301
|
Pei G, Zhu Y, Cai X, Shi W, Li H. Surfactant flushing remediation of o-dichlorobenzene and p-dichlorobenzene contaminated soil. CHEMOSPHERE 2017; 185:1112-1121. [PMID: 28772354 DOI: 10.1016/j.chemosphere.2017.07.098] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 07/03/2017] [Accepted: 07/18/2017] [Indexed: 06/07/2023]
Abstract
Surfactant-enhanced remediation is used to treat dichlorobenzene (DCB) contaminated soil. In this study, soil column experiments were conducted to investigate the removal efficiencies of o-dichlorobenzene (o-DCB) and p-dichlorobenzene (p-DCB) from contaminated soil using micellar solutions of biosurfactants (saponin, alkyl polyglycoside) compare to a chemically synthetic surfactant (Tween 80). Leachate was collected and analyzed for o-DCB and p-DCB content. In addition, soil was analyzed to explore the effect of surfactants on soil enzyme activities. Results showed that the removal efficiency of o-DCB and p-DCB was highest for saponin followed by alkyl polyglycoside and Tween 80. The maximum o-DCB and p-DCB removal efficiencies of 76.34% and 80.43%, respectively, were achieved with 4 g L-1 saponin solution. However, an opposite result was observed in the cumulative mass of o-DCB and p-DCB in leachate. The cumulative extent of o-DCB and p-DCB removal by the biosurfactants saponin and alkyl polyglycoside was lower than that of the chemically synthetic surfactant Tween 80 in leachate. Soil was also analyzed to explore the effect of surfactants on soil enzyme activities. The results indicated that surfactants were potentially effective in facilitating soil enzyme activities. Thus, it was confirmed that the biosurfactants saponin and alkyl polyglycoside could be used for remediation of o-DCB and p-DCB contaminated soil.
Collapse
Affiliation(s)
- Guangpeng Pei
- School of Environment Science and Resources, Shanxi University, Taiyuan, Shanxi 030006, China; Institute of Resources and Environment Engineering, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Yuen Zhu
- School of Environment Science and Resources, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Xiatong Cai
- School of Environment Science and Resources, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Weiyu Shi
- Chongqing Key Laboratory of Karst Environment, School of Geographical Sciences, Southwest University, Chongqing 400715, China.
| | - Hua Li
- School of Environment Science and Resources, Shanxi University, Taiyuan, Shanxi 030006, China.
| |
Collapse
|
302
|
Kumpiene J, Nordmark D, Carabante I, Sužiedelytė-Visockienė J, Aksamitauskas VČ. Remediation of soil contaminated with organic and inorganic wood impregnation chemicals by soil washing. CHEMOSPHERE 2017; 184:13-19. [PMID: 28575800 DOI: 10.1016/j.chemosphere.2017.05.140] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 05/17/2017] [Accepted: 05/23/2017] [Indexed: 06/07/2023]
Abstract
The aim of this study was to evaluate the efficiency of a large scale washing/wet sieving technique for a soil contaminated with wood impregnation chemicals by 1) defining the final distribution of trace elements (As, Cu, Cr, Zn) and polycyclic aromatic hydrocarbons (PAH) in separated soil particle size fractions; and 2) defining the leaching behavior of the contaminants in these soil fractions. A soil washing experiment was implemented at waste management facility in Sweden using a full scale soil sorting and washing equipment. Five tons of soil was loaded to the equipment and wet-sieved into the following fractions: >16 mm, 8-16 mm, 2-8 mm, 0.2-2 mm, <0.2 mm and a fraction that floated on top of the slurry before the final separation phase, composed of organic matter (OM). Analysis of total concentrations of contaminants in all soil fractions indicated that wet sieving/soil washing was not efficient to reduce the total volume of soil that needs further treatment. Even the coarsest soil fractions (>8 mm) contained elevated concentrations of total As and PAH. Leaching of As from all washed soil fractions was so high, that none of the particle size fractions could be disposed of without additional treatment.
Collapse
Affiliation(s)
- Jurate Kumpiene
- Waste Science and Technology, Luleå University of Technology, 971 87 Luleå, Sweden.
| | - Désirée Nordmark
- Waste Science and Technology, Luleå University of Technology, 971 87 Luleå, Sweden
| | - Ivan Carabante
- Waste Science and Technology, Luleå University of Technology, 971 87 Luleå, Sweden
| | - Jūratė Sužiedelytė-Visockienė
- Department of Geodesy and Cadastre, Vilnius Gediminas Technical University, Saulėtekio Av. 11, LT-10223 Vilnius, Lithuania
| | | |
Collapse
|
303
|
Sharma R, Kamal A, Abdinejad M, Mahajan RK, Kraatz HB. Advances in the synthesis, molecular architectures and potential applications of gemini surfactants. Adv Colloid Interface Sci 2017; 248:35-68. [PMID: 28800974 DOI: 10.1016/j.cis.2017.07.032] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 07/26/2017] [Accepted: 07/27/2017] [Indexed: 10/19/2022]
Abstract
Gemini surfactants have been the subject of intensive scrutiny by virtue of their unique combination of physical and chemical properties and being used in ordinary household objects to multifarious industrial processes. In this review, we summarize the recent developments of gemini surfactants, highlighting the classification of gemini surfactants based on the variation in headgroup polarity, flexibility/rigidity of spacer, hydrophobic alkyl chain and counterion along with potential applications of gemini surfactants, depicting the truly remarkable journey of gemini surfactants that has just come of age. We have focused on those objectives which will act as suitable candidates to take the field forward. The preceding information will permit us to estimate the effect of structural variation on the aggregation behavior of gemini surfactants for nanoscience and biological applications like antimicrobial, anti-fungal agent, better gene and drug delivery agent with low cytotoxicity and biodegradability, which makes them more advantageous for a number of technological processes and hence reduces the impact of these gemini surfactants on the environment.
Collapse
|
304
|
Lamichhane S, Bal Krishna KC, Sarukkalige R. Surfactant-enhanced remediation of polycyclic aromatic hydrocarbons: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2017; 199:46-61. [PMID: 28527375 DOI: 10.1016/j.jenvman.2017.05.037] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 05/04/2017] [Accepted: 05/10/2017] [Indexed: 06/07/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are toxic, mutagenic and carcinogenic organic compounds that are widely present in the environment. The bioremediation of PAHs is an economical and environmentally friendly remediation technique, but it is limited because PAHs have low water solubility and fewer bioavailable properties. The solubility and bioavailability of PAHs can be increased by using surfactants to reduce surface tension and interfacial tension; this method is called surfactant-enhanced remediation (SER). The SER of PAHs is influenced by many factors such as the type and concentration of surfactants, PAH hydrophobicity, temperature, pH, salinity, dissolved organic matter and microbial community. Furthermore, as mixed micelles have a synergistic effect on PAH solubilisation, selecting the optimum ratio of mixed surfactants leads to effective PAH remediation. Although the use of surfactants inhibits microbial activities in some cases, this could be avoided by choosing an optimum combination of surfactants and a proper microbial community for the targeted PAH(s), resulting in up to 99.99% PAH removal. This article reviews the literature on SER of PAHs, including surfactant types, the synergistic effect of mixed micelles on PAH removal, the impact of surfactants on the PAH biodegradation process, factors affecting the SER process, and the mechanisms of surfactant-enhanced solubilisation of PAHs.
Collapse
Affiliation(s)
- Shanti Lamichhane
- Department of Civil Engineering, Curtin University, GPO Box U1987, Perth, WA 6845, Australia
| | - K C Bal Krishna
- School of Computing Engineering and Mathematics, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia.
| | - Ranjan Sarukkalige
- Department of Civil Engineering, Curtin University, GPO Box U1987, Perth, WA 6845, Australia
| |
Collapse
|
305
|
Terrón-Mejía KA, López-Rendón R, Goicochea AG. Desorption of hydrocarbon chains by association with ionic and nonionic surfactants under flow as a mechanism for enhanced oil recovery. Sci Rep 2017; 7:9586. [PMID: 28851994 PMCID: PMC5575256 DOI: 10.1038/s41598-017-09735-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 07/28/2017] [Indexed: 11/23/2022] Open
Abstract
The need to extract oil from wells where it is embedded on the surfaces of rocks has led to the development of new and improved enhanced oil recovery techniques. One of those is the injection of surfactants with water vapor, which promotes desorption of oil that can then be extracted using pumps, as the surfactants encapsulate the oil in foams. However, the mechanisms that lead to the optimal desorption of oil and the best type of surfactants to carry out desorption are not well known yet, which warrants the need to carry out basic research on this topic. In this work, we report non equilibrium dissipative particle dynamics simulations of model surfactants and oil molecules adsorbed on surfaces, with the purpose of studying the efficiency of the surfactants to desorb hydrocarbon chains, that are found adsorbed over flat surfaces. The model surfactants studied correspond to nonionic and cationic surfactants, and the hydrocarbon desorption is studied as a function of surfactant concentration under increasing Poiseuille flow. We obtain various hydrocarbon desorption isotherms for every model of surfactant proposed, under flow. Nonionic surfactants are found to be the most effective to desorb oil and the mechanisms that lead to this phenomenon are presented and discussed.
Collapse
Affiliation(s)
- Ketzasmin A Terrón-Mejía
- Laboratorio de Bioingeniería Molecular a Multiescala, Facultad de Ciencias, Universidad Autónoma del Estado de México, Av. Instituto Literario 100, 50000, Toluca, Mexico
| | - Roberto López-Rendón
- Laboratorio de Bioingeniería Molecular a Multiescala, Facultad de Ciencias, Universidad Autónoma del Estado de México, Av. Instituto Literario 100, 50000, Toluca, Mexico
| | - Armando Gama Goicochea
- División de Ingeniería Química y Bioquímica, Tecnológico de Estudios Superiores de Ecatepec, Av. Tecnológico s/n, Ecatepec, Estado de Mexico, 55210, Mexico.
| |
Collapse
|
306
|
Striolo A, Grady BP. Surfactant Assemblies on Selected Nanostructured Surfaces: Evidence, Driving Forces, and Applications. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:8099-8113. [PMID: 28516778 DOI: 10.1021/acs.langmuir.7b00756] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Surfactant adsorption at solid-liquid interfaces is critical for a number of applications of vast industrial interest and can also be used to seed surface-modification processes. Many of the surfaces of interest are nanostructured, as they might present surface roughness at the molecular scale, chemical heterogeneity, as well as a combination of both surface roughness and chemical heterogeneity. These effects provide lateral confinement on the surfactant aggregates. It is of interest to quantify how much surfactant adsorbs on such nanostructured surfaces and how the surfactant aggregates vary as the degree of lateral confinement changes. This review focuses on experimental evidence on selected substrates, including gold- and carbon-based substrates, suggesting that lateral confinement can have pronounced effects both on the amount adsorbed and on the morphology of the aggregates as well as on a systematic study, via diverse simulation approaches, on the effect of lateral confinement on the structure of the surfactant aggregates. Atomistic and coarse-grained simulations conducted for surfactants on graphene sheets and carbon nanotubes are reviewed, as well as coarse-grained simulations for surfactant adsorption on nanostructured surfaces. Finally, we suggest a few possible extensions of these studies that could positively impact a few practical applications. In particular, the simultaneous effect of lateral confinement and of the coadsorption of molecular compounds within the surface aggregates is expected to yield interesting fundamental results with long-lasting consequences in applications ranging from drug delivery to the design of advanced materials.
Collapse
Affiliation(s)
- Alberto Striolo
- Department of Chemical Engineering University College London , London, WC1E 7JE United Kingdom
| | - Brian Patrick Grady
- School of Chemical, Biological and Materials Engineering, University of Oklahoma , Norman, Oklahoma 73019, United States
| |
Collapse
|
307
|
Meng F, Yuan G, Wei J, Bi D, Ok YS, Wang H. Humic substances as a washing agent for Cd-contaminated soils. CHEMOSPHERE 2017; 181:461-467. [PMID: 28458221 DOI: 10.1016/j.chemosphere.2017.04.127] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 04/09/2017] [Accepted: 04/24/2017] [Indexed: 06/07/2023]
Abstract
Cost-effective and eco-friendly washing agents are in demand for Cd contaminated soils. Here, we used leonardite-derived humic substances to wash different types of Cd-contaminated soils, namely, a silty loam (Soil 1), a silty clay loam (Soil 2), and a sandy loam (Soil 3). Washing conditions were investigated for their effects on Cd removal efficiency. Cadmium removal was enhanced by a high humic substance concentration, long washing time, near neutral pH, and large solution/soil ratio. Based on the tradeoff between efficiency and cost, an optimum working condition was established as follows: humic substance concentration (3150 mg C/L), solution pH (6.0), washing time (2 h) and a washing solution/soil ratio (5). A single washing removed 0.55 mg Cd/kg from Soil 1 (1.33 mg Cd/kg), 2.32 mg Cd/kg from Soil 2 (6.57 mg Cd/kg), and 1.97 mg Cd/kg from Soil 3 (2.63 mg Cd/kg). Cd in effluents was effectively treated by adding a small dose of calcium hydroxide, reducing its concentration below the discharge limit of 0.1 mg/L in China. Being cost-effective and safe, humic substances have a great potential to replace common washing agents for the remediation of Cd-contaminated soils. Besides being environmentally benign, humic substances can improve soil physical, chemical, and biological properties.
Collapse
Affiliation(s)
- Fande Meng
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Provincial Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, Shandong 264003, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guodong Yuan
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Provincial Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, Shandong 264003, China.
| | - Jing Wei
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Provincial Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, Shandong 264003, China
| | - Dongxue Bi
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Provincial Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, Shandong 264003, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong Sik Ok
- School of Natural Resources and Environmental Science & Korea Biochar Research Center, Kangwon National University, Chuncheon 24341, South Korea
| | - Hailong Wang
- School of Environment and Chemical Engineering, Foshan University, Foshan, Guangdong 528000, China; Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A&F University, Lin'an, Zhejiang 311300, China; Guangdong Dazhong Agriculture Science Co. Ltd., Hongmei Town, Dongguan City, Guangdong 523169, China.
| |
Collapse
|
308
|
Rodrigues MS, Moreira FS, Cardoso VL, de Resende MM. Soy molasses as a fermentation substrate for the production of biosurfactant using Pseudomonas aeruginosa ATCC 10145. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:18699-18709. [PMID: 28702915 DOI: 10.1007/s11356-017-9492-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 06/07/2017] [Indexed: 06/07/2023]
Abstract
Soy molasses is a product co-generated during soybean processing that has high production and low commercial value. Its use has great potential in fermentative processes due to the high concentration of carbohydrates, lipids and proteins. This study investigated the use of Pseudomonas aeruginosa to produce biosurfactants in a soy molasses-based fermentation medium. A central composite design (CCD) was prepared with two variables and three replicates at the central point to optimize the production of biosurfactant. The concentration of soy molasses had values between 29.3 and 170.7 g/L and the initial concentration of microorganism varied between 0.2 and 5.8 g/L. All the experiments were performed in duplicate on a shaker table at 30.0 ± 1.0 °C and 120 rpm for 72 h with samples taken every 12 h. Thus, to validate the experiments, the values of 120 g/L for the initial concentration of soy molasses and 4 g/L for the initial concentration of microorganisms were used. In response, the following values were obtained at 48 h of fermentation: surface tension of 31.9 dyne/cm, emulsifying index of 97.4%, biomass concentration of 11.5 g/L, rhamnose concentration of 6.9 g/L and biosurfactant concentration of 11.70 g/L. Further analysis was carried out for critical micelle concentration (CMC) which was obtained at approximately 80 mg/L. The bands found in Fourier transform infrared spectroscopy analysis had characteristic glycolipids as reported in the literature. These values show a great potential for biosurfactant production using soy molasses as a substrate and bacteria of the species P. aeruginosa.
Collapse
Affiliation(s)
- Marília Silva Rodrigues
- Chemical Engineering Faculty, Federal University of Uberlândia, P.O. Box 593, Av. João Naves de Ávila 2121, Campus Santa Mônica, Bloco 1K, Uberlândia, MG, 38408-144, Brazil
| | - Felipe Santos Moreira
- Chemical Engineering Faculty, Federal University of Uberlândia, P.O. Box 593, Av. João Naves de Ávila 2121, Campus Santa Mônica, Bloco 1K, Uberlândia, MG, 38408-144, Brazil
| | - Vicelma Luiz Cardoso
- Chemical Engineering Faculty, Federal University of Uberlândia, P.O. Box 593, Av. João Naves de Ávila 2121, Campus Santa Mônica, Bloco 1K, Uberlândia, MG, 38408-144, Brazil
| | - Miriam Maria de Resende
- Chemical Engineering Faculty, Federal University of Uberlândia, P.O. Box 593, Av. João Naves de Ávila 2121, Campus Santa Mônica, Bloco 1K, Uberlândia, MG, 38408-144, Brazil.
| |
Collapse
|
309
|
Influence of metal ions on the aggregation of anionic surfactants. Studies on the interactions between environmental pollutants in aqueous solutions. J Mol Liq 2017. [DOI: 10.1016/j.molliq.2017.05.112] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
310
|
Jiang J, Yang M, Gao Y, Wang J, Li D, Li T. Removal of toxic metals from vanadium-contaminated soils using a washing method: Reagent selection and parameter optimization. CHEMOSPHERE 2017; 180:295-301. [PMID: 28412486 DOI: 10.1016/j.chemosphere.2017.03.116] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 03/19/2017] [Accepted: 03/27/2017] [Indexed: 06/07/2023]
Abstract
Vanadium (V) contamination in soils is an increasing worldwide concern facing human health and environmental conservation. The fractionation of a metal influences its mobility and biological toxicity. We analyzed the fractionations of V and several other metals using the BCR three-step sequential extraction procedure. Among methods for removing metal contamination, soil washing is an effective permanent treatment. We conducted experiments to select the proper reagents and to optimize extraction conditions. Citric acid, tartaric acid, oxalic acid, and Na2EDTA all exhibited high removal rates of the extractable state of V. With a liquid-to-solid ratio of 10, washing with 0.4 mol/L citric acid, 0.4 mol/L tartaric acid, 0.4 mol/L oxalic acid, and 0.12 mol/L Na2EDTA led to removal rates of 91%, 88%, 88%, and 61%, respectively. The effect of multiple washing on removal rate was also explored. According to the changes observed in metal fractionations, differences in removal rates among reagents is likely associated with their pKa value, pH in solution, and chemical structure. We concluded that treating with appropriate washing reagents under optimal conditions can greatly enhance the remediation of vanadium-contaminated soils.
Collapse
Affiliation(s)
- Jianguo Jiang
- School of Environment, Tsinghua University, Beijing, 100084, China; Key Laboratory of Solid Waste Management and Environment Safety (Tsinghua University), Ministry of Education, Tsinghua University, Beijing, 100084, China; Collaborative Innovation Center for Regional Environmental Quality, Tsinghua University, Beijing, 100084, China.
| | - Meng Yang
- School of Environment, Tsinghua University, Beijing, 100084, China; Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, China
| | - Yuchen Gao
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Jiaming Wang
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Dean Li
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Tianran Li
- School of Environment, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
311
|
Song B, Zeng G, Gong J, Liang J, Xu P, Liu Z, Zhang Y, Zhang C, Cheng M, Liu Y, Ye S, Yi H, Ren X. Evaluation methods for assessing effectiveness of in situ remediation of soil and sediment contaminated with organic pollutants and heavy metals. ENVIRONMENT INTERNATIONAL 2017; 105:43-55. [PMID: 28500873 DOI: 10.1016/j.envint.2017.05.001] [Citation(s) in RCA: 219] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Revised: 05/02/2017] [Accepted: 05/02/2017] [Indexed: 05/24/2023]
Abstract
Soil and sediment contamination has become a critical issue worldwide due to its great harm to the ecological environment and public health. In recent years, many remediation technologies including physical, chemical, biological, and combined methods have been proposed and adopted for the purpose of solving the problems of soil and sediment contamination. However, current research on evaluation methods for assessing these remediation technologies is scattered and lacks valid and integrated evaluation methods for assessing the remediation effectiveness. This paper provides a comprehensive review with an environmental perspective on the evaluation methods for assessing the effectiveness of in situ remediation of soil and sediment contaminated with organic pollutants and heavy metals. The review systematically summarizes recent exploration and attempts of the remediation effectiveness assessment based on the content of pollutants, soil and sediment characteristics, and ecological risks. Moreover, limitations and future research needs of the practical assessment are discussed. These limitations are not conducive to the implementation of the abatement and control programs for soil and sediment contamination. Therefore, more attention should be paid to the evaluation methods for assessing the remediation effectiveness while developing new in situ remediation technologies in future research.
Collapse
Affiliation(s)
- Biao Song
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China.
| | - Jilai Gong
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China.
| | - Jie Liang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Piao Xu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Zhifeng Liu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Yi Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Chen Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Min Cheng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Yang Liu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Shujing Ye
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Huan Yi
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Xiaoya Ren
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| |
Collapse
|
312
|
Wang L, Peng L, Xie L, Deng P, Deng D. Compatibility of Surfactants and Thermally Activated Persulfate for Enhanced Subsurface Remediation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:7055-7064. [PMID: 28548832 DOI: 10.1021/acs.est.6b05477] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Limited aqueous availability of hydrophobic organic contaminants and nonaqueous phase liquids in subsurface environment may seriously impair the effectiveness of traditional in situ chemical oxidation (ISCO). To tackle the issue, a combination of surfactants and thermally activated persulfate was proposed to enhance the aqueous availability and consequent oxidation of organic contaminants. The compatibility of eight representative nonionic, monovalent anionic, and divalent anionic surfactants with persulfate at various temperatures was first studied, to identify suitable surfactants that have high aqueous stability and low oxidant demands to couple with thermally activated persulfate. C12-MADS (sodium dodecyl diphenyl ether disulfonate, a representative divalent anionic surfactant) stands out as the most compatible surfactant. Batch treatability study with coal tar, an example of challenging scenarios for traditional ISCO, was then conducted. The results show that C12-MADS can significantly enhance not only the oxidation of polyaromatic hydrocarbons contained in coal tar but also oxidant utilization efficiency, indicating the potential of the proposed coupling process for the treatment of organic contaminants with low aqueous availability.
Collapse
Affiliation(s)
- Li Wang
- School of Chemistry and Environment, South China Normal University , Guangzhou, Guangdong 510006, China
| | - Libin Peng
- School of Chemistry and Environment, South China Normal University , Guangzhou, Guangdong 510006, China
| | - Liling Xie
- School of Chemistry and Environment, South China Normal University , Guangzhou, Guangdong 510006, China
| | - Peiyan Deng
- School of Chemistry and Environment, South China Normal University , Guangzhou, Guangdong 510006, China
| | - Dayi Deng
- School of Chemistry and Environment, South China Normal University , Guangzhou, Guangdong 510006, China
| |
Collapse
|
313
|
Liang X, Guo C, Liao C, Liu S, Wick LY, Peng D, Yi X, Lu G, Yin H, Lin Z, Dang Z. Drivers and applications of integrated clean-up technologies for surfactant-enhanced remediation of environments contaminated with polycyclic aromatic hydrocarbons (PAHs). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 225:129-140. [PMID: 28365510 DOI: 10.1016/j.envpol.2017.03.045] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Revised: 03/18/2017] [Accepted: 03/20/2017] [Indexed: 05/05/2023]
Abstract
Surfactant-enhanced remediation (SER) is considered as a promising and efficient remediation approach. This review summarizes and discusses main drivers on the application of SER in removing polycyclic aromatic hydrocarbons (PAHs) from contaminated soil and water. The effect of PAH-PAH interactions on SER efficiency is, for the first time, illustrated in an SER review. Interactions between mixed PAHs could enhance, decrease, or have no impact on surfactants' solubilization power towards PAHs, thus affecting the optimal usage of surfactants for SER. Although SER can transfer PAHs from soil/non-aqueous phase liquids to the aqueous phase, the harmful impact of PAHs still exists. To decrease the level of PAHs in SER solutions, a series of SER-based integrated cleanup technologies have been developed including surfactant-enhanced bioremediation (SEBR), surfactant-enhanced phytoremediation (SEPR) and SER-advanced oxidation processes (SER-AOPs). In this review, the general considerations and corresponding applications of the integrated cleanup technologies are summarized and discussed. Compared with SER-AOPs, SEBR and SEPR need less operation cost, yet require more treatment time. To successfully achieve the field application of surfactant-based technologies, massive production of the cost-effective green surfactants (i.e. biosurfactants) and comprehensive evaluation of the drivers and the global cost of SER-based cleanup technologies need to be performed in the future.
Collapse
Affiliation(s)
- Xujun Liang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Chuling Guo
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, China
| | - Changjun Liao
- Department of Environmental Engineering, Guangdong Polytechnic of Environmental Protection Engineering, Foshan 528216, China
| | - Shasha Liu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Lukas Y Wick
- Department of Environmental Microbiology, UFZ - Helmholtz Centre for Environmental Research, UFZ. Permoserstr. 15, 04318 Leipzig, Germany
| | - Dan Peng
- Department of Transportation and Environment, Shenzhen Institute of Information Technology, Shenzhen 518172, China
| | - Xiaoyun Yi
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, China
| | - Guining Lu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, China
| | - Hua Yin
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, China
| | - Zhang Lin
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, China
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, China.
| |
Collapse
|
314
|
Chen S, Liu X, Wang L, Wan C. In situ construction of low permeable barrier in soil to prevent pollutant migration by applying weak electric field. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2017; 193:584-591. [PMID: 28258774 DOI: 10.1016/j.jenvman.2017.02.062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 02/19/2017] [Accepted: 02/24/2017] [Indexed: 06/06/2023]
Abstract
In order to prevent vertical migration of pollutant in soil matrix, this study firstly proposed to construct an in situ low permeable barrier (LPB) through synchronously transporting calcium and carbonate. After LPB construction, the soil permeability was declined tenfold. Exchangeable calcium (37.3%) and calcium bonding to carbonate (41.7%) respectively alleviated flocculation of microaggregates and cementation of marcoaggregates. Accordingly, smaller particles (<1 mm) aggregated into bigger ones (>2 mm) after electrokinetic remediation. The other soil characters like pH, moisture, and bacterial communities were well preserved after remediation. In addition, the pollutant prevention was divided into two phases as unsaturated phase and saturated phase. In unsaturated phase, phenol, F-, Cd2+, and Ni2+ in filtrate were all lower than 0.1 mg, and Cr2O42--Cr discharged from LPB was 1/5.1 than that from initial soil. In saturated phase, LPB prevented 4.3-12.1 fold pollutant than initial soil. Taken together, proposed method could effectively prevent vertical migration of pollutants, indicating significant values for saving soil remediation cost or avoiding contamination of underground water.
Collapse
Affiliation(s)
- Si Chen
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Xiang Liu
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China.
| | - Li Wang
- Center of Analysis and Measurement, Fudan University, Shanghai 200433, China
| | - Chunli Wan
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China.
| |
Collapse
|
315
|
Morillo E, Villaverde J. Advanced technologies for the remediation of pesticide-contaminated soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 586:576-597. [PMID: 28214125 DOI: 10.1016/j.scitotenv.2017.02.020] [Citation(s) in RCA: 151] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 01/30/2017] [Accepted: 02/03/2017] [Indexed: 06/06/2023]
Abstract
The occurrence of pesticides in soil has become a highly significant environmental problem, which has been increased by the vast use of pesticides worldwide and the absence of remediation technologies that have been tested at full-scale. The aim of this review is to give an overview on technologies really studied and/or developed during the last years for remediation of soils contaminated by pesticides. Depending on the nature of the decontamination process, these techniques have been included into three categories: containment-immobilization, separation or destruction. The review includes some considerations about the status of emerging technologies as well as their advantages, limitations, and pesticides treated. In most cases, emerging technologies, such as those based on oxidation-reduction or bioremediation, may be incorporated into existing technologies to improve their performance or overcome limitations. Research and development actions are still needed for emerging technologies to bring them for full-scale implementation.
Collapse
Affiliation(s)
- E Morillo
- Institute of Natural Resources and Agrobiology of Seville (IRNAS-CSIC), Av. Reina Mercedes, 10, Sevilla E-41012, Spain.
| | - J Villaverde
- Institute of Natural Resources and Agrobiology of Seville (IRNAS-CSIC), Av. Reina Mercedes, 10, Sevilla E-41012, Spain
| |
Collapse
|
316
|
Cheng M, Zeng G, Huang D, Yang C, Lai C, Zhang C, Liu Y. Tween 80 surfactant-enhanced bioremediation: toward a solution to the soil contamination by hydrophobic organic compounds. Crit Rev Biotechnol 2017; 38:17-30. [PMID: 28423946 DOI: 10.1080/07388551.2017.1311296] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The occurrence of hydrophobic organic compounds (HOCs) in the soil has become a highly significant environmental issue. This problem has been exacerbated by the strong sorption of HOCs to the soils, which makes them unavailable for most remediation processes. More and more works show that surfactant-enhanced biological technologies offer a great potential to clear up HOCs-contaminated soils. This article is a critical review of HOCs removal from soils using Tween 80 (one of the mostly used nonionic surfactants) aided biological remediation technologies. The review begins with a discussion of the fundamentals of Tween 80-enhanced desorption of HOCs from contaminated soils, with special emphasis on the biotoxicity of Tween 80. Successful results obtained by Tween 80-enhanced microbial degradation and phytoremediation are documented and discussed in section 3 and section 4, respectively. Results show Tween 80-enhanced biotechnologies are promising for treating HOCs-contaminated soils. However, considering the fact that most of these scientific studies have only been conducted at the laboratory-scale, many improvements are required before these technologies can be scaled up to the full-scale level. Moreover, further research on mechanisms related to the interaction of Tween 80 with degrading microorganisms and the plants is in high demand.
Collapse
Affiliation(s)
- Min Cheng
- a Department of Environmental Engineering, College of Environmental Science and Engineering , Hunan University , Changsha , Hunan , China.,b Department of Environmental Engineering , Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education , Changsha , Hunan , China
| | - Guangming Zeng
- a Department of Environmental Engineering, College of Environmental Science and Engineering , Hunan University , Changsha , Hunan , China.,b Department of Environmental Engineering , Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education , Changsha , Hunan , China
| | - Danlian Huang
- a Department of Environmental Engineering, College of Environmental Science and Engineering , Hunan University , Changsha , Hunan , China.,b Department of Environmental Engineering , Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education , Changsha , Hunan , China
| | - Chunping Yang
- a Department of Environmental Engineering, College of Environmental Science and Engineering , Hunan University , Changsha , Hunan , China.,b Department of Environmental Engineering , Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education , Changsha , Hunan , China
| | - Cui Lai
- a Department of Environmental Engineering, College of Environmental Science and Engineering , Hunan University , Changsha , Hunan , China.,b Department of Environmental Engineering , Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education , Changsha , Hunan , China
| | - Chen Zhang
- a Department of Environmental Engineering, College of Environmental Science and Engineering , Hunan University , Changsha , Hunan , China.,b Department of Environmental Engineering , Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education , Changsha , Hunan , China
| | - Yang Liu
- a Department of Environmental Engineering, College of Environmental Science and Engineering , Hunan University , Changsha , Hunan , China.,b Department of Environmental Engineering , Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education , Changsha , Hunan , China
| |
Collapse
|
317
|
Shao B, Liu Z, Zhong H, Zeng G, Liu G, Yu M, Liu Y, Yang X, Li Z, Fang Z, Zhang J, Zhao C. Effects of rhamnolipids on microorganism characteristics and applications in composting: A review. Microbiol Res 2017; 200:33-44. [PMID: 28527762 DOI: 10.1016/j.micres.2017.04.005] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 04/01/2017] [Accepted: 04/08/2017] [Indexed: 01/15/2023]
Abstract
Biosurfactant rhmnolipids have been applied in many fields, especially in environmental bioremediation. According to previous researches, many research groups have studied the influence of rhamnolipids on microorganism characteristics and/or its application in composting. In this review, the effects of rhamnolipids on the cell surface properties of microorganisms was discussed firstly, such as cell surface hydrophobicity (CSH), electrical, surface compounds, etc. Moreover, the deeper mechanisms were also discussed, such as the effects of rhamnolipids on the structural characteristics and functional characteristics of the cell membrane, and the effects of rhamnolipids on the related enzymes and genes. Additionally, the application of rhamnolipids in composting was discussed, which is an important way for pollutant biodegradation and resource reutilization. It is believed that rhamnolipids will play more and more important role in composting.
Collapse
Affiliation(s)
- Binbin Shao
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Zhifeng Liu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Hua Zhong
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China; State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan, Hubei 430072, PR China.
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Guansheng Liu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Mingda Yu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Yang Liu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Xin Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Zhigang Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Zhendong Fang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Juntao Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Chenghao Zhao
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| |
Collapse
|
318
|
Biswas B, Sarkar B, Rusmin R, Naidu R. Mild acid and alkali treated clay minerals enhance bioremediation of polycyclic aromatic hydrocarbons in long-term contaminated soil: A 14C-tracer study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 223:255-265. [PMID: 28131473 DOI: 10.1016/j.envpol.2017.01.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 01/10/2017] [Accepted: 01/11/2017] [Indexed: 06/06/2023]
Abstract
Bioremediation of polycyclic aromatic hydrocarbon (PAH)-contaminated soils requires a higher microbial viability and an increased PAH bioavailability. The clay/modified clay-modulated bacterial degradation could deliver a more efficient removal of PAHs in soils depending on the bioavailability of the compounds. In this study, we modified clay minerals (smectite and palygorskite) with mild acid (HCl) and alkali (NaOH) treatments (0.5-3 M), which increased the surface area and pore volume of the products, and removed the impurities without collapsing the crystalline structure of clay minerals. In soil incubation studies, supplements with the clay products increased bacterial growth in the order: 0.5 M HCl ≥ unmodified ≥ 0.5 M NaOH ≥ 3 M NaOH ≥ 3 M HCl for smectite, and 0.5 M HCl ≥ 3 M NaOH ≥ 0.5 M NaOH ≥ 3 M HCl ≥ unmodified for palygorskite. A14C-tracing study showed that the mild acid/alkali-treated clay products increased the PAH biodegradation (5-8%) in the order of 0.5 M HCl ≥ unmodified > 3 M NaOH ≥ 0.5 M NaOH for smectite, and 0.5 M HCl > 0.5 M NaOH ≥ unmodified ≥ 3 M NaOH for palygorskite. The biodegradation was correlated (r = 0.81) with the bioavailable fraction of PAHs and microbial growth as affected particularly by the 0.5 M HCl and 0.5 M NaOH-treated clay minerals. These results could be pivotal in developing a clay-modulated bioremediation technology for cleaning up PAH-contaminated soils and sediments in the field.
Collapse
Affiliation(s)
- Bhabananda Biswas
- Future Industries Institute, University of South Australia, Mawson Lakes Campus, SA 5095, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, ACT Building, The University of Newcastle, Callaghan, NSW 2308, Australia.
| | - Binoy Sarkar
- Future Industries Institute, University of South Australia, Mawson Lakes Campus, SA 5095, Australia; Department of Geological Sciences, Indiana University, Bloomington, IN 47405, USA.
| | - Ruhaida Rusmin
- Future Industries Institute, University of South Australia, Mawson Lakes Campus, SA 5095, Australia
| | - Ravi Naidu
- Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, ACT Building, The University of Newcastle, Callaghan, NSW 2308, Australia; Global Centre for Environmental Remediation (GCER), Faculty of Science and Information Technology, The University of Newcastle, Callaghan, NSW 2308, Australia.
| |
Collapse
|
319
|
Amani H. Synergistic Effect of Biosurfactant and Nanoparticle Mixture on Microbial Enhanced Oil Recovery. J SURFACTANTS DETERG 2017. [DOI: 10.1007/s11743-017-1943-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
320
|
Le TT, Son MH, Nam IH, Yoon H, Kang YG, Chang YS. Transformation of hexabromocyclododecane in contaminated soil in association with microbial diversity. JOURNAL OF HAZARDOUS MATERIALS 2017; 325:82-89. [PMID: 27915102 DOI: 10.1016/j.jhazmat.2016.11.058] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 11/12/2016] [Accepted: 11/19/2016] [Indexed: 06/06/2023]
Abstract
This study evaluated the transformation of 1,2,5,6,9,10-hexabromocyclododecane (HBCD) in soil under various conditions. Under anaerobic conditions for 21days, 34% of the total HBCD was reduced from rhizosphere soil containing humic acid, and 35% of the total HBCD was reduced from the non-rhizosphere soil; under aerobic conditions, 29% and 57-60% of the total HBCD were reduced from the same soil types after 40days. Three HBCD isomers (α-, β-, and γ-HBCD) were separately analyzed for their isomeric effects on transformation. In the soils with added glucose as a carbon and energy source, the fraction of γ-HBCD was reduced due to the blooming microbial activity. The population of Gram-positive bacteria decreased during the aerobic treatments of HBCD, whereas the population of several Gram-negative bacteria (e.g., Brassia rhizosphere, Sphingomonas sp.) increased. Humic acid and glucose increased the HBCD removal efficiency and microbial diversity in both rhizosphere and non-rhizosphere soils.
Collapse
Affiliation(s)
- Thao Thanh Le
- School of Environmental Science and Engineering, POSTECH, Pohang 37673, Republic of Korea
| | - Min-Hui Son
- School of Environmental Science and Engineering, POSTECH, Pohang 37673, Republic of Korea
| | - In-Huyn Nam
- Korea Institute of Geoscience and Mineral Resources (KIGAM), Daejeon 34132, Republic of Korea
| | - Hakwon Yoon
- School of Environmental Science and Engineering, POSTECH, Pohang 37673, Republic of Korea
| | - Yu-Gyeong Kang
- School of Environmental Science and Engineering, POSTECH, Pohang 37673, Republic of Korea
| | - Yoon-Seok Chang
- School of Environmental Science and Engineering, POSTECH, Pohang 37673, Republic of Korea.
| |
Collapse
|
321
|
Liu S, Guo C, Dang Z, Liang X. Comparative proteomics reveal the mechanism of Tween80 enhanced phenanthrene biodegradation by Sphingomonas sp. GY2B. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 137:256-264. [PMID: 27984820 DOI: 10.1016/j.ecoenv.2016.12.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 12/04/2016] [Accepted: 12/09/2016] [Indexed: 05/22/2023]
Abstract
Previous study concerning the effects of surfactants on phenanthrene biodegradation focused on observing the changes of cell characteristics of Sphingomonas sp. GY2B. However, the impact of surfactants on the expression of bacterial proteins, controlling phenanthrene transport and catabolism, remains obscure. To overcome the knowledge gap, comparative proteomic approaches were used to investigate protein expressions of Sphingomonas sp. GY2B during phenanthrene biodegradation in the presence and absence of a nonionic surfactant, Tween80. A total of 23 up-regulated and 19 down-regulated proteins were detected upon Tween80 treatment. Tween80 could regulate ion transport (e.g. H+) in cell membrane to provide driving force (ATP) for the transmembrane transport of phenanthrene thus increasing its uptake and biodegradation by GY2B. Moreover, Tween80 probably increased GY2B vitality and growth by inducing the expression of peptidylprolyl isomerase to stabilize cell membrane, increasing the abundances of proteins involved in intracellular metabolic pathways (e.g. TCA cycle), as well as decreasing the abundances of translation/transcription-related proteins and cysteine desulfurase, thereby facilitating phenanthrene biodegradation. This study may facilitate a better understanding of the mechanisms that regulate surfactants-enhanced biodegradation of PAHs at the proteomic level.
Collapse
Affiliation(s)
- Shasha Liu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Chuling Guo
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, PR China.
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, PR China.
| | - Xujun Liang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| |
Collapse
|
322
|
Falciglia PP, Malarbì D, Greco V, Vagliasindi FG. Surfactant and MGDA enhanced – Electrokinetic treatment for the simultaneous removal of mercury and PAHs from marine sediments. Sep Purif Technol 2017. [DOI: 10.1016/j.seppur.2016.11.046] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
323
|
Park CW, Kim BH, Yang HM, Seo BK, Moon JK, Lee KW. Removal of cesium ions from clays by cationic surfactant intercalation. CHEMOSPHERE 2017; 168:1068-1074. [PMID: 27839883 DOI: 10.1016/j.chemosphere.2016.10.102] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 09/14/2016] [Accepted: 10/26/2016] [Indexed: 06/06/2023]
Abstract
We propose a new approach to remediate cesium-contaminated clays based on intercalation of the cationic surfactant dodecyltrimethylammonium bromide (DTAB) into clay interlayers. Intercalation of DTAB was found to occur very rapidly and involved exchanging interlayer cations. The reaction yielded efficient cesium desorption (∼97%), including of a large amount of otherwise non-desorbable cesium ions by cation exchange with ammonium ions. In addition, the intercalation of DTAB afforded an expansion of the interlayers, and an enhanced desorption of Cs by cation exchange with ammonium ions even at low concentrations of DTAB. Finally, the residual intercalated surfactants were easily removed by a decomposition reaction with hydrogen peroxide in the presence of Cu2+/Fe2+ catalysts.
Collapse
Affiliation(s)
- Chan Woo Park
- Decontamination & Decommissioning Research Division, Korea Atomic Energy Research Institute, Daedeok-daero 989-111, Yuseong-gu, Daejeon, Republic of Korea
| | - Bo Hyun Kim
- Decontamination & Decommissioning Research Division, Korea Atomic Energy Research Institute, Daedeok-daero 989-111, Yuseong-gu, Daejeon, Republic of Korea; Department of Chemical Engineering, Chungnam National University, Youseong-gu, Daejeon, Republic of Korea
| | - Hee-Man Yang
- Decontamination & Decommissioning Research Division, Korea Atomic Energy Research Institute, Daedeok-daero 989-111, Yuseong-gu, Daejeon, Republic of Korea
| | - Bum-Kyoung Seo
- Decontamination & Decommissioning Research Division, Korea Atomic Energy Research Institute, Daedeok-daero 989-111, Yuseong-gu, Daejeon, Republic of Korea
| | - Jei-Kwon Moon
- Decontamination & Decommissioning Research Division, Korea Atomic Energy Research Institute, Daedeok-daero 989-111, Yuseong-gu, Daejeon, Republic of Korea
| | - Kune-Woo Lee
- Decontamination & Decommissioning Research Division, Korea Atomic Energy Research Institute, Daedeok-daero 989-111, Yuseong-gu, Daejeon, Republic of Korea.
| |
Collapse
|
324
|
Xia Y, Gao Z, Liao X, Pan C, Zhang Y, Feng X. Rapid synthesis of hierarchical, flower-like Ag microstructures with a gemini surfactant as a directing agent for SERS applications. CrystEngComm 2017. [DOI: 10.1039/c7ce01573a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Various hierarchical Ag microstructures, including sensitive SERS substrate flower-like structures, can be designed and rapidly synthesized under different conditions.
Collapse
Affiliation(s)
- Yan Xia
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan 430072
- P.R. China
- Key Laboratory of Biomedical Polymers
| | - Zhinong Gao
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan 430072
- P.R. China
- Key Laboratory of Biomedical Polymers
| | - Xueming Liao
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan 430072
- P.R. China
- Key Laboratory of Biomedical Polymers
| | - Chenchen Pan
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan 430072
- P.R. China
- Key Laboratory of Biomedical Polymers
| | - Yingfang Zhang
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan 430072
- P.R. China
- Key Laboratory of Biomedical Polymers
| | - Xuesong Feng
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan 430072
- P.R. China
| |
Collapse
|
325
|
Ni N, Wang F, Song Y, Shi R, Jia M, Bian Y, Jiang X. Effects of cationic surfactant on the bioaccumulation of polycyclic aromatic hydrocarbons in rice and the soil microbial community structure. RSC Adv 2017. [DOI: 10.1039/c7ra07124h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cetyltrimethylammonium bromide reduced the PAH bioaccumulation in rice from paddy soils and benefit the soil ecology in the short term.
Collapse
Affiliation(s)
- Ni Ni
- Key Laboratory of Soil Environment and Pollution Remediation
- Institute of Soil Science
- Chinese Academy of Sciences
- Nanjing 210008
- PR China
| | - Fang Wang
- Key Laboratory of Soil Environment and Pollution Remediation
- Institute of Soil Science
- Chinese Academy of Sciences
- Nanjing 210008
- PR China
| | - Yang Song
- Key Laboratory of Soil Environment and Pollution Remediation
- Institute of Soil Science
- Chinese Academy of Sciences
- Nanjing 210008
- PR China
| | - Renyong Shi
- Key Laboratory of Soil Environment and Pollution Remediation
- Institute of Soil Science
- Chinese Academy of Sciences
- Nanjing 210008
- PR China
| | - Mingyun Jia
- Key Laboratory of Soil Environment and Pollution Remediation
- Institute of Soil Science
- Chinese Academy of Sciences
- Nanjing 210008
- PR China
| | - Yongrong Bian
- Key Laboratory of Soil Environment and Pollution Remediation
- Institute of Soil Science
- Chinese Academy of Sciences
- Nanjing 210008
- PR China
| | - Xin Jiang
- Key Laboratory of Soil Environment and Pollution Remediation
- Institute of Soil Science
- Chinese Academy of Sciences
- Nanjing 210008
- PR China
| |
Collapse
|
326
|
Yan M, Zeng G, Li X, He J, Chen G, Huang D, Tang L, Lai C, Zhang C, Li X, Wang L, Guo Z, Tao W. Incentive effect of bentonite and concrete admixtures on stabilization/solidification for heavy metal-polluted sediments of Xiangjiang River. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:892-901. [PMID: 27761859 DOI: 10.1007/s11356-016-7527-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Accepted: 08/26/2016] [Indexed: 06/06/2023]
Abstract
Solidification is a very effective way to alleviate heavy metal impacts to the environment. In this paper, an improved method was adopted herein for the solidification/stabilization (S/S) of sediments with cement-based additives and low content of cement in S/S materials. Sediments in Xiangjiang River, containing high concentrations of Cu, Cd, and Pb, were solidified/stabilized by binders of cement, fly ash, and bentonite. Admixtures such as sodium lignosulfonate, sodium lauryl sulfate, and triethanolamine were used to improve the bonding properties of S/S, which had never been investigated before. Results demonstrated that the addition of concrete admixtures had significant effects on the S/S of sediments. Sequential extraction method indicates that the concentrations of heavy metals changed significantly after solidification and were more stable over time, with the exception of Pb. In addition, SEM images indicated that the main hydrated product was ettringite. Large quantities of calcium silicate hydrates (CSH) formed and filled the solidified sediment in 60 days. The results provide further insights into the transformation of heavy metals during S/S.
Collapse
Affiliation(s)
- Ming Yan
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, People's Republic of China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, People's Republic of China
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, People's Republic of China.
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, People's Republic of China.
| | - Xiaoming Li
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, People's Republic of China.
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, People's Republic of China.
| | - Jianmin He
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, People's Republic of China.
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, People's Republic of China.
| | - Guiqiu Chen
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, People's Republic of China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, People's Republic of China
| | - Danlian Huang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, People's Republic of China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, People's Republic of China
| | - Lin Tang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, People's Republic of China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, People's Republic of China
| | - Cui Lai
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, People's Republic of China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, People's Republic of China
| | - Chang Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, People's Republic of China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, People's Republic of China
| | - Xiaodong Li
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, People's Republic of China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, People's Republic of China
| | - Lichao Wang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, People's Republic of China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, People's Republic of China
| | - Zhi Guo
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, People's Republic of China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, People's Republic of China
| | - Wei Tao
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, People's Republic of China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, People's Republic of China
| |
Collapse
|
327
|
Huang D, Hu C, Zeng G, Cheng M, Xu P, Gong X, Wang R, Xue W. Combination of Fenton processes and biotreatment for wastewater treatment and soil remediation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 574:1599-1610. [PMID: 27608610 DOI: 10.1016/j.scitotenv.2016.08.199] [Citation(s) in RCA: 144] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 08/29/2016] [Accepted: 08/29/2016] [Indexed: 05/15/2023]
Abstract
There is a continuously increasing worldwide concern for the development of wastewater and contaminated soil treatment technologies. Fenton processes and biological treatments have long been used as common technologies for treating wastewater and polluted soil but they still need to be modified because of some defects (high costs of Fenton process and long remediation time of biotreatments). This work first briefly introduced the Fenton technology and biotreatment, and then discussed the main considerations in the construction of a combined system. This review shows a critical overview of recent researches combining Fenton processes (as pre-treatment or post-treatment) with bioremediation for treatment of wastewater or polluted soil. We concluded that the combined treatment can be regarded as a novel and competitive technology. Furthermore, the outlook for potential applications of this combination in different polluted soil and wastewater, as well as the mechanism of combination was also discussed.
Collapse
Affiliation(s)
- Danlian Huang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, People's Republic of China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, People's Republic of China.
| | - Chanjuan Hu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, People's Republic of China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, People's Republic of China
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, People's Republic of China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, People's Republic of China.
| | - Min Cheng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, People's Republic of China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, People's Republic of China
| | - Piao Xu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, People's Republic of China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, People's Republic of China
| | - Xiaomin Gong
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, People's Republic of China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, People's Republic of China
| | - Rongzhong Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, People's Republic of China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, People's Republic of China
| | - Wenjing Xue
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, People's Republic of China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, People's Republic of China
| |
Collapse
|
328
|
Floris B, Galloni P, Sabuzi F, Conte V. Metal systems as tools for soil remediation. Inorganica Chim Acta 2017. [DOI: 10.1016/j.ica.2016.04.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
329
|
Hahladakis JN, Latsos A, Gidarakos E. Performance of electroremediation in real contaminated sediments using a big cell, periodic voltage and innovative surfactants. JOURNAL OF HAZARDOUS MATERIALS 2016; 320:376-385. [PMID: 27585269 DOI: 10.1016/j.jhazmat.2016.08.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 08/01/2016] [Accepted: 08/02/2016] [Indexed: 06/06/2023]
Abstract
The present work focused on evaluating the electrokinetic (EK) treatment of real contaminated sediments with toxic metals and polycyclic aromatic hydrocarbons (PAHs), using a big laboratory EK cell, periodic voltage and recently tested non-ionic surfactants. The results indicated that the "day on-night off" application mode of voltage, in conjunction with the selected solubilising agents, favoured the overall EK process. Arsenic, nickel and chromium exhibited the highest removal percentages, obtaining 83%, 67% and 63%, respectively, while zinc and lead attained 54% and 41% at the maximum. Furthermore, in the experiments where the non-ionic surfactants were introduced in the electrolyte chambers, there was a major uniformly removal of PAHs from the entire sediment across the EK cell, indicating the high solubilisation capacity of the enhancing agents. Essentially, transport and in some cases removal of PAHs (particularly from sections adjacent to the electrolyte compartments) also occurred in the unenhanced EK run, mainly due their negative charge, their potential weak bonds to the soil matrix and to the periodic application of voltage. Maximum removal was obtained by the use of Nonidet P40 where app. 1/3 (ca. 6498μg out of 20145μg) of the total initial amount of PAHs were removed from the cell.
Collapse
Affiliation(s)
- John N Hahladakis
- School of Environmental Engineering, Technical University of Crete, Politechnioupolis, Chania 73100, Greece; School of Civil Engineering, University of Leeds, Woodhouse Lane, LS2 9JT, Leeds, United Kingdom.
| | - Antonis Latsos
- School of Environmental Engineering, Technical University of Crete, Politechnioupolis, Chania 73100, Greece
| | - Evangelos Gidarakos
- School of Environmental Engineering, Technical University of Crete, Politechnioupolis, Chania 73100, Greece.
| |
Collapse
|
330
|
Zhou R, Xu Y, Shen J, Han L, Chen X, Feng X, Kuang X. Urinary KIM-1: a novel biomarker for evaluation of occupational exposure to lead. Sci Rep 2016; 6:38930. [PMID: 27966578 PMCID: PMC5155212 DOI: 10.1038/srep38930] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 11/15/2016] [Indexed: 11/23/2022] Open
Abstract
Chronic occult lead poisoning often develops ensuing occupational lead exposure. Early diagnosis of lead poisoning is critical for timely discontinuation of lead exposure and for prognosis. This study explored the value of urinary kidney injury molecule-1 (KIM-1) in diagnosing renal injury induced by lead at an early stage. We retrospectively analyzed 92 workers exposed to occupational lead and demonstrated a better correlation ship between blood lead levels and urine excretion of KIM-1 than other traditional renal injury biomarkers following creatinine adjustment. Receiver operating characteristic curve analysis of the ability of diverse biomarkers for predicting kidney injury in lead-exposed workers demonstrated that the order of predicting accuracy of the studied biomarkers is as follows: urinary KIM-1-to-creatinine ratio > urinary N-acetyl-β-(D)-glucosaminidase-to-creatinine ratio > urinary β2-microglobulin-to-creatinine ratio > urinary α1-microglobulin-to-creatinine ratio, with the Youden index being 16.59 ng/g, 14.01 U/g, 0.15 mg/g, and 4.63 mg/g, respectively. Collectively, our findings suggest that short-period occupational lead exposure may cause injury of renal tubules. Urinary excretion of KIM-1 correlates with blood lead levels better than other traditional renal injury biomarkers, including N-acetyl-β-(D)-glucosaminidase, α1-microglobulin, and β2-microglobulin. Longitudinal surveillance of urinary KIM-1 may aid for early diagnosis of renal tubular injury in workers with occupational lead exposure.
Collapse
Affiliation(s)
- Rong Zhou
- Department of Nephrology, Yangpu Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yahong Xu
- Department of Nephrology, Yangpu Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jie Shen
- Department of Nephrology, Yangpu Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lin Han
- Department of Nephrology, Yangpu Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xi Chen
- Department of Nephrology, Yangpu Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xuefang Feng
- Department of Nephrology, Yangpu Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xingya Kuang
- Department of Occupational medicine, Yangpu Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
331
|
Falciglia PP, Malarbì D, Vagliasindi FG. Removal of mercury from marine sediments by the combined application of a biodegradable non-ionic surfactant and complexing agent in enhanced-electrokinetic treatment. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2016.11.142] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
332
|
Picard F, Chaouki J. Selective extraction of heavy metals from two real calcium-rich contaminated soils by a modified NTA. JOURNAL OF HAZARDOUS MATERIALS 2016; 318:48-53. [PMID: 27399146 DOI: 10.1016/j.jhazmat.2016.06.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 06/21/2016] [Accepted: 06/22/2016] [Indexed: 06/06/2023]
Abstract
The objective of this work is to evaluate the selectivity and solubility of a buffer chelant. The buffer chelant is ethylenediamine-nitrilotriacetic acid (NTA·3EDA) and its performance is compared to NTA. All experiments were conducted on batches of 25g of soil in an autoclave at 25°C or 75°C with a constant L:S ratio of 2. The experiments were conducted under a CO2 overhead to lower the reaction pH. The buffer chelant allows a 5-fold selectivity increase for heavy metals while increasing or maintaining the same molar extraction yield compared to NTA. These selectivity and extraction results stand out from those obtained with other neutralized NTA. NTA, EDA and the acid gas CO2 are the three necessary ligands in the NTA·3EDA extraction mechanism. A reaction temperature setpoint increase causes a higher Fe dissolution. However, this does not lower the NTA and NTA·3EDA selectivity for heavy metals. Thus, Fe is a non-interfering cation in the NTA and NTA·3EDA extraction mechanisms. This non-interference is less apparent in the NTA extraction mechanism. The present work intends to share another perspective on the design of more selective and soluble chelants for heavy metal extraction.
Collapse
Affiliation(s)
- François Picard
- Department of Chemical Engineering, École Polytechnique de Montréal, P.O. Box 6079, Stn. Centre-Ville, Montréal, Québec, H3C 3A7, Canada
| | - Jamal Chaouki
- Department of Chemical Engineering, École Polytechnique de Montréal, P.O. Box 6079, Stn. Centre-Ville, Montréal, Québec, H3C 3A7, Canada.
| |
Collapse
|
333
|
Freitas BG, Brito JGM, Brasileiro PPF, Rufino RD, Luna JM, Santos VA, Sarubbo LA. Formulation of a Commercial Biosurfactant for Application as a Dispersant of Petroleum and By-Products Spilled in Oceans. Front Microbiol 2016; 7:1646. [PMID: 27803697 PMCID: PMC5067411 DOI: 10.3389/fmicb.2016.01646] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 10/04/2016] [Indexed: 11/13/2022] Open
Abstract
Oil spills in oceans cause irreparable damage to marine life and harm the coastal populations of affected areas. It is therefore fundamental to develop treatment strategies for such spills. Currently, chemical dispersants have been used during oil spills, although these agents have been increasingly restricted due to their toxic potential. Thus, the aim of the present study was to formulate a biodegradable commercial biosurfactant for application as a dispersant. Biosurfactants are scientifically known biomolecules produced by microorganisms capable of allowing water-oil interaction. Thus, a biosurfactant was produced by the yeast Candida bombicola URM 3718 cultivated in industrial waste and formulated with the addition of a potassium sorbate preservative for fractionated sterilization (tyndallization) and the combination of fluent vaporization with the preservative. After formulation, samples were stored for 120 days, followed by surface tension, emulsification and oil dispersant tests in sea water. The results were promising for the biosurfactant formulated with the preservative, which demonstrated stability and an absence of toxicity in experiments with a marine indicator. The commercial biosurfactant was tested at different pH values, temperatures and in the presence of salt, demonstrating potential industrial application at a cost compatible with the environmental field. The formulation process developed in this research was patented in the Brazilian National Intellectual Property Institute (patent number BR1020140179631).
Collapse
Affiliation(s)
- Bruno G. Freitas
- Center of Sciences and Technology, Catholic University of PernambucoRecife, Brazil
- Advanced Institute of Technology and InnovationRecife, Brazil
| | - Juliana G. M. Brito
- Center of Sciences and Technology, Catholic University of PernambucoRecife, Brazil
- Advanced Institute of Technology and InnovationRecife, Brazil
| | - Pedro P. F. Brasileiro
- Center of Sciences and Technology, Catholic University of PernambucoRecife, Brazil
- Advanced Institute of Technology and InnovationRecife, Brazil
| | - Raquel D. Rufino
- Center of Sciences and Technology, Catholic University of PernambucoRecife, Brazil
- Advanced Institute of Technology and InnovationRecife, Brazil
| | - Juliana M. Luna
- Center of Sciences and Technology, Catholic University of PernambucoRecife, Brazil
- Advanced Institute of Technology and InnovationRecife, Brazil
| | - Valdemir A. Santos
- Center of Sciences and Technology, Catholic University of PernambucoRecife, Brazil
- Advanced Institute of Technology and InnovationRecife, Brazil
| | - Leonie A. Sarubbo
- Center of Sciences and Technology, Catholic University of PernambucoRecife, Brazil
- Advanced Institute of Technology and InnovationRecife, Brazil
| |
Collapse
|
334
|
Chen F, Yang B, Ma J, Qu J, Liu G. Decontamination of electronic waste-polluted soil by ultrasound-assisted soil washing. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:20331-20340. [PMID: 27449016 DOI: 10.1007/s11356-016-7271-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 07/15/2016] [Indexed: 06/06/2023]
Abstract
Laboratorial scale experiments were performed to evaluate the efficacy of a washing process using the combination of methyl-β-cyclodextrin (MCD) and tea saponin (TS) for simultaneous desorption of hydrophobic organic contaminants (HOCs) and heavy metals from an electronic waste (e-waste) site. Ultrasonically aided mixing of the field contaminated soil with a combination of MCD and TS solutions simultaneously mobilizes most of polybrominated diphenyl ethers (PBDEs), polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs), and the analyte metal (Pb, Cu, and Ni) burdens. It is found that 15 g/L MCD and 10 g/L TS is an efficient reagent combination reconciling extraction performance and reagent costs. Under these conditions, the removal efficiencies of HOCs and heavy metals are 93.5 and 91.2 %, respectively, after 2 cycles of 60-min ultrasound-assisted washing cycles. By contrast, 86.3 % of HOCs and 88.4 % of metals are removed from the soil in the absence of ultrasound after 3 cycles of 120-min washing. The ultrasound-assisted soil washing could generate high removal efficiency and decrease the operating time significantly. Finally, the feasibility of regenerating and reusing the spent washing solution in extracting pollutants from the soil is also demonstrated. By application of this integrated technology, it is possible to recycle the washing solution for a purpose to reduce the consumption of surfactant solutions. Collectively, it has provided an effective and economic treatment of e-waste-polluted soil.
Collapse
Affiliation(s)
- Fu Chen
- Low Carbon Energy Institute, China University of Mining and Technology, Xuzhou, 221008, People's Republic of China.
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou, 221043, People's Republic of China.
- School of Mathematical and Geospatial Sciences, Royal Melbourne Institute of Technology University, Melbourne, 3000, Australia.
| | - Baodan Yang
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou, 221043, People's Republic of China
| | - Jing Ma
- Low Carbon Energy Institute, China University of Mining and Technology, Xuzhou, 221008, People's Republic of China
| | - Junfeng Qu
- Low Carbon Energy Institute, China University of Mining and Technology, Xuzhou, 221008, People's Republic of China
| | - Gangjun Liu
- School of Mathematical and Geospatial Sciences, Royal Melbourne Institute of Technology University, Melbourne, 3000, Australia
| |
Collapse
|
335
|
Fan G, Wang Y, Fang G, Zhu X, Zhou D. Review of chemical and electrokinetic remediation of PCBs contaminated soils and sediments. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2016; 18:1140-1156. [PMID: 27711886 DOI: 10.1039/c6em00320f] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Polychlorinated biphenyls (PCBs) are manmade organic compounds, and pollution due to PCBs has been a global environmental problem because of their persistence, long-range atmospheric transport and bioaccumulation. Many physical, chemical and biological technologies have been utilized to remediate PCBs contaminated soils and sediments, and there are some emerging new technologies and combined methods that may provide cost-effective alternatives to the existing remediation practice. This review provides a general overview on the recent developments in chemical treatment and electrokinetic remediation (EK) technologies related to PCBs remediation. In particular, four technologies including photocatalytic degradation of PCBs combined with soil washing, Fe-based reductive dechlorination, advanced oxidation process, and EK/integrated EK technology (e.g., EK coupled with chemical oxidation, nanotechnology and bioremediation) are reviewed in detail. We focus on the fundamental principles and governing factors of chemical technologies, and EK/integrated EK technologies. Comparative analysis of these technologies including their major advantages and disadvantages is summarized. The existing problems and future prospects of these technologies regarding PCBs remediation are further highlighted.
Collapse
Affiliation(s)
- Guangping Fan
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China. and China Construction Power and Environment Engineering Co., Ltd., Nanjing, China
| | - Yu Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China.
| | - Guodong Fang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China.
| | - Xiangdong Zhu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai, China
| | - Dongmei Zhou
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China.
| |
Collapse
|
336
|
Haftka JJH, Scherpenisse P, Oetter G, Hodges G, Eadsforth CV, Kotthoff M, Hermens JLM. Critical micelle concentration values for different surfactants measured with solid-phase microextraction fibers. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2016; 35:2173-2181. [PMID: 26873883 DOI: 10.1002/etc.3397] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 01/15/2016] [Accepted: 02/10/2016] [Indexed: 06/05/2023]
Abstract
The amphiphilic nature of surfactants drives the formation of micelles at the critical micelle concentration (CMC). Solid-phase microextraction (SPME) fibers were used in the present study to measure CMC values of 12 nonionic, anionic, cationic, and zwitterionic surfactants. The SPME-derived CMC values were compared to values determined using a traditional surface tension method. At the CMC of a surfactant, a break in the relationship between the concentration in SPME fibers and the concentration in water is observed. The CMC values determined with SPME fibers deviated by less than a factor of 3 from values determined with a surface tension method for 7 out of 12 compounds. In addition, the fiber-water sorption isotherms gave information about the sorption mechanism to polyacrylate-coated SPME fibers. A limitation of the SPME method is that CMCs for very hydrophobic cationic surfactants cannot be determined when the cation exchange capacity of the SPME fibers is lower than the CMC value. The advantage of the SPME method over other methods is that CMC values of individual compounds in a mixture can be determined with this method. However, CMC values may be affected by the presence of compounds with other chain lengths in the mixture because of possible mixed micelle formation. Environ Toxicol Chem 2016;35:2173-2181. © 2016 SETAC.
Collapse
Affiliation(s)
- Joris J-H Haftka
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | - Peter Scherpenisse
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | - Günter Oetter
- Material Physics and Analytics, BASF SE, Ludwigshafen, Germany
| | - Geoff Hodges
- Safety and Environmental Assurance Centre, Unilever, Sharnbrook, Bedford, United Kingdom
| | | | - Matthias Kotthoff
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Schmallenberg, Germany
| | - Joop L M Hermens
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
337
|
Basu M, Choudhury S, Sharma J, Hassan P. Equilibrium and dynamic interfacial behavior of tetra (2-ethyl hexyl) diglycolamide (TEHDGA) - TritonX-100 mixtures. J Mol Liq 2016. [DOI: 10.1016/j.molliq.2016.06.070] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
338
|
Kostarelos K, Lenschow SR, Stylianou MA, de Blanc PC, Mygind MM, Christensen AG. Jet A fuel recovery using micellar flooding: Design and implementation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 563-564:890-898. [PMID: 27019952 DOI: 10.1016/j.scitotenv.2016.02.211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 02/29/2016] [Accepted: 02/29/2016] [Indexed: 06/05/2023]
Abstract
Surfactants offer two mechanisms for recovering NAPLs: 1) to mobilize NAPL by reducing NAPL/water interfacial tension, and; 2) to increase the NAPL's aqueous solubility-called solubilization-as an enhancement to pump & treat. The second approach has been well-studied and applied successfully in several pilot-scale and a few full-scale tests within the last 15years, known as Surfactant Enhanced Aquifer Remediation (SEAR). A useful source of information for this second approach is the "Surfactant-enhanced aquifer remediation (SEAR) design manual" from the U.S. Navy Facilities Engineering Command. Few attempts, however, have been made at recovering NAPLs using the mobilization approach presented in this paper. Now, a full-scale field implementation of the mobilization approach is planned to recover an LNAPL (Jet A fuel) from a surficial sand aquifer located in Denmark using a smaller amount of surfactant solution and fewer PVs of throughput compared with the SEAR approach. The approach will rely on mobilizing the LNAPL so that it is recovered ahead of the surfactant microemulsion, also known as a micellar flood. This paper will review the laboratory work performed as part of the design for a full-scale implementation of a micellar flood. Completed lab work includes screening of surfactants, phase behavior and detailed salinity scans of the most promising formulations, and generating a ternary diagram to be used for the numerical simulations of the field application. The site owners and regulators were able to make crucial decisions such as the anticipated field results based on this work.
Collapse
Affiliation(s)
- Konstantinos Kostarelos
- Chemical and Biomolecular Engineering Department, University of Houston, Houston, TX 77004, USA
| | | | - Marinos A Stylianou
- Civil & Environmental Engineering, Subsurface Research Laboratory, Nireas-IWRC, The University of Cyprus, 20537-1678 Nicosia, Cyprus
| | | | - Mette Marie Mygind
- Danish Ministry of Defense, Estates and Infrastructure Organisation, Environmental and Nature Section, Denmark
| | | |
Collapse
|
339
|
Cederlund H, Börjesson E. Hot foam for weed control-Do alkyl polyglucoside surfactants used as foaming agents affect the mobility of organic contaminants in soil? JOURNAL OF HAZARDOUS MATERIALS 2016; 314:312-317. [PMID: 27149400 DOI: 10.1016/j.jhazmat.2016.04.061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 03/29/2016] [Accepted: 04/24/2016] [Indexed: 06/05/2023]
Abstract
Use of alkyl polyglucosides (APGs) as a foaming agent during hot water weed control may influence the environmental fate of organic contaminants in soil. We studied the effects of the APG-based foaming agent NCC Spuma (C8-C10) on leaching of diuron, glyphosate, and polycyclic aromatic hydrocarbons (PAHs) in sand columns. We also examined how APG concentration affected the apparent water solubility and adsorption of the herbicides and of the PAHs acenaphthene, acenaphthylene and fluorene. Application of APGs at the recommended concentration of 0.3% did not significantly affect leaching of any of the compounds studied. However, at a concentration of 1.5%, leaching of both diuron and glyphosate was significantly increased. The increased leaching corresponded to an increase in apparent water solubility of diuron and a decrease in glyphosate adsorption to the sand. However, APG addition did not significantly affect the mobility of PAHs even though their apparent water solubility was increased. These results suggest that application of APG-based foam during hot water weed control does not significantly affect the mobility of organic contaminants in soil if used according to recommendations. Moreover, they suggest that APGs could be useful for soil bioremediation purposes if higher concentrations are used.
Collapse
Affiliation(s)
- H Cederlund
- Swedish University of Agricultural Sciences, Uppsala BioCenter, Department of Microbiology, Box 7025, Uppsala, Sweden.
| | - E Börjesson
- Swedish University of Agricultural Sciences, Uppsala BioCenter, Department of Microbiology, Box 7025, Uppsala, Sweden
| |
Collapse
|
340
|
Bahemmat M, Farahbakhsh M, Kianirad M. Humic substances-enhanced electroremediation of heavy metals contaminated soil. JOURNAL OF HAZARDOUS MATERIALS 2016; 312:307-318. [PMID: 27058638 DOI: 10.1016/j.jhazmat.2016.03.038] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Revised: 02/17/2016] [Accepted: 03/14/2016] [Indexed: 06/05/2023]
Abstract
The effects of catholyte conditioning and the use of humic acids (HAs) and fulvic acids (FAs) as chelating agents to improve electrokinetic (EK) remediation efficiency were investigated using a real and highly contaminated soil. By applying a constant voltage (2.0V/cm) to the soil, pH and current changes and heavy metals (HMs) concentration were investigated through a range of durations and positions. The observations demonstrated that both catholyte conditioning with 0.1N HNO3 and using humic substances (HSs) enhance remediation efficiency. After 20 days of EK treatment, the removal efficiency of HMs in HS-enhanced EK remediation was about 2.0-3.0 times greater than when unenhanced. The quantity of HMs moving toward the cathode exceeded the anode, from which it could be reasonably inferred that most negatively charged HM-HS complexes were moved by electroosmotic forces. Further, free HM cations and positively charged complexed HMs migrated to the catholyte compartment by electromigration. The results obtained in this study, demonstrate the suitability of HS-enhanced EK remediation in HMs contaminated soil.
Collapse
Affiliation(s)
- Mahdi Bahemmat
- Department of Soil Science, Faculty of Agricultural Engineering and Technology, University of Tehran, Iran.
| | - Mohsen Farahbakhsh
- Department of Soil Science, Faculty of Agricultural Engineering and Technology, University of Tehran, Iran.
| | - Mehran Kianirad
- Department of Biotechnology, Iranian Research Organization for Science and Technology (IROST), Tehran, Iran.
| |
Collapse
|
341
|
Gheju M, Balcu I, Mosoarca G. Removal of Cr(VI) from aqueous solutions by adsorption on MnO2. JOURNAL OF HAZARDOUS MATERIALS 2016; 310:270-277. [PMID: 26947189 DOI: 10.1016/j.jhazmat.2016.02.042] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Revised: 02/19/2016] [Accepted: 02/20/2016] [Indexed: 06/05/2023]
Abstract
Adsorption of Cr(VI) on MnO2 was investigated with respect to effect of pH, temperature, ionic strength, initial Cr(VI) concentration, co-presence of different anions (HCO3(-), SO4(2-), H2PO4(-), NO3(-) and Cl(-)) and of low molecular weight natural organic materials (LMWNOM) (acetate, oxalate and citrate). The process was rapid during the first 3-5min, reaching equilibrium after one hour. Adsorption decreased with increasing pH, temperature and Cr(VI) initial concentration, and increased with increasing ionic strength. Co-presence of phosphate, sulfate, bicarbonate, citrate and oxalate hindered Cr(VI) adsorption, whereas nitrate, chloride and acetate did not exert any notable influence. The overall order of Cr(VI) adsorption suppression due to co-presence of anions and LMWNOM was H2PO4(-)>HCO3(-)>SO4(2-), and oxalate>citrate, respectively. Highest experimental equilibrium sorption capacity (0.83mgg(-1)) was obtained at 20°C and pH 5.9, while lowest (0.18mgg(-1)) was noticed in the co-presence of H2PO4(-), at 20°C and pH 6.9. Adsorption kinetics was successfully fitted by pseudo-second-order model. Mechanisms for both specific and non-specific adsorption are likely to be involved, while rate-controlling step involved both intra-particle and film diffusion processes. Cr(VI) was strongly bound to MnO2, which makes risks of its subsequent liberation into the environment to be low.
Collapse
Affiliation(s)
- Marius Gheju
- Politehnica University Timisoara, Faculty of Industrial Chemistry and Environmental Engineering, Bd. V. Parvan Nr. 6, 300223 Timisoara, Romania.
| | - Ionel Balcu
- National Institute for Research and Development in Electrochemistry and Condensed Matter, Str. Dr. Aurel Paunescu Podeanu Nr. 144, 300587 Timisoara, Romania
| | - Giannin Mosoarca
- Politehnica University Timisoara, Faculty of Industrial Chemistry and Environmental Engineering, Bd. V. Parvan Nr. 6, 300223 Timisoara, Romania
| |
Collapse
|
342
|
Shah A, Shahzad S, Munir A, Nadagouda MN, Khan GS, Shams DF, Dionysiou DD, Rana UA. Micelles as Soil and Water Decontamination Agents. Chem Rev 2016; 116:6042-74. [PMID: 27136750 DOI: 10.1021/acs.chemrev.6b00132] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Contaminated soil and water pose a serious threat to human health and ecosystem. For the treatment of industrial effluents or minimizing their detrimental effects, preventive and remedial approaches must be adopted prior to the occurrence of any severe environmental, health, or safety hazard. Conventional treatment methods of wastewater are insufficient, complicated, and expensive. Therefore, a method that could use environmentally friendly surfactants for the simultaneous removal of both organic and inorganic contaminants from wastewater is deemed a smart approach. Surfactants containing potential donor ligands can coordinate with metal ions, and thus such compounds can be used for the removal of toxic metals and organometallic compounds from aqueous systems. Surfactants form host-guest complexes with the hydrophobic contaminants of water and soil by a mechanism involving the encapsulation of hydrophobes into the self-assembled aggregates (micelles) of surfactants. However, because undefined amounts of surfactants may be released into the aqueous systems, attention must be paid to their own environmental risks as well. Moreover, surfactant remediation methods must be carefully analyzed in the laboratory before field implementation. The use of biosurfactants is the best choice for the removal of water toxins as such surfactants are associated with the characteristics of biodegradability, versatility, recovery, and reuse. This Review is focused on the currently employed surfactant-based soil and wastewater treatment technologies owing to their critical role in the implementation of certain solutions for controlling pollution level, which is necessary to protect human health and ensure the quality standard of the aquatic environment.
Collapse
Affiliation(s)
- Afzal Shah
- Department of Chemistry, Quaid-i-Azam University , Islamabad 45320, Pakistan
| | - Suniya Shahzad
- Department of Chemistry, Quaid-i-Azam University , Islamabad 45320, Pakistan
| | - Azeema Munir
- Department of Chemistry, Quaid-i-Azam University , Islamabad 45320, Pakistan
| | - Mallikarjuna N Nadagouda
- Department of Mechanical and Materials Engineering, Wright State University , Dayton, Ohio 45324, United States
| | - Gul Shahzada Khan
- Department of Chemistry, Shaheed Benazir Bhutto University , Sheringal, Dir (Upper), 18000 Khyber Pakhtunkhwa, Pakistan
| | - Dilawar Farhan Shams
- Department of Environmental Sciences, Abdul Wali Khan University Mardan , 23200 Khyber Pakhtunkhwa, Pakistan
| | - Dionysios D Dionysiou
- Environmental Engineering and Science Program, Department of Biomedical, Chemical and Environmental Engineering, University of Cincinnati , Cincinnati, Ohio 45221-0012, United States
| | - Usman Ali Rana
- Sustainable Energy Technologies Center, College of Engineering, King Saud University , PO Box 800, Riyadh 11421, Saudi Arabia
| |
Collapse
|
343
|
Ishiguro M, Koopal LK. Surfactant adsorption to soil components and soils. Adv Colloid Interface Sci 2016; 231:59-102. [PMID: 26969282 DOI: 10.1016/j.cis.2016.01.006] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 09/18/2015] [Accepted: 01/27/2016] [Indexed: 10/22/2022]
Abstract
Soils are complex and widely varying mixtures of organic matter and inorganic materials; adsorption of surfactants to soils is therefore related to the soil composition. We first discuss the properties of surfactants, including the critical micelle concentration (CMC) and surfactant adsorption on water/air interfaces, the latter gives an impression of surfactant adsorption to a hydrophobic surface and illustrates the importance of the CMC for the adsorption process. Then attention is paid to the most important types of soil particles: humic and fulvic acids, silica, metal oxides and layered aluminosilicates. Information is provided on their structure, surface properties and primary (proton) charge characteristics, which are all important for surfactant binding. Subsequently, the adsorption of different types of surfactants on these individual soil components is discussed in detail, based on mainly experimental results and considering the specific (chemical) and electrostatic interactions, with hydrophobic attraction as an important component of the specific interactions. Adsorption models that can describe the features semi-quantitatively are briefly discussed. In the last part of the paper some trends of surfactant adsorption on soils are briefly discussed together with some complications that may occur and finally the consequences of surfactant adsorption for soil colloidal stability and permeability are considered. When we seek to understand the fate of surfactants in soil and aqueous environments, the hydrophobicity and charge density of the soil or soil particles, must be considered together with the structure, hydrophobicity and charge of the surfactants, because these factors affect the adsorption. The pH and ionic strength are important parameters with respect to the charge density of the particles. As surfactant adsorption influences soil structure and permeability, insight in surfactant adsorption to soil particles is useful for good soil management.
Collapse
|
344
|
Zhang J, Hua P, Krebs P. The influences of dissolved organic matter and surfactant on the desorption of Cu and Zn from road-deposited sediment. CHEMOSPHERE 2016; 150:63-70. [PMID: 26891358 DOI: 10.1016/j.chemosphere.2016.02.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 01/14/2016] [Accepted: 02/02/2016] [Indexed: 06/05/2023]
Abstract
This study showcases the desorption behaviours of copper (Cu) and zinc (Zn) in road-deposited sediment (RDS). Batch tests were conducted to investigate the influences of rainwater, major wastewater constituents of dissolved organic matter (DOM) and surfactant on the metals leaching from RDS. Results show that the rainwater solutions considerably enhanced the total amounts of Cu (319 ± 46% of the total leaching amount by blank solutions) and Zn (617 ± 130%) released from RDS compared with blank solutions. DOM enhanced the leaching of Cu from RDS at a neutral pH. By contrast, DOM had an adverse effect on the mobilization of Zn. In the absence of DOM, a higher concentration of sodium dodecyl sulfonate (SDS) slightly increased the release of Cu from RDS than a lower concentration of SDS. However, the existence of SDS suppressed the release of Zn from RDS.
Collapse
Affiliation(s)
- Jin Zhang
- Institute of Urban Water Management, Technische Universität Dresden, 01062 Dresden, Germany.
| | - Pei Hua
- Chair of Water Supply Engineering, Institute of Urban Water Management, Technische Universität Dresden, 01062 Dresden, Germany.
| | - Peter Krebs
- Institute of Urban Water Management, Technische Universität Dresden, 01062 Dresden, Germany
| |
Collapse
|
345
|
Trellu C, Mousset E, Pechaud Y, Huguenot D, van Hullebusch ED, Esposito G, Oturan MA. Removal of hydrophobic organic pollutants from soil washing/flushing solutions: A critical review. JOURNAL OF HAZARDOUS MATERIALS 2016; 306:149-174. [PMID: 26707974 DOI: 10.1016/j.jhazmat.2015.12.008] [Citation(s) in RCA: 232] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 12/04/2015] [Accepted: 12/07/2015] [Indexed: 05/04/2023]
Abstract
The release of hydrophobic organoxenobiotics such as polycyclic aromatic hydrocarbons, petroleum hydrocarbons or polychlorobiphenyls results in long-term contamination of soils and groundwaters. This constitutes a common concern as these compounds have high potential toxicological impact. Therefore, the development of cost-effective processes with high pollutant removal efficiency is a major challenge for researchers and soil remediation companies. Soil washing (SW) and soil flushing (SF) processes enhanced by the use of extracting agents (surfactants, biosurfactants, cyclodextrins etc.) are conceivable and efficient approaches. However, this generates high strength effluents containing large amount of extracting agent. For the treatment of these SW/SF solutions, the goal is to remove target pollutants and to recover extracting agents for further SW/SF steps. Heterogeneous photocatalysis, technologies based on Fenton reaction chemistry (including homogeneous photocatalysis such as photo-Fenton), ozonation, electrochemical processes and biological treatments have been investigated. Main advantages and drawbacks as well as target pollutant removal mechanisms are reviewed and compared. Promising integrated treatments, particularly the use of a selective adsorption step of target pollutants and the combination of advanced oxidation processes with biological treatments, are also discussed.
Collapse
Affiliation(s)
- Clément Trellu
- Université Paris-Est, Laboratoire Géomatériaux et Environnement (EA 4508), UPEM, Marne-la-Vallée, 77454, France
| | - Emmanuel Mousset
- Université Paris-Est, Laboratoire Géomatériaux et Environnement (EA 4508), UPEM, Marne-la-Vallée, 77454, France
| | - Yoan Pechaud
- Université Paris-Est, Laboratoire Géomatériaux et Environnement (EA 4508), UPEM, Marne-la-Vallée, 77454, France
| | - David Huguenot
- Université Paris-Est, Laboratoire Géomatériaux et Environnement (EA 4508), UPEM, Marne-la-Vallée, 77454, France
| | - Eric D van Hullebusch
- Université Paris-Est, Laboratoire Géomatériaux et Environnement (EA 4508), UPEM, Marne-la-Vallée, 77454, France
| | - Giovanni Esposito
- University of Cassino and the Southern Lazio, Department of Civil and Mechanical Engineering, Via Di Biasio, 43, Cassino, 03043 FR, Italy
| | - Mehmet A Oturan
- Université Paris-Est, Laboratoire Géomatériaux et Environnement (EA 4508), UPEM, Marne-la-Vallée, 77454, France.
| |
Collapse
|
346
|
Ma KY, Sun MY, Dong W, He CQ, Chen FL, Ma YL. Effects of nutrition optimization strategy on rhamnolipid production in a Pseudomonas aeruginosa strain DN1 for bioremediation of crude oil. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2016. [DOI: 10.1016/j.bcab.2016.03.008] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
347
|
Biosurfactants: Multifunctional Biomolecules of the 21st Century. Int J Mol Sci 2016; 17:401. [PMID: 26999123 PMCID: PMC4813256 DOI: 10.3390/ijms17030401] [Citation(s) in RCA: 396] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 03/03/2016] [Accepted: 03/11/2016] [Indexed: 01/11/2023] Open
Abstract
In the era of global industrialisation, the exploration of natural resources has served as a source of experimentation for science and advanced technologies, giving rise to the manufacturing of products with high aggregate value in the world market, such as biosurfactants. Biosurfactants are amphiphilic microbial molecules with hydrophilic and hydrophobic moieties that partition at liquid/liquid, liquid/gas or liquid/solid interfaces. Such characteristics allow these biomolecules to play a key role in emulsification, foam formation, detergency and dispersal, which are desirable qualities in different industries. Biosurfactant production is considered one of the key technologies for development in the 21st century. Besides exerting a strong positive impact on the main global problems, biosurfactant production has considerable importance to the implantation of sustainable industrial processes, such as the use of renewable resources and "green" products. Biodegradability and low toxicity have led to the intensification of scientific studies on a wide range of industrial applications for biosurfactants in the field of bioremediation as well as the petroleum, food processing, health, chemical, agricultural and cosmetic industries. In this paper, we offer an extensive review regarding knowledge accumulated over the years and advances achieved in the incorporation of biomolecules in different industries.
Collapse
|
348
|
Chen F, Tan M, Ma J, Li G, Qu J. Restoration of manufactured gas plant site soil through combined ultrasound-assisted soil washing and bioaugmentation. CHEMOSPHERE 2016; 146:289-299. [PMID: 26735729 DOI: 10.1016/j.chemosphere.2015.12.050] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Revised: 11/22/2015] [Accepted: 12/16/2015] [Indexed: 06/05/2023]
Abstract
An effective ex situ soil remediation technology was developed in this study to remove polycyclic aromatic hydrocarbons (PAHs) and heavy metals in a mixed contaminated site. Ultrasonication (20 kHz, 45 min) combined with methyl-β-cyclodextrin (75 g/L) and S,S-ethylenediaminedisuccinic acid (25 g/L) were efficient in extracting mixed pollutants from the soil. After two successive washing cycles, the removal efficiency of PAHs and heavy metals were approximately 84.5% and 81.3%, respectively. The high removal of metals remarkably reduced soil microtoxicity and thus activated biodegradation activity towards PAHs. Inoculation of PAHs-degrading bacterial strains with nutrients addition further removed 86.8% of residual PAHs in 16 weeks. These results were indicated by the significant increase in the number of PAH degraders and soil enzyme activity. After treatment, the residual levels of individual PAHs and heavy metals could meet Chinese soil quality standard for residential use. The proposed combined cleanup strategy proved to be effective and environmentally friendly for remediation of mixed-contaminated site.
Collapse
Affiliation(s)
- Fu Chen
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou, Jiangsu 221008, China; Low Carbon Energy Institute, China University of Mining and Technology, Xuzhou, Jiangsu 221008, China.
| | - Min Tan
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou, Jiangsu 221008, China
| | - Jing Ma
- Low Carbon Energy Institute, China University of Mining and Technology, Xuzhou, Jiangsu 221008, China
| | - Gang Li
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou, Jiangsu 221008, China
| | - Junfeng Qu
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou, Jiangsu 221008, China
| |
Collapse
|
349
|
Liang X, Guo C, Wei Y, Lin W, Yi X, Lu G, Dang Z. Cosolubilization synergism occurrence in codesorption of PAH mixtures during surfactant-enhanced remediation of contaminated soil. CHEMOSPHERE 2016; 144:583-590. [PMID: 26397474 DOI: 10.1016/j.chemosphere.2015.09.038] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 07/07/2015] [Accepted: 09/08/2015] [Indexed: 06/05/2023]
Abstract
Surfactant-enhanced remediation (SER) has been widely applied in decontaminating PAH-polluted soil. Most researches focus on evaluating washing efficiency without considering pollutants' mutual interaction. This study aims to investigate cosolubilization effect between phenanthrene (Phe) and pyrene (Pyr) in nonionic surfactant Triton X-100 (TX100) solution on their codesorption performance from soil. Cosolubilization experiment showed that, when cosolubilized, solubility of Phe and Pyr in TX100 increased by 15.38% and 18.19%, respectively, as quantified by the deviation ratio of molar solubilization ratio in single and binary solute solubilization systems. The synergism may be due to the enlarged micelle volume caused by PAHs solubilized in the shell region of the micelle. The cosolubilization effect was further observed in the soil washing process. The strengthened TX100 solubilization capacity towards Phe and Pyr could increase the two PAHs' codesorption efficiency from soil, accompanied by synergistic extent of 6-15%. However, synergism in codesorption was weaker than that observed in the cosolubilization system, which may be related to surfactant loss to soil and PAH partition into soil organic matter and the sorbed surfactants. The improved remediation performance during codesorption of mixed PAHs implies the significance of combining PAHs' mutual interaction into evaluating SER, which may reduce the surfactant washing concentration and save remediation cost.
Collapse
Affiliation(s)
- Xujun Liang
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, PR China
| | - Chuling Guo
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, PR China.
| | - Yanfu Wei
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, PR China
| | - Weijia Lin
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, PR China
| | - Xiaoyun Yi
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, PR China
| | - Guining Lu
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, PR China
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, PR China.
| |
Collapse
|
350
|
Rossi EM, Beilke L, Kochhann M, Sarzi DH, Tondo EC. Biosurfactant Produced by Salmonella Enteritidis SE86 Can Increase Adherence and Resistance to Sanitizers on Lettuce Leaves (Lactuca sativa L., cichoraceae). Front Microbiol 2016; 7:9. [PMID: 26834727 PMCID: PMC4722381 DOI: 10.3389/fmicb.2016.00009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 01/07/2016] [Indexed: 11/13/2022] Open
Abstract
Salmonella Enteritidis SE86 is an important foodborne pathogen in Southern Brazil and it is able to produce a biosurfactant. However, the importance of this compound for the microorganism is still unknown. This study aimed to investigate the influence of the biosurfactant produced by S. Enteritidis SE86 on adherence to slices of lettuce leaves and on resistance to sanitizers. First, lettuce leaves were inoculated with S. Enteritidis SE86 in order to determine the amount of biosurfactant produced. Subsequently, lettuce leaves were inoculated with S. Enteritidis SE86 with and without the biosurfactant, and the adherence and bacterial resistance to different sanitization methods were evaluated. S. Enteritidis SE86 produced biosurfactant after 16 h (emulsification index of 11 to 52.15 percent, P < 0.05) and showed greater adherence capability and resistance to sanitization methods when the compound was present. The scanning electron microscopy demonstrated that S. Enteritidis was able to adhere, form lumps, and invade the lettuce leaves' stomata in the presence of the biosurfactant. Results indicated that the biosurfactant produced by S. Enteritidis SE86 contributed to adherence and increased resistance to sanitizers when the microorganism was present on lettuce leaves.
Collapse
Affiliation(s)
- Eliandra M Rossi
- Laboratório de Microbiologia, Departamento de Ciências Biológicas e da Saúde, Universidade do Oeste de Santa CatarinaSão Miguel do Oeste, Brazil; Laboratório de Microbiologia e Controle de Alimentos, Instituto de Ciência e Tecnologia de Alimentos, Universidade Federal do Rio Grande do SulPorto Alegre, Brazil
| | - Luniele Beilke
- Laboratório de Microbiologia, Departamento de Ciências Biológicas e da Saúde, Universidade do Oeste de Santa Catarina São Miguel do Oeste, Brazil
| | - Marília Kochhann
- Laboratório de Microbiologia, Departamento de Ciências Biológicas e da Saúde, Universidade do Oeste de Santa Catarina São Miguel do Oeste, Brazil
| | - Diana H Sarzi
- Laboratório de Microbiologia, Departamento de Ciências Biológicas e da Saúde, Universidade do Oeste de Santa Catarina São Miguel do Oeste, Brazil
| | - Eduardo C Tondo
- Laboratório de Microbiologia e Controle de Alimentos, Instituto de Ciência e Tecnologia de Alimentos, Universidade Federal do Rio Grande do Sul Porto Alegre, Brazil
| |
Collapse
|