301
|
Toh CH, Castillo M. Early-Stage Glioblastomas: MR Imaging-Based Classification and Imaging Evidence of Progressive Growth. AJNR Am J Neuroradiol 2016; 38:288-293. [PMID: 27856439 DOI: 10.3174/ajnr.a5015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 09/23/2016] [Indexed: 01/23/2023]
Abstract
BACKGROUND AND PURPOSE The serial imaging changes describing the growth of glioblastomas from small to large tumors are seldom reported. Our aim was to classify the imaging patterns of early-stage glioblastomas and to define the order of appearance of different imaging patterns that occur during the growth of small glioblastomas. MATERIALS AND METHODS Medical records and preoperative MR imaging studies of patients diagnosed with glioblastoma between 2006 and 2013 were reviewed. Patients were included if their MR imaging studies showed early-stage glioblastomas, defined as small MR imaging lesions detected early in the course of the disease, demonstrating abnormal signal intensity but the absence of classic imaging findings of glioblastoma. Each lesion was reviewed by 2 neuroradiologists independently for location, signal intensity, involvement of GM and/or WM, and contrast-enhancement pattern on MR imaging. RESULTS Twenty-six patients with 31 preoperative MR imaging studies met the inclusion criteria. Early-stage glioblastomas were classified into 3 types and were all hyperintense on FLAIR/T2-weighted images. Type I lesions predominantly involved cortical GM (n = 3). Type II (n = 12) and III (n = 16) lesions involved both cortical GM and subcortical WM. Focal contrast enhancement was present only in type III lesions at the gray-white junction. Interobserver agreement was excellent (κ = 0.95; P < .001) for lesion-type classification. Transformations of lesions from type I to type II and type II to type III were observed on follow-up MR imaging studies. The early-stage glioblastomas of 16 patients were pathologically confirmed after imaging progression to classic glioblastoma. CONCLUSIONS Cortical lesions may be the earliest MR imaging-detectable abnormality in some human glioblastomas. These cortical tumors may progress to involve WM.
Collapse
Affiliation(s)
- C H Toh
- From the Department of Medical Imaging and Intervention (C.H.T.), Chang Gung Memorial Hospital at Linkou and Chang Gung University College of Medicine, Tao-Yuan, Taiwan
| | - M Castillo
- Department of Radiology (M.C.), University of North Carolina School of Medicine, Chapel Hill, North Carolina
| |
Collapse
|
302
|
Sreedharan S, Maturi NP, Xie Y, Sundström A, Jarvius M, Libard S, Alafuzoff I, Weishaupt H, Fryknäs M, Larsson R, Swartling FJ, Uhrbom L. Mouse Models of Pediatric Supratentorial High-grade Glioma Reveal How Cell-of-Origin Influences Tumor Development and Phenotype. Cancer Res 2016; 77:802-812. [PMID: 28115362 DOI: 10.1158/0008-5472.can-16-2482] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 10/17/2016] [Accepted: 10/31/2016] [Indexed: 11/16/2022]
Abstract
High-grade glioma (HGG) is a group of primary malignant brain tumors with dismal prognosis. Whereas adult HGG has been studied extensively, childhood HGG, a relatively rare disease, is less well-characterized. Here, we present two novel platelet-derived growth factor (PDGF)-driven mouse models of pediatric supratentorial HGG. Tumors developed from two different cells of origin reminiscent of neural stem cells (NSC) or oligodendrocyte precursor cells (OPC). Cross-species transcriptomics showed that both models are closely related to human pediatric HGG as compared with adult HGG. Furthermore, an NSC-like cell-of-origin enhanced tumor incidence, malignancy, and the ability of mouse glioma cells (GC) to be cultured under stem cell conditions as compared with an OPC-like cell. Functional analyses of cultured GC from these tumors showed that cells of NSC-like origin were more tumorigenic, had a higher rate of self-renewal and proliferation, and were more sensitive to a panel of cancer drugs compared with GC of a more differentiated origin. These two mouse models relevant to human pediatric supratentorial HGG propose an important role of the cell-of-origin for clinicopathologic features of this disease. Cancer Res; 77(3); 802-12. ©2016 AACR.
Collapse
Affiliation(s)
- Smitha Sreedharan
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Rudbeck Laboratory, Uppsala, Sweden
| | - Naga Prathyusha Maturi
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Rudbeck Laboratory, Uppsala, Sweden
| | - Yuan Xie
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Rudbeck Laboratory, Uppsala, Sweden
| | - Anders Sundström
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Rudbeck Laboratory, Uppsala, Sweden
| | - Malin Jarvius
- Department of Medical Sciences, Cancer Pharmacology and Computational Medicine, Uppsala University, Uppsala, Sweden
| | - Sylwia Libard
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Rudbeck Laboratory, Uppsala, Sweden
| | - Irina Alafuzoff
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Rudbeck Laboratory, Uppsala, Sweden
| | - Holger Weishaupt
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Rudbeck Laboratory, Uppsala, Sweden
| | - Mårten Fryknäs
- Department of Medical Sciences, Cancer Pharmacology and Computational Medicine, Uppsala University, Uppsala, Sweden
| | - Rolf Larsson
- Department of Medical Sciences, Cancer Pharmacology and Computational Medicine, Uppsala University, Uppsala, Sweden
| | - Fredrik J Swartling
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Rudbeck Laboratory, Uppsala, Sweden
| | - Lene Uhrbom
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Rudbeck Laboratory, Uppsala, Sweden.
| |
Collapse
|
303
|
Akkermann R, Jadasz JJ, Azim K, Küry P. Taking Advantage of Nature's Gift: Can Endogenous Neural Stem Cells Improve Myelin Regeneration? Int J Mol Sci 2016; 17:ijms17111895. [PMID: 27854261 PMCID: PMC5133894 DOI: 10.3390/ijms17111895] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 10/28/2016] [Accepted: 11/09/2016] [Indexed: 01/18/2023] Open
Abstract
Irreversible functional deficits in multiple sclerosis (MS) are directly correlated to axonal damage and loss. Neurodegeneration results from immune-mediated destruction of myelin sheaths and subsequent axonal demyelination. Importantly, oligodendrocytes, the myelinating glial cells of the central nervous system, can be replaced to some extent to generate new myelin sheaths. This endogenous regeneration capacity has so far mainly been attributed to the activation and recruitment of resident oligodendroglial precursor cells. As this self-repair process is limited and increasingly fails while MS progresses, much interest has evolved regarding the development of remyelination-promoting strategies and the presence of alternative cell types, which can also contribute to the restoration of myelin sheaths. The adult brain comprises at least two neurogenic niches harboring life-long adult neural stem cells (NSCs). An increasing number of investigations are beginning to shed light on these cells under pathological conditions and revealed a significant potential of NSCs to contribute to myelin repair activities. In this review, these emerging investigations are discussed with respect to the importance of stimulating endogenous repair mechanisms from germinal sources. Moreover, we present key findings of NSC-derived oligodendroglial progeny, including a comprehensive overview of factors and mechanisms involved in this process.
Collapse
Affiliation(s)
- Rainer Akkermann
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, 40225 Düsseldorf, Germany.
| | - Janusz Joachim Jadasz
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, 40225 Düsseldorf, Germany.
| | - Kasum Azim
- Focus Translational Neuroscience, Institute of Physiological Chemistry, University of Mainz, 55122 Mainz, Germany.
| | - Patrick Küry
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, 40225 Düsseldorf, Germany.
| |
Collapse
|
304
|
Cell of origin of glioma: biological and clinical implications. Br J Cancer 2016; 115:1445-1450. [PMID: 27832665 PMCID: PMC5155355 DOI: 10.1038/bjc.2016.354] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 09/27/2016] [Accepted: 09/28/2016] [Indexed: 12/17/2022] Open
Abstract
The cellular origin of gliomas remains a topic of controversy in cancer research. Advances in neurobiology, molecular genetics, and functional genomics have ushered new insights through exploiting the development of more sophisticated tools to address this question. Diverse distinct cell populations in the adult brain have been reported to give rise to gliomas, although how these studies relate physiologically to mechanisms of spontaneous tumour formation via accumulation of tumour-initiating mutations within a single cell are less well developed. Recent studies in animal models indicate that the lineage of the tumour-initiating cell may contribute to the biological and genomic phenotype of glioblastoma. These results suggest that the cell of origin may not only serve as a source of diversity for these tumours, but may also provide new avenues for improved diagnostics and therapeutic targeting that may prolong the lives of patients.
Collapse
|
305
|
Single-cell RNA-seq supports a developmental hierarchy in human oligodendroglioma. Nature 2016; 539:309-313. [PMID: 27806376 PMCID: PMC5465819 DOI: 10.1038/nature20123] [Citation(s) in RCA: 752] [Impact Index Per Article: 94.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 09/26/2016] [Indexed: 12/21/2022]
Abstract
Although human tumours are shaped by the genetic evolution of cancer cells, evidence also suggests that they display hierarchies related to developmental pathways and epigenetic programs in which cancer stem cells (CSCs) can drive tumour growth and give rise to differentiated progeny. Yet, unbiased evidence for CSCs in solid human malignancies remains elusive. Here we profile 4,347 single cells from six IDH1 or IDH2 mutant human oligodendrogliomas by RNA sequencing (RNA-seq) and reconstruct their developmental programs from genome-wide expression signatures. We infer that most cancer cells are differentiated along two specialized glial programs, whereas a rare subpopulation of cells is undifferentiated and associated with a neural stem cell expression program. Cells with expression signatures for proliferation are highly enriched in this rare subpopulation, consistent with a model in which CSCs are primarily responsible for fuelling the growth of oligodendroglioma in humans. Analysis of copy number variation (CNV) shows that distinct CNV sub-clones within tumours display similar cellular hierarchies, suggesting that the architecture of oligodendroglioma is primarily dictated by developmental programs. Subclonal point mutation analysis supports a similar model, although a full phylogenetic tree would be required to definitively determine the effect of genetic evolution on the inferred hierarchies. Our single-cell analyses provide insight into the cellular architecture of oligodendrogliomas at single-cell resolution and support the cancer stem cell model, with substantial implications for disease management.
Collapse
|
306
|
Bielle F, Ducray F, Mokhtari K, Dehais C, Adle-Biassette H, Carpentier C, Chanut A, Polivka M, Poggioli S, Rosenberg S, Giry M, Marie Y, Duyckaerts C, Sanson M, Figarella-Branger D, Idbaih A. Tumor cells with neuronal intermediate progenitor features define a subgroup of 1p/19q co-deleted anaplastic gliomas. Brain Pathol 2016; 27:567-579. [PMID: 27543943 DOI: 10.1111/bpa.12434] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 08/15/2016] [Indexed: 02/01/2023] Open
Abstract
The integrated diagnosis of anaplastic oligodendroglioma, IDH mutant and 1p/19q co-deleted, grade III (O3id ) is a histomolecular entity that WHO 2016 classification distinguished from other diffuse gliomas by specific molecular alterations. In contrast, its cell portrait is less well known. The present study is focused on intertumor and intratumor, cell lineage-oriented, heterogeneity in O3id . Based on pathological, transcriptomic and immunophenotypic studies, a novel subgroup of newly diagnosed O3id overexpressing neuronal intermediate progenitor (NIP) genes was identified. This NIP overexpression pattern in O3id is associated with: (i) morphological and immunohistochemical similarities with embryonic subventricular zone, (ii) proliferating tumor cell subpopulation with NIP features including expression of INSM1 and no expression of SOX9, (iii) mutations in critical genes involved in NIP biology and, (iv) increased tumor necrosis. Interestingly, NIP tumor cell subpopulation increases in O3id recurrence compared with paired newly diagnosed tumors. Our results, validated in an independent cohort, emphasize intertumor and intratumor heterogeneity in O3id and identified a tumor cell subpopulation exhibiting NIP characteristics that is potentially critical in oncogenesis of O3id . A better understanding of spatial and temporal intratumor cell heterogeneity in O3id will open new therapeutic avenues overcoming resistance to current antitumor treatments.
Collapse
Affiliation(s)
- Franck Bielle
- Service de Neuropathologie Raymond Escourolle, AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Paris, F-75013, France.,Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, Paris, F-75013, France
| | - François Ducray
- Service de Neuro-oncologie, Hospices Civils de Lyon, Hôpital Neurologique, Lyon, France.,Université Claude Bernard Lyon 1, Lyon, France.,Cancer Research Centre of Lyon, INSERM U1052, CNRS UMR5286, Lyon, France
| | - Karima Mokhtari
- Service de Neuropathologie Raymond Escourolle, AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Paris, F-75013, France.,Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, Paris, F-75013, France.,OncoNeuroTek, Institut du Cerveau et de la Moelle épinière, ICM, Paris, F-75013, France
| | - Caroline Dehais
- AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Service de Neurologie 2-Mazarin, Paris, F-75013, France
| | | | - Catherine Carpentier
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, Paris, F-75013, France
| | - Anaïs Chanut
- Service de Neuropathologie Raymond Escourolle, AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Paris, F-75013, France
| | - Marc Polivka
- Hôpital Lariboisière, Département de Pathologie, AP-HP, Paris, France
| | - Sylvie Poggioli
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, Paris, F-75013, France
| | - Shai Rosenberg
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, Paris, F-75013, France
| | - Marine Giry
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, Paris, F-75013, France
| | - Yannick Marie
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, Paris, F-75013, France.,OncoNeuroTek, Institut du Cerveau et de la Moelle épinière, ICM, Paris, F-75013, France
| | - Charles Duyckaerts
- Service de Neuropathologie Raymond Escourolle, AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Paris, F-75013, France.,Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, Paris, F-75013, France
| | - Marc Sanson
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, Paris, F-75013, France.,AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Service de Neurologie 2-Mazarin, Paris, F-75013, France
| | - Dominique Figarella-Branger
- Département de Pathologie et Neuropathologie, Assistance Publique-Hôpitaux de Marseille, CHU Timone, Marseille, France.,Université Aix-Marseille, INSERM U911, Marseille, France
| | - Ahmed Idbaih
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, Paris, F-75013, France.,AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Service de Neurologie 2-Mazarin, Paris, F-75013, France
| | -
- POLA Network investigators: Amiens: Christine Desenclos, Henri Sevestre; Angers: Philippe Menei, Audrey Rousseau; Besançon: Joel Godard, Gabriel Viennet; Bobigny: Antoine Carpentier; Bordeaux: Sandrine Eimer, Hugues Loiseau; Brest: Phong Dam-Hieu, Isabelle Quintin-Roué; Caen: Jean-Sebastien Guillamo, Emmanuelle Lechapt-Zalcman; Clermont-Ferrand:Jean-Louis Kemeny, Toufik Khallil; Clichy: Dominique Cazals-Hatem, Thierry Faillot; Cornebarrieu: Ioana Carpiuc, Pomone Richard; Créteil: Caroline Le Guerinel; Colmar: Claude Gaultier, Marie-Christine Tortel; Dijon: Marie-Hélène Aubriot-Lorton, François Ghiringhelli; Kremlin-Bicêtre: Clovis Adam, Fabrice Parker; Lille: Claude-Alain Maurage, Carole Ramirez; Limoges: Edouard Marcel Gueye, François Labrousse; Lyon: Anne Jouvet; Marseille: Olivier Chinot; Montpellier: Luc Bauchet, Valérie Rigau; Nancy: Patrick Beauchesne, Dr Guillaume Gauchotte; Nantes: Mario Campone, Delphine Loussouarn; Nice: Denys Fontaine, Fanny Vandenbos; Orléans: Claire Blechet, Mélanie Fesneau; Paris: Jean Yves Delattre (national coordinator of the network), Selma Elouadhani-Hamdi, Damien Ricard; Poitiers: Delphine Larrieu-Ciron, Pierre-Marie Levillain; Reims: Philippe Colin, Marie-Danièle Diebold; Rennes: Danchristian Chiforeanu, Elodie Vauléon; Rouen: Olivier Langlois, Annie Laquerrière; Saint-Etienne: Marie Janette Motsuo Fotso, Michel Peoc'h; Saint-Pierre de la réunion: Marie Andraud, Gwenaelle Runavot; Strasbourg: Marie-Pierre Chenard, Georges Noel; Suresnes: Dr Stéphane Gaillard, Dr Chiara Villa; Toulon: Nicolas Desse; Toulouse: Elisabeth Cohen-Moyal, Emmanuelle Uro-Coste; Villejuif: Frédéric Dhermain
| |
Collapse
|
307
|
Irradiating the Subventricular Zone in Glioblastoma Patients: Is there a Case for a Clinical Trial? Clin Oncol (R Coll Radiol) 2016; 29:26-33. [PMID: 27729188 DOI: 10.1016/j.clon.2016.09.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 07/05/2016] [Accepted: 07/07/2016] [Indexed: 11/20/2022]
Abstract
Glioblastoma is the most common and aggressive adult brain tumour. Over the last 10 years it has emerged that the subventricular zone (SVZ), the largest adult neural stem cell niche, has an important role in the disease. Converging evidence has implicated transformation of adult neural stems in gliomagenesis and the permissive stem cell niche in disease recurrence. Concurrently, clinical studies have suggested that SVZ involvement is a negative prognostic marker. It would follow that irradiating the SVZ may improve outcomes in glioblastoma by directly targeting this putative sanctuary site. To investigate this potential strategy, 11 retrospective studies and 1 prospective study examined the relationship between dose to the SVZ and survival outcomes in glioblastoma patients. This review summarises the theoretical underpinning of this strategy, provides a critical evaluation of the existing evidence and discusses the rationale for a clinical trial.
Collapse
|
308
|
Russell LN, Lampe KJ. Engineering Biomaterials to Influence Oligodendroglial Growth, Maturation, and Myelin Production. Cells Tissues Organs 2016; 202:85-101. [PMID: 27701172 DOI: 10.1159/000446645] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/09/2016] [Indexed: 11/19/2022] Open
Abstract
Millions of people suffer from damage or disease to the nervous system that results in a loss of myelin, such as through a spinal cord injury or multiple sclerosis. Diminished myelin levels lead to further cell death in which unmyelinated neurons die. In the central nervous system, a loss of myelin is especially detrimental because of its poor ability to regenerate. Cell therapies such as stem or precursor cell injection have been investigated as stem cells are able to grow and differentiate into the damaged cells; however, stem cell injection alone has been unsuccessful in many areas of neural regeneration. Therefore, researchers have begun exploring combined therapies with biomaterials that promote cell growth and differentiation while localizing cells in the injured area. The regrowth of myelinating oligodendrocytes from neural stem cells through a biomaterials approach may prove to be a beneficial strategy following the onset of demyelination. This article reviews recent advancements in biomaterial strategies for the differentiation of neural stem cells into oligodendrocytes, and presents new data indicating appropriate properties for oligodendrocyte precursor cell growth. In some cases, an increase in oligodendrocyte differentiation alongside neurons is further highlighted for functional improvements where the biomaterial was then tested for increased myelination both in vitro and in vivo.
Collapse
|
309
|
Vascular Transdifferentiation in the CNS: A Focus on Neural and Glioblastoma Stem-Like Cells. Stem Cells Int 2016; 2016:2759403. [PMID: 27738435 PMCID: PMC5055959 DOI: 10.1155/2016/2759403] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 09/05/2016] [Indexed: 01/12/2023] Open
Abstract
Glioblastomas are devastating and extensively vascularized brain tumors from which glioblastoma stem-like cells (GSCs) have been isolated by many groups. These cells have a high tumorigenic potential and the capacity to generate heterogeneous phenotypes. There is growing evidence to support the possibility that these cells are derived from the accumulation of mutations in adult neural stem cells (NSCs) as well as in oligodendrocyte progenitors. It was recently reported that GSCs could transdifferentiate into endothelial-like and pericyte-like cells both in vitro and in vivo, notably under the influence of Notch and TGFβ signaling pathways. Vascular cells derived from GBM cells were also observed directly in patient samples. These results could lead to new directions for designing original therapeutic approaches against GBM neovascularization but this specific reprogramming requires further molecular investigations. Transdifferentiation of nontumoral neural stem cells into vascular cells has also been described and conversely vascular cells may generate neural stem cells. In this review, we present and discuss these recent data. As some of them appear controversial, further validation will be needed using new technical approaches such as high throughput profiling and functional analyses to avoid experimental pitfalls and misinterpretations.
Collapse
|
310
|
Influence of glioblastoma contact with the lateral ventricle on survival: a meta-analysis. J Neurooncol 2016; 131:125-133. [PMID: 27644688 DOI: 10.1007/s11060-016-2278-7] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 09/03/2016] [Indexed: 02/07/2023]
Abstract
The ventricular-subventricular zone (V-SVZ), which lies in the walls of the lateral ventricles (LV), is the largest neurogenic niche within the adult brain. Whether radiographic contact with the LV influences survival in glioblastoma (GBM) patients remains unclear. We assimilated and analyzed published data comparing survival in GBM patients with (LV+GBM) and without (LV-GBM) radiographic LV contact. PubMed, EMBASE, and Cochrane electronic databases were searched. Fifteen studies with survival data on LV+GBM and LV-GBM patients were identified. Their Kaplan-Meier survival curves were digitized and pooled for generation of median overall (OS) and progression free (PFS) survivals and log-rank hazard ratios (HRs). The log-rank and reported multivariate HRs after accounting for the common predictors of GBM survival were analyzed separately by meta-analyses. The calculated median survivals (months) from pooled data were 12.95 and 16.58 (OS), and 4.54 and 6.25 (PFS) for LV+GBMs and LV-GBMs, respectively, with an overall log-rank HRs of 1.335 [1.204-1.513] (OS) and 1.387 [1.225-1.602] (PFS). Meta-analysis of log-rank HRs resulted in summary HRs of 1.58 [1.35-1.85] (OS, 10 studies) and 1.41 [1.22-1.64] (PFS, 5 studies). Meta-analysis of multivariate HRs resulted in summary HRs of 1.35 [1.14-1.58] (OS, 6 studies) and 1.64 [0.88-3.05] (PFS, 3 studies). Patients with GBM contacting the LV have lower survival. This effect may be independent of the common predictors of GBM survival, suggesting a clinical influence of V-SVZ contact on GBM biology.
Collapse
|
311
|
Iser IC, Pereira MB, Lenz G, Wink MR. The Epithelial-to-Mesenchymal Transition-Like Process in Glioblastoma: An Updated Systematic Review and In Silico Investigation. Med Res Rev 2016; 37:271-313. [DOI: 10.1002/med.21408] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 07/31/2016] [Accepted: 08/09/2016] [Indexed: 12/13/2022]
Affiliation(s)
- Isabele C. Iser
- Departamento de Ciências Básicas da Saúde e Laboratório de Biologia Celular; Universidade Federal de Ciências da Saúde de Porto Alegre - UFCSPA; Porto Alegre RS Brazil
| | - Mariana B. Pereira
- Departamento de Biofísica e Centro de Biotecnologia; Universidade Federal do Rio Grande do Sul; Porto Alegre Brazil
| | - Guido Lenz
- Departamento de Biofísica e Centro de Biotecnologia; Universidade Federal do Rio Grande do Sul; Porto Alegre Brazil
| | - Márcia R. Wink
- Departamento de Ciências Básicas da Saúde e Laboratório de Biologia Celular; Universidade Federal de Ciências da Saúde de Porto Alegre - UFCSPA; Porto Alegre RS Brazil
| |
Collapse
|
312
|
Colamaio M, Tosti N, Puca F, Mari A, Gattordo R, Kuzay Y, Federico A, Pepe A, Sarnataro D, Ragozzino E, Raia M, Hirata H, Gemei M, Mimori K, Del Vecchio L, Battista S, Fusco A. HMGA1 silencing reduces stemness and temozolomide resistance in glioblastoma stem cells. Expert Opin Ther Targets 2016; 20:1169-79. [PMID: 27486901 DOI: 10.1080/14728222.2016.1220543] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Glioblastoma multiforme (GBM) develops from a small subpopulation of stem-like cells, which are endowed with the ability to self-renew, proliferate and give rise to progeny of multiple neuroepithelial lineages. These cells are resistant to conventional chemo- and radiotherapy and are hence also responsible for tumor recurrence. HMGA1 overexpression has been shown to correlate with proliferation, invasion, and angiogenesis of GBMs and to affect self-renewal of cancer stem cells from colon cancer. The role of HMGA1 in GBM tumor stem cells is not completely understood. RESEARCH DESIGN AND METHODS We have investigated the role of HMGA1 in brain tumor stem cell (BTSC) self-renewal, stemness and resistance to temozolomide by shRNA- mediated HMGA1 silencing. RESULTS We first report that HMGA1 is overexpressed in a subset of BTSC lines from human GBMs. Then, we show that HMGA1 knockdown reduces self-renewal, sphere forming efficiency and stemness, and sensitizes BTSCs to temozolomide. Interestingly, HMGA1 silencing also leads to reduced tumor initiation ability in vivo. CONCLUSIONS These results demonstrate a pivotal role of HMGA1 in cancer stem cell gliomagenesis and endorse HMGA1 as a suitable target for CSC-specific GBM therapy.
Collapse
Affiliation(s)
- Marianna Colamaio
- a Istituto di Endocrinologia ed Oncologia Sperimentale - CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche , Università degli Studi di Napoli 'Federico II,' Naples , Italy
| | - Nadia Tosti
- a Istituto di Endocrinologia ed Oncologia Sperimentale - CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche , Università degli Studi di Napoli 'Federico II,' Naples , Italy.,b Molecular Pathology Unit, Institute of Pathology , University Hospital Basel , Basel , Switzerland
| | - Francesca Puca
- a Istituto di Endocrinologia ed Oncologia Sperimentale - CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche , Università degli Studi di Napoli 'Federico II,' Naples , Italy
| | - Alessia Mari
- a Istituto di Endocrinologia ed Oncologia Sperimentale - CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche , Università degli Studi di Napoli 'Federico II,' Naples , Italy
| | - Rosaria Gattordo
- a Istituto di Endocrinologia ed Oncologia Sperimentale - CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche , Università degli Studi di Napoli 'Federico II,' Naples , Italy
| | - Yalçın Kuzay
- a Istituto di Endocrinologia ed Oncologia Sperimentale - CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche , Università degli Studi di Napoli 'Federico II,' Naples , Italy
| | - Antonella Federico
- a Istituto di Endocrinologia ed Oncologia Sperimentale - CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche , Università degli Studi di Napoli 'Federico II,' Naples , Italy
| | - Anna Pepe
- c Dipartimento di Medicina Molecolare e Biotecnologie Mediche , Università degli Studi di Napoli 'Federico II,' Naples , Italy
| | | | - Elvira Ragozzino
- a Istituto di Endocrinologia ed Oncologia Sperimentale - CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche , Università degli Studi di Napoli 'Federico II,' Naples , Italy
| | | | - Hidenari Hirata
- e Department of Surgery , Kyushu University Beppu Hospital , Beppu , Japan
| | - Marica Gemei
- d CEINGE-Biotecnologie Avanzate , Naples , Italy
| | - Koshi Mimori
- e Department of Surgery , Kyushu University Beppu Hospital , Beppu , Japan
| | | | - Sabrina Battista
- a Istituto di Endocrinologia ed Oncologia Sperimentale - CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche , Università degli Studi di Napoli 'Federico II,' Naples , Italy
| | - Alfredo Fusco
- a Istituto di Endocrinologia ed Oncologia Sperimentale - CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche , Università degli Studi di Napoli 'Federico II,' Naples , Italy.,f Programa de Carcinogênese Molecular , Instituto Nacional de Câncer - INCA , Rio de Janeiro , Brazil
| |
Collapse
|
313
|
Muzumdar MD, Dorans KJ, Chung KM, Robbins R, Tammela T, Gocheva V, Li CMC, Jacks T. Clonal dynamics following p53 loss of heterozygosity in Kras-driven cancers. Nat Commun 2016; 7:12685. [PMID: 27585860 PMCID: PMC5025814 DOI: 10.1038/ncomms12685] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 07/22/2016] [Indexed: 12/15/2022] Open
Abstract
Although it has become increasingly clear that cancers display extensive cellular heterogeneity, the spatial growth dynamics of genetically distinct clones within developing solid tumours remain poorly understood. Here we leverage mosaic analysis with double markers (MADM) to trace subclonal populations retaining or lacking p53 within oncogenic Kras-initiated lung and pancreatic tumours. In both models, p53 constrains progression to advanced adenocarcinomas. Comparison of lineage-related p53 knockout and wild-type clones reveals a minor role of p53 in suppressing cell expansion in lung adenomas. In contrast, p53 loss promotes both the initiation and expansion of low-grade pancreatic intraepithelial neoplasia (PanINs), likely through differential expression of the p53 regulator p19ARF. Strikingly, lineage-related cells are often dispersed in lung adenomas and PanINs, contrasting with more contiguous growth of advanced subclones. Together, these results support cancer type-specific suppressive roles of p53 in early tumour progression and offer insights into clonal growth patterns during tumour development. Using mosaic analysis with double markers to label genetically-distinct clones in established tumors, the authors studied the effects of p53 loss in lung and pancreatic cancers. They find that loss of p53 enhances progression in both models but only influences initiation in the pancreas.
Collapse
Affiliation(s)
- Mandar Deepak Muzumdar
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue 75-453, Cambridge, Massachusetts 02139, USA.,Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA.,Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Kimberly Judith Dorans
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue 75-453, Cambridge, Massachusetts 02139, USA
| | - Katherine Minjee Chung
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue 75-453, Cambridge, Massachusetts 02139, USA
| | - Rebecca Robbins
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue 75-453, Cambridge, Massachusetts 02139, USA
| | - Tuomas Tammela
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue 75-453, Cambridge, Massachusetts 02139, USA
| | - Vasilena Gocheva
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue 75-453, Cambridge, Massachusetts 02139, USA
| | - Carman Man-Chung Li
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue 75-453, Cambridge, Massachusetts 02139, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Tyler Jacks
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue 75-453, Cambridge, Massachusetts 02139, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.,Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
314
|
Tyagi V, Theobald J, Barger J, Bustoros M, Bayin NS, Modrek AS, Kader M, Anderer EG, Donahue B, Fatterpekar G, Placantonakis DG. Traumatic brain injury and subsequent glioblastoma development: Review of the literature and case reports. Surg Neurol Int 2016; 7:78. [PMID: 27625888 PMCID: PMC5009580 DOI: 10.4103/2152-7806.189296] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 05/28/2016] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Previous reports have proposed an association between traumatic brain injury (TBI) and subsequent glioblastoma (GBM) formation. METHODS We used literature searches and radiographic evidence from two patients to assess the possibility of a link between TBI and GBM. RESULTS Epidemiological studies are equivocal on a possible link between brain trauma and increased risk of malignant glioma formation. We present two case reports of patients with GBM arising at the site of prior brain injury. CONCLUSION The hypothesis that TBI may predispose to gliomagenesis is disputed by several large-scale epidemiological studies, but supported by some. Radiographic evidence from two cases presented here suggest that GBM formed at the site of brain injury. We propose a putative pathogenesis model that connects post-traumatic inflammation, stem and progenitor cell transformation, and gliomagenesis.
Collapse
Affiliation(s)
- Vineet Tyagi
- Department of Orthopaedics and Rehabilitation, Yale University School of Medicine, New Haven, CT, USA
| | - Jason Theobald
- Department of Neurosurgery, NYU School of Medicine, Brooklyn, New York, USA
| | - James Barger
- Department of Neurosurgery, NYU School of Medicine, Brooklyn, New York, USA
| | - Mark Bustoros
- Department of Neurosurgery, NYU School of Medicine, Brooklyn, New York, USA
| | - N Sumru Bayin
- Department of Neurosurgery, NYU School of Medicine, Brooklyn, New York, USA; Kimmel Center for Stem Cell Biology, NYU School of Medicine, Brooklyn, New York, USA
| | - Aram S Modrek
- Department of Neurosurgery, NYU School of Medicine, Brooklyn, New York, USA
| | - Michael Kader
- Department of Neurosurgery, NYU School of Medicine, Brooklyn, New York, USA
| | - Erich G Anderer
- Division of Neurosurgery, Maimonides Medical Center, Brooklyn, New York, USA
| | - Bernadine Donahue
- Department of Radiation Oncology, NYU School of Medicine, Brooklyn, New York, USA; Maimonides Cancer Center, Brooklyn, New York, USA
| | - Girish Fatterpekar
- Department of Radiology, NYU School of Medicine, Brooklyn, New York, USA
| | - Dimitris G Placantonakis
- Department of Neurosurgery, NYU School of Medicine, Brooklyn, New York, USA; Kimmel Center for Stem Cell Biology, NYU School of Medicine, Brooklyn, New York, USA; Brain Tumor Center, NYU School of Medicine, Brooklyn, New York, USA
| |
Collapse
|
315
|
Sailer MHM, Sarvepalli D, Brégère C, Fisch U, Guentchev M, Weller M, Guzman R, Bettler B, Ghosh A, Hutter G. An Enzyme- and Serum-free Neural Stem Cell Culture Model for EMT Investigation Suited for Drug Discovery. J Vis Exp 2016. [PMID: 27583933 DOI: 10.3791/54018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Epithelial to mesenchymal transition (EMT) describes the process of epithelium transdifferentiating into mesenchyme. EMT is a fundamental process during embryonic development that also commonly occurs in glioblastoma, the most frequent malignant brain tumor. EMT has also been observed in multiple carcinomas outside the brain including breast cancer, lung cancer, colon cancer, gastric cancer. EMT is centrally linked to malignancy by promoting migration, invasion and metastasis formation. The mechanisms of EMT induction are not fully understood. Here we describe an in vitro system for standardized isolation of cortical neural stem cells (NSCs) and subsequent EMT-induction. This system provides the flexibility to use either single cells or explant culture. In this system, rat or mouse embryonic forebrain NSCs are cultured in a defined medium, devoid of serum and enzymes. The NSCs expressed Olig2 and Sox10, two transcription factors observed in oligodendrocyte precursor cells (OPCs). Using this system, interactions between FGF-, BMP- and TGFβ-signaling involving Zeb1, Zeb2, and Twist2 were observed where TGFβ-activation significantly enhanced cell migration, suggesting a synergistic BMP-/TGFβ-interaction. The results point to a network of FGF-, BMP- and TGFβ-signaling to be involved in EMT induction and maintenance. This model system is relevant to investigate EMT in vitro. It is cost-efficient and shows high reproducibility. It also allows for the comparison of different compounds with respect to their migration responses (quantitative distance measurement), and high-throughput screening of compounds to inhibit or enhance EMT (qualitative measurement). The model is therefore well suited to test drug libraries for substances affecting EMT.
Collapse
Affiliation(s)
| | - Durga Sarvepalli
- Molecular Signalling and Gene Therapy, Narayana Nethralaya Foundation, Narayana Health City
| | - Catherine Brégère
- Brain Ischemia and Regeneration, Department of Biomedicine, University Hospital Basel
| | - Urs Fisch
- Brain Ischemia and Regeneration, Department of Biomedicine, University Hospital Basel
| | | | - Michael Weller
- Department of Neurology, Laboratory of Molecular Neuro Oncology, University Hospital of Zurich
| | - Raphael Guzman
- Brain Ischemia and Regeneration, Department of Biomedicine, University Hospital Basel
| | | | - Arkasubhra Ghosh
- Molecular Signalling and Gene Therapy, Narayana Nethralaya Foundation, Narayana Health City
| | - Gregor Hutter
- Department of Neurosurgery and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University
| |
Collapse
|
316
|
Xie Y, Li X, Deng X, Hou Y, O'Hara K, Urso A, Peng Y, Chen L, Zhu S. The Ets protein Pointed prevents both premature differentiation and dedifferentiation of Drosophila intermediate neural progenitors. Development 2016; 143:3109-18. [PMID: 27510969 DOI: 10.1242/dev.137281] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 07/27/2016] [Indexed: 01/01/2023]
Abstract
Intermediate neural progenitors (INPs) need to avoid both dedifferentiation and differentiation during neurogenesis, but the underlying mechanisms are not well understood. In Drosophila, the Ets protein Pointed P1 (PntP1) is required to generate INPs from type II neuroblasts. Here, we investigated how PntP1 promotes INP generation. By generating pntP1-specific mutants and using RNAi knockdown, we show that the loss of PntP1 leads to both an increase in type II neuroblast number and the elimination of INPs. The elimination of INPs results from the premature differentiation of INPs due to ectopic Prospero expression in newly generated immature INPs (imINPs), whereas the increase in type II neuroblasts results from the dedifferentiation of imINPs due to loss of Earmuff at later stages of imINP development. Furthermore, reducing Buttonhead enhances the loss of INPs in pntP1 mutants, suggesting that PntP1 and Buttonhead act cooperatively to prevent premature INP differentiation. Our results demonstrate that PntP1 prevents both the premature differentiation and the dedifferentiation of INPs by regulating the expression of distinct target genes at different stages of imINP development.
Collapse
Affiliation(s)
- Yonggang Xie
- Department of Neuroscience and Physiology, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| | - Xiaosu Li
- Department of Neuroscience and Physiology, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| | - Xiaobing Deng
- Department of Neuroscience and Physiology, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| | - Yanjun Hou
- Department of Neuroscience and Physiology, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| | - Krysten O'Hara
- Department of Neuroscience and Physiology, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| | | | - Ying Peng
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Li Chen
- Department of Neuroscience and Physiology, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| | - Sijun Zhu
- Department of Neuroscience and Physiology, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| |
Collapse
|
317
|
Platt JL, Zhou X, Lefferts AR, Cascalho M. Cell Fusion in the War on Cancer: A Perspective on the Inception of Malignancy. Int J Mol Sci 2016; 17:E1118. [PMID: 27420051 PMCID: PMC4964493 DOI: 10.3390/ijms17071118] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 06/28/2016] [Accepted: 07/07/2016] [Indexed: 12/11/2022] Open
Abstract
Cell fusion occurs in development and in physiology and rarely in those settings is it associated with malignancy. However, deliberate fusion of cells and possibly untoward fusion of cells not suitably poised can eventuate in aneuploidy, DNA damage and malignant transformation. How often cell fusion may initiate malignancy is unknown. However, cell fusion could explain the high frequency of cancers in tissues with low underlying rates of cell proliferation and mutation. On the other hand, cell fusion might also engage innate and adaptive immune surveillance, thus helping to eliminate or retard malignancies. Here we consider whether and how cell fusion might weigh on the overall burden of cancer in modern societies.
Collapse
Affiliation(s)
- Jeffrey L Platt
- Departments of Surgery and of Microbiology & Immunology, University of Michigan, A520B Medical Sciences Research Building I, 1150 W. Medical Center Drive, Ann Arbor, MI 48109-5656, USA.
| | - Xiaofeng Zhou
- Departments of Surgery and of Microbiology & Immunology, University of Michigan, A520B Medical Sciences Research Building I, 1150 W. Medical Center Drive, Ann Arbor, MI 48109-5656, USA.
| | - Adam R Lefferts
- Departments of Surgery and of Microbiology & Immunology, University of Michigan, A520B Medical Sciences Research Building I, 1150 W. Medical Center Drive, Ann Arbor, MI 48109-5656, USA.
| | - Marilia Cascalho
- Departments of Surgery and of Microbiology & Immunology, University of Michigan, A520B Medical Sciences Research Building I, 1150 W. Medical Center Drive, Ann Arbor, MI 48109-5656, USA.
| |
Collapse
|
318
|
Blanchart A, Fernando R, Häring M, Assaife-Lopes N, Romanov RA, Andäng M, Harkany T, Ernfors P. Endogenous GAB AA receptor activity suppresses glioma growth. Oncogene 2016; 36:777-786. [PMID: 27375015 DOI: 10.1038/onc.2016.245] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 05/11/2016] [Accepted: 06/06/2016] [Indexed: 12/23/2022]
Abstract
Although genome alterations driving glioma by fueling cell malignancy have largely been resolved, less is known of the impact of tumor environment on disease progression. Here, we demonstrate functional GABAA receptor-activated currents in human glioblastoma cells and show the existence of a continuous GABA signaling within the tumor cell mass that significantly affects tumor growth and survival expectancy in mouse models. Endogenous GABA released by tumor cells, attenuates proliferation of the glioma cells with enriched expression of stem/progenitor markers and with competence to seed growth of new tumors. Our results suggest that GABA levels rapidly increase in tumors impeding further growth. Thus, shunting chloride ions by a maintained local GABAA receptor activity within glioma cells has a significant impact on tumor development by attenuating proliferation, reducing tumor growth and prolonging survival, a mechanism that may have important impact on therapy resistance and recurrence following tumor resection.
Collapse
Affiliation(s)
- A Blanchart
- Department of Medical Biochemistry and Biophysics, Division of Molecular Neurobiology, Karolinska Institutet, Stockholm, Sweden
| | - R Fernando
- Department of Medical Biochemistry and Biophysics, Division of Molecular Neurobiology, Karolinska Institutet, Stockholm, Sweden
| | - M Häring
- Department of Medical Biochemistry and Biophysics, Division of Molecular Neurobiology, Karolinska Institutet, Stockholm, Sweden
| | - N Assaife-Lopes
- Department of Medical Biochemistry and Biophysics, Division of Molecular Neurobiology, Karolinska Institutet, Stockholm, Sweden
| | - R A Romanov
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - M Andäng
- Department of Physiology and Pharmacology, Biophysics of Stem Cell and Tissue Growth, Karolinska Institutet, Stockholm, Sweden
| | - T Harkany
- Department of Medical Biochemistry and Biophysics, Division of Molecular Neurobiology, Karolinska Institutet, Stockholm, Sweden.,Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - P Ernfors
- Department of Medical Biochemistry and Biophysics, Division of Molecular Neurobiology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
319
|
Li F, Liu X, Sampson JH, Bigner DD, Li CY. Rapid Reprogramming of Primary Human Astrocytes into Potent Tumor-Initiating Cells with Defined Genetic Factors. Cancer Res 2016; 76:5143-50. [PMID: 27364552 DOI: 10.1158/0008-5472.can-16-0171] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Accepted: 06/16/2016] [Indexed: 02/07/2023]
Abstract
Cancer stem-like cells (CSC) are thought to drive brain cancer, but their cellular and molecular origins remain uncertain. Here, we report the successful generation of induced CSC (iCSC) from primary human astrocytes through the expression of defined genetic factors. Combined transduction of four factors, Myc, Oct-4, p53DD, and Ras, induced efficient transformation of primary human astrocytes into malignant cells with powerful tumor-initiating capabilities. Notably, transplantation of 100 transduced cells into nude mice was sufficient for tumor formation. The cells showed unlimited self-renewal ability with robust telomerase activities. In addition, they expressed typical glioma stem-like cell markers, such as CD133, CD15, and CD90. Moreover, these cells could form spheres in culture and differentiate into neuron-like, astrocyte-like, and oligodendrocyte-like cells. Finally, they also displayed resistance to the widely used brain cancer drug temozolomide. These iCSCs could provide important tools for studies of glioma biology and therapeutics development. Cancer Res; 76(17); 5143-50. ©2016 AACR.
Collapse
Affiliation(s)
- Fang Li
- Department of Dermatology, Duke University Medical Center, Durham, North Carolina
| | - Xinjian Liu
- Department of Dermatology, Duke University Medical Center, Durham, North Carolina
| | - John H Sampson
- Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina. Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, North Carolina
| | - Darell D Bigner
- Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, North Carolina. Department of Pathology, Duke University Medical Center, Durham, North Carolina
| | - Chuan-Yuan Li
- Department of Dermatology, Duke University Medical Center, Durham, North Carolina. Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina.
| |
Collapse
|
320
|
Wang ZA, Shen MM. Comparative lineage tracing reveals cellular preferences for prostate cancer initiation. Mol Cell Oncol 2016; 2:e985548. [PMID: 27308462 PMCID: PMC4905298 DOI: 10.4161/23723556.2014.985548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 11/04/2014] [Accepted: 11/05/2014] [Indexed: 11/19/2022]
Abstract
The interplay of different cell types of origin and distinct oncogenic mutations may determine the tumor subtype. We have recently found that although both basal and luminal epithelial cells can initiate prostate tumorigenesis, the latter are more likely to undergo transformation in response to a range of oncogenic events.
Collapse
Affiliation(s)
- Zhu A Wang
- Department of Molecular Cell & Developmental Biology; University of California , Santa Cruz, CA, USA
| | - Michael M Shen
- Departments of Medicine, Genetics and Development, Urology, and Systems Biology; Columbia Stem Cell Initiative; Herbert Irving Comprehensive Cancer Center; Columbia University College of Physicians and Surgeons , New York, NY, USA
| |
Collapse
|
321
|
Filbin MG, Suvà ML. Gliomas Genomics and Epigenomics: Arriving at the Start and Knowing It for the First Time. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2016; 11:497-521. [DOI: 10.1146/annurev-pathol-012615-044208] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Mariella G. Filbin
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114;
- Center for Cancer Research, Massachusetts General Hospital, Boston, Massachusetts 02114;
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142
- Cancer and Blood Disorders Center, Dana-Farber Cancer Institute and Boston Children's Hospital, Boston, Massachusetts 02215
| | - Mario L. Suvà
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114;
- Center for Cancer Research, Massachusetts General Hospital, Boston, Massachusetts 02114;
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142
| |
Collapse
|
322
|
Identification of proliferative progenitors associated with prominent postnatal growth of the pons. Nat Commun 2016; 7:11628. [PMID: 27188978 PMCID: PMC4873968 DOI: 10.1038/ncomms11628] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 04/14/2016] [Indexed: 01/28/2023] Open
Abstract
The pons controls crucial sensorimotor and autonomic functions. In humans, it grows sixfold postnatally and is a site of paediatric gliomas; however, the mechanisms of pontine growth remain poorly understood. We show that the murine pons quadruples in volume postnatally; growth is fastest during postnatal days 0–4 (P0–P4), preceding most myelination. We identify three postnatal proliferative compartments: ventricular, midline and parenchymal. We find no evidence of postnatal neurogenesis in the pons, but each progenitor compartment produces new astroglia and oligodendroglia; the latter expand 10- to 18-fold postnatally, and are derived mostly from the parenchyma. Nearly all parenchymal progenitors at P4 are Sox2+Olig2+, but by P8 a Sox2− subpopulation emerges, suggesting a lineage progression from Sox2+ ‘early' to Sox2− ‘late' oligodendrocyte progenitor. Fate mapping reveals that >90% of adult oligodendrocytes derive from P2–P3 Sox2+ progenitors. These results demonstrate the importance of postnatal Sox2+Olig2+ progenitors in pontine growth and oligodendrogenesis. Postnatal growth of the pons is not well characterized. Here the authors show that growth of the murine pons is fastest during postnatal day 0–4, a period preceding myelination, and is primarily driven by an expansion of the oligodendrocyte population that derive from Sox2+Olig2+ progenitors.
Collapse
|
323
|
Transforming growth factor-β and stem cell markers are highly expressed around necrotic areas in glioblastoma. J Neurooncol 2016; 129:101-7. [PMID: 27193555 DOI: 10.1007/s11060-016-2145-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 05/04/2016] [Indexed: 01/09/2023]
Abstract
Invasion into surrounding normal brain and resistance to genotoxic therapies are the main devastating aspects of glioblastoma (GBM). These biological features may be associated with the stem cell phenotype, which can be induced through a dedifferentiation process known as epithelial-mesenchymal transition (EMT). We show here that tumor cells around pseudopalisading necrotic areas in human GBM tissues highly express the most important EMT inducer, transforming growth factor (TGF-β), concurrently with the EMT-related transcriptional factor, TWIST. In addition, the stem cell markers CD133 and alkaline phosphatase (ALPL) were also highly expressed around necrotic foci in GBM tissues. The high expression of TGF-β around necrotic regions was significantly correlated with shorter progression-free survival and overall survival in patients with GBM. High expression of stem cell markers, ALPL, CD133, and CD44 was also correlated with poor outcomes. These results collectively support the hypothesis that tissue hypoxia induces the stem cell phenotype through TGF-β-related EMT and contributes to the poor outcome of GBM patients.
Collapse
|
324
|
Stringer BW, Bunt J, Day BW, Barry G, Jamieson PR, Ensbey KS, Bruce ZC, Goasdoué K, Vidal H, Charmsaz S, Smith FM, Cooper LT, Piper M, Boyd AW, Richards LJ. Nuclear factor one B (NFIB) encodes a subtype-specific tumour suppressor in glioblastoma. Oncotarget 2016; 7:29306-20. [PMID: 27083054 PMCID: PMC5045397 DOI: 10.18632/oncotarget.8720] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 03/28/2016] [Indexed: 12/14/2022] Open
Abstract
Glioblastoma (GBM) is an essentially incurable and rapidly fatal cancer, with few markers predicting a favourable prognosis. Here we report that the transcription factor NFIB is associated with significantly improved survival in GBM. NFIB expression correlates inversely with astrocytoma grade and is lowest in mesenchymal GBM. Ectopic expression of NFIB in low-passage, patient-derived classical and mesenchymal subtype GBM cells inhibits tumourigenesis. Ectopic NFIB expression activated phospho-STAT3 signalling only in classical and mesenchymal GBM cells, suggesting a mechanism through which NFIB may exert its context-dependent tumour suppressor activity. Finally, NFIB expression can be induced in GBM cells by drug treatment with beneficial effects.
Collapse
Affiliation(s)
- Brett W. Stringer
- Brain Cancer Research Unit, QIMR Berghofer Medical Research Institute, Brisbane, 4006, Queensland, Australia
- Leukaemia Foundation Research Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, 4006, Queensland, Australia
| | - Jens Bunt
- Queensland Brain Institute, The University of Queensland, Brisbane, 4072, Queensland, Australia
| | - Bryan W. Day
- Brain Cancer Research Unit, QIMR Berghofer Medical Research Institute, Brisbane, 4006, Queensland, Australia
- Leukaemia Foundation Research Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, 4006, Queensland, Australia
| | - Guy Barry
- Queensland Brain Institute, The University of Queensland, Brisbane, 4072, Queensland, Australia
| | - Paul R. Jamieson
- Brain Cancer Research Unit, QIMR Berghofer Medical Research Institute, Brisbane, 4006, Queensland, Australia
- Leukaemia Foundation Research Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, 4006, Queensland, Australia
| | - Kathleen S. Ensbey
- Brain Cancer Research Unit, QIMR Berghofer Medical Research Institute, Brisbane, 4006, Queensland, Australia
- Leukaemia Foundation Research Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, 4006, Queensland, Australia
| | - Zara C. Bruce
- Brain Cancer Research Unit, QIMR Berghofer Medical Research Institute, Brisbane, 4006, Queensland, Australia
- Leukaemia Foundation Research Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, 4006, Queensland, Australia
| | - Kate Goasdoué
- Brain Cancer Research Unit, QIMR Berghofer Medical Research Institute, Brisbane, 4006, Queensland, Australia
- Leukaemia Foundation Research Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, 4006, Queensland, Australia
| | - Hélène Vidal
- Brain Cancer Research Unit, QIMR Berghofer Medical Research Institute, Brisbane, 4006, Queensland, Australia
- Leukaemia Foundation Research Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, 4006, Queensland, Australia
| | - Sara Charmsaz
- Leukaemia Foundation Research Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, 4006, Queensland, Australia
| | - Fiona M. Smith
- Leukaemia Foundation Research Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, 4006, Queensland, Australia
| | - Leanne T. Cooper
- Leukaemia Foundation Research Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, 4006, Queensland, Australia
| | - Michael Piper
- Queensland Brain Institute, The University of Queensland, Brisbane, 4072, Queensland, Australia
- School of Biomedical Sciences, The University of Queensland, Brisbane, 4072, Queensland, Australia
| | - Andrew W. Boyd
- Brain Cancer Research Unit, QIMR Berghofer Medical Research Institute, Brisbane, 4006, Queensland, Australia
- Leukaemia Foundation Research Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, 4006, Queensland, Australia
- Department of Medicine, The University of Queensland, Brisbane, 4072, Queensland, Australia
| | - Linda J. Richards
- Queensland Brain Institute, The University of Queensland, Brisbane, 4072, Queensland, Australia
- School of Biomedical Sciences, The University of Queensland, Brisbane, 4072, Queensland, Australia
| |
Collapse
|
325
|
Lu F, Chen Y, Zhao C, Wang H, He D, Xu L, Wang J, He X, Deng Y, Lu EE, Liu X, Verma R, Bu H, Drissi R, Fouladi M, Stemmer-Rachamimov AO, Burns D, Xin M, Rubin JB, Bahassi EM, Canoll P, Holland EC, Lu QR. Olig2-Dependent Reciprocal Shift in PDGF and EGF Receptor Signaling Regulates Tumor Phenotype and Mitotic Growth in Malignant Glioma. Cancer Cell 2016; 29:669-683. [PMID: 27165742 PMCID: PMC4946168 DOI: 10.1016/j.ccell.2016.03.027] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 01/05/2016] [Accepted: 03/31/2016] [Indexed: 02/05/2023]
Abstract
Malignant gliomas exhibit extensive heterogeneity and poor prognosis. Here we identify mitotic Olig2-expressing cells as tumor-propagating cells in proneural gliomas, elimination of which blocks tumor initiation and progression. Intriguingly, deletion of Olig2 resulted in tumors that grow, albeit at a decelerated rate. Genome occupancy and expression profiling analyses reveal that Olig2 directly activates cell-proliferation machinery to promote tumorigenesis. Olig2 deletion causes a tumor phenotypic shift from an oligodendrocyte precursor-correlated proneural toward an astroglia-associated gene expression pattern, manifest in downregulation of platelet-derived growth factor receptor-α and reciprocal upregulation of epidermal growth factor receptor (EGFR). Olig2 deletion further sensitizes glioma cells to EGFR inhibitors and extends the lifespan of animals. Thus, Olig2-orchestrated receptor signaling drives mitotic growth and regulates glioma phenotypic plasticity. Targeting Olig2 may circumvent resistance to EGFR-targeted drugs.
Collapse
MESH Headings
- Animals
- Astrocytes/metabolism
- Basic Helix-Loop-Helix Transcription Factors/genetics
- Basic Helix-Loop-Helix Transcription Factors/metabolism
- Cell Line, Tumor
- Cell Proliferation/genetics
- Cell Transformation, Neoplastic/genetics
- ErbB Receptors/genetics
- ErbB Receptors/metabolism
- Gene Expression Profiling/methods
- Gene Expression Regulation, Neoplastic
- Glioma/genetics
- Glioma/metabolism
- Glioma/pathology
- Humans
- Mice, 129 Strain
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/metabolism
- Oligodendroglia/metabolism
- Phenotype
- Receptors, Platelet-Derived Growth Factor/genetics
- Receptors, Platelet-Derived Growth Factor/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Signal Transduction/genetics
- Spheroids, Cellular/metabolism
- Survival Analysis
Collapse
Affiliation(s)
- Fanghui Lu
- Laboratory of Pathology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and National Collaborative Innovation Center, Chengdu 610041, China; Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Brain Tumor Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 25229, USA
| | - Ying Chen
- School of Life Sciences, Xiamen University, Fujian 361102, China
| | - Chuntao Zhao
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Brain Tumor Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 25229, USA
| | - Haibo Wang
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Brain Tumor Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 25229, USA
| | - Danyang He
- Department of Pathology & Integrative Biology Program, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lingli Xu
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Brain Tumor Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 25229, USA
| | - Jincheng Wang
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Brain Tumor Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 25229, USA
| | - Xuelian He
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Brain Tumor Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 25229, USA
| | - Yaqi Deng
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Brain Tumor Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 25229, USA
| | - Ellen E Lu
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Brain Tumor Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 25229, USA
| | - Xue Liu
- School of Life Sciences, Xiamen University, Fujian 361102, China
| | - Ravinder Verma
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Brain Tumor Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 25229, USA
| | - Hong Bu
- Laboratory of Pathology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and National Collaborative Innovation Center, Chengdu 610041, China
| | - Rachid Drissi
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Brain Tumor Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 25229, USA
| | - Maryam Fouladi
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Brain Tumor Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 25229, USA
| | - Anat O Stemmer-Rachamimov
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Dennis Burns
- Department of Pathology & Integrative Biology Program, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Mei Xin
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Brain Tumor Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 25229, USA
| | - Joshua B Rubin
- Departments of Pediatrics and Anatomy and Neurobiology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - El Mustapha Bahassi
- Department of Internal Medicine, UC Brain Tumor Center, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Peter Canoll
- Department of Pathology & Cellular Biology, Columbia University Medical Center, New York, NY 10032, USA
| | - Eric C Holland
- Division of Human Biology and Solid Tumor Translational Research, Fred Hutchinson Cancer Research Center, Alvord Brain Tumor Center, University of Washington, Seattle, WA 98109, USA
| | - Q Richard Lu
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Brain Tumor Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 25229, USA; Key Laboratory of Birth Defects, Children's Hospital of Fudan University, Shanghai 201102, China.
| |
Collapse
|
326
|
Lopez Juarez A, He D, Richard Lu Q. Oligodendrocyte progenitor programming and reprogramming: Toward myelin regeneration. Brain Res 2016; 1638:209-220. [PMID: 26546966 PMCID: PMC5119932 DOI: 10.1016/j.brainres.2015.10.051] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Revised: 10/05/2015] [Accepted: 10/27/2015] [Indexed: 01/26/2023]
Abstract
Demyelinating diseases such as multiple sclerosis (MS) are among the most disabling and cost-intensive neurological disorders. The loss of myelin in the central nervous system, produced by oligodendrocytes (OLs), impairs saltatory nerve conduction, leading to motor and cognitive deficits. Immunosuppression therapy has a limited efficacy in MS patients, arguing for a paradigm shift to strategies that target OL lineage cells to achieve myelin repair. The inhibitory microenvironment in MS lesions abrogates the expansion and differentiation of resident OL precursor cells (OPCs) into mature myelin-forming OLs. Recent studies indicate that OPCs display a highly plastic ability to differentiate into alternative cell lineages under certain circumstances. Thus, understanding the mechanisms that maintain and control OPC fate and differentiation into mature OLs in a hostile, non-permissive lesion environment may open new opportunities for regenerative therapies. In this review, we will focus on 1) the plasticity of OPCs in terms of their developmental origins, distribution, and differentiation potentials in the normal and injured brain; 2) recent discoveries of extrinsic and intrinsic factors and small molecule compounds that control OPC specification and differentiation; and 3) therapeutic potential for motivation of neural progenitor cells and reprogramming of differentiated cells into OPCs and their likely impacts on remyelination. OL-based therapies through activating regenerative potentials of OPCs or cell replacement offer exciting opportunities for innovative strategies to promote remyelination and neuroprotection in devastating demyelinating diseases like MS. This article is part of a Special Issue entitled SI:NG2-glia(Invited only).
Collapse
Affiliation(s)
- Alejandro Lopez Juarez
- Department of Pediatrics, Divisions of Experimental Hematology and Cancer Biology & Developmental Biology, Cincinnati Children׳s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Danyang He
- Department of Pediatrics, Divisions of Experimental Hematology and Cancer Biology & Developmental Biology, Cincinnati Children׳s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Q Richard Lu
- Department of Pediatrics, Divisions of Experimental Hematology and Cancer Biology & Developmental Biology, Cincinnati Children׳s Hospital Medical Center, Cincinnati, OH 45229, USA.
| |
Collapse
|
327
|
Ledur PF, Liu C, He H, Harris AR, Minussi DC, Zhou HY, Shaffrey ME, Asthagiri A, Lopes MBS, Schiff D, Lu YC, Mandell JW, Lenz G, Zong H. Culture conditions tailored to the cell of origin are critical for maintaining native properties and tumorigenicity of glioma cells. Neuro Oncol 2016; 18:1413-24. [PMID: 27106408 DOI: 10.1093/neuonc/now062] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 02/20/2016] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Cell culture plays a pivotal role in cancer research. However, culture-induced changes in biological properties of tumor cells profoundly affect research reproducibility and translational potential. Establishing culture conditions tailored to the cancer cell of origin could resolve this problem. For glioma research, it has been previously shown that replacing serum with defined growth factors for neural stem cells (NSCs) greatly improved the retention of gene expression profile and tumorigenicity. However, among all molecular subtypes of glioma, our laboratory and others have previously shown that the oligodendrocyte precursor cell (OPC) rather than the NSC serves as the cell of origin for the proneural subtype, raising questions regarding the suitability of NSC-tailored media for culturing proneural glioma cells. METHODS OPC-originated mouse glioma cells were cultured in conditions for normal OPCs or NSCs, respectively, for multiple passages. Gene expression profiles, morphologies, tumorigenicity, and drug responsiveness of cultured cells were examined in comparison with freshly isolated tumor cells. RESULTS OPC media-cultured glioma cells maintained tumorigenicity, gene expression profiles, and morphologies similar to freshly isolated tumor cells. In contrast, NSC-media cultured glioma cells gradually lost their OPC features and most tumor-initiating ability and acquired heightened sensitivity to temozolomide. CONCLUSIONS To improve experimental reproducibility and translational potential of glioma research, it is important to identify the cell of origin, and subsequently apply this knowledge to establish culture conditions that allow the retention of native properties of tumor cells.
Collapse
Affiliation(s)
- Pítia F Ledur
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia (P.F.L., C.L., A.R.H., H.Z.); Department of Neurological Surgery, University of Virginia, Charlottesville, Virginia (M.E.S., A.A., D.S.); Division of Neuropathology, Department of Pathology, Charlottesville, Virginia (M.B.S.L., J.W.M.); Department of Neurology, School of Medicine, University of Virginia, Charlottesville, Virginia (D.S.); Department of Pathology and Pathological Physiology, Center for Cancer Research, Zhejiang University School of Medicine, Zhejiang Diseases Proteomics Key Laboratory, Hangzhou, China (C.L.); Department of Biophysics and Center of Biotechnology, Federal University of Rio Grande do Sul, Porto Alegre, Brazil (P.F.L., D.C.M., G.L.); Department of Neurosurgery, Changzheng Hospital, Second Affiliated Hospital of Second Military Medical University, Shanghai, China (H.H., Y.-C.L.); Department of Pathology, Xiang-ya Hospital, Central South University, Changsha, Hunan, China (H.-Y.Z.)
| | - Chong Liu
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia (P.F.L., C.L., A.R.H., H.Z.); Department of Neurological Surgery, University of Virginia, Charlottesville, Virginia (M.E.S., A.A., D.S.); Division of Neuropathology, Department of Pathology, Charlottesville, Virginia (M.B.S.L., J.W.M.); Department of Neurology, School of Medicine, University of Virginia, Charlottesville, Virginia (D.S.); Department of Pathology and Pathological Physiology, Center for Cancer Research, Zhejiang University School of Medicine, Zhejiang Diseases Proteomics Key Laboratory, Hangzhou, China (C.L.); Department of Biophysics and Center of Biotechnology, Federal University of Rio Grande do Sul, Porto Alegre, Brazil (P.F.L., D.C.M., G.L.); Department of Neurosurgery, Changzheng Hospital, Second Affiliated Hospital of Second Military Medical University, Shanghai, China (H.H., Y.-C.L.); Department of Pathology, Xiang-ya Hospital, Central South University, Changsha, Hunan, China (H.-Y.Z.)
| | - Hua He
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia (P.F.L., C.L., A.R.H., H.Z.); Department of Neurological Surgery, University of Virginia, Charlottesville, Virginia (M.E.S., A.A., D.S.); Division of Neuropathology, Department of Pathology, Charlottesville, Virginia (M.B.S.L., J.W.M.); Department of Neurology, School of Medicine, University of Virginia, Charlottesville, Virginia (D.S.); Department of Pathology and Pathological Physiology, Center for Cancer Research, Zhejiang University School of Medicine, Zhejiang Diseases Proteomics Key Laboratory, Hangzhou, China (C.L.); Department of Biophysics and Center of Biotechnology, Federal University of Rio Grande do Sul, Porto Alegre, Brazil (P.F.L., D.C.M., G.L.); Department of Neurosurgery, Changzheng Hospital, Second Affiliated Hospital of Second Military Medical University, Shanghai, China (H.H., Y.-C.L.); Department of Pathology, Xiang-ya Hospital, Central South University, Changsha, Hunan, China (H.-Y.Z.)
| | - Alexandra R Harris
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia (P.F.L., C.L., A.R.H., H.Z.); Department of Neurological Surgery, University of Virginia, Charlottesville, Virginia (M.E.S., A.A., D.S.); Division of Neuropathology, Department of Pathology, Charlottesville, Virginia (M.B.S.L., J.W.M.); Department of Neurology, School of Medicine, University of Virginia, Charlottesville, Virginia (D.S.); Department of Pathology and Pathological Physiology, Center for Cancer Research, Zhejiang University School of Medicine, Zhejiang Diseases Proteomics Key Laboratory, Hangzhou, China (C.L.); Department of Biophysics and Center of Biotechnology, Federal University of Rio Grande do Sul, Porto Alegre, Brazil (P.F.L., D.C.M., G.L.); Department of Neurosurgery, Changzheng Hospital, Second Affiliated Hospital of Second Military Medical University, Shanghai, China (H.H., Y.-C.L.); Department of Pathology, Xiang-ya Hospital, Central South University, Changsha, Hunan, China (H.-Y.Z.)
| | - Darlan C Minussi
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia (P.F.L., C.L., A.R.H., H.Z.); Department of Neurological Surgery, University of Virginia, Charlottesville, Virginia (M.E.S., A.A., D.S.); Division of Neuropathology, Department of Pathology, Charlottesville, Virginia (M.B.S.L., J.W.M.); Department of Neurology, School of Medicine, University of Virginia, Charlottesville, Virginia (D.S.); Department of Pathology and Pathological Physiology, Center for Cancer Research, Zhejiang University School of Medicine, Zhejiang Diseases Proteomics Key Laboratory, Hangzhou, China (C.L.); Department of Biophysics and Center of Biotechnology, Federal University of Rio Grande do Sul, Porto Alegre, Brazil (P.F.L., D.C.M., G.L.); Department of Neurosurgery, Changzheng Hospital, Second Affiliated Hospital of Second Military Medical University, Shanghai, China (H.H., Y.-C.L.); Department of Pathology, Xiang-ya Hospital, Central South University, Changsha, Hunan, China (H.-Y.Z.)
| | - Hai-Yan Zhou
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia (P.F.L., C.L., A.R.H., H.Z.); Department of Neurological Surgery, University of Virginia, Charlottesville, Virginia (M.E.S., A.A., D.S.); Division of Neuropathology, Department of Pathology, Charlottesville, Virginia (M.B.S.L., J.W.M.); Department of Neurology, School of Medicine, University of Virginia, Charlottesville, Virginia (D.S.); Department of Pathology and Pathological Physiology, Center for Cancer Research, Zhejiang University School of Medicine, Zhejiang Diseases Proteomics Key Laboratory, Hangzhou, China (C.L.); Department of Biophysics and Center of Biotechnology, Federal University of Rio Grande do Sul, Porto Alegre, Brazil (P.F.L., D.C.M., G.L.); Department of Neurosurgery, Changzheng Hospital, Second Affiliated Hospital of Second Military Medical University, Shanghai, China (H.H., Y.-C.L.); Department of Pathology, Xiang-ya Hospital, Central South University, Changsha, Hunan, China (H.-Y.Z.)
| | - Mark E Shaffrey
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia (P.F.L., C.L., A.R.H., H.Z.); Department of Neurological Surgery, University of Virginia, Charlottesville, Virginia (M.E.S., A.A., D.S.); Division of Neuropathology, Department of Pathology, Charlottesville, Virginia (M.B.S.L., J.W.M.); Department of Neurology, School of Medicine, University of Virginia, Charlottesville, Virginia (D.S.); Department of Pathology and Pathological Physiology, Center for Cancer Research, Zhejiang University School of Medicine, Zhejiang Diseases Proteomics Key Laboratory, Hangzhou, China (C.L.); Department of Biophysics and Center of Biotechnology, Federal University of Rio Grande do Sul, Porto Alegre, Brazil (P.F.L., D.C.M., G.L.); Department of Neurosurgery, Changzheng Hospital, Second Affiliated Hospital of Second Military Medical University, Shanghai, China (H.H., Y.-C.L.); Department of Pathology, Xiang-ya Hospital, Central South University, Changsha, Hunan, China (H.-Y.Z.)
| | - Ashok Asthagiri
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia (P.F.L., C.L., A.R.H., H.Z.); Department of Neurological Surgery, University of Virginia, Charlottesville, Virginia (M.E.S., A.A., D.S.); Division of Neuropathology, Department of Pathology, Charlottesville, Virginia (M.B.S.L., J.W.M.); Department of Neurology, School of Medicine, University of Virginia, Charlottesville, Virginia (D.S.); Department of Pathology and Pathological Physiology, Center for Cancer Research, Zhejiang University School of Medicine, Zhejiang Diseases Proteomics Key Laboratory, Hangzhou, China (C.L.); Department of Biophysics and Center of Biotechnology, Federal University of Rio Grande do Sul, Porto Alegre, Brazil (P.F.L., D.C.M., G.L.); Department of Neurosurgery, Changzheng Hospital, Second Affiliated Hospital of Second Military Medical University, Shanghai, China (H.H., Y.-C.L.); Department of Pathology, Xiang-ya Hospital, Central South University, Changsha, Hunan, China (H.-Y.Z.)
| | - Maria Beatriz S Lopes
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia (P.F.L., C.L., A.R.H., H.Z.); Department of Neurological Surgery, University of Virginia, Charlottesville, Virginia (M.E.S., A.A., D.S.); Division of Neuropathology, Department of Pathology, Charlottesville, Virginia (M.B.S.L., J.W.M.); Department of Neurology, School of Medicine, University of Virginia, Charlottesville, Virginia (D.S.); Department of Pathology and Pathological Physiology, Center for Cancer Research, Zhejiang University School of Medicine, Zhejiang Diseases Proteomics Key Laboratory, Hangzhou, China (C.L.); Department of Biophysics and Center of Biotechnology, Federal University of Rio Grande do Sul, Porto Alegre, Brazil (P.F.L., D.C.M., G.L.); Department of Neurosurgery, Changzheng Hospital, Second Affiliated Hospital of Second Military Medical University, Shanghai, China (H.H., Y.-C.L.); Department of Pathology, Xiang-ya Hospital, Central South University, Changsha, Hunan, China (H.-Y.Z.)
| | - David Schiff
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia (P.F.L., C.L., A.R.H., H.Z.); Department of Neurological Surgery, University of Virginia, Charlottesville, Virginia (M.E.S., A.A., D.S.); Division of Neuropathology, Department of Pathology, Charlottesville, Virginia (M.B.S.L., J.W.M.); Department of Neurology, School of Medicine, University of Virginia, Charlottesville, Virginia (D.S.); Department of Pathology and Pathological Physiology, Center for Cancer Research, Zhejiang University School of Medicine, Zhejiang Diseases Proteomics Key Laboratory, Hangzhou, China (C.L.); Department of Biophysics and Center of Biotechnology, Federal University of Rio Grande do Sul, Porto Alegre, Brazil (P.F.L., D.C.M., G.L.); Department of Neurosurgery, Changzheng Hospital, Second Affiliated Hospital of Second Military Medical University, Shanghai, China (H.H., Y.-C.L.); Department of Pathology, Xiang-ya Hospital, Central South University, Changsha, Hunan, China (H.-Y.Z.)
| | - Yi-Cheng Lu
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia (P.F.L., C.L., A.R.H., H.Z.); Department of Neurological Surgery, University of Virginia, Charlottesville, Virginia (M.E.S., A.A., D.S.); Division of Neuropathology, Department of Pathology, Charlottesville, Virginia (M.B.S.L., J.W.M.); Department of Neurology, School of Medicine, University of Virginia, Charlottesville, Virginia (D.S.); Department of Pathology and Pathological Physiology, Center for Cancer Research, Zhejiang University School of Medicine, Zhejiang Diseases Proteomics Key Laboratory, Hangzhou, China (C.L.); Department of Biophysics and Center of Biotechnology, Federal University of Rio Grande do Sul, Porto Alegre, Brazil (P.F.L., D.C.M., G.L.); Department of Neurosurgery, Changzheng Hospital, Second Affiliated Hospital of Second Military Medical University, Shanghai, China (H.H., Y.-C.L.); Department of Pathology, Xiang-ya Hospital, Central South University, Changsha, Hunan, China (H.-Y.Z.)
| | - James W Mandell
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia (P.F.L., C.L., A.R.H., H.Z.); Department of Neurological Surgery, University of Virginia, Charlottesville, Virginia (M.E.S., A.A., D.S.); Division of Neuropathology, Department of Pathology, Charlottesville, Virginia (M.B.S.L., J.W.M.); Department of Neurology, School of Medicine, University of Virginia, Charlottesville, Virginia (D.S.); Department of Pathology and Pathological Physiology, Center for Cancer Research, Zhejiang University School of Medicine, Zhejiang Diseases Proteomics Key Laboratory, Hangzhou, China (C.L.); Department of Biophysics and Center of Biotechnology, Federal University of Rio Grande do Sul, Porto Alegre, Brazil (P.F.L., D.C.M., G.L.); Department of Neurosurgery, Changzheng Hospital, Second Affiliated Hospital of Second Military Medical University, Shanghai, China (H.H., Y.-C.L.); Department of Pathology, Xiang-ya Hospital, Central South University, Changsha, Hunan, China (H.-Y.Z.)
| | - Guido Lenz
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia (P.F.L., C.L., A.R.H., H.Z.); Department of Neurological Surgery, University of Virginia, Charlottesville, Virginia (M.E.S., A.A., D.S.); Division of Neuropathology, Department of Pathology, Charlottesville, Virginia (M.B.S.L., J.W.M.); Department of Neurology, School of Medicine, University of Virginia, Charlottesville, Virginia (D.S.); Department of Pathology and Pathological Physiology, Center for Cancer Research, Zhejiang University School of Medicine, Zhejiang Diseases Proteomics Key Laboratory, Hangzhou, China (C.L.); Department of Biophysics and Center of Biotechnology, Federal University of Rio Grande do Sul, Porto Alegre, Brazil (P.F.L., D.C.M., G.L.); Department of Neurosurgery, Changzheng Hospital, Second Affiliated Hospital of Second Military Medical University, Shanghai, China (H.H., Y.-C.L.); Department of Pathology, Xiang-ya Hospital, Central South University, Changsha, Hunan, China (H.-Y.Z.)
| | - Hui Zong
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia (P.F.L., C.L., A.R.H., H.Z.); Department of Neurological Surgery, University of Virginia, Charlottesville, Virginia (M.E.S., A.A., D.S.); Division of Neuropathology, Department of Pathology, Charlottesville, Virginia (M.B.S.L., J.W.M.); Department of Neurology, School of Medicine, University of Virginia, Charlottesville, Virginia (D.S.); Department of Pathology and Pathological Physiology, Center for Cancer Research, Zhejiang University School of Medicine, Zhejiang Diseases Proteomics Key Laboratory, Hangzhou, China (C.L.); Department of Biophysics and Center of Biotechnology, Federal University of Rio Grande do Sul, Porto Alegre, Brazil (P.F.L., D.C.M., G.L.); Department of Neurosurgery, Changzheng Hospital, Second Affiliated Hospital of Second Military Medical University, Shanghai, China (H.H., Y.-C.L.); Department of Pathology, Xiang-ya Hospital, Central South University, Changsha, Hunan, China (H.-Y.Z.)
| |
Collapse
|
328
|
Irvin DM, McNeill RS, Bash RE, Miller CR. Intrinsic Astrocyte Heterogeneity Influences Tumor Growth in Glioma Mouse Models. Brain Pathol 2016; 27:36-50. [PMID: 26762242 DOI: 10.1111/bpa.12348] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 01/05/2016] [Indexed: 12/20/2022] Open
Abstract
The influence of cellular origin on glioma pathogenesis remains elusive. We previously showed that mutations inactivating Rb and Pten and activating Kras transform astrocytes and induce tumorigenesis throughout the adult mouse brain. However, it remained unclear whether astrocyte subpopulations were susceptible to these mutations. We therefore used genetic lineage tracing and fate mapping in adult conditional, inducible genetically engineered mice to monitor transformation of glial fibrillary acidic protein (GFAP) and glutamate aspartate transporter (GLAST) astrocytes and immunofluorescence to monitor cellular composition of the tumor microenvironment over time. Because considerable regional heterogeneity exists among astrocytes, we also examined the influence of brain region on tumor growth. GFAP astrocyte transformation induced uniformly rapid, regionally independent tumor growth, but transformation of GLAST astrocytes induced slowly growing tumors with significant regional bias. Transformed GLAST astrocytes had reduced proliferative response in culture and in vivo and malignant progression was delayed in these tumors. Recruited glial cells, including proliferating astrocytes, oligodendrocyte progenitors and microglia, were the majority of GLAST, but not GFAP astrocyte-derived tumors and their abundance dynamically changed over time. These results suggest that intrinsic astrocyte heterogeneity, and perhaps regional brain microenvironment, significantly contributes to glioma pathogenesis.
Collapse
Affiliation(s)
- David M Irvin
- Curriculum in Genetics and Molecular Biology, University of North Carolina School of Medicine, Chapel Hill, NC
| | - Robert S McNeill
- Pathobiology and Translational Science Graduate Program, University of North Carolina School of Medicine, Chapel Hill, NC.,Division of Neuropathology, Department of Pathology and Laboratory Medicine, University of North Carolina School of Medicine, Chapel Hill, NC
| | - Ryan E Bash
- Division of Neuropathology, Department of Pathology and Laboratory Medicine, University of North Carolina School of Medicine, Chapel Hill, NC
| | - C Ryan Miller
- Curriculum in Genetics and Molecular Biology, University of North Carolina School of Medicine, Chapel Hill, NC.,Pathobiology and Translational Science Graduate Program, University of North Carolina School of Medicine, Chapel Hill, NC.,Division of Neuropathology, Department of Pathology and Laboratory Medicine, University of North Carolina School of Medicine, Chapel Hill, NC.,Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC.,Department of Neurology and Neurosciences Center, University of North Carolina School of Medicine, Chapel Hill, NC
| |
Collapse
|
329
|
Abstract
Glioblastoma is the most prevalent and lethal primary intrinsic brain tumor. Glioblastoma displays hierarchical arrangement with a population of self-renewing and tumorigenic glioma tumor initiating cells (TICs), or cancer stem cells. While non-neoplastic neural stem cells are generally quiescent, glioblastoma TICs are often proliferative with mitotic control offering a potential point of fragility. Here, we interrogate the role of cell-division cycle protein 20 (CDC20), an essential activator of anaphase-promoting complex (APC) E3 ubiquitination ligase, in the maintenance of TICs. By chromatin analysis and immunoblotting, CDC20 was preferentially expressed in TICs relative to matched non-TICs. Targeting CDC20 expression by RNA interference attenuated TIC proliferation, self-renewal and in vivo tumor growth. CDC20 disruption mediated its effects through induction of apoptosis and inhibition of cell cycle progression. CDC20 maintains TICs through degradation of p21CIP1/WAF1, a critical negative regulator of TICs. Inhibiting CDC20 stabilized p21CIP1/WAF1, resulting in repression of several genes critical to tumor growth and survival, including CDC25C, c-Myc and Survivin. Transcriptional control of CDC20 is mediated by FOXM1, a central transcription factor in TICs. These results suggest CDC20 is a critical regulator of TIC proliferation and survival, linking two key TIC nodes – FOXM1 and p21CIP1/WAF1 — elucidating a potential point for therapeutic intervention.
Collapse
|
330
|
Yadavilli S, Scafidi J, Becher OJ, Saratsis AM, Hiner RL, Kambhampati M, Mariarita S, MacDonald TJ, Codispoti KE, Magge SN, Jaiswal JK, Packer RJ, Nazarian J. The emerging role of NG2 in pediatric diffuse intrinsic pontine glioma. Oncotarget 2016; 6:12141-55. [PMID: 25987129 PMCID: PMC4494928 DOI: 10.18632/oncotarget.3716] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 03/11/2015] [Indexed: 12/13/2022] Open
Abstract
Diffuse intrinsic pontine gliomas (DIPGs) have a dismal prognosis and are poorly understood brain cancers. Receptor tyrosine kinases stabilized by neuron-glial antigen 2 (NG2) protein are known to induce gliomagenesis. Here, we investigated NG2 expression in a cohort of DIPG specimens (n= 50). We demonstrate NG2 expression in the majority of DIPG specimens tested and determine that tumors harboring histone 3.3 mutation express the highest NG2 levels. We further demonstrate that microRNA 129-2 (miR129-2) is downregulated and hypermethylated in human DIPGs, resulting in the increased expression of NG2. Treatment with 5-Azacytidine, a methyltransferase inhibitor, results in NG2 downregulation in DIPG primary tumor cells in vitro. NG2 expression is altered (symmetric segregation) in mitotic human DIPG and mouse tumor cells. These mitotic cells co-express oligodendrocyte (Olig2) and astrocyte (glial fibrillary acidic protein, GFAP) markers, indicating lack of terminal differentiation. NG2 knockdown retards cellular migration in vitro, while NG2 expressing neurospheres are highly tumorigenic in vivo, resulting in rapid growth of pontine tumors. NG2 expression is targetable in vivo using miR129-2 indicating a potential avenue for therapeutic interventions. This data implicates NG2 as a molecule of interest in DIPGs especially those with H3.3 mutation.
Collapse
Affiliation(s)
- Sridevi Yadavilli
- Research Center for Genetic Medicine, Children's National Health System, Washington, DC, USA
| | - Joseph Scafidi
- Department of Neurology and Center for Neuroscience Research, Children's National Health System, Washington, DC, USA
| | - Oren J Becher
- Department of Pediatrics and Pathology, Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC, USA
| | - Amanda M Saratsis
- Division of Neurosurgery, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Rebecca L Hiner
- Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, NY, USA
| | - Madhuri Kambhampati
- Research Center for Genetic Medicine, Children's National Health System, Washington, DC, USA
| | - Santi Mariarita
- Department of Pathology and Lab Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Tobey J MacDonald
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | | | - Suresh N Magge
- Division of Neurosurgery, Children's National Health System, Washington, DC, USA
| | - Jyoti K Jaiswal
- Research Center for Genetic Medicine, Children's National Health System, Washington, DC, USA.,Department of Integrative Systems Biology, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Roger J Packer
- Brain Tumor Institute, Center for Neuroscience and Behavioral Medicine, Children's National Health System, Washington, DC, USA
| | - Javad Nazarian
- Research Center for Genetic Medicine, Children's National Health System, Washington, DC, USA.,Department of Integrative Systems Biology, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| |
Collapse
|
331
|
Bonaguidi MA, Stadel RP, Berg DA, Sun J, Ming GL, Song H. Diversity of Neural Precursors in the Adult Mammalian Brain. Cold Spring Harb Perspect Biol 2016; 8:a018838. [PMID: 26988967 DOI: 10.1101/cshperspect.a018838] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Aided by advances in technology, recent studies of neural precursor identity and regulation have revealed various cell types as contributors to ongoing cell genesis in the adult mammalian brain. Here, we use stem-cell biology as a framework to highlight the diversity of adult neural precursor populations and emphasize their hierarchy, organization, and plasticity under physiological and pathological conditions.
Collapse
Affiliation(s)
- Michael A Bonaguidi
- Institute for Cell Engineering, The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205 Department of Neurology, The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205 Adrienne Helis Malvin Medical Research Foundation, New Orleans, Louisiana 70130-2685
| | - Ryan P Stadel
- Institute for Cell Engineering, The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205 Human Genetics Predoctoral Program, The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Daniel A Berg
- Institute for Cell Engineering, The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205 Department of Neurology, The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Jiaqi Sun
- Institute for Cell Engineering, The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205 School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Guo-li Ming
- Institute for Cell Engineering, The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205 Department of Neurology, The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205 Adrienne Helis Malvin Medical Research Foundation, New Orleans, Louisiana 70130-2685 The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Hongjun Song
- Institute for Cell Engineering, The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205 Department of Neurology, The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205 Adrienne Helis Malvin Medical Research Foundation, New Orleans, Louisiana 70130-2685 Human Genetics Predoctoral Program, The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205 The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| |
Collapse
|
332
|
Chen F, Becker A, LoTurco J. Overview of Transgenic Glioblastoma and Oligoastrocytoma CNS Models and Their Utility in Drug Discovery. ACTA ACUST UNITED AC 2016; 72:14.37.1-14.37.12. [PMID: 26995546 DOI: 10.1002/0471141755.ph1437s72] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Many animal models have been developed to investigate the sources of central nervous system (CNS) tumor heterogeneity. Reviewed in this unit is a recently developed CNS tumor model using the piggyBac transposon system delivered by in utero electroporation, in which sources of tumor heterogeneity can be conveniently studied. Their applications for studying CNS tumors and drug discovery are also reviewed. © 2016 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Fuyi Chen
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Conn.,Current address: Department of Neurology, Yale School of Medicine, New Haven, Conn
| | - Albert Becker
- Department of Neuropathology, University of Bonn Medical Center, Bonn, Germany
| | - Joseph LoTurco
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Conn
| |
Collapse
|
333
|
Tabu K, Muramatsu N, Mangani C, Wu M, Zhang R, Kimura T, Terashima K, Bizen N, Kimura R, Wang W, Murota Y, Kokubu Y, Nobuhisa I, Kagawa T, Kitabayashi I, Bradley M, Taga T. A Synthetic Polymer Scaffold Reveals the Self-Maintenance Strategies of Rat Glioma Stem Cells by Organization of the Advantageous Niche. Stem Cells 2016; 34:1151-62. [DOI: 10.1002/stem.2299] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 11/18/2015] [Accepted: 12/02/2015] [Indexed: 01/27/2023]
Affiliation(s)
- Kouichi Tabu
- Department of Stem Cell Regulation; Medical Research Institute, Tokyo Medical and Dental University (TMDU); Tokyo Japan
| | - Nozomi Muramatsu
- Department of Stem Cell Regulation; Medical Research Institute, Tokyo Medical and Dental University (TMDU); Tokyo Japan
| | - Christian Mangani
- EaStChem, School of Chemistry; University of Edinburgh; Edinburgh London United Kingdom
| | - Mei Wu
- EaStChem, School of Chemistry; University of Edinburgh; Edinburgh London United Kingdom
| | - Rong Zhang
- EaStChem, School of Chemistry; University of Edinburgh; Edinburgh London United Kingdom
- School of Materials Science and Engineering; Changzhou University; Changzhou Jiangsu China
| | - Taichi Kimura
- Department of Pathology, Laboratory of Cancer Research; Hokkaido University Graduate School of Medicine; Sapporo Japan
| | - Kazuo Terashima
- Department of Stem Cell Regulation; Medical Research Institute, Tokyo Medical and Dental University (TMDU); Tokyo Japan
| | - Norihisa Bizen
- Department of Stem Cell Regulation; Medical Research Institute, Tokyo Medical and Dental University (TMDU); Tokyo Japan
| | - Ryosuke Kimura
- Department of Stem Cell Regulation; Medical Research Institute, Tokyo Medical and Dental University (TMDU); Tokyo Japan
| | - Wenqian Wang
- Department of Stem Cell Regulation; Medical Research Institute, Tokyo Medical and Dental University (TMDU); Tokyo Japan
| | - Yoshitaka Murota
- Department of Stem Cell Regulation; Medical Research Institute, Tokyo Medical and Dental University (TMDU); Tokyo Japan
| | - Yasuhiro Kokubu
- Department of Stem Cell Regulation; Medical Research Institute, Tokyo Medical and Dental University (TMDU); Tokyo Japan
| | - Ikuo Nobuhisa
- Department of Stem Cell Regulation; Medical Research Institute, Tokyo Medical and Dental University (TMDU); Tokyo Japan
| | - Tetsushi Kagawa
- Department of Stem Cell Regulation; Medical Research Institute, Tokyo Medical and Dental University (TMDU); Tokyo Japan
| | - Issay Kitabayashi
- Division of Hematological Malignancy; National Cancer Center Research Institute; Tokyo Japan
| | - Mark Bradley
- EaStChem, School of Chemistry; University of Edinburgh; Edinburgh London United Kingdom
| | - Tetsuya Taga
- Department of Stem Cell Regulation; Medical Research Institute, Tokyo Medical and Dental University (TMDU); Tokyo Japan
| |
Collapse
|
334
|
Riccio P, Cebrian C, Zong H, Hippenmeyer S, Costantini F. Ret and Etv4 Promote Directed Movements of Progenitor Cells during Renal Branching Morphogenesis. PLoS Biol 2016; 14:e1002382. [PMID: 26894589 PMCID: PMC4760680 DOI: 10.1371/journal.pbio.1002382] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 01/13/2016] [Indexed: 11/18/2022] Open
Abstract
Branching morphogenesis of the epithelial ureteric bud forms the renal collecting duct system and is critical for normal nephron number, while low nephron number is implicated in hypertension and renal disease. Ureteric bud growth and branching requires GDNF signaling from the surrounding mesenchyme to cells at the ureteric bud tips, via the Ret receptor tyrosine kinase and coreceptor Gfrα1; Ret signaling up-regulates transcription factors Etv4 and Etv5, which are also critical for branching. Despite extensive knowledge of the genetic control of these events, it is not understood, at the cellular level, how renal branching morphogenesis is achieved or how Ret signaling influences epithelial cell behaviors to promote this process. Analysis of chimeric embryos previously suggested a role for Ret signaling in promoting cell rearrangements in the nephric duct, but this method was unsuited to study individual cell behaviors during ureteric bud branching. Here, we use Mosaic Analysis with Double Markers (MADM), combined with organ culture and time-lapse imaging, to trace the movements and divisions of individual ureteric bud tip cells. We first examine wild-type clones and then Ret or Etv4 mutant/wild-type clones in which the mutant and wild-type sister cells are differentially and heritably marked by green and red fluorescent proteins. We find that, in normal kidneys, most individual tip cells behave as self-renewing progenitors, some of whose progeny remain at the tips while others populate the growing UB trunks. In Ret or Etv4 MADM clones, the wild-type cells generated at a UB tip are much more likely to remain at, or move to, the new tips during branching and elongation, while their Ret-/- or Etv4-/- sister cells tend to lag behind and contribute only to the trunks. By tracking successive mitoses in a cell lineage, we find that Ret signaling has little effect on proliferation, in contrast to its effects on cell movement. Our results show that Ret/Etv4 signaling promotes directed cell movements in the ureteric bud tips, and suggest a model in which these cell movements mediate branching morphogenesis.
Collapse
Affiliation(s)
- Paul Riccio
- Department of Genetics and Development, Columbia University, New York, New York, United States of America
| | - Cristina Cebrian
- Department of Genetics and Development, Columbia University, New York, New York, United States of America
| | - Hui Zong
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, Virginia, United States of America
- Center for Brain Immunology and Glia, University of Virginia School of Medicine, Charlottesville, Virginia, United States of America
| | - Simon Hippenmeyer
- Developmental Neurobiology, IST Austria (Institute of Science and Technology Austria), Klosterneuburg, Austria
| | - Frank Costantini
- Department of Genetics and Development, Columbia University, New York, New York, United States of America
| |
Collapse
|
335
|
Aiello NM, Stanger BZ. Echoes of the embryo: using the developmental biology toolkit to study cancer. Dis Model Mech 2016; 9:105-14. [PMID: 26839398 PMCID: PMC4770149 DOI: 10.1242/dmm.023184] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The hallmark of embryonic development is regulation - the tendency for cells to find their way into organized and 'well behaved' structures - whereas cancer is characterized by dysregulation and disorder. At face value, cancer biology and developmental biology would thus seem to have little to do with each other. But if one looks beneath the surface, embryos and cancers share a number of cellular and molecular features. Embryos arise from a single cell and undergo rapid growth involving cell migration and cell-cell interactions: features that are also seen in the context of cancer. Consequently, many of the experimental tools that have been used to study embryogenesis for over a century are well-suited to studying cancer. This article will review the similarities between embryogenesis and cancer progression and discuss how some of the concepts and techniques used to understand embryos are now being adapted to provide insight into tumorigenesis, from the origins of cancer cells to metastasis.
Collapse
Affiliation(s)
- Nicole M Aiello
- Departments of Medicine and Cell and Developmental Biology, Abramson Family Cancer Research Institute, and Institute for Regenerative Medicine, Perelman School of Medicine at the University of Pennsylvania, 421 Curie Boulevard, Philadelphia, PA 19104, USA
| | - Ben Z Stanger
- Departments of Medicine and Cell and Developmental Biology, Abramson Family Cancer Research Institute, and Institute for Regenerative Medicine, Perelman School of Medicine at the University of Pennsylvania, 421 Curie Boulevard, Philadelphia, PA 19104, USA
| |
Collapse
|
336
|
Leclerc C, Haeich J, Aulestia FJ, Kilhoffer MC, Miller AL, Néant I, Webb SE, Schaeffer E, Junier MP, Chneiweiss H, Moreau M. Calcium signaling orchestrates glioblastoma development: Facts and conjunctures. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:1447-59. [PMID: 26826650 DOI: 10.1016/j.bbamcr.2016.01.018] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 01/18/2016] [Accepted: 01/22/2016] [Indexed: 01/06/2023]
Abstract
While it is a relatively rare disease, glioblastoma multiform (GBM) is one of the more deadly adult cancers. Following current interventions, the tumor is never eliminated whatever the treatment performed; whether it is radiotherapy, chemotherapy, or surgery. One hypothesis to explain this poor outcome is the "cancer stem cell" hypothesis. This concept proposes that a minority of cells within the tumor mass share many of the properties of adult neural stem cells and it is these that are responsible for the growth of the tumor and its resistance to existing therapies. Accumulating evidence suggests that Ca(2+) might also be an important positive regulator of tumorigenesis in GBM, in processes involving quiescence, maintenance, proliferation, or migration. Glioblastoma tumors are generally thought to develop by co-opting pathways that are involved in the formation of an organ. We propose that the cells initiating the tumor, and subsequently the cells of the tumor mass, must hijack the different checkpoints that evolution has selected in order to prevent the pathological development of an organ. In this article, two main points are discussed. (i) The first is the establishment of a so-called "cellular society," which is required to create a favorable microenvironment. (ii) The second is that GBM can be considered to be an organism, which fights to survive and develop. Since GBM evolves in a limited space, its only chance of development is to overcome the evolutionary checkpoints. For example, the deregulation of the normal Ca(2+) signaling elements contributes to the progression of the disease. Thus, by manipulating the Ca(2+) signaling, the GBM cells might not be killed, but might be reprogrammed toward a new fate that is either easy to cure or that has no aberrant functioning. This article is part of a Special Issue entitled: Calcium and Cell Fate. Guest Editors: Jacques Haiech, Claus Heizmann, Joachim Krebs, Thierry Capiod and Olivier Mignen.
Collapse
Affiliation(s)
- Catherine Leclerc
- Centre de Biologie du Développement, Université Toulouse 3, 118 route de Narbonne, F31062 Toulouse, Cedex 04, France; CNRS UMR5547, Toulouse F31062, France.
| | - Jacques Haeich
- Laboratoire d'Innovation Thérapeutique, Laboratoire d'Excellence Médalis, UMR 7200 Université de Strasbourg / CNRS, 67412 Illkirch, France
| | - Francisco J Aulestia
- Centre de Biologie du Développement, Université Toulouse 3, 118 route de Narbonne, F31062 Toulouse, Cedex 04, France
| | - Marie-Claude Kilhoffer
- Laboratoire d'Innovation Thérapeutique, Laboratoire d'Excellence Médalis, UMR 7200 Université de Strasbourg / CNRS, 67412 Illkirch, France
| | - Andrew L Miller
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, HKUST, Clear Water Bay, Hong Kong, PR China
| | - Isabelle Néant
- Centre de Biologie du Développement, Université Toulouse 3, 118 route de Narbonne, F31062 Toulouse, Cedex 04, France; CNRS UMR5547, Toulouse F31062, France
| | - Sarah E Webb
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, HKUST, Clear Water Bay, Hong Kong, PR China
| | - Etienne Schaeffer
- IREBS UMR7242 ESBS, Pôle API, Parc d'Innovation d'Illkirch, 67412 Illkirch cedex, France
| | - Marie-Pierre Junier
- Sorbonne Universités, UPMC Univ Paris 06, Centre National de la Recherche Scientifique (CNRS), UMR8246, Institut National de la Santé et de la Recherche Medicale (INSERM), U1130, Institut de Biologie Paris Seine (IBPS), Neuroscience Paris Seine (NPS), Team Glial Plasticity, 7/9 Quai St Bernard, Paris, France
| | - Hervé Chneiweiss
- Sorbonne Universités, UPMC Univ Paris 06, Centre National de la Recherche Scientifique (CNRS), UMR8246, Institut National de la Santé et de la Recherche Medicale (INSERM), U1130, Institut de Biologie Paris Seine (IBPS), Neuroscience Paris Seine (NPS), Team Glial Plasticity, 7/9 Quai St Bernard, Paris, France
| | - Marc Moreau
- Centre de Biologie du Développement, Université Toulouse 3, 118 route de Narbonne, F31062 Toulouse, Cedex 04, France; CNRS UMR5547, Toulouse F31062, France
| |
Collapse
|
337
|
Schmid RS, Simon JM, Vitucci M, McNeill RS, Bash RE, Werneke AM, Huey L, White KK, Ewend MG, Wu J, Miller CR. Core pathway mutations induce de-differentiation of murine astrocytes into glioblastoma stem cells that are sensitive to radiation but resistant to temozolomide. Neuro Oncol 2016; 18:962-73. [PMID: 26826202 DOI: 10.1093/neuonc/nov321] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 12/14/2015] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Glioma stem cells (GSCs) from human glioblastomas (GBMs) are resistant to radiation and chemotherapy and may drive recurrence. Treatment efficacy may depend on GSCs, expression of DNA repair enzymes such as methylguanine methyltransferase (MGMT), or transcriptome subtype. METHODS To model genetic alterations in human GBM core signaling pathways, we induced Rb knockout, Kras activation, and Pten deletion mutations in cortical murine astrocytes. Neurosphere culture, differentiation, and orthotopic transplantation assays were used to assess whether these mutations induced de-differentiation into GSCs. Genome-wide chromatin landscape alterations and expression profiles were examined by formaldehyde-assisted isolation of regulatory elements (FAIRE) seq and RNA-seq. Radiation and temozolomide efficacy were examined in vitro and in an allograft model in vivo. Effects of radiation on transcriptome subtype were examined by microarray expression profiling. RESULTS Cultured triple mutant astrocytes gained unlimited self-renewal and multilineage differentiation capacity. These cells harbored significantly altered chromatin landscapes that were associated with downregulation of astrocyte- and upregulation of stem cell-associated genes, particularly the Hoxa locus of embryonic transcription factors. Triple-mutant astrocytes formed serially transplantable glioblastoma allografts that were sensitive to radiation but expressed MGMT and were resistant to temozolomide. Radiation induced a shift in transcriptome subtype of GBM allografts from proneural to mesenchymal. CONCLUSION A defined set of core signaling pathway mutations induces de-differentiation of cortical murine astrocytes into GSCs with altered chromatin landscapes and transcriptomes. This non-germline genetically engineered mouse model mimics human proneural GBM on histopathological, molecular, and treatment response levels. It may be useful for dissecting the mechanisms of treatment resistance and developing more effective therapies.
Collapse
Affiliation(s)
- Ralf S Schmid
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina (R.S.S., L.H., M.G.E., J.W., C.R.M.); Division of Neuropathology, Department of Pathology & Laboratory Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina (M.V., R.S.M., R.E.B., A.M.W., K.K.W., C.R.M.); Carolina Institute for Developmental Disabilities and Department of Genetics, University of North Carolina School of Medicine, Chapel Hill, North Carolina (J.M.S.); Department of Neurosurgery, University of North Carolina School of Medicine, Chapel Hill, North Carolina (M.G.E., J.W.); Department of Neurology and Neurosciences Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina (C.R.M.)
| | - Jeremy M Simon
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina (R.S.S., L.H., M.G.E., J.W., C.R.M.); Division of Neuropathology, Department of Pathology & Laboratory Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina (M.V., R.S.M., R.E.B., A.M.W., K.K.W., C.R.M.); Carolina Institute for Developmental Disabilities and Department of Genetics, University of North Carolina School of Medicine, Chapel Hill, North Carolina (J.M.S.); Department of Neurosurgery, University of North Carolina School of Medicine, Chapel Hill, North Carolina (M.G.E., J.W.); Department of Neurology and Neurosciences Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina (C.R.M.)
| | - Mark Vitucci
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina (R.S.S., L.H., M.G.E., J.W., C.R.M.); Division of Neuropathology, Department of Pathology & Laboratory Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina (M.V., R.S.M., R.E.B., A.M.W., K.K.W., C.R.M.); Carolina Institute for Developmental Disabilities and Department of Genetics, University of North Carolina School of Medicine, Chapel Hill, North Carolina (J.M.S.); Department of Neurosurgery, University of North Carolina School of Medicine, Chapel Hill, North Carolina (M.G.E., J.W.); Department of Neurology and Neurosciences Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina (C.R.M.)
| | - Robert S McNeill
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina (R.S.S., L.H., M.G.E., J.W., C.R.M.); Division of Neuropathology, Department of Pathology & Laboratory Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina (M.V., R.S.M., R.E.B., A.M.W., K.K.W., C.R.M.); Carolina Institute for Developmental Disabilities and Department of Genetics, University of North Carolina School of Medicine, Chapel Hill, North Carolina (J.M.S.); Department of Neurosurgery, University of North Carolina School of Medicine, Chapel Hill, North Carolina (M.G.E., J.W.); Department of Neurology and Neurosciences Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina (C.R.M.)
| | - Ryan E Bash
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina (R.S.S., L.H., M.G.E., J.W., C.R.M.); Division of Neuropathology, Department of Pathology & Laboratory Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina (M.V., R.S.M., R.E.B., A.M.W., K.K.W., C.R.M.); Carolina Institute for Developmental Disabilities and Department of Genetics, University of North Carolina School of Medicine, Chapel Hill, North Carolina (J.M.S.); Department of Neurosurgery, University of North Carolina School of Medicine, Chapel Hill, North Carolina (M.G.E., J.W.); Department of Neurology and Neurosciences Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina (C.R.M.)
| | - Andrea M Werneke
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina (R.S.S., L.H., M.G.E., J.W., C.R.M.); Division of Neuropathology, Department of Pathology & Laboratory Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina (M.V., R.S.M., R.E.B., A.M.W., K.K.W., C.R.M.); Carolina Institute for Developmental Disabilities and Department of Genetics, University of North Carolina School of Medicine, Chapel Hill, North Carolina (J.M.S.); Department of Neurosurgery, University of North Carolina School of Medicine, Chapel Hill, North Carolina (M.G.E., J.W.); Department of Neurology and Neurosciences Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina (C.R.M.)
| | - Lauren Huey
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina (R.S.S., L.H., M.G.E., J.W., C.R.M.); Division of Neuropathology, Department of Pathology & Laboratory Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina (M.V., R.S.M., R.E.B., A.M.W., K.K.W., C.R.M.); Carolina Institute for Developmental Disabilities and Department of Genetics, University of North Carolina School of Medicine, Chapel Hill, North Carolina (J.M.S.); Department of Neurosurgery, University of North Carolina School of Medicine, Chapel Hill, North Carolina (M.G.E., J.W.); Department of Neurology and Neurosciences Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina (C.R.M.)
| | - Kristen K White
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina (R.S.S., L.H., M.G.E., J.W., C.R.M.); Division of Neuropathology, Department of Pathology & Laboratory Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina (M.V., R.S.M., R.E.B., A.M.W., K.K.W., C.R.M.); Carolina Institute for Developmental Disabilities and Department of Genetics, University of North Carolina School of Medicine, Chapel Hill, North Carolina (J.M.S.); Department of Neurosurgery, University of North Carolina School of Medicine, Chapel Hill, North Carolina (M.G.E., J.W.); Department of Neurology and Neurosciences Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina (C.R.M.)
| | - Matthew G Ewend
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina (R.S.S., L.H., M.G.E., J.W., C.R.M.); Division of Neuropathology, Department of Pathology & Laboratory Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina (M.V., R.S.M., R.E.B., A.M.W., K.K.W., C.R.M.); Carolina Institute for Developmental Disabilities and Department of Genetics, University of North Carolina School of Medicine, Chapel Hill, North Carolina (J.M.S.); Department of Neurosurgery, University of North Carolina School of Medicine, Chapel Hill, North Carolina (M.G.E., J.W.); Department of Neurology and Neurosciences Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina (C.R.M.)
| | - Jing Wu
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina (R.S.S., L.H., M.G.E., J.W., C.R.M.); Division of Neuropathology, Department of Pathology & Laboratory Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina (M.V., R.S.M., R.E.B., A.M.W., K.K.W., C.R.M.); Carolina Institute for Developmental Disabilities and Department of Genetics, University of North Carolina School of Medicine, Chapel Hill, North Carolina (J.M.S.); Department of Neurosurgery, University of North Carolina School of Medicine, Chapel Hill, North Carolina (M.G.E., J.W.); Department of Neurology and Neurosciences Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina (C.R.M.)
| | - C Ryan Miller
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina (R.S.S., L.H., M.G.E., J.W., C.R.M.); Division of Neuropathology, Department of Pathology & Laboratory Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina (M.V., R.S.M., R.E.B., A.M.W., K.K.W., C.R.M.); Carolina Institute for Developmental Disabilities and Department of Genetics, University of North Carolina School of Medicine, Chapel Hill, North Carolina (J.M.S.); Department of Neurosurgery, University of North Carolina School of Medicine, Chapel Hill, North Carolina (M.G.E., J.W.); Department of Neurology and Neurosciences Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina (C.R.M.)
| |
Collapse
|
338
|
Fate Mapping Mammalian Corneal Epithelia. Ocul Surf 2016; 14:82-99. [PMID: 26774909 DOI: 10.1016/j.jtos.2015.11.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 11/16/2015] [Accepted: 11/18/2015] [Indexed: 02/07/2023]
Abstract
The anterior aspect of the cornea consists of a stratified squamous epithelium, thought to be maintained by a rare population of stem cells (SCs) that reside in the limbal transition zone. Although migration of cells that replenish the corneal epithelium has been studied for over a century, the process is still poorly understood and not well characterized. Numerous techniques have been employed to examine corneal epithelial dynamics, including visualization by light microscopy, the incorporation of vital dyes and DNA labels, and transplantation of genetically marked cells that have acted as cell and lineage beacons. Modern-day lineage tracing utilizes molecular methods to determine the fate of a specific cell and its progeny over time. Classically employed in developmental biology, lineage tracing has been used more recently to track the progeny of adult SCs in a number of organs to pin-point their location and understand their movement and influence on tissue regeneration. This review highlights key discoveries that have led researchers to develop cutting-edge genetic tools to effectively and more accurately monitor turnover and displacement of cells within the mammalian corneal epithelium. Collating information on the basic biology of SCs will have clinical ramifications in furthering our knowledge of the processes that govern their role in homeostasis, wound-healing, transplantation, and how we can improve current unsatisfactory SC-based therapies for patients suffering blinding corneal disease.
Collapse
|
339
|
Weber TS, Perié L, Duffy KR. Inferring average generation via division-linked labeling. J Math Biol 2016; 73:491-523. [PMID: 26733310 DOI: 10.1007/s00285-015-0963-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Revised: 10/01/2015] [Indexed: 12/30/2022]
Abstract
For proliferating cells subject to both division and death, how can one estimate the average generation number of the living population without continuous observation or a division-diluting dye? In this paper we provide a method for cell systems such that at each division there is an unlikely, heritable one-way label change that has no impact other than to serve as a distinguishing marker. If the probability of label change per cell generation can be determined and the proportion of labeled cells at a given time point can be measured, we establish that the average generation number of living cells can be estimated. Crucially, the estimator does not depend on knowledge of the statistics of cell cycle, death rates or total cell numbers. We explore the estimator's features through comparison with physiologically parameterized stochastic simulations and extrapolations from published data, using it to suggest new experimental designs.
Collapse
Affiliation(s)
- Tom S Weber
- Hamilton Institute, Maynooth University, Maynooth, Ireland
| | - Leïla Perié
- Division of Immunology, Netherlands Cancer Institute, Amsterdam, The Netherlands
- Department of Theoretical Biology and Bioinformatics, Utrecht University, Utrecht, The Netherlands
- Institut Curie, PSL Research University, CNRS UMR168, Paris, France
| | - Ken R Duffy
- Hamilton Institute, Maynooth University, Maynooth, Ireland.
| |
Collapse
|
340
|
Glioblastoma Stem Cells Microenvironment: The Paracrine Roles of the Niche in Drug and Radioresistance. Stem Cells Int 2016; 2016:6809105. [PMID: 26880981 PMCID: PMC4736577 DOI: 10.1155/2016/6809105] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 11/09/2015] [Accepted: 11/10/2015] [Indexed: 12/13/2022] Open
Abstract
Among all solid tumors, the high-grade glioma appears to be the most vascularized one. In fact, "microvascular hyperplasia" is a hallmark of GBM. An altered vascular network determines irregular blood flow, so that tumor cells spread rapidly beyond the diffusion distance of oxygen in the tissue, with the consequent formation of hypoxic or anoxic areas, where the bulk of glioblastoma stem cells (GSCs) reside. The response to this event is the induction of angiogenesis, a process mediated by hypoxia inducible factors. However, this new capillary network is not efficient in maintaining a proper oxygen supply to the tumor mass, thereby causing an oxygen gradient within the neoplastic zone. This microenvironment helps GSCs to remain in a "quiescent" state preserving their potential to proliferate and differentiate, thus protecting them by the effects of chemo- and radiotherapy. Recent evidences suggest that responses of glioblastoma to standard therapies are determined by the microenvironment of the niche, where the GSCs reside, allowing a variety of mechanisms that contribute to the chemo- and radioresistance, by preserving GSCs. It is, therefore, crucial to investigate the components/factors of the niche in order to formulate new adjuvant therapies rendering more efficiently the gold standard therapies for this neoplasm.
Collapse
|
341
|
Podergajs N, Motaln H, Rajčević U, Verbovšek U, Koršič M, Obad N, Espedal H, Vittori M, Herold-Mende C, Miletic H, Bjerkvig R, Turnšek TL. Transmembrane protein CD9 is glioblastoma biomarker, relevant for maintenance of glioblastoma stem cells. Oncotarget 2016; 7:593-609. [PMID: 26573230 PMCID: PMC4808020 DOI: 10.18632/oncotarget.5477] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Accepted: 10/31/2015] [Indexed: 12/20/2022] Open
Abstract
The cancer stem cell model suggests that glioblastomas contain a subpopulation of stem-like tumor cells that reproduce themselves to sustain tumor growth. Targeting these cells thus represents a novel treatment strategy and therefore more specific markers that characterize glioblastoma stem cells need to be identified. In the present study, we performed transcriptomic analysis of glioblastoma tissues compared to normal brain tissues revealing sensible up-regulation of CD9 gene. CD9 encodes the transmembrane protein tetraspanin which is involved in tumor cell invasion, apoptosis and resistance to chemotherapy. Using the public REMBRANDT database for brain tumors, we confirmed the prognostic value of CD9, whereby a more than two fold up-regulation correlates with shorter patient survival. We validated CD9 gene and protein expression showing selective up-regulation in glioblastoma stem cells isolated from primary biopsies and in primary organotypic glioblastoma spheroids as well as in U87-MG and U373 glioblastoma cell lines. In contrast, no or low CD9 gene expression was observed in normal human astrocytes, normal brain tissue and neural stem cells. CD9 silencing in three CD133+ glioblastoma cell lines (NCH644, NCH421k and NCH660h) led to decreased cell proliferation, survival, invasion, and self-renewal ability, and altered expression of the stem-cell markers CD133, nestin and SOX2. Moreover, CD9-silenced glioblastoma stem cells showed altered activation patterns of the Akt, MapK and Stat3 signaling transducers. Orthotopic xenotransplantation of CD9-silenced glioblastoma stem cells into nude rats promoted prolonged survival. Therefore, CD9 should be further evaluated as a target for glioblastoma treatment.
Collapse
Affiliation(s)
- Neža Podergajs
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, 1000 Ljubljana, Slovenia
| | - Helena Motaln
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, 1000 Ljubljana, Slovenia
| | - Uroš Rajčević
- Department of Biochemistry, Blood Transfusion Centre of Slovenia, 1000 Ljubljana, Slovenia
| | - Urška Verbovšek
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, 1000 Ljubljana, Slovenia
| | - Marjan Koršič
- Department of Neurosurgery, University Medical Centre, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Nina Obad
- Department of Biomedicine, University of Bergen, 5009 Bergen, Norway
| | - Heidi Espedal
- Department of Biomedicine, University of Bergen, 5009 Bergen, Norway
| | - Miloš Vittori
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, 1000 Ljubljana, Slovenia
| | - Christel Herold-Mende
- Division of Neurosurgical Research, Department of Neurosurgery, University of Heidelberg, 69120 Heidelberg, Germany
| | - Hrvoje Miletic
- Department of Biomedicine, University of Bergen, 5009 Bergen, Norway
| | - Rolf Bjerkvig
- Department of Biomedicine, University of Bergen, 5009 Bergen, Norway
- NorLux Neuro-Oncology Laboratory, Centre de Recherche Public de la Santé, 1526 Luxembourg, Luxembourg
| | - Tamara Lah Turnšek
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, 1000 Ljubljana, Slovenia
- Department of Biochemistry, Faculty of Chemistry and Chemical Engineering, University of Ljubljana, 1000 Ljubljana, Slovenia
| |
Collapse
|
342
|
Giachino C, Boulay JL, Ivanek R, Alvarado A, Tostado C, Lugert S, Tchorz J, Coban M, Mariani L, Bettler B, Lathia J, Frank S, Pfister S, Kool M, Taylor V. A Tumor Suppressor Function for Notch Signaling in Forebrain Tumor Subtypes. Cancer Cell 2015; 28:730-742. [PMID: 26669487 DOI: 10.1016/j.ccell.2015.10.008] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 08/06/2015] [Accepted: 10/16/2015] [Indexed: 11/18/2022]
Abstract
In the brain, Notch signaling maintains normal neural stem cells, but also brain cancer stem cells, indicating an oncogenic role. Here, we identify an unexpected tumor suppressor function for Notch in forebrain tumor subtypes. Genetic inactivation of RBP-Jκ, a key Notch mediator, or Notch1 and Notch2 receptors accelerates PDGF-driven glioma growth in mice. Conversely, genetic activation of the Notch pathway reduces glioma growth and increases survival. In humans, high Notch activity strongly correlates with distinct glioma subtypes, increased patient survival, and lower tumor grade. Additionally, simultaneous inactivation of RBP-Jκ and p53 induces primitive neuroectodermal-like tumors in mice. Hence, Notch signaling cooperates with p53 to restrict cell proliferation and tumor growth in mouse models of human brain tumors.
Collapse
MESH Headings
- Animals
- Basic Helix-Loop-Helix Transcription Factors/genetics
- Basic Helix-Loop-Helix Transcription Factors/metabolism
- Brain Neoplasms/genetics
- Brain Neoplasms/metabolism
- Brain Neoplasms/mortality
- Brain Neoplasms/pathology
- Cell Proliferation
- Databases, Genetic
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic
- Gene Transfer Techniques
- Glioma/genetics
- Glioma/metabolism
- Glioma/mortality
- Glioma/pathology
- Humans
- Immunoglobulin J Recombination Signal Sequence-Binding Protein/genetics
- Immunoglobulin J Recombination Signal Sequence-Binding Protein/metabolism
- Infusions, Intraventricular
- Kaplan-Meier Estimate
- Mice, Knockout
- Neoplasm Grading
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/pathology
- Neural Stem Cells/metabolism
- Neural Stem Cells/pathology
- Phenotype
- Platelet-Derived Growth Factor/administration & dosage
- Prosencephalon/metabolism
- Prosencephalon/pathology
- Proto-Oncogene Proteins c-sis/genetics
- Proto-Oncogene Proteins c-sis/metabolism
- Receptor, Notch1/genetics
- Receptor, Notch1/metabolism
- Receptor, Notch2/genetics
- Receptor, Notch2/metabolism
- Receptors, Notch/genetics
- Receptors, Notch/metabolism
- Recombinant Proteins/administration & dosage
- Repressor Proteins/genetics
- Repressor Proteins/metabolism
- Signal Transduction
- Time Factors
- Tumor Burden
- Tumor Suppressor Protein p53/genetics
- Tumor Suppressor Protein p53/metabolism
- Tumor Suppressor Proteins/genetics
- Tumor Suppressor Proteins/metabolism
Collapse
Affiliation(s)
- Claudio Giachino
- Department of Biomedicine, University of Basel, Mattenstrasse 28, 4058 Basel, Switzerland.
| | - Jean-Louis Boulay
- Department of Biomedicine, University Hospital Basel, Spitalstrasse 21, 4031 Basel, Switzerland
| | - Robert Ivanek
- Department of Biomedicine, University of Basel, Mattenstrasse 28, 4058 Basel, Switzerland
| | - Alvaro Alvarado
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, NC 10, Cleveland, OH 44195, USA
| | - Cristobal Tostado
- Department of Biomedicine, University Hospital Basel, Spitalstrasse 21, 4031 Basel, Switzerland
| | - Sebastian Lugert
- Department of Biomedicine, University of Basel, Mattenstrasse 28, 4058 Basel, Switzerland
| | - Jan Tchorz
- Department of Biomedicine, University of Basel, Kingelbergstrasse 50-70, 4056 Basel, Switzerland
| | - Mustafa Coban
- Department of Biomedicine, University of Basel, Mattenstrasse 28, 4058 Basel, Switzerland
| | - Luigi Mariani
- Department of Biomedicine, University Hospital Basel, Spitalstrasse 21, 4031 Basel, Switzerland
| | - Bernhard Bettler
- Department of Biomedicine, University of Basel, Kingelbergstrasse 50-70, 4056 Basel, Switzerland
| | - Justin Lathia
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, NC 10, Cleveland, OH 44195, USA
| | - Stephan Frank
- Division of Neuropathology, Institute of Pathology, University of Basel, Schoenbeinstrasse 40, 4031 Basel, Switzerland
| | - Stefan Pfister
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), 69121 Heidelberg, Germany
| | - Marcel Kool
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), 69121 Heidelberg, Germany
| | - Verdon Taylor
- Department of Biomedicine, University of Basel, Mattenstrasse 28, 4058 Basel, Switzerland.
| |
Collapse
|
343
|
Baker SJ, Ellison DW, Gutmann DH. Pediatric gliomas as neurodevelopmental disorders. Glia 2015; 64:879-95. [PMID: 26638183 DOI: 10.1002/glia.22945] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 11/13/2015] [Indexed: 01/01/2023]
Abstract
Brain tumors represent the most common solid tumor of childhood, with gliomas comprising the largest fraction of these cancers. Several features distinguish them from their adult counterparts, including their natural history, causative genetic mutations, and brain locations. These unique properties suggest that the cellular and molecular etiologies that underlie their development and maintenance might be different from those that govern adult gliomagenesis and growth. In this review, we discuss the genetic basis for pediatric low-grade and high-grade glioma in the context of developmental neurobiology, and highlight the differences between histologically-similar tumors arising in children and adults.
Collapse
Affiliation(s)
- Suzanne J Baker
- Department of Developmental Neurobiology, St. Jude's Children's Research Hospital, Memphis, Tennessee
| | - David W Ellison
- Department of Pathology, St. Jude's Children's Research Hospital, Memphis, Tennessee
| | - David H Gutmann
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
344
|
Rybak AP, Bristow RG, Kapoor A. Prostate cancer stem cells: deciphering the origins and pathways involved in prostate tumorigenesis and aggression. Oncotarget 2015; 6:1900-19. [PMID: 25595909 PMCID: PMC4385825 DOI: 10.18632/oncotarget.2953] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Accepted: 12/09/2015] [Indexed: 12/18/2022] Open
Abstract
The cells of the prostate gland are dependent on cell signaling pathways to regulate their growth, maintenance and function. However, perturbations in key signaling pathways, resulting in neoplastic transformation of cells in the prostate epithelium, are likely to generate subtypes of prostate cancer which may subsequently require different treatment regimes. Accumulating evidence supports multiple sources of stem cells in the prostate epithelium with distinct cellular origins for prostate tumorigenesis documented in animal models, while human prostate cancer stem-like cells (PCSCs) are typically enriched by cell culture, surface marker expression and functional activity assays. As future therapies will require a deeper understanding of its cellular origins as well as the pathways that drive PCSC maintenance and tumorigenesis, we review the molecular and functional evidence supporting dysregulation of PI3K/AKT, RAS/MAPK and STAT3 signaling in PCSCs, the development of castration resistance, and as a novel treatment approach for individual men with prostate cancer.
Collapse
Affiliation(s)
- Adrian P Rybak
- McMaster Institute of Urology, Division of Urology, Department of Surgery, McMaster University, ON, Canada.,St. Joseph's Hospital, Hamilton, ON, Canada
| | - Robert G Bristow
- Princess Margaret Cancer Centre (University Health Network), ON, Canada.,Departments of Radiation Oncology and Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Anil Kapoor
- McMaster Institute of Urology, Division of Urology, Department of Surgery, McMaster University, ON, Canada.,St. Joseph's Hospital, Hamilton, ON, Canada
| |
Collapse
|
345
|
PTEN deficiency reprogrammes human neural stem cells towards a glioblastoma stem cell-like phenotype. Nat Commun 2015; 6:10068. [PMID: 26632666 PMCID: PMC4686761 DOI: 10.1038/ncomms10068] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 10/29/2015] [Indexed: 01/07/2023] Open
Abstract
PTEN is a tumour suppressor frequently mutated in many types of cancers. Here we show that targeted disruption of PTEN leads to neoplastic transformation of human neural stem cells (NSCs), but not mesenchymal stem cells. PTEN-deficient NSCs display neoplasm-associated metabolic and gene expression profiles and generate intracranial tumours in immunodeficient mice. PTEN is localized to the nucleus in NSCs, binds to the PAX7 promoter through association with cAMP responsive element binding protein 1 (CREB)/CREB binding protein (CBP) and inhibits PAX7 transcription. PTEN deficiency leads to the upregulation of PAX7, which in turn promotes oncogenic transformation of NSCs and instates ‘aggressiveness' in human glioblastoma stem cells. In a large clinical database, we find increased PAX7 levels in PTEN-deficient glioblastoma. Furthermore, we identify that mitomycin C selectively triggers apoptosis in NSCs with PTEN deficiency. Together, we uncover a potential mechanism of how PTEN safeguards NSCs, and establish a cellular platform to identify factors involved in NSC transformation, potentially permitting personalized treatment of glioblastoma. The tumor suppressor PTEN is often mutated or lost in glioblastoma. Here, the authors demonstrate that in neuronal stem cells PTEN trans-represses PAX7 gene expression and PTEN deficiency promotes PAX7-dependent neoplastic transformation.
Collapse
|
346
|
Sun GJ, Zhou Y, Ito S, Bonaguidi MA, Stein-O’Brien G, Kawasaki N, Modak N, Zhu Y, Ming GL, Song H. Latent tri-lineage potential of adult hippocampal neural stem cells revealed by Nf1 inactivation. Nat Neurosci 2015; 18:1722-4. [PMID: 26523645 PMCID: PMC4661096 DOI: 10.1038/nn.4159] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 10/06/2015] [Indexed: 12/14/2022]
Abstract
Endogenous neural stem cells (NSCs) in the adult hippocampus are considered to be bi-potent, as they only produce neurons and astrocytes in vivo. In mouse, we found that inactivation of neurofibromin 1 (Nf1), a gene mutated in neurofibromatosis type 1, unlocked a latent oligodendrocyte lineage potential to produce all three lineages from NSCs in vivo. Our results suggest an avenue for promoting stem cell plasticity by targeting barriers of latent lineage potential.
Collapse
Affiliation(s)
- Gerald J. Sun
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Yi Zhou
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- The Biochemistry, Cellular and Molecular Biology Graduate Program, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Shiori Ito
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Michael A. Bonaguidi
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Genevieve Stein-O’Brien
- Pre-doctoral Human Genetics Training Program, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Nicholas Kawasaki
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Nikhil Modak
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Yuan Zhu
- Gilbert Family Neurofibromatosis Institute, Center for Cancer and Immunology Research, Children’s National Medical Center, Washington, DC 20010, USA
| | - Guo-li Ming
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- The Biochemistry, Cellular and Molecular Biology Graduate Program, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Hongjun Song
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- The Biochemistry, Cellular and Molecular Biology Graduate Program, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Pre-doctoral Human Genetics Training Program, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
347
|
Karunasena E, McIver LJ, Rood BR, Wu X, Zhu H, Bavarva JH, Garner HR. Somatic intronic microsatellite loci differentiate glioblastoma from lower-grade gliomas. Oncotarget 2015; 5:6003-14. [PMID: 25153720 PMCID: PMC4171608 DOI: 10.18632/oncotarget.2076] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Genomic studies of glioma sub-types have amassed new disease specific mutations, yet these only partially explain how mutations are linked to predisposition or progression. We hypothesized that microsatellite variation could expand the understanding of glioma etiology. Furthermore, germline markers for gliomas are typically undetectable; therefore we also hypothesize that the predictability of cancer-associated microsatellite loci in germline DNA may support the current hypothesis of a glioma cell of origin. In this study, “normal” germline exome sequenced DNA from the 1000 Genomes Project (n=390) were compared with exome sequences from germlines of subjects with WHO grade II and III lower-grade glioma (LGG, n=136) and WHO grade IV glioblastoma (GBM, n=252) from The Cancer Genome Atlas to identify microsatellite loci non-randomly associated with glioma. From germline data, we identified 48 GBM-specific loci, 42 Lower-grade glioma specific loci and 29 loci that distinguish GBM from LGG (p≤ 0.01). We then attempted to distinguish WHO grade II glioma (n=67) from GBM resulting in 8 informative loci. Significantly, in all glioma grades, comparisons between tumor and matched germline sequences demonstrated no significant differences in these variants (p≥ 0.01). Therefore, these microsatellite loci are considered to be components of grade-specific signatures for glioma which distinguish germline sequences of individuals with cancer from those of individuals that are “normal”. In order to better understand the significance of these loci, we identified biological processes enriched in genes with these variants. Most strikingly, six helicase genes were enriched in the GBM cohort (p≤ 1.0 ×10−3). The preservation of these glioma-specific loci could therefore serve as valuable diagnostic and therapeutic markers; especially since the heterogeneity of tumor cell populations can obscure the identification of mutations preceding a metastatic phenotype.
Collapse
Affiliation(s)
- Enusha Karunasena
- Virginia Bioinformatics Institute, Medical Informatics and Systems Division; Blacksburg, VA; These authors contributed equally to this work
| | - Lauren J McIver
- Virginia Bioinformatics Institute, Medical Informatics and Systems Division; Blacksburg, VA; These authors contributed equally to this work
| | - Brian R Rood
- Center for Cancer and Blood Disorders at Children's National Medical Center; Washington, D.C
| | - Xiaowei Wu
- Department of Statistics at Virginia Tech; Blacksburg, VA
| | - Hongxiao Zhu
- Department of Statistics at Virginia Tech; Blacksburg, VA
| | - Jasmin H Bavarva
- Virginia Bioinformatics Institute, Medical Informatics and Systems Division; Blacksburg, VA
| | - Harold R Garner
- Virginia Bioinformatics Institute, Medical Informatics and Systems Division; Blacksburg, VA
| |
Collapse
|
348
|
Lee SH, Shen MM. Cell types of origin for prostate cancer. Curr Opin Cell Biol 2015; 37:35-41. [PMID: 26506127 DOI: 10.1016/j.ceb.2015.10.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 10/06/2015] [Indexed: 12/22/2022]
Abstract
Analyses of cell types of origin for prostate cancer should result in new insights into mechanisms of tumor initiation, and may lead to improved prognosis and selection of appropriate therapies. Here, we review studies using a range of methodologies to investigate the cell of origin for mouse and human prostate cancer. Notably, analyses using tissue recombination assays support basal epithelial cells as a cell of origin, whereas in vivo lineage-tracing studies in genetically-engineered mice implicate luminal cells. We describe how these results can be potentially reconciled by a conceptual distinction between cells of origin and cells of mutation, and outline how new experimental approaches can address the potential relationship between cell types of origin and disease outcome.
Collapse
Affiliation(s)
- Suk Hyung Lee
- Department of Medicine, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032, USA; Department of Genetics & Development, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032, USA; Department of Urology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032, USA; Department of Systems Biology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032, USA
| | - Michael M Shen
- Department of Medicine, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032, USA; Department of Genetics & Development, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032, USA; Department of Urology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032, USA; Department of Systems Biology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032, USA.
| |
Collapse
|
349
|
Persano L, Zagoura D, Louisse J, Pistollato F. Role of Environmental Chemicals, Processed Food Derivatives, and Nutrients in the Induction of Carcinogenesis. Stem Cells Dev 2015; 24:2337-52. [DOI: 10.1089/scd.2015.0081] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- Luca Persano
- Istituto di Riceca Pediatrica Città della Speranza—IRP, Padova, Italy
- Department of Woman and Child Health, University of Padova, Padova, Italy
| | - Dimitra Zagoura
- Laboratory of Biology, University of Athens School of Medicine, Athens, Greece
| | - Jochem Louisse
- Division of Toxicology, Wageningen University, Wageningen, the Netherlands
| | - Francesca Pistollato
- Center for Nutrition & Health, Universidad Europea del Atlantico (UEA), Santander, Spain
| |
Collapse
|
350
|
Alcantara Llaguno SR, Wang Z, Sun D, Chen J, Xu J, Kim E, Hatanpaa KJ, Raisanen JM, Burns DK, Johnson JE, Parada LF. Adult Lineage-Restricted CNS Progenitors Specify Distinct Glioblastoma Subtypes. Cancer Cell 2015; 28:429-440. [PMID: 26461091 PMCID: PMC4607935 DOI: 10.1016/j.ccell.2015.09.007] [Citation(s) in RCA: 157] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 07/08/2015] [Accepted: 09/16/2015] [Indexed: 01/16/2023]
Abstract
A central question in glioblastoma multiforme (GBM) research is the identity of the tumor-initiating cell, and its contribution to the malignant phenotype and genomic state. We examine the potential of adult lineage-restricted progenitors to induce fully penetrant GBM using CNS progenitor-specific inducible Cre mice to mutate Nf1, Trp53, and Pten. We identify two phenotypically and molecularly distinct GBM subtypes governed by identical driver mutations. We demonstrate that the two subtypes arise from functionally independent pools of adult CNS progenitors. Despite histologic identity as GBM, these tumor types are separable based on the lineage of the tumor-initiating cell. These studies point to the cell of origin as a major determinant of GBM subtype diversity.
Collapse
Affiliation(s)
- Sheila R Alcantara Llaguno
- Department of Developmental Biology, The University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA.
| | - Zilai Wang
- Department of Developmental Biology, The University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA
| | - Daochun Sun
- Department of Developmental Biology, The University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA
| | - Jian Chen
- Department of Developmental Biology, The University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA
| | - Jing Xu
- Department of Developmental Biology, The University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA
| | - Euiseok Kim
- Department of Neuroscience, The University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA
| | - Kimmo J Hatanpaa
- Department of Pathology, The University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA
| | - Jack M Raisanen
- Department of Pathology, The University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA
| | - Dennis K Burns
- Department of Pathology, The University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA
| | - Jane E Johnson
- Department of Neuroscience, The University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA
| | - Luis F Parada
- Department of Developmental Biology, The University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA.
| |
Collapse
|