid precursor protein (APP) isoforms in the human neuroblastoma cell line SY5Y (for details see (1)). Treatment with lipofectamine, an cationic lipid for eucaryotic cell transfection, inhibits gamma-secretase activity and stimulates the physiological APP cleavage by alpha-secretase activity. Beside the MDL inhibitor (2), this is the second agent that shows modulation of gamma-secretase activity in vitro. Further, we show that disturbance of cellular cholesterol and sphingomyelin distribution in transfected SY5Y cells results in an overproduction of beta-amyloid protein. This provides experimental evidence that membrane instability influenced the proteolytic activity of gamma-secretase within the APP molecule.
Collapse
Affiliation(s)
- B Urmoneit
- University of Düsseldorf, Department of Neurology, Germany.
| | | | | |
Collapse
|
346
|
|