301
|
Lv X, Zhang Y, Zhang Y, Fan S, Kong L. Source-sink modifications affect leaf senescence and grain mass in wheat as revealed by proteomic analysis. BMC PLANT BIOLOGY 2020; 20:257. [PMID: 32503423 PMCID: PMC7275590 DOI: 10.1186/s12870-020-02447-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 05/14/2020] [Indexed: 05/03/2023]
Abstract
BACKGROUND The grain yield of cereals is determined by the synergistic interaction between source activity and sink capacity. However, source-sink interactions are far from being fully understood. Therefore, a field experiment was performed in wheat to investigate the responses of flag leaves and grains to sink/source manipulations. RESULTS Half-degraining delayed but partial defoliation enhanced leaf senescence. Sink/source manipulations influenced the content of reactive oxygen species in the flag leaf and the concentration of phytohormones, including cytokinins, indoleacetic 3-acid and jasmonic acid, in the flag leaves (LDef) and grains (GDef) in defoliated plants and flag leaves (LDG) and grain (GDG) in de-grained plants. Isobaric tag for relative and absolute quantitation (iTRAQ)-based quantitative proteomic analysis indicated that at 16 days after manipulation, a total of 97 and 59 differentially expressed proteins (DEPs) from various functional categories were observed in the LDG and LDef groups, respectively, compared with the control, and 115 and 121 DEPs were observed in the GDG and GDef groups, respectively. The gene ontology annotation terms of the DEPs mainly included carbon fixation, hydrogen peroxide catabolic process, chloroplast and cytoplasm, oxidoreductase activity and glutamate synthase activity in the flag leaves of manipulated plants and organonitrogen compound metabolic process, cytoplasm, vacuolar membrane, CoA carboxylase activity, starch synthase activity and nutrient reservoir activity in the grains of manipulated plants. KEGG pathway enrichment analysis revealed that photosynthesis, carbon, nitrogen and pyruvate metabolism and glycolysis/gluconeogenesis were the processes most affected by sink/source manipulations. Sink/source manipulations affected the activities of amylase and proteinases and, ultimately, changed the mass per grain. CONCLUSIONS Manipulations to change the sink/source ratio affect hormone levels; hydrolytic enzyme activities; metabolism of carbon, nitrogen and other main compounds; stress resistance; and leaf senescence and thus influence grain mass.
Collapse
Affiliation(s)
- Xuemei Lv
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
- College of Life Science, Shandong Normal University, Jinan, 250014, China
| | - Yan Zhang
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
- College of Life Science, Shandong Normal University, Jinan, 250014, China
| | - Yunxiu Zhang
- College of Life Science, Shandong Normal University, Jinan, 250014, China
| | - Shoujin Fan
- College of Life Science, Shandong Normal University, Jinan, 250014, China.
| | - Lingan Kong
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250100, China.
- College of Life Science, Shandong Normal University, Jinan, 250014, China.
| |
Collapse
|
302
|
Xiong X, Wei YQ, Chen JH, Liu N, Zhang YJ. Transcriptome analysis of genes and pathways associated with salt tolerance in alfalfa under non-uniform salt stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 151:323-333. [PMID: 32251957 DOI: 10.1016/j.plaphy.2020.03.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/26/2020] [Accepted: 03/26/2020] [Indexed: 05/25/2023]
Abstract
Soil salinity of fields is often non-uniform. To obtain a better understanding of molecular response to non-uniform salt stress, we conducted transcriptomic analysis on the leaves and roots of alfalfa grown under 0/0, 200/200, and 0/200 mM NaCl treatments. A total of 233,742 unigenes were obtained from the assembled cDNA libraries. There were 98 and 710 unigenes identified as significantly differentially expressed genes (DEGs) in the leaves of non-uniform and uniform salt treatment, respectively. Furthermore, there were 5178 DEGs in the roots under uniform salt stress, 273 DEGs in the non-saline side and 4616 in the high-saline side roots under non-uniform salt stress. Alfalfa treated with non-uniform salinity had greater dry weight and less salt damage compared to treatment with uniform salinity. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of the DEGs in roots revealed that both sides of the non-uniform salinity were enriched in pathways related to "phenylpropanoid biosynthesis" and "linoleic acid metabolism"; and "MAPK signaling pathway-plant" was also indicated as a key pathway in the high-saline roots. We also combined a set of important salt-response genes and found that roots from the non-saline side developed more roots with increased water uptake by altering the expression of aquaporins and genes related to growth regulation. Moreover, the hormone signal transduction and the antioxidant pathway probably play important roles in inducing more salt-related genes and increasing resistance to non-uniform salt stress on both sides of the roots.
Collapse
Affiliation(s)
- Xue Xiong
- Hebei Normal University for Nationalities, Chengde, 067000, China; College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yu-Qi Wei
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100094, China
| | - Ji-Hui Chen
- College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Nan Liu
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100094, China
| | - Ying-Jun Zhang
- College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, 210095, China; College of Grassland Science and Technology, China Agricultural University, Beijing, 100094, China; Key Laboratory of Grasslands Management and Utilization, Ministry of Agriculture, Beijing, 100094, China.
| |
Collapse
|
303
|
Pamplona JDP, Souza MDF, Sousa DMM, de Mesquita HC, Freitas CDM, Lins HA, Torres SB, Silva DV. Seed germination of Bidens subalternans DC. exposed to different environmental factors. PLoS One 2020; 15:e0233228. [PMID: 32407422 PMCID: PMC7224472 DOI: 10.1371/journal.pone.0233228] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 04/30/2020] [Indexed: 11/19/2022] Open
Abstract
Bidens subalternans DC. is a weed found in several tropical countries such as Brazil. Large number of produced seeds and easy dispersion favor the colonization of agricultural fields by this species. To know the factors that affect the germination of B. subalternans can help to understand its ecology, permitting to develop control strategies. Laboratory experiments were carried out to evaluate how the temperature, photoperiod, burial depth, water deficit, and salt stress affect the seed germination of B. subalternans. The means of the treatments of each experiment were shown in scatter plots with the bars indicating the least significant difference (LSD, p≤0.05). The results showed a germination percentage above 77% for a wide alternating temperature (15/20 C to 30/35 C night/day). The highest germination and uniformity occurred at 25/30°C night/day. Only 11% of the seeds germinated at a temperature of 35/40°C night/day. The deeper burial of seeds reduced their germination. Only 17% of the seeds germinated in darkness conditions. However, in constant light and 12 hours of light/dark conditions the germination percentage was over 96%, confirming the light dependence of the B. subalternans during germination. In constant light and 12 hours of light/dark, the germination was over 96%. B. subalternans seeds showed sensitivity to water and salt stress, and their germination was inhibited under a water potential of -0.4 MPa and 100.09 mM, respectively. The sensitivity of B. subalternans seeds to high temperatures, water stress, and salt stress explains the high frequency of this weed in south-central Brazil. The light and sowing depth showed that burial of seeds by mechanical control is a strategy to reduce the high infestation of B. subalternans.
Collapse
Affiliation(s)
- Juliana de Paiva Pamplona
- Department of Agronomic and Forest Sciences, Universidade Federal Rural do Semi-Árido, Mossoró, Rio Grande do Norte, Brazil
| | - Matheus de Freitas Souza
- Department of Agronomic and Forest Sciences, Universidade Federal Rural do Semi-Árido, Mossoró, Rio Grande do Norte, Brazil
| | - Danielle Marie Macedo Sousa
- Department of Agronomic and Forest Sciences, Universidade Federal Rural do Semi-Árido, Mossoró, Rio Grande do Norte, Brazil
| | - Hélida Campos de Mesquita
- Department of Agronomic, Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Norte, Apodi, Rio Grande do Norte, Brazil
| | - Claudia Daianny Melo Freitas
- Department of Agronomic and Forest Sciences, Universidade Federal Rural do Semi-Árido, Mossoró, Rio Grande do Norte, Brazil
| | - Hamurábi Anizio Lins
- Department of Agronomic and Forest Sciences, Universidade Federal Rural do Semi-Árido, Mossoró, Rio Grande do Norte, Brazil
- * E-mail:
| | - Salvador Barros Torres
- Department of Agronomic and Forest Sciences, Universidade Federal Rural do Semi-Árido, Mossoró, Rio Grande do Norte, Brazil
| | - Daniel Valadão Silva
- Department of Agronomic and Forest Sciences, Universidade Federal Rural do Semi-Árido, Mossoró, Rio Grande do Norte, Brazil
| |
Collapse
|
304
|
Effect of Soil Salinity and Foliar Application of Jasmonic Acid on Mineral Balance of Carrot Plants Tolerant and Sensitive to Salt Stress. AGRONOMY-BASEL 2020. [DOI: 10.3390/agronomy10050659] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The aim of the study is to determine the effects of soil salinity stress and foliar application of jasmonic acid (JA) on the mineral balance in plants of salt-sensitive doubled haploid carrot line (DH1) and salt-tolerant local DLBA variety (DLBA). Concentrations of 28 elements were determined in roots and leaves and in the soil. The DcNHX4 gene (cation:proton exchange antiporter) expression was assessed. The salinity stress reduced the mass of roots and leaves more in DH1 than in DLBA. DLBA plants accumulated larger amounts of Na and Cl in the roots and had an increased transport of these elements to the leaves. The salt-tolerant and salt-sensitive carrot varieties differed in their ability to uptake and accumulate some elements, such as K, Mg, Zn, S, Cd, P and B, and this response was organ-specific. A selective uptake of K in the presence of high Na concentration was evident in the tolerant variety, and a high Na content in its leaves correlated with the expression of DcNHX4 gene, which was expressed in DLBA leaves only. JA application did not affect the growth of DLBA or DH1 plants. In the sensitive DH1 variety grown under salinity stress, JA induced changes in the mineral balance by limiting the uptake of the sum of all elements, especially Na and Cl, and by limiting Zn and Cd accumulation.
Collapse
|
305
|
Feng Z, Ding C, Li W, Wang D, Cui D. Applications of metabolomics in the research of soybean plant under abiotic stress. Food Chem 2020; 310:125914. [PMID: 31835223 DOI: 10.1016/j.foodchem.2019.125914] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 09/19/2019] [Accepted: 11/14/2019] [Indexed: 12/25/2022]
Abstract
Qualitative and quantitative metabolomics analysis of all small-molecule metabolites in organisms is an emerging omics technology alongside genomics and proteomics. Plant metabolites are extremely diverse both within species and in terms of their physiological function. Plant metabolomics studies use mainly liquid/gas chromatography-mass spectrometry (LC/GC-MS) and nuclear magnetic resonance (NMR) techniques combined with chemometrics and multivariate statistical analysis to analyze plant metabolites, and metabolomics plays a key role in agricultural and food science research. In this review, we discuss the status of metabolomics in soybean in response to abiotic stresses such as drought, heat, salinity, flooding, chilling and heavy metal stresses and analyze the challenges and opportunities. Furthermore, the notable metabolites detected in response to different stresses are summarized to provide a reference for applications of metabolomics in soybean research.
Collapse
Affiliation(s)
- Zhe Feng
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, PR China
| | - Chengqiao Ding
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, PR China
| | - Weihao Li
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, PR China
| | - Dachen Wang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, PR China
| | - Di Cui
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, PR China.
| |
Collapse
|
306
|
Nosek M, Kaczmarczyk A, Jędrzejczyk RJ, Supel P, Kaszycki P, Miszalski Z. Expression of Genes Involved in Heavy Metal Trafficking in Plants Exposed to Salinity Stress and Elevated Cd Concentrations. PLANTS 2020; 9:plants9040475. [PMID: 32283631 PMCID: PMC7238198 DOI: 10.3390/plants9040475] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 03/26/2020] [Accepted: 04/07/2020] [Indexed: 11/16/2022]
Abstract
Many areas intended for crop production suffer from the concomitant occurrence of heavy metal pollution and elevated salinity; therefore, halophytes seem to represent a promising perspective for the bioremediation of contaminated soils. In this study, the influence of Cd treatment (0.01-10.0 mM) and salinity stress (0.4 M NaCl) on the expression of genes involved in heavy metal uptake (irt2-iron-regulated protein 2, zip4-zinc-induced protein 4), vacuolar sequestration (abcc2-ATP-binding cassette 2, cax4-cation exchanger 2 pcs1-phytochelatin synthase 1) and translocation into aerial organs (hma4-heavy metal ATPase 4) were analyzed in a soil-grown semi-halophyte Mesembryanthemum crystallinum. The upregulation of irt2 expression induced by salinity was additionally enhanced by Cd treatment. Such changes were not observed for zip4. Stressor-induced alterations in abcc2, cax4, hma4 and pcs1 expression were most pronounced in the root tissue, and the expression of cax4, hma4 and pcs1 was upregulated in response to salinity and Cd. However, the cumulative effect of both stressors, similar to the one described for irt2, was observed only in the case of pcs1. The importance of salt stress in the irt2 expression regulation mechanism is proposed. To the best of our knowledge, this study is the first to report the combined effect of salinity and heavy metal stress on genes involved in heavy metal trafficking.
Collapse
Affiliation(s)
- Michał Nosek
- Institute of Biology, Pedagogical University, Podchorążych 2, 30-084 Kraków, Poland
- Correspondence: e-mail: ; Tel.: +48-12-662-78-32
| | - Adriana Kaczmarczyk
- The Franciszek Górski Institute of Plant Physiology Polish Academy of Sciences, Niezapominajek 21, 30-239 Kraków, Poland; (A.K.); (Z.M.)
| | - Roman J. Jędrzejczyk
- Małopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7a, 30-387 Kraków, Poland;
| | - Paulina Supel
- Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, al. 29 Listopada 54, 31-425 Kraków, Poland; (P.S.); (P.K.)
| | - Paweł Kaszycki
- Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, al. 29 Listopada 54, 31-425 Kraków, Poland; (P.S.); (P.K.)
| | - Zbigniew Miszalski
- The Franciszek Górski Institute of Plant Physiology Polish Academy of Sciences, Niezapominajek 21, 30-239 Kraków, Poland; (A.K.); (Z.M.)
- Małopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7a, 30-387 Kraków, Poland;
| |
Collapse
|
307
|
Photosynthetic Response Mechanism of Soil Salinity-Induced Cross-Tolerance to Subsequent Drought Stress in Tomato Plants. PLANTS 2020; 9:plants9030363. [PMID: 32187994 PMCID: PMC7154942 DOI: 10.3390/plants9030363] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 02/28/2020] [Accepted: 03/12/2020] [Indexed: 02/06/2023]
Abstract
Soil salinization and water shortage cause ion imbalance and hyperosmoticity in plant cells, adversely impairing photosynthesis efficiency. How soil salinity-induced photosynthetic acclimation influences the cross-tolerance to drought conditions represents a promising research topic. This study was to reveal the photosynthetic mechanism of soil salinity-induced resistance to the subsequent drought stress in tomato leaves through comprehensive photosynthesis-related spectroscopy analysis. We conducted soil salinity pretreatment and subsequent drought stress experiments, including irrigation with 100 mL water, 100 mL 100 mM NaCl solution (NaCl100), 50 mL water, and 50 mL 100 mM NaCl solution (NaCl50) for five days, followed by five-day drought stress. The results showed that soil salinity treatment by NaCl decreased the rate of photosynthetic gas exchange but enhanced CO2 assimilation, along with photosystem II [PS(II)] and photosystem I [PS(I)] activity and photochemical efficiency in tomato plants compared with water pretreatment after subsequent drought stress. NaCl100 and NaCl50 had the capacity to maintain non-photochemical quenching (NPQ) of chlorophyll fluorescence and the cyclic electron (CEF) flow around PSI in tomato leaves after being subjected to subsequent drought stress, thus avoiding the decrease of photosynthetic efficiency under drought conditions. NaCl100 and NaCl50 pretreatment induced a higher proton motive force (pmf) and also alleviated the damage to the thylakoid membrane and adenosine triphosphate (ATP) synthase of tomato leaves caused by subsequent drought stress. Overall, soil salinity treatment could enhance drought resistance in tomato plants by inducing NPQ, maintaining CEF and pmf that tradeoff between photoprotection and photochemistry reactions. This study also provides a photosynthetic perspective for salt and drought cross-tolerance.
Collapse
|
308
|
Fuertes-Mendizábal T, Bastías EI, González-Murua C, González-Moro MB. Nitrogen Assimilation in the Highly Salt- and Boron-Tolerant Ecotype Zea mays L. Amylacea. PLANTS (BASEL, SWITZERLAND) 2020; 9:E322. [PMID: 32143321 PMCID: PMC7154838 DOI: 10.3390/plants9030322] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/24/2020] [Accepted: 02/27/2020] [Indexed: 01/14/2023]
Abstract
The Lluta Valley in Northern Chile is an important agricultural area affected by both salinity and boron (B) toxicity. Zea mays L. amylacea, an ecotype arisen because of the seed selection practiced in this valley, shows a high tolerance to salt and B levels. In the present study the interaction between B and salt was studied after 20 days of treatment at low (100 mM) and high salinity (430 mM NaCl), assessing changes in nitrogen metabolites and in the activity of key nitrogen-assimilating enzymes. Under non-saline conditions, the presence of excessive B favored higher nitrate and ammonium mobilization to leaves, increasing nitrate reductase (NR) activity but not glutamine synthetase (GS). Thus, the increment of nitrogen use efficiency by B application would contribute partially to maintain the biomass production in this ecotype. Positive relationships between NR activity, nitrate, and stomatal conductance were observed in leaves. The increment of major amino acids alanine and serine would indicate a photoprotective role of photorespiration under low-salinity conditions, thus the inhibition of nitrogen assimilation pathway (NR and GS activities) occurred only at high salinity. The role of cytosolic GS regarding the proline accumulation is discussed.
Collapse
Affiliation(s)
- Teresa Fuertes-Mendizábal
- Departamento de Biología Vegetal y Ecología, Facultad de Ciencia y Tecnología, Universidad del País Vasco/EHU, Apdo. 644, E-48080 Bilbao, Spain; (T.F.-M.); (C.G.-M.)
| | - Elizabeth Irica Bastías
- Departamento de Producción Agrícola, Facultad de Ciencias Agronómicas, Universidad de Tarapacá, Arica 1000000, Chile;
| | - Carmen González-Murua
- Departamento de Biología Vegetal y Ecología, Facultad de Ciencia y Tecnología, Universidad del País Vasco/EHU, Apdo. 644, E-48080 Bilbao, Spain; (T.F.-M.); (C.G.-M.)
| | - Mª Begoña González-Moro
- Departamento de Biología Vegetal y Ecología, Facultad de Ciencia y Tecnología, Universidad del País Vasco/EHU, Apdo. 644, E-48080 Bilbao, Spain; (T.F.-M.); (C.G.-M.)
| |
Collapse
|
309
|
Theerawitaya C, Tisarum R, Samphumphuang T, Takabe T, Cha-um S. Expression levels of the Na +/K + transporter OsHKT2;1 and vacuolar Na +/H + exchanger OsNHX1, Na enrichment, maintaining the photosynthetic abilities and growth performances of indica rice seedlings under salt stress. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2020; 26:513-523. [PMID: 32205927 PMCID: PMC7078393 DOI: 10.1007/s12298-020-00769-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 10/31/2019] [Accepted: 01/21/2020] [Indexed: 05/20/2023]
Abstract
Salt affected soil inhibits plant growth, development and productivity, especially in case of rice crop. Ion homeostasis is a candidate defense mechanism in the salt tolerant plants or halophyte species, where the salt toxic ions are stored in the vacuoles. The aim of this investigation was to determine the OsNHX1 (a vacuolar Na+/H+ exchanger) and OsHKT2;1 (Na+/K+ transporter) regulation by salt stress (200 mM NaCl) in two rice cultivars, i.e. Pokkali (salt tolerant) and IR29 (salt susceptible), the accumulation of Na+ in the root and leaf tissues using CoroNa Green® staining dye and the associated physiological changes in test plants. Na+ content was largely increased in the root tissues of rice seedlings cv. Pokkali (15 min after salt stress) due to the higher expression of OsHKT2;1 gene (by 2.5 folds) in the root tissues. The expression of OsNHX1 gene in the leaf tissues was evidently increased in salt stressed seedlings of Pokkali, whereas it was unchanged in salt stressed seedlings of IR29. Na+ in the root tissues of both Pokkali and IR29 was enriched, when subjected to 200 mM NaCl for 12 h and easily detected in the leaf tissues of salt stressed plants exposed for 24 h, especially in cv. Pokkali. Moreover, the overexpression of OsNHX1 gene regulated the translocation of Na+ from root to leaf tissues, and compartmentation of Na+ into vacuoles, thereby maintaining the photosynthetic abilities in cv. Pokkali. Overall growth performance, maximum quantum yield (Fv/Fm), photon yield of PSII (ΦPSII) and net photosynthetic rate (Pn) was improved in salt stressed leaves of Pokkali than those in salt stressed IR29.
Collapse
Affiliation(s)
- Cattarin Theerawitaya
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Paholyothin Rd., Khlong Nuang, Khlong Luang, Pathum Thani 12120 Thailand
| | - Rujira Tisarum
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Paholyothin Rd., Khlong Nuang, Khlong Luang, Pathum Thani 12120 Thailand
| | - Thapanee Samphumphuang
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Paholyothin Rd., Khlong Nuang, Khlong Luang, Pathum Thani 12120 Thailand
| | - Taruhiro Takabe
- Research Institute Meijo University, 1-501 Shiogamagushi, Tenpaku-ku, Nagoya, 468-8502 Japan
| | - Suriyan Cha-um
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Paholyothin Rd., Khlong Nuang, Khlong Luang, Pathum Thani 12120 Thailand
| |
Collapse
|
310
|
Moreira H, Pereira SIA, Vega A, Castro PML, Marques APGC. Synergistic effects of arbuscular mycorrhizal fungi and plant growth-promoting bacteria benefit maize growth under increasing soil salinity. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 257:109982. [PMID: 31868642 DOI: 10.1016/j.jenvman.2019.109982] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 12/08/2019] [Accepted: 12/09/2019] [Indexed: 05/28/2023]
Abstract
Salt-affected soils are a major problem worldwide for crop production. Bioinocula such as plant growth-promoting bacteria (PGPB) and arbuscular mycorrhizal fungi (AMF) can help plants to thrive in these areas but interactions between them and with soil conditions can modulate the effects on their host. To test potential synergistic effects of bioinoculants with intrinsically different functional relationships with their host in buffering the effect of saline stress, maize plants were grown under increasing soil salinity (0-5 g NaCl kg--1 soil) and inoculated with two PGPB strains (Pseudomonas reactans EDP28, and Pantoea alli ZS 3-6), one AMF (Rhizoglomus irregulare), and with the combination of both. We then modelled biomass, ion and nutrient content in maize plants in response to increasing salt concentration and microbial inoculant treatments using generalized linear models. The impacts of the different treatments on the rhizosphere bacterial communities were also analyzed. Microbial inoculants tended to mitigate ion imbalances in plants across the gradient of NaCl, promoting maize growth and nutritional status. These effects were mostly prominent in the treatments comprising the dual inoculation (AMF and PGPB), occurring throughout the gradient of salinity in the soil. The composition of bacterial communities of the soil was not affected by microbial treatments and were mainly driven by salt exposure. The tested bioinocula are most efficient for maize growth and health when co-inoculated, increasing the content of K+ accompanied by an effective decrease of Na+ in plant tissues. Moreover, synergistic effects potentially contribute to expanding crop production to otherwise unproductive soils. Results suggest that the combination of AMF and PGPB leads to interactions that may have a potential role in alleviating the stress and improve crop productivity in salt-affected soils.
Collapse
Affiliation(s)
- Helena Moreira
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005, Porto, Portugal.
| | - Sofia I A Pereira
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005, Porto, Portugal.
| | - Alberto Vega
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005, Porto, Portugal.
| | - Paula M L Castro
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005, Porto, Portugal.
| | - Ana P G C Marques
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005, Porto, Portugal.
| |
Collapse
|
311
|
Queiroz CSD, Pereira IMC, Lima KRP, Bret RSC, Alves MS, Gomes-Filho E, Carvalho HHD. Combined NaCl and DTT diminish harmful ER-stress effects in the sorghum seedlings CSF 20 variety. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 147:223-234. [PMID: 31874339 DOI: 10.1016/j.plaphy.2019.12.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/27/2019] [Accepted: 12/10/2019] [Indexed: 06/10/2023]
Abstract
Plants have developed mechanisms to avoid harmful effects of Na+ accumulation, such as the signaling pathway of carrier proteins Na+/H+ (NHX) and salt overly sensitive (SOS). Besides, endoplasmic reticulum (ER) could integrate plant cell response. Thus, we aimed to understand the effects of ER homeostasis impairment, and its relationship to salt stress during early stages of the Sorghum bicolor CSF 20 a salt-tolerant variety. Three days old seedlings were challenged with NaCl (0, 50, 75 and 100 mM), dithiothreitol (DTT) at 0, 2.5, 5.0 10.0 mM, and the combined NaCl and DTT treatments. Tunicamycin (TUN) was also used as a second inducer of ER stress in a quantitative PCR, to corroborate with DTT's results. There was no significant change in growth parameters under NaCl treatments. Nevertheless, seedling length, mass and Na+ content were decreased as DTT concentration was increased. Under combined NaCl and DTT treatments, shoot length and fresh and dry masses were maintained at control levels. On the other hand, the levels of Na+ were decreased, in comparison to NaCl treatment. Genes analyzed by qPCR revealed that NaCl was able to induce all of them, except for SbbZIP60, however it was induced under combined stresses. In conclusion, the results indicated that S. bicolor seedlings of CSF 20 variety were tolerant to salt and sensible to ER stress. The combination of both stresses restored the ER homeostasis promoting a decrease of Na+ content via the membrane transporters SbNHX1, SbSOS1, and SbPDI ER-chaperone and the ER sensor SbbZIP60.
Collapse
Affiliation(s)
- Cinthia Silva de Queiroz
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências, Universidade Federal do Ceará, Fortaleza, CE, 60440-554, Brazil.
| | - Isabelle Mary Costa Pereira
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências, Universidade Federal do Ceará, Fortaleza, CE, 60440-554, Brazil.
| | - Karollyny Roger Pereira Lima
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências, Universidade Federal do Ceará, Fortaleza, CE, 60440-554, Brazil.
| | - Raissa Souza Caminha Bret
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências, Universidade Federal do Ceará, Fortaleza, CE, 60440-554, Brazil.
| | - Murilo Siqueira Alves
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências, Universidade Federal do Ceará, Fortaleza, CE, 60440-554, Brazil.
| | - Enéas Gomes-Filho
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências, Universidade Federal do Ceará, Fortaleza, CE, 60440-554, Brazil; Departamento de Bioquímica e Biologia Molecular and Instituto Nacional de Ciências e Tecnologia em Salinidade (INCTSal/CNPq), Centro de Ciências, Universidade Federal do Ceará, Fortaleza, CE, 60455-760, Brazil.
| | - Humberto Henrique de Carvalho
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências, Universidade Federal do Ceará, Fortaleza, CE, 60440-554, Brazil.
| |
Collapse
|
312
|
Luo X, Li C, He X, Zhang X, Zhu L. ABA signaling is negatively regulated by GbWRKY1 through JAZ1 and ABI1 to affect salt and drought tolerance. PLANT CELL REPORTS 2020; 39:181-194. [PMID: 31713664 DOI: 10.1007/s00299-019-02480-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 10/14/2019] [Indexed: 05/22/2023]
Abstract
GbWRKY1 can function as a negative regulator of ABA signaling via JAZ1 and ABI1, with effects on salt and drought tolerance. WRKY transcription factors play important roles in plant development and stress responses. GbWRKY1 was initially identified as a defense-related gene in cotton and negatively regulates the response to fungal pathogens by activating the expression of JAZ1. Here, we characterized the role of GbWRKY1, an orthologue of the Arabidopsis gene AtWRKY75, in abiotic stress (salt and drought) and established novel connection between JAZ1 and ABA signaling in Arabidopsis. GbWRKY1 is nucleus localized and its expression is significantly induced by treatment with ABA and osmotic stresses NaCl and PEG. Increased levels of expression of GbWRKY1 in transgenic Arabidopsis enhance sensitivity to salt and drought as revealed by seed germination tests and soil stress experiments. Similarly, GbWRKY1 overexpression cotton plants also display increased sensitivity to PEG treatment and drought. Expression analysis shows that the induction of two ABA responsive genes, RAB18 and RD29A by NaCl, mannitol, and ABA treatment is significantly impaired in GbWRKY1 overexpression Arabidopsis lines. GbWRKY1 overexpression Arabidopsis displays a strong ABA-insensitive phenotype at both germination and early stages of seedling development. Further genetic evidence suggested that the ABA-insensitive phenotype of GbWRKY1 overexpression Arabidopsis was dependent on JAZ1, and overexpression of JAZ1 also displayed an ABA-insensitive phenotype. In addition, yeast two hybrid and bimolecular fluorescence complementation assays showed that JAZ1 directly interacts with ABI1, a key negative regulator of ABA signaling. We, therefore, demonstrate that GbWRKY1 acts as a negative regulator of ABA signaling, through an interaction network involving JAZ1 and ABI1, to regulate salt and drought tolerance.
Collapse
Affiliation(s)
- Xiangyin Luo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Chao Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Xin He
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Longfu Zhu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| |
Collapse
|
313
|
GOSWAMI M, DEKA S. Plant growth-promoting rhizobacteria—alleviators of abiotic stresses in soil: A review. PEDOSPHERE 2020; 30:40-61. [PMID: 0 DOI: 10.1016/s1002-0160(19)60839-8] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
|
314
|
Gohari G, Alavi Z, Esfandiari E, Panahirad S, Hajihoseinlou S, Fotopoulos V. Interaction between hydrogen peroxide and sodium nitroprusside following chemical priming of Ocimum basilicum L. against salt stress. PHYSIOLOGIA PLANTARUM 2020; 168:361-373. [PMID: 31433490 DOI: 10.1111/ppl.13020] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/23/2019] [Accepted: 08/16/2019] [Indexed: 05/04/2023]
Abstract
Sodium nitroprusside (SNP) and hydrogen peroxide (H2 O2 ), as priming agents, have the well-recorded property to increase plant tolerance against a range of different abiotic stresses such as salinity. In this regard, the present study was conducted to evaluate the effect of different levels of SNP (100 and 200 µM) and H2 O2 (2.5 and 5 mM) as well as their combinations under salt stress (0 and 50 mM NaCl) on key physiological and biochemical attributes of the economically important aromatic plant basil (Ocimum basilicum L.) grown under hydroponic culture. Results revealed that morphological parameters such as plant height, root length, leaf fresh and dry weights (FW and DW) were significantly decreased by salinity stress, while SNP and H2 O2 treatments, alone or combined, increased FW and DW thus enhancing plant tolerance to salt stress. Furthermore, 200 µM SNP + 2.5 mM H2 O2 appeared to be the most effective treatment by causing significant increase in chlorophyll a and b, anthocyanin content and guaiacol peroxidase and ascorbate peroxidase enzymes activities under saline condition. In addition, analytical measurements showed that essential oil profile (concentration of main components) under salt stress was mostly affected by SNP and H2 O2 treatments. The highest increase was observed for methyl chavicol (43.09-69.91%), linalool (4.8-17.9%), cadinol (1.5-3.2%) and epi-α-cadinol (0.18-10.75%) compounds. In conclusion, current findings demonstrated a positive crosstalk between SNP and H2 O2 toward improved basil plant tolerance to salt stress, linked with regulation of essential oil composition.
Collapse
Affiliation(s)
- Gholamreza Gohari
- Department of Horticultural Sciences, Faculty of Agriculture, University of Maragheh, Maragheh, Iran
| | - Zahra Alavi
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, University of Maragheh, Maragheh, Iran
| | - Ezatollah Esfandiari
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, University of Maragheh, Maragheh, Iran
| | - Sima Panahirad
- Department of Horticultural Sciences, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Sedigheh Hajihoseinlou
- Department of Horticultural Sciences, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Vasileios Fotopoulos
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Limassol, Cyprus
| |
Collapse
|
315
|
Mwando E, Angessa TT, Han Y, Li C. Salinity tolerance in barley during germination- homologs and potential genes. J Zhejiang Univ Sci B 2020; 21:93-121. [PMID: 32115909 PMCID: PMC7076347 DOI: 10.1631/jzus.b1900400] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Accepted: 09/25/2019] [Indexed: 12/13/2022]
Abstract
Salinity affects more than 6% of the world's total land area, causing massive losses in crop yield. Salinity inhibits plant growth and development through osmotic and ionic stresses; however, some plants exhibit adaptations through osmotic regulation, exclusion, and translocation of accumulated Na+ or Cl-. Currently, there are no practical, economically viable methods for managing salinity, so the best practice is to grow crops with improved tolerance. Germination is the stage in a plant's life cycle most adversely affected by salinity. Barley, the fourth most important cereal crop in the world, has outstanding salinity tolerance, relative to other cereal crops. Here, we review the genetics of salinity tolerance in barley during germination by summarizing reported quantitative trait loci (QTLs) and functional genes. The homologs of candidate genes for salinity tolerance in Arabidopsis, soybean, maize, wheat, and rice have been blasted and mapped on the barley reference genome. The genetic diversity of three reported functional gene families for salt tolerance during barley germination, namely dehydration-responsive element-binding (DREB) protein, somatic embryogenesis receptor-like kinase and aquaporin genes, is discussed. While all three gene families show great diversity in most plant species, the DREB gene family is more diverse in barley than in wheat and rice. Further to this review, a convenient method for screening for salinity tolerance at germination is needed, and the mechanisms of action of the genes involved in salt tolerance need to be identified, validated, and transferred to commercial cultivars for field production in saline soil.
Collapse
Affiliation(s)
- Edward Mwando
- Western Barley Genetics Alliance, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA 6150, Australia
- Western Australian State Agricultural Biotechnology Centre, Murdoch University, Murdoch, WA 6150, Australia
| | - Tefera Tolera Angessa
- Western Barley Genetics Alliance, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA 6150, Australia
- Western Australian State Agricultural Biotechnology Centre, Murdoch University, Murdoch, WA 6150, Australia
- Department of Primary Industries and Regional Development, 3 Baron-Hay Court, South Perth, WA 6151, Australia
| | - Yong Han
- Western Barley Genetics Alliance, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA 6150, Australia
- Western Australian State Agricultural Biotechnology Centre, Murdoch University, Murdoch, WA 6150, Australia
| | - Chengdao Li
- Western Barley Genetics Alliance, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA 6150, Australia
- Western Australian State Agricultural Biotechnology Centre, Murdoch University, Murdoch, WA 6150, Australia
- Department of Primary Industries and Regional Development, 3 Baron-Hay Court, South Perth, WA 6151, Australia
| |
Collapse
|
316
|
Gohari G, Mohammadi A, Akbari A, Panahirad S, Dadpour MR, Fotopoulos V, Kimura S. Titanium dioxide nanoparticles (TiO 2 NPs) promote growth and ameliorate salinity stress effects on essential oil profile and biochemical attributes of Dracocephalum moldavica. Sci Rep 2020; 10:912. [PMID: 31969653 PMCID: PMC6976586 DOI: 10.1038/s41598-020-57794-1] [Citation(s) in RCA: 149] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 01/07/2020] [Indexed: 01/30/2023] Open
Abstract
Considering titanium dioxide nanoparticles (TiO2 NPs) role in plant growth and especially in plant tolerance against abiotic stress, a greenhouse experiment was carried out to evaluate TiO2 NPs effects (0, 50, 100 and 200 mg L-1) on agronomic traits of Moldavian balm (Dracocephalum moldavica L.) plants grown under different salinity levels (0, 50 and 100 mM NaCl). Results demonstrated that all agronomic traits were negatively affected under all salinity levels but application of 100 mg L-1 TiO2 NPs mitigated these negative effects. TiO2 NPs application on Moldavian balm grown under salt stress conditions improved all agronomic traits and increased antioxidant enzyme activity compared with plants grown under salinity without TiO2 NP treatment. The application of TiO2 NPs significantly lowered H2O2 concentration. In addition, highest essential oil content (1.19%) was obtained in 100 mg L-1 TiO2 NP-treated plants under control conditions. Comprehensive GC/MS analysis of essential oils showed that geranial, z-citral, geranyl acetate and geraniol were the dominant essential oil components. The highest amounts for geranial, geraniol and z-citral were obtained in 100 mg L-1 TiO2 NP-treated plants under control conditions. In conclusion, application of 100 mg L-1 TiO2 NPs could significantly ameliorate the salinity effects in Moldavian balm.
Collapse
Affiliation(s)
- Gholamreza Gohari
- Department of Horticultural Sciences, Faculty of Agriculture, University of Maragheh, Maragheh, Iran.
| | - Asghar Mohammadi
- Department of Horticultural Sciences, Faculty of Agriculture, University of Maragheh, Maragheh, Iran
| | - Ali Akbari
- Solid Tumor Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran.
| | - Sima Panahirad
- Department of Horticultural Sciences, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Mohammad Reza Dadpour
- Department of Horticultural Sciences, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Vasileios Fotopoulos
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology Limassol, Limassol, Cyprus
| | - Seisuke Kimura
- Department of Industrial Life Sciences, Kyoto Sangyo University, Kamigamo-Motoyama, Kita-Ku, Kyoto, 603-8555, Japan
- Center for Ecological Evolutionary Developmental Biology, Kyoto Sangyo University, Kamigamo-Motoyama, Kita-Ku, Kyoto, 603-8555, Japan
| |
Collapse
|
317
|
Effect of UV Radiation and Salt Stress on the Accumulation of Economically Relevant Secondary Metabolites in Bell Pepper Plants. AGRONOMY-BASEL 2020. [DOI: 10.3390/agronomy10010142] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The green biomass of horticultural plants contains valuable secondary metabolites (SM), which can potentially be extracted and sold. When exposed to stress, plants accumulate higher amounts of these SMs, making the extraction and commercialization even more attractive. We evaluated the potential for accumulating the flavones cynaroside and graveobioside A in leaves of two bell pepper cultivars (Mavras and Stayer) when exposed to salt stress (100 mM NaCl), UVA/B excitation (UVA 4–5 W/m2; UVB 10–14 W/m2 for 3 h per day), or a combination of both stressors. Plant age during the trials was 32–48 days. HPLC analyses proved the enhanced accumulation of both metabolites under stress conditions. Cynaroside accumulation is effectively triggered by high-UV stress, whereas graveobioside A contents increase under salt stress. Highest contents of secondary metabolites were observed in plants exposed to combined stress. Effects of stress on overall plant performance differed significantly between treatments, with least negative impact on above ground biomass found for high-UV stressed plants. The usage of two non-destructive instruments (Dualex and Multiplex) allowed us to gain insights into the ontogenetical effects at the leaf level and temporal development of SM contents. Indices provided by those devices correlate fairly with amounts detected via HPLC (Cynaroside: r2 = 0.46–0.66; Graveobioside A: r2 = 0.51–0.71). The concentrations of both metabolites tend to decrease at leaf level during the ontogenetical development even under stress conditions. High-UV stress should be considered as a tool for enriching plant leaves with valuable SM. Effects on the performance of plants throughout a complete production cycle should be evaluated in future trials. All data is available online.
Collapse
|
318
|
Ahanger MA, Aziz U, Alsahli AA, Alyemeni MN, Ahmad P. Influence of Exogenous Salicylic Acid and Nitric Oxide on Growth, Photosynthesis, and Ascorbate-Glutathione Cycle in Salt Stressed Vigna angularis. Biomolecules 2019; 10:biom10010042. [PMID: 31888108 PMCID: PMC7022326 DOI: 10.3390/biom10010042] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/15/2019] [Accepted: 12/20/2019] [Indexed: 01/24/2023] Open
Abstract
The present study was carried out to investigate the beneficial role of exogenous application of salicylic acid (1 mM SA) and nitric oxide (100 μM NO) in preventing the oxidative damage in Vigna angularis triggered by salinity stress. Salinity (100 mM NaCl) stress reduced growth, biomass accumulation, chlorophyll synthesis, photosynthesis, gas exchange parameters, and photochemical efficiency (Fv/Fm) significantly. Exogenous application of SA and NO was affective in enhancing these growth and photosynthetic parameters. Salinity stress reduced relative water content over control. Further, the application of SA and NO enhanced the synthesis of proline, glycine betaine, and sugars as compared to the control as well as NaCl treated plants contributing to the maintenance of tissue water content. Exogenous application of SA and NO resulted in up-regulation of the antioxidant system. Activities of enzymatic antioxidants including superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), dehydroascorbate reductase (DHAR), and glutathione reductase (GR), as well as the content of non-enzymatic components, were more in SA + NO treated seedlings as compared to control and salinity stressed counterparts resulting in significant alleviation of the NaCl mediated oxidative damage. Content of nitrogen, potassium, and calcium increased due to SA and NO under normal conditions and NaCl stress conditions while as Na and Cl content reduced significantly.
Collapse
Affiliation(s)
- Mohammad Abass Ahanger
- College of Life Sciences, Northwest A&F University Yangling, Xianyang 712100, Shaanxi, China;
| | - Usman Aziz
- College of Agronomy, Northwest A&F University Yangling, Xianyang 712100, Shaanxi, China;
| | - Abdulaziz Abdullah Alsahli
- Botany and Microbiology Department, College of Science, King Saudi University, P.O. Box. 2460, Riyadh 11451, Saudi Arabia; (A.A.A.); (M.N.A.)
| | - Mohammed Nasser Alyemeni
- Botany and Microbiology Department, College of Science, King Saudi University, P.O. Box. 2460, Riyadh 11451, Saudi Arabia; (A.A.A.); (M.N.A.)
| | - Parvaiz Ahmad
- Botany and Microbiology Department, College of Science, King Saudi University, P.O. Box. 2460, Riyadh 11451, Saudi Arabia; (A.A.A.); (M.N.A.)
- Department of Botany, S.P. College, Srinagar, Jammu and Kashmir 190001, India
- Correspondence:
| |
Collapse
|
319
|
The functional diversity of structural disorder in plant proteins. Arch Biochem Biophys 2019; 680:108229. [PMID: 31870661 DOI: 10.1016/j.abb.2019.108229] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 12/05/2019] [Accepted: 12/17/2019] [Indexed: 12/29/2022]
Abstract
Structural disorder in proteins is a widespread feature distributed in all domains of life, particularly abundant in eukaryotes, including plants. In these organisms, intrinsically disordered proteins (IDPs) perform a diversity of functions, participating as integrators of signaling networks, in transcriptional and post-transcriptional regulation, in metabolic control, in stress responses and in the formation of biomolecular condensates by liquid-liquid phase separation. Their roles impact the perception, propagation and control of various developmental and environmental cues, as well as the plant defense against abiotic and biotic adverse conditions. In this review, we focus on primary processes to exhibit a broad perspective of the relevance of IDPs in plant cell functions. The information here might help to incorporate this knowledge into a more dynamic view of plant cells, as well as open more questions and promote new ideas for a better understanding of plant life.
Collapse
|
320
|
Asefpour Vakilian K. Gold nanoparticles-based biosensor can detect drought stress in tomato by ultrasensitive and specific determination of miRNAs. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 145:195-204. [PMID: 31706222 DOI: 10.1016/j.plaphy.2019.10.042] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/29/2019] [Accepted: 10/31/2019] [Indexed: 05/16/2023]
Abstract
Drought stress can significantly affect the yield and quality of tomato production. However, the development of a sensitive and specific method for the determination of drought stress is somehow challenging since plant common morpho-physiological and biochemical characteristic are not generally specific to biotic and abiotic stresses. As a solution, the concentration of miRNAs in plant tissues can be a selective and specific indicator of plant stress. In this study, an optical biosensor based on gold nanoparticles is introduced to determine miRNA-1886 in tomato plant roots. Results showed that irrigation levels from 100% to 60% of field capacity increased the concentration of miRNA-1886 in a range from ca. 100 to 6800 fM (fM) causing a linear change in the biosensor response (R2 = 0.97). Results also revealed that in contrast with plant conventional morpho-physiological and biochemical characteristic, miRNA-1886 concentration was not significantly affected (P < 0.01) by other stresses, i.e., salinity and temperature during the growth period. The biosensor introduced in this study is a reliable method to study stress-related functions of miRNAs in plants and their application in specific plant stress determination.
Collapse
Affiliation(s)
- Keyvan Asefpour Vakilian
- Department of Agrotechnology, College of Abouraihan, University of Tehran, Tehran, Iran; Private Laboratory of Biosensor Applications, Hamadan, Iran.
| |
Collapse
|
321
|
Khoshkholgh Sima NA, Ebadi A, Reiahisamani N, Rasekh B. Bio-based remediation of petroleum-contaminated saline soils: Challenges, the current state-of-the-art and future prospects. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 250:109476. [PMID: 31476519 DOI: 10.1016/j.jenvman.2019.109476] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 08/17/2019] [Accepted: 08/25/2019] [Indexed: 06/10/2023]
Abstract
Exploiting synergism between plants and microbes offers a potential means of remediating soils contaminated with petroleum hydrocarbons (PHCs). Salinity alters the physicochemical characteristics of soils and suppresses the growth of both plants and soil microbes, so the bioremediation of saline soils requires the use of plants and in microbes which can tolerate salinity. This review focuses on the management of PHC-contaminated saline soils, surveying what is currently known with respect to the potential of halophytes (plants adapted to saline environments) acting in concert with synergistic microbes to degrade PHCs. The priority is to identify optimal combinations of halophyte(s) and the bacteria present as endophytes and/or associated with the rhizosphere, and to determine what are the factors which most strongly affect their viability.
Collapse
Affiliation(s)
- Nayer Azam Khoshkholgh Sima
- Agricultural Biotechnology Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran.
| | - Ali Ebadi
- Agricultural Biotechnology Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran.
| | - Narges Reiahisamani
- Agricultural Biotechnology Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran.
| | - Behnam Rasekh
- Microbiology and Biotechnology Research Group, Research Institute of Petroleum Industry, Tehran, Iran.
| |
Collapse
|
322
|
Genome-wide identification, classification, expression profiling and DNA methylation (5mC) analysis of stress-responsive ZFP transcription factors in rice (Oryza sativa L.). Gene 2019; 718:144018. [DOI: 10.1016/j.gene.2019.144018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 07/14/2019] [Accepted: 07/26/2019] [Indexed: 12/16/2022]
|
323
|
Campos FV, Oliveira JA, Pereira MG, Farnese FS. Nitric oxide and phytohormone interactions in the response of Lactuca sativa to salinity stress. PLANTA 2019; 250:1475-1489. [PMID: 31327043 DOI: 10.1007/s00425-019-03236-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 07/06/2019] [Indexed: 05/26/2023]
Abstract
MAIN CONCLUSION Nitric oxide increased lettuce's tolerance to salinity by restoring its hormonal balance, consequently reducing Na + accumulation and activating defense mechanisms that allowed the attenuation of ionic, oxidative, and osmotic stresses. Agricultural crops are continually threatened by soil salinity. The plant's ability to tolerate soil salinity can be increased by treatment with the signaling molecule nitric oxide (NO). Involvement of NO in plant metabolism and its interactions with phytohormones have not been fully described, so knowledge about the role of this radical in signaling pathways remains fragmented. In this work, Lactuca sativa (lettuce) plants were subjected to four treatments: (1) control (nutrient solution); (2) SNP [nutrient solution containing 70 μM sodium nitroprusside (SNP), an NO donor]; (3) NaCl (nutrient solution containing 80 mM NaCl); or (4) SNP + NaCl (nutrient solution containing SNP and NaCl). The plants were exposed to these conditions for 24 h, and then, the roots and leaves were collected and used to evaluate biochemical parameters (reactive oxygen species (ROS) production, cell membrane damage, cell death, antioxidant enzymes activities, and proline concentration), physiological parameters (pigments' concentration and gas-exchange measurements), and phytohormone content. To evaluate growth, tolerance index, and nutrient concentration, the plants were exposed to the treatments for 3 days. L sativa exposure to NaCl triggered ionic, osmotic, and oxidative stress, which resulted in hormone imbalance, cell death, and decreased growth. These deleterious changes were correlated with Na+ content in the vegetative tissues. Adding NO decreased Na+ accumulation and stabilized the mineral nutrient concentration, which maintained the photosynthetic rate and re-established growth. NO-signaling action also re-established the phytohormones balance and resulted in antioxidant system activation and osmotic regulation, with consequent increase in plants tolerance to the salt.
Collapse
Affiliation(s)
- Fernanda V Campos
- Instituto Federal Fluminense/Campus Avançado São João da Barra, São João da Barra, RJ, 28200-00, Brazil
| | - Juraci A Oliveira
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, MG, 36570-000, Brazil.
| | - Mayara G Pereira
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, MG, 36570-000, Brazil
| | - Fernanda S Farnese
- Instituto Federal Goiano, Campus Rio Verde, Rio Verde, GO, 75.901-970, Brazil
| |
Collapse
|
324
|
Ahanger MA, Qin C, Maodong Q, Dong XX, Ahmad P, Abd Allah EF, Zhang L. Spermine application alleviates salinity induced growth and photosynthetic inhibition in Solanum lycopersicum by modulating osmolyte and secondary metabolite accumulation and differentially regulating antioxidant metabolism. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 144:1-13. [PMID: 31542655 DOI: 10.1016/j.plaphy.2019.09.021] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 09/05/2019] [Accepted: 09/16/2019] [Indexed: 05/28/2023]
Abstract
Influence of exogenously applied spermine (Spm) on growth and salinity stress tolerance in tomato was investigated. Salinity reduced growth, chlorophyll synthesis and mineral uptake leading to significant reduction in photosynthesis, however Spm application proved beneficial in alleviating the decline to considerable extent. Applied Spm improved nitrate reductase activity, δ-amino levulinic acid content and gas exchange parameters more apparently at 100 μM than 50 μM concentrations. Spm application enhanced the accumulation of compatible osmolytes including proline, glycine betaine and sugars leading to greater tissue water content and photosynthesis. Salinity stress induced oxidative effects were mitigated by Spm treatment reflected interms of reduced accumulation of reactive oxygen species and the activities of protease and lipoxygenase, hence leading to membrane strengthening and protection of their function. Differential influence of exogenous Spm was evident on the functioning of antioxidant system with SOD, GR and APX activities much higher in Spm treated seedlings than CAT and DHAR. Increased synthesis of GSH, AsA and tocopherol in Spm treated seedlings was obvious thereby helping in maintaining the redox homeostasis and the enzymatic antioxidant functioning. Interestingly Spm application maintained the nitric oxide levels higher than control under normal condition while as lowered its concentrations in salinity stressed seedlings depicting existence of probable interaction. Activities of polyamine metabolizing enzymes was up-regulated and the accumulation of secondary metabolites including phenols and flavonoids also increased due to Spm application. Further studies are required to understand the mechanisms clearly.
Collapse
Affiliation(s)
| | - Cheng Qin
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Qi Maodong
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Xu Xue Dong
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Parvaiz Ahmad
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Elsayed Fathi Abd Allah
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh, 11451, Saudi Arabia
| | - Lixin Zhang
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China.
| |
Collapse
|
325
|
Begcy K, Mariano ED, Lembke CG, Zingaretti SM, Souza GM, Araújo P, Menossi M. Overexpression of an evolutionarily conserved drought-responsive sugarcane gene enhances salinity and drought resilience. ANNALS OF BOTANY 2019; 124:691-700. [PMID: 31125059 PMCID: PMC6821327 DOI: 10.1093/aob/mcz044] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 05/07/2019] [Indexed: 05/21/2023]
Abstract
BACKGROUND AND AIMS Improving drought adaptation is more pressing for crops such as sugarcane, rice, wheat and maize, given the high dependence of these crops on irrigation. One option for enhancing adaptation to water limitation in plants is by transgenic approaches. An increasing number of genes that are associated with mechanisms used by plants to cope with water scarcity have been discovered. Genes encoding proteins with unknown functions comprise a relevant fraction of the genes that are modulated by drought. We characterized a gene in response to environmental stresses to gain insight into the unknown fraction of the sugarcane genome. Scdr2 (Sugarcane drought-responsive 2) encodes a small protein and shares highly conserved sequences within monocots, dicots, algae and fungi. METHODS Plants overexpressing the Scdr2 sugarcane gene were examined in response to salinity and drought. Measurements of the gas exchange parameters, germination rate, water content, dry mass and oxidative damage were performed. Seeds as well as juvenile plants were used to explore the resilience level of the transgenic plants when compared with wild-type plants. KEY RESULTS Overexpression of Scdr2 enhanced germination rates in tobacco seeds under drought and salinity conditions. Juvenile transgenic plants overexpressing Scdr2 and subjected to drought and salinity stresses showed higher photosynthesis levels, internal CO2 concentration and stomatal conductance, reduced accumulation of hydrogen peroxide in the leaves, no penalty for photosystem II and faster recovery after submission to both stress conditions. Respiration was not strongly affected by both stresses in the Scdr2 transgenic plants, whereas wild-type plants exhibited increased respiration rates. CONCLUSIONS Scdr2 is involved in the response mechanism to abiotic stresses. Higher levels of Scdr2 enhanced resilience to salinity and drought, and this protection correlated with reduced oxidative damage. Scdr2 confers, at the physiological level, advantages to climate limitations. Therefore, Scdr2 is a potential target for improving sugarcane resilience to abiotic stress.
Collapse
Affiliation(s)
- Kevin Begcy
- Laboratório de Genoma Funcional, Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brazil
- Cell Biology and Plant Biochemistry, Biochemie-Zentrum Regensburg, University of Regensburg, Regensburg, Germany
| | - Eduardo D Mariano
- Laboratório de Genoma Funcional, Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brazil
- Present address: Centro de Ciências Agrárias, Universidade Federal de São Carlos, Araras, Brazil
| | - Carolina G Lembke
- Laboratório de Transdução de Sinal, Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Sonia Marli Zingaretti
- Unidade de Biotecnologia, Universidade de Ribeirão Preto, Ribeirão Preto, São Paulo, Brazil
| | - Glaucia M Souza
- Laboratório de Transdução de Sinal, Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Pedro Araújo
- Laboratório de Genoma Funcional, Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brazil
| | - Marcelo Menossi
- Laboratório de Genoma Funcional, Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brazil
- For correspondence. E-mail
| |
Collapse
|
326
|
Charfeddine M, Charfeddine S, Ghazala I, Bouaziz D, Bouzid RG. Investigation of the response to salinity of transgenic potato plants overexpressing the transcription factor StERF94. J Biosci 2019. [DOI: 10.1007/s12038-019-9959-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
327
|
Zanella L, Gismondi A, Di Marco G, Braglia R, Scuderi F, Redi EL, Galgani A, Canini A. Induction of Antioxidant Metabolites in Moringa oleifera Callus by Abiotic Stresses. JOURNAL OF NATURAL PRODUCTS 2019; 82:2379-2386. [PMID: 31430152 DOI: 10.1021/acs.jnatprod.8b00801] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Moringa oleifeira has recently been subjected to numerous scientific studies pursuing its biological properties. However, biotechnological approaches promoting the synthesis of pharmacological compounds in this species are still scarce, despite the fact that moringa metabolites have shown significant nutraceutical effects. For this reason, in vitro cultures of moringa callus, obtained from leaf explantation, were subjected to various abiotic stresses such as temperature, salicylic acid, and NaCl, to identify the best growth conditions for the production of high levels of antioxidant molecules. Temperature stresses (exposure to 4 and 45 °C) led to no significant variation in moringa callus, in terms of antiradical metabolites, whereas salicylic acid (200 μM) and NaCl (50-100 μM) affected an increase of total phenolic compounds, after 15 and 30 days of treatment. Overall, the treatment with 100 μM NaCl for 30 days showed the highest free radical scavenging activity, comparable to that measured in moringa leaf. In addition, high doses of NaCl (200 μM) inhibited callus growth and reduced the amount and bioactivity of the secondary metabolites of callus. This study provides useful information to standardize growth conditions for the production of secondary metabolites in moringa in vitro cultures, a biotechnological system that could be employed for a rapid, controlled, and guaranteed production of antioxidant molecules for pharmaceutical purposes.
Collapse
Affiliation(s)
- Letizia Zanella
- Department of Biology , University of Rome "Tor Vergata" , Via della Ricerca Scientifica 1 , Rome 00133 , Italy
| | - Angelo Gismondi
- Department of Biology , University of Rome "Tor Vergata" , Via della Ricerca Scientifica 1 , Rome 00133 , Italy
| | - Gabriele Di Marco
- Department of Biology , University of Rome "Tor Vergata" , Via della Ricerca Scientifica 1 , Rome 00133 , Italy
| | - Roberto Braglia
- Department of Biology , University of Rome "Tor Vergata" , Via della Ricerca Scientifica 1 , Rome 00133 , Italy
| | - Francesco Scuderi
- Department of Biology , University of Rome "Tor Vergata" , Via della Ricerca Scientifica 1 , Rome 00133 , Italy
| | - Enrico L Redi
- Department of Biology , University of Rome "Tor Vergata" , Via della Ricerca Scientifica 1 , Rome 00133 , Italy
| | - Andrea Galgani
- Interdepartmental Centre for Animal Technology , University of Rome "Tor Vergata" , Rome 00133 , Italy
| | - Antonella Canini
- Department of Biology , University of Rome "Tor Vergata" , Via della Ricerca Scientifica 1 , Rome 00133 , Italy
| |
Collapse
|
328
|
Sharma JK, Sihmar M, Santal AR, Singh NP. Impact assessment of major abiotic stresses on the proteome profiling of some important crop plants: a current update. Biotechnol Genet Eng Rev 2019; 35:126-160. [PMID: 31478455 DOI: 10.1080/02648725.2019.1657682] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Abiotic stresses adversely affect the plant's growth and development leading to loss of crop plants and plant products in terms of both the quality and quantity. Two main strategies are adopted by plants to acclimatize to stresses; avoidance and tolerance. These adaptive strategies of plants at the cellular and metabolic level enable them to withstand such detrimental conditions. Acclimatization is associated with intensive changes in the proteome of plants and these changes are directly involved in plants response to stress. Proteome studies can be used to screen for these proteins and their involvement in plants response to various abiotic stresses evaluated. In this review, proteomic studies of different plants species under different abiotic stresses, particularly drought, salinity, heat, cold, and waterlogging, are discussed. From different proteomic studies, the stress response can be determined by an interaction between proteomic and physiological changes which occur in plants during such stress conditions. These identified proteins from different processes under different abiotic stress conditions definitely add to our understanding for exploiting them in various biotechnological applications in crop improvement.
Collapse
Affiliation(s)
| | - Monika Sihmar
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, India
| | - Anita Rani Santal
- Department of Microbiology, Maharshi Dayanand University, Rohtak, India
| | - N P Singh
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, India
| |
Collapse
|
329
|
Bhise KK, Dandge PB. Mitigation of salinity stress in plants using plant growth promoting bacteria. Symbiosis 2019. [DOI: 10.1007/s13199-019-00638-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
330
|
Isah T. Stress and defense responses in plant secondary metabolites production. Biol Res 2019; 52:39. [PMID: 31358053 PMCID: PMC6661828 DOI: 10.1186/s40659-019-0246-3] [Citation(s) in RCA: 437] [Impact Index Per Article: 87.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 07/23/2019] [Indexed: 01/25/2023] Open
Abstract
In the growth condition(s) of plants, numerous secondary metabolites (SMs) are produced by them to serve variety of cellular functions essential for physiological processes, and recent increasing evidences have implicated stress and defense response signaling in their production. The type and concentration(s) of secondary molecule(s) produced by a plant are determined by the species, genotype, physiology, developmental stage and environmental factors during growth. This suggests the physiological adaptive responses employed by various plant taxonomic groups in coping with the stress and defensive stimuli. The past recent decades had witnessed renewed interest to study abiotic factors that influence secondary metabolism during in vitro and in vivo growth of plants. Application of molecular biology tools and techniques are facilitating understanding the signaling processes and pathways involved in the SMs production at subcellular, cellular, organ and whole plant systems during in vivo and in vitro growth, with application in metabolic engineering of biosynthetic pathways intermediates.
Collapse
Affiliation(s)
- Tasiu Isah
- Department of Botany, School of Chemical and Life Sciences, Hamdard University, New Delhi, 110 062, India.
| |
Collapse
|
331
|
Effects of Exogenous Trehalose on the Metabolism of Sugar and Abscisic Acid in Tomato Seedlings Under Salt Stress. ACTA ACUST UNITED AC 2019. [DOI: 10.1007/s12209-019-00214-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
332
|
Jasmonates: Mechanisms and functions in abiotic stress tolerance of plants. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.101210] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
333
|
Guerrero-Galán C, Calvo-Polanco M, Zimmermann SD. Ectomycorrhizal symbiosis helps plants to challenge salt stress conditions. MYCORRHIZA 2019; 29:291-301. [PMID: 31011805 DOI: 10.1007/s00572-019-00894-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 04/08/2019] [Indexed: 05/27/2023]
Abstract
Soil salinity is an environmental condition that is currently increasing worldwide. Plant growth under salinity induces osmotic stress and ion toxicity impairing root water and nutrient absorption, but the association with beneficial soil microorganisms has been linked to an improved adaptation to this constraint. The ectomycorrhizal (ECM) symbiosis has been proposed as a key factor for a better tolerance of woody species to salt stress, thanks to the reduction of sodium (Na+) uptake towards photosynthetic organs. Although no precise mechanisms for this enhanced plant salt tolerance have been described yet, in this review, we summarize the knowledge accumulated so far on the role of ECM symbiosis. Moreover, we propose several strategies by which ECM fungi might help plants, including restriction of Na+ entrance into plant tissues and improvement of mineral nutrition and water balances. This positive effect of ECM fungi has been proven in field assays and the results obtained point to a promising application in forestry cultures and reforestation.
Collapse
Affiliation(s)
- Carmen Guerrero-Galán
- BPMP, Univ Montpellier, CNRS, INRA, SupAgro, Montpellier, France
- Centro de Biotecnología y Genómica de Plantas, Instituto Nacional de Investigación y Tecnología Agraria y Alimentación (INIA), Universidad Politécnica de Madrid (UPM), 28223, Pozuelo de Alarcón, Spain
| | | | | |
Collapse
|
334
|
Molecular cloning, expression, and functional characterization of 70-kDa heat shock protein, DnaK, from Bacillus halodurans. Int J Biol Macromol 2019; 137:151-159. [PMID: 31260773 DOI: 10.1016/j.ijbiomac.2019.06.217] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 06/21/2019] [Accepted: 06/27/2019] [Indexed: 11/20/2022]
Abstract
In the present study, we report cloning, sequencing, and functional characterization dnaK gene of B. halodurans that is the central component in cellular network of molecular chaperones. The 3D structures of DnaK obtained by I-TASSER server showed that the overall structures of DnaK from B. halodurans and human HSP70 chaperone BiP are very similar with a homology of 88.8%. The purified recombinant DnaK consists of a His-tag at C-terminus and show a band on approximately 70-kDa region in SDS-PAGE. The resultant refolding assay revealed that the refolding rate was considerably improved by the addition of the novel DnaK chaperone for the refolding of heat-denatured carbonic anhydrase. Also, salt resistance experiments indicated that E. coli + DnaK survival had enhanced by 4.4-fold as compared with control cells in 0.4 M NaCl. The number of E. coli + DnaK colonies was 2.5-fold higher than control colonies in pH 9.5. We showed that DnaK refolding functions were decreased by increasing Cd2+ in nanomolar concentrations. Hg2+ had a biphasic effect on recombinant DnaK refolding function: inhibition at low and stimulation at high concentrations. It was concluded that the DnaK from B. halodurans can potentially be employed for improving functional properties of proteins in various applications.
Collapse
|
335
|
Responses of Tomato Plants under Saline Stress to Foliar Application of Copper Nanoparticles. PLANTS 2019; 8:plants8060151. [PMID: 31167436 PMCID: PMC6630798 DOI: 10.3390/plants8060151] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 05/29/2019] [Accepted: 05/31/2019] [Indexed: 01/22/2023]
Abstract
The tomato crop has great economic and nutritional importance; however, it can be adversely affected by salt stress. The objective of this research is to quantify the agronomic and biochemical responses of tomato plants developed under salt stress with the foliar application of copper nanoparticles. Four treatments were evaluated: foliar application of copper nanoparticles (250 mg L−1) with or without salt stress (50 mM NaCl), salt stress, and an absolute control. Saline stress caused severe damage to the development of tomato plants; however, the damage was mitigated by the foliar application of copper nanoparticles, which increased performance and improved the Na+/K+ ratio. The content of Cu increased in the tissues of tomato plants under salinity with the application of Cu nanoparticles, which increased the phenols (16%) in the leaves and the content of vitamin C (80%), glutathione (GSH) (81%), and phenols (7.8%) in the fruit compared with the control. Similarly, the enzyme activity of phenylalanine ammonia lyase (PAL), ascorbate peroxidase (APX), glutathione peroxidase (GPX), superoxide dismutase (SOD), and catalase (CAT) increased in leaf tissue by 104%, 140%, 26%, 8%, and 93%, respectively. Foliar spraying of copper nanoparticles on tomatoes under salinity appears to induce stress tolerance to salinity by stimulating the plant’s antioxidant mechanisms.
Collapse
|
336
|
Afridi MS, Mahmood T, Salam A, Mukhtar T, Mehmood S, Ali J, Khatoon Z, Bibi M, Javed MT, Sultan T, Chaudhary HJ. Induction of tolerance to salinity in wheat genotypes by plant growth promoting endophytes: Involvement of ACC deaminase and antioxidant enzymes. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 139:569-577. [PMID: 31029030 DOI: 10.1016/j.plaphy.2019.03.041] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 03/27/2019] [Accepted: 03/28/2019] [Indexed: 05/18/2023]
Abstract
Plant growth-promoting endophytes (PGPEs) can colonize the internal tissues of plants and are capable of promoting plant growth. These bacteria can improve plant tolerance against various biotic and abiotic stresses via the expression of antioxidant enzymes and the production of 1-aminocyclopropane-1-carboxylate (ACC) deaminase. Two salt-tolerant PGPEs, Kocuria rhizophila: KF875448 (14ASP) and Cronobacter sakazakii: KM042090 (OF115), with ACC deaminase activity were investigated for their potential to ameliorate plant salinity stress. The wheat varieties Pasban 90 and Khirman were subjected to two levels of salt stress (80 and 160 mM NaCl) under greenhouse conditions by using a completely randomized design. Analyses of plant growth parameters, antioxidant enzyme activities, chlorophyll and plant mineral contents were conducted to investigate the stress tolerance induced by the PGPEs. The ACC utilization by the PGPEs directly relates to the promotion of plant growth due to the lowering of excess ethylene production under salt stress. High levels of NaCl exhibited negative effects in both varieties. However, inoculation with PGPEs increased the morphological traits and antioxidant activities of the plants while decreasing the Na+ contents in all treatments compared to uninoculated treatment. Wheat variety Pasban 90 was more tolerant than Khirman in to salt stress in all the measured morphological and biochemical parameters, while the bacterial strain OF115 performed significantly better in all morphological and biochemical parameters, such as fresh dry weight, root shoot length, proline and chlorophyll contents, compared to strain 14ASP. The K+/Na+ ratio in the tissues of bacterial treated plants was higher than the control, probably in order to maintain the nutrient balance. The results of our study revealed that the inoculation of plants by ACC deaminase-producing PGPEs is a potential tool for the enhancement of plant growth and stress tolerance. Moreover, endophytic bacteria allied with host plants are capable of enduring high saline conditions and can interact with plants in a very efficient way.
Collapse
Affiliation(s)
| | - Tariq Mahmood
- Department of Genetics, Hazara University Mansehra, Pakistan
| | - Abdul Salam
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Tehmeena Mukhtar
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Shehzad Mehmood
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Javed Ali
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Zobia Khatoon
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Maryam Bibi
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Muhammad Tariq Javed
- Department of Botany, Government College University, 38000, Faisalabad, Pakistan
| | - Tariq Sultan
- Land Resource Research Institute, NARC, Islamabad, Pakistan
| | | |
Collapse
|
337
|
Role of Silicon in Mediating Salt Tolerance in Plants: A Review. PLANTS 2019; 8:plants8060147. [PMID: 31159197 PMCID: PMC6630593 DOI: 10.3390/plants8060147] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 05/28/2019] [Accepted: 05/29/2019] [Indexed: 01/06/2023]
Abstract
Salt stress is a major threat for plant growth worldwide. The regulatory mechanisms of silicon in alleviating salt stress have been widely studied using physiological, molecular genetics, and genomic approaches. Recently, progresses have been made in elucidating the alleviative effects of silicon in salt-induced osmotic stress, Na toxicity, and oxidative stress. In this review, we highlight recent development on the impact of silicon application on salt stress responses. Emphasis will be given to the following aspects. (1) Silicon transporters have been experimentally identified in different plant species and their structure feature could be an important molecular basis for silicon permeability. (2) Silicon could mediate salt-induced ion imbalance by (i) regulating Na+ uptake, transport, and distribution and (ii) regulating polyamine levels. (3) Si-mediated upregulation of aquaporin gene expression and osmotic adjustment play important roles in alleviating salinity-induced osmotic stress. (4) Silicon application direct/indirectly mitigates oxidative stress via regulating the antioxidant defense and polyamine metabolism. (5) Omics studies reveal that silicon could regulate plants' response to salt stress by modulating the expression of various genes including transcription factors and hormone-related genes. Finally, research areas that require further investigation to provide a deeper understanding of the role of silicon in plants are highlighted.
Collapse
|
338
|
Teshome A, Byrne SL, Didion T, De Vega J, Jensen CS, Klaas M, Barth S. Transcriptome sequencing of Festulolium accessions under salt stress. BMC Res Notes 2019; 12:311. [PMID: 31151479 PMCID: PMC6545024 DOI: 10.1186/s13104-019-4349-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 05/29/2019] [Indexed: 12/13/2022] Open
Abstract
Objectives The objective of this study was to establish transcriptome assemblies of Festulolium hybrids under salt stress, and identify genes regulated across the hybrids in response to salt stress. The development of transcriptome assemblies for Festulolium hybrids and cataloguing of genes regulated under salt stress will facilitate further downstream studies. Results Plants were grown at three salt concentrations (0.5%, 1% and 1.5%) and phenotypic and transcriptomic data was collected. Salt stress was confirmed by progressive loss of green leaves as salt concentration increased from 0 to 1.5%. We generated de-novo transcriptome assemblies for two Festulolium pabulare festucoid genotypes, for a single Festulolium braunii genotype, and a single F. pabulare loloid genotype. We also identified 1555 transcripts that were up regulated and 1264 transcripts that were down regulated in response to salt stress in the Festulolium hybrids. Some of the identified transcripts showed significant sequence similarity with genes known to be regulated during salt and other abiotic stresses. Electronic supplementary material The online version of this article (10.1186/s13104-019-4349-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- A Teshome
- Teagasc Crop Science Department, Oak Park, Carlow, R93XE12, Ireland
| | - S L Byrne
- Teagasc Crop Science Department, Oak Park, Carlow, R93XE12, Ireland
| | - T Didion
- DLF, Research Division, Store Heddinge, Denmark
| | - J De Vega
- Earlham Institute, Norwich Research Park, Norwich, NR4 7UZ, UK
| | - C S Jensen
- DLF, Research Division, Store Heddinge, Denmark
| | - M Klaas
- Teagasc Crop Science Department, Oak Park, Carlow, R93XE12, Ireland
| | - S Barth
- Teagasc Crop Science Department, Oak Park, Carlow, R93XE12, Ireland.
| |
Collapse
|
339
|
Roy PR, Tahjib-Ul-Arif M, Polash MAS, Hossen MZ, Hossain MA. Physiological mechanisms of exogenous calcium on alleviating salinity-induced stress in rice ( Oryza sativa L.). PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2019; 25:611-624. [PMID: 31168227 PMCID: PMC6522628 DOI: 10.1007/s12298-019-00654-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 03/05/2019] [Accepted: 03/08/2019] [Indexed: 05/26/2023]
Abstract
Being more sensitive to salt stress among the cereals, growth of rice (Oryza sativa L.) has been habitually affected by salinity. Although, several practices have evolved to sustain the growth of rice under salinity, the enormous role of calcium (Ca2+) as a signalling molecule in salt stress mitigation is still arcane. Considering this fact, an experiment was performed aiming to explicate the mechanism of salt-induced growth inhibition in rice and its alleviation by exogenous Ca2+. At germination stage, 10 mM and 15 mM CaCl2 primed rice (cv. Binadhan-10 & Binadhan-7) seeds were grown in petri dishes for 9 days under 100 mM NaCl stress. At seedling stage, 9-day-old rice seedlings grown on sand were exposed to 100 mM NaCl alone and combined with 10 mM and 15 mM CaCl2 for 15 days. This research revealed that salinity radically slowed down growth of rice seedlings and Ca2+ treatment noticeably improved growth performances. At germination stage, 10 mM CaCl2 treatment significantly increased the final germination percentage, germination rate index (in Binadhan-7), shoot, root length (89.20, 67.58% in Bindhan-10 & 84.72, 31.15% in Bindhan-7) and biomass production under salinity. Similarly, at seedling stage, 10 mM CaCl2 supplementation in salt-stressed plants enhanced shoot length (42.17, 28.76%) and shoot dry weight (339.52, 396.20%) significantly in Binadhan-10 & Binadhan-7, respectively, but enhanced root dry weight (36.76%) only in Binadhan-10. In addition, 10 mM CaCl2 supplementation on salt-stressed seedlings increased the chlorophyll and proline content, and oppressed the accretion of reactive oxygen species thus protecting from oxidative damage more pronouncedly in Binadhan-10 than Binadhan-7 as reflected by the elevated levels of catalase and ascorbate peroxidase activity. The 15 mM CaCl2 somehow also enhanced some growth parameters but overall was less effective than 10 mM CaCl2 to alleviate salt stress, and sometimes showed negative effect. Therefore, supplementary application of calcium-rich fertilizers in saline prone soils can be an effective approach to acclimatize salt stress and cultivate rice successfully.
Collapse
Affiliation(s)
- Popy Rani Roy
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture, Bangladesh Agricultural University, Mymensingh, 2202 Bangladesh
| | - Md. Tahjib-Ul-Arif
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture, Bangladesh Agricultural University, Mymensingh, 2202 Bangladesh
| | - Mohammed Arif Sadik Polash
- Department of Crop Botany, Faculty of Agriculture, Bangladesh Agricultural University, Mymensingh, 2202 Bangladesh
| | - Md. Zakir Hossen
- Department of Agricultural Chemistry, Faculty of Agriculture, Bangladesh Agricultural University, Mymensingh, 2202 Bangladesh
| | - M. Afzal Hossain
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture, Bangladesh Agricultural University, Mymensingh, 2202 Bangladesh
| |
Collapse
|
340
|
Rodríguez-Ortega WM, Martínez V, Nieves M, Simón I, Lidón V, Fernandez-Zapata JC, Martinez-Nicolas JJ, Cámara-Zapata JM, García-Sánchez F. Agricultural and Physiological Responses of Tomato Plants Grown in Different Soilless Culture Systems with Saline Water under Greenhouse Conditions. Sci Rep 2019; 9:6733. [PMID: 31043619 PMCID: PMC6494837 DOI: 10.1038/s41598-019-42805-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 04/04/2019] [Indexed: 11/09/2022] Open
Abstract
Tomato is the most important horticultural crop in the world. The yields for this crop are highest in Southeastern Spain. In this work we studied a commercial variety of tomato, with different soilless culture systems (deep flow technique, nutrient film technique, and the perlite substrate) and three levels of salinity (2.2, 6.3, and 10.2 dS·m-1) typical of Southeastern Spain. The irrigation management was carried out for optimizing the water use efficiency. Alterations in the water status of the plants, Cl- and Na+ toxicity, and nutritional imbalances altered the vegetative growth and physiology of the plants. The marketable yield was affected by both soilless culture system and salinity. Regarding the soilles culture system, yield decreased in the order: deep flow technique > perlite > nutrient film technique. The salinity treatments improved the fruits quality by increasing the total soluble solids and titratable acidity. Plants cultivated with the nutrient film technique had the highest concentrations of Cl- and Na+ and the highest Na+/K+ ratio. The concentrations of Cl- and Na+ in the plants were not related directly to the yield loss. Therefore, the influence of the toxicity, osmotic effect, and nutritional imbalance seems to have been responsible for the yield loss.
Collapse
Affiliation(s)
- Wilbert M Rodríguez-Ortega
- Centro de Edafología y Biología Aplicada del Segura, Consejo Superior de Investigaciones Científicas, Campus Universitario de Espinardo, 3A, 30100, Murcia, Spain
| | - Vicente Martínez
- Centro de Edafología y Biología Aplicada del Segura, Consejo Superior de Investigaciones Científicas, Campus Universitario de Espinardo, 3A, 30100, Murcia, Spain
| | - Manuel Nieves
- Escuela Politécnica Superior de Orihuela, Universidad Miguel Hernández, Carretera de Beniel, km 3.2, 03312, Alicante, Spain
| | - I Simón
- Escuela Politécnica Superior de Orihuela, Universidad Miguel Hernández, Carretera de Beniel, km 3.2, 03312, Alicante, Spain
| | - V Lidón
- Escuela Politécnica Superior de Orihuela, Universidad Miguel Hernández, Carretera de Beniel, km 3.2, 03312, Alicante, Spain
| | - J C Fernandez-Zapata
- Escuela Politécnica Superior de Orihuela, Universidad Miguel Hernández, Carretera de Beniel, km 3.2, 03312, Alicante, Spain
| | - J J Martinez-Nicolas
- Escuela Politécnica Superior de Orihuela, Universidad Miguel Hernández, Carretera de Beniel, km 3.2, 03312, Alicante, Spain
| | - José M Cámara-Zapata
- Escuela Politécnica Superior de Orihuela, Universidad Miguel Hernández, Carretera de Beniel, km 3.2, 03312, Alicante, Spain.
| | - Francisco García-Sánchez
- Centro de Edafología y Biología Aplicada del Segura, Consejo Superior de Investigaciones Científicas, Campus Universitario de Espinardo, 3A, 30100, Murcia, Spain
| |
Collapse
|
341
|
Evelin H, Devi TS, Gupta S, Kapoor R. Mitigation of Salinity Stress in Plants by Arbuscular Mycorrhizal Symbiosis: Current Understanding and New Challenges. FRONTIERS IN PLANT SCIENCE 2019; 10:470. [PMID: 31031793 PMCID: PMC6473083 DOI: 10.3389/fpls.2019.00470] [Citation(s) in RCA: 151] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 03/28/2019] [Indexed: 05/02/2023]
Abstract
Modern agriculture is facing twin challenge of ensuring global food security and executing it in a sustainable manner. However, the rapidly expanding salinity stress in cultivable areas poses a major peril to crop yield. Among various biotechnological techniques being used to reduce the negative effects of salinity, the use of arbuscular mycorrhizal fungi (AMF) is considered to be an efficient approach for bio-amelioration of salinity stress. AMF deploy an array of biochemical and physiological mechanisms that act in a concerted manner to provide more salinity tolerance to the host plant. Some of the well-known mechanisms include improved nutrient uptake and maintenance of ionic homeostasis, superior water use efficiency and osmoprotection, enhanced photosynthetic efficiency, preservation of cell ultrastructure, and reinforced antioxidant metabolism. Molecular studies in past one decade have further elucidated the processes involved in amelioration of salt stress in mycorrhizal plants. The participating AMF induce expression of genes involved in Na+ extrusion to the soil solution, K+ acquisition (by phloem loading and unloading) and release into the xylem, therefore maintaining favorable Na+:K+ ratio. Colonization by AMF differentially affects expression of plasma membrane and tonoplast aquaporins (PIPs and TIPs), which consequently improves water status of the plant. Formation of AM (arbuscular mycorrhiza) surges the capacity of plant to mend photosystem-II (PSII) and boosts quantum efficiency of PSII under salt stress conditions by mounting the transcript levels of chloroplast genes encoding antenna proteins involved in transfer of excitation energy. Furthermore, AM-induced interplay of phytohormones, including strigolactones, abscisic acid, gibberellic acid, salicylic acid, and jasmonic acid have also been associated with the salt tolerance mechanism. This review comprehensively covers major research advances on physiological, biochemical, and molecular mechanisms implicated in AM-induced salt stress tolerance in plants. The review identifies the challenges involved in the application of AM in alleviation of salt stress in plants in order to improve crop productivity.
Collapse
Affiliation(s)
- Heikham Evelin
- Department of Botany, Rajiv Gandhi University, Itanagar, India
| | | | - Samta Gupta
- Department of Botany, University of Delhi, New Delhi, India
| | - Rupam Kapoor
- Department of Botany, University of Delhi, New Delhi, India
| |
Collapse
|
342
|
Draft Genome Sequence of Halotolerant Bacterium Chromohalobacter salexigens ANJ207, Isolated from Salt Crystal Deposits in Pipelines. Microbiol Resour Announc 2019; 8:8/15/e00049-19. [PMID: 30975796 PMCID: PMC6460019 DOI: 10.1128/mra.00049-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Chromohalobacter salexigens ANJ207 was isolated from a salt crystal and is known to tolerate up to 30% NaCl concentration. Here, we report the de novo draft assembly of C. salexigens ANJ207. Chromohalobacter salexigens ANJ207 was isolated from a salt crystal and is known to tolerate up to 30% NaCl concentration. Here, we report the de novo draft assembly of C. salexigens ANJ207. The genome was determined to have 3.66 Mb represented in 13 scaffolds, with a total of 3,406 genes predicted.
Collapse
|
343
|
Meta-Analysis of Salt Stress Transcriptome Responses in Different Rice Genotypes at the Seedling Stage. PLANTS 2019; 8:plants8030064. [PMID: 30871082 PMCID: PMC6473595 DOI: 10.3390/plants8030064] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 02/28/2019] [Accepted: 03/08/2019] [Indexed: 11/16/2022]
Abstract
Rice (Oryza sativa L.) is one of the most important staple food crops worldwide, while its growth and productivity are threatened by various abiotic stresses, especially salt stress. Unraveling how rice adapts to salt stress at the transcription level is vital. It can provide valuable information on enhancing the salt stress tolerance performance of rice via genetic engineering technologies. Here, we conducted a meta-analysis of different rice genotypes at the seedling stage based on 96 public microarray datasets, aiming to identify the key salt-responsive genes and understand the molecular response mechanism of rice under salt stress. In total, 5559 genes were identified to be differentially expressed genes (DEGs) under salt stress, and 3210 DEGs were identified during the recovery process. The Gene Ontology (GO) enrichment results revealed that the salt-response mechanisms of shoots and roots were different. A close-knit signaling network, consisting of the Ca2+ signal transduction pathway, the mitogen-activated protein kinase (MAPK) cascade, multiple hormone signals, transcription factors (TFs), transcriptional regulators (TRs), protein kinases (PKs), and other crucial functional proteins, plays an essential role in rice salt stress response. In this study, many unreported salt-responsive genes were found. Besides this, MapMan results suggested that TNG67 can shift to the fermentation pathway to produce energy under salt stress and may enhance the Calvin cycle to repair a damaged photosystem during the recovery stage. Taken together, these findings provide novel insights into the salt stress molecular response and introduce numerous candidate genes for rice salt stress tolerance breeding.
Collapse
|
344
|
Sellami S, Le Hir R, Thorpe MR, Aubry E, Wolff N, Vilaine F, Brini F, Dinant S. Arabidopsis Natural Accessions Display Adaptations in Inflorescence Growth and Vascular Anatomy to Withstand High Salinity during Reproductive Growth. PLANTS (BASEL, SWITZERLAND) 2019; 8:E61. [PMID: 30862126 PMCID: PMC6473358 DOI: 10.3390/plants8030061] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/05/2019] [Accepted: 03/05/2019] [Indexed: 12/04/2022]
Abstract
Plant responses to abiotic stresses entail adaptive processes that integrate both physiological and developmental cues. However, the adaptive traits that are involved in the responses to a high soil salinity during reproductive growth are still poorly studied. To identify new clues, we studied the halophyte, Thellungiella salsuginea, and three Arabidopsis accessions, known as tolerant or salt-sensitive. We focused on the quantitative traits associated with the stem growth, sugar content, and anatomy of the plants subjected to the salt treatment, with and without a three-day acclimation, applied during the reproductive stage. The stem growth of Thellungiella salsuginea was not affected by the salt stress. By contrast, salt affected all of the Arabidopsis accessions, with a natural variation in the effect of the salt on growth, sugar content, and stem anatomy. In response to the high salinity, irregular xylem vessels were observed, independently of the accession's tolerance to salt treatment, while the diameter of the largest xylem vessels was reduced in the tolerant accessions. The stem height, growth rate, hexoses-to-sucrose ratio, and phloem-to-xylem ratio also varied, in association with both the genotype and its tolerance to salt stress. Our findings indicate that several quantitative traits for salt tolerance are associated with the control of inflorescence growth and the adjustment of the phloem-to-xylem ratio.
Collapse
Affiliation(s)
- Sahar Sellami
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles, France.
- Biotechnology and Plant Improvement Laboratory, Center of Biotechnology of Sfax, (CBS)/University of Sfax, 3018 Sfax, Tunisia.
| | - Rozenn Le Hir
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles, France.
| | - Michael R Thorpe
- Plant Science Division, Research School of Biology, The Australian National University, Canberra, ACT 0200, Australia.
| | - Emilie Aubry
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles, France.
| | - Nelly Wolff
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles, France.
| | - Françoise Vilaine
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles, France.
| | - Faiçal Brini
- Biotechnology and Plant Improvement Laboratory, Center of Biotechnology of Sfax, (CBS)/University of Sfax, 3018 Sfax, Tunisia.
| | - Sylvie Dinant
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles, France.
| |
Collapse
|
345
|
Lu Q, Sun Y, Ares I, Anadón A, Martínez M, Martínez-Larrañaga MR, Yuan Z, Wang X, Martínez MA. Deltamethrin toxicity: A review of oxidative stress and metabolism. ENVIRONMENTAL RESEARCH 2019; 170:260-281. [PMID: 30599291 DOI: 10.1016/j.envres.2018.12.045] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 12/18/2018] [Accepted: 12/19/2018] [Indexed: 06/09/2023]
Abstract
Deltamethrin is widely used worldwide due to its valuable insecticidal activity against pests and parasites. Increasing evidence has shown that deltamethrin causes varying degrees of toxicity. Moreover, oxidative stress and metabolism are highly correlated with toxicity. For the first time, this review systematically summarizes the deltamethrin toxicity mechanism from the perspective of oxidative stress, including deltamethrin-mediated oxidative damage, antioxidant status, oxidative signaling pathways and modulatory effects of antagonists, synergists and placebos on oxidative stress. Further, deltamethrin metabolism, including metabolites, metabolic enzymes and pathways and deltamethrin metabolite toxicity are discussed. This review will shed new light on deltamethrin toxicity mechanisms and provide effective strategies to ensure pest control and prevention of human and animal poisoning.
Collapse
Affiliation(s)
- Qirong Lu
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yaqi Sun
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Irma Ares
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Arturo Anadón
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain.
| | - Marta Martínez
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - María-Rosa Martínez-Larrañaga
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Zonghui Yuan
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Xu Wang
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain; National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| | - María-Aránzazu Martínez
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain
| |
Collapse
|
346
|
de Freitas PAF, de Carvalho HH, Costa JH, Miranda RDS, Saraiva KDDC, de Oliveira FDB, Coelho DG, Prisco JT, Gomes-Filho E. Salt acclimation in sorghum plants by exogenous proline: physiological and biochemical changes and regulation of proline metabolism. PLANT CELL REPORTS 2019; 38:403-416. [PMID: 30684024 DOI: 10.1007/s00299-019-02382-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Accepted: 01/16/2019] [Indexed: 05/21/2023]
Abstract
Mitigation of deleterious effects of salinity promoted by exogenous proline can be partially explained by changes in proline enzymatic metabolism and expression of specific proline-related genes. Proline accumulation is a usual response to salinity. We studied the ability of exogenous proline to mitigate the salt harmful effects in sorghum (Sorghum bicolor) leaves. Ten-day-old plants were cultivated in Hoagland's nutrient solution in either the absence or presence of salinity (NaCl at 75 mM) and sprayed with distilled water or 30 mM proline solution. Salinity deleterious effects were alleviated by exogenous proline 14 days after treatment, with a return in growth and recovery of leaf area and photosynthetic parameters. Part of the salinity response reflected an improvement in ionic homeostasis, provided by reduction in Na+ and Cl- ions and increases in K+ and Ca2+ ions as well as increases of compatible solutes. In addition, the application of proline decreased membrane damage and did not increase relative water content. Proline-treated salt-stressed plants displayed increase in proline content, a response counterbalanced by punctual modulation in proline synthesis (down-regulation of Δ1-pyrroline-5-carboxylate synthetase activity) and degradation (up-regulation of proline dehydrogenase activity) enzymes. These responses were correlated with expression of specific proline-related genes (p5cs1 and prodh). Our findings clearly show that proline treatment results in favorable changes, reducing salt-induced damage and improving salt acclimation in sorghum plants.
Collapse
Affiliation(s)
- Paulo André Ferreira de Freitas
- Departamento de Bioquímica e Biologia Molecular, Instituto Nacional de Ciência e Tecnologia em Salinidade (INCTSal/CNPq), Universidade Federal do Ceará, Fortaleza, CE, 60440-554, Brazil
| | - Humberto Henrique de Carvalho
- Departamento de Bioquímica e Biologia Molecular, Instituto Nacional de Ciência e Tecnologia em Salinidade (INCTSal/CNPq), Universidade Federal do Ceará, Fortaleza, CE, 60440-554, Brazil
| | - José Hélio Costa
- Departamento de Bioquímica e Biologia Molecular, Instituto Nacional de Ciência e Tecnologia em Salinidade (INCTSal/CNPq), Universidade Federal do Ceará, Fortaleza, CE, 60440-554, Brazil
| | - Rafael de Souza Miranda
- Universidade Federal do Piauí, Campus Professora Cinobelina Elvas, Bom Jesus, PI, 64900-000, Brazil
| | - Kátia Daniella da Cruz Saraiva
- Instituto Federal de Educação, Ciência e Tecnologia da Paraíba, Campus Princesa Isabel, Princesa Isabel, PB, 58755-000, Brazil
| | - Francisco Dalton Barreto de Oliveira
- Departamento de Bioquímica e Biologia Molecular, Instituto Nacional de Ciência e Tecnologia em Salinidade (INCTSal/CNPq), Universidade Federal do Ceará, Fortaleza, CE, 60440-554, Brazil
| | - Daniel Gomes Coelho
- Departamento de Bioquímica e Biologia Molecular, Instituto Nacional de Ciência e Tecnologia em Salinidade (INCTSal/CNPq), Universidade Federal do Ceará, Fortaleza, CE, 60440-554, Brazil
| | - José Tarquinio Prisco
- Departamento de Bioquímica e Biologia Molecular, Instituto Nacional de Ciência e Tecnologia em Salinidade (INCTSal/CNPq), Universidade Federal do Ceará, Fortaleza, CE, 60440-554, Brazil
| | - Enéas Gomes-Filho
- Departamento de Bioquímica e Biologia Molecular, Instituto Nacional de Ciência e Tecnologia em Salinidade (INCTSal/CNPq), Universidade Federal do Ceará, Fortaleza, CE, 60440-554, Brazil.
| |
Collapse
|
347
|
Na + and Cl - induce differential physiological, biochemical responses and metabolite modulations in vitro in contrasting salt-tolerant soybean genotypes. 3 Biotech 2019; 9:91. [PMID: 30800602 DOI: 10.1007/s13205-019-1599-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 01/31/2019] [Indexed: 12/21/2022] Open
Abstract
Chloride and sodium constitute as the major ions in most saline soils, contributing to salt-induced damage in plants. Research on salt tolerance has mostly concentrated on the sodium toxicity; however, chloride toxicity also needs to be considered to understand the physiological, biochemical, and metabolite changes under individual and additive salts. In this study, we investigated the effect of individual Na+ and/or Cl- ions (equimolar 100 mM NaCl, Na+ and Cl- salts) using in vitro cultures of four soybean genotypes with contrasting salt tolerance. In general, all the treatments significantly induced antioxidant enzymes activities such as catalase, ascorbate peroxidase, glutathione reductase, guaiacol peroxidase, and superoxide dismutase and osmolytes including proline, glycine betaine, and total soluble sugar (TSS). Both individual (Na+, Cl-) and additive (NaCl) stresses induced more pronounced activation of antioxidant enzyme machinery and osmolytes accumulation in the tolerant genotypes (MAUS-47 and Bragg). The sensitive genotypes (Gujosoya-2 and SL-295) showed higher accumulation of Na+ and Cl-, while the tolerant genotypes were found to maintain a low Na+/K+ and high Ca2+ level in combination with enhanced antioxidant defense and osmotic adjustment. Gas chromatography-mass spectrometry (GC-MS)-based metabolomic profiling depicted the association of certain metabolites under individualistic and additive salt effects. The genotype-specific metabolic changes indicated probable involvement of azetidine, 2-furanmethanol, 1,4-dioxin, 3-fluorothiophene, decanoic acid and 2-propenoic acid methyl ester in salt-tolerance mechanism of soybean.
Collapse
|
348
|
Hussain S, Bai Z, Huang J, Cao X, Zhu L, Zhu C, Khaskheli MA, Zhong C, Jin Q, Zhang J. 1-Methylcyclopropene Modulates Physiological, Biochemical, and Antioxidant Responses of Rice to Different Salt Stress Levels. FRONTIERS IN PLANT SCIENCE 2019; 10:124. [PMID: 30846992 PMCID: PMC6393328 DOI: 10.3389/fpls.2019.00124] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Accepted: 01/24/2019] [Indexed: 05/03/2023]
Abstract
Salt stress in soil is a critical constraint that affects the production of rice. Salt stress hinders plant growth through osmotic stress, ionic stress, and a hormonal imbalance (especially ethylene), therefore, thoughtful efforts are needed to devise salt tolerance management strategies. 1-Methylcyclopropene (1-MCP) is an ethylene action inhibitor, which could significantly reduce ethylene production in crops and fruits. However, 1-MCPs response to the physiological, biochemical and antioxidant features of rice under salt stress, are not clear. The present study analyzed whether 1-MCP could modulate salt tolerance for different rice cultivars. Pot culture experiments were conducted in a greenhouse in 2016-2017. Two rice cultivars, Nipponbare (NPBA) and Liangyoupeijiu (LYP9) were used in this trial. The salt stress included four salt levels, 0 g NaCl/kg dry soil (control, CK), 1.5 g NaCl/ kg dry soil (Low Salt stress, LS), 4.5 g NaCl/kg dry soil (Medium Salt stress, MS), and 7.5 g NaCl/kg dry soil (Heavy Salt stress, HS). Two 1-MCP levels, 0 g (CT) and 0.04 g/pot (1-MCP) were applied at the rice booting stage in 2016 and 2017. The results showed that applying 1-MCP significantly reduced ethylene production in rice spikelets from LYP9 and NPBA by 40.2 and 23.9% (CK), 44.3 and 28.6% (LS), 28 and 25.9% (MS), respectively. Rice seedlings for NPBA died under the HS level, while application of 1-MCP reduced the ethylene production in spikelets for LYP9 by 27.4% compared with those that received no 1-MCP treatment. Applying 1-MCP improved the photosynthesis rate and SPAD value in rice leaves for both cultivars. 1-MCP enhanced the superoxide dismutase production, protein synthesis, chlorophyll contents (chl a, b, carotenoids), and decreased malondialdehyde, H2O2, and proline accumulation in rice leaves. Application of 1-MCP also modulated the aboveground biomass, and grain yield for LYP9 and NPBA by 19.4 and 15.1% (CK), 30.3 and 24% (LS), 26.4 and 55.4% (MS), respectively, and 34.5% (HS) for LYP9 compared with those that received no 1-MCP treatment. However, LYP9 displayed a better tolerance than NPBA. The results revealed that 1-MCP could be employed to modulate physiology, biochemical, and antioxidant activities in rice plants, at different levels of salt stress, as a salt stress remedy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Qianyu Jin
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Junhua Zhang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| |
Collapse
|
349
|
Nadeem M, Li J, Yahya M, Wang M, Ali A, Cheng A, Wang X, Ma C. Grain Legumes and Fear of Salt Stress: Focus on Mechanisms and Management Strategies. Int J Mol Sci 2019; 20:E799. [PMID: 30781763 PMCID: PMC6412900 DOI: 10.3390/ijms20040799] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 02/10/2019] [Accepted: 02/11/2019] [Indexed: 12/27/2022] Open
Abstract
Salinity is an ever-present major constraint and a major threat to legume crops, particularly in areas with irrigated agriculture. Legumes demonstrate high sensitivity, especially during vegetative and reproductive phases. This review gives an overview of legumes sensitivity to salt stress (SS) and mechanisms to cope with salinity stress under unfavorable conditions. It also focuses on the promising management approaches, i.e., agronomic practices, breeding approaches, and genome editing techniques to improve performance of legumes under SS. Now, the onus is on researchers to comprehend the plants physiological and molecular mechanisms, in addition to various responses as part of their stress tolerance strategy. Due to their ability to fix biological nitrogen, high protein contents, dietary fiber, and essential mineral contents, legumes have become a fascinating group of plants. There is an immense need to develop SS tolerant legume varieties to meet growing demand of protein worldwide. This review covering crucial areas ranging from effects, mechanisms, and management strategies, may elucidate further the ways to develop SS-tolerant varieties and to produce legume crops in unfavorable environments.
Collapse
Affiliation(s)
- Muhammad Nadeem
- School of Agronomy, Anhui Agricultural University, Hefei 230036, China.
| | - Jiajia Li
- School of Agronomy, Anhui Agricultural University, Hefei 230036, China.
| | - Muhammad Yahya
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China.
| | - Minghua Wang
- School of Agronomy, Anhui Agricultural University, Hefei 230036, China.
| | - Asif Ali
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China.
| | - Andong Cheng
- School of Agronomy, Anhui Agricultural University, Hefei 230036, China.
| | - Xiaobo Wang
- School of Agronomy, Anhui Agricultural University, Hefei 230036, China.
| | - Chuanxi Ma
- School of Agronomy, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
350
|
Wang Y, Cong Y, Wang Y, Guo Z, Yue J, Xing Z, Gao X, Chai X. Identification of Early Salinity Stress-Responsive Proteins in Dunaliella salina by isobaric tags for relative and absolute quantitation (iTRAQ)-Based Quantitative Proteomic Analysis. Int J Mol Sci 2019; 20:ijms20030599. [PMID: 30704074 PMCID: PMC6386831 DOI: 10.3390/ijms20030599] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 12/31/2018] [Accepted: 01/16/2019] [Indexed: 12/13/2022] Open
Abstract
Salt stress is one of the most serious abiotic factors that inhibit plant growth. Dunaliella salina has been recognized as a model organism for stress response research due to its high capacity to tolerate extreme salt stress. A proteomic approach based on isobaric tags for relative and absolute quantitation (iTRAQ) was used to analyze the proteome of D. salina during early response to salt stress and identify the differentially abundant proteins (DAPs). A total of 141 DAPs were identified in salt-treated samples, including 75 upregulated and 66 downregulated DAPs after 3 and 24 h of salt stress. DAPs were annotated and classified into gene ontology functional groups. The Kyoto Encyclopedia of Genes and Genomes pathway analysis linked DAPs to tricarboxylic acid cycle, photosynthesis and oxidative phosphorylation. Using search tool for the retrieval of interacting genes (STRING) software, regulatory protein⁻protein interaction (PPI) networks of the DAPs containing 33 and 52 nodes were built at each time point, which showed that photosynthesis and ATP synthesis were crucial for the modulation of early salinity-responsive pathways. The corresponding transcript levels of five DAPs were quantified by quantitative real-time polymerase chain reaction (qRT-PCR). These results presented an overview of the systematic molecular response to salt stress. This study revealed a complex regulatory mechanism of early salt tolerance in D. salina and potentially contributes to developing strategies to improve stress resilience.
Collapse
Affiliation(s)
- Yuan Wang
- Key Laboratory of Hydrobiology in Liaoning Province's Universities, Dalian Ocean University, Dalian 116021, China.
- College of fisheries and life science, Dalian Ocean University, Dalian 116021, China.
| | - Yuting Cong
- College of fisheries and life science, Dalian Ocean University, Dalian 116021, China.
| | - Yonghua Wang
- Bioinformatics Center, College of Life Sciences, Northwest A&F University, Yangling 712100, China.
| | - Zihu Guo
- College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, China.
| | - Jinrong Yue
- College of fisheries and life science, Dalian Ocean University, Dalian 116021, China.
| | - Zhenyu Xing
- College of fisheries and life science, Dalian Ocean University, Dalian 116021, China.
| | - Xiangnan Gao
- College of fisheries and life science, Dalian Ocean University, Dalian 116021, China.
| | - Xiaojie Chai
- College of fisheries and life science, Dalian Ocean University, Dalian 116021, China.
| |
Collapse
|