301
|
Din BU, Rafique M, Javed MT, Kamran MA, Mehmood S, Khan M, Sultan T, Hussain Munis MF, Chaudhary HJ. Assisted phytoremediation of chromium spiked soils by Sesbania Sesban in association with Bacillus xiamenensis PM14: A biochemical analysis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 146:249-258. [PMID: 31765956 DOI: 10.1016/j.plaphy.2019.11.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 11/06/2019] [Accepted: 11/06/2019] [Indexed: 05/03/2023]
Abstract
Due to anthropogenic activities, chromium (Cr) contamination is ubiquitous with deleterious effects on plant and soil microbiota. Present study was designed to address beneficial effects of Bacillus xiamenensis PM14 on Sesbania sesban. Its physiological and biochemical attributes along with enhanced antioxidant enzyme activities under different levels of Cr toxicity (50, 100 and 200 mg kg-1) were evaluated. After harvesting at 50 days of sowing, plant growth attributes (root and shoot length, fresh and dry weight), physiological parameters (chlorophyll a, b and carotenoid content), antioxidant activities (superoxide dismutase, peroxidase and catalase), malondialdehyde content, electrolyte leakage, proline, relative water content and total Cr uptake in S. sesban were recorded. Experiment was statistically managed as complete randomized design (CRD). Results revealed that Cr stress reduced plant growth, relative water content at all levels of Cr contamination. However, inoculation of B. xiamenensis PM14 positively influence all parameters of S. sesban both under normal and stressed conditions. Inoculation of B. xiamenensis PM14 promoted plant growth (root length 17.08%, shoot length 28.36%) physiological attributes (chlorophyll a 55.26%, chlorophyll b 59.13%), antioxidant activities (superoxide dismutase 30.09%, peroxidase 6.96% and catalase 0.89%), relative water content 25.79%, enhanced total Cr uptake 47.33% and reduced proline 12.33%, malondialdehyde content 27.53% and electrolyte leakage 2.73% in S. sesban at 200 mg kg-1 Cr stress as compared to uninoculated plants grown under the same level of Cr. Our findings revealed first report of B. xiamenensis as phytoremediator and its inoculation on Sesbania plant. It also exposed dual effects of B. xiamenensis to ameliorate Cr stress along with improved plant growth and induced heavy metal stress tolerance in spiked soils.
Collapse
Affiliation(s)
- Bashir Ud Din
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Mazhar Rafique
- Department of Soil Science, Faculty of Basic and Applied Sciences, The University of Haripiur, 22630, Khyber Pakhunkhwa, Pakistan
| | - Muhammad Tariq Javed
- Department of Botany, Government College University, 38000, Faisalabad, Pakistan
| | - Muhammad Aqeel Kamran
- Department of Environmental Sciences, Zhejiang Provincial Key laboratory of Organic Pollution Process and Control, Zheijiang University, Hangzhou 310058 Zhejiang, China
| | - Shehzad Mehmood
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Mursalin Khan
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Tariq Sultan
- Land Resource Research Institute, NARC, Islamabad, Pakistan
| | | | | |
Collapse
|
302
|
El-Maghrabey M, El-Shaheny R, Belal F, Kishikawa N, Kuroda N. Green Sensors for Environmental Contaminants. NANOTECHNOLOGY IN THE LIFE SCIENCES 2020. [DOI: 10.1007/978-3-030-45116-5_17] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
303
|
Degradation of Micropollutants by UV–Chlorine Treatment in Reclaimed Water: pH Effects, Formation of Disinfectant Byproducts, and Toxicity Assay. WATER 2019. [DOI: 10.3390/w11122639] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The utilization of reclaimed water is a reliable and sustainable approach to enhance water supply in water-deficient cities. However, the presence of micro-organic pollutants (MPs) in reclaimed water has potential adverse effects on aquatic ecosystems and human health. In this study, we investigated the occurrence of 12 target MPs in the influent and reclaimed water collected from a local wastewater treatment plant, and the ultraviolet (UV)–chlorine process was applied to analyze its ability to remove MPs. The results showed that all 12 MPs were detected in both the influent and the reclaimed water, with the concentrations ranging from 25.5 to 238 ng/L and 8.6 to 42.5 ng/L, respectively. Over 52% of all the target MPs were readily degraded by the UV–chlorine process, and the removal efficiency was 7.7% to 64.2% higher than the corresponding removal efficiency by chlorination or UV irradiation only. The degradation efficiency increased with the increasing initial chlorine concentration. The pH value had a slight influence on the MP degradation and exhibited different trends for different MPs. The formation of known disinfectant byproducts (DBPs) during the UV–chlorine process was 33.8% to 68.4% of that in the chlorination process, but the DBPs’ formation potentials were 1.3 to 2.2 times higher. The toxicity assay indicated that UV–chlorine can effectively reduce the toxicity of reclaimed water.
Collapse
|
304
|
Wang Q, Lin F, He Q, Liu X, Xiao S, Zheng L, Yang H, Zhao H. Assessment of the Effects of Bisphenol A on Dopamine Synthesis and Blood Vessels in the Goldfish Brain. Int J Mol Sci 2019; 20:ijms20246206. [PMID: 31835337 PMCID: PMC6941070 DOI: 10.3390/ijms20246206] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 12/02/2019] [Accepted: 12/04/2019] [Indexed: 02/04/2023] Open
Abstract
Bisphenol A (BPA) is an abundant contaminant found in aquatic environments. While a large number of toxicological studies have investigated the effects of BPA, the potential effects of BPA exposure on fish brain have rarely been studied. To understand how BPA impacts goldfish brains, we performed a transcriptome analysis of goldfish brains that had been exposed to 50 μg L−1 and 0 μg L−1 BPA for 30 days. In the analysis of unigene expression profiles, 327 unigenes were found to be upregulated and 153 unigenes were found to be downregulated in the BPA exposure group compared to the control group. Dopaminergic signaling pathway-related genes were significantly downregulated in the BPA exposure group. Furthermore, we found that serum dopamine concentrations decreased and TUNEL (terminal deoxynucleotidyl transferase 2-deoxyuridine, 5-triphosphate nick end labeling) staining was present in dopamine neurons enriched regions in the brain after BPA exposure, suggesting that BPA may disrupt dopaminergic processes. A KEGG analysis revealed that genes involved in the fluid shear stress and atherosclerosis pathway were highly significantly enriched. In addition, the qRT-PCR results for fluid shear stress and atherosclerosis pathway-related genes and the vascular histology of the brain showed that BPA exposure could damage blood vessels and induce brain atherosclerosis. The results of this work provide insights into the biological effects of BPA on dopamine synthesis and blood vessels in goldfish brain and could lay a foundation for future BPA neurotoxicity studies.
Collapse
Affiliation(s)
- Qing Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; (Q.W.); (F.L.); (Q.H.); (X.L.); (S.X.)
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Fangmei Lin
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; (Q.W.); (F.L.); (Q.H.); (X.L.); (S.X.)
| | - Qi He
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; (Q.W.); (F.L.); (Q.H.); (X.L.); (S.X.)
| | - Xiaochun Liu
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; (Q.W.); (F.L.); (Q.H.); (X.L.); (S.X.)
| | - Shiqiang Xiao
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; (Q.W.); (F.L.); (Q.H.); (X.L.); (S.X.)
| | - Leyun Zheng
- Fisheries Research Institute of Fujian, Xiamen 361000, China;
| | - Huirong Yang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; (Q.W.); (F.L.); (Q.H.); (X.L.); (S.X.)
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
- Correspondence: (H.Y.); (H.Z.)
| | - Huihong Zhao
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; (Q.W.); (F.L.); (Q.H.); (X.L.); (S.X.)
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
- Correspondence: (H.Y.); (H.Z.)
| |
Collapse
|
305
|
de França JF, Pickler TB, Jozala AF, Dos Santos CA, Batista BL, Pedron T, Vieira RAL, Grotto D. Determination of 17α-ethinylestradiol and toxic metals in surface waters, and estimation of daily intake. ENVIRONMENTAL MONITORING AND ASSESSMENT 2019; 192:21. [PMID: 31820109 DOI: 10.1007/s10661-019-7990-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 11/22/2019] [Indexed: 06/10/2023]
Abstract
The presence of substances such as hormones and toxic metal in aquatic ecosystem is interesting to the scientific community due to their adverse effects. We quantified 17α-ethynylestradiol (EE2) and toxic metals in the surface waters from Sorocaba and Pirajibu Rivers, in São Paulo State, and we estimated the daily intake for hormone, based on the amount of water consumed. EE2, Cd, Hg, As, Pb, and Mn were seasonally quantified in six different locations along the rivers. EE2 was evaluated by high-performance liquid chromatography. Toxic metals were determined by inductively coupled plasma mass spectrometer. Considering the entire sample year, EE2 concentrations ranged from 4.5 to 48.2 μg L-1. Comparing Sorocaba and Pirajibu rivers, the sample point in the entrance of the Pirajibu River through the city of Itu, São Paulo State, had higher amounts of EE2. Regarding metals, all results are according to the Brazilian and World Health Organization guidelines for drinking-water quality, except for Mn levels, which were higher than the limits in Autumn season in two locations. The estimated daily intake ranged from 13.45 to 40.9 μg/day/person. In conclusion, concentrations of EE2 in the Sorocaba and Pirajibu Rivers were higher than in other countries. The levels were as high as an intake of one pill for each person every day (considering an oral contraceptive has 0.03 mg of ethinylestradiol). Even though concentrations of toxic elements are in accordance with the Brazilian Regulation and World Health Organization, legislation for hormones and drugs needs to advance.
Collapse
Affiliation(s)
- Júnior Farias de França
- Graduate Program in Pharmaceutical Sciences, University of Sorocaba, Rodovia Raposo Tavares, km 92.5, Sorocaba, SP, 18023-000, Brazil
| | - Thaisa Borim Pickler
- Graduate Program in Pharmaceutical Sciences, University of Sorocaba, Rodovia Raposo Tavares, km 92.5, Sorocaba, SP, 18023-000, Brazil
| | - Angela Faustino Jozala
- Graduate Program in Technology & Environmental Process, University of Sorocaba, Sorocaba, SP, Brazil
| | - Carolina Alves Dos Santos
- Graduate Program in Pharmaceutical Sciences, University of Sorocaba, Rodovia Raposo Tavares, km 92.5, Sorocaba, SP, 18023-000, Brazil
| | - Bruno Lemos Batista
- Center for Natural and Human Sciences, Federal University of ABC, Santo André, SP, 09210-580, Brazil
| | - Tatiana Pedron
- Center for Natural and Human Sciences, Federal University of ABC, Santo André, SP, 09210-580, Brazil
| | - Raquel Andrade Leite Vieira
- Graduate Program in Pharmaceutical Sciences, University of Sorocaba, Rodovia Raposo Tavares, km 92.5, Sorocaba, SP, 18023-000, Brazil
| | - Denise Grotto
- Graduate Program in Pharmaceutical Sciences, University of Sorocaba, Rodovia Raposo Tavares, km 92.5, Sorocaba, SP, 18023-000, Brazil.
| |
Collapse
|
306
|
da Silva AFV, Fagundes AP, Macuvele DLP, de Carvalho EFU, Durazzo M, Padoin N, Soares C, Riella HG. Green synthesis of zirconia nanoparticles based on Euclea natalensis plant extract: Optimization of reaction conditions and evaluation of adsorptive properties. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.123915] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
307
|
Nickel JP, Fuchs S. Micropollutant emissions from combined sewer overflows. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2019; 80:2179-2190. [PMID: 32198335 DOI: 10.2166/wst.2020.035] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In an extensive monitoring programme, event mean concentrations of 12 heavy metals, 16 polycyclic aromatic hydrocarbons (PAH), nine pesticides/biocides, three pharmaceuticals, three benzotriazoles, acesulfame, and DEHP (di-(2-ethylhexyl)phthalate) were measured at 10 combined sewer overflow (CSO) facilities throughout Bavaria, Germany, for more than 110 overflow events. A harmonised approach with large volume samplers was used to produce volume-proportional event composite samples. A wide range of event durations and volumes was covered successfully. All substances analysed were detected in CSO samples and the majority were quantified in more than 80% of the samples. Our results confirm that CSOs need to be considered in the debate on micropollutant emissions, and knowledge regarding their concentrations at a regional level needs to be solidified. Distinct substance-specific patterns can be observed in the variability between events and sites as well as in a correlation analysis of substance concentrations. These trends underline the need for differentiation of the substances by their predominant sources, pathways, and transport behaviours. Compared to wastewater treatment plants, CSOs are an important pollution source especially for ubiquitous, primarily stormwater-transported pollutants, including substances causing failure to achieve good chemical status of surface waters, such as the uPBT (ubiquitous, persistent, bioaccumulative and toxic) substances Hg and PAH.
Collapse
Affiliation(s)
- Jan Philip Nickel
- Karlsruhe Institute of Technology (KIT), Institute for Water and River Basin Management, Department of Aquatic Environmental Engineering, Gotthard-Franz-Str. 3, 76131 Karlsruhe, Germany E-mail:
| | - Stephan Fuchs
- Karlsruhe Institute of Technology (KIT), Institute for Water and River Basin Management, Department of Aquatic Environmental Engineering, Gotthard-Franz-Str. 3, 76131 Karlsruhe, Germany E-mail:
| |
Collapse
|
308
|
Windsor FM, Pereira MG, Tyler CR, Ormerod SJ. River organisms as indicators of the distribution and sources of persistent organic pollutants in contrasting catchments. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 255:113144. [PMID: 31526913 DOI: 10.1016/j.envpol.2019.113144] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 08/29/2019] [Accepted: 08/29/2019] [Indexed: 06/10/2023]
Abstract
Persistent organic pollutants (POPs) continue to threaten aquatic organisms, but risk assessments are restricted by poor knowledge of the distribution and quantity of these substances in different biota. Assessments on aquatic invertebrates are particularly scarce. Here, we investigate variation in polybrominated diphenyl ethers (PBDEs), polychlorinated biphenyls (PCBs) and organochlorines (OCs) in sediments, biofilms, macroinvertebrates and fish across rivers in South Wales (UK). Persistent PCB (-118, -153, -180) and PBDE congeners (BDE-47, -99, -100), and OCs (p,p'-dichlorodiphenyldichloroethylene [p,p'-DDE] and dieldrin [HEOD]) dominated the POPs detected, indicating links to historical emissions. Low concentrations of less persistent PBDEs, PCBs and OCs, however, suggest more contemporary sources. Concentrations of POPs were 2-22 times greater in fish than invertebrates, but their detection frequency (>90%) and concentrations (0-304 ng g-1 wet weight) were higher in these organisms than in sediments or biofilms (<10%; 0-12 ng g-1 wet weight). Invertebrates and fish also contained several PCB congeners (28, 52, 77 and 105) and p,p'-dichlorodiphenyltrichloroethane (p,p'-DDT) that were not detected in the environmental samples. Concentrations of PBDEs, PCBs and OCs differed among invertebrate taxa and feeding guilds. After controlling for significant variation among sample types and taxa, PBDEs were found to increase with urban land cover, while increased PCBs were associated with urban land cover and wastewater discharge. These data illustrate how body burdens of POPs across invertebrate and fish taxa provide valuable information on the spatial variation and likely sources of persistent pollutants in freshwater ecosystems. More work is required to resolve differences in POP contamination between taxonomic groups.
Collapse
Affiliation(s)
- Fredric M Windsor
- Water Research Institute, Cardiff University, UK; Department of Biosciences, University of Exeter, UK.
| | | | | | | |
Collapse
|
309
|
Almaqdi KA, Morsi R, Alhayuti B, Alharthi F, Ashraf SS. LC-MSMS based screening of emerging pollutant degradation by different peroxidases. BMC Biotechnol 2019; 19:83. [PMID: 31779627 PMCID: PMC6883607 DOI: 10.1186/s12896-019-0574-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 10/28/2019] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND The presence of a wide range of bioactive organic pollutants in wastewater and municipal water sources is raising concerns about their potential effects on humans. Not surprisingly, various approaches are being explored that can efficiently degrade these persistent organic pollutants. Use of peroxidases has recently been recognized as a novel remediation approach that may have potential advantages over conventional degradation techniques. However, testing the abilities of different peroxidases to degrade diverse emerging pollutants is tedious and cumbersome. RESULTS In the present study, we present a rapid and robust approach to easily test the degradability of 21 different emerging pollutants by five different peroxidases (soybean peroxidase, chloroperoxidase, lactoperoxidase, manganese peroxidase, and horseradish peroxidase) using an LC-MSMS approach. Furthermore, this approach was also used to examine the role of a redox mediator in these enzymatic degradation assays. Our results show that some of the organic pollutants can be easily degraded by all five of the peroxidases tested, whereas others are only degraded by a specific peroxidase (or when a redox mediator was present) and there are some that are completely resistant to degradation by any of the peroxidases tested (even in the presence of a redox mediator). The degradation of furosemide and trimethoprim by soybean peroxidase and chloroperoxidase, respectively, was investigated in detail by examining the transformation products generated during their degradation. Some of the products generated during enzymatic breakdown of these pollutants have been previously reported by others, however, we report many new transformation products. CONCLUSIONS LC-MSMS approaches, like the one described here, can be used to rapidly evaluate the potential of different peroxidases (and redox requirements) to be used as bioremediation agents. Our preliminary result shows peroxidases hold tremendous potential for being used in a final wastewater treatment step.
Collapse
Affiliation(s)
- Khadega A Almaqdi
- Department of Chemistry, College of Science, UAE University, Al Ain, UAE
| | - Rana Morsi
- Department of Chemistry, College of Science, UAE University, Al Ain, UAE
| | - Bahia Alhayuti
- Department of Chemistry, College of Science, UAE University, Al Ain, UAE
| | - Farah Alharthi
- Department of Chemistry, College of Science, UAE University, Al Ain, UAE
| | - S Salman Ashraf
- Department of Chemistry, College of Arts and Sciences, Khalifa University, P O Box 127788, Abu Dhabi, UAE.
| |
Collapse
|
310
|
Zhong C, Zhao H, Cao H, Huang Q. Polymerization of micropollutants in natural aquatic environments: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 693:133751. [PMID: 31462391 DOI: 10.1016/j.scitotenv.2019.133751] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 08/01/2019] [Accepted: 08/02/2019] [Indexed: 05/19/2023]
Abstract
Micropollutants with high ecotoxicological risks are frequently detected in aquatic environments, which has aroused great concern in recent years. Humification is one of the most important natural detoxification processes of aquatic micropollutants, and the core reactions of this process are polymerization and coupling. During humification, micropollutants are incorporated into the macrostructures of humic substances and precipitated from aqueous systems into sediments. However, the similarities and differences among the polymerization/coupling pathways of micropollutants in different oxidative systems have not been systematically summarized in a review. This article reviews the current knowledge on the weak oxidation-induced spontaneous polymerization/coupling transformation of micropollutants. First, four typical weak oxidative conditions for the initiation of micropollutant polymerization reactions in aquatic environments are compared: enzymatic catalysis, biomimetic catalysis, metal oxide oxidation, and photo-initiated oxidation. Second, three major subsequent spontaneous transformation pathways of micropollutants are elucidated: radical polymerization, nucleophilic addition/substitution and cyclization. Different solution conditions are also summarized. Furthermore, the importance of toxicity evolution during the weak oxidation-induced coupling/polymerization of micropollutants is particularly emphasized. This review provides a new perspective for the transformation mechanism and pathways of micropollutants from aquatic systems into sediments and the atmosphere and offers theoretical support for developing micropollutant control technologies.
Collapse
Affiliation(s)
- Chen Zhong
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, China; Beijing Engineering Research Centre of Process Pollution Control, Institute of Process Engineering, Chinese Academy of Sciences, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - He Zhao
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, China; Beijing Engineering Research Centre of Process Pollution Control, Institute of Process Engineering, Chinese Academy of Sciences, China.
| | - Hongbin Cao
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, China; Beijing Engineering Research Centre of Process Pollution Control, Institute of Process Engineering, Chinese Academy of Sciences, China
| | - Qingguo Huang
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
311
|
Affiliation(s)
- Joachim G. Frommen
- Division of Behavioural Ecology Institute of Ecology and Evolution University of Bern Hinterkappelen Switzerland
- Department of Natural Sciences Manchester Metropolitan University Manchester UK
| |
Collapse
|
312
|
Lin Q, Wu Y, Jiang X, Lin F, Liu X, Lu B. Removal of bisphenol A from aqueous solution via host-guest interactions based on beta-cyclodextrin grafted cellulose bead. Int J Biol Macromol 2019; 140:1-9. [DOI: 10.1016/j.ijbiomac.2019.08.116] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 08/12/2019] [Accepted: 08/12/2019] [Indexed: 10/26/2022]
|
313
|
Azari A, Mahmoudian MH, Niari MH, Eş I, Dehganifard E, Kiani A, Javid A, Azari H, Fakhri Y, Mousavi Khaneghah A. Rapid and efficient ultrasonic assisted adsorption of diethyl phthalate onto FeIIFe2IIIO4@GO: ANN-GA and RSM-DF modeling, isotherm, kinetic and mechanism study. Microchem J 2019. [DOI: 10.1016/j.microc.2019.104144] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
314
|
Rodrigues MO, Abrantes N, Gonçalves FJM, Nogueira H, Marques JC, Gonçalves AMM. Impacts of plastic products used in daily life on the environment and human health: What is known? ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2019; 72:103239. [PMID: 31472322 DOI: 10.1016/j.etap.2019.103239] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 06/23/2019] [Accepted: 07/31/2019] [Indexed: 05/24/2023]
Abstract
Plastics are indispensable and persistent materials used in daily life that can be fragmented into micro- or nanoplastics. They are long polymer chains mixed with additives that can be toxic when in contact with distinct species. The toxicity can result from polymer matrix, additives, degradation products and adsorbed contaminants. Notwithstanding, there is still an immense gap of information concerning the individual and mixed impacts of plastics. Hence, in this study, we characterize the most common plastic materials widely used in our daily life by its polymer type and compile the environmental and human health hazards of these polymers including the impacts of monomers, additives, degradation products and adsorbed contaminants based on literature review. In summary, polyvinyl chloride is the most toxic polymer type used daily (monomer and additives); additives are more toxic than monomers to wildlife and humans; and the most toxic additives are benzene, phthalates and lead stabilisers.
Collapse
Affiliation(s)
- M O Rodrigues
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - N Abrantes
- Department of Environment and Planning & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - F J M Gonçalves
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - H Nogueira
- Department of Chemistry & CICECO, University of Aveiro, 3810-193 Aveiro, Portugal
| | - J C Marques
- MARE, Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, 3004-517 Coimbra, Portugal
| | - A M M Gonçalves
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal; MARE, Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, 3004-517 Coimbra, Portugal
| |
Collapse
|
315
|
Gumbi BP, Moodley B, Birungi G, Ndungu PG. Target, Suspect and Non-Target Screening of Silylated Derivatives of Polar Compounds Based on Single Ion Monitoring GC-MS. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16204022. [PMID: 31640145 PMCID: PMC6843951 DOI: 10.3390/ijerph16204022] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/30/2019] [Accepted: 09/11/2019] [Indexed: 11/21/2022]
Abstract
There is growing interest in determining the unidentified peaks within a sample spectra besides the analytes of interest. Availability of reference standards and hyphenated instruments has been a key and limiting factor in the rapid determination of emerging pollutants in the environment. In this work, polar compounds were silylated and analyzed with gas chromatography mass spectrometry (GC-MS) to determine the abundant fragments within the single ion monitoring (SIM) mode and methodology. Detection limits and recoveries of the compounds were established in river water, wastewater, biosolid and sediment matrices. Then, specific types of polar compounds that are classified as emerging contaminants, pharmaceuticals and personal care products, in the environment were targeted in the Mgeni and Msunduzi Rivers. We also performed suspect and non-target analysis screening to identify several other polar compounds in these rivers. A total of 12 compounds were quantified out of approximately 50 detected emerging contaminants in the Mgeni and Msunduzi Rivers. This study is significant for Africa, where the studies of emerging contaminants are limited and not usually prioritized.
Collapse
Affiliation(s)
- Bhekumuzi Prince Gumbi
- School of Chemistry and Physics, University of KwaZulu-Natal, Durban 4000, South Africa.
| | - Brenda Moodley
- School of Chemistry and Physics, University of KwaZulu-Natal, Durban 4000, South Africa.
| | - Grace Birungi
- Department of Chemistry, Mbarara University of Science and Technology, Mbarara 1410, Uganda.
| | - Patrick Gathura Ndungu
- Department of Chemical Sciences, University of Johannesburg, Johannesburg 2028, South Africa.
| |
Collapse
|
316
|
Ye H, Chen D, Li N, Xu Q, Li H, He J, Lu J. Durable and Robust Self-Healing Superhydrophobic Co-PDMS@ZIF-8-Coated MWCNT Films for Extremely Efficient Emulsion Separation. ACS APPLIED MATERIALS & INTERFACES 2019; 11:38313-38320. [PMID: 31552730 DOI: 10.1021/acsami.9b13539] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The discharge of large amounts of sewage has caused enormous damage to the environment and human health. There is an urgent need for efficient and environmentally friendly materials to deal with such troubles. Materials with emulsion separation have attracted everyone's attention. In this study, zeolitic imidazolate framework (ZIF)-8- and Co-polydimethylsiloxane (PDMS)-modified multiwalled carbon nanotube films were fabricated. First, the surface of the nanotube films was modified with ZIF-8 by in situ growth, and then a Co-PDMS layer was added by dip coating. The membrane has excellent wettability, and it is superhydrophobic and superoleophilic in air. The separation efficiency of water-in-oil emulsions reaches more than 99.9%, and it has an outstanding separation ability for corrosive emulsions. Moreover, the membrane has an excellent self-healing ability, and it can rapidly heal at normal temperature after being damaged. This makes the film more suitable for practical oily wastewater treatment. We performed related research and propose a possible self-healing mechanism.
Collapse
Affiliation(s)
- Hanchen Ye
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology , Soochow University , Suzhou 215123 , China
| | - Dongyun Chen
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology , Soochow University , Suzhou 215123 , China
| | - Najun Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology , Soochow University , Suzhou 215123 , China
| | - Qingfeng Xu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology , Soochow University , Suzhou 215123 , China
| | - Hua Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology , Soochow University , Suzhou 215123 , China
| | - Jinghui He
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology , Soochow University , Suzhou 215123 , China
| | - Jianmei Lu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology , Soochow University , Suzhou 215123 , China
| |
Collapse
|
317
|
Ilieva V, Kondeva-Burdina M, Georgieva T, Pavlova V. Toxicity of cyanobacteria. Organotropy of cyanotoxins and toxicodynamics of cyanotoxins by species. PHARMACIA 2019. [DOI: 10.3897/pharmacia.66.e37035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
As a result of blooming, some cyanobacteria (Microcystis, Anabaena, Planktothrix, etc.) produce toxins at concentrations that are high enough to poison and even kill animals and humans. According to Annex II of the Framework Directive 2000/60/EC, transformed into the Bulgarian legislation, for the characterization of surface water, at this stage, there are no acceptable limit values for cyanotoxins. Cyanotoxins include some of the strongest natural poisons, including those that could cause rapid death due to respiratory failure.
The aim of this publication is an overview of toxic cyanobacteria and toxicity mechanisms.
Collapse
|
318
|
Alkimin GD, Daniel D, Dionísio R, Soares AMVM, Barata C, Nunes B. Effects of diclofenac and salicylic acid exposure on Lemna minor: Is time a factor? ENVIRONMENTAL RESEARCH 2019; 177:108609. [PMID: 31376628 DOI: 10.1016/j.envres.2019.108609] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 07/25/2019] [Accepted: 07/25/2019] [Indexed: 06/10/2023]
Abstract
The global occurrence of pharmaceuticals in the aquatic environment has been considered a particularly concerning problem with unknown consequences. Non-steroidal anti-inflammatory drugs (NSAIDs) including diclofenac (DCF) and salicylic acid (SA), are among the most frequently prescribed drugs in the world, being consequently commonly found in the aquatic environment. Prolonged experiments (with duration of exposure that surpass those recommended by already established testing guidelines) are important to obtain ecologically relevant data to address the issue of NSAIDs ecotoxicity, because by being more realistically (namely in terms of levels and durations of exposure), such tests may indicate realistic challenges posed to aquatic organisms. Among the most common test species that are used for assessing environmental quality, plants play a leading role. Lemna species are among the most important plants used for ecotoxicity testing. Therefore, the aim of this study was to evaluate the temporal effect of a prolonged exposure of DCF and SA on Lemna minor. To attain this purpose, L. minor plants were chronically exposed to 0, 4, 20, and 100 μg/L of both pharmaceuticals, and samplings were performed at 6, 10 and 14 days of exposure. The analyzed endpoints were: levels of chlorophyll a, b and total, carotenoids; and enzymatic biomarkers, such as catalase, ascorbate peroxidase and glutathione-S-transferases. Diclofenac was responsible for alterations in all analyzed parameters in different intervals of exposure. Salicylic acid exposure was not capable of causing alterations on pigment contents of L. minor, however, enzymatic biomarkers were altered at all sampling intervals. Thus, it is possible to conclude that both pharmaceuticals can cause damage on the tested macrophyte species, biochemical parameters being more sensitive than physiological ones. Additional prolonged experiments are required to understand the chronic effects of different pharmaceuticals in the aquatic environment, especially in plants.
Collapse
Affiliation(s)
- G D Alkimin
- Departamento de Biologia da Universidade de Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal; Centro de Estudos do Ambiente e do Mar (CESAM), Campus de Santiago, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - D Daniel
- Departamento de Biologia da Universidade de Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| | - R Dionísio
- Departamento de Biologia da Universidade de Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| | - A M V M Soares
- Departamento de Biologia da Universidade de Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal; Centro de Estudos do Ambiente e do Mar (CESAM), Campus de Santiago, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - C Barata
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18, 08034, Barcelona, Spain
| | - B Nunes
- Departamento de Biologia da Universidade de Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal; Centro de Estudos do Ambiente e do Mar (CESAM), Campus de Santiago, Universidade de Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
319
|
Kumar V, Kumar P, Singh J, Kumar P. Potential of water fern ( Azolla pinnata R.Br.) in phytoremediation of integrated industrial effluent of SIIDCUL, Haridwar, India: removal of physicochemical and heavy metal pollutants. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2019; 22:392-403. [PMID: 31549516 DOI: 10.1080/15226514.2019.1667950] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Integrated industrial effluent (IIE) released from SIIDCUL causes serious environmental problems in the vicinity of Haridwar, India. Therefore, this study investigated the potential of water fern (Azolla pinnata R.Br.) for phyto-treatment of IIE. Laboratory experiments with six IIE concentrations (0 as control with bore well water, 20, 40, 60, 80 and 100%) were performed for bio-removal of selected physicochemical, microbiological and heavy metal parameters of IIE in pot type experiments. The overall results described maximum removal of physico-chemical (pH, EC, TDS, BOD, COD, TKN, Ca, Mg, Na, K), microbiological (MPN and SPC) and heavy metals (Cd, Cu, Cr, Fe, Pb, Mn, and Zn) parameters in 60% concentration of IIE, respectively. The stimulus effect of IIE concentration on pollutant removal process was confirmed using Kruskal-Wallis post hoc test, one way ANOVA (p < 0.05), and linear regression (R2 < 0.85) tools. Besides this, A. pinnata relative plant growth rate was also maximum in 60% IIE treatment. This is the first report on phytoremediation of IIE while findings of this study showed that A. pinnata was useful for the eco-friendly treatment of SIIDCUL IIE and could minimize potential wastewater management issues.
Collapse
Affiliation(s)
- Vinod Kumar
- Department of Zoology and Environmental Science, Agro-ecology and Pollution Research Laboratory, Gurukula Kangri Vishwavidyalaya, Haridwar, India
| | - Piyush Kumar
- Department of Zoology and Environmental Science, Agro-ecology and Pollution Research Laboratory, Gurukula Kangri Vishwavidyalaya, Haridwar, India
| | - Jogendra Singh
- Department of Zoology and Environmental Science, Agro-ecology and Pollution Research Laboratory, Gurukula Kangri Vishwavidyalaya, Haridwar, India
| | - Pankaj Kumar
- Department of Zoology and Environmental Science, Agro-ecology and Pollution Research Laboratory, Gurukula Kangri Vishwavidyalaya, Haridwar, India
| |
Collapse
|
320
|
Burri NM, Weatherl R, Moeck C, Schirmer M. A review of threats to groundwater quality in the anthropocene. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 684:136-154. [PMID: 31153063 DOI: 10.1016/j.scitotenv.2019.05.236] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 04/29/2019] [Accepted: 05/16/2019] [Indexed: 06/09/2023]
Abstract
Awareness concerning sustainable groundwater consumption under the context of land use and climate change is gaining traction, raising the bar for adequate understanding of the complexities of natural and anthropogenic processes and how they affect groundwater quality. The heterogeneous characteristics of aquifers have hampered comprehensive source, transport and contaminant identification. As questions remain about the behavior and prediction of well-known groundwater contaminants, new concerns around emerging contaminants are on the increase. This review highlights some of the key contaminants that originate from anthropogenic activities, organized based on land use categories namely agricultural, urban and industrial. It further highlights the extensive overlap, in terms of both provenance as well as contaminant type, between the different land use sectors. A selection of case studies from literature that describe the continued concern of established contaminants, as well as new and emerging compounds, are presented to illustrate the many qualitative threats to global groundwater resources. In some cases, the risk of groundwater contamination lacks adequate gravity, while in others the underlying physical and societal processes are not fully understood and activities may commence without adequately considering potential impacts. In the agricultural context, the historic and current application of fertilizers and plant protectants, use of veterinary pharmaceuticals and hormones, strives to safeguard the growing food demands. In the context of a sprawling urban environment, waste, human pharmaceuticals, and urban pesticide outputs are increasing, with adequate runoff and sanitation infrastructure often lagging. Finally, industrial activities are associated with accidental leaks and spills, while the large-scale storage of industrial byproducts has led to legacy contaminants such as those stemming from raw mineral extraction. With this review paper, we aim to underscore the need for transdisciplinary research, along with transboundary communication, using sound science and adaptive policy and management practice in order to procure sustainable groundwater quality.
Collapse
Affiliation(s)
- Nicole M Burri
- Eawag - Swiss Federal Institute of Aquatic Science and Technology, Department Water Resources and Drinking Water, Dübendorf, Switzerland; University of Neuchâtel, Centre of Hydrogeology and Geothermics (CHYN), Neuchâtel, Switzerland.
| | - Robin Weatherl
- Eawag - Swiss Federal Institute of Aquatic Science and Technology, Department Water Resources and Drinking Water, Dübendorf, Switzerland; University of Neuchâtel, Centre of Hydrogeology and Geothermics (CHYN), Neuchâtel, Switzerland
| | - Christian Moeck
- Eawag - Swiss Federal Institute of Aquatic Science and Technology, Department Water Resources and Drinking Water, Dübendorf, Switzerland
| | - Mario Schirmer
- Eawag - Swiss Federal Institute of Aquatic Science and Technology, Department Water Resources and Drinking Water, Dübendorf, Switzerland; University of Neuchâtel, Centre of Hydrogeology and Geothermics (CHYN), Neuchâtel, Switzerland
| |
Collapse
|
321
|
Juárez-Jiménez B, Pesciaroli C, Maza-Márquez P, López-Martínez S, Vílchez-Quero JL, Zafra-Gómez A. Biodegradation of methyl and butylparaben by bacterial strains isolated from amended and non-amended agricultural soil. Identification, behavior and enzyme activities of microorganisms. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 245:245-254. [PMID: 31154171 DOI: 10.1016/j.jenvman.2019.05.122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 05/17/2019] [Accepted: 05/26/2019] [Indexed: 06/09/2023]
Abstract
The aim of the present study was to investigate the kinetics of methylparaben (MPB) and butylparaben (BPB) removal, two emerging pollutants with possible endocrine disrupting effects, from agricultural soil with and without amendment with compost from sewage sludge used as biostimulant. Compound removal is explained by a first-order kinetic model with half-life times of 6.5/6.7 days and 11.4/8.2 days, in presence/absence of compost, for MPB and BPB respectively. % R2 for the fitted model were higher than 96% in all cases. Additionally, isolation of bacteria capable to grow using MPB or BPB as carbon source was also carry out. Laboratory tests demonstrated the ability of these bacteria to biodegrade MPB and BPB from culture media in more than 95% in some cases. These strains showed high ability to biodegrade the compounds. Ten isolates, most of them related to Gram positive bacteria of the genus Bacillus, were identified by 16S rRNA gene sequencing. The study of the enzymatic activities of the isolates revealed both esterase (C4) and esterase-lipase activities.
Collapse
Affiliation(s)
- Belén Juárez-Jiménez
- Research Group of Environmental Microbiology, Department of Microbiology, Faculty of Pharmacy, Campus of Cartuja, And Water Institute, C/ Ramon y Cajal s/n, University of Granada, E-18071, Granada, Spain.
| | - Chiara Pesciaroli
- Department of Biotechnology and Bioscience, University of Milan Bicocca, Italy
| | - Paula Maza-Márquez
- Research Group of Environmental Microbiology, Department of Microbiology, Faculty of Pharmacy, Campus of Cartuja, And Water Institute, C/ Ramon y Cajal s/n, University of Granada, E-18071, Granada, Spain
| | - Sergio López-Martínez
- Research Group of Analytical Chemistry and Life Sciences, Department of Analytical Chemistry, University of Granada, Campus of Fuentenueva, E-18071, Granada, Spain
| | - José Luís Vílchez-Quero
- Research Group of Analytical Chemistry and Life Sciences, Department of Analytical Chemistry, University of Granada, Campus of Fuentenueva, E-18071, Granada, Spain
| | - Alberto Zafra-Gómez
- Research Group of Analytical Chemistry and Life Sciences, Department of Analytical Chemistry, University of Granada, Campus of Fuentenueva, E-18071, Granada, Spain.
| |
Collapse
|
322
|
|
323
|
Leydy Katherine Ardila P, da Silva BF, Spadoto M, Clarice Maria Rispoli B, Azevedo EB. Which route to take for diclofenac removal from water: Hydroxylation or direct photolysis? J Photochem Photobiol A Chem 2019. [DOI: 10.1016/j.jphotochem.2019.111879] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
324
|
Caban M, Lis H, Kobylis P, Stepnowski P. The triple-sorbents solid-phase extraction for pharmaceuticals and estrogens determination in wastewater samples. Microchem J 2019. [DOI: 10.1016/j.microc.2019.103965] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
325
|
López-Doval JC, Freixa A, Santos LHMLM, Sanchís J, Rodríguez-Mozaz S, Farré M, Barceló D, Sabater S. Exposure to single and binary mixtures of fullerenes and triclosan: Reproductive and behavioral effects in the freshwater snail Radix balthica. ENVIRONMENTAL RESEARCH 2019; 176:108565. [PMID: 31280028 DOI: 10.1016/j.envres.2019.108565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 05/28/2019] [Accepted: 06/28/2019] [Indexed: 05/22/2023]
Abstract
Emerging pollutants occur in complex mixtures in rivers and have the potential to interact with freshwater organisms. The chronic effects of nominal exposure to 3 μg/L of fullerenes (C60) and 1 μg/L of triclosan (TCS) alone and in a binary mixture, were evaluated using the freshwater snail Radix balthica. Pollutants accumulation, reproductive output and feeding behavior were selected as sublethal endpoints. After 21 days of exposure, we did not observe interactive effects between TCS and C60 on the studied endpoints, except for the accumulation of C60 in R. balthica in TCS + C60 treatment, which was lower than when the fullerenes were alone. Neither TCS nor C60 caused significant effects on reproduction, expressed as number of eggs per individual, but an increase in the clutch size was observed in treatments with TCS at the third week of exposure, independently of the presence of C60 (16.15 ± 1.67 and 18.9 ± 4.01 eggs/egg mass in TCS and TCS + C60 treatments, respectively, vs. 13.17 ± 4.01 in control). The presence of C60 significantly enhanced the grazing activity of R. balthica during the first seven days (4.95 ± 1.35 and 3.91 ± 0.59% of the area grazed per individual in C60 and TCS + C60 treatments, respectively, vs 2.6 ± 0.39% in control). The accumulation of TCS was quite similar in treatments where this pollutant was present (BAF ≈ 1007 L/kg d.w.); however, the accumulation of C60 was higher when the nanoparticles were alone (BAF = 254.88 L/kg d.w.) than when it was in the binary mixture (BAF = 7.79 L/kg d.w). Overall, although TCS has been listed as an endocrine disrupter compound, no significant effects on reproduction were observed in the assayed conditions. Regarding C60, the limited effects on feeding activity and the low BAF obtained in this experiment indicate that fullerenes do not have ecological consequences of relevance at the studied environmental concentrations in freshwater snails.
Collapse
Affiliation(s)
- J C López-Doval
- Catalan Institute for Water Research (ICRA), Scientific and Technological Park of the University of Girona, H2O Building, C/Emili Grahit, 101, E17003, Girona, Catalonia, Spain; University of Girona, 17071, Girona, Catalonia, Spain.
| | - A Freixa
- Catalan Institute for Water Research (ICRA), Scientific and Technological Park of the University of Girona, H2O Building, C/Emili Grahit, 101, E17003, Girona, Catalonia, Spain; University of Girona, 17071, Girona, Catalonia, Spain
| | - L H M L M Santos
- Catalan Institute for Water Research (ICRA), Scientific and Technological Park of the University of Girona, H2O Building, C/Emili Grahit, 101, E17003, Girona, Catalonia, Spain; University of Girona, 17071, Girona, Catalonia, Spain
| | - J Sanchís
- Catalan Institute for Water Research (ICRA), Scientific and Technological Park of the University of Girona, H2O Building, C/Emili Grahit, 101, E17003, Girona, Catalonia, Spain; University of Girona, 17071, Girona, Catalonia, Spain; Water and Soil Quality Research Group, Institute of Environmental Assessment and Water Research (IDAEA- CSIC), C/Jordi Girona, 18-26, 08034, Barcelona, Catalonia, Spain
| | - S Rodríguez-Mozaz
- Catalan Institute for Water Research (ICRA), Scientific and Technological Park of the University of Girona, H2O Building, C/Emili Grahit, 101, E17003, Girona, Catalonia, Spain; University of Girona, 17071, Girona, Catalonia, Spain
| | - M Farré
- Water and Soil Quality Research Group, Institute of Environmental Assessment and Water Research (IDAEA- CSIC), C/Jordi Girona, 18-26, 08034, Barcelona, Catalonia, Spain
| | - D Barceló
- Catalan Institute for Water Research (ICRA), Scientific and Technological Park of the University of Girona, H2O Building, C/Emili Grahit, 101, E17003, Girona, Catalonia, Spain; Water and Soil Quality Research Group, Institute of Environmental Assessment and Water Research (IDAEA- CSIC), C/Jordi Girona, 18-26, 08034, Barcelona, Catalonia, Spain
| | - S Sabater
- Catalan Institute for Water Research (ICRA), Scientific and Technological Park of the University of Girona, H2O Building, C/Emili Grahit, 101, E17003, Girona, Catalonia, Spain; Institute of Aquatic Ecology, University of Girona, Campus de Montivili, 17071, Girona, Catalonia, Spain
| |
Collapse
|
326
|
Untargeted analysis of nanoLC-HRMS data by ANOVA-PCA to highlight metabolites in Gammarus fossarum after in vivo exposure to pharmaceuticals. Talanta 2019; 202:221-229. [PMID: 31171174 DOI: 10.1016/j.talanta.2019.04.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 04/05/2019] [Accepted: 04/10/2019] [Indexed: 12/22/2022]
Abstract
In Western Europe, river water quality can be assessed using sentinel species such as the amphipod Gammarus fossarum. In this work of environmental metabolomics, the objective was to develop suitable chemometrics methods, using a limited number of individuals, to assess the modification of the metabolism of G. fossarum exposed to two human pharmaceuticals. Males and females gammarids were exposed to a mixture of the anxiolytic oxazepam and the antiepileptic carbamazepine (1000 ng L-1) for 14 days under laboratory conditions according to a full factorial design 2² (repeated 5 times). They were analyzed at the single individual scale using a method including a μQuEChERS type extraction followed by a nanoliquid chromatography analysis coupled to high-resolution mass spectrometry. The molecular fingerprints obtained were investigated using XCMS. Several corrections of experimental drifts (by using lock mass and Quality Control samples) were tested prior to using APCA + method for the exploitation of the unbalanced designed data. Signal reproducibility was greatly improved by the lock mass normalisation. From the experimental design, a significant effect of both experimental factors "exposure to the mixture" and "gammarid gender" on the signals measured were highlighted by APCA+. Finally, the results obtained made it possible to identify variables responsible for each of the factor effects.
Collapse
|
327
|
Ma XY, Wang Y, Dong K, Wang XC, Zheng K, Hao L, Ngo HH. The treatability of trace organic pollutants in WWTP effluent and associated biotoxicity reduction by advanced treatment processes for effluent quality improvement. WATER RESEARCH 2019; 159:423-433. [PMID: 31121410 DOI: 10.1016/j.watres.2019.05.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/25/2019] [Accepted: 05/04/2019] [Indexed: 06/09/2023]
Abstract
As increasing attention is paid to surface water protection, there has been demand for improvements of domestic wastewater treatment plant (WWTP) effluent. This has led to the application of many different advanced treatment processes (ATPs). In this study, the treatability of trace organic pollutants in secondary effluent (SE) and associated biotoxicity reduction by four types of ATPs, including coagulation, granular activated carbon (GAC) adsorption, ultraviolet (UV) photolysis and photocatalysis, and ozonation, were investigated at the bench-scale. The ATPs showed different removal capacity for the 48 chemicals, which were classified into seven categories. EDCs, herbicides, bactericides and pharmaceuticals were readily degraded, and insecticides, flame retardants, and UV filters were relatively resistant to removal. During these processes, the efficiency of the ATPs in reducing four biological effects were investigated. Of the four biological effects, the estrogenic activity from SE was not detected using the yeast estrogen screen. In contrast with genotoxicity and photosynthesis inhibition, bacterial cytotoxicity posed by SE was the most difficult biological effect to reduce with these ATPs. GAC adsorption and ozonation were the most robust treatment processes for reducing the three detected biotoxicities. UV photolysis and photocatalysis showed comparable efficiencies for the reduction of genotoxicity and photosynthesis inhibition. However, coagulation only performed well in genotoxicity reduction. The effect-based trigger values for the four bioassays, that were derived from the existing environmental quality standards and from HC5 (hazardous concentration for 5% of aquatic organisms), were all used to select and optimize these ATPs for ecological safety. Conducting ATPs in more appropriate ways could eliminate the negative effects of WWTP effluent on receiving water bodies.
Collapse
Affiliation(s)
- Xiaoyan Y Ma
- International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Key Lab of Northwest Water Resource, Environment and Ecology, MOE; Engineering Technology Research Center for Wastewater Treatment and Reuse, Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, Shaanxi Province, PR China.
| | - Yongkun Wang
- International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Key Lab of Northwest Water Resource, Environment and Ecology, MOE; Engineering Technology Research Center for Wastewater Treatment and Reuse, Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, Shaanxi Province, PR China
| | - Ke Dong
- International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Key Lab of Northwest Water Resource, Environment and Ecology, MOE; Engineering Technology Research Center for Wastewater Treatment and Reuse, Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, Shaanxi Province, PR China
| | - Xiaochang C Wang
- International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Key Lab of Northwest Water Resource, Environment and Ecology, MOE; Engineering Technology Research Center for Wastewater Treatment and Reuse, Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, Shaanxi Province, PR China.
| | - Kai Zheng
- International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Key Lab of Northwest Water Resource, Environment and Ecology, MOE; Engineering Technology Research Center for Wastewater Treatment and Reuse, Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, Shaanxi Province, PR China
| | - Liwei Hao
- International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Key Lab of Northwest Water Resource, Environment and Ecology, MOE; Engineering Technology Research Center for Wastewater Treatment and Reuse, Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, Shaanxi Province, PR China
| | - Huu Hao Ngo
- School of Civil and Environmental Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Broadway, NSW, 2007, Australia
| |
Collapse
|
328
|
Campos CF, Morelli S, De Campos Júnior EO, Santos VSV, De Morais CR, Cunha MC, Souto HN, Pavanin LA, Bonetti AM, Pereira BB. Assessment of the genotoxic potential of water courses impacted by wastewater treatment effluents using micronucleus assay in plants from the specie s Tradescantia. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2019; 82:752-759. [PMID: 31362592 DOI: 10.1080/15287394.2019.1648345] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Water pollution and the increase in genotoxic consequences in aquatic environments are well documented indicating the necessity and importance of biomonitoring programs. The objective of the present study was to determine the environmental quality of water resources and genotoxic potential of materials present within water samples obtained from the Perdizes River and the Mumbuca Stream, located in a region of discharge of wastewater treatment effluents using Tradescantia micronucleus assay (Trad - MCN). Water samples were collected from different locations up and downstream of the wastewater treatment plant during rainy season and subsequently submitted to physico-chemical analysis and Trad-MCN bioassay. The spatial distribution of the physico-chemical parameters assessed suggested that discharges of wastewater treatment effluents reduced water quality at all sites examined. Further, exposure to wastewater treatment effluents produced genotoxic effects on tetrads of Tradescantia pallida. These results reinforce the sensitivity of the Trad-MCN bioassay and its potential application in water quality monitoring programs concomitant with physicochemical evaluation.
Collapse
Affiliation(s)
- Carlos Fernando Campos
- Department of Genetics, Federal University of Uberlândia, Institute of Biotechnology , Uberlândia , Minas Gerais , Brazil
| | - Sandra Morelli
- Department of Genetics, Federal University of Uberlândia, Institute of Biotechnology , Uberlândia , Minas Gerais , Brazil
| | | | - Vanessa Santana Vieira Santos
- Department of Genetics, Federal University of Uberlândia, Institute of Biotechnology , Uberlândia , Minas Gerais , Brazil
| | - Cássio Resende De Morais
- Department of Genetics, Federal University of Uberlândia, Institute of Biotechnology , Uberlândia , Minas Gerais , Brazil
| | - Matheus Campos Cunha
- Department of Genetics, Federal University of Uberlândia, Institute of Biotechnology , Uberlândia , Minas Gerais , Brazil
| | - Henrique Nazareth Souto
- Department of Genetics, Federal University of Uberlândia, Institute of Biotechnology , Uberlândia , Minas Gerais , Brazil
| | - Luiz Alfredo Pavanin
- Department of Environmental Chemistry, Federal University of Uberlândia, Institute of Chemistry , Uberlândia , Minas Gerais , Brazil
| | - Ana Maria Bonetti
- Department of Genetics, Federal University of Uberlândia, Institute of Biotechnology , Uberlândia , Minas Gerais , Brazil
| | - Boscolli Barbosa Pereira
- Department of Genetics, Federal University of Uberlândia, Institute of Biotechnology , Uberlândia , Minas Gerais , Brazil
- Department of Environmental Health, Federal University of Uberlândia, Institute of Geography , Uberlândia , Minas Gerais , Brazil
| |
Collapse
|
329
|
Kim JH. Di(2-ethylhexyl) phthalate promotes lung cancer cell line A549 progression via Wnt/β-catenin signaling. J Toxicol Sci 2019; 44:237-244. [PMID: 30944277 DOI: 10.2131/jts.44.237] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Di(2-ethylhexyl) phthalate (DEHP) is widely used in polyvinylchloride-based materials and remains intact in the environment. Lungs are one route of entry of DEHP into the body; however, there is limited information on the effects and mechanism of action of DEHP on non-small cell lung cancer (NSCLC). Here, we addressed this by examining the effect of DEHP on the proliferation of A549 human lung adenocarcinoma cells by MTS assay. The induction of inflammation and epithelial-to-mesenchymal transition (EMT), as well as activation of the mitogen-activated protein kinase (MAPK) and Wnt/β-catenin signaling pathways, were assessed by western blot and real-time polymerase chain reaction. Although there were discrepancies in the concentration, DEHP treatment enhanced A549 cell viability accompanied by increased mRNA and protein levels of inflammation-related factors, such as matrix metalloproteinase-9 and nuclear factor-κB. Additionally, EMT was activated in cells according to decreased E-cadherin and increased vimentin expression. Furthermore, MAPK pathway components, including phosphorylated p38 and c-Jun N-terminal kinase, and Wnt/β-catenin pathway components, including phosphorylated glycogen synthase kinase 3β and β-catenin, as well as their downstream genes c-Myc and cyclin D1, were upregulated in the presence of DEHP. These results suggest that DEHP promotes NSCLC progression by promoting cell proliferation, inflammation, and EMT via activation of Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Jin Hee Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Korea
| |
Collapse
|
330
|
Zheng Y, Hu Y, Yan S, Zhou H, Song D, Yin M, Shen J. A polymer/detergent formulation improves dsRNA penetration through the body wall and RNAi-induced mortality in the soybean aphid Aphis glycines. PEST MANAGEMENT SCIENCE 2019; 75:1993-1999. [PMID: 30610748 DOI: 10.1002/ps.5313] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 11/07/2018] [Accepted: 12/21/2018] [Indexed: 05/10/2023]
Abstract
BACKGROUND It is difficult to efficiently silence gene expression in some insects, probably because of the degradation of dsRNA by enzymes present in the gut and hemolymph post-oral feeding or body injecting of dsRNA. We previously developed a nanocarrier delivery system that can systemically deliver dsRNA into chewing mouthpart insects by oral feeding and efficiently silence gene expression. For the purpose of pest control in the field, there is a great demand to develop a spray method to apply dsRNA formulation. RESULTS A formulation of the nanocarrier/dsRNA/detergent was developed and could be easily applied just by dropping it on the notum of the aphid. The formulation penetrated the body wall into the hemocoel and then spread into various tissues within 1 h. The delivered dsRNA efficiently silenced the target gene expression at a high knockdown effect (95.4%) and the aphid population was largely suppressed (80.5%). CONCLUSION A novel dsRNA formulation was developed with the help of a nanocarrier and detergent that can quickly penetrate the insect body wall and efficiently silence gene expression. The formulation may provide a fast and easy tool for gene silence in some tough insects and for pest control in the field. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yang Zheng
- Department of Entomology and MOA Key Laboratory for Monitory and Green Control of Crop Pest, China Agricultural University, Beijing, China
| | - Yiseng Hu
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, China
| | - Shuo Yan
- Department of Entomology and MOA Key Laboratory for Monitory and Green Control of Crop Pest, China Agricultural University, Beijing, China
| | - Hang Zhou
- Department of Entomology and MOA Key Laboratory for Monitory and Green Control of Crop Pest, China Agricultural University, Beijing, China
| | - Dunlun Song
- Department of Entomology and MOA Key Laboratory for Monitory and Green Control of Crop Pest, China Agricultural University, Beijing, China
| | - Meizhen Yin
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, China
| | - Jie Shen
- Department of Entomology and MOA Key Laboratory for Monitory and Green Control of Crop Pest, China Agricultural University, Beijing, China
| |
Collapse
|
331
|
Fraz S, Lee AH, Pollard S, Srinivasan K, Vermani A, Wilson JY. Parental gemfibrozil exposure impacts zebrafish F 1 offspring, but not subsequent generations. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 212:194-204. [PMID: 31132737 DOI: 10.1016/j.aquatox.2019.04.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 04/26/2019] [Accepted: 04/29/2019] [Indexed: 06/09/2023]
Abstract
Gemfibrozil (GEM) is a fibrate lipid regulator and one of the most commonly occurring fresh water pharmaceuticals. The negative effects of fibrates including GEM on fish reproduction have been frequently reported including effects of F0 GEM exposure on reproduction of the unexposed F1 offspring. We predicted that chronic, direct exposure of zebrafish with low concentrations of GEM would adversely affect parental male reproduction and unexposed offspring for multiple generations. Adult zebrafish were exposed to 10 μg/L GEM for 6 weeks and a range of reproductive indices were analyzed. The F1-F4 offspring were reared in clean water from 3 distinct lineages where only a single or both parents were exposed and compared to a control lineage where parents were unexposed. Reproductive indices were examined in unexposed F1-F4 offspring to test the hypothesis of multi- or trans- generational impacts. Exposure to GEM caused a decline in breeding success and mean embryo production in F0 parents and a reduction in whole body 11-ketotestosterone (11-KT), altered male courtship, aggression and sperm morphology. Our results indicate that paternal exposure alone is sufficient to result in reproductive effects in unexposed male offspring but that effects are mostly limited to F1. We suggest that GEM may act as a reproductive endocrine disruptor in fish and that chronic exposure reduced male reproductive fitness but not over multiple generations.
Collapse
Affiliation(s)
- Shamaila Fraz
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, L8S 4K1, ON, Canada.
| | - Abigail H Lee
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, L8S 4K1, ON, Canada.
| | - Simon Pollard
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, L8S 4K1, ON, Canada.
| | - Krishna Srinivasan
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, L8S 4K1, ON, Canada.
| | - Abhilasha Vermani
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, L8S 4K1, ON, Canada.
| | - Joanna Y Wilson
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, L8S 4K1, ON, Canada.
| |
Collapse
|
332
|
Krakkó D, Licul-Kucera V, Záray G, Mihucz VG. Single-run ultra-high performance liquid chromatography for quantitative determination of ultra-traces of ten popular active pharmaceutical ingredients by quadrupole time-of-flight mass spectrometry after offline preconcentration by solid phase extraction from drinking and river waters as well as treated wastewater. Microchem J 2019. [DOI: 10.1016/j.microc.2019.04.047] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
333
|
Degradation of Triclosan from Domestic Wastewater by Biosurfactant Produced from Bacillus licheniformis. Mol Biotechnol 2019; 61:674-680. [DOI: 10.1007/s12033-019-00193-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
334
|
Simultaneous determination of environmental contaminants using a graphite oxide – Polyurethane composite electrode modified with cyclodextrin. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 99:1415-1423. [DOI: 10.1016/j.msec.2019.02.093] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 02/20/2019] [Accepted: 02/23/2019] [Indexed: 11/19/2022]
|
335
|
Martín-de-Lucía I, Leganés F, Fernández-Piñas F, Rosal R. Hyperbranched polymeric nanomaterials impair the freshwater crustacean Daphnia magna. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 249:581-588. [PMID: 30933755 DOI: 10.1016/j.envpol.2019.03.078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 03/19/2019] [Indexed: 06/09/2023]
Abstract
Hyperbranched polymers are nanomaterials belonging to the class of dendritic architectures with increasing applications in many diverse fields. We studied the toxicity of two hyperbranched polymers to the freshwater crustacean Daphnia magna. A hyperbranched hydroxyl-terminated polyester and a commercial hyperbranched polyamidoamine, Helux-3316 were tested for the acute immobilization of daphnids, the overproduction of reactive oxygen species and the activity of the antioxidant enzymes catalase and glutathione S-transferase. The effect for D. magna immobilization was higher for the hyperbranched polyamidoamine Helux-3316, which was attributed to the presence of primary amino groups on its surface. Following exposure to both hyperbranched polymers, a clear overproduction of reactive oxygen species took place accompanied by concentration-dependent enzymatic antioxidant response. Our results showed that the overproduction of reactive oxygen species activated antioxidant defence mechanisms and was responsible for the immobilization of daphnids exposed to both hyperbranched polymers. We showed evidence of the uptake of fluorescently labelled Helux-3316 that accumulated into the gastrointestinal tract of D. magna, and its removal via excretion within fecal pellets. This is the first work reporting the internalization of hyperbranched polymers in aquatic organisms.
Collapse
Affiliation(s)
- Idoia Martín-de-Lucía
- Department of Chemical Engineering, University of Alcalá, E-28871, Alcalá de Henares, Madrid, Spain
| | - Francisco Leganés
- Department of Biology, Universidad Autónoma de Madrid, E-28049, Spain
| | | | - Roberto Rosal
- Department of Chemical Engineering, University of Alcalá, E-28871, Alcalá de Henares, Madrid, Spain.
| |
Collapse
|
336
|
Regkouzas P, Diamadopoulos E. Adsorption of selected organic micro-pollutants on sewage sludge biochar. CHEMOSPHERE 2019; 224:840-851. [PMID: 30852464 DOI: 10.1016/j.chemosphere.2019.02.165] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 02/10/2019] [Accepted: 02/23/2019] [Indexed: 05/06/2023]
Abstract
In this study, biochar was produced from three differently treated sewage sludge biomasses, in three pyrolytic temperatures, 300 °C, 500 °C and 700 °C, under continuous N2 supply. The produced samples were physicochemically characterized and their initial metal concentration, along with metal leaching potential, were investigated. Moreover, the application of the biochar samples as adsorbents for the removal of seven emerging organic micro-pollutants from table water and treated wastewater matrices was investigated. The results showed that even though the biochar samples were not especially enriched in terms of physicochemical characterization, they were effective as adsorptive materials in the respective experiments. Pollutant removal was in the range of 67-99% for the table water experiments, while the removal for the wastewater experiments was 35-97%. The results of this study indicate that sewage sludge biochar has the potential to be an effective, low-cost adsorbent, providing, at the same time, a viable and environmentally friendly solution concerning the difficult task of sludge management.
Collapse
Affiliation(s)
- Panagiotis Regkouzas
- Department of Environmental Engineering, Technical University of Crete, 73100, Chania, Greece
| | - Evan Diamadopoulos
- Department of Environmental Engineering, Technical University of Crete, 73100, Chania, Greece.
| |
Collapse
|
337
|
Finlayson KA, Leusch FDL, Limpus CJ, van de Merwe JP. Towards the development of standardised sea turtle primary cell cultures for toxicity testing. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 173:63-70. [PMID: 30769204 DOI: 10.1016/j.ecoenv.2019.01.117] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 01/30/2019] [Accepted: 01/31/2019] [Indexed: 06/09/2023]
Abstract
Chemical contaminants are known to accumulate in marine megafauna globally, but little is known about how this impacts animal health. In vitro assays offer an ethical, reproducible and cost-effective alternative to live animal toxicity testing on large, long-lived or threatened species, such as sea turtles. However, using a cell culture from a single animal raise the question of whether the toxicity observed adequately represents the toxicity in that species. This study examined variation in the cytotoxic response of primary skin fibroblasts established from seven green (Chelonia mydas) and five loggerhead (Caretta caretta) sea turtles. Cell viability using resazurin dye was examined in response to exposure to five contaminants. The variation in cytotoxicity was generally low (within a factor of five) for both independent analyses of the same cell culture, and cell cultures from different individuals. This low within and between cell culture variation indicates that primary sea turtle cell cultures can provide a suitable approach to understanding toxicity in sea turtles. In addition, green and loggerhead turtle cells showed similar toxicity to the compounds tested, indicating that only subtle differences in chemical sensitivity may exist between sea turtle species. This study provides a framework for using species-specific cell cultures in future toxicological studies on sea turtles. Although in vivo studies are the gold standard for toxicological studies and species-specific risk assessments, the development of in vitro tools can provide important information when in vivo studies are not possible or practical. For large, endangered species such as sea turtles that are exposed to, and accumulate, a large number of contaminants, using validated cell cultures may facilitate the rapid assessment of chemical risk to these animals.
Collapse
Affiliation(s)
- Kimberly A Finlayson
- Australian Rivers Institute, School of Environment and Science, Griffith University, Gold Coast, Australia.
| | - Frederic D L Leusch
- Australian Rivers Institute, School of Environment and Science, Griffith University, Gold Coast, Australia
| | - Colin J Limpus
- Department of Environment and Science, Queensland, Australia
| | - Jason P van de Merwe
- Australian Rivers Institute, School of Environment and Science, Griffith University, Gold Coast, Australia
| |
Collapse
|
338
|
Shao Y, Chen Z, Hollert H, Zhou S, Deutschmann B, Seiler TB. Toxicity of 10 organic micropollutants and their mixture: Implications for aquatic risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 666:1273-1282. [PMID: 30970492 DOI: 10.1016/j.scitotenv.2019.02.047] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 02/03/2019] [Accepted: 02/03/2019] [Indexed: 05/06/2023]
Abstract
Micropollutants, as a serious water pollution issue, raise considerable toxicological concerns, particularly when present as components of complex mixtures. Due to the interactions of environmental pollution components (contaminant), the micropollutant problem is increasingly complex, thus, water quality of organic chemical contamination assessed substance-by-substance might lead to underestimation in aquatic environmental risk assessment. To assess the aquatic environmental risk of micropollutants mixture, a total of 10 organic micropollutants were selected and analysed by an approach of integration of literature data, laboratory experiments and prediction techniques. The experiment results showed that all 10 micropollutants were capable of causing toxicity in zebrafish embryos, aquatic invertebrates and algae with the LC50 (50% lethal concentration) values from 1.14 mg/L to 14.37 mg/L. Triclosan, carbamazepine, diazinon and diuron were the most hazardous compounds in the Danube River and the Rhine River. The artificial mixture presented a strong antagonistic relationship, which demonstrated an independent action (IA) model of the mixture. Based on the observed toxicity data, the risk quotients (RQs) of environmental mixtures of the Danube River and the Rhine River were extrapolated. It can be concluded that the micropollutant mixture may pose a potential risk for aquatic ecosystems with the present environmentally measured concentrations in the Danube River and Rhine River. Mixture risk assessment results suggested that the toxicity of studied chemicals might be induced by dissimilar actions, which is in agreement with the mixture toxicity prediction of the IA model. The observed findings could be useful to establish an overview of the pressures, vision, measures and expectations for hazardous substances pollution, which can help in making to informed decisions to reduce the concentration and bioactive fraction of pollutants.
Collapse
Affiliation(s)
- Ying Shao
- Institute for Environmental Research (Biology V), RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany; Department of Cell Toxicology, UFZ - Helmholtz Centre for Environmental Research GmbH, Permoserstraße 15, 04318 Leipzig, Germany.
| | - Zhongli Chen
- Key Laboratory of the Three Gorges Reservoir Eco-environment, Chongqing University, 174 Shazheng Road, Shapingba, Chongqing 400045, China
| | - Henner Hollert
- Institute for Environmental Research (Biology V), RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany; College of Resources and Environmental Science, Chongqing University, 174 Shazheng Road, Shapingba, Chongqing 400044, China; College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Road, Shanghai, China; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, China
| | - Shangbo Zhou
- Institute for Environmental Research (Biology V), RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Björn Deutschmann
- Institute for Environmental Research (Biology V), RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Thomas-Benjamin Seiler
- Institute for Environmental Research (Biology V), RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany.
| |
Collapse
|
339
|
Setty K, Loret JF, Courtois S, Hammer CC, Hartemann P, Lafforgue M, Litrico X, Manasfi T, Medema G, Shaheen M, Tesson V, Bartram J. Faster and safer: Research priorities in water and health. Int J Hyg Environ Health 2019; 222:593-606. [PMID: 30910612 PMCID: PMC6545151 DOI: 10.1016/j.ijheh.2019.03.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 03/08/2019] [Accepted: 03/11/2019] [Indexed: 11/22/2022]
Abstract
The United Nations' Sustainable Development Goals initiated in 2016 reiterated the need for safe water and healthy lives across the globe. The tenth anniversary meeting of the International Water and Health Seminar in 2018 brought together experts, students, and practitioners, setting the stage for development of an inclusive and evidence-based research agenda on water and health. Data collection relied on a nominal group technique gathering perceived research priorities as well as underlying drivers and adaptation needs. Under a common driver of public health protection, primary research priorities included the socioeconomy of water, risk assessment and management, and improved monitoring methods and intelligence. Adaptations stemming from these drivers included translating existing knowledge to providing safe and timely services to support the diversity of human water needs. Our findings present a comprehensive agenda of topics at the forefront of water and health research. This information can frame and inform collective efforts of water and health researchers over the coming decades, contributing to improved water services, public health, and socioeconomic outcomes.
Collapse
Affiliation(s)
- Karen Setty
- The Water Institute at University of North Carolina at Chapel Hill, Department of Environmental Sciences and Engineering, 166 Rosenau Hall, CB #7431, Chapel Hill, NC, 27599-7431, USA.
| | - Jean-Francois Loret
- Suez, Centre International de Recherche sur l'Eau et l'Environnement (CIRSEE), 38 rue du President Wilson, 78230, Le Pecq, France.
| | - Sophie Courtois
- Suez, Centre International de Recherche sur l'Eau et l'Environnement (CIRSEE), 38 rue du President Wilson, 78230, Le Pecq, France.
| | - Charlotte Christiane Hammer
- Norwich Medical School, University of East Anglia Faculty of Medicine and Health Sciences, Norwich, NR4 7TJ, UK.
| | - Philippe Hartemann
- Université de Lorraine, Faculté de Médecine, EA 7298, ERAMBO, DESP, Vandœuvre-lès-Nancy, France.
| | - Michel Lafforgue
- Suez Consulting, Le Bruyère 2000 - Bâtiment 1, Zone du Millénaire, 650 Rue Henri Becquerel, CS79542, 34961, Montpellier Cedex 2, France.
| | - Xavier Litrico
- Suez, Tour CB21, 16 Place de l'Iris, 92040, Paris La Defense Cedex, France.
| | - Tarek Manasfi
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600, Dübendorf, Switzerland.
| | - Gertjan Medema
- KWR Watercycle Research Institute, Groningenhaven 7, 3433, PE, Nieuwegein, the Netherlands; Delft University of Technology, Stevinweg 1, 2628 CN, Delft, the Netherlands.
| | - Mohamed Shaheen
- School of Public Health, University of Alberta, 3-300 Edmonton Clinic Health Academy, 11405 - 87 Ave, Edmonton, AB T6G 1C9, Canada.
| | - Vincent Tesson
- French National Institute for Agricultural Research (INRA), UMR 1114 EMMAH, 228 route de l'Aérodrome, CS 40 509, 84914, Avignon Cedex 9, France.
| | - Jamie Bartram
- The Water Institute at University of North Carolina at Chapel Hill, Department of Environmental Sciences and Engineering, 166 Rosenau Hall, CB #7431, Chapel Hill, NC, 27599-7431, USA.
| |
Collapse
|
340
|
Ghosh A, Meshram NK, Saha R. Glycerol-mediated synthesis of nanoscale zerovalent iron and its application for the simultaneous reduction of nitrate and alachlor. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:11951-11961. [PMID: 30825124 DOI: 10.1007/s11356-019-04621-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 02/19/2019] [Indexed: 06/09/2023]
Abstract
NZVI has long been used for the remediation of different groundwater contaminants but their tendency to get oxidized easily has always been a barrier to their reductive ability. In this work, we have made an attempt to enhance the aerobic stability of the nanoparticles by synthesizing them in a medium consisting of a viscous solvent, glycerol, and water. The XRD analysis of the nanoparticles reveals that the particles prepared in the presence of glycerol have a very thin coating of iron oxides on the outer surface of the nanoparticles in comparison with those prepared in the aqueous medium. These nanoparticles were applied for the simultaneous reduction of two groundwater contaminants, nitrate ions, and alachlor, which is an herbicide. Stock solutions of these two contaminants were prepared and then they were mixed in varying amounts and were treated by different doses of the nanoparticle. The optimized dose of the nanoparticles obtained for almost 97% removal of both the contaminants is 2.05 g/L. The studies showed that increasing the concentration of either of the contaminants while the other one was kept fixed led to a decrease in the removal efficiency. The studies conducted to see the effect of pH variation showed that the best removal can be achieved when the pH is 3 or even less than it, showing that acidic pH leads to higher removal values. Such nanoparticles which can be prepared easily at low-cost and can simultaneously act upon different contaminants are highly desired.
Collapse
Affiliation(s)
- Ananya Ghosh
- Department of Chemistry, National Institute of Technology Durgapur, Durgapur, 713205, India
| | - Nilesh Kumar Meshram
- Department of Chemistry, National Institute of Technology Durgapur, Durgapur, 713205, India
- Department of Earth and Environmental Studies, National Institute of Technology Durgapur, Durgapur, 713205, India
| | - Rajnarayan Saha
- Department of Chemistry, National Institute of Technology Durgapur, Durgapur, 713205, India.
| |
Collapse
|
341
|
Patel M, Kumar R, Kishor K, Mlsna T, Pittman CU, Mohan D. Pharmaceuticals of Emerging Concern in Aquatic Systems: Chemistry, Occurrence, Effects, and Removal Methods. Chem Rev 2019; 119:3510-3673. [DOI: 10.1021/acs.chemrev.8b00299] [Citation(s) in RCA: 827] [Impact Index Per Article: 165.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Manvendra Patel
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Rahul Kumar
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Kamal Kishor
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Todd Mlsna
- Department of Chemistry, Mississippi State University, Mississippi State, Mississippi 39762, United States
| | - Charles U. Pittman
- Department of Chemistry, Mississippi State University, Mississippi State, Mississippi 39762, United States
| | - Dinesh Mohan
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
342
|
Rao Y, Han F, Chen Q, Wang D, Xue D, Wang H, Pu S. Efficient degradation of diclofenac by LaFeO 3-Catalyzed peroxymonosulfate oxidation---kinetics and toxicity assessment. CHEMOSPHERE 2019; 218:299-307. [PMID: 30476761 DOI: 10.1016/j.chemosphere.2018.11.105] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 11/08/2018] [Accepted: 11/15/2018] [Indexed: 06/09/2023]
Abstract
Diclofenac was frequently found in various waters, indicating conventional wastewater treatment methods ineffective in its removal. In this study, LaFeO3 (LFO) was synthesized and its catalytic activity of LFO as the activator of different oxidants such as persulfate (PS), hydrogen peroxide and peroxylmonosulfate (PMS) was evaluated in terms of DCF degradation. The influence of calcination temperature was examined on the catalytic activity of LFO. The effects of various parameters including pH levels, PMS concentration, LFO dose and initial DCF concentration were investigated on DCF degradation rate. The marginal effects of PMS concentration and LFO dose were compared. Langmuir-Hinshelwood (LH) model was used to quantitatively describe DCF degradation reaction in LFO/PMS system. The two constants, k (Limiting reaction rate at maximum coverage) and K (Equilibrium adsorption constant), were determined on the basis of LH model. The performance of LFO/PMS process was also estimated in the presence of various inorganic anions. The potential toxicity of LFO and PMS were evaluated using phytoplankton and the toxicity evolution during DCF degradation was also investigated using luminescent bacteria. This contribution provides a basic study regarding the potential application of heterogeneous PMS activation by perovskite LFO for both DCF removal and toxicity elimination.
Collapse
Affiliation(s)
- Yongfang Rao
- Department of Environmental Science and Engineering, Xi' an Jiaotong University, Xi'an 710049, China.
| | - Fuman Han
- Department of Environmental Science and Engineering, Xi' an Jiaotong University, Xi'an 710049, China
| | - Qian Chen
- Department of Environmental Science and Engineering, Xi' an Jiaotong University, Xi'an 710049, China
| | - Dan Wang
- Department of Environmental Science and Engineering, Xi' an Jiaotong University, Xi'an 710049, China
| | - Dan Xue
- Department of Environmental Science and Engineering, Xi' an Jiaotong University, Xi'an 710049, China
| | - Hua Wang
- Instrumental Analysis Center, Yancheng Teachers University, 2 South Xiwang Avenue, Yancheng 224007, China
| | - Shengyan Pu
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology), 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, PR China.
| |
Collapse
|
343
|
Bilal M, Adeel M, Rasheed T, Zhao Y, Iqbal HMN. Emerging contaminants of high concern and their enzyme-assisted biodegradation - A review. ENVIRONMENT INTERNATIONAL 2019; 124:336-353. [PMID: 30660847 DOI: 10.1016/j.envint.2019.01.011] [Citation(s) in RCA: 192] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 12/07/2018] [Accepted: 01/04/2019] [Indexed: 02/08/2023]
Abstract
The widespread occurrence and adverse environmental and health-related impacts of various types of emerging contaminants (ECs) have become an issue of high concern. With ever increasing scientific knowledge, socio-economic awareness, health-related problems and ecological apprehensions, people are more concerned about the widespread ECs, around the globe. Among ECs, biologically active compounds from pharmaceutical, cosmeceutical, biomedical, personal care products (PPCPs), endocrine-disrupting chemicals (EDCs), and flame-retardants are of paramount concern. The presence and persistence of ECs in water bodies are of continued and burning interest, worldwide. Various types of ECs are being discharged knowingly/unknowingly with/without partial treatments into the aquatic environments that pose serious health issues and affects the entire living ecosystem. So far, various approaches have been developed for ECs degradation and removal to diminish their adverse impact. Many previous and/or ongoing studies have focused on contaminants degradation and efficient removal via numerous treatment strategies, i.e. (1) physical, (2) chemical and (3) biological. However, the experimental evidence is lacking to enable specific predictions about ECs mechanistic degradation and removal fate across various in-practice systems. In this context, the deployment oxidoreductases such as peroxidases (lignin peroxidases, manganese-dependent peroxidases, and horseradish peroxidase), aromatic dioxygenases, various oxygenases, laccases, and tyrosinases have received considerable research attention. Immobilization is highlighted as a promising approach to improve enzyme catalytic performance and stabilization, as well as, to protect the three-dimensional structure of the enzyme against the undesirable consequences of harsh reaction environment. This work overviews the current and state-of-the-art critical aspect related to hazardous pollutants at large and ECs in particular by the immobilized oxidoreductase enzymes. The first part of the review focuses on the occurrence, physiochemical behavior, potent sources and significant routes of ECs. Following that, environmentally-related adverse impacts and health-related issues of ECs are discussed in the second part. In the third part, biodegradation and removal strategies with a comparative overview of several conventional vs. non-conventional methods are presented briefly. The fourth part majorly focuses on operational modes of different oxidoreductase enzyme-based biocatalytic processes for the biodegradation and biotransformation of a wide array of harmful environmental contaminants. Finally, the left behind research gaps, concluding remarks as well as future trends and recommendations in the use of carrier-immobilized oxidoreductases for environmental perspective are also discussed.
Collapse
Affiliation(s)
- Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China
| | - Muhammad Adeel
- School of Chemistry & Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Tahir Rasheed
- School of Chemistry & Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yuping Zhao
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China.
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, N.L. CP 64849, Mexico.
| |
Collapse
|
344
|
Li P, Wu J. Sustainable living with risks: meeting the challenges. HUMAN AND ECOLOGICAL RISK ASSESSMENT: AN INTERNATIONAL JOURNAL 2019; 25:1-10. [PMID: 0 DOI: 10.1080/10807039.2019.1584030] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 02/14/2019] [Indexed: 05/26/2023]
Affiliation(s)
- Peiyue Li
- School of Environmental Science and Engineering, Chang’an University, Xi’an, Shaanxi, China
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang’an University, Xi’an, Shaanxi, China
| | - Jianhua Wu
- School of Environmental Science and Engineering, Chang’an University, Xi’an, Shaanxi, China
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang’an University, Xi’an, Shaanxi, China
| |
Collapse
|
345
|
Fu M, Xing J, Ge Z. Preparation of laccase-loaded magnetic nanoflowers and their recycling for efficient degradation of bisphenol A. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 651:2857-2865. [PMID: 30463138 DOI: 10.1016/j.scitotenv.2018.10.145] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 09/21/2018] [Accepted: 10/10/2018] [Indexed: 06/09/2023]
Abstract
Bisphenol A (BPA) has been identified as one of the endocrine disrupting chemicals. However, the issue that BPA widely exists in various environments has puzzled people for decades. To develop highly efficient, easy separation, recyclable and reusable materials for BPA degradation in water, laccase-loaded magnetic nanoflowers (MNFs) were prepared by attaching amino-functionalized magnetic nanoparticles onto the laccase-inorganic hybrid nanoflowers. Characterization results showed that MNFs were spherical, porous and hierarchical structure with an average diameter of 15 μm to which magnetic nanoparticles was successfully attached through electrostatic force. MNFs exhibited excellent catalytic activity on BPA degradation under room temperature in the presence of ABTS. Under optimized conditions, MNFs reached 100% BPA degradation for only 5 min. In addition, it still retained over 92% of its initial activity after 60 days of storage at 4 °C, indicating that its thermal and storage stabilities have been improved. When the MNFs was recycled and reused 5 cycles, only 5% decrease in degradation efficiency of BPA was observed. These results suggest that MNFs possess great efficiency and reusability in the treatment of aqueous solution containing BPA and is a novel promising material.
Collapse
Affiliation(s)
- Meihua Fu
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin 300072, People's Republic of China
| | - Jinfeng Xing
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin 300072, People's Republic of China
| | - Zhiqiang Ge
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin 300072, People's Republic of China.
| |
Collapse
|
346
|
Guo J, Deng D, Wang Y, Yu H, Shi W. Extended suspect screening strategy to identify characteristic toxicants in the discharge of a chemical industrial park based on toxicity to Daphnia magna. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 650:10-17. [PMID: 30195126 DOI: 10.1016/j.scitotenv.2018.08.215] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 08/15/2018] [Accepted: 08/17/2018] [Indexed: 06/08/2023]
Abstract
With an increasing amount of industrial wastewater being discharged and the numerous chemicals existed in, methods to identify toxicants in such complex matrices are urgently needed for source control and quality management. In vivo toxicity to Daphnia magna was evaluated in the effluent of a wastewater treatment plant (WWTP). An extended suspect screening strategy was performed by bioassay-directed fractionation, accompanied with suspect screening of 228 suspect chemicals in toxic fractions based on their mass characteristics and chromatography characteristics. A toxicity evaluation of the original samples, organic components extracted by solid-phase extraction (SPE) and the filtered samples showed that organic compounds extracted by SPE were the main toxic components. Four of the 26 fractions of the organic extracts exhibited a toxic unit (TU) > 1.0, with hydrophobic organic compounds contributing most to the toxicity. Twenty-eight of the 228 suspects were identified in four toxic fractions, with 53.6% of the suspects elucidated by spectrum interpretation based on mass characteristics and 53.8% more false positive suspects removed based on chromatography characteristics. Finally, 6 pollutants, including imazalil, prometryn, propiconazole, tebuconazole, buprofezin and diazinon, were further confirmed and explained 48.79% of the observed toxicity. With 2.48 times more of the toxicity explained and 90% of the labor saved, the extended suspect screening strategy enabled more efficient and reliable identification compared to traditional quantitative analysis and non-target screening, especially for identification of characteristic toxicants in complex environmental matrices.
Collapse
Affiliation(s)
- Jing Guo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Dongyang Deng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Yuting Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Hongxia Yu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Wei Shi
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China; Jiangsu Environmental Monitoring Center, Nanjing University, Nanjing, Jiangsu 210023, China; Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
347
|
Duarte B, Prata D, Matos AR, Cabrita MT, Caçador I, Marques JC, Cabral HN, Reis-Santos P, Fonseca VF. Ecotoxicity of the lipid-lowering drug bezafibrate on the bioenergetics and lipid metabolism of the diatom Phaeodactylum tricornutum. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 650:2085-2094. [PMID: 30290350 DOI: 10.1016/j.scitotenv.2018.09.354] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 09/24/2018] [Accepted: 09/28/2018] [Indexed: 06/08/2023]
Abstract
Pharmaceutical residues impose a new and emerging threat to the marine environment and its biota. In most countries, ecotoxicity tests are not required for all pharmaceutical residues classes and, even when mandatory, these tests are not performed using marine primary producers such as diatoms. These microalgae are among the most abundant class of primary producers in the marine realm and key players in the marine trophic web. Blood-lipid-lowering agents such as bezafibrate and its derivatives are among the most prescribed drugs and most frequently found human pharmaceuticals in aquatic environments. The present study aims to investigate the bezafibrate ecotoxicity and its effects on primary productivity and lipid metabolism, at environmentally relevant concentrations, using the model diatom Phaeodactylum tricornutum. Under controlled conditions, diatom cultures were exposed to bezafibrate at 0, 3, 6, 30 and 60 μg L-1, representing concentrations that can be found in the vicinity of discharges of wastewater treatment plants. High bezafibrate concentrations increased cell density and are suggested to promote a shift from autotrophic to mixotrophic metabolism, with diatoms using light energy generated redox potential to breakdown bezafibrate as carbon source. This was supported by an evident increase in cell density coupled with an impairment of the thylakoid electron transport and consequent photosynthetic activity reduction. In agreement, the concentrations of plastidial marker fatty acids showed negative correlations and Canonical Analysis of Principal coordinates of the relative abundances of fatty acid and photochemical data allowed the separation of controls and cells exposed to bezafibrate with high classification efficiency, namely for photochemical traits, suggesting their validity as suitable biomarkers of bezafibrate exposure. Further evaluations of the occurrence of a metabolic shift in diatoms due to exposure to bezafibrate is paramount, as ultimately it may reduce O2 generation and CO2 fixation in aquatic ecosystems with ensuing consequences for neighboring heterotrophic organisms.
Collapse
Affiliation(s)
- Bernardo Duarte
- MARE - Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal.
| | - Diogo Prata
- BioISI - Biosystems and Integrative Sciences Institute, Plant Functional Genomics Group, Departamento de Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Ana Rita Matos
- BioISI - Biosystems and Integrative Sciences Institute, Plant Functional Genomics Group, Departamento de Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Maria Teresa Cabrita
- Instituto do Mar e da Atmosfera (IPMA), Rua Alfredo Magalhães Ramalho, 6, 1495-006, Algés, Lisboa, Portugal
| | - Isabel Caçador
- MARE - Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal
| | - João Carlos Marques
- MARE - Marine and Environmental Sciences Centre, c/o Department of Zoology, Faculty of Sciences and Technology, University of Coimbra, 3000 Coimbra, Portugal
| | - Henrique N Cabral
- MARE - Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal; Irstea, UR EABX (Ecosystèmes Aquatiques et Changements Globaux), 50 avenue de Verdun, 33610 Cestas, France
| | - Patrick Reis-Santos
- MARE - Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal; Southern Seas Ecology Laboratories, School of Biological Sciences, The University of Adelaide, SA 5005, Australia
| | - Vanessa F Fonseca
- MARE - Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal
| |
Collapse
|
348
|
Araújo APDC, Mesak C, Montalvão MF, Freitas ÍN, Chagas TQ, Malafaia G. Anti-cancer drugs in aquatic environment can cause cancer: Insight about mutagenicity in tadpoles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 650:2284-2293. [PMID: 30292121 DOI: 10.1016/j.scitotenv.2018.09.373] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 09/30/2018] [Accepted: 09/30/2018] [Indexed: 05/17/2023]
Abstract
Cyclophosphamide (Cyc) and 5-fluorouracil (5-FU) are two of the most used antineoplastic drugs (AD) in the world. However, their discharge in the environment became a yet-unknown environmental issue that has impact on some groups of animals, such as amphibians. We assessed tadpoles (Lithobates catesbeianus) exposed to environmental concentrations (EC) of Cyc and 5-FU to evaluate whether they can cause morphological and mutagenic changes in them. We defined the following groups: control, positive control (50 mg/L of Cyc), EC-Cyc-I (0.2 μg/L), EC-Cyc-II (0.5 μg/L), EF-Cyc (2.0 μg/L), EC-5-FU-I (13.0 μg/L), EC-5-FU-II (30.4 μg/L) and EF-5-FU (123.5 μg/L). EC groups presented predictive AD concentrations in 10% and 25% hospital-effluent dilutions in water. EF groups met gross hospital-effluent concentrations. Based on our data, ADs caused intestinal changes and influenced the interocular distance in tadpoles after 30-day exposure. We also observed the aneugenic and clastogenic effect of ADs due to the higher frequency of micronucleated and binucleated erythrocytes, and blebbed, multilobulated, notched and kidney-shaped nuclei in animals exposed to them. Based on such changes, we assume that Cyc and 5-FU can trigger malignant cell transformation processes, and cancer, in animals exposed to them, even at low concentrations. Our study is the first to describe that Cyc and 5-FU, spread in the environment, cause damages in non-target organisms opposite to their original end.
Collapse
Affiliation(s)
- Amanda Pereira da Costa Araújo
- Biological Research Laboratory, Post-graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute-Urutaí Campus, Urutaí, GO, Brazil
| | - Carlos Mesak
- Biological Research Laboratory, Post-graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute-Urutaí Campus, Urutaí, GO, Brazil
| | - Mateus Flores Montalvão
- Biological Research Laboratory, Post-graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute-Urutaí Campus, Urutaí, GO, Brazil
| | - Ítalo Nascimento Freitas
- Biological Research Laboratory, Post-graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute-Urutaí Campus, Urutaí, GO, Brazil
| | - Thales Quintão Chagas
- Biological Research Laboratory, Post-graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute-Urutaí Campus, Urutaí, GO, Brazil
| | - Guilherme Malafaia
- Biological Research Laboratory, Post-graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute-Urutaí Campus, Urutaí, GO, Brazil.
| |
Collapse
|
349
|
de Morais e Silva L, Lorenzo VP, Lopes WS, Scotti L, Scotti MT. Predictive Computational Tools for Assessment of Ecotoxicological Activity of Organic Micropollutants in Various Water Sources in Brazil. Mol Inform 2019; 38:e1800156. [DOI: 10.1002/minf.201800156] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 01/06/2019] [Indexed: 01/18/2023]
Affiliation(s)
- Luana de Morais e Silva
- Post-Graduate Program in Science and Environmental TechnologyDepartment of Sanitary and Environmental EngineeringState University of Paraíba 58429500 Campina Grande, PB Brazil
| | - Vitor Prates Lorenzo
- Federal Institute of Education, Science and Technology Sertão Pernambucano 56316686 Petrolina, Pernambuco Brazil
| | - Wilton Silva Lopes
- Post-Graduate Program in Science and Environmental TechnologyDepartment of Sanitary and Environmental EngineeringState University of Paraíba 58429500 Campina Grande, PB Brazil
| | - Luciana Scotti
- Post-Graduate Program in Natural and Synthetic Bioactive ProductsFederal University of Paraíba 58051-900 João Pessoa, PB Brazil
| | - Marcus Tullius Scotti
- Post-Graduate Program in Natural and Synthetic Bioactive ProductsFederal University of Paraíba 58051-900 João Pessoa, PB Brazil
| |
Collapse
|
350
|
Herbache H, Ramdani A, Taleb Z, Ruiz-Rosas R, Taleb S, Morallón E, Pirault-Roy L, Ghaffour N. Catalytic degradation of O-cresol using H 2 O 2 onto Algerian Clay-Na. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2019; 91:165-174. [PMID: 30735300 DOI: 10.1002/wer.1022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 09/05/2018] [Accepted: 09/30/2018] [Indexed: 06/09/2023]
Abstract
Clay material is used as a catalyst to degrade an organic pollutant. This study focused on the O-cresol oxidative degradation in aqueous solution by adding H2 O2 and Mont-Na. The catalytic tests showed a high catalytic activity of Mont-Na, which made it possible to achieve more than 84.6% conversion after 90 min of reaction time at 55°C in 23.2 mM H2 O2 . The pH value was found to be negatively correlated with the degradation rate of O-cresol. UV-Vis spectrophotometry revealed that the increase of degradation rate at low pH is related to the formation of 2-methylbenzoquinone as intermediate product. In addition, the content of iron in Mont-Na decreased after the catalytic test, bringing further evidence about the O-cresol catalytic oxidation. The mineralization of O-cresol is also confirmed by the different methods of characterization of Mont-Na after the catalytic oxidation test. The effect of the O-cresol oxidation catalyzed by natural clay is significant. PRACTITIONER POINTS: Algerian Montmorillonite-Na is used as a catalyst to degrade an organic pollutant: O-cresol. It shows a great potential for catalyst properties in the presence of the oxidizing reagent H2 O2 . It proved to be an effective means for the degradation of O-cresol contained in wastewaters.
Collapse
Affiliation(s)
- Hayat Herbache
- Laboratory of Materials & Catalysis, Faculty of Exact Sciences, Djillali Liabès University, Sidi Bel-Abbès, Algeria
| | - Amina Ramdani
- Laboratory of Materials & Catalysis, Faculty of Exact Sciences, Djillali Liabès University, Sidi Bel-Abbès, Algeria
- Department of Chemistry, Faculty of Sciences, University Dr. Moulay Tahar, Saida, Algeria
| | - Zoubida Taleb
- Laboratory of Materials & Catalysis, Faculty of Exact Sciences, Djillali Liabès University, Sidi Bel-Abbès, Algeria
| | - Ramiro Ruiz-Rosas
- Instituto Universitario de Materiales, Universidad de Alicante, Alicante, Spain
| | - Safia Taleb
- Laboratory of Materials & Catalysis, Faculty of Exact Sciences, Djillali Liabès University, Sidi Bel-Abbès, Algeria
| | - Emilia Morallón
- Instituto Universitario de Materiales, Universidad de Alicante, Alicante, Spain
| | - Laurence Pirault-Roy
- Institut de Chimie des Milieux et Matériaux de Poitiers, IC2MP UMR 7285, B27, TSA 51106, Poitiers Cedex, France
| | - Noreddine Ghaffour
- Water Desalination & Reuse Centre, King Abdullah University of Science and Technology (KAUST), Division of Biological & Environmental Science & Engineering (BESE), 23955-6900 Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|