301
|
Mass E, Gentek R. Fetal-Derived Immune Cells at the Roots of Lifelong Pathophysiology. Front Cell Dev Biol 2021; 9:648313. [PMID: 33708774 PMCID: PMC7940384 DOI: 10.3389/fcell.2021.648313] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 02/05/2021] [Indexed: 12/12/2022] Open
Abstract
Tissue-resident innate immune cells exert a wide range of functions in both adult homeostasis and pathology. Our understanding of when and how these cellular networks are established has dramatically changed with the recognition that many lineages originate at least in part from fetal sources and self-maintain independently from hematopoietic stem cells. Indeed, fetal-derived immune cells are found in most organs and serous cavities of our body, where they reside throughout the entire lifespan. At the same time, there is a growing appreciation that pathologies manifesting in adulthood may be caused by adverse early life events, a concept known as “developmental origins of health and disease” (DOHaD). Yet, whether fetal-derived immune cells are mechanistically involved in DOHaD remains elusive. In this review, we summarize our knowledge of fetal hematopoiesis and its contribution to adult immune compartments, which results in a “layered immune system.” Based on their ontogeny, we argue that fetal-derived immune cells are prime transmitters of long-term consequences of prenatal adversities. In addition to increasing disease susceptibility, these may also directly cause inflammatory, degenerative, and metabolic disorders. We explore this notion for cells generated from erythro-myeloid progenitors (EMP) produced in the extra-embryonic yolk sac. Focusing on macrophages and mast cells, we present emerging evidence implicating them in lifelong disease by either somatic mutations or developmental programming events resulting from maternal and early environmental perturbations.
Collapse
Affiliation(s)
- Elvira Mass
- Developmental Biology of the Immune System, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Rebecca Gentek
- Centre for Inflammation Research & Centre for Reproductive Health, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
302
|
Arroyo Portilla C, Tomas J, Gorvel JP, Lelouard H. From Species to Regional and Local Specialization of Intestinal Macrophages. Front Cell Dev Biol 2021; 8:624213. [PMID: 33681185 PMCID: PMC7930007 DOI: 10.3389/fcell.2020.624213] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/30/2020] [Indexed: 12/13/2022] Open
Abstract
Initially intended for nutrient uptake, phagocytosis represents a central mechanism of debris removal and host defense against invading pathogens through the entire animal kingdom. In vertebrates and also many invertebrates, macrophages (MFs) and MF-like cells (e.g., coelomocytes and hemocytes) are professional phagocytic cells that seed tissues to maintain homeostasis through pathogen killing, efferocytosis and tissue shaping, repair, and remodeling. Some MF functions are common to all species and tissues, whereas others are specific to their homing tissue. Indeed, shaped by their microenvironment, MFs become adapted to perform particular functions, highlighting their great plasticity and giving rise to high population diversity. Interestingly, the gut displays several anatomic and functional compartments with large pools of strikingly diversified MF populations. This review focuses on recent advances on intestinal MFs in several species, which have allowed to infer their specificity and functions.
Collapse
Affiliation(s)
- Cynthia Arroyo Portilla
- Aix Marseille Univ, CNRS, INSERM, CIML, Marseille, France.,Departamento de Análisis Clínicos, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Julie Tomas
- Aix Marseille Univ, CNRS, INSERM, CIML, Marseille, France
| | | | | |
Collapse
|
303
|
Neo WH, Lie-A-Ling M, Fadlullah MZH, Lacaud G. Contributions of Embryonic HSC-Independent Hematopoiesis to Organogenesis and the Adult Hematopoietic System. Front Cell Dev Biol 2021; 9:631699. [PMID: 33681211 PMCID: PMC7930747 DOI: 10.3389/fcell.2021.631699] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 01/22/2021] [Indexed: 12/17/2022] Open
Abstract
During ontogeny, the establishment of the hematopoietic system takes place in several phases, separated both in time and location. The process is initiated extra-embryonically in the yolk sac (YS) and concludes in the main arteries of the embryo with the formation of hematopoietic stem cells (HSC). Initially, it was thought that HSC-independent hematopoietic YS cells were transient, and only required to bridge the gap to HSC activity. However, in recent years it has become clear that these cells also contribute to embryonic organogenesis, including the emergence of HSCs. Furthermore, some of these early HSC-independent YS cells persist into adulthood as distinct hematopoietic populations. These previously unrecognized abilities of embryonic HSC-independent hematopoietic cells constitute a new field of interest. Here, we aim to provide a succinct overview of the current knowledge regarding the contribution of YS-derived hematopoietic cells to the development of the embryo and the adult hematopoietic system.
Collapse
Affiliation(s)
- Wen Hao Neo
- Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Macclesfield, United Kingdom
| | - Michael Lie-A-Ling
- Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Macclesfield, United Kingdom
| | | | - Georges Lacaud
- Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Macclesfield, United Kingdom
| |
Collapse
|
304
|
Hogg C, Panir K, Dhami P, Rosser M, Mack M, Soong D, Pollard JW, Jenkins SJ, Horne AW, Greaves E. Macrophages inhibit and enhance endometriosis depending on their origin. Proc Natl Acad Sci U S A 2021; 118:e2013776118. [PMID: 33536334 PMCID: PMC8017702 DOI: 10.1073/pnas.2013776118] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Macrophages are intimately involved in the pathophysiology of endometriosis, a chronic inflammatory disorder characterized by the growth of endometrial-like tissue (lesions) outside the uterus. By combining genetic and pharmacological monocyte and macrophage depletion strategies we determined the ontogeny and function of macrophages in a mouse model of induced endometriosis. We demonstrate that lesion-resident macrophages are derived from eutopic endometrial tissue, infiltrating large peritoneal macrophages (LpM) and monocytes. Furthermore, we found endometriosis to trigger continuous recruitment of monocytes and expansion of CCR2+ LpM. Depletion of eutopic endometrial macrophages results in smaller endometriosis lesions, whereas constitutive inhibition of monocyte recruitment significantly reduces peritoneal macrophage populations and increases the number of lesions. Reprogramming the ontogeny of peritoneal macrophages such that embryo-derived LpM are replaced by monocyte-derived LpM decreases the number of lesions that develop. We propose a putative model whereby endometrial macrophages are "proendometriosis" while newly recruited monocyte-derived macrophages, possibly in LpM form, are "antiendometriosis." These observations highlight the importance of monocyte-derived macrophages in limiting disease progression.
Collapse
Affiliation(s)
- Chloe Hogg
- Medical Research Council Centre for Reproductive Health, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
| | - Kavita Panir
- Centre for Early Life, Warwick Medical School, University of Warwick, CV2 2DX Coventry, United Kingdom
| | - Priya Dhami
- Centre for Early Life, Warwick Medical School, University of Warwick, CV2 2DX Coventry, United Kingdom
| | - Matthew Rosser
- Centre for Early Life, Warwick Medical School, University of Warwick, CV2 2DX Coventry, United Kingdom
| | - Matthias Mack
- Department of Internal Medicine II-Nephrology, University Hospital Regensburg, 93042 Regensburg, Germany
| | - Daniel Soong
- Medical Research Council Centre for Reproductive Health, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
| | - Jeffrey W Pollard
- Medical Research Council Centre for Reproductive Health, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
| | - Stephen J Jenkins
- Centre for Inflammation Research, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
| | - Andrew W Horne
- Medical Research Council Centre for Reproductive Health, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
| | - Erin Greaves
- Centre for Early Life, Warwick Medical School, University of Warwick, CV2 2DX Coventry, United Kingdom;
| |
Collapse
|
305
|
Wei J, Chen P, Gupta P, Ott M, Zamler D, Kassab C, Bhat KP, Curran MA, de Groot JF, Heimberger AB. Immune biology of glioma-associated macrophages and microglia: functional and therapeutic implications. Neuro Oncol 2021; 22:180-194. [PMID: 31679017 DOI: 10.1093/neuonc/noz212] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
CNS immune defenses are marshaled and dominated by brain resident macrophages and microglia, which are the innate immune sentinels and frontline host immune barriers against various pathogenic insults. These myeloid lineage cells are the predominant immune population in gliomas and can constitute up to 30-50% of the total cellular composition. Parenchymal microglial cells and recruited monocyte-derived macrophages from the periphery exhibit disease-specific phenotypic characteristics with spatial and temporal distinctions and are heterogeneous subpopulations based on their molecular signatures. A preponderance of myeloid over lymphoid lineage cells during CNS inflammation, including gliomas, is a contrasting feature of brain immunity relative to peripheral immunity. Herein we discuss glioma-associated macrophage and microglia immune biology in the context of their identity, molecular drivers of recruitment, nomenclature and functional paradoxes, therapeutic reprogramming and polarization strategies, relevant challenges, and our perspectives on therapeutic modulation.
Collapse
Affiliation(s)
- Jun Wei
- Departments of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Peiwen Chen
- Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Pravesh Gupta
- Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Martina Ott
- Departments of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Daniel Zamler
- Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Cynthia Kassab
- Departments of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Krishna P Bhat
- Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Michael A Curran
- Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - John F de Groot
- Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Amy B Heimberger
- Departments of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
306
|
Anderson DA, Dutertre CA, Ginhoux F, Murphy KM. Genetic models of human and mouse dendritic cell development and function. Nat Rev Immunol 2021; 21:101-115. [PMID: 32908299 PMCID: PMC10955724 DOI: 10.1038/s41577-020-00413-x] [Citation(s) in RCA: 163] [Impact Index Per Article: 54.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2020] [Indexed: 12/13/2022]
Abstract
Dendritic cells (DCs) develop in the bone marrow from haematopoietic progenitors that have numerous shared characteristics between mice and humans. Human counterparts of mouse DC progenitors have been identified by their shared transcriptional signatures and developmental potential. New findings continue to revise models of DC ontogeny but it is well accepted that DCs can be divided into two main functional groups. Classical DCs include type 1 and type 2 subsets, which can detect different pathogens, produce specific cytokines and present antigens to polarize mainly naive CD8+ or CD4+ T cells, respectively. By contrast, the function of plasmacytoid DCs is largely innate and restricted to the detection of viral infections and the production of type I interferon. Here, we discuss genetic models of mouse DC development and function that have aided in correlating ontogeny with function, as well as how these findings can be translated to human DCs and their progenitors.
Collapse
Affiliation(s)
- David A Anderson
- Department of Pathology and Immunology, School of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | | | - Florent Ginhoux
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
| | - Kenneth M Murphy
- Department of Pathology and Immunology, School of Medicine, Washington University in St. Louis, St. Louis, MO, USA.
- Howard Hughes Medical Institute, School of Medicine, Washington University in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
307
|
Zhang J, Wu Q, Johnson CB, Pham G, Kinder JM, Olsson A, Slaughter A, May M, Weinhaus B, D'Alessandro A, Engel JD, Jiang JX, Kofron JM, Huang LF, Prasath VBS, Way SS, Salomonis N, Grimes HL, Lucas D. In situ mapping identifies distinct vascular niches for myelopoiesis. Nature 2021; 590:457-462. [PMID: 33568812 PMCID: PMC8020897 DOI: 10.1038/s41586-021-03201-2] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 12/24/2020] [Indexed: 02/07/2023]
Abstract
In contrast to nearly all other tissues, the anatomy of cell differentiation in the bone marrow remains unknown. This is owing to a lack of strategies for examining myelopoiesis-the differentiation of myeloid progenitors into a large variety of innate immune cells-in situ in the bone marrow. Such strategies are required to understand differentiation and lineage-commitment decisions, and to define how spatial organizing cues inform tissue function. Here we develop approaches for imaging myelopoiesis in mice, and generate atlases showing the differentiation of granulocytes, monocytes and dendritic cells. The generation of granulocytes and dendritic cells-monocytes localizes to different blood-vessel structures known as sinusoids, and displays lineage-specific spatial and clonal architectures. Acute systemic infection with Listeria monocytogenes induces lineage-specific progenitor clusters to undergo increased self-renewal of progenitors, but the different lineages remain spatially separated. Monocyte-dendritic cell progenitors (MDPs) map with nonclassical monocytes and conventional dendritic cells; these localize to a subset of blood vessels expressing a major regulator of myelopoiesis, colony-stimulating factor 1 (CSF1, also known as M-CSF)1. Specific deletion of Csf1 in endothelium disrupts the architecture around MDPs and their localization to sinusoids. Subsequently, there are fewer MDPs and their ability to differentiate is reduced, leading to a loss of nonclassical monocytes and dendritic cells during both homeostasis and infection. These data indicate that local cues produced by distinct blood vessels are responsible for the spatial organization of definitive blood cell differentiation.
Collapse
Affiliation(s)
- Jizhou Zhang
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Medical Center, Cincinnati, OH, USA
| | - Qingqing Wu
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Medical Center, Cincinnati, OH, USA
| | - Courtney B Johnson
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Medical Center, Cincinnati, OH, USA
| | - Giang Pham
- Division of Infectious Diseases, Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Jeremy M Kinder
- Division of Infectious Diseases, Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Andre Olsson
- Division of Immunobiology and Center for Systems Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Anastasiya Slaughter
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Medical Center, Cincinnati, OH, USA
- Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Margot May
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Medical Center, Cincinnati, OH, USA
| | - Benjamin Weinhaus
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Medical Center, Cincinnati, OH, USA
- Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver-Anschutz Medical Campus, Aurora, CO, USA
| | - James Douglas Engel
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Jean X Jiang
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA
| | - J Matthew Kofron
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - L Frank Huang
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Medical Center, Cincinnati, OH, USA
| | - V B Surya Prasath
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Sing Sing Way
- Division of Infectious Diseases, Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Nathan Salomonis
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - H Leighton Grimes
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Medical Center, Cincinnati, OH, USA
- Division of Immunobiology and Center for Systems Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Daniel Lucas
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Medical Center, Cincinnati, OH, USA.
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
308
|
Robinson A, Han CZ, Glass CK, Pollard JW. Monocyte Regulation in Homeostasis and Malignancy. Trends Immunol 2021; 42:104-119. [PMID: 33446416 PMCID: PMC7877795 DOI: 10.1016/j.it.2020.12.001] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 11/27/2020] [Accepted: 12/05/2020] [Indexed: 12/14/2022]
Abstract
Monocytes are progenitors to macrophages and a subclass of dendritic cells (monocyte-derived dendritic cells, MoDCs), but they also act as circulating sensors that respond to environmental changes and disease. Technological advances have defined the production of classical monocytes in the bone marrow through the identification of lineage-determining transcription factors (LDTFs) and have proposed alternative routes of differentiation. Monocytes released into the circulation can be recruited to tissues by specific chemoattractants where they respond to sequential niche-specific signals that determine their differentiation into terminal effector cells. New aspects of monocyte biology in the circulation are being revealed, exemplified by the influence of cancer on the systemic alteration of monocyte subset abundance and transcriptional profiles. These changes can act to enhance the metastatic spread of primary cancers and may offer therapeutic opportunities.
Collapse
Affiliation(s)
- Amy Robinson
- Medical Research Council (MRC) Centre for Reproductive Health, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Claudia Z Han
- Department of Cellular and Molecular Medicine, School of Medicine, University of California San Diego, La Jolla, CA, 92037, USA
| | - Christopher K Glass
- Department of Cellular and Molecular Medicine, School of Medicine, University of California San Diego, La Jolla, CA, 92037, USA
| | - Jeffrey W Pollard
- Medical Research Council (MRC) Centre for Reproductive Health, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK.
| |
Collapse
|
309
|
Does tissue imprinting restrict macrophage plasticity? Nat Immunol 2021; 22:118-127. [PMID: 33462453 DOI: 10.1038/s41590-020-00849-2] [Citation(s) in RCA: 106] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 11/20/2020] [Indexed: 01/29/2023]
Abstract
Macrophages have long been considered as particularly plastic cells. However, recent work combining fate mapping, single-cell transcriptomics and epigenetics has undermined the macrophage plasticity dogma. Here, we discuss recent studies that have carefully dissected the response of individual macrophage subsets to pulmonary insults and call for an adjustment of the macrophage plasticity concept. We hypothesize that prolonged tissue residency shuts down much of the plasticity of macrophages and propose that the restricted plasticity of resident macrophages has been favored by evolution to safeguard tissue homeostasis. Recruited monocytes are more plastic and their differentiation into resident macrophages during inflammation can result in a dual imprinting from both the ongoing inflammation and the macrophage niche. This results in inflammation-imprinted resident macrophages, and we speculate that rewired niche circuits could maintain this inflammatory state. We believe that this revisited plasticity model offers opportunities to reset the macrophage pool after a severe inflammatory episode.
Collapse
|
310
|
Cabeza-Cabrerizo M, Cardoso A, Minutti CM, Pereira da Costa M, Reis E Sousa C. Dendritic Cells Revisited. Annu Rev Immunol 2021; 39:131-166. [PMID: 33481643 DOI: 10.1146/annurev-immunol-061020-053707] [Citation(s) in RCA: 357] [Impact Index Per Article: 119.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Dendritic cells (DCs) possess the ability to integrate information about their environment and communicate it to other leukocytes, shaping adaptive and innate immunity. Over the years, a variety of cell types have been called DCs on the basis of phenotypic and functional attributes. Here, we refocus attention on conventional DCs (cDCs), a discrete cell lineage by ontogenetic and gene expression criteria that best corresponds to the cells originally described in the 1970s. We summarize current knowledge of mouse and human cDC subsets and describe their hematopoietic development and their phenotypic and functional attributes. We hope that our effort to review the basic features of cDC biology and distinguish cDCs from related cell types brings to the fore the remarkable properties of this cell type while shedding some light on the seemingly inordinate complexity of the DC field.
Collapse
Affiliation(s)
- Mar Cabeza-Cabrerizo
- Immunobiology Laboratory, The Francis Crick Institute, London NW1 1AT, United Kingdom;
| | - Ana Cardoso
- Immunobiology Laboratory, The Francis Crick Institute, London NW1 1AT, United Kingdom;
| | - Carlos M Minutti
- Immunobiology Laboratory, The Francis Crick Institute, London NW1 1AT, United Kingdom;
| | | | - Caetano Reis E Sousa
- Immunobiology Laboratory, The Francis Crick Institute, London NW1 1AT, United Kingdom;
| |
Collapse
|
311
|
Rappl P, Brüne B, Schmid T. Role of Tristetraprolin in the Resolution of Inflammation. BIOLOGY 2021; 10:biology10010066. [PMID: 33477783 PMCID: PMC7832405 DOI: 10.3390/biology10010066] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/14/2021] [Accepted: 01/16/2021] [Indexed: 12/18/2022]
Abstract
Simple Summary Chronic inflammatory diseases account for up to 60% of deaths worldwide and, thus, are considered a great threat for human health by the World Health Organization. Nevertheless, acute inflammatory reactions are an integral part of the host defense against invading pathogens or injuries. To avoid excessive damage due to the persistence of a highly reactive environment, inflammations need to resolve in a coordinate and timely manner, ensuring for the immunological normalization of the affected tissues. Since post-transcriptional regulatory mechanisms are essential for effective resolution, the present review discusses the key role of the RNA-binding and post-transcriptional regulatory protein tristetraprolin in establishing resolution of inflammation. Abstract Inflammation is a crucial part of immune responses towards invading pathogens or tissue damage. While inflammatory reactions are aimed at removing the triggering stimulus, it is important that these processes are terminated in a coordinate manner to prevent excessive tissue damage due to the highly reactive inflammatory environment. Initiation of inflammatory responses was proposed to be regulated predominantly at a transcriptional level, whereas post-transcriptional modes of regulation appear to be crucial for resolution of inflammation. The RNA-binding protein tristetraprolin (TTP) interacts with AU-rich elements in the 3′ untranslated region of mRNAs, recruits deadenylase complexes and thereby facilitates degradation of its targets. As TTP regulates the mRNA stability of numerous inflammatory mediators, it was put forward as a crucial post-transcriptional regulator of inflammation. Here, we summarize the current understanding of the function of TTP with a specific focus on its role in adding to resolution of inflammation.
Collapse
Affiliation(s)
- Peter Rappl
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany; (P.R.); (B.B.)
| | - Bernhard Brüne
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany; (P.R.); (B.B.)
- German Cancer Consortium (DKTK), Partner Site Frankfurt, 60590 Frankfurt, Germany
- Frankfurt Cancer Institute, Goethe-University Frankfurt, 60596 Frankfurt, Germany
- Project Group Translational Medicine and Pharmacology TMP, Fraunhofer Institute for Molecular and Applied Ecology, 60596 Frankfurt, Germany
| | - Tobias Schmid
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany; (P.R.); (B.B.)
- Correspondence:
| |
Collapse
|
312
|
Ginhoux F, Mildner A, Gautier EL, Schlitzer A, Jakubzick C, Varol C, Bain C, Guermonprez P. Editorial: Monocyte Heterogeneity and Function. Front Immunol 2021; 11:626725. [PMID: 33488633 PMCID: PMC7817760 DOI: 10.3389/fimmu.2020.626725] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 11/20/2020] [Indexed: 12/24/2022] Open
Affiliation(s)
- Florent Ginhoux
- Singapore Immunology Network (SIgN), ASTAR, Singapore, Singapore.,Translational Immunology Institute, Singhealth/Duke-NUS Academic Medical Centre, the Academia, Singapore, Singapore.,Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | - Emmanuel L Gautier
- Sorbonne Université, INSERM UMR-S 1166, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Andreas Schlitzer
- Quantitative Systems Biology, Life and Medical Sciences Institute, University of Bonn, Bonn, Germany.,Single Cell Genomics and Epigenomics Unit at the German Center for Neurodegenerative Diseases and the University of Bonn, Bonn, Germany
| | - Claudia Jakubzick
- Department of Microbiology and Immunology, Dartmouth Geisel School of Medicine, Hanover, NH, United States
| | - Chen Varol
- The Research Center For Digestive Tract and Liver Diseases, Sourasky Medical Center and Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Calum Bain
- The University of Edinburgh Centre for Inflammation Research, Queen's Medical Research Institute, Edinburgh BioQuarter, Edinburgh, United Kingdom
| | - Pierre Guermonprez
- King's College London Centre for Inflammation Biology and Cancer Immunology, The Peter Gorer Department of Immmunobiology, London, United Kingdom.,Université de Paris, Centre for Inflammation Research, CNRS ERL8252, INSERM1149, Hopital Bichat, Paris, France
| |
Collapse
|
313
|
Koscsó B, Kurapati S, Rodrigues RR, Nedjic J, Gowda K, Shin C, Soni C, Ashraf AZ, Purushothaman I, Palisoc M, Xu S, Sun H, Chodisetti SB, Lin E, Mack M, Kawasawa YI, He P, Rahman ZSM, Aifantis I, Shulzhenko N, Morgun A, Bogunovic M. Gut-resident CX3CR1 hi macrophages induce tertiary lymphoid structures and IgA response in situ. Sci Immunol 2020; 5:5/46/eaax0062. [PMID: 32276965 DOI: 10.1126/sciimmunol.aax0062] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 12/27/2019] [Accepted: 02/28/2020] [Indexed: 12/12/2022]
Abstract
Intestinal mononuclear phagocytes (MPs) are composed of heterogeneous dendritic cell (DC) and macrophage subsets necessary for the initiation of immune response and control of inflammation. Although MPs in the normal intestine have been extensively studied, the heterogeneity and function of inflammatory MPs remain poorly defined. We performed phenotypical, transcriptional, and functional analyses of inflammatory MPs in infectious Salmonella colitis and identified CX3CR1+ MPs as the most prevalent inflammatory cell type. CX3CR1+ MPs were further divided into three distinct populations, namely, Nos2 +CX3CR1lo, Ccr7 +CX3CR1int (lymph migratory), and Cxcl13 +CX3CR1hi (mucosa resident), all of which were transcriptionally aligned with macrophages and derived from monocytes. In follow-up experiments in vivo, intestinal CX3CR1+ macrophages were superior to conventional DC1 (cDC1) and cDC2 in inducing Salmonella-specific mucosal IgA. We next examined spatial organization of the immune response induced by CX3CR1+ macrophage subsets and identified mucosa-resident Cxcl13 +CX3CR1hi macrophages as the antigen-presenting cells responsible for recruitment and activation of CD4+ T and B cells to the sites of Salmonella invasion, followed by tertiary lymphoid structure formation and the local pathogen-specific IgA response. Using mice we developed with a floxed Ccr7 allele, we showed that this local IgA response developed independently of migration of the Ccr7 +CX3CR1int population to the mesenteric lymph nodes and contributed to the total mucosal IgA response to infection. The differential activity of intestinal macrophage subsets in promoting mucosal IgA responses should be considered in the development of vaccines to prevent Salmonella infection and in the design of anti-inflammatory therapies aimed at modulating macrophage function in inflammatory bowel disease.
Collapse
Affiliation(s)
- Balázs Koscsó
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Sravya Kurapati
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA, USA.,Biomedical Sciences PhD Program, Penn State University College of Medicine, Hershey, PA, USA
| | | | - Jelena Nedjic
- Department of Pathology and Laura and Isaac Perlmutter Cancer Center, NYU School of Medicine, New York, NY, USA
| | - Kavitha Gowda
- Department of Microbiology and Immunology, Penn State University College of Medicine, Hershey, PA, USA
| | - Changsik Shin
- Department of Microbiology and Immunology, Penn State University College of Medicine, Hershey, PA, USA
| | - Chetna Soni
- Department of Microbiology and Immunology, Penn State University College of Medicine, Hershey, PA, USA
| | - Azree Zaffran Ashraf
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Indira Purushothaman
- PhD Program in Anatomy at Penn State College of Medicine, Penn State University College of Medicine, Hershey, PA, USA
| | - Maryknoll Palisoc
- MD/PhD Medical Scientist Training Program, Penn State University College of Medicine, Hershey, PA, USA
| | - Sulei Xu
- Department of Cellular and Molecular Physiology, Penn State University College of Medicine, Hershey, PA, USA
| | - Haoyu Sun
- Department of Cellular and Molecular Physiology, Penn State University College of Medicine, Hershey, PA, USA
| | - Sathi Babu Chodisetti
- Department of Microbiology and Immunology, Penn State University College of Medicine, Hershey, PA, USA
| | - Eugene Lin
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Matthias Mack
- Department of Internal Medicine/Nephrology, University Hospital Regensburg, Regensburg, Germany
| | - Yuka Imamura Kawasawa
- Department of Pharmacology and Biochemistry and Molecular Biology, Institute of Personalized Medicine, Penn State University College of Medicine, Hershey, PA, USA
| | - Pingnian He
- Department of Cellular and Molecular Physiology, Penn State University College of Medicine, Hershey, PA, USA
| | - Ziaur S M Rahman
- Department of Microbiology and Immunology, Penn State University College of Medicine, Hershey, PA, USA
| | - Iannis Aifantis
- Department of Pathology and Laura and Isaac Perlmutter Cancer Center, NYU School of Medicine, New York, NY, USA
| | - Natalia Shulzhenko
- College of Veterinary Medicine, Oregon State University, Corvallis, OR, USA
| | - Andrey Morgun
- College of Pharmacy, Oregon State University, Corvallis, OR, USA
| | - Milena Bogunovic
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA, USA. .,Department of Microbiology and Immunology, Penn State University College of Medicine, Hershey, PA, USA.,Inflammatory Bowel Disease Center, Milton S. Hershey Medical Center, Hershey, PA, USA
| |
Collapse
|
314
|
Evren E, Ringqvist E, Tripathi KP, Sleiers N, Rives IC, Alisjahbana A, Gao Y, Sarhan D, Halle T, Sorini C, Lepzien R, Marquardt N, Michaëlsson J, Smed-Sörensen A, Botling J, Karlsson MCI, Villablanca EJ, Willinger T. Distinct developmental pathways from blood monocytes generate human lung macrophage diversity. Immunity 2020; 54:259-275.e7. [PMID: 33382972 DOI: 10.1016/j.immuni.2020.12.003] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 10/15/2020] [Accepted: 12/08/2020] [Indexed: 02/06/2023]
Abstract
The study of human macrophages and their ontogeny is an important unresolved issue. Here, we use a humanized mouse model expressing human cytokines to dissect the development of lung macrophages from human hematopoiesis in vivo. Human CD34+ hematopoietic stem and progenitor cells (HSPCs) generated three macrophage populations, occupying separate anatomical niches in the lung. Intravascular cell labeling, cell transplantation, and fate-mapping studies established that classical CD14+ blood monocytes derived from HSPCs migrated into lung tissue and gave rise to human interstitial and alveolar macrophages. In contrast, non-classical CD16+ blood monocytes preferentially generated macrophages resident in the lung vasculature (pulmonary intravascular macrophages). Finally, single-cell RNA sequencing defined intermediate differentiation stages in human lung macrophage development from blood monocytes. This study identifies distinct developmental pathways from circulating monocytes to lung macrophages and reveals how cellular origin contributes to human macrophage identity, diversity, and localization in vivo.
Collapse
Affiliation(s)
- Elza Evren
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, 141 52 Stockholm, Sweden
| | - Emma Ringqvist
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, 141 52 Stockholm, Sweden
| | - Kumar Parijat Tripathi
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, 171 64 Stockholm, Sweden; Center for Molecular Medicine, Karolinska Institutet, 171 76 Stockholm, Sweden
| | - Natalie Sleiers
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, 141 52 Stockholm, Sweden
| | - Inés Có Rives
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, 141 52 Stockholm, Sweden
| | - Arlisa Alisjahbana
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, 141 52 Stockholm, Sweden
| | - Yu Gao
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, 141 52 Stockholm, Sweden
| | - Dhifaf Sarhan
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 64 Stockholm, Sweden
| | - Tor Halle
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, 751 85 Uppsala, Sweden
| | - Chiara Sorini
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, 171 64 Stockholm, Sweden; Center for Molecular Medicine, Karolinska Institutet, 171 76 Stockholm, Sweden
| | - Rico Lepzien
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, 171 64 Stockholm, Sweden
| | - Nicole Marquardt
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, 141 52 Stockholm, Sweden
| | - Jakob Michaëlsson
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, 141 52 Stockholm, Sweden
| | - Anna Smed-Sörensen
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, 171 64 Stockholm, Sweden
| | - Johan Botling
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, 751 85 Uppsala, Sweden
| | - Mikael C I Karlsson
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 64 Stockholm, Sweden
| | - Eduardo J Villablanca
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, 171 64 Stockholm, Sweden; Center for Molecular Medicine, Karolinska Institutet, 171 76 Stockholm, Sweden
| | - Tim Willinger
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, 141 52 Stockholm, Sweden.
| |
Collapse
|
315
|
Kim KW, Ivanov S, Williams JW. Monocyte Recruitment, Specification, and Function in Atherosclerosis. Cells 2020; 10:E15. [PMID: 33374145 PMCID: PMC7823291 DOI: 10.3390/cells10010015] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/19/2020] [Accepted: 12/21/2020] [Indexed: 12/21/2022] Open
Abstract
Atherosclerotic lesions progress through the continued recruitment of circulating blood monocytes that differentiate into macrophages within plaque. Lesion-associated macrophages are the primary immune cells present in plaque, where they take up cholesterol and store lipids in the form of small droplets resulting in a unique morphology termed foam cell. Recent scientific advances have used single-cell gene expression profiling, live-cell imaging, and fate mapping approaches to describe macrophage and monocyte contributions to pro- or anti-inflammatory mechanisms, in addition to functions of motility and proliferation within lesions. Yet, many questions regarding tissue-specific regulation of monocyte-to-macrophage differentiation and the contribution of recruited monocytes at stages of atherosclerotic disease progression remain unknown. In this review, we highlight recent advances regarding the role of monocyte and macrophage dynamics in atherosclerotic disease and identify gaps in knowledge that we hope will allow for advancing therapeutic treatment or prevention strategies for cardiovascular disease.
Collapse
Affiliation(s)
- Ki-Wook Kim
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL 60612, USA;
| | - Stoyan Ivanov
- INSERM U1065, Centre Méditerranéen de Médecine Moléculaire C3M, Université Côte Azur, 06204 Nice, France;
| | - Jesse W. Williams
- Center for Immunology, Department of Integrative Biology & Physiology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| |
Collapse
|
316
|
Mair F, Liechti T. Comprehensive Phenotyping of Human Dendritic Cells and Monocytes. Cytometry A 2020; 99:231-242. [PMID: 33200508 DOI: 10.1002/cyto.a.24269] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/02/2020] [Accepted: 11/13/2020] [Indexed: 12/11/2022]
Abstract
Professional antigen-presenting cells (APCs), which include dendritic cells (DCs) and monocytes are essential for inducing and steering adaptive T-cell responses. Recent technological developments in single-cell analysis have significantly advanced our understanding of APC subset heterogeneity. To accurately resolve this functional diversity and to account for tissue-specific adaptation, novel phenotyping markers have been described more recently. While some of these largely overlap with traditionally used markers, more fine-grained phenotyping might be essential during inflammatory settings, where the traditional distinction between monocytes and dendritic cells has become blurred. Within this phenotype report, we provide a concise overview of traditional and recently described markers for the phenotyping of DCs and monocytes in the human system.
Collapse
Affiliation(s)
- Florian Mair
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, Washington, USA
| | - Thomas Liechti
- ImmunoTechnology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 40 Convent Drive, Bethesda, Maryland, USA
| |
Collapse
|
317
|
Sreejit G, Fleetwood AJ, Murphy AJ, Nagareddy PR. Origins and diversity of macrophages in health and disease. Clin Transl Immunology 2020; 9:e1222. [PMID: 33363732 PMCID: PMC7750014 DOI: 10.1002/cti2.1222] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 12/14/2022] Open
Abstract
Macrophages are the first immune cells in the developing embryo and have a central role in organ development, homeostasis, immunity and repair. Over the last century, our understanding of these cells has evolved from being thought of as simple phagocytic cells to master regulators involved in governing a myriad of cellular processes. A better appreciation of macrophage biology has been matched with a clearer understanding of their diverse origins and the flexibility of their metabolic and transcriptional machinery. The understanding of the classical mononuclear phagocyte system in its original form has now been expanded to include the embryonic origin of tissue-resident macrophages. A better knowledge of the intrinsic similarities and differences between macrophages of embryonic or monocyte origin has highlighted the importance of ontogeny in macrophage dysfunction in disease. In this review, we provide an update on origin and classification of tissue macrophages, the mechanisms of macrophage specialisation and their role in health and disease. The importance of the macrophage niche in providing trophic factors and a specialised environment for macrophage differentiation and specialisation is also discussed.
Collapse
Affiliation(s)
- Gopalkrishna Sreejit
- Division of Cardiac SurgeryDepartment of SurgeryThe Ohio State University Wexner Medical CenterColumbusOHUSA
| | - Andrew J Fleetwood
- Division of ImmunometabolismBaker Heart and Diabetes InstituteMelbourneVICAustralia
| | - Andrew J Murphy
- Division of ImmunometabolismBaker Heart and Diabetes InstituteMelbourneVICAustralia
| | - Prabhakara R Nagareddy
- Division of Cardiac SurgeryDepartment of SurgeryThe Ohio State University Wexner Medical CenterColumbusOHUSA
| |
Collapse
|
318
|
Abstract
Interstitial inflammation is an important feature of cystic kidney disease. Renal macrophages are the most well-studied inflammatory cell in the kidney, and their involvement in cyst formation has been reported in different animal models and patients with cystic kidney disease. Originally, it was believed that renal macrophages were maintained from a constant supply of bone marrow-derived circulating monocytes, and could be recruited to the kidney in response to local inflammation. However, this idea has been challenged using fate-mapping methods, by showing that at least two distinct developmental origins of macrophages are present in the adult mouse kidney. The first type, infiltrating macrophages, are recruited from circulating monocytes and gradually develop macrophage properties on entering the kidney. The second, resident macrophages, predominantly originate from embryonic precursors, colonize the kidney during its development, and proliferate in situ to maintain their population throughout adulthood. Infiltrating and resident macrophages work together to maintain homeostasis and properly respond to pathologic conditions, such as AKI, cystic kidney disease, or infection. This review will briefly summarize current knowledge of resident macrophages in cystic kidney disease.
Collapse
Affiliation(s)
- Zhang Li
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Kurt A. Zimmerman
- Division of Nephrology, Department of Internal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Bradley K. Yoder
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
319
|
Functional regulation of decidual macrophages during pregnancy. J Reprod Immunol 2020; 143:103264. [PMID: 33360717 DOI: 10.1016/j.jri.2020.103264] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/22/2020] [Accepted: 11/25/2020] [Indexed: 12/16/2022]
Abstract
A successful pregnancy requires that the maternal immune system recognizes and tolerates the semi-allogeneic fetus without compromising the capability of protecting both mother and fetus from various pathogens. Decidual macrophages present unique phenotypes to play a key role in the establishment of the immunological aspects of maternal-fetal interaction. Dysfunction of decidual macrophages gives rise to pregnancy complications such as preeclampsia, recurrent spontaneous miscarriage, preterm labor and fetal growth restriction. Here, we reviewed the latest knowledge on the origin, differentiation, unique phenotype and function of macrophages in normal pregnancy and in pregnancy complications. We mainly focused on the significant roles of decidual macrophages in the process of extravillous trophoblast invasion, spiral arterial remodeling, decidual stromal cells cultivation and immune tolerance maintenance in normal pregnancy, and their pathological roles in pregnancy-related complications, offering more integrated information in maternal-fetal immunity.
Collapse
|
320
|
Abstract
The regulation of monocyte differentiation in the tumor microenvironment is of significant interest to tumor immunologists. Monocytes injected into the circulation may not track into tumors in sufficient numbers, making intratumoral injections a preferred experimental approach. Monocyte enrichment with antibody-based positive selection may activate downstream signaling, while cell sorters expose monocytes to mechanical stress. Here, we describe an approach of intratumoral monocyte transfer that circumvents these limitations by using negative selection and fluorescent reporter mice. For complete details on the use and execution of this protocol, please refer to Devalaraja et al. (2020). Isolation of bone marrow monocytes from fluorescent reporter mice Transfer of monocytes directly into tumors generated in syngeneic hosts Analysis of intratumorally transferred monocytes using flow cytometry
Collapse
|
321
|
Ballesteros I, Rubio-Ponce A, Genua M, Lusito E, Kwok I, Fernández-Calvo G, Khoyratty TE, van Grinsven E, González-Hernández S, Nicolás-Ávila JÁ, Vicanolo T, Maccataio A, Benguría A, Li JL, Adrover JM, Aroca-Crevillen A, Quintana JA, Martín-Salamanca S, Mayo F, Ascher S, Barbiera G, Soehnlein O, Gunzer M, Ginhoux F, Sánchez-Cabo F, Nistal-Villán E, Schulz C, Dopazo A, Reinhardt C, Udalova IA, Ng LG, Ostuni R, Hidalgo A. Co-option of Neutrophil Fates by Tissue Environments. Cell 2020; 183:1282-1297.e18. [PMID: 33098771 DOI: 10.1016/j.cell.2020.10.003] [Citation(s) in RCA: 255] [Impact Index Per Article: 63.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 08/10/2020] [Accepted: 10/01/2020] [Indexed: 02/09/2023]
Abstract
Classically considered short-lived and purely defensive leukocytes, neutrophils are unique in their fast and moldable response to stimulation. This plastic behavior may underlie variable and even antagonistic functions during inflammation or cancer, yet the full spectrum of neutrophil properties as they enter healthy tissues remains unexplored. Using a new model to track neutrophil fates, we found short but variable lifetimes across multiple tissues. Through analysis of the receptor, transcriptional, and chromatin accessibility landscapes, we identify varying neutrophil states and assign non-canonical functions, including vascular repair and hematopoietic homeostasis. Accordingly, depletion of neutrophils compromised angiogenesis during early age, genotoxic injury, and viral infection, and impaired hematopoietic recovery after irradiation. Neutrophils acquired these properties in target tissues, a process that, in the lungs, occurred in CXCL12-rich areas and relied on CXCR4. Our results reveal that tissues co-opt neutrophils en route for elimination to induce programs that support their physiological demands.
Collapse
Affiliation(s)
- Iván Ballesteros
- Area of Cell & Developmental Biology, Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid 28029, Spain.
| | - Andrea Rubio-Ponce
- Area of Cell & Developmental Biology, Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid 28029, Spain; Bioinformatics Unit, Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid 28029, Spain
| | - Marco Genua
- Vita-Salute San Raffaele University and San Raffaele-Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Eleonora Lusito
- Vita-Salute San Raffaele University and San Raffaele-Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Immanuel Kwok
- Singapore Immunology Nework (SIgN), A(∗)STAR, Biopolis, Singapore 138648, Singapore
| | - Gabriel Fernández-Calvo
- Department of Mathematics & MOLAB-Mathematical Oncology Laboratory, University of Castilla-La Mancha, Ciudad Real 13001, Spain
| | - Tariq E Khoyratty
- Kennedy Institute of Rheumatology, University of Oxford, OX3 7FY, UK
| | | | - Sara González-Hernández
- Area of Cell & Developmental Biology, Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid 28029, Spain
| | - José Ángel Nicolás-Ávila
- Area of Cell & Developmental Biology, Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid 28029, Spain
| | - Tommaso Vicanolo
- Area of Cell & Developmental Biology, Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid 28029, Spain
| | - Antonio Maccataio
- Area of Cell & Developmental Biology, Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid 28029, Spain
| | - Alberto Benguría
- Genomic Unit, Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid 28029, Spain
| | - Jackson LiangYao Li
- Area of Cell & Developmental Biology, Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid 28029, Spain; Singapore Immunology Nework (SIgN), A(∗)STAR, Biopolis, Singapore 138648, Singapore
| | - José M Adrover
- Area of Cell & Developmental Biology, Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid 28029, Spain
| | - Alejandra Aroca-Crevillen
- Area of Cell & Developmental Biology, Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid 28029, Spain
| | - Juan A Quintana
- Area of Cell & Developmental Biology, Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid 28029, Spain
| | - Sandra Martín-Salamanca
- Area of Cell & Developmental Biology, Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid 28029, Spain
| | - Francisco Mayo
- Area of Cell & Developmental Biology, Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid 28029, Spain
| | - Stefanie Ascher
- Institute for Pharmacy & Biochemistry, Johannes Gutenberg University of Mainz, Johann-Joachim-Becher-Weg 30, Mainz 55128, Germany
| | - Giulia Barbiera
- Vita-Salute San Raffaele University and San Raffaele-Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Oliver Soehnlein
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximillians-Universitat, Munich 80802, Germany
| | - Matthias Gunzer
- Institute for Experimental Immunology and Imaging, University Hospital, University Duisburg-Essen, Essen 445141, Germany
| | - Florent Ginhoux
- Singapore Immunology Nework (SIgN), A(∗)STAR, Biopolis, Singapore 138648, Singapore
| | - Fátima Sánchez-Cabo
- Bioinformatics Unit, Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid 28029, Spain
| | - Estanislao Nistal-Villán
- Microbiology Section, Department Pharmacological and Health Sciences, Facultad de Farmacia, Universidad CEU San Pablo, Madrid 28668, Spain
| | - Christian Schulz
- Medizinische Klinik und Poliklinik I, LMU Klinikum, Ludwig-Maximilians-Universität, Munich 80336, Germany; DZHK (German Centre for Cardiovascular Research), Munich 80802, Germany
| | - Ana Dopazo
- Genomic Unit, Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid 28029, Spain
| | - Christoph Reinhardt
- Center for Thrombosis and Hemostasis Mainz (CTH), University Medical Center Mainz, Johannes Gutenberg University of Mainz, Mainz 55131, Germany
| | - Irina A Udalova
- Kennedy Institute of Rheumatology, University of Oxford, OX3 7FY, UK
| | - Lai Guan Ng
- Singapore Immunology Nework (SIgN), A(∗)STAR, Biopolis, Singapore 138648, Singapore
| | - Renato Ostuni
- Vita-Salute San Raffaele University and San Raffaele-Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Andrés Hidalgo
- Area of Cell & Developmental Biology, Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid 28029, Spain; Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximillians-Universitat, Munich 80802, Germany.
| |
Collapse
|
322
|
Okada R, Yamamoto K, Matsumoto N. DCIR3 and DCIR4 are widely expressed among tissue-resident macrophages with the exception of microglia and alveolar macrophages. Biochem Biophys Rep 2020; 24:100840. [PMID: 33294631 PMCID: PMC7689045 DOI: 10.1016/j.bbrep.2020.100840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 09/11/2020] [Accepted: 10/25/2020] [Indexed: 11/20/2022] Open
Abstract
Dendritic cell inhibitory receptor 3 (DCIR3, Clec4a3) and dendritic cell inhibitory receptor 4 (DCIR4, Clec4a1) are C-type lectin receptors that belong to mouse dendritic cell immunoreceptor (DCIR) family. We recently showed that DCIR3 and DCIR4 are co-expressed on inflammatory and patrolling monocytes. In this study, we investigated the expression of DCIR3 and DCIR4 on tissue-resident macrophages. We found that spleen red pulp macrophages, liver Kupffer cells, large and small peritoneal macrophages and small intestinal macrophages expressed both DCIR3 and DCIR4. By contrast, lung alveolar macrophages expressed DCIR3 but not DCIR4 and brain microglia expressed neither DCIR3 nor DCIR4. Considerable part of tissue-resident macrophages are derived from embryonic precursors. We, therefore, examined the expression of DCIR3 and DCIR4 on the embryonic precursors. Yolk-sac macrophages from embryonic day (E) 8.5 embryos expressed both DCIR3 and DCIR4, while DCIR3 and DCIR4 were expressed on subpopulations of fetal liver monocytes from E14.5 embryos. Our results, together with previous data, indicate that the expression of DCIR3 and DCIR4 is widely shared by mononuclear phagocytes, including monocytes and macrophages, and that the expression of DCIR3 and DCIR4 on the embryonic precursors are not always retained by their progenies, suggesting that expression of DCIR3 and DCIR4 on tissue-resident macrophages might be regulated by environment of the tissues where the embryonic precursors differentiate into macrophages. The majority of tissue-resident macrophages express DCIR3 and DCIR4. Brain microglia lack the expression of DCIR3 and DCIR4. Lung alveolar macrophages express DCIR3 but not DCIR4. Macrophages do not always retain DCIR3/DCIR4 expression on their precursors.
Collapse
Affiliation(s)
- Ryo Okada
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8562, Japan
| | - Kazuo Yamamoto
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8562, Japan
| | - Naoki Matsumoto
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8562, Japan
| |
Collapse
|
323
|
Borst K, Prinz M. Deciphering the heterogeneity of myeloid cells during neuroinflammation in the single-cell era. Brain Pathol 2020; 30:1192-1207. [PMID: 33058309 PMCID: PMC8018048 DOI: 10.1111/bpa.12910] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 08/23/2020] [Accepted: 10/12/2020] [Indexed: 12/13/2022] Open
Abstract
Multiple sclerosis (MS) is a disabling neuroinflammatory disease, which is little understood and lacks a sufficient therapeutic regimen. Myeloid cells have repeatedly shown to play a pivotal role in the disease progression. During homeostasis, only the CNS‐resident microglia and CNS‐associated macrophages are present in the CNS. Neuroinflammation causes peripheral immune cells to infiltrate the CNS contributing to disease progression and neurological sequelae. The differential involvement of the diverse peripheral and resident myeloid cell subsets to the disease pathogenesis and outcome are highly debated and difficult to assess. However, novel technological advances (new mouse models, single‐cell RNA‐Sequencing, and CYTOF) have improved the depth of immune profiling, which allows the characterization of distinct myeloid subsets. This review provides an overview of current knowledge on the phenotypes and roles of these different myeloid subsets in neuroinflammatory disease and their therapeutic relevance.
Collapse
Affiliation(s)
- Katharina Borst
- Institute of Neuropathology, Medical Faculty, University of Freiburg, Freiburg, Germany
| | - Marco Prinz
- Institute of Neuropathology, Medical Faculty, University of Freiburg, Freiburg, Germany.,Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| |
Collapse
|
324
|
Grabert K, Sehgal A, Irvine KM, Wollscheid-Lengeling E, Ozdemir DD, Stables J, Luke GA, Ryan MD, Adamson A, Humphreys NE, Sandrock CJ, Rojo R, Verkasalo VA, Mueller W, Hohenstein P, Pettit AR, Pridans C, Hume DA. A Transgenic Line That Reports CSF1R Protein Expression Provides a Definitive Marker for the Mouse Mononuclear Phagocyte System. THE JOURNAL OF IMMUNOLOGY 2020; 205:3154-3166. [DOI: 10.4049/jimmunol.2000835] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 09/23/2020] [Indexed: 12/12/2022]
|
325
|
Trzebanski S, Jung S. Plasticity of monocyte development and monocyte fates. Immunol Lett 2020; 227:66-78. [PMID: 32814154 DOI: 10.1016/j.imlet.2020.07.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/30/2020] [Accepted: 07/31/2020] [Indexed: 01/01/2023]
Abstract
Monocytes are circulating myeloid immune precursor cells that are generated in the bone marrow. Mature monocytes are released into the circulation and, in case of need, recruited to peripheral sites of inflammation to differentiate into monocyte-derived effector cells. In absence of overt inflammation, monocytes also extravasate into selected tissues, where they complement tissue-resident macrophage compartments. Adjustment of these homeostatic monocyte infiltrates to local environment is critical to maintain health, as best established for the intestine. Defined gene expression changes that differ between gut segments presumably help strike the fine balance between the crucial function of these monocyte-derived macrophages as tissue rheostats and their detrimental hyperactivation. Environmental factors that dictate local monocyte differentiation remain incompletely understood. Definition of the latter could aid our general understanding of in vivo monocyte functions and their relation to inflammatory disorders. In this review, we summarize recent advances in our understanding of monocyte subsets, their differentiation into tissue macrophages, and selected contributions of monocyte-derived cells to steady-state physiology. Moreover, we will discuss emerging evidence for an intriguing bifurcation of monocyte development in the bone marrow and potential functional implications. Emphasis will be given to points of controversies, but we will largely focus on the healthy organism. For a discussion of monocyte and macrophage contributions to inflammatory conditions, we refer the reader to other dedicated reviews.
Collapse
Affiliation(s)
| | - Steffen Jung
- Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
326
|
Xu J, Wang J, Wang X, Tan R, Qi X, Liu Z, Qu H, Pan T, Zhan Q, Zuo Y, Yang W, Liu J. Soluble PD-L1 improved direct ARDS by reducing monocyte-derived macrophages. Cell Death Dis 2020; 11:934. [PMID: 33127884 PMCID: PMC7596316 DOI: 10.1038/s41419-020-03139-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 10/02/2020] [Accepted: 10/13/2020] [Indexed: 12/20/2022]
Abstract
Acute respiratory distress syndrome (ARDS) is common in intensive care units (ICUs), although it is associated with high mortality, no effective pharmacological treatments are currently available. Despite being poorly understood, the role of programmed cell death protein 1 (PD-1) and PD-ligand 1 (PD-L1) axis in ARDS may provide significant insights into the immunosuppressive mechanisms that occur after ARDS. In the present study, we observed that the level of soluble PD-L1 (sPD-L1), a potential activator of the PD-1 pathway, was upregulated in survivors of direct ARDS than in non-survivors. Administration of sPD-L1 in mice with direct ARDS relieved inflammatory lung injury and improved the survival rate, indicating the protective role of sPD-L1 in direct ARDS. Using high-throughput mass cytometry, we found a marked decrease in the number of lung monocyte-derived macrophages (MDMs) with proinflammatory markers, and the protective role of sPD-L1 diminished in ARDS mice with monocyte/macrophage depletion. Furthermore, PD-1 expression increased in the MDMs of patients and mice with direct ARDS. Finally, we showed that sPD-L1 induced MDM apoptosis in patients with direct ARDS. Taken together, our results demonstrated that the engagement of sPD-L1 on PD-1 expressing macrophages resulted in a decrease in pro-inflammatory macrophages and eventually improved direct ARDS. Our study identified a prognostic indicator for patients with direct ARDS and a potential target for therapeutic development in direct ARDS.
Collapse
Affiliation(s)
- Jing Xu
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiahui Wang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoli Wang
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ruoming Tan
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoling Qi
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhaojun Liu
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongping Qu
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tingting Pan
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qingyuan Zhan
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Yong Zuo
- Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Wen Yang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Jialin Liu
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
327
|
Summers KM, Bush SJ, Hume DA. Network analysis of transcriptomic diversity amongst resident tissue macrophages and dendritic cells in the mouse mononuclear phagocyte system. PLoS Biol 2020; 18:e3000859. [PMID: 33031383 PMCID: PMC7575120 DOI: 10.1371/journal.pbio.3000859] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 10/20/2020] [Accepted: 09/08/2020] [Indexed: 02/07/2023] Open
Abstract
The mononuclear phagocyte system (MPS) is a family of cells including progenitors, circulating blood monocytes, resident tissue macrophages, and dendritic cells (DCs) present in every tissue in the body. To test the relationships between markers and transcriptomic diversity in the MPS, we collected from National Center for Biotechnology Information Gene Expression Omnibus (NCBI-GEO) a total of 466 quality RNA sequencing (RNA-seq) data sets generated from mouse MPS cells isolated from bone marrow, blood, and multiple tissues. The primary data were randomly downsized to a depth of 10 million reads and requantified. The resulting data set was clustered using the network analysis tool BioLayout. A sample-to-sample matrix revealed that MPS populations could be separated based upon tissue of origin. Cells identified as classical DC subsets, cDC1s and cDC2s, and lacking Fcgr1 (encoding the protein CD64) were contained within the MPS cluster, no more distinct than other MPS cells. A gene-to-gene correlation matrix identified large generic coexpression clusters associated with MPS maturation and innate immune function. Smaller coexpression gene clusters, including the transcription factors that drive them, showed higher expression within defined isolated cells, including monocytes, macrophages, and DCs isolated from specific tissues. They include a cluster containing Lyve1 that implies a function in endothelial cell (EC) homeostasis, a cluster of transcripts enriched in intestinal macrophages, and a generic lymphoid tissue cDC cluster associated with Ccr7. However, transcripts encoding Adgre1, Itgax, Itgam, Clec9a, Cd163, Mertk, Mrc1, Retnla, and H2-a/e (encoding class II major histocompatibility complex [MHC] proteins) and many other proposed macrophage subset and DC lineage markers each had idiosyncratic expression profiles. Coexpression of immediate early genes (for example, Egr1, Fos, Dusp1) and inflammatory cytokines and chemokines (tumour necrosis factor [Tnf], Il1b, Ccl3/4) indicated that all tissue disaggregation and separation protocols activate MPS cells. Tissue-specific expression clusters indicated that all cell isolation procedures also co-purify other unrelated cell types that may interact with MPS cells in vivo. Comparative analysis of RNA-seq and single-cell RNA-seq (scRNA-seq) data from the same lung cell populations indicated that MPS heterogeneity implied by global cluster analysis may be even greater at a single-cell level. This analysis highlights the power of large data sets to identify the diversity of MPS cellular phenotypes and the limited predictive value of surface markers to define lineages, functions, or subpopulations.
Collapse
Affiliation(s)
- Kim M. Summers
- Mater Research Institute-University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Stephen J. Bush
- Nuffield Department of Clinical Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - David A. Hume
- Mater Research Institute-University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
- * E-mail:
| |
Collapse
|
328
|
Sharma A, Seow JJW, Dutertre CA, Pai R, Blériot C, Mishra A, Wong RMM, Singh GSN, Sudhagar S, Khalilnezhad S, Erdal S, Teo HM, Khalilnezhad A, Chakarov S, Lim TKH, Fui ACY, Chieh AKW, Chung CP, Bonney GK, Goh BKP, Chan JK, Chow PK, Ginhoux F, DasGupta R. Onco-fetal Reprogramming of Endothelial Cells Drives Immunosuppressive Macrophages in Hepatocellular Carcinoma. Cell 2020; 183:377-394.e21. [DOI: 10.1016/j.cell.2020.08.040] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 04/29/2020] [Accepted: 08/21/2020] [Indexed: 12/19/2022]
|
329
|
Kulikauskaite J, Wack A. Teaching Old Dogs New Tricks? The Plasticity of Lung Alveolar Macrophage Subsets. Trends Immunol 2020; 41:864-877. [PMID: 32896485 PMCID: PMC7472979 DOI: 10.1016/j.it.2020.08.008] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 08/07/2020] [Accepted: 08/07/2020] [Indexed: 12/24/2022]
Abstract
Alveolar macrophages (AMs) are highly abundant lung cells with important roles in homeostasis and immunity. Their function influences the outcome of lung infections, lung cancer, and chronic inflammatory disease. Recent findings reveal functional heterogeneity of AMs. Following lung insult, resident AMs can either remain unchanged, acquire new functionality, or be replaced by monocyte-derived AMs. Evidence from mouse models correlates AM function with their embryonic or monocyte origin. We hypothesize that resident AMs are terminally differentiated cells with low responsiveness and limited plasticity, while recruited, monocyte-derived AMs are initially highly immunoreactive but more plastic, able to change their function in response to environmental cues. Understanding cell-intrinsic and -extrinsic mechanisms determining AM function may provide opportunities for intervention in lung disease.
Collapse
Affiliation(s)
| | - Andreas Wack
- Immunoregulation Laboratory, Francis Crick Institute, London, UK.
| |
Collapse
|
330
|
Thion MS, Garel S. Microglial ontogeny, diversity and neurodevelopmental functions. Curr Opin Genet Dev 2020; 65:186-194. [PMID: 32823206 DOI: 10.1016/j.gde.2020.06.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/05/2020] [Accepted: 06/30/2020] [Indexed: 12/29/2022]
Abstract
Microglia are instrumental to the development, function, homeostasis and pathologies of the central nervous system. These brain-resident macrophages arise early in embryogenesis and seed the developing brain, where they differentiate in response to cues provided by their neural niche. Throughout life, microglia regulate the neural tissue through a variety of cellular functions influenced by intrinsic and extrinsic factors. Despite their importance, we are only starting to uncover how microglia colonize the brain, adopt distinct functional states during development and the long-term impact of early alteration of their functions. This review highlights the latest knowledge on the ontogeny of microglia, their developmental trajectory and emerging roles. Characterizing these processes will be critical for our understanding of both brain physiology and pathologies.
Collapse
Affiliation(s)
- Morgane Sonia Thion
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, 75005 Paris, France.
| | - Sonia Garel
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, 75005 Paris, France.
| |
Collapse
|
331
|
Wu K, Lin K, Li X, Yuan X, Xu P, Ni P, Xu D. Redefining Tumor-Associated Macrophage Subpopulations and Functions in the Tumor Microenvironment. Front Immunol 2020; 11:1731. [PMID: 32849616 PMCID: PMC7417513 DOI: 10.3389/fimmu.2020.01731] [Citation(s) in RCA: 377] [Impact Index Per Article: 94.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 06/29/2020] [Indexed: 12/25/2022] Open
Abstract
The immunosuppressive status of the tumor microenvironment (TME) remains poorly defined due to a lack of understanding regarding the function of tumor-associated macrophages (TAMs), which are abundant in the TME. TAMs are crucial drivers of tumor progression, metastasis, and resistance to therapy. Intra- and inter-tumoral spatial heterogeneities are potential keys to understanding the relationships between subpopulations of TAMs and their functions. Antitumor M1-like and pro-tumor M2-like TAMs coexist within tumors, and the opposing effects of these M1/M2 subpopulations on tumors directly impact current strategies to improve antitumor immune responses. Recent studies have found significant differences among monocytes or macrophages from distinct tumors, and other investigations have explored the existence of diverse TAM subsets at the molecular level. In this review, we discuss emerging evidence highlighting the redefinition of TAM subpopulations and functions in the TME and the possibility of separating macrophage subsets with distinct functions into antitumor M1-like and pro-tumor M2-like TAMs during the development of tumors. Such redefinition may relate to the differential cellular origin and monocyte and macrophage plasticity or heterogeneity of TAMs, which all potentially impact macrophage biomarkers and our understanding of how the phenotypes of TAMs are dictated by their ontogeny, activation status, and localization. Therefore, the detailed landscape of TAMs must be deciphered with the integration of new technologies, such as multiplexed immunohistochemistry (mIHC), mass cytometry by time-of-flight (CyTOF), single-cell RNA-seq (scRNA-seq), spatial transcriptomics, and systems biology approaches, for analyses of the TME.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Dakang Xu
- Faculty of Medical Laboratory Science, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
332
|
Chen HR, Sun YY, Chen CW, Kuo YM, Kuan IS, Tiger Li ZR, Short-Miller JC, Smucker MR, Kuan CY. Fate mapping via CCR2-CreER mice reveals monocyte-to-microglia transition in development and neonatal stroke. SCIENCE ADVANCES 2020; 6:eabb2119. [PMID: 32923636 PMCID: PMC7449686 DOI: 10.1126/sciadv.abb2119] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 07/13/2020] [Indexed: 05/12/2023]
Abstract
Whether monocytes contribute to the brain microglial pool in development or after brain injury remains contentious. To address this issue, we generated CCR2-CreER mice to track monocyte derivatives in a tamoxifen-inducible manner. This method labeled Ly6Chi and Ly6Clo monocytes after tamoxifen dosing and detected a surge of perivascular macrophages before blood-brain barrier breakdown in adult stroke. When dosed by tamoxifen at embryonic day 17 (E17), this method captured fetal hematopoietic cells at E18, subdural Ki67+ ameboid cells at postnatal day 2 (P2), and perivascular microglia, leptomeningeal macrophages, and Iba1+Tmem119+P2RY12+ parenchymal microglia in selective brain regions at P24. Furthermore, this fate mapping strategy revealed an acute influx of monocytes after neonatal stroke, which gradually transformed into a ramified morphology and expressed microglial marker genes (Sall1, Tmem119, and P2RY12) for at least 62 days after injury. These results suggest an underappreciated level of monocyte-to-microglia transition in development and after neonatal stroke.
Collapse
Affiliation(s)
- Hong-Ru Chen
- Department of Neuroscience, Center for Brain Immunology and Glia (BIG), University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Yu-Yo Sun
- Department of Neuroscience, Center for Brain Immunology and Glia (BIG), University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Ching-Wen Chen
- Department of Neuroscience, Center for Brain Immunology and Glia (BIG), University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Yi-Min Kuo
- Department of Neuroscience, Center for Brain Immunology and Glia (BIG), University of Virginia School of Medicine, Charlottesville, VA 22908, USA
- Department of Anesthesiology, Taipei Veterans General Hospital and National Yang-Ming University, Taipei, Taiwan
| | - Irena S. Kuan
- Department of Biology, Emory University, Atlanta, GA 30329, USA
| | | | - Jonah C. Short-Miller
- Department of Neuroscience, Center for Brain Immunology and Glia (BIG), University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Marchelle R. Smucker
- Department of Neuroscience, Center for Brain Immunology and Glia (BIG), University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Chia-Yi Kuan
- Department of Neuroscience, Center for Brain Immunology and Glia (BIG), University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| |
Collapse
|
333
|
Gamrekelashvili J, Kapanadze T, Sablotny S, Ratiu C, Dastagir K, Lochner M, Karbach S, Wenzel P, Sitnow A, Fleig S, Sparwasser T, Kalinke U, Holzmann B, Haller H, Limbourg FP. Notch and TLR signaling coordinate monocyte cell fate and inflammation. eLife 2020; 9:57007. [PMID: 32723480 PMCID: PMC7413669 DOI: 10.7554/elife.57007] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 07/28/2020] [Indexed: 12/14/2022] Open
Abstract
Conventional Ly6Chi monocytes have developmental plasticity for a spectrum of differentiated phagocytes. Here we show, using conditional deletion strategies in a mouse model of Toll-like receptor (TLR) 7-induced inflammation, that the spectrum of developmental cell fates of Ly6Chi monocytes, and the resultant inflammation, is coordinately regulated by TLR and Notch signaling. Cell-intrinsic Notch2 and TLR7-Myd88 pathways independently and synergistically promote Ly6Clo patrolling monocyte development from Ly6Chi monocytes under inflammatory conditions, while impairment in either signaling axis impairs Ly6Clo monocyte development. At the same time, TLR7 stimulation in the absence of functional Notch2 signaling promotes resident tissue macrophage gene expression signatures in monocytes in the blood and ectopic differentiation of Ly6Chi monocytes into macrophages and dendritic cells, which infiltrate the spleen and major blood vessels and are accompanied by aberrant systemic inflammation. Thus, Notch2 is a master regulator of Ly6Chi monocyte cell fate and inflammation in response to TLR signaling.
Collapse
Affiliation(s)
- Jaba Gamrekelashvili
- Vascular Medicine Research, Hannover Medical School, Hannover, Germany.,Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - Tamar Kapanadze
- Vascular Medicine Research, Hannover Medical School, Hannover, Germany.,Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - Stefan Sablotny
- Vascular Medicine Research, Hannover Medical School, Hannover, Germany.,Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - Corina Ratiu
- Institut für Kardiovaskuläre Physiologie, Fachbereich Medizin der Goethe-Universität Frankfurt am Main, Frankfurt am Main, Germany
| | - Khaled Dastagir
- Vascular Medicine Research, Hannover Medical School, Hannover, Germany.,Department of Plastic, Aesthetic, Hand and Reconstructive Surgery, Hannover Medical School, Hannover, Germany
| | - Matthias Lochner
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany.,Mucosal Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, Hannover, Germany
| | - Susanne Karbach
- Center for Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.,Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Rhine Main, Mainz, Germany
| | - Philip Wenzel
- Center for Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.,Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Rhine Main, Mainz, Germany
| | - Andre Sitnow
- Vascular Medicine Research, Hannover Medical School, Hannover, Germany.,Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - Susanne Fleig
- Vascular Medicine Research, Hannover Medical School, Hannover, Germany.,Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - Tim Sparwasser
- Department of Medical Microbiology and Hygiene, Medical Center of the Johannes Gutenberg-University of Mainz, Mainz, Germany
| | - Ulrich Kalinke
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research Braunschweig and the Hannover Medical School, Hannover, Germany.,Cluster of Excellence-Resolving Infection Susceptibility (RESIST), Hanover Medical School, Hannover, Germany
| | - Bernhard Holzmann
- Department of Surgery, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
| | - Hermann Haller
- Vascular Medicine Research, Hannover Medical School, Hannover, Germany
| | - Florian P Limbourg
- Vascular Medicine Research, Hannover Medical School, Hannover, Germany.,Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| |
Collapse
|
334
|
Seyfried AN, Maloney JM, MacNamara KC. Macrophages Orchestrate Hematopoietic Programs and Regulate HSC Function During Inflammatory Stress. Front Immunol 2020; 11:1499. [PMID: 32849512 PMCID: PMC7396643 DOI: 10.3389/fimmu.2020.01499] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 06/08/2020] [Indexed: 12/14/2022] Open
Abstract
The bone marrow contains distinct cell types that work in coordination to generate blood and immune cells, and it is the primary residence of hematopoietic stem cells (HSCs) and more committed multipotent progenitors (MPPs). Even at homeostasis the bone marrow is a dynamic environment where billions of cells are generated daily to replenish short-lived immune cells and produce the blood factors and cells essential for hemostasis and oxygenation. In response to injury or infection, the marrow rapidly adapts to produce specific cell types that are in high demand revealing key insight to the inflammatory nature of "demand-adapted" hematopoiesis. Here we focus on the role that resident and monocyte-derived macrophages play in driving these hematopoietic programs and how macrophages impact HSCs and downstream MPPs. Macrophages are exquisite sensors of inflammation and possess the capacity to adapt to the environment, both promoting and restraining inflammation. Thus, macrophages hold great potential for manipulating hematopoietic output and as potential therapeutic targets in a variety of disease states where macrophage dysfunction contributes to or is necessary for disease. We highlight essential features of bone marrow macrophages and discuss open questions regarding macrophage function, their role in orchestrating demand-adapted hematopoiesis, and mechanisms whereby they regulate HSC function.
Collapse
Affiliation(s)
- Allison N Seyfried
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, United States
| | - Jackson M Maloney
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, United States
| | - Katherine C MacNamara
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, United States
| |
Collapse
|
335
|
Diniz AB, Antunes MM, Lacerda VADS, Nakagaki BN, Freitas Lopes MA, Castro-Oliveira HMD, Mattos MS, Mafra K, de Miranda CDM, de Oliveira Costa KM, Lopes ME, Alvarenga DM, Carvalho-Gontijo R, Marchesi SC, Lacerda DR, de Araújo AM, de Carvalho É, David BA, Santos MM, Lima CX, Silva Gomes JA, Minto Fontes Cal TC, de Souza BR, Couto CA, Faria LC, Teixeira Vidigal PV, Matos Ferreira AV, Radhakrishnnan S, Ricci M, Oliveira AG, Rezende RM, Menezes GB. Imaging and immunometabolic phenotyping uncover changes in the hepatic immune response in the early phases of NAFLD. JHEP Rep 2020; 2:100117. [PMID: 32695965 PMCID: PMC7365949 DOI: 10.1016/j.jhepr.2020.100117] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/02/2020] [Accepted: 03/26/2020] [Indexed: 12/25/2022] Open
Abstract
Background & Aims The precise determination of non-alcoholic fatty liver disease (NAFLD) onset is challenging. Thus, the initial hepatic responses to fat accumulation, which may be fundamental to our understanding of NAFLD evolution and clinical outcomes, are largely unknown. Herein, we chronologically mapped the immunologic and metabolic changes in the liver during the early stages of fatty liver disease in mice and compared this with human NAFLD samples. Methods Liver biopsies from patients with NAFLD (NAFLD activity score [NAS] 2–3) were collected for gene expression profiling. Mice received a high-fat diet for short periods to mimic initial steatosis and the hepatic immune response was investigated using a combination of confocal intravital imaging, gene expression, cell isolation, flow cytometry and bone marrow transplantation assays. Results We observed major immunologic changes in patients with NAS 2–3 and in mice in the initial stages of NAFLD. In mice, these changes significantly increased mortality rates upon drug-induced liver injury, as well as predisposing mice to bacterial infections. Moreover, deletion of Toll-like receptor 4 in liver cells dampened tolerogenesis, particularly in Kupffer cells, in the initial stages of dietary insult. Conclusion The hepatic immune system acts as a sentinel for early and minor changes in hepatic lipid content, mounting a biphasic response upon dietary insult. Priming of liver immune cells by gut-derived Toll-like receptor 4 ligands plays an important role in liver tolerance in initial phases, but continuous exposure to insults may lead to damage and reduced ability to control infections. Lay summary Fatty liver is a very common form of hepatic disease, leading to millions of cases of cirrhosis every year. Patients are often asymptomatic until becoming very sick. Therefore, it is important that we expand our knowledge of the early stages of disease pathogenesis, to enable early diagnosis. Herein, we show that even in the early stages of fatty liver disease, there are significant alterations in genes involved in the inflammatory response, suggesting that the hepatic immune system is disturbed even following minor and undetectable changes in liver fat content. This could have implications for the diagnosis and clinical management of fatty liver disease. Hepatic immune response is already altered in liver biopsies from patients with mild NAFLD. We designed a novel mouse model to mimic mild NAFLD, enabling the chronological mapping of liver changes. This revealed an increased mortality rate upon secondary liver damage and a window of increased susceptibility to infection. NAFLD diagnosis may be significantly improved by a more profound investigation of changes in hepatic immunology. These data could guide customized nutritional and therapeutic interventions at different stages of NAFLD.
Collapse
Key Words
- ALT, alanine aminotransferase
- APAP, acetaminophen
- CFUs, colony forming units
- DCs, dendritic cells
- E. coli, Escherichia coli
- HFD, high-fat diet
- ITT, insulin tolerance test
- KCs, Kupffer cells
- NAFLD
- NAFLD, non-alcoholic fatty liver disease
- NAS, NAFLD activity score
- NPCs, non-parenchymal cells
- SD, standard diet
- TLR4, Toll-like receptor 4
- WT, wild-type
- diet
- immune system
- immunity
- in vivo imaging
- liver
- metabolism
- steatosis
Collapse
Affiliation(s)
- Ariane Barros Diniz
- Center for Gastrointestinal Biology, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Maísa Mota Antunes
- Center for Gastrointestinal Biology, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Viviane Aparecida de Souza Lacerda
- Center for Gastrointestinal Biology, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Brenda Naemi Nakagaki
- Center for Gastrointestinal Biology, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Maria Alice Freitas Lopes
- Center for Gastrointestinal Biology, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Hortência Maciel de Castro-Oliveira
- Center for Gastrointestinal Biology, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Matheus Silvério Mattos
- Center for Gastrointestinal Biology, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Kassiana Mafra
- Center for Gastrointestinal Biology, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Camila Dutra Moreira de Miranda
- Center for Gastrointestinal Biology, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Karen Marques de Oliveira Costa
- Center for Gastrointestinal Biology, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Mateus Eustáquio Lopes
- Center for Gastrointestinal Biology, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Débora Moreira Alvarenga
- Center for Gastrointestinal Biology, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | | | - Sarah Cozzer Marchesi
- Center for Gastrointestinal Biology, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | | | - Alan Moreira de Araújo
- Department of Pharmacodynamics, University of Florida, College of Pharmacy, Gainesville, FL, USA
| | - Érika de Carvalho
- Center for Gastrointestinal Biology, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | | | - Mônica Morais Santos
- Laboratório de Morfologia, Departamento de Biologia Animal, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Cristiano Xavier Lima
- Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | | | | | - Bruna Roque de Souza
- Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Cláudia Alves Couto
- Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Luciana Costa Faria
- Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | | | | | | | | | | | - Rafael Machado Rezende
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Gustavo Batista Menezes
- Center for Gastrointestinal Biology, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
- Corresponding author. Address: Center for Gastrointestinal Biology, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antonio Carlos, 6627 - Belo Horizonte, Minas Gerais, 31270-901, Brazil. Tel./fax: +5531 3409 3015.
| |
Collapse
|
336
|
Zernecke A, Winkels H, Cochain C, Williams JW, Wolf D, Soehnlein O, Robbins CS, Monaco C, Park I, McNamara CA, Binder CJ, Cybulsky MI, Scipione CA, Hedrick CC, Galkina EV, Kyaw T, Ghosheh Y, Dinh HQ, Ley K. Meta-Analysis of Leukocyte Diversity in Atherosclerotic Mouse Aortas. Circ Res 2020; 127:402-426. [PMID: 32673538 PMCID: PMC7371244 DOI: 10.1161/circresaha.120.316903] [Citation(s) in RCA: 210] [Impact Index Per Article: 52.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The diverse leukocyte infiltrate in atherosclerotic mouse aortas was recently analyzed in 9 single-cell RNA sequencing and 2 mass cytometry studies. In a comprehensive meta-analysis, we confirm 4 known macrophage subsets-resident, inflammatory, interferon-inducible cell, and Trem2 (triggering receptor expressed on myeloid cells-2) foamy macrophages-and identify a new macrophage subset resembling cavity macrophages. We also find that monocytes, neutrophils, dendritic cells, natural killer cells, innate lymphoid cells-2, and CD (cluster of differentiation)-8 T cells form prominent and separate immune cell populations in atherosclerotic aortas. Many CD4 T cells express IL (interleukin)-17 and the chemokine receptor CXCR (C-X-C chemokine receptor)-6. A small number of regulatory T cells and T helper 1 cells is also identified. Immature and naive T cells are present in both healthy and atherosclerotic aortas. Our meta-analysis overcomes limitations of individual studies that, because of their experimental approach, over- or underrepresent certain cell populations. Mass cytometry studies demonstrate that cell surface phenotype provides valuable information beyond the cell transcriptomes. The present analysis helps resolve some long-standing controversies in the field. First, Trem2+ foamy macrophages are not proinflammatory but interferon-inducible cell and inflammatory macrophages are. Second, about half of all foam cells are smooth muscle cell-derived, retaining smooth muscle cell transcripts rather than transdifferentiating to macrophages. Third, Pf4, which had been considered specific for platelets and megakaryocytes, is also prominently expressed in the main population of resident vascular macrophages. Fourth, a new type of resident macrophage shares transcripts with cavity macrophages. Finally, the discovery of a prominent innate lymphoid cell-2 cluster links the single-cell RNA sequencing work to recent flow cytometry data suggesting a strong atheroprotective role of innate lymphoid cells-2. This resolves apparent discrepancies regarding the role of T helper 2 cells in atherosclerosis based on studies that predated the discovery of innate lymphoid cells-2 cells.
Collapse
Affiliation(s)
- Alma Zernecke
- Institute of Experimental Biomedicine, University Hospital Würzburg, Würzburg, Germany
| | - Holger Winkels
- Heart Center, University Hospital Cologne, Cologne, Germany
- Clinic III for Internal Medicine, Department of Cardiology, University of Cologne, Cologne, Germany
| | - Clément Cochain
- Institute of Experimental Biomedicine, University Hospital Würzburg, Würzburg, Germany
- Comprehensive Heart Failure Center, University Hospital Würzburg, Wüzburg, Germany
| | - Jesse W. Williams
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN USA
- Center for Immunology, University of Minnesota Medical School, Minneapolis, MN USA
| | - Dennis Wolf
- Department of Cardiology and Angiology I, University Heart Center, and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Oliver Soehnlein
- Institute for Cardiovascular Prevention (IPEK), Klinikum LMU Munich, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
- Department of Physiology and Pharmacology (FyFa), Karolinska Institute, Stockholm, Sweden
| | - Clint S. Robbins
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S1A1, Canada
- Department of Immunology, University of Toronto, Toronto, ON M5S1A1, Canada
- Toronto General Research Institute, University Health Network, Toronto, ON, Canada
- Peter Munk Cardiac Centre, Toronto, ON M5G1L7, Canada
| | - Claudia Monaco
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford OX3 7FY, UK
| | - Inhye Park
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford OX3 7FY, UK
| | - Coleen A. McNamara
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, USA
- Division of Cardioascular Medicine, University of Virginia School of Medicine, Charlottesville, USA
| | - Christoph J. Binder
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Myron I. Cybulsky
- Toronto General Research Institute, University Health Network, and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Corey A. Scipione
- Toronto General Research Institute, University Health Network, and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | | | - Elena V. Galkina
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, 700 West Olney Road, Norfolk, VA USA
| | - Tin Kyaw
- Vascular Biology and Atherosclerosis Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Centre for Inflammatory Diseases, Department of Medicine, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia
| | | | - Huy Q. Dinh
- La Jolla Institute for Immunology, La Jolla, CA USA
| | - Klaus Ley
- La Jolla Institute for Immunology, La Jolla, CA USA
- Department of Bioengineering, University of California San Diego, CA, USA
| |
Collapse
|
337
|
Belz GT, Denman R, Seillet C, Jacquelot N. Tissue-resident lymphocytes: weaponized sentinels at barrier surfaces. F1000Res 2020; 9. [PMID: 32695313 PMCID: PMC7348522 DOI: 10.12688/f1000research.25234.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/03/2020] [Indexed: 12/14/2022] Open
Abstract
Tissue-resident immune cells stably localize in tissues largely independent of the circulatory system. While initial studies have focused on the recognition of CD8
+ tissue-resident memory T (CD8 T
RM) cells, it is now clear that numerous cell types such as CD4
+ T cells, gd T cells, innate lymphoid cells and mucosal-associated invariant T (MAIT) cells form stable populations in tissues. They are enriched at the barrier surfaces and within non-lymphoid compartments. They provide an extensive immune network capable of sensing local perturbations of the body’s homeostasis. This positioning enables immune cells to positively influence immune protection against infection and cancer but paradoxically also augment autoimmunity, allergy and chronic inflammatory diseases. Here, we highlight the recent studies across multiple lymphoid immune cell types that have emerged on this research topic and extend our understanding of this important cellular network. In addition, we highlight the areas that remain gaps in our knowledge of the regulation of these cells and how a deeper understanding may result in new ways to ‘target’ these cells to influence disease outcome and treatments.
Collapse
Affiliation(s)
- Gabrielle T Belz
- The University of Queensland, Diamantina Institute, Brisbane, Queensland, 4102, Australia.,Walter and Eliza Hall Institute of Medical Research, Parkville, Melbourne, Victoria, 3052, Australia.,Department of Medical Biology, The University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Renae Denman
- The University of Queensland, Diamantina Institute, Brisbane, Queensland, 4102, Australia
| | - Cyril Seillet
- Walter and Eliza Hall Institute of Medical Research, Parkville, Melbourne, Victoria, 3052, Australia.,Department of Medical Biology, The University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Nicolas Jacquelot
- Walter and Eliza Hall Institute of Medical Research, Parkville, Melbourne, Victoria, 3052, Australia.,Department of Medical Biology, The University of Melbourne, Melbourne, Victoria, 3010, Australia
| |
Collapse
|
338
|
Gažová I, Lefevre L, Bush SJ, Clohisey S, Arner E, de Hoon M, Severin J, van Duin L, Andersson R, Lengeling A, Hume DA, Summers KM. The Transcriptional Network That Controls Growth Arrest and Macrophage Differentiation in the Human Myeloid Leukemia Cell Line THP-1. Front Cell Dev Biol 2020; 8:498. [PMID: 32719792 PMCID: PMC7347797 DOI: 10.3389/fcell.2020.00498] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 05/25/2020] [Indexed: 12/12/2022] Open
Abstract
The response of the human acute myeloid leukemia cell line THP-1 to phorbol esters has been widely studied to test candidate leukemia therapies and as a model of cell cycle arrest and monocyte-macrophage differentiation. Here we have employed Cap Analysis of Gene Expression (CAGE) to analyze a dense time course of transcriptional regulation in THP-1 cells treated with phorbol myristate acetate (PMA) over 96 h. PMA treatment greatly reduced the numbers of cells entering S phase and also blocked cells exiting G2/M. The PMA-treated cells became adherent and expression of mature macrophage-specific genes increased progressively over the duration of the time course. Within 1–2 h PMA induced known targets of tumor protein p53 (TP53), notably CDKN1A, followed by gradual down-regulation of cell-cycle associated genes. Also within the first 2 h, PMA induced immediate early genes including transcription factor genes encoding proteins implicated in macrophage differentiation (EGR2, JUN, MAFB) and down-regulated genes for transcription factors involved in immature myeloid cell proliferation (MYB, IRF8, GFI1). The dense time course revealed that the response to PMA was not linear and progressive. Rather, network-based clustering of the time course data highlighted a sequential cascade of transient up- and down-regulated expression of genes encoding feedback regulators, as well as transcription factors associated with macrophage differentiation and their inferred target genes. CAGE also identified known and candidate novel enhancers expressed in THP-1 cells and many novel inducible genes that currently lack functional annotation and/or had no previously known function in macrophages. The time course is available on the ZENBU platform allowing comparison to FANTOM4 and FANTOM5 data.
Collapse
Affiliation(s)
- Iveta Gažová
- The Roslin Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Lucas Lefevre
- The Roslin Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Stephen J Bush
- The Roslin Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Sara Clohisey
- The Roslin Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Erik Arner
- RIKEN Center for Integrative Medical Sciences, Kanagawa, Yokohama, Japan
| | - Michiel de Hoon
- RIKEN Center for Integrative Medical Sciences, Kanagawa, Yokohama, Japan
| | - Jessica Severin
- RIKEN Center for Integrative Medical Sciences, Kanagawa, Yokohama, Japan
| | - Lucas van Duin
- Bioinformatics Centre, University of Copenhagen, Copenhagen, Denmark
| | - Robin Andersson
- Bioinformatics Centre, University of Copenhagen, Copenhagen, Denmark
| | | | - David A Hume
- Mater Research Institute - University of Queensland, Translational Research Institute, Brisbane, QLD, Australia
| | - Kim M Summers
- The Roslin Institute, The University of Edinburgh, Edinburgh, United Kingdom.,Mater Research Institute - University of Queensland, Translational Research Institute, Brisbane, QLD, Australia
| |
Collapse
|
339
|
Finlay CM, Allen JE. The immune response of inbred laboratory mice to Litomosoides sigmodontis: A route to discovery in myeloid cell biology. Parasite Immunol 2020; 42:e12708. [PMID: 32145033 PMCID: PMC7317388 DOI: 10.1111/pim.12708] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 02/12/2020] [Accepted: 02/24/2020] [Indexed: 12/11/2022]
Abstract
Litomosoides sigmodontis is the only filarial nematode where the full life cycle, from larval delivery to the skin through to circulating microfilaria, can be completed in immunocompetent laboratory mice. It is thus an invaluable tool for the study of filariasis. It has been used for the study of novel anti-helminthic therapeutics, the development of vaccines against filariasis, the development of immunomodulatory drugs for the treatment of inflammatory disease and the study of basic immune responses to filarial nematodes. This review will focus on the latter and aims to summarize how the L sigmodontis model has advanced our basic understanding of immune responses to helminths, led to major discoveries in macrophage biology and provided new insights into the immunological functions of the pleural cavity. Finally, and most importantly L sigmodontis represents a suitable platform to study how host genotype affects immune responses, with the potential for further discovery in myeloid cell biology and beyond.
Collapse
Affiliation(s)
- Conor M Finlay
- Lydia Becker Institute for Immunology & Infection, Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Judith E Allen
- Lydia Becker Institute for Immunology & Infection, Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| |
Collapse
|
340
|
Lohrmann F, Forde AJ, Merck P, Henneke P. Control of myeloid cell density in barrier tissues. FEBS J 2020; 288:405-426. [PMID: 32502309 DOI: 10.1111/febs.15436] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 04/21/2020] [Accepted: 06/01/2020] [Indexed: 12/19/2022]
Abstract
The interface between the mammalian host and its environment is formed by barrier tissues, for example, of the skin, and the respiratory and the intestinal tracts. On the one hand, barrier tissues are colonized by site-adapted microbial communities, and on the other hand, they contain specific myeloid cell networks comprising macrophages, dendritic cells, and granulocytes. These immune cells are tightly regulated in function and cell number, indicating important roles in maintaining tissue homeostasis and immune balance in the presence of commensal microorganisms. The regulation of myeloid cell density and activation involves cell-autonomous 'single-loop circuits' including autocrine mechanisms. However, an array of microenvironmental factors originating from nonimmune cells and the microbiota, as well as the microanatomical structure, impose additional layers of regulation onto resident myeloid cells. This review discusses models integrating these factors into cell-specific programs to instruct differentiation and proliferation best suited for the maintenance and renewal of immune homeostasis in the tissue-specific environment.
Collapse
Affiliation(s)
- Florens Lohrmann
- Department of Pediatrics and Adolescent Medicine, Faculty of Medicine, Medical Center - University of Freiburg, Germany.,Institute for Immunodeficiency (IFI), Faculty of Medicine, Center for Chronic Immunodeficiency, Medical Center, University of Freiburg, Germany.,Spemann Graduate School for Biology and Medicine, University of Freiburg, Germany.,IMM-PACT Clinician Scientist Program, Faculty of Medicine, University of Freiburg, Germany
| | - Aaron J Forde
- Institute for Immunodeficiency (IFI), Faculty of Medicine, Center for Chronic Immunodeficiency, Medical Center, University of Freiburg, Germany.,Faculty of Biology, university of Freiburg, Germany
| | - Philipp Merck
- Institute for Immunodeficiency (IFI), Faculty of Medicine, Center for Chronic Immunodeficiency, Medical Center, University of Freiburg, Germany
| | - Philipp Henneke
- Department of Pediatrics and Adolescent Medicine, Faculty of Medicine, Medical Center - University of Freiburg, Germany.,Institute for Immunodeficiency (IFI), Faculty of Medicine, Center for Chronic Immunodeficiency, Medical Center, University of Freiburg, Germany
| |
Collapse
|
341
|
Bsat M, Chapuy L, Rubio M, Sarfati M. A two-step human culture system replicates intestinal monocyte maturation cascade: Conversion of tissue-like inflammatory monocytes into macrophages. Eur J Immunol 2020; 50:1676-1690. [PMID: 32557554 DOI: 10.1002/eji.202048555] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 05/05/2020] [Accepted: 06/17/2020] [Indexed: 12/14/2022]
Abstract
Monocyte maturation program into macrophages (MΦ) is well defined in murine gut under homeostatic or inflammatory conditions. Obviously, in vivo tracking of monocytes in inflamed tissues remains difficult in humans. Furthermore, in vitro models fall short in generating the surrogates of transient extravasated tissue inflammatory monocytes. Here, we aimed to unravel environmental cues that replicated the human monocyte "waterfall" process in vitro by first, generating tissue-like inflammatory monocytes, which were then shifted toward MΦ. Purified CD14+ CD16- monocytes, cultured with granulocyte-macrophage colony-stimulating factor (GM-CSF), IFN-γ and IL23, differentiated into CD14+ CD163- cells that displayed a monocyte-like morphology. In vitro generated inflammatory CD14+ CD163- (inflammatory monocyte-like cells) cells promoted IL-1β-dependent memory Th17 and Th17/Th1 responses, like the CD14+ CD163- mo-like cells that accumulate in inflamed colon of Crohn's disease patients. Next, in vitro generated inflammatory monocyte-like cells converted to functional CD163+ MΦ following exposure to TGF-β and IL10. Gene set enrichment analysis further revealed a shared molecular signature between converted CD163+ MΦ and MΦ detected in various inflamed nonlymphoid and lymphoid diseased tissues. Our findings propose a two-step in vitro culture that recapitulates human monocyte maturation cascade in inflamed tissue. Manipulation of this process might open therapeutic avenues for chronic inflammatory disorders.
Collapse
Affiliation(s)
- Marwa Bsat
- Immunoregulation Laboratory, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada
| | - Laurence Chapuy
- Immunoregulation Laboratory, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada
| | - Manuel Rubio
- Immunoregulation Laboratory, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada
| | - Marika Sarfati
- Immunoregulation Laboratory, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada
| |
Collapse
|
342
|
Naik SH. Dendritic cell development at a clonal level within a revised 'continuous' model of haematopoiesis. Mol Immunol 2020; 124:190-197. [PMID: 32593782 DOI: 10.1016/j.molimm.2020.06.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/15/2020] [Accepted: 06/11/2020] [Indexed: 12/17/2022]
Abstract
Understanding development of the dendritic cell (DC) subtypes continues to evolve. The origin and relationship of conventional DC type 1 (cDC1), cDC type 2 (cDC2) and plasmacytoid DCs (pDCs) to each other, and in relation to classic myeloid and lymphoid cells, has had a long and controversial history and is still not fully resolved. This review summarises the technological developments and findings that have been achieved at a clonal level, and how that has enhanced our knowledge of the process. It summarises the single cell lineage tracing technologies that have emerged, their application in in vitro and in vivo studies, in both mouse and human settings, and places the findings in a wider context of understanding haematopoiesis at a single cell or clonal level. In particular, it addresses the fate heterogeneity observed in many phenotypically defined progenitor subsets and how these findings have led to a departure from the classic ball-and-stick models of haematopoiesis to the emerging continuous model. Prior contradictions in DC development may be reconciled if they are framed within this revised model, where commitment to a lineage or cell type does not occur in an all-or-nothing process in defined progenitors but rather can occur at many stages of haematopoiesis in a dynamic process.
Collapse
Affiliation(s)
- Shalin H Naik
- Immunology Division, The Walter & Eliza Hall Institute of Medical Research, Parkville, Australia; The Department of Medical Biology, The University of Melbourne, Parkville, Australia.
| |
Collapse
|
343
|
Kwok I, Becht E, Xia Y, Ng M, Teh YC, Tan L, Evrard M, Li JLY, Tran HTN, Tan Y, Liu D, Mishra A, Liong KH, Leong K, Zhang Y, Olsson A, Mantri CK, Shyamsunder P, Liu Z, Piot C, Dutertre CA, Cheng H, Bari S, Ang N, Biswas SK, Koeffler HP, Tey HL, Larbi A, Su IH, Lee B, St John A, Chan JKY, Hwang WYK, Chen J, Salomonis N, Chong SZ, Grimes HL, Liu B, Hidalgo A, Newell EW, Cheng T, Ginhoux F, Ng LG. Combinatorial Single-Cell Analyses of Granulocyte-Monocyte Progenitor Heterogeneity Reveals an Early Uni-potent Neutrophil Progenitor. Immunity 2020; 53:303-318.e5. [PMID: 32579887 DOI: 10.1016/j.immuni.2020.06.005] [Citation(s) in RCA: 146] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 04/14/2020] [Accepted: 06/02/2020] [Indexed: 02/07/2023]
Abstract
Granulocyte-monocyte progenitors (GMPs) have been previously defined for their potential to generate various myeloid progenies such as neutrophils and monocytes. Although studies have proposed lineage heterogeneity within GMPs, it is unclear if committed progenitors already exist among these progenitors and how they may behave differently during inflammation. By combining single-cell transcriptomic and proteomic analyses, we identified the early committed progenitor within the GMPs responsible for the strict production of neutrophils, which we designate as proNeu1. Our dissection of the GMP hierarchy led us to further identify a previously unknown intermediate proNeu2 population. Similar populations could be detected in human samples. proNeu1s, but not proNeu2s, selectively expanded during the early phase of sepsis at the expense of monocytes. Collectively, our findings help shape the neutrophil maturation trajectory roadmap and challenge the current definition of GMPs.
Collapse
Affiliation(s)
- Immanuel Kwok
- Singapore Immunology Network (SIgN), A∗STAR (Agency for Science, Technology and Research), Biopolis, Singapore 138648, Singapore; School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore.
| | - Etienne Becht
- Singapore Immunology Network (SIgN), A∗STAR (Agency for Science, Technology and Research), Biopolis, Singapore 138648, Singapore
| | - Yu Xia
- Singapore Immunology Network (SIgN), A∗STAR (Agency for Science, Technology and Research), Biopolis, Singapore 138648, Singapore; Zhiyuan College, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Melissa Ng
- Singapore Immunology Network (SIgN), A∗STAR (Agency for Science, Technology and Research), Biopolis, Singapore 138648, Singapore
| | - Ye Chean Teh
- Singapore Immunology Network (SIgN), A∗STAR (Agency for Science, Technology and Research), Biopolis, Singapore 138648, Singapore; Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117558, Singapore
| | - Leonard Tan
- Singapore Immunology Network (SIgN), A∗STAR (Agency for Science, Technology and Research), Biopolis, Singapore 138648, Singapore; Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore
| | - Maximilien Evrard
- Singapore Immunology Network (SIgN), A∗STAR (Agency for Science, Technology and Research), Biopolis, Singapore 138648, Singapore
| | - Jackson L Y Li
- Singapore Immunology Network (SIgN), A∗STAR (Agency for Science, Technology and Research), Biopolis, Singapore 138648, Singapore
| | - Hoa T N Tran
- Singapore Immunology Network (SIgN), A∗STAR (Agency for Science, Technology and Research), Biopolis, Singapore 138648, Singapore
| | - Yingrou Tan
- Singapore Immunology Network (SIgN), A∗STAR (Agency for Science, Technology and Research), Biopolis, Singapore 138648, Singapore; National Skin Centre, 1 Mandalay Road, Singapore 308205, Singapore
| | - Dehua Liu
- Singapore Immunology Network (SIgN), A∗STAR (Agency for Science, Technology and Research), Biopolis, Singapore 138648, Singapore
| | - Archita Mishra
- Singapore Immunology Network (SIgN), A∗STAR (Agency for Science, Technology and Research), Biopolis, Singapore 138648, Singapore
| | - Ka Hang Liong
- Singapore Immunology Network (SIgN), A∗STAR (Agency for Science, Technology and Research), Biopolis, Singapore 138648, Singapore
| | - Keith Leong
- Singapore Immunology Network (SIgN), A∗STAR (Agency for Science, Technology and Research), Biopolis, Singapore 138648, Singapore
| | - Yuning Zhang
- Singapore Immunology Network (SIgN), A∗STAR (Agency for Science, Technology and Research), Biopolis, Singapore 138648, Singapore
| | - Andre Olsson
- Division of Immunobiology and Center for Systems Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Chinmay Kumar Mantri
- Program in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore 169857, Singapore
| | - Pavithra Shyamsunder
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore; Cancer & Stem Cell Biology, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Zhaoyuan Liu
- Shanghai Institute of Immunology, Shanghai JiaoTong University School of Medicine, Shanghai 200025, China
| | - Cecile Piot
- Singapore Immunology Network (SIgN), A∗STAR (Agency for Science, Technology and Research), Biopolis, Singapore 138648, Singapore
| | - Charles-Antoine Dutertre
- Singapore Immunology Network (SIgN), A∗STAR (Agency for Science, Technology and Research), Biopolis, Singapore 138648, Singapore
| | - Hui Cheng
- State Key Laboratory of Experimental Hematology, Institute of Hematology, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China; Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin 300020, China; Department of Stem Cell and Regenerative Medicine, Peking Union Medical College, Tianjin 300020, China
| | - Sudipto Bari
- Cancer & Stem Cell Biology, Duke-NUS Medical School, Singapore 169857, Singapore; National Cancer Centre Singapore, Singapore 169610, Singapore
| | - Nicholas Ang
- Singapore Immunology Network (SIgN), A∗STAR (Agency for Science, Technology and Research), Biopolis, Singapore 138648, Singapore
| | - Subhra K Biswas
- Singapore Immunology Network (SIgN), A∗STAR (Agency for Science, Technology and Research), Biopolis, Singapore 138648, Singapore
| | - H Philip Koeffler
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore; Cedars-Sinai Medical Center, Division of Hematology/Oncology, UCLA School of Medicine, Los Angeles, CA 90048, USA; Department of Hematology-Oncology, National University Cancer Institute of Singapore, National University Hospital, Singapore 119074, Singapore
| | - Hong Liang Tey
- National Skin Centre, 1 Mandalay Road, Singapore 308205, Singapore
| | - Anis Larbi
- Singapore Immunology Network (SIgN), A∗STAR (Agency for Science, Technology and Research), Biopolis, Singapore 138648, Singapore
| | - I-Hsin Su
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Bernett Lee
- Singapore Immunology Network (SIgN), A∗STAR (Agency for Science, Technology and Research), Biopolis, Singapore 138648, Singapore
| | - Ashley St John
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore; Program in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore 169857, Singapore; Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA; SingHealth Duke-National University of Singapore Global Health Institute, Singapore 168753, Singapore
| | - Jerry K Y Chan
- Department of Reproductive Medicine, KK Women's and Children's Hospital, Singapore 229899, Singapore; Experimental Fetal Medicine Group, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - William Y K Hwang
- Cancer & Stem Cell Biology, Duke-NUS Medical School, Singapore 169857, Singapore; National Cancer Centre Singapore, Singapore 169610, Singapore; Department of Hematology, Singapore General Hospital, Singapore 169608, Singapore
| | - Jinmiao Chen
- Singapore Immunology Network (SIgN), A∗STAR (Agency for Science, Technology and Research), Biopolis, Singapore 138648, Singapore
| | - Nathan Salomonis
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Shu Zhen Chong
- Singapore Immunology Network (SIgN), A∗STAR (Agency for Science, Technology and Research), Biopolis, Singapore 138648, Singapore
| | - H Leighton Grimes
- Division of Immunobiology and Center for Systems Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Bing Liu
- State Key Laboratory of Experimental Hematology, Institute of Hematology, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing 100071, China; State Key Laboratory of Experimental Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing 100071, China; Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Andrés Hidalgo
- Area of Cell & Developmental Biology, Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid 28029, Spain
| | - Evan W Newell
- Singapore Immunology Network (SIgN), A∗STAR (Agency for Science, Technology and Research), Biopolis, Singapore 138648, Singapore
| | - Tao Cheng
- State Key Laboratory of Experimental Hematology, Institute of Hematology, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China; Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin 300020, China; Department of Stem Cell and Regenerative Medicine, Peking Union Medical College, Tianjin 300020, China
| | - Florent Ginhoux
- Singapore Immunology Network (SIgN), A∗STAR (Agency for Science, Technology and Research), Biopolis, Singapore 138648, Singapore; Shanghai Institute of Immunology, Shanghai JiaoTong University School of Medicine, Shanghai 200025, China; Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore 169856, Singapore
| | - Lai Guan Ng
- Singapore Immunology Network (SIgN), A∗STAR (Agency for Science, Technology and Research), Biopolis, Singapore 138648, Singapore; School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore; Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore; State Key Laboratory of Experimental Hematology, Institute of Hematology, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; National Cancer Centre Singapore, Singapore 169610, Singapore.
| |
Collapse
|
344
|
Branchett WJ, O'Garra A, Lloyd CM. Transcriptomic analysis reveals diverse gene expression changes in airway macrophages during experimental allergic airway disease. Wellcome Open Res 2020; 5:101. [PMID: 32587903 PMCID: PMC7309452 DOI: 10.12688/wellcomeopenres.15875.2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2020] [Indexed: 12/26/2022] Open
Abstract
Background: Airway macrophages (AMs) are the most abundant leukocytes in the healthy airway lumen and have a highly specialised but plastic phenotype that is governed by signals in the local microenvironment. AMs are thought to maintain immunological homeostasis in the steady state, but have also been implicated in the pathogenesis of allergic airway disease (AAD). In this study, we aimed to better understand these potentially contrasting AM functions using transcriptomic analysis. Methods: Bulk RNA sequencing was performed on AMs (CD11c + Siglec F + CD64 + CD45 + SSC hi) flow cytometry sorted from C57BL/6 mice during experimental AAD driven by repeated house dust mite inhalation (AMs HDM), compared to control AMs from non-allergic mice. Differentially expressed genes were further analysed by hierarchical clustering and biological pathway analysis. Results: AMs HDM showed increased expression of genes associated with antigen presentation, inflammatory cell recruitment and tissue repair, including several chemokine and matrix metalloproteinase genes. This was accompanied by increased expression of mitochondrial electron transport chain subunit genes and the retinoic acid biosynthetic enzyme gene Raldh2. Conversely, AMs HDM displayed decreased expression of a number of cell cycle genes, genes related to cytoskeletal functions and a subset of genes implicated in antimicrobial innate immunity, such as Tlr5, Il18 and Tnf. Differential gene expression in AMs HDM was consistent with upstream effects of the cytokines IL-4 and IFN-γ, both of which were present at increased concentrations in lung tissue after HDM treatment. Conclusions: These data highlight diverse gene expression changes in the total AM population in a clinically relevant mouse model of AAD, collectively suggestive of contributions to inflammation and tissue repair/remodelling, but with decreases in certain steady state cellular and immunological functions.
Collapse
Affiliation(s)
- William J. Branchett
- National Heart and Lung Institute, Imperial College London, London, SW7 2AZ, UK
- Asthma UK Centre in Allergic Mechanisms of Asthma, Imperial College London, London, W2 1NY, UK
| | - Anne O'Garra
- National Heart and Lung Institute, Imperial College London, London, SW7 2AZ, UK
- Laboratory of Immunoregulation and Infection, The Francis Crick Institute, London, NW1 1AT, UK
| | - Clare M. Lloyd
- National Heart and Lung Institute, Imperial College London, London, SW7 2AZ, UK
- Asthma UK Centre in Allergic Mechanisms of Asthma, Imperial College London, London, W2 1NY, UK
| |
Collapse
|
345
|
Bain CC, Gibson DA, Steers NJ, Boufea K, Louwe PA, Doherty C, González-Huici V, Gentek R, Magalhaes-Pinto M, Shaw T, Bajénoff M, Bénézech C, Walmsley SR, Dockrell DH, Saunders PTK, Batada NN, Jenkins SJ. Rate of replenishment and microenvironment contribute to the sexually dimorphic phenotype and function of peritoneal macrophages. Sci Immunol 2020; 5:eabc4466. [PMID: 32561560 PMCID: PMC7610697 DOI: 10.1126/sciimmunol.abc4466] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 05/27/2020] [Indexed: 12/12/2022]
Abstract
Macrophages reside in the body cavities where they maintain serosal homeostasis and provide immune surveillance. Peritoneal macrophages are implicated in the etiology of pathologies including peritonitis, endometriosis, and metastatic cancer; thus, understanding the factors that govern their behavior is vital. Using a combination of fate mapping techniques, we have investigated the impact of sex and age on murine peritoneal macrophage differentiation, turnover, and function. We demonstrate that the sexually dimorphic replenishment of peritoneal macrophages from the bone marrow, which is high in males and very low in females, is driven by changes in the local microenvironment that arise upon sexual maturation. Population and single-cell RNA sequencing revealed marked dimorphisms in gene expression between male and female peritoneal macrophages that was, in part, explained by differences in composition of these populations. By estimating the time of residency of different subsets within the cavity and assessing development of dimorphisms with age and in monocytopenic Ccr2 -/- mice, we demonstrate that key sex-dependent features of peritoneal macrophages are a function of the differential rate of replenishment from the bone marrow, whereas others are reliant on local microenvironment signals. We demonstrate that the dimorphic turnover of peritoneal macrophages contributes to differences in the ability to protect against pneumococcal peritonitis between the sexes. These data highlight the importance of considering both sex and age in susceptibility to inflammatory and infectious diseases.
Collapse
Affiliation(s)
- C C Bain
- University of Edinburgh Centre for Inflammation Research, Queens Medical Research Institute, Edinburgh EH16 4TJ, UK.
| | - D A Gibson
- University of Edinburgh Centre for Inflammation Research, Queens Medical Research Institute, Edinburgh EH16 4TJ, UK
| | - N J Steers
- Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA
| | - K Boufea
- Institute for Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - P A Louwe
- University of Edinburgh Centre for Inflammation Research, Queens Medical Research Institute, Edinburgh EH16 4TJ, UK
| | - C Doherty
- University of Edinburgh Centre for Inflammation Research, Queens Medical Research Institute, Edinburgh EH16 4TJ, UK
| | - V González-Huici
- Institute for Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - R Gentek
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université UM2, INSERM, U1104, CNRS UMR7280, 13288 Marseille, France
| | - M Magalhaes-Pinto
- Lydia Becker Institute for Immunology and Infection, Faculty of Biology, Medicine and Health, Division of Infection, Immunity and Respiratory Medicine, University of Manchester, Manchester, UK
| | - T Shaw
- Lydia Becker Institute for Immunology and Infection, Faculty of Biology, Medicine and Health, Division of Infection, Immunity and Respiratory Medicine, University of Manchester, Manchester, UK
- Manchester Collaborative Centre for Inflammation Research (MCCIR), University of Manchester, Manchester, UK
| | - M Bajénoff
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université UM2, INSERM, U1104, CNRS UMR7280, 13288 Marseille, France
| | - C Bénézech
- Centre for Cardiovascular Sciences, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - S R Walmsley
- University of Edinburgh Centre for Inflammation Research, Queens Medical Research Institute, Edinburgh EH16 4TJ, UK
| | - D H Dockrell
- University of Edinburgh Centre for Inflammation Research, Queens Medical Research Institute, Edinburgh EH16 4TJ, UK
| | - P T K Saunders
- University of Edinburgh Centre for Inflammation Research, Queens Medical Research Institute, Edinburgh EH16 4TJ, UK
| | - N N Batada
- Institute for Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - S J Jenkins
- University of Edinburgh Centre for Inflammation Research, Queens Medical Research Institute, Edinburgh EH16 4TJ, UK.
| |
Collapse
|
346
|
Liu Z, Gu Y, Shin A, Zhang S, Ginhoux F. Analysis of Myeloid Cells in Mouse Tissues with Flow Cytometry. STAR Protoc 2020; 1:100029. [PMID: 33111080 PMCID: PMC7580097 DOI: 10.1016/j.xpro.2020.100029] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Myeloid cells, including dendritic cells (DCs), granulocytes, monocytes, monocyte-derived cells and macrophages, are important players in the immune response, but their identification is not as clear as lymphocytes, especially in tissues. This protocol details the step-by-step procedure for the analysis of myeloid populations in various mouse tissues by flow cytometry. For complete details on the use and execution of this protocol, please refer to Liu et al. (2019). Preparation of single-cell suspension from mouse tissues Analysis of tissue-resident macrophages in mouse tissues Gating strategy for myeloid cells in mouse organs
Collapse
Affiliation(s)
- Zhaoyuan Liu
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yaqi Gu
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Amanda Shin
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Shuangyan Zhang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Florent Ginhoux
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.,Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138648, Singapore.,Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
| |
Collapse
|
347
|
Nutt SL, Chopin M. Transcriptional Networks Driving Dendritic Cell Differentiation and Function. Immunity 2020; 52:942-956. [DOI: 10.1016/j.immuni.2020.05.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/23/2020] [Accepted: 05/15/2020] [Indexed: 12/13/2022]
|
348
|
Sztwiertnia I, Schenz J, Bomans K, Schaack D, Ohnesorge J, Tamulyte S, Weigand MA, Uhle F. Sevoflurane depletes macrophages from the melanoma microenvironment. PLoS One 2020; 15:e0233789. [PMID: 32470095 PMCID: PMC7259700 DOI: 10.1371/journal.pone.0233789] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 05/12/2020] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND With more than 18 million annual new cases, cancer belongs to the major challenges of modern healthcare. Surgical resection of solid tumours under general anaesthesia is the prime therapy. Different aspects of anaesthesia are under discussion to independently influence the long-term outcome of cancer patients. Most recently, the commonly used volatile anaesthetics like sevoflurane have entered the spotlight, as retrospective studies suggest a detrimental outcome in certain cancer aetiologies with sparse mechanistic understanding. Our objective was to investigate this concept in a murine melanoma model, herein comparing the consequence of inhalative and injection anesthesia on tumour composition and growth. METHODS We used a murine model of malignant melanoma in male, adult C57BL/6 mice (n = 92), induced by the subcutaneous injection of B16-F10 cells. We either exposed the melanoma cells to sevoflurane before implantation or subjected the animals to single or double anaesthesia with either volatile or injection drugs. After a maximum follow-up of 4 weeks, leucocytes within the tumour microenvironment (TME) were comprehensively analysed by flow cytometry with focus on tumor-associated macrophages (TAM). RESULTS We found that exposure of melanoma cells to sevoflurane before implantation induced long-lasting transcriptome changes and aggravated tumour growth, without extensive changes of the TME. Contrastingly, both a single and double anaesthesia with sevoflurane led to a significant reduction of TAMs (injection vs. sevoflurane: 2,0 vs. 0.3% and 1.2 vs. 0.6%, respectively), whilst increasing PD-L1 expression on the remaining cells (mean fluorescent intensity injection vs. sevoflurane: 3,804 vs. 7,143 and 9,090 vs. 32,228, respectively). No changes in tumour growth were observed in these groups. CONCLUSION In sharp contrast to the detrimental impact of sevoflurane on patients' outcome reported in retrospective clinical studies, we propose here that sevoflurane might actually exert a beneficial effect by decreasing TAMs within the TME, rendering the tumour again susceptible for cytotoxic T cells and immunotherapies. Further research is warranted to delineate, how these results translate into the clinic.
Collapse
Affiliation(s)
- Isabella Sztwiertnia
- Department of Anesthesiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Judith Schenz
- Department of Anesthesiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Katharina Bomans
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Tübingen, Eberhard-Karls-University Tübingen, Tübingen, Germany
| | - Dominik Schaack
- Department of Anesthesiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Johanna Ohnesorge
- Department of Anesthesiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Sandra Tamulyte
- Department of Anesthesiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Markus A. Weigand
- Department of Anesthesiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Florian Uhle
- Department of Anesthesiology, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
349
|
Branchett WJ, O'Garra A, Lloyd CM. Transcriptomic analysis reveals diverse gene expression changes in airway macrophages during experimental allergic airway disease. Wellcome Open Res 2020; 5:101. [PMID: 32587903 PMCID: PMC7309452 DOI: 10.12688/wellcomeopenres.15875.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/07/2020] [Indexed: 02/12/2024] Open
Abstract
Background: Airway macrophages (AMs) are the most abundant leukocytes in the healthy airway lumen and have a highly specialised but plastic phenotype that is governed by signals in the local microenvironment. AMs are thought to maintain immunological homeostasis in the steady state, but have also been implicated in the pathogenesis of allergic airway disease (AAD). In this study, we aimed to better understand these potentially contrasting AM functions using transcriptomic analysis. Methods: Bulk RNA sequencing was performed on AMs flow cytometry sorted from C57BL/6 mice during experimental AAD driven by repeated house dust mite inhalation (AMs HDM), compared to control AMs from non-allergic mice. Differentially expressed genes were further analysed by hierarchical clustering and biological pathway analysis. Results: AMs HDM showed increased expression of genes associated with antigen presentation, inflammatory cell recruitment and tissue repair, including several chemokine and matrix metalloproteinase genes. This was accompanied by increased expression of mitochondrial electron transport chain subunit genes and the retinoic acid biosynthetic enzyme gene Raldh2. Conversely, AMs HDM displayed decreased expression of a number of cell cycle genes, genes related to cytoskeletal functions and a subset of genes implicated in antimicrobial innate immunity, such as Tlr5, Il18 and Tnf. Differential gene expression in AMs HDM was consistent with upstream effects of the cytokines IL-4 and IFN-γ, both of which were present at increased concentrations in lung tissue after HDM treatment. Conclusions: These data highlight diverse gene expression changes in the total AM population in a clinically relevant mouse model of AAD, collectively suggestive of contributions to inflammation and tissue repair/remodelling, but with decreases in certain steady state cellular and immunological functions.
Collapse
Affiliation(s)
- William J. Branchett
- National Heart and Lung Institute, Imperial College London, London, SW7 2AZ, UK
- Asthma UK Centre in Allergic Mechanisms of Asthma, Imperial College London, London, W2 1NY, UK
| | - Anne O'Garra
- National Heart and Lung Institute, Imperial College London, London, SW7 2AZ, UK
- Laboratory of Immunoregulation and Infection, The Francis Crick Institute, London, NW1 1AT, UK
| | - Clare M. Lloyd
- National Heart and Lung Institute, Imperial College London, London, SW7 2AZ, UK
- Asthma UK Centre in Allergic Mechanisms of Asthma, Imperial College London, London, W2 1NY, UK
| |
Collapse
|
350
|
Luo XL, Dalod M. The quest for faithful in vitro models of human dendritic cells types. Mol Immunol 2020; 123:40-59. [PMID: 32413788 DOI: 10.1016/j.molimm.2020.04.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 04/06/2020] [Accepted: 04/16/2020] [Indexed: 12/13/2022]
Abstract
Dendritic cells (DCs) are mononuclear phagocytes that are specialized in the induction and functional polarization of effector lymphocytes, thus orchestrating immune defenses against infections and cancer. The population of DC encompasses distinct cell types that vary in their efficacy for complementary functions and are thus likely involved in defending the body against different threats. Plasmacytoid DCs specialize in the production of high levels of the antiviral cytokines type I interferons. Type 1 conventional DCs (cDC1s) excel in the activation of cytotoxic CD8+ T cells (CTLs) which are critical for defense against cancer and infections by intracellular pathogens. Type 2 conventional DCs (cDC2s) prime helper CD4+ T cells for the production of type 2 cytokines underpinning immune defenses against worms or of IL-17 promoting control of infections by extracellular bacteria or fungi. Hence, clinically manipulating the development and functions of DC types could have a major impact for improving treatments against many diseases. However, the rarity and fragility of human DC types is impeding advancement towards this goal. To overcome this roadblock, major efforts are ongoing to generate in vitro large numbers of distinct human DC types. We review here the current state of this research field, emphasizing recent breakthrough and proposing future priorities. We also pinpoint the necessity to develop a consensus nomenclature and rigorous methodologies to ensure proper identification and characterization of human DC types. Finally, we elaborate on how faithful in vitro models of human DC types can accelerate our understanding of the biology of these cells and the engineering of next generation vaccines or immunotherapies against viral infections or cancer.
Collapse
Affiliation(s)
- Xin-Long Luo
- Aix Marseille Univ, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Turing Center for Living Systems, Marseille, France
| | - Marc Dalod
- Aix Marseille Univ, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Turing Center for Living Systems, Marseille, France.
| |
Collapse
|