301
|
tom Dieck S, Altrock WD, Kessels MM, Qualmann B, Regus H, Brauner D, Fejtová A, Bracko O, Gundelfinger ED, Brandstätter JH. Molecular dissection of the photoreceptor ribbon synapse: physical interaction of Bassoon and RIBEYE is essential for the assembly of the ribbon complex. ACTA ACUST UNITED AC 2005; 168:825-36. [PMID: 15728193 PMCID: PMC2171818 DOI: 10.1083/jcb.200408157] [Citation(s) in RCA: 314] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The ribbon complex of retinal photoreceptor synapses represents a specialization of the cytomatrix at the active zone (CAZ) present at conventional synapses. In mice deficient for the CAZ protein Bassoon, ribbons are not anchored to the presynaptic membrane but float freely in the cytoplasm. Exploiting this phenotype, we dissected the molecular structure of the photoreceptor ribbon complex. Identifiable CAZ proteins segregate into two compartments at the ribbon: a ribbon-associated compartment including Piccolo, RIBEYE, CtBP1/BARS, RIM1, and the motor protein KIF3A, and an active zone compartment including RIM2, Munc13-1, a Ca2+ channel α1 subunit, and ERC2/CAST1. A direct interaction between the ribbon-specific protein RIBEYE and Bassoon seems to link the two compartments and is responsible for the physical integrity of the photoreceptor ribbon complex. Finally, we found the RIBEYE homologue CtBP1 at ribbon and conventional synapses, suggesting a novel role for the CtBP/BARS family in the molecular assembly and function of central nervous system synapses.
Collapse
Affiliation(s)
- Susanne tom Dieck
- Department of Neuroanatomy, Max Planck Institute for Brain Research, D-60528 Frankfurt/Main, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
302
|
Hambsch B, Grinevich V, Seeburg PH, Schwarz MK. {gamma}-Protocadherins, presenilin-mediated release of C-terminal fragment promotes locus expression. J Biol Chem 2005; 280:15888-97. [PMID: 15711011 DOI: 10.1074/jbc.m414359200] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
gamma-Protocadherins (gamma-pcdhs) are type I membrane-spanning glycoproteins, widely expressed in the mammal and required for survival. These cell adhesion molecules are expressed from a complex locus comprising 22 functional variable exons arranged in tandem, each encoding extracellular, transmembrane and intracellular sequence, and three exons for an invariant C-terminal domain (gamma-ICD). However, the signaling mechanisms that lie downstream of gamma-pcdhs have not been elucidated. Here we report that gamma-pcdhs are subject to presenilin-dependent intramembrane cleavage (PS-IP), accompanied by shedding of the extracellular domain. The cleaved intracellular domain (gamma-ICD) translocates to the cell nucleus and was detected in subsets of cortical neurons. Notably, gene-targeted mice lacking functional gamma-ICD sequence showed severely reduced gamma-pcdh mRNA levels and neonatal lethality. Most importantly, inhibition of gamma-secretase decreased gamma-pcdh locus expression. Luciferase reporter assays demonstrated that gamma-pcdh promoter activity is increased by gamma-ICD. These results reveal an intracellular signaling mechanism for gamma-pcdhs and identify a novel vital target for the gamma-secretase complex.
Collapse
Affiliation(s)
- Boris Hambsch
- Department of Molecular Neurobiology, Max-Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
| | | | | | | |
Collapse
|
303
|
Phillips GR, Anderson TR, Florens L, Gudas C, Magda G, Yates JR, Colman DR. Actin-binding proteins in a postsynaptic preparation: Lasp-1 is a component of central nervous system synapses and dendritic spines. J Neurosci Res 2005; 78:38-48. [PMID: 15372503 DOI: 10.1002/jnr.20224] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
CNS synapses are complex sites of cell-cell communication. Identification and characterization of the protein components of synapses will lead to a better understanding of the mechanisms of neurotransmission and plasticity. We applied multidimensional protein identification technology (MudPIT) to purified, guanidine-solubilized postsynaptic fractions to identify novel synaptically localized molecules. We identified several actin-associated proteins known to regulate actin polymerization and control cell motility in nonneural cells that have not previously been associated with CNS synaptic function. One of these is lasp-1, an actin-associated LIM and SH3 domain-containing protein. We show that lasp-1 is strongly expressed by CNS neurons and is concentrated at synaptic sites. Overall, the preponderance of actin-associated proteins in postsynaptic density fractions, and specifically those involved in actin reorganization, suggests that there are many modes by which the state of synaptic F-actin polymerization and, hence, synaptic physiology are affected.
Collapse
Affiliation(s)
- Greg R Phillips
- Fishberg Department of Neuroscience, Mount Sinai School of Medicine, New York, New York 10029, USA.
| | | | | | | | | | | | | |
Collapse
|
304
|
Jontes JD, Emond MR, Smith SJ. In vivo trafficking and targeting of N-cadherin to nascent presynaptic terminals. J Neurosci 2005; 24:9027-34. [PMID: 15483121 PMCID: PMC6730076 DOI: 10.1523/jneurosci.5399-04.2004] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
N-cadherin is a prominent component of developing and mature synapses, yet very little is known about its trafficking within neurons. To investigate N-cadherin dynamics in developing axons, we used in vivo two-photon time-lapse microscopy of N-cadherin--green fluorescent protein (Ncad-GFP), which was expressed in Rohon-Beard neurons of the embryonic zebrafish spinal cord. Ncad-GFP was present as either stable accumulations or highly mobile transport packets. The mobile transport packets were of two types: tubulovesicular structures that moved preferentially in the anterograde direction and discrete-punctate structures that exhibited bidirectional movement. Stable puncta of Ncad-GFP accumulated in the wake of the growth cone with a time course. Colocalization of Ncad-GFP puncta with synaptic markers suggests that N-cadherin is a very early component of nascent synapses. Expression of deletion mutants revealed a potential role of the extracellular domain in appropriate N-cadherin trafficking and targeting. These results are the first to characterize the trafficking of a synaptic cell-adhesion molecule in developing axons in vivo. In addition, we have begun to investigate the cell biology of N-cadherin trafficking and targeting in the context of an intact vertebrate embryo.
Collapse
Affiliation(s)
- James D Jontes
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California 94305-5345, USA.
| | | | | |
Collapse
|
305
|
Rebola N, Canas PM, Oliveira CR, Cunha RA. Different synaptic and subsynaptic localization of adenosine A2A receptors in the hippocampus and striatum of the rat. Neuroscience 2005; 132:893-903. [PMID: 15857695 DOI: 10.1016/j.neuroscience.2005.01.014] [Citation(s) in RCA: 154] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2004] [Revised: 01/03/2005] [Accepted: 01/06/2005] [Indexed: 11/30/2022]
Abstract
Adenosine A(2A) receptors are most abundant in the striatum where they control the striatopallidal pathway thus controlling locomotion. Extra-striatal A(2A) receptors are considerably less abundant but their blockade confers robust neuroprotection. We now have investigated if striatal and extra-striatal A(2A) receptors have a different neuronal location to understand their different functions. The binding density of the A(2A) antagonist, [(3)H]-7-(2-phenylethyl)-5-amino-2-(2-furyl)pyrazolo[4,3e][1,2,4]triazolo[1,5-c]pyrimidine ([(3)H]SCH 58261), was enriched in nerve terminals membranes (B(max)=103+/-12 fmol/mg protein) compared with total membranes (B(max)=29+/-4 fmol/mg protein) from the hippocampus, the same occurring with A(2A) receptor immunoreactivity. In contrast, there was no enrichment of [(3)H]SCH 58261 binding or A(2A) receptor immunoreactivity in synaptosomal compared with total membranes from the striatum. Further subcellular fractionation of hippocampal nerve terminals revealed that A(2A) receptor immunoreactivity was enriched in the active zone of presynaptic nerve terminals, whereas it was predominantly located in the postsynaptic density in the striatum, although a minority of striatal A(2A) receptors were located in the presynaptic active zone. These results indicate that A(2A) receptors in the striatum are not enriched in synapses in agreement with the preponderant role of A(2A) receptors in signal processing in striatopallidal neurons. In contrast, hippocampal A(2A) receptors are enriched in synapses, mainly in the active zone, in accordance with their role in controlling neurotransmitter release. This regional variation in the neuronal distribution of A(2A) receptors reinforces the care required to extrapolate our knowledge from striatal A(2A) receptors to other brain preparations.
Collapse
Affiliation(s)
- N Rebola
- Center for Neurosciences of Coimbra, Institute of Biochemistry, Faculty of Medicine, University of Coimbra, Portugal
| | | | | | | |
Collapse
|
306
|
Ulmer TS, Bax A, Cole NB, Nussbaum RL. Structure and dynamics of micelle-bound human alpha-synuclein. J Biol Chem 2004; 280:9595-603. [PMID: 15615727 DOI: 10.1074/jbc.m411805200] [Citation(s) in RCA: 712] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Misfolding of the protein alpha-synuclein (aS), which associates with presynaptic vesicles, has been implicated in the molecular chain of events leading to Parkinson's disease. Here, the structure and dynamics of micelle-bound aS are reported. Val3-Val37 and Lys45-Thr92 form curved alpha-helices, connected by a well ordered, extended linker in an unexpected anti-parallel arrangement, followed by another short extended region (Gly93-Lys97), overlapping the recently identified chaperone-mediated autophagy recognition motif and a highly mobile tail (Asp98-Ala140). Helix curvature is significantly less than predicted based on the native micelle shape, indicating a deformation of the micelle by aS. Structural and dynamic parameters show a reduced helical content for Ala30-Val37. A dynamic variation in interhelical distance on the microsecond timescale is complemented by enhanced sub-nanosecond timescale dynamics, particularly in the remarkably glycine-rich segments of the helices. These unusually rich dynamics may serve to mitigate the effect of aS binding on membrane fluidity. The well ordered conformation of the helix-helix connector indicates a defined interaction with lipidic surfaces, suggesting that, when bound to larger diameter synaptic vesicles, it can act as a switch between this structure and a previously proposed uninterrupted helix.
Collapse
Affiliation(s)
- Tobias S Ulmer
- Laboratory of Chemical Physics, NIDDK, National Institutes of Health, Bethesda, Maryland 20892 , USA.
| | | | | | | |
Collapse
|
307
|
Okamura K, Tanaka H, Yagita Y, Saeki Y, Taguchi A, Hiraoka Y, Zeng LH, Colman DR, Miki N. Cadherin activity is required for activity-induced spine remodeling. ACTA ACUST UNITED AC 2004; 167:961-72. [PMID: 15569714 PMCID: PMC2172468 DOI: 10.1083/jcb.200406030] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Neural activity induces the remodeling of pre- and postsynaptic membranes, which maintain their apposition through cell adhesion molecules. Among them, N-cadherin is redistributed, undergoes activity-dependent conformational changes, and is required for synaptic plasticity. Here, we show that depolarization induces the enlargement of the width of spine head, and that cadherin activity is essential for this synaptic rearrangement. Dendritic spines visualized with green fluorescent protein in hippocampal neurons showed an expansion by the activation of AMPA receptor, so that the synaptic apposition zone may be expanded. N-cadherin-venus fusion protein laterally dispersed along the expanding spine head. Overexpression of dominant-negative forms of N-cadherin resulted in the abrogation of the spine expansion. Inhibition of actin polymerization with cytochalasin D abolished the spine expansion. Together, our data suggest that cadherin-based adhesion machinery coupled with the actin-cytoskeleton is critical for the remodeling of synaptic apposition zone.
Collapse
Affiliation(s)
- Ko Okamura
- Department of Pharmacology, Osaka University Medical School, Suita, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
308
|
Nishiyama A, Endo T, Takeda S, Imamura M. Identification and characterization of epsilon-sarcoglycans in the central nervous system. ACTA ACUST UNITED AC 2004; 125:1-12. [PMID: 15193417 DOI: 10.1016/j.molbrainres.2004.01.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2004] [Indexed: 10/26/2022]
Abstract
Alpha-, beta-, gamma-, and delta-sarcoglycans (SGs) are transmembrane glycoprotein components of the dystrophin-associated protein (DAP) complex, which is critical for the stability of the striated muscle cell membrane. Epsilon-SG was found as a homologue of alpha-SG, but unlike other SG members, it is ubiquitously expressed in various tissues as well as in striated muscle. Moreover, mutations in the epsilon-SG gene cause myoclonus-dystonia, indicating the importance of epsilon-SG for the function in the central nervous system. To gain insight into the role of epsilon-SG, its expression and subcellular distribution in mouse tissues and especially in the mouse brain were investigated. Analysis by reverse transcription-polymerase chain reaction showed four splice variants of epsilon-SG transcripts in the mouse brain, two of which are major transcript forms. One is a conventional form including exon 8 (epsilon-SG1), and the other is a novel form excluding exon 8 but including a previously unknown exon, 11b (epsilon-SG2). Immunoblot analysis using various mouse tissues indicated a broad expression pattern for epsilon-SG1, but epsilon-SG2 was expressed exclusively in the brain. Therefore, both epsilon-SG isoforms coexist in various regions of the brain. Furthermore, these isoforms were found in neuronal cells using immunohistochemical analysis. Subcellular fractionation of brain homogenates, however, indicated that epsilon-SG1 and epsilon-SG2 are relatively enriched in post- and pre-synaptic membrane fractions, respectively. These results suggest that the two epsilon-SG isoforms might play different roles in synaptic functions of the central nervous system.
Collapse
Affiliation(s)
- Akiyo Nishiyama
- Department of Molecular Therapy, National Institute of Neuroscience, Ogawahigashi-cho, Kodaira, Tokyo, Japan
| | | | | | | |
Collapse
|
309
|
Zhai RG, Bellen HJ. The Architecture of the Active Zone in the Presynaptic Nerve Terminal. Physiology (Bethesda) 2004; 19:262-70. [PMID: 15381754 DOI: 10.1152/physiol.00014.2004] [Citation(s) in RCA: 194] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Active zones are highly specialized sites for release of neurotransmitter from presynaptic nerve terminals. The architecture of the active zone is exquisitely designed to facilitate the regulated tethering, docking, and fusing of the synaptic vesicles with the plasma membrane. Here we present our view of the structural and molecular organization of active zones across species and propose that all active zones are organized according to a common principle in which the structural differences correlate with the kinetics of transmitter release.
Collapse
Affiliation(s)
- R Grace Zhai
- Howard Hughes Medical Institute and Department of Molecular and Human Genetics, Division of Neuroscience, Program In Developmental Biology, Baylor College of Medicine, Houston, Texas 77030, USA.
| | | |
Collapse
|
310
|
Affiliation(s)
- D A Talmage
- Institute for Human Nutrition and Department of Pediatrics, Columbia University, New York, New York 10032, USA
| | | |
Collapse
|
311
|
Affiliation(s)
- Noam E Ziv
- Rappaport Institute and the Department of Anatomy and Cell Biology, Technion Faculty of Medicine, P.O. Box 9649, Haifa, Israel.
| | | |
Collapse
|
312
|
Peng J, Kim MJ, Cheng D, Duong DM, Gygi SP, Sheng M. Semiquantitative proteomic analysis of rat forebrain postsynaptic density fractions by mass spectrometry. J Biol Chem 2004; 279:21003-11. [PMID: 15020595 DOI: 10.1074/jbc.m400103200] [Citation(s) in RCA: 357] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The postsynaptic density (PSD) of central excitatory synapses plays a key role in postsynaptic signal transduction and contains a high concentration of glutamate receptors and associated scaffold and signaling proteins. We report here a comprehensive analysis of purified PSD fractions by liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). We identified 374 different proteins that copurified with the PSD structure and discovered thirteen phosphorylated sites from eight proteins. These proteins were classified into numerous functional groups, implying that the signaling pathways in the PSD are complex and diverse. Furthermore, using quantitative mass spectrometry, we measured the molar concentration and relative stoichiometries of a number of glutamate receptor subunits and scaffold proteins in the postsynaptic density. Thus this proteomic study reveals crucial information about molecular abundance as well as molecular diversity in the PSD, and provides a basis for further studies on the molecular mechanisms of synaptic function and plasticity.
Collapse
Affiliation(s)
- Junmin Peng
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA.
| | | | | | | | | | | |
Collapse
|
313
|
Yoshimura Y, Yamauchi Y, Shinkawa T, Taoka M, Donai H, Takahashi N, Isobe T, Yamauchi T. Molecular constituents of the postsynaptic density fraction revealed by proteomic analysis using multidimensional liquid chromatography-tandem mass spectrometry. J Neurochem 2004; 88:759-68. [PMID: 14720225 DOI: 10.1046/j.1471-4159.2003.02136.x] [Citation(s) in RCA: 168] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Protein constituents of the postsynaptic density (PSD) fraction were analysed using an integrated liquid chromatography (LC)-based protein identification system, which was constructed by coupling microscale two-dimensional liquid chromatography (2DLC) with electrospray ionization (ESI) tandem mass spectrometry (MS/MS) and an automated data analysis system. The PSD fraction prepared from rat forebrain was solubilized in 6 m guanidium hydrochloride, and the proteins were digested with trypsin after S-carbamoylmethylation under reducing conditions. The tryptic peptide mixture was then analysed with the 2DLC-MS/MS system in a data-dependent mode, and the resultant spectral data were automatically processed to search a genome sequence database for protein identification. In triplicate analyses, the system allowed assignments of 5264 peptides, which could finally be attributed to 492 proteins. The PSD contained various proteins involved in signalling transduction, including receptors, ion channel proteins, protein kinases and phosphatases, G-protein and related proteins, scaffold proteins, and adaptor proteins. Structural proteins, including membrane proteins involved in cell adhesion and cell-cell interaction, proteins involved in endocytosis, motor proteins, and cytoskeletal proteins were also abundant. These results provide basic data on a major protein set associated with the PSD and a basis for future functional studies of this important neural machinery.
Collapse
Affiliation(s)
- Yoshiyuki Yoshimura
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, The University of Tokushima, Shomachi 1, Tokushima, Japan
| | | | | | | | | | | | | | | |
Collapse
|
314
|
Stevens SM, Zharikova AD, Prokai L. Proteomic analysis of the synaptic plasma membrane fraction isolated from rat forebrain. ACTA ACUST UNITED AC 2004; 117:116-28. [PMID: 14559145 DOI: 10.1016/s0169-328x(03)00282-1] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Mass spectrometry (MS) in conjunction with liquid chromatography and gel separation techniques has been utilized to identify synaptic plasma membrane (SPM) proteins isolated from rat forebrain and digested with the protease trypsin. Initial results employing two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) separation of the SPM protein mixture have shown that several membrane proteins were under-represented due to solubilization problems in the dimension of isoelectric-point focusing. Given the complexity of the SPM, multiple stages of separation were necessary prior to mass spectrometric detection in order to facilitate protein identification. This particular study involved several approaches using one-dimensional (1D) sodium dodecyl sulfate (SDS)-PAGE, strong cation-exchange (SCX) chromatography and capillary reversed-phase high performance liquid chromatography (HPLC) techniques. In addition to these gel and HPLC separation stages, complementary information was obtained by using both matrix-assisted laser desorption/ionization (MALDI) and electrospray ionization (ESI) mass spectrometry. Data-dependent acquisition employing capillary HPLC-nanoESI/MS allowed for the detection of low-abundance tryptic peptides in the digested SPM fraction and identification of the corresponding proteins when product-ion information of a single or multiple peptides was used in protein database searching. The potential value of this subproteome methodology was exemplified by the identification of several proteins relevant to synaptic physiology which included various transporters, receptors, ion channels, and enzymes.
Collapse
Affiliation(s)
- Stanley M Stevens
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL 32610-0485, USA
| | | | | |
Collapse
|
315
|
Krueger SR, Kolar A, Fitzsimonds RM. The presynaptic release apparatus is functional in the absence of dendritic contact and highly mobile within isolated axons. Neuron 2004; 40:945-57. [PMID: 14659093 DOI: 10.1016/s0896-6273(03)00729-3] [Citation(s) in RCA: 136] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Whether contact of an axon with a dendrite is a necessary inductive signal for the assembly of functional presynaptic machinery is controversial. Combining FM1-43 imaging with retrospective immunocytochemistry, we observe many functional synaptic vesicle (SV) release sites lacking postsynaptic specializations in cultured hippocampal neurons. These "orphan" release sites share the same exocytic machinery and mechanisms of endocytic recycling as mature synaptic sites. Moreover, quantitative analysis of FM1-43 destaining at these orphan release sites reveals similar kinetics with slightly lower release probabilities. Time-lapse imaging of FM1-43 reveals that orphans are generated by complete or partial mobilization of synaptic release sites that retain their functionality in transit. Orphan clusters fuse with existing synaptic release sites or form novel release sites onto dendrites. Mobilization and stabilization of orphan boutons to new sites of dendritic contact may represent a necessary presynaptic counterpart to postsynaptic changes observed during development and plasticity in the CNS.
Collapse
Affiliation(s)
- Stefan R Krueger
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | | | | |
Collapse
|
316
|
Abstract
Cell adhesion molecules of the immunoglobulin superfamily (IgSF CAMs) were discovered 25 years ago based on their role in cell-cell adhesion. Ever since, they have played a major role in developmental neuroscience research. The elucidation of IgSF CAM structure and function has been tightly linked to the establishment of new areas of research. Over the years, our view of the role of the IgSF CAMs has changed. First, they were thought to provide "specific glue" segregating subtypes of cells in the nervous system. Soon it became clear that IgSF CAMs can do much more. The focus shifted from simple adhesion to CAM-associated signaling that was shown to be involved in the promotion of axon growth and the regulation of cell migration. From there it was a small step to axon guidance, a field that has been given a lot of attention during the last decade. More recently, the involvement of IgSF CAMs in synapse formation and maturation has been discovered, although this last step in the formation of neural circuits was thought to be the domain of other families of cell adhesion molecules, such as the neuroligins, the neurexins, and the cadherins. Certainly, the most striking discovery in the context of IgSF CAMs has been the diversity of signaling mechanisms that are associated with them. The versatility of signals and their complexity make IgSF CAMs a perfect tool for brain development.
Collapse
Affiliation(s)
- E T Stoeckli
- Institute of Zoology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland,
| |
Collapse
|
317
|
Lesage F, Hibino H, Hudspeth AJ. Association of beta-catenin with the alpha-subunit of neuronal large-conductance Ca2+-activated K+ channels. Proc Natl Acad Sci U S A 2003; 101:671-5. [PMID: 14701909 PMCID: PMC327206 DOI: 10.1073/pnas.0307681100] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The association of Ca(2+)-activated K(+) channels with voltage-gated Ca(2+) channels at the presynaptic active zones of hair cells, photoreceptors, and neurons contributes to rapid repolarization of the membrane after excitation. Ca(2+) channels have been shown to bind to a large set of synaptic proteins, but the proteins interacting with Ca(2+)-activated K(+) channels remain unknown. Here, we report that the large-conductance Ca(2+)-activated K(+) channel of the chicken's cochlear hair cell interacts with beta-catenin. Yeast two-hybrid assays identified the S10 region of the K(+) channel's alpha-subunit and the ninth armadillo repeat and carboxyl terminus of beta-catenin as necessary for the interaction. An antiserum directed against the alpha-subunit specifically coprecipitated beta-catenin from brain synaptic proteins. beta-Catenin is known to associate with the synaptic protein Lin7/Velis/MALS, whose interaction partner Lin2/CASK also binds voltage-gated Ca(2+) channels. beta-Catenin may therefore provide a physical link between the two types of channels at the presynaptic active zone.
Collapse
Affiliation(s)
- F Lesage
- Howard Hughes Medical Institute and Laboratory of Sensory Neuroscience, The Rockefeller University, New York, NY 10021, USA
| | | | | |
Collapse
|
318
|
Rebola N, Pinheiro PC, Oliveira CR, Malva JO, Cunha RA. Subcellular localization of adenosine A(1) receptors in nerve terminals and synapses of the rat hippocampus. Brain Res 2003; 987:49-58. [PMID: 14499945 DOI: 10.1016/s0006-8993(03)03247-5] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Adenosine is a neuromodulator in the CNS that mainly acts through pre- and postsynaptic A(1) receptors to inhibit the release of excitatory neurotransmitters and NMDA receptor function. This might result from a highly localized distribution of A(1) receptors in the active zone and postsynaptic density of CNS synapses that we now investigated in the rat hippocampus. The binding density of the selective A(1) receptor antagonist, [3H]1,3-dipropyl-8-cyclopentylxanthine ([3H]DPCPX), was enriched in membranes from Percoll-purified nerve terminals (B(max)=1839+/-52 fM/mg protein) compared to total membranes from the hippocampus (B(max)=984+/-31 fM/mg protein), the same occurring with A(1) receptor immunoreactivity. [3H]DPCPX binding occurred mainly to the plasma membrane rather than to intracellular sites, since the binding of the membrane permeable A(1) receptor ligand [3H]DPCPX to intact hippocampal nerve terminals (B(max)=1901+/-192 fM/mg protein) was markedly reduced (B(max)=321+/-30 fM/mg protein) by the membrane impermeable adenosine receptor antagonist, 8-sulfophenyltheophilline (25 microM). Further subcellular fractionation of hippocampal nerve terminals revealed that A(1) receptor immunoreactivity was strategically located in the active zone of presynaptic nerve terminals, as expected to understand the efficiency of A(1) receptors to depress neurotransmitter release. A(1) Receptors were also present in nerve terminals outside the active zone in accordance with the existence of a presynaptic A(1) receptor reserve. Finally, A(1) receptor immunoreactivity was evident in the postsynaptic density together with NMDA receptor subunits 1, 2A and 2B and with N-and P/Q-type calcium channel immunoreactivity, emphasizing the importance of A(1) receptors in the control of dendritic integration.
Collapse
Affiliation(s)
- Nelson Rebola
- Center for Neuroscience of Coimbra, Institute of Biochemistry, Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal
| | | | | | | | | |
Collapse
|
319
|
Lopes LV, Rebola N, Pinheiro PC, Richardson PJ, Oliveira CR, Cunha RA. Adenosine A3 receptors are located in neurons of the rat hippocampus. Neuroreport 2003; 14:1645-8. [PMID: 14502093 DOI: 10.1097/00001756-200308260-00021] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Adenosine is a neuromodulator acting mainly via inhibitory A1 and facilitatory A2A receptors. Whole tissue PCR also identified adenosine A3 receptors in the brain and A3 receptor agonists affect CNS neuronal responses and viability. However, recent reports failed to detect A3 receptor expression in CNS neurons and showed that A3 receptor agonists can bind and activate A1 receptors. We now present evidence for the presence of A3 receptor mRNA in CNS neurons using single cell PCR analysis of laser dissected hippocampal neurons. Western blot analysis showed that A3 receptors are present in rat hippocampal nerve terminal membranes. This indicates that A3 receptors are present in CNS neurons in the hippocampus.
Collapse
Affiliation(s)
- Luísa V Lopes
- Laboratory for Neurosciences, Faculty of Medicine, University Lisboa, Portugal
| | | | | | | | | | | |
Collapse
|
320
|
Malva JO, Silva AP, Cunha RA. Presynaptic modulation controlling neuronal excitability and epileptogenesis: role of kainate, adenosine and neuropeptide Y receptors. Neurochem Res 2003; 28:1501-15. [PMID: 14570395 DOI: 10.1023/a:1025618324593] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Based on the idea that seizures may arise from an overshoot of excitation over inhibition, all substances that may decrease glutamatergic function while having no effect or even increasing GABAergic neurotransmission are likely to be effective anticonvulsants. We now review the possible role of three such neuromodulators, kainate, adenosine, and neuropeptide Y receptors in controlling hyperexcitability and epileptogenesis. Particular emphasis is given on the robust neuromodulatory role of these three groups of receptors on the release of glutamate in the hippocampus, a main focus of epilepsy. Moreover, we also give special attention to the mechanisms of receptor activation and coupled signaling events that can be explored as attractive targets for the treatment of epilepsy and excitotoxicity. The present paper is a tribute to Arsélio Pato de Carvalho who has been the main driving force for the development of Neuroscience in Portugal, notably with a particular emphasis on the presynaptic mechanisms of modulation of neurotransmitter release.
Collapse
Affiliation(s)
- João O Malva
- Center for Neuroscience of Coimbra, Institute of Biochemistry, Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal.
| | | | | |
Collapse
|
321
|
Bamji SX, Shimazu K, Kimes N, Huelsken J, Birchmeier W, Lu B, Reichardt LF. Role of β-Catenin in Synaptic Vesicle Localization and Presynaptic Assembly. Neuron 2003; 40:719-31. [PMID: 14622577 PMCID: PMC2757419 DOI: 10.1016/s0896-6273(03)00718-9] [Citation(s) in RCA: 252] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cadherins and catenins are thought to promote adhesion between pre and postsynaptic elements in the brain. Here we show a role for beta-catenin in localizing the reserved pool of vesicles at presynaptic sites. Deletion of beta-catenin in hippocampal pyramidal neurons in vivo resulted in a reduction in the number of reserved pool vesicles per synapse and an impaired response to prolonged repetitive stimulation. This corresponded to a dispersion of vesicles along the axon in cultured neurons. Interestingly, these effects are not due to beta-catenin's involvement in cadherin-mediated adhesion or wnt signaling. Instead, beta-catenin modulates vesicle localization via its PDZ binding domain to recruit PDZ proteins such as Veli to cadherin at synapses. This study defines a specific role for cadherins and catenins in synapse organization beyond their roles in mediating cell adhesion.
Collapse
Affiliation(s)
- Shernaz X. Bamji
- Howard Hughes Medical Institute and Department of Physiology, University of California, San Francisco, San Francisco, California 94143
| | - Kazuhiro Shimazu
- Section on Neural Development and Plasticity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | - Nikole Kimes
- Howard Hughes Medical Institute and Department of Physiology, University of California, San Francisco, San Francisco, California 94143
| | - Joerg Huelsken
- Max Delbrueck-Center for Molecular Medicine, D-13092 Berlin, Germany
| | - Walter Birchmeier
- Max Delbrueck-Center for Molecular Medicine, D-13092 Berlin, Germany
| | - Bai Lu
- Section on Neural Development and Plasticity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | - Louis F. Reichardt
- Howard Hughes Medical Institute and Department of Physiology, University of California, San Francisco, San Francisco, California 94143
- Correspondence:
| |
Collapse
|
322
|
Abstract
The clustered protocadherins (Pcdhs) comprise >50 putative synaptic recognition molecules that are related to classical cadherins and highly expressed in the nervous system. Pcdhs are organized into three gene clusters (alpha, beta, and gamma). Within the alpha and gamma clusters, three exons encode the cytoplasmic domain for each Pcdh, making these domains identical within a cluster. Using an antibody to the Pcdh-gamma constant cytoplasmic domain, we find that all interneurons in cultured hippocampal neurons express high levels of Pcdh-gamma(s) in a nonsynaptic distribution. In contrast, only 48% of pyramidal-like cells expressed appreciable levels of these molecules. In these cells, Pcdh-gamma(s) were associated with a subset of excitatory synapses in which they may mediate presynaptic to postsynaptic recognition in concert with classical cadherins. Immunogold localization in hippocampal tissue showed Pcdh-gamma(s) at some synapses, in nonsynaptic plasma membranes, and in axonal and dendritic tubulovesicular structures, indicating that they may be exchanged among synapses and intracellular compartments. Our results show that although Pcdh-gamma(s) can be synaptic molecules, synapses form lacking Pcdh-gamma(s). Thus, Pcdh-gamma(s) and their relatives may be late additions to the classical cadherin-based synaptic adhesive scaffold; their presence in intracellular compartments suggests a role in modifying synaptic physiology or stability.
Collapse
|
323
|
Dresbach T, Hempelmann A, Spilker C, tom Dieck S, Altrock WD, Zuschratter W, Garner CC, Gundelfinger ED. Functional regions of the presynaptic cytomatrix protein bassoon: significance for synaptic targeting and cytomatrix anchoring. Mol Cell Neurosci 2003; 23:279-91. [PMID: 12812759 DOI: 10.1016/s1044-7431(03)00015-0] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Exocytosis of neurotransmitter from synaptic vesicles is restricted to specialized sites of the presynaptic plasma membrane called active zones. A complex cytomatrix of proteins exclusively assembled at active zones, the CAZ, is thought to form a molecular scaffold that organizes neurotransmitter release sites. Here, we have analyzed synaptic targeting and cytomatrix association of Bassoon, a major scaffolding protein of the CAZ. By combining immunocytochemistry and transfection of cultured hippocampal neurons, we show that the central portion of Bassoon is crucially involved in synaptic targeting and CAZ association. An N-terminal region harbors a distinct capacity for N-myristoylation-dependent targeting to synaptic vesicle clusters, but is not incorporated into the CAZ. Our data provide the first experimental evidence for the existence of distinct functional regions in Bassoon and suggest that a centrally located CAZ targeting function may be complemented by an N-terminal capacity for targeting to membrane-bounded synaptic organelles.
Collapse
Affiliation(s)
- Thomas Dresbach
- Leibniz Institute for Neurobiology, Brenneckestrasse 6, D-39118, Magdeburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
324
|
Spafford JD, Zamponi GW. Functional interactions between presynaptic calcium channels and the neurotransmitter release machinery. Curr Opin Neurobiol 2003; 13:308-14. [PMID: 12850215 DOI: 10.1016/s0959-4388(03)00061-8] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In vertebrates, the physical coupling between presynaptic calcium channels and synaptic vesicle release proteins enhances the efficiency of neurotransmission. Recent evidence indicates that these synaptic proteins may feedback directly on synaptic release by negatively regulating calcium entry, and indirectly through pathways involving second messenger molecules. Studies of individual neurons from both vertebrates and invertebrates have provided novel insights into the roles of scaffolding proteins in calcium channel targeting and neurotransmitter release. These studies require us to expand current models of synaptic transmission.
Collapse
Affiliation(s)
- J David Spafford
- Department of Physiology and Biophysics, Cellular and Molecular Neurobiology Research Group, University of Calgary, 3330 Hospital Drive, Northwest Calgary, T2N 4N1, Canada
| | | |
Collapse
|
325
|
Fenster SD, Kessels MM, Qualmann B, Chung WJ, Nash J, Gundelfinger ED, Garner CC. Interactions between Piccolo and the actin/dynamin-binding protein Abp1 link vesicle endocytosis to presynaptic active zones. J Biol Chem 2003; 278:20268-77. [PMID: 12654920 DOI: 10.1074/jbc.m210792200] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Piccolo is a high molecular weight multi-domain protein shown to be a structural component of the presynaptic CAZ (cytoskeletal matrix assembled at active zones). These features indicate that Piccolo may act to scaffold proteins involved in synaptic vesicle endo- and exocytosis near their site of action. To test this hypothesis, we have utilized a functional cell-based endocytosis assay and identified the N-terminal proline-rich Q domain in Piccolo as a region that interferes with clathrin-mediated endocytosis. Utilizing the Piccolo Q domain as bait in a yeast two-hybrid screen, we have identified the F-actin-binding protein Abp1 (also called SH3P7 or HIP-55) as a potential binding partner for this domain. The physiological relevance of this interaction is supported by in vitro binding studies, colocalization in nerve terminals, in vivo recruitment studies, and immunoprecipitation experiments. Intriguingly, Abp1 binds to both F-actin and the GTPase dynamin and has been implicated in linking the actin cytoskeleton to clathrin-mediated endocytosis. Our results suggest that Piccolo, as a structural protein of the CAZ, may serve to localize Abp1 at active zones where it can actively participate in creating a functional connection between the dynamic actin cytoskeleton and synaptic vesicle recycling.
Collapse
Affiliation(s)
- Steven D Fenster
- Department of Neurobiology, Civitan International Research Center, University of Alabama at Birmingham, 35294, USA
| | | | | | | | | | | | | |
Collapse
|
326
|
Bloom O, Evergren E, Tomilin N, Kjaerulff O, Löw P, Brodin L, Pieribone VA, Greengard P, Shupliakov O. Colocalization of synapsin and actin during synaptic vesicle recycling. J Cell Biol 2003; 161:737-47. [PMID: 12756235 PMCID: PMC2199372 DOI: 10.1083/jcb.200212140] [Citation(s) in RCA: 177] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2002] [Revised: 04/16/2003] [Accepted: 04/16/2003] [Indexed: 01/21/2023] Open
Abstract
It has been hypothesized that in the mature nerve terminal, interactions between synapsin and actin regulate the clustering of synaptic vesicles and the availability of vesicles for release during synaptic activity. Here, we have used immunogold electron microscopy to examine the subcellular localization of actin and synapsin in the giant synapse in lamprey at different states of synaptic activity. In agreement with earlier observations, in synapses at rest, synapsin immunoreactivity was preferentially localized to a portion of the vesicle cluster distal to the active zone. During synaptic activity, however, synapsin was detected in the pool of vesicles proximal to the active zone. In addition, actin and synapsin were found colocalized in a dynamic filamentous cytomatrix at the sites of synaptic vesicle recycling, endocytic zones. Synapsin immunolabeling was not associated with clathrin-coated intermediates but was found on vesicles that appeared to be recycling back to the cluster. Disruption of synapsin function by microinjection of antisynapsin antibodies resulted in a prominent reduction of the cytomatrix at endocytic zones of active synapses. Our data suggest that in addition to its known function in clustering of vesicles in the reserve pool, synapsin migrates from the synaptic vesicle cluster and participates in the organization of the actin-rich cytomatrix in the endocytic zone during synaptic activity.
Collapse
Affiliation(s)
- Ona Bloom
- The Rockefeller University, New York, NY 10021, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
327
|
Schuman EM, Murase S. Cadherins and synaptic plasticity: activity-dependent cyclin-dependent kinase 5 regulation of synaptic beta-catenin-cadherin interactions. Philos Trans R Soc Lond B Biol Sci 2003; 358:749-56. [PMID: 12740122 PMCID: PMC1693152 DOI: 10.1098/rstb.2002.1256] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Cyclin-dependent kinase 5 (Cdk5)/p35 kinase activity is known to decrease the affinity of beta-catenin for cadherin in developing cortical neurons. Our recent work demonstrated that depolarization causes an increased affinity between beta-catenin and cadherin. Here, we examine whether Cdk5/p35 regulates beta-catenin-cadherin affinity in response to neural activity. In hippocampal neurons depolarization caused a significant decrease in Cdk5 kinase activity, without changing the protein levels of either Cdk5 or p35, suggesting that the proteasome pathway is not involved. Decreasing Cdk5 kinase activity with the inhibitor roscovitine increased the amount of beta-catenin that was co-immunoprecipitated with cadherin. Inhibiting Cdk5 activity also resulted in a redistribution of EGFP-beta-catenin from the dendritic shaft to the spines, where cadherins are highly concentrated. The redistribution of beta-catenin induced by roscovitine is similar to that induced by depolarization. Interestingly, the redistribution induced by the Cdk5 inhibitor was completely blocked by either a tyrosine phosphatase inhibitor, orthovanadate or by point mutations of beta-catenin Tyr-654 to Glu or Phe. Immunoprecipitation studies further revealed that roscovitine increases the affinity of the wild-type, but not mutated, EGFP-beta-catenin for cadherin. These results suggest that Cdk5 activity regulates the affinity of beta-catenin for cadherin by changing the phosphorylation level of beta-catenin Tyr-654.
Collapse
Affiliation(s)
- Erin M Schuman
- Caltech/Howard Hughes Medical Institute, Division of Biology, 114-96, Pasadena, CA 91125, USA.
| | | |
Collapse
|
328
|
Nourry C, Grant SGN, Borg JP. PDZ domain proteins: plug and play! SCIENCE'S STKE : SIGNAL TRANSDUCTION KNOWLEDGE ENVIRONMENT 2003; 2003:RE7. [PMID: 12709532 DOI: 10.1126/stke.2003.179.re7] [Citation(s) in RCA: 293] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Protein-protein interactions are key elements in building functional protein complexes. Among the plethora of domains identified during the last 10 years, PDZ domains are one of the most commonly found protein-protein interaction domains in organisms from bacteria to humans. Although they may be the sole protein interaction domain within a cytoplasmic protein, they are most often found in combination with other protein interaction domains (for instance, SH3, PTB, WW) participating in complexes that facilitate signaling or determine the localization of receptors. Diversity of PDZ-containing protein function is provided by the large number of PDZ proteins that Mother Nature has distributed in the genome and implicates this protein family in the wiring of a huge number of molecules in molecular networks from the plasma membrane to the nucleus. Although at first sight their binding specificity appeared rather monotonous, involving only binding to the carboxyl-terminus of various proteins, it is now recognized that PDZ domains interact with greater versatility through PDZ-PDZ domain interaction; they bind to internal peptide sequences and even to lipids. Furthermore, PDZ domain-mediated interactions can sometimes be modulated in a dynamic way through target phosphorylation. In this review, we attempt to describe the structural basis of PDZ domain recognition and to give some functional insights into their role in the scaffolding of protein complexes implicated in normal and pathological biological processes.
Collapse
Affiliation(s)
- Claire Nourry
- U119 INSERM and Institut Paoli-Calmettes, Laboratory of Molecular Pharmacology, 27 Boulevard Leï Roure, 13009 Marseille, France
| | | | | |
Collapse
|
329
|
Abstract
The protein Bassoon is found in the cytoskeletal matrix at the active zone of conventional synapses and in presynaptic ribbons of photoreceptor synapses. Two new studies in Neuron show that Bassoon's most prominent role at conventional synapses is to enable vesicle cycling, whereas, in photoreceptors it attaches the ribbon to the presynaptic membrane.
Collapse
Affiliation(s)
- Martin Wilson
- Section of Neurobiology, Physiology, and Behavior, Division of Biological Sciences, University of California, Davis, Davis, CA 95616, USA
| |
Collapse
|
330
|
Abstract
The chemical synapse is a specialized intercellular junction that operates nearly autonomously to allow rapid, specific, and local communication between neurons. Focusing our attention on the presynaptic terminal, we review the current understanding of how synaptic morphology is maintained and then the mechanisms in synaptic vesicle exocytosis and recycling.
Collapse
Affiliation(s)
- Venkatesh N Murthy
- Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA.
| | | |
Collapse
|
331
|
Abstract
Changes in the amplitudes of signals conveyed at synaptic contacts between neurons underlie many brain functions and pathologies. Here we review the possible determinants of the amplitude and plasticity of the elementary postsynaptic signal, the miniature. In the absence of a definite understanding of the molecular mechanism releasing transmitters, we investigated a possible alternative interpretation. Classically, both the quantal theory and the vesicle theory predict that the amount of transmitter producing a miniature is determined presynaptically prior to release and that rapid changes in miniature amplitude reflect essentially postsynaptic alterations. However, recent data indicates that short-term and long-lasting changes in miniature amplitude are in large part due to changes in the amount of transmitter in individual released packets that show no evidence of preformation. Current representations of transmitter release derive from basic properties of neuromuscular transmission and endocrine secretion. Reexamination of overlooked properties of these two systems indicate that the amplitude of miniatures may depend as much, if not more, on the Ca(2+) signals in the presynaptic terminal than on the number of postsynaptic receptors available or on vesicle's contents. Rapid recycling of transmitter and its possible adsorption at plasma and vesicle lumenal membrane surfaces suggest that exocytosis may reflect membrane traffic rather than actual transmitter release. This led us to reconsider the disregarded hypothesis introduced by Fatt and Katz (1952; J Physiol 117:109-128) that the excitability of the release site may account for the "quantal effect" in fast synaptic transmission. In this case, changes in excitability of release sites would contribute to the presynaptic quantal plasticity that is often recorded.
Collapse
Affiliation(s)
- Jean Vautrin
- Laboratory of Neurophysiology, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, Maryland 20892, USA.
| | | |
Collapse
|
332
|
Abstract
Depletion and replenishment of pools of synaptic vesicles are important determinants of short-term synaptic plasticity, but the underlying molecular mechanisms are not yet clear. As a first step toward understanding the process of vesicle recruitment, we have applied various specific agents directly to the presynaptic terminal of the calyx of Held synapse. Here we show that the nonhydrolyzable ATP analog ATP-gammaS retards the recovery from vesicle pool depletion, as does latrunculin A. Phalloidin has no effects on recovery, suggesting that dynamic actin reorganization is not necessary. Unexpectedly, neither N-ethylmaleimide nor staurosporine affected the recovery, calling into question the role of N-ethylmaleimide-sensitive factor and protein kinases. The results suggest that intact actin polymerization is involved in vesicle recruitment.
Collapse
|
333
|
Gundelfinger ED, Kessels MM, Qualmann B. Temporal and spatial coordination of exocytosis and endocytosis. Nat Rev Mol Cell Biol 2003; 4:127-39. [PMID: 12563290 DOI: 10.1038/nrm1016] [Citation(s) in RCA: 181] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In secretory cells, exocytosis and compensatory endocytosis are tightly coupled membrane trafficking processes that control the surface area and composition of the plasma membrane. While exocytic and endocytic processes have been studied independently in great detail, at present there is much interest in understanding the mode of their coupling. This review discusses emerging insights into the coupling of these processes, both in the chemical synapses of neurons and in non-neuronal cells.
Collapse
Affiliation(s)
- Eckart D Gundelfinger
- Leibniz Institute for Neurobiology, Department of Neurochemistry and Molecular Biology, Brenneckestr. 6, 39118 Magdeburg, Germany.
| | | | | |
Collapse
|
334
|
Abstract
The targeting of proteins to particular subcellular sites is an important principle of the functional organization of cells at the molecular level. In turn, knowledge about the subcellular localization of a protein is a characteristic that may provide a hint as to the function of the protein. The combination of classic biochemical fractionation techniques for the enrichment of particular subcellular structures with the large-scale identification of proteins by mass spectrometry and bioinformatics provides a powerful strategy that interfaces cell biology and proteomics, and thus is termed 'subcellular proteomics'. In addition to its exceptional power for the identification of previously unknown gene products, the analysis of proteins at the subcellular level is the basis for monitoring important aspects of dynamic changes in the proteome such as protein transloction. This review summarizes data from recent subcellular proteomics studies with an emphasis on the type of data that can retrieved from such studies depending on the design of the analytical strategy.
Collapse
Affiliation(s)
- Mathias Dreger
- Institute for Chemistry/Biochemistry, Free University Berlin, Germany.
| |
Collapse
|
335
|
Pinheiro PS, Rodrigues RJ, Silva AP, Cunha RA, Oliveira CR, Malva JO. Solubilization and immunological identification of presynaptic alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors in the rat hippocampus. Neurosci Lett 2003; 336:97-100. [PMID: 12499049 DOI: 10.1016/s0304-3940(02)01217-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors have been identified mostly as postsynaptic receptors mediating fast glutamatergic synaptic transmission. However, neurochemical studies based on the modulation of neurotransmitter release have suggested the existence of presynaptic AMPA receptors. We have used a recently described technique that allows a high-purity fractionation of the pre- and postsynaptic proteins of synaptic junctions to evaluate the distribution of the different AMPA receptor subunits in rat hippocampal synapses. Surprisingly, we found very high levels of GluR1- and GluR2/3-like immunoreactivity in the presynaptic fraction, but also in the postsynaptic and extrasynaptic fractions. GluR4-like immunoreactivity was much less abundant but was still detected, predominantly in the postsynaptic fraction. This methodology appears to be far more sensitive than the classical immunogold electron microscopy to determine the localization of synaptic receptors.
Collapse
Affiliation(s)
- Paulo S Pinheiro
- Center for Neuroscience and Cell Biology of Coimbra, Institute of Biochemistry, Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal
| | | | | | | | | | | |
Collapse
|
336
|
Abstract
The step from the analysis of the genome to the analysis of the proteome is not just a matter of numerical complexity in terms of variants of gene products that can arise from a single gene. A significant further level of complexity is introduced by the supramolecular organization of gene products because of protein-protein interactions or targeting of proteins to specific subcellular structures. There is currently no single proteome analysis strategy that can sufficiently address all levels of the organization of the proteome. To approach an appropriate analytical complement for the interrogation of the proteome at all of the levels at which it is organized, there emerges the need for a whole arsenal of proteomics strategies. The proteome analysis at the level of subcellular structures (that can be enriched by subcellular fractionation) represents an analytical strategy that combines classic biochemical fractionation methods and tools for the comprehensive identification of proteins. Among the key potentials of this strategy is the capability to screen not only for previously unknown gene products but also to assign them, along with other known, but poorly characterized gene products, to particular subcellular structures. Furthermore, the analysis at the subcellular level is a prerequisite for the detection of important regulatory events such as protein translocation in comparative studies. This review is meant to give an overview on recent key studies in the field of proteome analysis at the level of subcellular structures, and to highlight potentials and requirements.
Collapse
Affiliation(s)
- Mathias Dreger
- Institute for Chemistry/Biochemistry, Free University Berlin, Thielallee 63, 14195 Berlin, Germany.
| |
Collapse
|
337
|
Abstract
Synapses are functional units regulating information flows in the neuronal circuits. How synaptic junctions are formed and remodelled is a fundamental question in developmental neurobiology. In recent years, it has become possible to visualize the formation, maintenance and remodelling of a single synapse by using new imaging methods. These studies, identifying synaptic structures by lipophilic dye markers and genetically modified synaptic molecules with fluorescent proteins, provided new insights into synapse development and maturation. Experimental evidence indicates very rapid assembly of both presynaptic and postsynaptic marker proteins at newly formed synaptic junctions. Morphological expansion of the synaptic junctional membrane is tightly coupled to both efficacy of the presynaptic neurotransmitter release and postsynaptic receptor distribution. The elimination process of pre-existing synapses has also been reported, and evidence for persistent remodelling of synaptic junctions has been provided. Information regarding birth, maturation and elimination of a single synapse is accumulating and will influence our concepts about how neuronal circuits are organized and maintained.
Collapse
Affiliation(s)
- Shigeo Okabe
- Department of Anatomy and Cell Biology, School of Medicine, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8519, Japan.
| |
Collapse
|
338
|
Abstract
A synapse is a stable adhesive junction between two cells across which information is relayed by directed secretion. The nervous system and immune system utilize these specialized cell surface contacts to directly convey and transduce highly controlled secretory signals between their constituent cell populations. Each of these synaptic types is built around a microdomain structure comprising central active zones of exocytosis and endocytosis encircled by adhesion domains. Surface molecules that may be incorporated into and around the active zones contribute to modulation of the functional state of the synapse.
Collapse
Affiliation(s)
- Michael L Dustin
- Program in Molecular Pathogenesis, Skirball Institute of Biomolecular Medicine, Department of Pathology, New York University School of Medicine, New York, NY 10016 USA.
| | | |
Collapse
|
339
|
Abstract
The role of small GTPases of the Rho family in synaptic functions has been addressed by analyzing the effects of lethal toxin (LT) from Clostridium sordellii strain IP82 (LT82) on neurotransmitter release at evoked identified synapses in the buccal ganglion of Aplysia. LT82 is a large monoglucosyltranferase that uses UDP-glucose as cofactor and glucosylates Rac (a small GTPase related to Rho), and Ras, Ral, and Rap (three GTPases of the Ras family). Intraneuronal application of LT (50 nm) rapidly inhibits evoked acetylcholine (ACh) release as monitored electrophysiologically. Injection of the catalytic domain of the toxin similarly blocked ACh release, but not when key amino acids needed for glucosylation were mutated. Intraneuronal application of competitive nucleotide sugars that differentially prevent glucosylation of Rac- and Ras-related GTPases, and the use of a toxin variant that affects a different spectrum of small GTPases, established that glucosylation of Rac is responsible for the reduction in ACh release. To determine the quantal release parameters affected by Rac glucosylation, we developed a nonstationary analysis of the fluctuations in postsynaptic response amplitudes that was performed before and after the toxin had acted or during toxin action. The results indicate that neither the quantal size nor the average probability for release were affected by lethal toxin action. ACh release blockage by LT82 was only caused by a reduction in the number of functional release sites. This reveals that after docking of synaptic vesicles, vesicular Rac stimulates a membrane effector (or effectors) essential for the fusion competence of the exocytotic sites.
Collapse
|
340
|
Lachamp P, Tell F, Kessler JP. Successive episodes of synapses production in the developing rat nucleus tractus solitarii. JOURNAL OF NEUROBIOLOGY 2002; 52:336-42. [PMID: 12210100 DOI: 10.1002/neu.10091] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In the rat nucleus tractus solitarii (NTS), synaptogenesis is thought to occur both pre- and postnatally. The present study was performed to precisely define the timetable of synapse formation in the NTS after birth. Changes in synapse morphology and densities were analyzed between postnatal day 3 (P3) and P28 using electron microscopy and ethanol phosphotungstic acid (E-PTA) staining. The proportion of morphologically immature synapses was high at P3 (38%) and P14 (30%) and low (8-14%) at the other ages investigated (P7, P21, and P28). Synaptic density significantly increased between P7 and P14 (60%) and between P21 and P28 (54%), but did not significantly change between P3 and P7 and between P14 and P21. Mean synaptic diameter also increased over the first postnatal month. Significant increases in synaptic size occurred between P3 and P7 (28%) and between P14 and P21 (15%). The present data indicate that, in the NTS, synaptogenesis occurs over a protracted period of time and involves distinct successive episodes of synapse production.
Collapse
Affiliation(s)
- Philippe Lachamp
- ITIS, Centre National de la Recherche Scientifique (FRE 2362), Université de la Méditerranée, IFR Jean Roche, Faculté de Médecine Nord, Bd Pierre Dramard, 13916 Marseille, Cedex 20, France
| | | | | |
Collapse
|
341
|
Andrieux A, Salin PA, Vernet M, Kujala P, Baratier J, Gory-Fauré S, Bosc C, Pointu H, Proietto D, Schweitzer A, Denarier E, Klumperman J, Job D. The suppression of brain cold-stable microtubules in mice induces synaptic defects associated with neuroleptic-sensitive behavioral disorders. Genes Dev 2002; 16:2350-64. [PMID: 12231625 PMCID: PMC187434 DOI: 10.1101/gad.223302] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Neurons contain abundant subsets of highly stable microtubules that resist depolymerizing conditions such as exposure to the cold. Stable microtubules are thought to be essential for neuronal development, maintenance, and function. Previous work has indicated an important role of the microtubule-associated protein STOP in the induction of microtubule cold stability. Here, we developed STOP null mice. These mice were devoid of cold-stable microtubules. In contrast to our expectations, STOP-/- mice had no detectable defects in brain anatomy but showed synaptic defects, with depleted synaptic vesicle pools and impaired synaptic plasticity, associated with severe behavioral disorders. A survey of the effects of psychotropic drugs on STOP-/- mice behavior showed a remarkable and specific effect of long-term administration of neuroleptics in alleviating these disorders. This study demonstrates that STOP is a major factor responsible for the intriguing stability properties of neuronal microtubules and is important for synaptic plasticity. Additionally, STOP-/- mice may yield a pertinent model for study of neuroleptics in illnesses such as schizophrenia, currently thought to result from synaptic defects.
Collapse
Affiliation(s)
- Annie Andrieux
- Laboratoire du Cytosquelette, INSERM U366, Département Réponse et Dynamique Cellulaire, CEA-Grenoble, 38054 Grenoble, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
342
|
Wang X, Su H, Bradley A. Molecular mechanisms governing Pcdh-gamma gene expression: evidence for a multiple promoter and cis-alternative splicing model. Genes Dev 2002; 16:1890-905. [PMID: 12154121 PMCID: PMC186422 DOI: 10.1101/gad.1004802] [Citation(s) in RCA: 153] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The genomic architecture of protocadherin (Pcdh) gene clusters is remarkably similar to that of the immunoglobulin and T cell receptor gene clusters, and can potentially provide significant molecular diversity. Pcdh genes are abundantly expressed in the central nervous system. These molecules are primary candidates for establishing specific neuronal connectivity. Despite the extensive analyses of the genomic structure of both human and mouse Pcdh gene clusters, the definitive molecular mechanisms that control Pcdh gene expression are still unknown. Four theories have been proposed, including (1) DNA recombination followed by cis-splicing, (2) single promoter and cis-alternative splicing, (3) multiple promoters and cis-alternative splicing, and (4) multiple promoters and trans-splicing. Using a combination of molecular and genetic analyses, we evaluated the four models at the Pcdh-gamma locus. Our analysis provides evidence that the transcription of individual Pcdh-gamma genes is under the control of a distinct but related promoter upstream of each Pcdh-gamma variable exon, and posttranscriptional processing of each Pcdh-gamma transcript is predominantly mediated through cis-alternative splicing.
Collapse
MESH Headings
- Alleles
- Alternative Splicing/genetics
- Animals
- COS Cells
- Cadherin Related Proteins
- Cadherins/biosynthesis
- Cadherins/genetics
- Chlorocebus aethiops
- Embryo, Mammalian/cytology
- Exons/genetics
- Gene Expression Regulation
- Gene Library
- Gene Rearrangement/genetics
- Genes, Immunoglobulin
- Genes, Overlapping
- Mice
- Mice, Inbred C57BL
- Mice, Inbred CBA
- Models, Genetic
- Molecular Sequence Data
- Nerve Tissue Proteins/biosynthesis
- Nerve Tissue Proteins/genetics
- Neurons/classification
- Neurons/metabolism
- Promoter Regions, Genetic/genetics
- Protein Isoforms/biosynthesis
- Protein Isoforms/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Recombinant Fusion Proteins/biosynthesis
- Recombinant Fusion Proteins/genetics
- Recombination, Genetic
- Stem Cells/metabolism
Collapse
Affiliation(s)
- Xiaozhong Wang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | |
Collapse
|
343
|
Murase S, Mosser E, Schuman EM. Depolarization drives beta-Catenin into neuronal spines promoting changes in synaptic structure and function. Neuron 2002; 35:91-105. [PMID: 12123611 DOI: 10.1016/s0896-6273(02)00764-x] [Citation(s) in RCA: 262] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Activity-induced changes in adhesion molecules may coordinate presynaptic and postsynaptic plasticity. Here, we demonstrate that beta-catenin, which mediates interactions between cadherins and the actin cytoskeleton, moves from dendritic shafts into spines upon depolarization, increasing its association with cadherins. beta-catenin's redistribution was mimicked or prevented by a tyrosine kinase or phosphatase inhibitor, respectively. Point mutations of beta-catenin's tyrosine 654 altered the shaft/spine distribution: Y654F-beta-catenin-GFP (phosphorylation-prevented) was concentrated in spines, whereas Y654E-beta-catenin-GFP (phosphorylation-mimic) accumulated in dendritic shafts. In Y654F-expressing neurons, the PSD-95 or associated synapsin-I clusters were larger than those observed in either wild-type-beta-catenin or also Y654E-expressing neurons. Y654F-expressing neurons exhibited a higher minifrequency. Thus, neural activity induces beta-catenin's redistribution into spines, where it interacts with cadherin to influence synaptic size and strength.
Collapse
Affiliation(s)
- Sachiko Murase
- Caltech/HHMI, Division of Biology, 216-76, 1200 East California Boulevard, Pasadena 91125, USA
| | | | | |
Collapse
|
344
|
Atwood HL, Karunanithi S. Diversification of synaptic strength: presynaptic elements. Nat Rev Neurosci 2002; 3:497-516. [PMID: 12094207 DOI: 10.1038/nrn876] [Citation(s) in RCA: 240] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Synapses are not static; their performance is modified adaptively in response to activity. Presynaptic mechanisms that affect the probability of transmitter release or the amount of transmitter that is released are important in synaptic diversification. Here, we address the diversity of presynaptic performance and its underlying mechanisms: how much of the variation can be accounted for by variation in synaptic morphology and how much by molecular differences? Significant progress has been made in defining presynaptic structural contributions to synaptic strength; by contrast, we know little about how presynaptic proteins produce normally observed functional differentiation, despite abundant information on presynaptic proteins and on the effects of their individual manipulation. Closing the gap between molecular and physiological synaptic diversification still represents a considerable challenge.
Collapse
Affiliation(s)
- Harold L Atwood
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada M5S 1A8.
| | | |
Collapse
|
345
|
Stewart BA, Mohtashami M, Rivlin P, Deitcher DL, Trimble WS, Boulianne GL. Dominant-negative NSF2 disrupts the structure and function of Drosophila neuromuscular synapses. JOURNAL OF NEUROBIOLOGY 2002; 51:261-71. [PMID: 12150502 DOI: 10.1002/neu.10059] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
N-ethylmaleimide sensitive fusion protein (NSF) is an ATPase necessary for vesicle trafficking, including exocytosis. Current models hold that NSF is required in a step that readies vesicles for fusion by disassembling postfusion SNARE protein complexes allowing them to participate in further rounds of vesicle cycling. Whereas most organisms have only one NSF isoform, Drosophila has two. dNSF1 is the predominant functional isoform in the adult nervous system. Conditional mutations in the dNSF1 gene, comatose, are paralytic and lead to disruption of synaptic transmission and the rapid accumulation of SNARE complexes in adult flies. This isoform is not required for synaptic transmission in larvae. In contrast, dNSF2 is important at earlier developmental stages, and its broad expression indicates its importance in neural and non-neural tissues alike. To study dNSF2, and to circumvent the lethality of dNSF2 null mutants, we have constructed transgenic flies carrying a dominant negative form of dNSF2. When this construct was expressed in neurons we observed suppression of synaptic transmission, activity-dependent fatigue of transmitter release, and a reduction in the number of releasable vesicles. However, we unexpectedly found that there was no accumulation of SNARE complexes accompanying these physiological phenotypes. Intriguingly, we also found that expression of mutant dNSF2 induced pronounced overgrowth of the neuromuscular junction and some misrouting of axons. These results support the idea that dNSF2 has multiple roles in cellular function and adds that not all of its functions require disassembly of the SNARE complex.
Collapse
Affiliation(s)
- Bryan A Stewart
- Program in Developmental Biology, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
346
|
Abstract
Synapses of the mammalian CNS are asymmetric sites of cell-cell adhesion between nerve cells. They are designed to mediate the rapid and efficient transmission of signals from the presynaptic bouton of one neuron to the postsynaptic plasma membrane of a second neuron. Significant progress has been made in the characterization of the structural, functional and developmental assembly of CNS synapses. Recent progress has been made in understanding the molecular and cellular mechanisms that underlie synaptogenesis, in particular that of glutamatergic synapses of the CNS.
Collapse
Affiliation(s)
- Craig C Garner
- Department of Psychiatry and Behavioral Science, Stanford University, Palo Alto, CA 94304-5485, USA.
| | | | | | | |
Collapse
|
347
|
Hibino H, Pironkova R, Onwumere O, Vologodskaia M, Hudspeth AJ, Lesage F. RIM binding proteins (RBPs) couple Rab3-interacting molecules (RIMs) to voltage-gated Ca(2+) channels. Neuron 2002; 34:411-23. [PMID: 11988172 PMCID: PMC2151925 DOI: 10.1016/s0896-6273(02)00667-0] [Citation(s) in RCA: 216] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Ca(2+) influx through voltage-gated channels initiates the exocytotic fusion of synaptic vesicles to the plasma membrane. Here we show that RIM binding proteins (RBPs), which associate with Ca(2+) channels in hair cells, photoreceptors, and neurons, interact with alpha(1D) (L type) and alpha(1B) (N type) Ca(2+) channel subunits. RBPs contain three Src homology 3 domains that bind to proline-rich motifs in alpha(1) subunits and Rab3-interacting molecules (RIMs). Overexpression in PC12 cells of fusion proteins that suppress the interactions of RBPs with RIMs and alpha(1) augments the exocytosis triggered by depolarization. RBPs may regulate the strength of synaptic transmission by creating a functional link between the synaptic-vesicle tethering apparatus, which includes RIMs and Rab3, and the fusion machinery, which includes Ca(2+) channels and the SNARE complex.
Collapse
Affiliation(s)
| | | | | | | | - A. J. Hudspeth
- Address for correspondence: Dr. A. J. Hudspeth, Howard Hughes Medical Institute and Laboratory of Sensory Neuroscience, Box 314, The Rockefeller University, 1230 York Avenue, New York NY 10021-6399 USA, Telephone: 212/327-7351; Facsimile: 212/327-7352; E-mail:
| | | |
Collapse
|
348
|
The NeuroscientistComments. Neuroscientist 2002. [DOI: 10.1177/107385840200800201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
349
|
Kaufmann N, DeProto J, Ranjan R, Wan H, Van Vactor D. Drosophila liprin-alpha and the receptor phosphatase Dlar control synapse morphogenesis. Neuron 2002; 34:27-38. [PMID: 11931739 DOI: 10.1016/s0896-6273(02)00643-8] [Citation(s) in RCA: 230] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Here, we examine the synaptic function of the receptor protein tyrosine phosphatase (RPTP), Dlar, and an associated intracellular protein, Dliprin-alpha, at the Drosophila larval neuromuscular junction. We show that Dliprin-alpha and Dlar are required for normal synaptic morphology. We also find that synapse complexity is proportional to the amount of Dlar gene product, suggesting that Dlar activity determines synapse size. Ultrastructural analysis reveals that Dliprin-alpha and Dlar are required to define the size and shape of the presynaptic active zone. Accordingly, there is a concomitant decrease in synaptic transmission in both mutants. Finally, epistasis analysis indicates that Dliprin-alpha is required for Dlar's action at the synapse. These data suggest a model where Dliprin-alpha and Dlar cooperate to regulate the formation and/or maintenance of a network of presynaptic proteins.
Collapse
Affiliation(s)
- Nancy Kaufmann
- Department of Cell Biology, Program in Neuroscience and DFCI/Harvard Cancer Center, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
350
|
Affiliation(s)
- D L Benson
- Fishberg Research Center for Neurobiology, The Mount Sinai School of Medicine, 1425 Madison Avenue, New York 10029, USA.
| | | | | |
Collapse
|