301
|
Zhao Y, He Z, Hao W, Zhu H, Liu J, Ma KY, He WS, Chen ZY. Cholesterol-lowering activity of protocatechuic acid is mediated by increasing the excretion of bile acids and modulating gut microbiota and producing short-chain fatty acids. Food Funct 2021; 12:11557-11567. [PMID: 34709262 DOI: 10.1039/d1fo02906a] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The present study aimed to investigate the effects of protocatechuic acid (PCA) on plasma lipid profiles and associated mechanisms with a focus on reshaping gut microbiota. Twenty-four male hamsters were randomly divided into three groups receiving a high-cholesterol diet (HCD) and two HCD diets containing 0.5% (PL) and 1% (PH) PCA, respectively. Feeding PL and PH diets for six weeks significantly reduced plasma total cholesterol by 18% and 24%, respectively. PL and PH diets also significantly lowered plasma non-HDL cholesterol by 37% and 44%, respectively. This was accompanied by an increase in fecal short-chain fatty acids (SCFAs) and fecal bile acids with up-regulation on gene of cholesterol 7α-hydroxylase and down-regulation of 3-hydroxy-3-methylglutaryl-CoA reductase in the liver. Dietary PCA supplementation decreased hepatic lipid accumulation, whereas it increased fecal excretion of lipids. The 16S rRNA analysis found that dietary PCA significantly reduced the ratio of Firmicutes to Bacteroidetes and increased the relative abundance of Bacteroidales S24-7, whereas it reduced the abundance of Lactobacillaceae. It was concluded that dietary PCA favorably modulated plasma lipid profiles and prevented the accumulation of hepatic cholesterol and lipid disposition. Such effect was mediated at least partially by increasing gut production of SCFAs and fecal excretion of bile acids via modulating the gut microbiome.
Collapse
Affiliation(s)
- Yimin Zhao
- Food & Nutritional Sciences Programme, School of Life Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China.
| | - Zouyan He
- Food & Nutritional Sciences Programme, School of Life Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China.
| | - Wangjun Hao
- Food & Nutritional Sciences Programme, School of Life Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China.
| | - Hanyue Zhu
- Food & Nutritional Sciences Programme, School of Life Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China.
| | - Jianhui Liu
- Food & Nutritional Sciences Programme, School of Life Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China.
| | - Ka Ying Ma
- Food & Nutritional Sciences Programme, School of Life Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China.
| | - Wen-Sen He
- Food & Nutritional Sciences Programme, School of Life Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China.
| | - Zhen-Yu Chen
- Food & Nutritional Sciences Programme, School of Life Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China.
| |
Collapse
|
302
|
Mooranian A, Foster T, Ionescu CM, Carey L, Walker D, Jones M, Wagle SR, Kovacevic B, Chester J, Johnstone E, Kuthubutheen J, Brown D, Atlas MD, Mikov M, Al-Salami H. The Effects of Primary Unconjugated Bile Acids on Nanoencapsulated Pharmaceutical Formulation of Hydrophilic Drugs: Pharmacological Implications. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:4423-4434. [PMID: 34720580 PMCID: PMC8550211 DOI: 10.2147/dddt.s328526] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 08/10/2021] [Indexed: 01/13/2023]
Abstract
Introduction In a recent study, in our laboratory, primary unconjugated bile acids, commonly found in humans, chenodeoxycholic acid (CDCA), have been shown to improve stability of nanoencapsulated lipophilic drugs and improve their release profile after oral administration likely via electrokinetic stabilisation. Hence, this study aimed to examine the effects of CDCA on exerting similar effects on hydrophilic drugs. Methods Various CDCA-based formulations were produced for the orally administered hydrophilic drug, metformin. Analyses of these formulations included electrokinetic potentials, topography, drug and CDCA formulation contents, nano size distribution, heat-induced deformation and outer-core expansion indices, release profiles, shell-resistance ratio, and thermal and chemical indices. With the drug’s main target being pancreatic beta-cells, the formulations’ effects on cell viability, functions and inflammatory profiles were also investigated. Results and Conclusions CDCA-based metformin formulations exhibited improved stability and release profiles via thermal, chemical and electrokinetic effects, which were formulation-dependent suggesting potential applications of CDCA in the oral targeted delivery of hydrophilic drugs.
Collapse
Affiliation(s)
- Armin Mooranian
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, 6102, WA, Australia.,Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, 6009, WA, Australia
| | - Thomas Foster
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, 6102, WA, Australia.,Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, 6009, WA, Australia
| | - Corina M Ionescu
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, 6102, WA, Australia.,Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, 6009, WA, Australia
| | - Louise Carey
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, 6102, WA, Australia.,Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, 6009, WA, Australia
| | - Daniel Walker
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, 6102, WA, Australia.,Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, 6009, WA, Australia
| | - Melissa Jones
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, 6102, WA, Australia.,Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, 6009, WA, Australia
| | - Susbin Raj Wagle
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, 6102, WA, Australia.,Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, 6009, WA, Australia
| | - Bozica Kovacevic
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, 6102, WA, Australia.,Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, 6009, WA, Australia
| | - Jacqueline Chester
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, 6102, WA, Australia.,Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, 6009, WA, Australia
| | - Edan Johnstone
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, 6102, WA, Australia.,Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, 6009, WA, Australia
| | | | - Daniel Brown
- Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
| | - Marcus D Atlas
- Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, 6009, WA, Australia
| | - Momir Mikov
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, Novi Sad, 21101, Serbia
| | - Hani Al-Salami
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, 6102, WA, Australia.,Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, 6009, WA, Australia
| |
Collapse
|
303
|
Simbrunner B, Trauner M, Reiberger T. Review article: therapeutic aspects of bile acid signalling in the gut-liver axis. Aliment Pharmacol Ther 2021; 54:1243-1262. [PMID: 34555862 PMCID: PMC9290708 DOI: 10.1111/apt.16602] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 08/29/2021] [Accepted: 08/31/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Bile acids are important endocrine modulators of intestinal and hepatic signalling cascades orchestrating critical pathophysiological processes in various liver diseases. Increasing knowledge on bile acid signalling has stimulated the development of synthetic ligands of nuclear bile acid receptors and other bile acid analogues. AIM This review summarises important aspects of bile acid-mediated crosstalk between the gut and the liver ("gut-liver axis") as well as recent findings from experimental and clinical studies. METHODS We performed a literature review on bile acid signalling, and therapeutic applications in chronic liver disease. RESULTS Intestinal and hepatic bile acid signalling pathways maintain bile acid homeostasis. Perturbations of bile acid-mediated gut-liver crosstalk dysregulate transcriptional networks involved in inflammation, fibrosis and endothelial dysfunction. Bile acids induce enterohepatic feedback signalling by the release of intestinal hormones, and regulate enterohepatic circulation. Importantly, bile acid signalling plays a central role in maintaining intestinal barrier integrity and antibacterial defense, which is particularly relevant in cirrhosis, where bacterial translocation has a profound impact on disease progression. The nuclear bile acid farnesoid X receptor (FXR) is a central intersection in bile acid signalling and has emerged as a relevant therapeutic target. CONCLUSIONS Experimental evidence suggests that bile acid signalling improves the intestinal barrier and protects against bacterial translocation in cirrhosis. FXR agonists have displayed efficacy for the treatment of cholestatic and metabolic liver disease in randomised controlled clinical trials. However, similar effects remain to be shown in advanced liver disease, particularly in patients with decompensated cirrhosis.
Collapse
Affiliation(s)
- Benedikt Simbrunner
- Division of Gastroenterology and HepatologyDepartment of Internal Medicine IIIMedical University of ViennaViennaAustria,Vienna Hepatic Hemodynamic LabMedical University of ViennaViennaAustria,Christian‐Doppler Laboratory for Portal Hypertension and Liver FibrosisMedical University of ViennaViennaAustria
| | - Michael Trauner
- Division of Gastroenterology and HepatologyDepartment of Internal Medicine IIIMedical University of ViennaViennaAustria
| | - Thomas Reiberger
- Division of Gastroenterology and HepatologyDepartment of Internal Medicine IIIMedical University of ViennaViennaAustria,Vienna Hepatic Hemodynamic LabMedical University of ViennaViennaAustria,Christian‐Doppler Laboratory for Portal Hypertension and Liver FibrosisMedical University of ViennaViennaAustria
| |
Collapse
|
304
|
Satiya J, Snyder HS, Singh SP, Satapathy SK. Narrative review of current and emerging pharmacological therapies for nonalcoholic steatohepatitis. Transl Gastroenterol Hepatol 2021; 6:60. [PMID: 34805582 PMCID: PMC8573363 DOI: 10.21037/tgh-20-247] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 09/25/2020] [Indexed: 12/28/2022] Open
Abstract
Nonalcoholic steatohepatitis (NASH) is the most common cause of chronic liver disease today, and it has now emerged as the leading etiology of end-stage liver disease requiring liver transplantation. It is a progressive form of non-alcoholic fatty liver disease which can not only progress to cirrhosis of liver and hepatocellular carcinoma (HCC), but is associated with increased cardiovascular risks too. Despite all the advances in the understanding of the risk factors and the pathogenetic pathways involved in the pathogenesis and progression of NASH, an effective therapy for NASH has not been developed yet. Although lifestyle modifications including dietary modifications and physical activity remain the mainstay of therapy, there is an unmet need to develop a drug or a combination of drugs which can not only reduce the fatty infiltration of the liver, but also arrest the development and progression of fibrosis and advancement to cirrhosis of liver and HCC. The pharmacologic therapies which are being developed target the various components believed to be involved in the pathogenesis of nonalcoholic fatty liver disease (NAFLD)/NASH which includes insulin resistance, lipid metabolism oxidative stress, lipid peroxidation, inflammatory and cell death pathways, and fibrosis. In this review, we summarize the current state of knowledge on pharmacotherapy of NASH, and also highlight the recent developments in the field, for optimizing the management and treatment of NASH.
Collapse
Affiliation(s)
- Jinendra Satiya
- Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | | | - Shivaram Prasad Singh
- Department of Gastroenterology, S.C.B. Medical College, Cuttack, India
- Kalinga Gastroenterology Foundation, Beam Diagnostics Centre, Cuttack, India
| | - Sanjaya K. Satapathy
- Division of Hepatology, Sandra Atlas Bass Center for Liver Diseases and Transplantation, Northwell Health, Manhasset, NY, USA
| |
Collapse
|
305
|
Gao X, Ruan Y, Zhu X, Lin X, Xin Y, Li X, Mai M, Guo H. Deoxycholic Acid Promotes Pyroptosis in Free Fatty Acid-Induced Steatotic Hepatocytes by Inhibiting PINK1-Mediated Mitophagy. Inflammation 2021; 45:639-650. [PMID: 34674097 DOI: 10.1007/s10753-021-01573-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/28/2021] [Accepted: 09/29/2021] [Indexed: 02/06/2023]
Abstract
Nonalcoholic steatohepatitis (NASH) is the inflammatory subtype of nonalcoholic fatty liver disease (NAFLD), which can lead to liver fibrosis and cirrhosis. Bile acid levels are correlated with markers of hepatic injury in NASH, suggesting a possible role for bile acids in the progression of NAFLD. Here, we examined the role of deoxycholic acid (DCA) in driving steatotic hepatocytes to pyroptosis, a pro-inflammatory form of programmed cell death. HepG2 cells were stimulated with odium oleate and sodium palmitate for modeling steatotic hepatocytes and then treated with DCA alone or in combination with a specific mitophagy agonist, carbonyl cyanide 3-chlorophenylhydrazone (CCCP). Our results showed that DCA dose-dependently induced a pro-inflammatory response in steatotic hepatocytes but had no significant effect on lipid accumulation. Moreover, activation of the NLRP3 inflammasome and pyroptosis were triggered by DCA. Expression levels of the mitophagy markers PTEN-induced kinase 1 (PINK1) and E3 ubiquitin ligase Parkin were significantly diminished by DCA, whereas induction of mitophagy by CCCP prevented DCA-induced inflammatory response and restored the pyroptosis. Collectively, our data showed that DCA-induced pyroptosis involves the inhibition of PINK1-mediated mitophagy and the activation of the NLRP3 inflammasome. These findings provide insight into the association of DCA with mitophagy, pyroptosis, and inflammation in NASH.
Collapse
Affiliation(s)
- Xuebin Gao
- Department of Nutrition, School of Public Health, Guangdong Medical University, Dongguan, 523808, China
| | - Yongdui Ruan
- Department of Traditional Chinese Medicine, the First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523710, China
| | - Xuan Zhu
- Department of Nutrition, School of Public Health, Guangdong Medical University, Dongguan, 523808, China
| | - Xiaozhuan Lin
- Department of Nutrition, School of Public Health, Guangdong Medical University, Dongguan, 523808, China
| | - Yan Xin
- Department of Nutrition, School of Public Health, Guangdong Medical University, Dongguan, 523808, China
| | - Xiang Li
- Department of Nutrition, School of Public Health, Guangdong Medical University, Dongguan, 523808, China
| | - Meiqing Mai
- Department of Nutrition, School of Public Health, Guangdong Medical University, Dongguan, 523808, China
| | - Honghui Guo
- Department of Nutrition, School of Public Health, Guangdong Medical University, Dongguan, 523808, China. .,Dongguan Key Laboratory of Environmental Medicine, Guangdong Medical University, Dongguan, 523808, China.
| |
Collapse
|
306
|
Gut microbiome and metabolic response in non-alcoholic fatty liver disease. Clin Chim Acta 2021; 523:304-314. [PMID: 34666025 DOI: 10.1016/j.cca.2021.10.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/19/2021] [Accepted: 10/13/2021] [Indexed: 12/12/2022]
Abstract
Fatty liver disease (FLD) is one of the largest burdens to human health worldwide and is associated with gut microbiome and metabolite stability. Engineered liver tissues have shown promise in restoring liver functions in non-alcoholic FLD (NAFLD), hepatitis and cirrhosis. Fatty liver, largely noted in obesity and hepatic cancer, is highly fatal and has led to a global increase in death rates. It is associated with complex metabolic reprogramming too. A standard approach to therapy in the newly diagnosed setting includes surgery or identification of biomarkers/ metabolites for therapeutic purposes, which ultimately focus on improvement of liver health in patients. As such there are no standard procedures for patient care, but depending on the severity, systemic therapy with either genomic, proteomic or metabolomic profiling form potential options. Better comparisons and study of underlying mechanisms in gut microbiome-based metabolic functions in obesity are urgently required. Today, an emerging field, focusing on metabolomic approaches and metabolic phenotyping, involved in high-throughput identification of metabolome in obesity and gut disorders, is involved in biomarker and metabolite identification. There are supporting technologies and approaches in NAFLD that throw light on the metabolites and gut microbiome, and also on the understanding of the risk factors of obesity along with liver cancer metabolic reaction networks. We discuss the current state of NAFLD metabolites, gut micro-environmental changes, and the further challenges in digital metabolomics profiling. Innovative clinical trial designs, with biomarker-enrichment strategies that are required to improve the outcome of NAFLD in patients are also discussed.
Collapse
|
307
|
Bhimanwar RS, Mittal A. TGR5 agonists for diabetes treatment: a patent review and clinical advancements (2012-present). Expert Opin Ther Pat 2021; 32:191-209. [PMID: 34652989 DOI: 10.1080/13543776.2022.1994551] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION A cell surface bile acid receptor TGR5 can be considered a promising target for the treatment of various metabolic diseases. The TGR5 receptor is expressed in various tissues, including the liver, kidney, intestine, and adrenal glands, causing its effect in each tissue to differ. A major role for TGR5 is to maintain blood sugar levels. Also, TGR5 is postulated to contribute to an increase in energy expenditure. These benefits make it a potential candidate for the treatment of type 2 diabetes, obesity, and other metabolic diseases. AREA COVERED This paper highlights recent advances in the development of potent steroidal and non-steroidal TGR5 agonists and the peer-reviewed scientific articles that have led to understanding the structure-activity relationship for TGR5 agonists (2012-2020). The review also discusses the clinical progress made by some TGR5 agonists over the past eight years. EXPERT OPINION Preclinical studies have suggested a key role for the TGR5 receptor in GLP-1 secretion and have shown promising outcomes such as weight loss, anti-inflammatory, anti-diabetic effects. Along with the evaluation of semisynthetic derivatives, synthetic compounds can also be considered as a possible avenue for the discovery of novel TGR5 agonists. Currently, few TGR5 agonists have reached the clinical trial stage, and, likely, we will soon discover a novel TGR5 modulator with fewer adverse effects. In silico studies can be performed with these scaffolds ranging from steroidal to heterocyclic rings to discover selective and safe TGR5 agonists.
Collapse
Affiliation(s)
- Rachana S Bhimanwar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T. Road (NH-1), Phagwara (Punjab) 144411, India.,Department of Pharmaceutical Chemistry, Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune (Maharashtra) 411018, India
| | - Amit Mittal
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T. Road (NH-1), Phagwara (Punjab) 144411, India
| |
Collapse
|
308
|
Pacífico C, Hartinger T, Stauder A, Schwartz-Zimmermann HE, Reisinger N, Faas J, Zebeli Q. Supplementing a Clay Mineral-Based Feed Additive Modulated Fecal Microbiota Composition, Liver Health, and Lipid Serum Metabolome in Dairy Cows Fed Starch-Rich Diets. Front Vet Sci 2021; 8:714545. [PMID: 34722695 PMCID: PMC8548638 DOI: 10.3389/fvets.2021.714545] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 09/02/2021] [Indexed: 11/13/2022] Open
Abstract
Starch-rich diets are a commonly adopted strategy in order to sustain high milk yields in dairy cows. However, these diets are known to increase the risk of gut dysbiosis and related systemic health disorders. This study aimed to evaluate the effects of supplementing a clay mineral-based feed additive (CM; Mycofix® Plus, BIOMIN) on fecal microbiota structure, fecal short-chain fatty acid (SCFA) fermentation, serum metabolome, and liver health in primiparous (PP, n = 8) and multiparous (MP, n = 16) early-lactation Simmental cows (737 ± 90 kg of live body weight). Cows were randomly assigned to either a control or CM group (55 g per cow and day) and transitioned from a diet moderate in starch (26.3 ± 1.0%) to a high starch diet (32.0 ± 0.8%). Supplementation of CM reversed the decrease in bacterial diversity, richness, and evenness (p < 0.05) during high-starch diet, demonstrating that CM supplementation efficiently eased hindgut dysbiosis. The CM treatment reduced levels of Lactobacillus in PP cows during starch-rich feeding and elevated fecal pH, indicating a healthier hindgut milieu compared with that in control. Butyrate and propionate levels were modulated by CM supplementation, with butyrate being lower in CM-treated MP cows, whereas propionate was lower in MP but higher in PP cows. Supplementing CM during high-starch feeding increased the concentrations of the main primary bile salts and secondary bile acids in the serum and improved liver function in cows as indicated by reduced levels of glutamate dehydrogenase and γ-glutamyl-transferase, as well as higher serum albumin and triglyceride concentrations. These changes and those related to lipid serum metabolome were more pronounced in PP cows as also corroborated by relevance network analysis.
Collapse
Affiliation(s)
- Cátia Pacífico
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Department for Farm Animals and Veterinary Public Health, Institute of Animal Nutrition and Functional Plant Compounds, University of Veterinary Medicine, Vienna, Austria
| | - Thomas Hartinger
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Department for Farm Animals and Veterinary Public Health, Institute of Animal Nutrition and Functional Plant Compounds, University of Veterinary Medicine, Vienna, Austria
| | - Alexander Stauder
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Department for Farm Animals and Veterinary Public Health, Institute of Animal Nutrition and Functional Plant Compounds, University of Veterinary Medicine, Vienna, Austria
| | - Heidi Elisabeth Schwartz-Zimmermann
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Department of Agrobiotechnology (IFA-Tulln), Institute of Bioanalytics and Agro-Metabolomics, University of Natural Resources and Life Sciences, Vienna, Austria
| | | | - Johannes Faas
- BIOMIN Research Center, BIOMIN Holding GmbH, Tulln, Austria
| | - Qendrim Zebeli
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Department for Farm Animals and Veterinary Public Health, Institute of Animal Nutrition and Functional Plant Compounds, University of Veterinary Medicine, Vienna, Austria
| |
Collapse
|
309
|
Xiao L, Liu Q, Luo M, Xiong L. Gut Microbiota-Derived Metabolites in Irritable Bowel Syndrome. Front Cell Infect Microbiol 2021; 11:729346. [PMID: 34631603 PMCID: PMC8495119 DOI: 10.3389/fcimb.2021.729346] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 08/25/2021] [Indexed: 12/12/2022] Open
Abstract
Irritable bowel syndrome (IBS) is the most common functional bowel disorder worldwide and is associated with visceral hypersensitivity, gut motility, immunomodulation, gut microbiota alterations, and dysfunction of the brain-gut axis; however, its pathophysiology remains poorly understood. Gut microbiota and its metabolites are proposed as possible etiological factors of IBS. The aim of our study was to investigate specific types of microbiota-derived metabolites, especially bile acids, short-chain fatty acids, vitamins, amino acids, serotonin and hypoxanthine, which are all implicated in the pathogenesis of IBS. Metabolites-focused research has identified multiple microbial targets relevant to IBS patients, important roles of microbiota-derived metabolites in the development of IBS symptoms have been established. Thus, we provide an overview of gut microbiota and their metabolites on the different subtypes of IBS (constipation-predominant IBS-C, diarrhea-predominant IBS-D) and present controversial views regarding the role of microbiota in IBS.
Collapse
Affiliation(s)
- Lin Xiao
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Qin Liu
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Mei Luo
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Lishou Xiong
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
310
|
Bashyal S, Seo JE, Choi YW, Lee S. Bile acid transporter-mediated oral absorption of insulin via hydrophobic ion-pairing approach. J Control Release 2021; 338:644-661. [PMID: 34481926 DOI: 10.1016/j.jconrel.2021.08.060] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 07/26/2021] [Accepted: 08/31/2021] [Indexed: 12/19/2022]
Abstract
Despite many ongoing and innovative approaches, there are still formidable challenges in the clinical translation of oral peptide drugs into marketable products due to their low absorption and poor bioavailability. Herein, a novel nanocarrier platform was developed that employs a hydrophobic ion-pairing (HIP) of model peptide (insulin) and the anionic bile salt (sodium glycodeoxycholate, SGDC), and markedly improves intestinal absorption via the bile acid pathway. The developed HIP-nanocomplexes (C1 and C2) were optimized, characterized, and in vitro and in vivo evaluation were performed to assess oral efficacy of these system. The optimal molar ratios of C1 and C2-nanocomplexes were 30:1 and 6:1 (SGDC:insulin), respectively. Compared to the insulin solution, the C1 and C2 nanocomplexes significantly enhanced the permeation of insulin across the Caco-2 cell monolayers, with 6.36- and 4.05-fold increases in apparent permeability, respectively. Uptake mechanism studies were conducted using different endocytosis inhibitors and apical sodium-dependent bile acid transporter (ASBT)-transfected MDCK cells, which demonstrated the involvement of the energy-dependent ASBT-mediated active transport. Furthermore, the intrajejunal administration of C1 and C2 resulted in their pharmacological availabilities (PA) being 6.44% and 0.10%, respectively, indicating increased potential for C1, when compared to C2. Similarly, the PA and the relative bioavailability with intrajejunal administration of the C1 were 17.89-fold and 16.82-fold greater than those with intracolonic administration, respectively, confirming better jejunal absorption of C1. Overall, these findings indicate that the HIP-nanocomplexes could be a prominent platform for the effective delivery of peptides with improved intestinal absorption.
Collapse
Affiliation(s)
- Santosh Bashyal
- College of Pharmacy, Keimyung University, Daegu, Republic of Korea; Center for Forensic Pharmaceutical Science, Keimyung University, Daegu, Republic of Korea
| | - Jo-Eun Seo
- College of Pharmacy, Keimyung University, Daegu, Republic of Korea
| | - Young Wook Choi
- College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea
| | - Sangkil Lee
- College of Pharmacy, Keimyung University, Daegu, Republic of Korea; Center for Forensic Pharmaceutical Science, Keimyung University, Daegu, Republic of Korea.
| |
Collapse
|
311
|
Yang C, Wan M, Xu D, Pan D, Xia H, Yang L, Sun G. Flaxseed Powder Attenuates Non-Alcoholic Steatohepatitis via Modulation of Gut Microbiota and Bile Acid Metabolism through Gut-Liver Axis. Int J Mol Sci 2021; 22:10858. [PMID: 34639207 PMCID: PMC8509295 DOI: 10.3390/ijms221910858] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 09/27/2021] [Accepted: 10/01/2021] [Indexed: 12/11/2022] Open
Abstract
Non-alcoholic steatohepatitis (NASH) is gradually becoming one of the most common and health-endangering diseases; therefore, it is very important to prevent the occurrence of NASH and prevent simple non-alcoholic fatty liver (NAFL) from further developing into NASH. We fed mice a high-fat diet (HFD, 60% fat) for 14 weeks to induce NAFL and then fed different doses of flaxseed powder (low (10%), middle (20%), and high (30%)) to the mice for 28 weeks. After the animal experiment, we analyzed fecal bile acid (BA) profiles of the HFD mice, flaxseed-fed (FLA-fed) mice, and control mice with a normal diet (10% fat) using a targeted metabolomics approach, and we analyzed the gut microbiota at the same time. We also investigated the mechanistic role of BAs in NASH and identified whether the altered BAs strongly bind to colonic FXR or TGR5. In the present study, we found that 28-week FLA treatment notably alleviated NASH development in NAFL model mice fed with an HFD, and the beneficial effects may be attributed to the regulation of and improvement in the gut flora- and microbiota-related BAs, which then activate the intestinal FXR-FGF15 and TGR5-NF-κB pathways. Our data indicate that FLA might be a promising functional food for preventing NASH through regulating microbiomes and BAs.
Collapse
Affiliation(s)
- Chao Yang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China; (C.Y.); (M.W.); (D.X.); (D.P.); (H.X.)
- Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China
| | - Min Wan
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China; (C.Y.); (M.W.); (D.X.); (D.P.); (H.X.)
- Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China
| | - Dengfeng Xu
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China; (C.Y.); (M.W.); (D.X.); (D.P.); (H.X.)
- Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China
| | - Da Pan
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China; (C.Y.); (M.W.); (D.X.); (D.P.); (H.X.)
- Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China
| | - Hui Xia
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China; (C.Y.); (M.W.); (D.X.); (D.P.); (H.X.)
- Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China
| | - Ligang Yang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China; (C.Y.); (M.W.); (D.X.); (D.P.); (H.X.)
- Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China
| | - Guiju Sun
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China; (C.Y.); (M.W.); (D.X.); (D.P.); (H.X.)
- Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China
| |
Collapse
|
312
|
Zhou L, Yu D, Zheng S, Ouyang R, Wang Y, Xu G. Gut microbiota-related metabolome analysis based on chromatography-mass spectrometry. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
313
|
Bile Acids Activate NLRP3 Inflammasome, Promoting Murine Liver Inflammation or Fibrosis in a Cell Type-Specific Manner. Cells 2021; 10:cells10102618. [PMID: 34685598 PMCID: PMC8534222 DOI: 10.3390/cells10102618] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/10/2021] [Accepted: 09/22/2021] [Indexed: 12/12/2022] Open
Abstract
Bile acids (BA) as important signaling molecules are considered crucial in development of cholestatic liver injury, but there is limited understanding on the involved cell types and signaling pathways. The aim of this study was to evaluate the inflammatory and fibrotic potential of key BA and the role of distinct liver cell subsets focusing on the NLRP3 inflammasome. C57BL/6 wild-type (WT) and Nlrp3−/− mice were fed with a diet supplemented with cholic (CA), deoxycholic (DCA) or lithocholic acid (LCA) for 7 days. Additionally, primary hepatocytes, Kupffer cells (KC) and hepatic stellate cells (HSC) from WT and Nlrp3−/− mice were stimulated with aforementioned BA ex vivo. LCA feeding led to strong liver damage and activation of NLRP3 inflammasome. Ex vivo KC were the most affected cells by LCA, resulting in a pro-inflammatory phenotype. Liver damage and primary KC activation was both ameliorated in Nlrp3-deficient mice or cells. DCA feeding induced fibrotic alterations. Primary HSC upregulated the NLRP3 inflammasome and early fibrotic markers when stimulated with DCA, but not LCA. Pro-fibrogenic signals in liver and primary HSC were attenuated in Nlrp3−/− mice or cells. The data shows that distinct BA induce NLRP3 inflammasome activation in HSC or KC, promoting fibrosis or inflammation.
Collapse
|
314
|
Zhang K, Yao Y, Wang M, Liu F, Wang Q, Ma H, Xie Y, Ma Y, Dai P, Zhu C, Lin C. A UPLC-MS/MS-based metabolomics analysis of the pharmacological mechanisms of rabdosia serra against cholestasis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 91:153683. [PMID: 34364160 DOI: 10.1016/j.phymed.2021.153683] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 07/14/2021] [Accepted: 07/16/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Rabdosia Serra, the dried aerial parts of Rabdosia serra (Maxim.) Hara (RS) from the Labiatae family, is a traditional Chinese herbal medicine called Xihuangcao. Although RS has been found to exert a therapeutic effect on cholestasis, the underlying molecular mechanism remains unclear. PURPOSE This study was designed to investigate the pharmacological effect and mechanism of RS on cholestatic rats using metabolomics platform. METHODS Histopathology and biochemical evaluations were performed to determine the therapeutic effect of RS and developed a rapid metabolite detection technology method based on UPLC-MS/MS to perform metabolomics research. Further, quantitative real-time polymerase chain reaction (RT-qPCR) was used to study the effect of RS on the bile acid metabolism pathway at the transcriptional level. RESULTS RS significantly reduced the bile flow rates in cholestatic rats and decreased the levels of ALT, AST, TBA, T-BIL, and LDH, which were increased in the model group. Histological analysis showed that RS alleviated the liver injury induced by ANIT. Serum metabolomics results revealed 33 of the 37 biomarkers were found to be significantly altered by ANIT, and 26 were considerably changed following treatment with RS. Metabolic pathway analysis revealed four pathways such as primary bile acid biosynthesis, biosynthesis of unsaturated fatty acids, and arachidonic acid and tryptophan metabolism. The bile acid secretion process and the inflammation and oxidative stress processes are the major biochemical reactions following treatment with ANIT and RS. Bile acid-targeted metabolomics study showed that TCA, GCA, GCDCA, and GDCA might be sensitive biomarkers that induced liver injury. we found that treatment with RS regulated the levels of bile acid in the serum and liver and restored the proportion of bile acids, especially CA and conjugated bile acids, such as TCA and GCA, in the bile duct. RS increased the mRNA expression levels of FXR, SHP, BSEP, and MRP2 in livers, and IBABP, OST-α, and OST-β in the ileum. CONCLUSION In this study, RS was found to protect the liver by regulating multiple metabolic pathways and promoting the excretion of bile acids. Simultaneously, RS played an essential role in reversing the imbalance of bile acids and protected against cholestasis by regulating the expression of transporters associated with bile acids. We demonstrated the correlation between molecular mechanisms and metabolites, provide a reference for the fabrication of extracts that can be used to treat cholestasis.
Collapse
Affiliation(s)
- Kaihui Zhang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, No.232 Waihuandong Rd, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China
| | - Yufeng Yao
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, No.232 Waihuandong Rd, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China
| | - Meiqi Wang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, No.232 Waihuandong Rd, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China
| | - Fangle Liu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, No.232 Waihuandong Rd, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China
| | - Qian Wang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, No.232 Waihuandong Rd, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China
| | - Huanhuan Ma
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, No.232 Waihuandong Rd, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China
| | - Yuanyuan Xie
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, No.232 Waihuandong Rd, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China
| | - Yunxia Ma
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, No.232 Waihuandong Rd, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China
| | - Pengyu Dai
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, No.232 Waihuandong Rd, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China
| | - Chenchen Zhu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, No.232 Waihuandong Rd, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China.
| | - Chaozhan Lin
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, No.232 Waihuandong Rd, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China.
| |
Collapse
|
315
|
Thompson RS, Gaffney M, Hopkins S, Kelley T, Gonzalez A, Bowers SJ, Vitaterna MH, Turek FW, Foxx CL, Lowry CA, Vargas F, Dorrestein PC, Wright KP, Knight R, Fleshner M. Ruminiclostridium 5, Parabacteroides distasonis, and bile acid profile are modulated by prebiotic diet and associate with facilitated sleep/clock realignment after chronic disruption of rhythms. Brain Behav Immun 2021; 97:150-166. [PMID: 34242738 DOI: 10.1016/j.bbi.2021.07.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 06/28/2021] [Accepted: 07/04/2021] [Indexed: 12/12/2022] Open
Abstract
Chronic disruption of rhythms (CDR) impacts sleep and can result in circadian misalignment of physiological systems which, in turn, is associated with increased disease risk. Exposure to repeated or severe stressors also disturbs sleep and diurnal rhythms. Prebiotic nutrients produce favorable changes in gut microbial ecology, the gut metabolome, and reduce several negative impacts of acute severe stressor exposure, including disturbed sleep, core body temperature rhythmicity, and gut microbial dysbiosis. In light of previous compelling evidence that prebiotic diet broadly reduces negative impacts of acute, severe stressors, we hypothesize that prebiotic diet will also effectively mitigate the negative impacts of chronic disruption of circadian rhythms on physiology and sleep/wake behavior. Male, Sprague Dawley rats were fed diets enriched in prebiotic substrates or calorically matched control chow. After 5 weeks on diet, rats were exposed to CDR (12 h light/dark reversal, weekly for 8 weeks) or remained on undisturbed normal light/dark cycles (NLD). Sleep EEG, core body temperature, and locomotor activity were recorded via biotelemetry in freely moving rats. Fecal samples were collected on experimental days -33, 0 (day of onset of CDR), and 42. Taxonomic identification and relative abundances of gut microbes were measured in fecal samples using 16S rRNA gene sequencing and shotgun metagenomics. Fecal primary, bacterially modified secondary, and conjugated bile acids were measured using liquid chromatography with tandem mass spectrometry (LC-MS/MS). Prebiotic diet produced rapid and stable increases in the relative abundances of Parabacteroides distasonis and Ruminiclostridium 5. Shotgun metagenomics analyses confirmed reliable increases in relative abundances of Parabacteroides distasonis and Clostridium leptum, a member of the Ruminiclostridium genus. Prebiotic diet also modified fecal bile acid profiles; and based on correlational and step-wise regression analyses, Parabacteroides distasonis and Ruminiclostridium 5 were positively associated with each other and negatively associated with secondary and conjugated bile acids. Prebiotic diet, but not CDR, impacted beta diversity. Measures of alpha diversity evenness were decreased by CDR and prebiotic diet prevented that effect. Rats exposed to CDR while eating prebiotic, compared to control diet, more quickly realigned NREM sleep and core body temperature (ClockLab) diurnal rhythms to the altered light/dark cycle. Finally, both cholic acid and Ruminiclostridium 5 prior to CDR were associated with time to realign CBT rhythms to the new light/dark cycle after CDR; whereas both Ruminiclostridium 5 and taurocholic acid prior to CDR were associated with NREM sleep recovery after CDR. These results support our hypothesis and suggest that ingestion of prebiotic substrates is an effective strategy to increase the relative abundance of health promoting microbes, alter the fecal bile acid profile, and facilitate the recovery and realignment of sleep and diurnal rhythms after circadian disruption.
Collapse
Affiliation(s)
- Robert S Thompson
- Department of Integrative Physiology, University of Colorado at Boulder, Boulder, CO, USA; Center for Neuroscience, University of Colorado at Boulder, Boulder, CO, USA.
| | - Michelle Gaffney
- Department of Integrative Physiology, University of Colorado at Boulder, Boulder, CO, USA; Center for Neuroscience, University of Colorado at Boulder, Boulder, CO, USA
| | - Shelby Hopkins
- Department of Integrative Physiology, University of Colorado at Boulder, Boulder, CO, USA
| | - Tel Kelley
- Department of Integrative Physiology, University of Colorado at Boulder, Boulder, CO, USA
| | - Antonio Gonzalez
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Samuel J Bowers
- Department of Neurobiology, Northwestern University, Center for Sleep and Circadian Biology, Evanston, IL, USA
| | - Martha Hotz Vitaterna
- Department of Neurobiology, Northwestern University, Center for Sleep and Circadian Biology, Evanston, IL, USA
| | - Fred W Turek
- Department of Neurobiology, Northwestern University, Center for Sleep and Circadian Biology, Evanston, IL, USA
| | - Christine L Foxx
- Department of Integrative Physiology, University of Colorado at Boulder, Boulder, CO, USA
| | - Christopher A Lowry
- Department of Integrative Physiology, University of Colorado at Boulder, Boulder, CO, USA; Center for Neuroscience, University of Colorado at Boulder, Boulder, CO, USA
| | - Fernando Vargas
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, CA, USA
| | - Pieter C Dorrestein
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, CA, USA
| | - Kenneth P Wright
- Department of Integrative Physiology, University of Colorado at Boulder, Boulder, CO, USA; Center for Neuroscience, University of Colorado at Boulder, Boulder, CO, USA
| | - Rob Knight
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA; Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA, USA; Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA
| | - Monika Fleshner
- Department of Integrative Physiology, University of Colorado at Boulder, Boulder, CO, USA; Center for Neuroscience, University of Colorado at Boulder, Boulder, CO, USA.
| |
Collapse
|
316
|
Zheng Q, Shen L, Zhao D, Zhang H, Liang Y, Zhu Y, Khan NU, Liu X, Zhang J, Lin J, Tang X. Metabolic characteristics of plasma bile acids in patients with intrahepatic cholestasis of pregnancy-mass spectrometric study. Metabolomics 2021; 17:93. [PMID: 34595616 DOI: 10.1007/s11306-021-01844-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 09/21/2021] [Indexed: 01/06/2023]
Abstract
INTRODUCTION Intrahepatic cholestasis of pregnancy (ICP) is one of the more common complications in the middle and late stages of pregnancy, which requires early detection and intervention. OBJECTIVE The aim of the study is to investigate the changes in the metabolic profile of bile acids (BAs) in plasma of pregnant women with ICP and to look biomarkers for the diagnosis and grading of ICP, and to explore the disease mechanism. METHODS The targeted metabolomics based on high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) was used to analyze plasma BAs. RESULTS Twenty-seven BAs can be quantified in all participants. Among them, 22 BAs were identified as differential BAs between ICP and control groups. Five BAs include 3β-CA, 3β-DCA, CDCA-3Gln, NCA, and Tβ-MCA, were found to be associated with ICP for the first time. Nine BAs include NCA, GCA, GCDCA, GHCA, GUDCA, HCA, TCA, TCDCA and THCA, can be used as possible ICP diagnostic biomarkers. Four BAs, i.e., GLCA, THCA, GHCA and TLCA-3S may be used as potential biomarkers for ICP grading. CONCLUSION There were significant differences in plasma BA profiles between ICP patients and the control. The BA profiles of mild ICP group and severe ICP group partially overlapped. Potential diagnostic and grading BA markers were identified. A significant characteristic of ICP group was the increase of conjugated BAs. A mechanism to sustain the equilibrium of BA metabolism and adaptive response has been developed in ICP patients to accelerate excretion and detoxification.
Collapse
Affiliation(s)
- Qihong Zheng
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518071, People's Republic of China
| | - Liming Shen
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518071, People's Republic of China.
- Brain Disease and Big Data Research Institute, Shenzhen University, Shenzhen, 518071, People's Republic of China.
| | - Danqing Zhao
- Department of Obstetrics and Gynecology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, People's Republic of China
| | - Huajie Zhang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518071, People's Republic of China
| | - Yi Liang
- Department of Clinical Nutrition, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, People's Republic of China
| | - Yuhua Zhu
- Department of Obstetrics and Gynecology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, People's Republic of China
| | - Naseer Ullah Khan
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518071, People's Republic of China
| | - Xukun Liu
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518071, People's Republic of China
| | - Jun Zhang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518071, People's Republic of China
| | - Jing Lin
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518071, People's Republic of China
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, People's Republic of China
| | - Xiaoxiao Tang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518071, People's Republic of China
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, Shenzhen, 518071, People's Republic of China
| |
Collapse
|
317
|
Li W, Hang S, Fang Y, Bae S, Zhang Y, Zhang M, Wang G, McCurry MD, Bae M, Paik D, Franzosa EA, Rastinejad F, Huttenhower C, Yao L, Devlin AS, Huh JR. A bacterial bile acid metabolite modulates T reg activity through the nuclear hormone receptor NR4A1. Cell Host Microbe 2021; 29:1366-1377.e9. [PMID: 34416161 PMCID: PMC9064000 DOI: 10.1016/j.chom.2021.07.013] [Citation(s) in RCA: 166] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 06/14/2021] [Accepted: 07/23/2021] [Indexed: 12/12/2022]
Abstract
Bile acids act as signaling molecules that regulate immune homeostasis, including the differentiation of CD4+ T cells into distinct T cell subsets. The bile acid metabolite isoallolithocholic acid (isoalloLCA) enhances the differentiation of anti-inflammatory regulatory T cells (Treg cells) by facilitating the formation of a permissive chromatin structure in the promoter region of the transcription factor forkhead box P3 (Foxp3). Here, we identify gut bacteria that synthesize isoalloLCA from 3-oxolithocholic acid and uncover a gene cluster responsible for the conversion in members of the abundant human gut bacterial phylum Bacteroidetes. We also show that the nuclear hormone receptor NR4A1 is required for the effect of isoalloLCA on Treg cells. Moreover, the levels of isoalloLCA and its biosynthetic genes are significantly reduced in patients with inflammatory bowel diseases, suggesting that isoalloLCA and its bacterial producers may play a critical role in maintaining immune homeostasis in humans.
Collapse
Affiliation(s)
- Wei Li
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Saiyu Hang
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Yuan Fang
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Sena Bae
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA; Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
| | - Yancong Zhang
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Minghao Zhang
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Gang Wang
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Megan D McCurry
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Munhyung Bae
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Donggi Paik
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Eric A Franzosa
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Fraydoon Rastinejad
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Curtis Huttenhower
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA; Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Lina Yao
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA.
| | - A Sloan Devlin
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA.
| | - Jun R Huh
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA.
| |
Collapse
|
318
|
Zhang S, Luo P, Xu J, Yang L, Ma P, Tan X, Chen Q, Zhou M, Song S, Xia H, Wang S, Ma Y, Yang F, Liu Y, Li Y, Ma G, Wang Z, Duan Y, Jin Y. Plasma Metabolomic Profiles in Recovered COVID-19 Patients without Previous Underlying Diseases 3 Months After Discharge. J Inflamm Res 2021; 14:4485-4501. [PMID: 34522117 PMCID: PMC8434912 DOI: 10.2147/jir.s325853] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 08/24/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND It remains unclear whether discharged COVID-19 patients have fully recovered from severe complications, including the differences in the post-infection metabolomic profiles of patients with different disease severities. METHODS COVID-19-recovered patients, who had no previous underlying diseases and were discharged from Wuhan Union Hospital for 3 months, and matched healthy controls (HCs) were recruited in this prospective cohort study. We examined the blood biochemical indicators, cytokines, lung computed tomography scans, including 39 HCs, 18 recovered asymptomatic (RAs), 34 recovered moderate (RMs), and 44 recovered severe/ critical patients (RCs). A liquid chromatography-mass spectrometry-based metabolomics approach was employed to profile the global metabolites of fasting plasma of these participants. RESULTS Clinical data and metabolomic profiles suggested that RAs recovered well, but some clinical indicators and plasma metabolites in RMs and RCs were still abnormal as compared with HCs, such as decreased taurine, succinic acid, hippuric acid, some indoles, and lipid species. The disturbed metabolic pathway mainly involved the tricarboxylic cycle, purine, and glycerophospholipid metabolism. Moreover, metabolite alterations differ between RMs and RCs when compared with HCs. Correlation analysis revealed that many differential metabolites were closely associated with inflammation and the renal, pulmonary, heart, hepatic, and coagulation system functions. CONCLUSION We uncovered metabolite clusters pathologically relevant to the recovery state in discharged COVID-19 patients which may provide new insights into the pathogenesis of potential organ damage in recovered patients.
Collapse
Affiliation(s)
- Shujing Zhang
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, People’s Republic of China
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, People’s Republic of China
| | - Ping Luo
- Department of Translational Medicine Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, People’s Republic of China
| | - Juanjuan Xu
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, People’s Republic of China
| | - Lian Yang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, People’s Republic of China
| | - Pei Ma
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, People’s Republic of China
| | - Xueyun Tan
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, People’s Republic of China
| | - Qing Chen
- Health Checkup Department, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, People’s Republic of China
| | - Mei Zhou
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, People’s Republic of China
| | - Siwei Song
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, People’s Republic of China
| | - Hui Xia
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, People’s Republic of China
| | - Sufei Wang
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, People’s Republic of China
| | - Yanling Ma
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, People’s Republic of China
| | - Fan Yang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, People’s Republic of China
| | - Yu Liu
- Health Checkup Department, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, People’s Republic of China
| | - Yumei Li
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, People’s Republic of China
| | - Guanzhou Ma
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, People’s Republic of China
| | - Zhihui Wang
- Department of Scientific Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, People’s Republic of China
| | - Yanran Duan
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, People’s Republic of China
| | - Yang Jin
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, People’s Republic of China
| |
Collapse
|
319
|
Yang C, Brecht J, Weiß C, Reissfelder C, Otto M, Buchwald JN, Vassilev G. Serum Glucagon, Bile Acids, and FGF-19: Metabolic Behavior Patterns After Roux-en-Y Gastric Bypass and Vertical Sleeve Gastrectomy. Obes Surg 2021; 31:4939-4946. [PMID: 34471996 DOI: 10.1007/s11695-021-05677-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 08/14/2021] [Accepted: 08/19/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND Metabolic/bariatric surgery is a highly effective treatment for obesity and metabolic diseases. Serum glucagon, bile acids, and FGF-19 are key effectors of various metabolic processes and may play central roles in bariatric surgical outcomes. It is unclear whether these factors behave similarly after Roux-en-Y gastric bypass (RYGB) vs vertical sleeve gastrectomy (VSG). METHODS Serum glucagon, bile acids (cholic acid [CA], chenodeoxycholic acid [CDCA], deoxycholic acid [DCA]), and FGF-19 were analyzed in samples of fasting blood collected before bariatric surgery, on postoperative days 2 and 10, and at 3- and 6-month follow-up. RESULTS From September 2016 to July 2017, patients with obesity underwent RYGB or VSG; 42 patients (RYGB n = 21; VSG n = 21) were included in the analysis. In the RYGB group, glucagon, CA, and CDCA increased continuously after surgery (p = 0.0003, p = 0.0009, p = 0.0001, respectively); after an initial decrease (p = 0.04), DCA increased significantly (p = 0.0386). Serum FGF-19 was unchanged. In the VSG group, glucagon increased on day 2 (p = 0.0080), but decreased over the 6-month study course (p = 0.0025). Primary BAs (CA and CDCA) decreased immediately after surgery (p = 0.0016, p = 0.0091) and then rose (p = 0.0350, p = 0.0350); DCA followed the curve of the primary BAs until it fell off at 6 months (p = 0.0005). VSG group serum FGF-19 trended upward. CONCLUSION RYGB and VSG involve different surgical techniques and final anatomical configurations. Between postoperative day 2 and 6-month follow-up, RYGB and VSG resulted in divergent patterns of change in serum glucagon, bile acids, and FGF-19.
Collapse
Affiliation(s)
- Cui Yang
- Department of Surgery, University Medicine Mannheim, Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Julia Brecht
- Department of Surgery, University Medicine Mannheim, Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Christel Weiß
- Department of Medical Statistics and Biomathematics, Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany
| | - Christoph Reissfelder
- Department of Surgery, University Medicine Mannheim, Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Mirko Otto
- Department of Surgery, University Medicine Mannheim, Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Jane N Buchwald
- Division of Scientific Research Writing, Medwrite Medical Communications, Maiden Rock, WI, 54750, USA
| | - Georgi Vassilev
- Department of Surgery, University Medicine Mannheim, Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany.
| |
Collapse
|
320
|
Bhattarai A, Likos EM, Weyman CM, Shukla GC. Regulation of cholesterol biosynthesis and lipid metabolism: A microRNA management perspective. Steroids 2021; 173:108878. [PMID: 34174291 DOI: 10.1016/j.steroids.2021.108878] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 06/07/2021] [Accepted: 06/11/2021] [Indexed: 12/14/2022]
Abstract
Cellular disruption of lipid and cholesterol metabolism results in pathological processes linked to metabolic and cardiovascular diseases. Classically, at the transcription stages, the Cholesterol levels are controlled by two cellular pathways. First, the SREBP transcription factor family controls Cholesterol biosynthesis via transcriptional regulation of critical rate-limiting cholesterogenic and lipogenic proteins. Secondly, The LXR/RXR transcription factor family controls cholesterol shuttling via transcriptional regulation of cholesterol transport proteins. In addition, the posttranscriptional control of gene expression of various enzymes and proteins of cholesterol biosynthesis pathways is mediated by small non-coding microRNAs. Regulatory noncoding miRNAs are critical regulators of biological processes, including developmental and metabolic functions. miRNAs function to fine-tune lipid and cholesterol metabolism pathways by controlling the mRNA levels and translation of critical molecules in each pathway. This review discusses the regulatory roles of miRNAs in cholesterol and lipid metabolism via direct and indirect effects on their target genes, including SREBP, LXR, HDL, LDL, and ABCA transporters. We also discuss the therapeutic implications of miRNA functions and their purported role in the potentiation of small molecule therapies.
Collapse
Affiliation(s)
- Asmita Bhattarai
- Center for Gene Regulation, Department of Biological, Geo and EVS Sciences, Cleveland State University, 2121 Euclid Avenue, Cleveland, OH 44114, USA
| | - Eviania M Likos
- Center for Gene Regulation, Department of Biological, Geo and EVS Sciences, Cleveland State University, 2121 Euclid Avenue, Cleveland, OH 44114, USA
| | - Crystal M Weyman
- Center for Gene Regulation, Department of Biological, Geo and EVS Sciences, Cleveland State University, 2121 Euclid Avenue, Cleveland, OH 44114, USA
| | - Girish C Shukla
- Center for Gene Regulation, Department of Biological, Geo and EVS Sciences, Cleveland State University, 2121 Euclid Avenue, Cleveland, OH 44114, USA
| |
Collapse
|
321
|
Yun Y, Zhang C, Guo S, Liang X, Lan Y, Wang M, Zhuo N, Yin J, Liu H, Gu M, Li J, Xie X, Nan F. Identification of Betulinic Acid Derivatives as Potent TGR5 Agonists with Antidiabetic Effects via Humanized TGR5 H88Y Mutant Mice. J Med Chem 2021; 64:12181-12199. [PMID: 34406006 DOI: 10.1021/acs.jmedchem.1c00851] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Takeda G protein-coupled receptor 5 (TGR5) is a promising target for treating metabolic syndrome and inflammatory diseases. Herein, we identified a new series of betulinic acid derivatives as potent TGR5 agonists, which show remarkable activity on human (h) and canine (c) TGR5 but exhibit unpromising activity on murine (m) TGR5. Species difference was also observed with many other reported TGR5 agonists. Therefore, we screened 29 amino acids which were conserved in hTGR5 and cTGR5 but different in mTGR5 and found a key amino acid, H88 in mTGR5 (Y89 in hTGR5), which contributed to the species difference. With the CRISPR/Cas9 system, the mTGR5H88Y mutation was introduced into mice, and the optimized compound 11d-Na displayed a significant glucose-lowering effect and stimulated GLP-1 and insulin secretion in TGR5H88Y mice but not in wild-type animals. Taken together, our study provides a useful tool to bridge the gap of species difference and discovers a potent TGR5 agonist for further investigation.
Collapse
Affiliation(s)
- Ying Yun
- CAS Key Laboratory of Receptor Research, the National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, P. R. China
| | - Chenlu Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Shimeng Guo
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210046, China
| | - Xiaoying Liang
- CAS Key Laboratory of Receptor Research, the National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yuan Lan
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210046, China
| | - Min Wang
- CAS Key Laboratory of Receptor Research, the National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Ning Zhuo
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, P. R. China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jianpeng Yin
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Shandong 264000, China
| | - Huanan Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Min Gu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jing Li
- CAS Key Laboratory of Receptor Research, the National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xin Xie
- CAS Key Laboratory of Receptor Research, the National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, P. R. China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210046, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Fajun Nan
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, P. R. China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Shandong 264000, China
| |
Collapse
|
322
|
Ji G, Si X, Dong S, Xu Y, Li M, Yang B, Tang Z, Fang X, Huang L, Song W, Chen X. Manipulating Liver Bile Acid Signaling by Nanodelivery of Bile Acid Receptor Modulators for Liver Cancer Immunotherapy. NANO LETTERS 2021; 21:6781-6791. [PMID: 34382807 DOI: 10.1021/acs.nanolett.1c01360] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Gut bacteria and their metabolites influence the immune microenvironment of liver through the gut-liver axis, thus representing emerging therapeutic targets for liver cancer therapy. However, directly manipulating gut microbiota or their metabolites is not practical in clinic since the safety concerns and the complicated mechanism of action. Considering the dysregulated bile acid profiles associated with liver cancer, here we propose a strategy that directly manipulates the primary and secondary bile acid receptors through nanoapproach as an alternative and more precise way for liver cancer therapy. We show that nanodelivery of bile acid receptor modulators elicited robust antitumor immune responses and significantly changed the immune microenvironment in the murine hepatic tumor. In addition, ex vivo stimulation on both murine and patient hepatic tumor tissues suggests the observation here may be meaningful for clinical practice. This study elucidates a novel and precise strategy for liver cancer immunotherapy.
Collapse
Affiliation(s)
- Guofeng Ji
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Xinghui Si
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- Jilin Biomedical Polymers Engineering Laboratory, Changchun 130022, China
| | - Si Dong
- College of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Yajun Xu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
| | - Mingqiang Li
- Laboratory of Biomaterials and Translational Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Bo Yang
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun 130000, China
| | - Zhaohui Tang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- Jilin Biomedical Polymers Engineering Laboratory, Changchun 130022, China
| | - Xuedong Fang
- Department of Gastrointestinal and Colorectal Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Leaf Huang
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Wantong Song
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- Jilin Biomedical Polymers Engineering Laboratory, Changchun 130022, China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- Jilin Biomedical Polymers Engineering Laboratory, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
323
|
Li N, Zhan S, Tian Z, Liu C, Xie Z, Zhang S, Chen M, Zeng Z, Zhuang X. Alterations in Bile Acid Metabolism Associated With Inflammatory Bowel Disease. Inflamm Bowel Dis 2021; 27:1525-1540. [PMID: 33399195 DOI: 10.1093/ibd/izaa342] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Indexed: 12/12/2022]
Abstract
Inflammatory bowel disease (IBD) is a chronic relapsing inflammatory disorder closely related to gut dysbiosis, which is associated with alterations in an important bacterial metabolite, bile acids (BAs). Although certain findings pertinent to BA changes in IBD vary among studies owing to the differences in sample type, quantitated BA species, study methodology, and patient characteristics, a specific trend concerning variations of BAs in IBD has been identified. In elaborating on this observation, it was noted that primary BAs and conjugated BAs are augmented in fecal samples but there is a reduction in secondary BAs in fecal samples. It is not entirely clear why patients with IBD manifest these changes and what role these changes play in the onset and development of IBD. Previous studies have shown that IBD-associated BA changes may be caused by alterations in BA absorption, synthesis, and bacterial modification. The complex relationship between bacteria and BAs may provide additional and deeper insight into host-gut microbiota interactions in the pathogenesis of IBD. The characteristic BA changes may generate profound effects in patients with IBD by shaping the gut microbiota community, affecting inflammatory processes, causing BA malabsorption associated with diarrhea, and even leading to intestinal dysplasia and cancer. Thus, therapeutic strategies correcting the alterations in the composition of BAs, including the elimination of excess BAs and the supplementation of deficient BAs, may prove promising in IBD.
Collapse
Affiliation(s)
- Na Li
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Shukai Zhan
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Zhenyi Tian
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Caiguang Liu
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Zonglin Xie
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Shenghong Zhang
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Minhu Chen
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Zhirong Zeng
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Xiaojun Zhuang
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| |
Collapse
|
324
|
Ning Z, Song Z, Wang C, Peng S, Wan X, Liu Z, Lu A. How Perturbated Metabolites in Diabetes Mellitus Affect the Pathogenesis of Hypertension? Front Physiol 2021; 12:705588. [PMID: 34483960 PMCID: PMC8416465 DOI: 10.3389/fphys.2021.705588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 07/26/2021] [Indexed: 11/17/2022] Open
Abstract
The presence of hypertension (HTN) in type 2 diabetes mellitus (DM) is a common phenomenon in more than half of the diabetic patients. Since HTN constitutes a predictor of vascular complications and cardiovascular disease in type 2 DM patients, it is of significance to understand the molecular and cellular mechanisms of type 2 DM binding to HTN. This review attempts to understand the mechanism via the perspective of the metabolites. It reviewed the metabolic perturbations, the biological function of perturbated metabolites in two diseases, and the mechanism underlying metabolic perturbation that contributed to the connection of type 2 DM and HTN. DM-associated metabolic perturbations may be involved in the pathogenesis of HTN potentially in insulin, angiotensin II, sympathetic nervous system, and the energy reprogramming to address how perturbated metabolites in type 2 DM affect the pathogenesis of HTN. The recent integration of the metabolism field with microbiology and immunology may provide a wider perspective. Metabolism affects immune function and supports immune cell differentiation by the switch of energy. The diverse metabolites produced by bacteria modified the biological process in the inflammatory response of chronic metabolic diseases either. The rapidly evolving metabolomics has enabled to have a better understanding of the process of diseases, which is an important tool for providing some insight into the investigation of diseases mechanism. Metabolites served as direct modulators of biological processes were believed to assess the pathological mechanisms involved in diseases.
Collapse
Affiliation(s)
- Zhangchi Ning
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhiqian Song
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chun Wang
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shitao Peng
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaoying Wan
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhenli Liu
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Aiping Lu
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| |
Collapse
|
325
|
Rebelos E, Iozzo P, Guzzardi MA, Brunetto MR, Bonino F. Brain-gut-liver interactions across the spectrum of insulin resistance in metabolic fatty liver disease. World J Gastroenterol 2021; 27:4999-5018. [PMID: 34497431 PMCID: PMC8384743 DOI: 10.3748/wjg.v27.i30.4999] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/29/2021] [Accepted: 07/13/2021] [Indexed: 02/06/2023] Open
Abstract
Metabolic associated fatty liver disease (MAFLD), formerly named "nonalcoholic fatty liver disease" occurs in about one-third of the general population of developed countries worldwide and behaves as a major morbidity and mortality risk factor for major causes of death, such as cardiovascular, digestive, metabolic, neoplastic and neuro-degenerative diseases. However, progression of MAFLD and its associated systemic complications occur almost invariably in patients who experience the additional burden of intrahepatic and/or systemic inflammation, which acts as disease accelerator. Our review is focused on the new knowledge about the brain-gut-liver axis in the context of metabolic dysregulations associated with fatty liver, where insulin resistance has been assumed to play an important role. Special emphasis has been given to digital imaging studies and in particular to positron emission tomography, as it represents a unique opportunity for the noninvasive in vivo study of tissue metabolism. An exhaustive revision of targeted animal models is also provided in order to clarify what the available preclinical evidence suggests for the causal interactions between fatty liver, dysregulated endogenous glucose production and insulin resistance.
Collapse
Affiliation(s)
- Eleni Rebelos
- Turku PET Centre, University of Turku, Turku 20500, Finland
| | - Patricia Iozzo
- Institute of Clinical Physiology, National Research Council, Pisa 56124, Italy
| | | | - Maurizia Rossana Brunetto
- Hepatology Unit and Laboratory of Molecular Genetics and Pathology of Hepatitis, Pisa University Hospital, Pisa 56121, Italy
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa 56121, Italy
- Institute of Biostructure and Bioimaging, National Research Council, Napoli 80145, Italy
| | - Ferruccio Bonino
- Institute of Biostructure and Bioimaging, National Research Council, Napoli 80145, Italy
| |
Collapse
|
326
|
Supplementation of Bile Acids and Lipase in Broiler Diets for Better Nutrient Utilization and Performance: Potential Effects and Future Implications – A Review. ANNALS OF ANIMAL SCIENCE 2021. [DOI: 10.2478/aoas-2020-0099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Abstract
Bile acids are used for better emulsification, digestion and absorption of dietary fat in chicken, especially in early life. Similarly, exogenous lipases have also been used for the improvement of physiological limitation of the chicken digestive system. Owing to potential of both bile acids and lipases, their use has been increased in recent years, for better emulsification of dietary fat and improvement of growth performance in broilers. In the past, pancreatic lipases were used for supplementation, but recently, microbial lipase is getting attention in poultry industry as a hydrolysis catalyst. Bile acids strengthen the defence mechanism of body against bacterial endotoxins and also play a key role in lipid regulation and sugar metabolism as signaling molecules. It has been demonstrated that bile acids and lipases may improve feed efficiency by enhancing digestive enzyme activity and ultimately leading to better fat digestion and absorption. Wide supplemental range of bile acids (0.004% to 0.25%) and lipases (0.01% to 0.1%) has been used in broiler diets for improvement of fat digestibility and their performance. Combinations of different bile acids have shown more potential to improve feed efficiency (by 7.14%) even at low (0.008%) levels as compared to any individual bile acid. Lipases at a lower level of 0.03% have exhibited more promising potential to improve fat digestibility and feed efficiency. However, contradicting results have been published in literature, which needs further investigations to elucidate various nutritional aspects of bile acids and lipase supplementation in broiler diet. This review focuses on providing insight on the mechanism of action and potential application of bile acids and lipases in broiler diets. Moreover, future implications of these additives in poultry nutrition for enhancing nutrient utilization and absorption are also discussed.
Collapse
|
327
|
Zhang J, Ni Y, Qian L, Fang Q, Zheng T, Zhang M, Gao Q, Zhang Y, Ni J, Hou X, Bao Y, Kovatcheva‐Datchary P, Xu A, Li H, Panagiotou G, Jia W. Decreased Abundance of Akkermansia muciniphila Leads to the Impairment of Insulin Secretion and Glucose Homeostasis in Lean Type 2 Diabetes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2100536. [PMID: 34085773 PMCID: PMC8373164 DOI: 10.1002/advs.202100536] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/05/2021] [Indexed: 05/23/2023]
Abstract
Although obesity occurs in most of the patients with type 2 diabetes (T2D), a fraction of patients with T2D are underweight or have normal weight. Several studies have linked the gut microbiome to obesity and T2D, but the role of gut microbiota in lean individuals with T2D having unique clinical characteristics remains unclear. A metagenomic and targeted metabolomic analysis is conducted in 182 lean and abdominally obese individuals with and without newly diagnosed T2D. The abundance of Akkermansia muciniphila (A. muciniphila) significantly decreases in lean individuals with T2D than without T2D, but not in the comparison of obese individuals with and without T2D. Its abundance correlates inversely with serum 3β-chenodeoxycholic acid (βCDCA) levels and positively with insulin secretion and fibroblast growth factor 15/19 (FGF15/19) concentrations. The supplementation with A. muciniphila is sufficient to protect mice against high sucrose-induced impairment of glucose intolerance by decreasing βCDCA and increasing insulin secretion and FGF15/19. Furthermore, βCDCA inhibits insulin secretion and FGF15/19 expression. These findings suggest that decreased abundance of A. muciniphila is linked to the impairment of insulin secretion and glucose homeostasis in lean T2D, paving the way for new therapeutic options for the prevention or treatment of diabetes.
Collapse
Affiliation(s)
- Jing Zhang
- Shanghai Key Laboratory of Diabetes MellitusDepartment of Endocrinology and MetabolismShanghai Diabetes InstituteShanghai Clinical Center for DiabetesShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai200233China
| | - Yueqiong Ni
- Systems Biology and Bioinformatics UnitLeibniz Institute for Natural Product Research and Infection Biology–Hans Knöll InstituteBeutenbergstrasse 11aJena07745Germany
- Systems Biology & Bioinformatics GroupSchool of Biological SciencesThe University of Hong KongHong Kong SARChina
| | - Lingling Qian
- Shanghai Key Laboratory of Diabetes MellitusDepartment of Endocrinology and MetabolismShanghai Diabetes InstituteShanghai Clinical Center for DiabetesShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai200233China
| | - Qichen Fang
- Shanghai Key Laboratory of Diabetes MellitusDepartment of Endocrinology and MetabolismShanghai Diabetes InstituteShanghai Clinical Center for DiabetesShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai200233China
| | - Tingting Zheng
- Systems Biology and Bioinformatics UnitLeibniz Institute for Natural Product Research and Infection Biology–Hans Knöll InstituteBeutenbergstrasse 11aJena07745Germany
- Systems Biology & Bioinformatics GroupSchool of Biological SciencesThe University of Hong KongHong Kong SARChina
| | - Mingliang Zhang
- Shanghai Key Laboratory of Diabetes MellitusDepartment of Endocrinology and MetabolismShanghai Diabetes InstituteShanghai Clinical Center for DiabetesShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai200233China
| | - Qiongmei Gao
- Shanghai Key Laboratory of Diabetes MellitusDepartment of Endocrinology and MetabolismShanghai Diabetes InstituteShanghai Clinical Center for DiabetesShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai200233China
| | - Ying Zhang
- Shanghai Key Laboratory of Diabetes MellitusDepartment of Endocrinology and MetabolismShanghai Diabetes InstituteShanghai Clinical Center for DiabetesShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai200233China
| | - Jiacheng Ni
- Shanghai Key Laboratory of Diabetes MellitusDepartment of Endocrinology and MetabolismShanghai Diabetes InstituteShanghai Clinical Center for DiabetesShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai200233China
| | - Xuhong Hou
- Shanghai Key Laboratory of Diabetes MellitusDepartment of Endocrinology and MetabolismShanghai Diabetes InstituteShanghai Clinical Center for DiabetesShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai200233China
| | - Yuqian Bao
- Shanghai Key Laboratory of Diabetes MellitusDepartment of Endocrinology and MetabolismShanghai Diabetes InstituteShanghai Clinical Center for DiabetesShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai200233China
| | | | - Aimin Xu
- State Key Laboratory of Pharmaceutical BiotechnologyThe University of Hong KongHong Kong SARChina
- Department of MedicineThe University of Hong KongHong Kong SARChina
| | - Huating Li
- Shanghai Key Laboratory of Diabetes MellitusDepartment of Endocrinology and MetabolismShanghai Diabetes InstituteShanghai Clinical Center for DiabetesShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai200233China
| | - Gianni Panagiotou
- Systems Biology and Bioinformatics UnitLeibniz Institute for Natural Product Research and Infection Biology–Hans Knöll InstituteBeutenbergstrasse 11aJena07745Germany
- Systems Biology & Bioinformatics GroupSchool of Biological SciencesThe University of Hong KongHong Kong SARChina
- State Key Laboratory of Pharmaceutical BiotechnologyThe University of Hong KongHong Kong SARChina
- Department of MedicineThe University of Hong KongHong Kong SARChina
| | - Weiping Jia
- Shanghai Key Laboratory of Diabetes MellitusDepartment of Endocrinology and MetabolismShanghai Diabetes InstituteShanghai Clinical Center for DiabetesShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai200233China
| |
Collapse
|
328
|
Ocvirk S, O'Keefe SJD. Dietary fat, bile acid metabolism and colorectal cancer. Semin Cancer Biol 2021; 73:347-355. [PMID: 33069873 DOI: 10.1016/j.semcancer.2020.10.003] [Citation(s) in RCA: 144] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 10/04/2020] [Accepted: 10/05/2020] [Indexed: 12/12/2022]
Abstract
Colorectal cancer (CRC) risk is predominantly driven by environmental factors, in particular diet. A high intake of dietary fat has been implicated as a risk factor inducing the formation of pre-neoplastic lesions (e.g., adenomatous polyps) and/or exacerbating colonic tumorigenesis. Recent data attributed the tumor-promoting activity of high-fat diets to their effects on gut microbiota composition and metabolism, in particular with regard to bile acids. Bile acids are synthesized in the liver in response to dietary fat and facilitate lipid absorption in the small intestine. The majority of bile acids is re-absorbed during small intestinal transit and subjected to enterohepatic circulation. Bile acids entering the colon undergo complex biotransformation performed by gut bacteria, resulting in secondary bile acids that show tumor-promoting activity. Excessive dietary fat leads to high levels of secondary bile acids in feces and primes the gut microbiota to bile acid metabolism. This promotes an altered overall bile acid pool, which activates or restricts intestinal and hepatic cross-signaling of the bile acid receptor, farnesoid X receptor (FXR). Recent studies provided evidence that FXR is a main regulator of bile acid-mediated effects on intestinal tumorigenesis integrating dietary, microbial and genetic risk factors for CRC. Selective FXR agonist or antagonist activity by specific bile acids depends on additional factors (e.g., bile acid concentration, composition of bile acid pool, genetic instability of cells) and, thus, may differ in healthy and tumorigenic conditions in the intestine. In conclusion, fat-mediated alterations of the gut microbiota link bile acid metabolism to CRC risk and colonic tumorigenesis, exemplifying how gut microbial co-metabolism affects colon health.
Collapse
Affiliation(s)
- Soeren Ocvirk
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Intestinal Microbiology Research Group, Department of Molecular Toxicology, German Institute of Human Nutrition, Potsdam-Rehbruecke, Nuthetal, Germany
| | - Stephen J D O'Keefe
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
329
|
Königshofer P, Brusilovskaya K, Petrenko O, Hofer BS, Schwabl P, Trauner M, Reiberger T. Nuclear Receptors in Liver Fibrosis. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166235. [PMID: 34339839 DOI: 10.1016/j.bbadis.2021.166235] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/18/2021] [Accepted: 07/27/2021] [Indexed: 12/12/2022]
Abstract
Nuclear receptors are ligand-activated transcription factors that regulate gene expression of a variety of key molecular signals involved in liver fibrosis. The primary cellular driver of liver fibrogenesis are activated hepatic stellate cells. Different NRs regulate the hepatic expression of pro-inflammatory and pro-fibrogenic cytokines that promote the transformation of hepatic stellate cells into fibrogenic myofibroblasts. Importantly, nuclear receptors regulate gene expression circuits that promote hepatic fibrogenesis and/or allow liver fibrosis regression. In this review, we highlight the direct and indirect influence of nuclear receptors on liver fibrosis, with a focus on hepatic stellate cells, and discuss potential therapeutic effects of nuclear receptor modulation in regard to anti-fibrotic and anti-inflammatory effects. Further research on nuclear receptors-related signaling may lead to the clinical development of effective anti-fibrotic therapies for patients with liver disease.
Collapse
Affiliation(s)
- Philipp Königshofer
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria; Vienna Experimental Hepatic Hemodynamic Lab (HEPEX), Medical University of Vienna, Vienna, Austria; Christian Doppler Lab for Portal Hypertension and Liver Fibrosis, Medical University of Vienna, Vienna, Austria
| | - Ksenia Brusilovskaya
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria; Vienna Experimental Hepatic Hemodynamic Lab (HEPEX), Medical University of Vienna, Vienna, Austria; Christian Doppler Lab for Portal Hypertension and Liver Fibrosis, Medical University of Vienna, Vienna, Austria
| | - Oleksandr Petrenko
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria; Vienna Experimental Hepatic Hemodynamic Lab (HEPEX), Medical University of Vienna, Vienna, Austria; Christian Doppler Lab for Portal Hypertension and Liver Fibrosis, Medical University of Vienna, Vienna, Austria; Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria; CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Benedikt Silvester Hofer
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria; Vienna Experimental Hepatic Hemodynamic Lab (HEPEX), Medical University of Vienna, Vienna, Austria; Christian Doppler Lab for Portal Hypertension and Liver Fibrosis, Medical University of Vienna, Vienna, Austria
| | - Philipp Schwabl
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria; Vienna Experimental Hepatic Hemodynamic Lab (HEPEX), Medical University of Vienna, Vienna, Austria; Christian Doppler Lab for Portal Hypertension and Liver Fibrosis, Medical University of Vienna, Vienna, Austria
| | - Michael Trauner
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Thomas Reiberger
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria; Vienna Experimental Hepatic Hemodynamic Lab (HEPEX), Medical University of Vienna, Vienna, Austria; Christian Doppler Lab for Portal Hypertension and Liver Fibrosis, Medical University of Vienna, Vienna, Austria; Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria; CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.
| |
Collapse
|
330
|
Mawardi M, Alalwan A, Fallatah H, Abaalkhail F, Hasosah M, Shagrani M, Alghamdi MY, Alghamdi AS. Cholestatic liver disease: Practice guidelines from the Saudi Association for the Study of Liver diseases and Transplantation. Saudi J Gastroenterol 2021; 27:S1-S26. [PMCID: PMC8411950 DOI: 10.4103/sjg.sjg_112_21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/26/2021] [Accepted: 05/16/2021] [Indexed: 11/04/2022] Open
Abstract
Cholestatic liver diseases (CLDs) are a group of diseases characterized by jaundice and cholestasis as the main presentation with different complications, which have considerable impact on the liver and can lead to end-stage liver disease, cirrhosis, and liver-related complications. In the last few years, tremendous progress has been made in understanding the pathophysiology, diagnosis, and treatment of patients with these conditions. However, several aspects related to the management of CLDs remain deficient and unclear. Due to the lack of recommendations that can help in the management, treatment of those conditions, the Saudi Association for the Study of Liver diseases and Transplantation (SASLT) has created a task force group to develop guidelines related to CLDs management in order to provide a standard of care for patients in need. These guidelines provide general guidance for health care professionals to optimize medical care for patients with CLDs for both adult and pediatric populations, in association with clinical judgments to be considered on a case-by-case basis. These guidelines describe common CLDs in Saudi Arabia, with recommendations on the best approach for diagnosis and management of different diseases based on the Grading of Recommendation Assessment (GRADE), combined with a level of evidence available in the literature.
Collapse
Affiliation(s)
- Mohammad Mawardi
- Department of Medicine, Gastroenterology Section, King Faisal Specialist Hospital & Research Centre, Jeddah, Saudi Arabia
| | - Abduljaleel Alalwan
- Department of Hepatobiliary Sciences and Liver Transplantation, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Hind Fallatah
- Department of Medicine, King Abdulaziz University Hospital, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Faisal Abaalkhail
- Department of Medicine, Gastroenterology Section, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
| | - Mohammed Hasosah
- Department of Pediatrics, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Jeddah, Saudi Arabia
| | - Mohammad Shagrani
- Department of Liver and Small Bowel Transplantation, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
| | - Mohammed Y Alghamdi
- Department of Medicine, Gastroenterology Unit, King Fahd Military Complex, Dhahran, Saudi Arabia
| | - Abdullah S Alghamdi
- Department of Medicine, Gastroenterology Unit, King Fahad General Hospital, Jeddah, Saudi Arabia
| |
Collapse
|
331
|
Metabolomics in Bariatric Surgery: Towards Identification of Mechanisms and Biomarkers of Metabolic Outcomes. Obes Surg 2021; 31:4564-4574. [PMID: 34318371 DOI: 10.1007/s11695-021-05566-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/17/2021] [Accepted: 06/24/2021] [Indexed: 12/27/2022]
Abstract
Bariatric surgery has been widely performed for the treatment of obesity and type 2 diabetes. Efforts have been made to investigate the mechanisms underlying the metabolic effects achieved by bariatric surgery and to identify candidates who will benefit from this surgery. Metabolomics, which includes comprehensive profiling of metabolites in biological samples, has been utilized for various disease entities to discover pathophysiological metabolic pathways and biomarkers predicting disease progression or prognosis. Over the last decade, metabolomic studies on patients undergoing bariatric surgery have identified significant biomarkers related to metabolic effects. This review describes the significance, progress, and challenges for the future of metabolomics in the area of bariatric surgery.
Collapse
|
332
|
Wang S, Yong H, He XD. Multi-omics: Opportunities for research on mechanism of type 2 diabetes mellitus. World J Diabetes 2021; 12:1070-1080. [PMID: 34326955 PMCID: PMC8311486 DOI: 10.4239/wjd.v12.i7.1070] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 03/22/2021] [Accepted: 05/22/2021] [Indexed: 02/06/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a burdensome global disease. In-depth understanding of its mechanism will help to optimize diagnosis and treatment, which reduces the burden. Multi-omics research has unparalleled advantages in contributing to the overall understanding of the mechanism of this chronic metabolic disease. In the past two decades, the study of multi-omics on T2DM-related intestinal flora perturbation and plasma dyslipidemia has shown tremendous potential and is expected to achieve major breakthroughs. The regulation of intestinal flora in diabetic patients has been confirmed by multiple studies. The use of metagenomics, 16S RNA sequencing, and metabolomics has comprehensively identified the overall changes in the intestinal flora and the metabolic disturbances that could directly or indirectly participate in the intestinal flora-host interactions. Lipidomics combined with other “omics” has characterized lipid metabolism disorders in T2DM. The combined application and cross-validation of multi-omics can screen for dysregulation in T2DM, which will provide immense opportunities to understand the mechanisms behind T2DM.
Collapse
Affiliation(s)
- Shuai Wang
- Institute of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong Province, China
| | - Hui Yong
- Institute of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong Province, China
| | - Xiao-Dong He
- Department of Physical and Chemical Inspection, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong Province, China
| |
Collapse
|
333
|
Liang Z, Chen Y, Gu T, She J, Dai F, Jiang H, Zhan Z, Li K, Liu Y, Zhou X, Tang L. LXR-Mediated Regulation of Marine-Derived Piericidins Aggravates High-Cholesterol Diet-Induced Cholesterol Metabolism Disorder in Mice. J Med Chem 2021; 64:9943-9959. [PMID: 34251816 DOI: 10.1021/acs.jmedchem.1c00175] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Reported as two antirenal cell carcinoma (RCC) drug candidates, marine-derived compounds piericidin A (PA) and glucopiericidin A (GPA) exhibit hepatotoxicity in renal carcinoma xenograft mice. Proteomics and transcriptomics reveal the hepatotoxicity related with cholesterol disposition since RCC is characterized by cholesterol accumulation. PA/GPA aggravate hepatotoxicity in high-cholesterol diet (HCD)-fed mice while exhibiting no toxicity in chow diet-fed mice. High cholesterol accumulation in liver is liver X receptor (LXR)-mediated cytochrome P450 family 7 subfamily a member 1 (CYP7A1) depression and low-density lipoprotein receptor (LDLR) activation. The farnesoid X nuclear receptor (FXR) is also depressed with a downregulated target gene OSTα. Different from PA directly combined with LXRα as an inhibitor, GPA exists as a prodrug in the liver and exerts toxic effects due to transformation into PA. Surface plasmon resonance (SPR) and docking results of 17 piericidins illustrate that glycosides exert no LXRα binding activity. A longer survival time of GPA-treated mice indicates that further exploration in anti-RCC drug research should focus on reducing glycosides transformed into PA and concentrating in the kidney tumor rather than the liver for lowering the risk of hepatotoxicity.
Collapse
Affiliation(s)
- Zhi Liang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yulian Chen
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Tanwei Gu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jianglian She
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Fahong Dai
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Huanguo Jiang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Zhikun Zhan
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Kunlong Li
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Yonghong Liu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Xuefeng Zhou
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Lan Tang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
334
|
Abstract
Bile acids and their signaling pathways are increasingly recognized as potential therapeutic targets for cholestatic and metabolic liver diseases. This review summarizes new insights in bile acid physiology, focusing on regulatory roles of bile acids in the control of immune regulation and on effects of pharmacological modulators of bile acid signaling pathways in human liver disease. Recent mouse studies have highlighted the importance of the interactions between bile acids and gut microbiome. Interfering with microbiome composition may be beneficial for cholestatic and metabolic liver diseases by modulating formation of secondary bile acids, as different bile acid species have different signaling functions. Bile acid receptors such as FXR, VDR, and TGR5 are expressed in a variety of cells involved in innate as well as adaptive immunity, and specific microbial bile acid metabolites positively modulate immune responses of the host. Identification of Cyp2c70 as the enzyme responsible for the generation of hydrophilic mouse/rat-specific muricholic acids has allowed the generation of murine models with a human-like bile acid composition. These novel mouse models will aid to accelerate translational research on the (patho)physiological roles of bile acids in human liver diseases .
Collapse
|
335
|
Bashyal S, Seo JE, Keum T, Noh G, Lamichhane S, Kim JH, Kim CH, Choi YW, Lee S. Facilitated Buccal Insulin Delivery via Hydrophobic Ion-Pairing Approach: In vitro and ex vivo Evaluation. Int J Nanomedicine 2021; 16:4677-4691. [PMID: 34262275 PMCID: PMC8275148 DOI: 10.2147/ijn.s318092] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 06/21/2021] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND The clinical use of therapeutic peptides has been limited because of their inefficient delivery approaches and, therefore, inadequate delivery to target sites. Buccal administration of therapeutic peptides offers patients a potential alternative to the current invasive routes of administration. PURPOSE The aim of the study was to fabricate hydrophobic ion-pairing (HIP)-nanocomplexes (C1 and C2) utilizing anionic bile salts and cationic peptides, and to assess their permeability across TR146 buccal cell layers and porcine buccal tissue. METHODS C1 and C2-nanocomplexes were fabricated using the HIP approach. In addition, their physiochemical and morphological attributes, in vitro and ex vivo permeability properties, and qualitative and quantitative cellular uptake were evaluated and compared. The localization of C1 and C2-nanocomplexes in porcine buccal tissue was determined using confocal laser scanning microscopy. RESULTS The C1-nanocomplex was the superior nanocarrier and significantly enhanced the transport of insulin across TR146 cell layers and porcine buccal tissue, exhibiting a 3.00- and 51.76-fold increase in permeability coefficient, respectively, when compared with insulin solution (p < 0.01). C1-nanocomplex was more efficient than C2-nanocomplex at facilitating insulin permeability, with a 2.18- and 27.64-fold increase across TR146 cell layers and porcine buccal tissue, respectively. The C1-nanocomplex demonstrated immense uptake and localization of insulin in TR146 cells and porcine buccal tissue, as evidenced by a highly intense fluorescence in TR146 cells, and a great shift of fluorescence intensity towards the inner region of buccal tissue over time. The increase in fluorescence intensity was observed in the order of C1 > C2 > insulin solution. CONCLUSION In this study, we highlighted the efficacy of potential nanocarriers in addressing the daunting issues associated with the invasive administration of insulin and indicated a promising strategy for the buccal administration and delivery of this life-saving peptide hormone.
Collapse
Affiliation(s)
- Santosh Bashyal
- College of Pharmacy, Keimyung University, Daegu, Republic of Korea
| | - Jo-Eun Seo
- College of Pharmacy, Keimyung University, Daegu, Republic of Korea
| | - Taekwang Keum
- College of Pharmacy, Keimyung University, Daegu, Republic of Korea
- Center for Forensic Pharmaceutical Science, Keimyung University, Daegu, Republic of Korea
| | - Gyubin Noh
- College of Pharmacy, Keimyung University, Daegu, Republic of Korea
- Center for Forensic Pharmaceutical Science, Keimyung University, Daegu, Republic of Korea
| | - Shrawani Lamichhane
- College of Pharmacy, Keimyung University, Daegu, Republic of Korea
- Center for Forensic Pharmaceutical Science, Keimyung University, Daegu, Republic of Korea
| | - Jeong Hwan Kim
- College of Pharmacy, Keimyung University, Daegu, Republic of Korea
- Center for Forensic Pharmaceutical Science, Keimyung University, Daegu, Republic of Korea
| | - Chang Hyun Kim
- College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea
| | - Young Wook Choi
- College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea
| | - Sangkil Lee
- College of Pharmacy, Keimyung University, Daegu, Republic of Korea
- Center for Forensic Pharmaceutical Science, Keimyung University, Daegu, Republic of Korea
| |
Collapse
|
336
|
Gaillard D, Masson D, Garo E, Souidi M, Pais de Barros JP, Schoonjans K, Grober J, Besnard P, Thomas C. Muricholic Acids Promote Resistance to Hypercholesterolemia in Cholesterol-Fed Mice. Int J Mol Sci 2021; 22:7163. [PMID: 34281217 PMCID: PMC8269105 DOI: 10.3390/ijms22137163] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/25/2021] [Accepted: 06/28/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND AND AIMS Hypercholesterolemia is a major risk factor for atherosclerosis and cardiovascular diseases. Although resistant to hypercholesterolemia, the mouse is a prominent model in cardiovascular research. To assess the contribution of bile acids to this protective phenotype, we explored the impact of a 2-week-long dietary cholesterol overload on cholesterol and bile acid metabolism in mice. METHODS Bile acid, oxysterol, and cholesterol metabolism and transport were assessed by quantitative real-time PCR, western blotting, GC-MS/MS, or enzymatic assays in the liver, the gut, the kidney, as well as in the feces, the blood, and the urine. RESULTS Plasma triglycerides and cholesterol levels were unchanged in mice fed a cholesterol-rich diet that contained 100-fold more cholesterol than the standard diet. In the liver, oxysterol-mediated LXR activation stimulated the synthesis of bile acids and in particular increased the levels of hydrophilic muricholic acids, which in turn reduced FXR signaling, as assessed in vivo with Fxr reporter mice. Consequently, biliary and basolateral excretions of bile acids and cholesterol were increased, whereas portal uptake was reduced. Furthermore, we observed a reduction in intestinal and renal bile acid absorption. CONCLUSIONS These coordinated events are mediated by increased muricholic acid levels which inhibit FXR signaling in favor of LXR and SREBP2 signaling to promote efficient fecal and urinary elimination of cholesterol and neo-synthesized bile acids. Therefore, our data suggest that enhancement of the hydrophilic bile acid pool following a cholesterol overload may contribute to the resistance to hypercholesterolemia in mice. This work paves the way for new therapeutic opportunities using hydrophilic bile acid supplementation to mitigate hypercholesterolemia.
Collapse
Affiliation(s)
- Dany Gaillard
- Center for Translational Medicine, UMR1231 INSERM-uB-AgroSupDijon, Université de Bourgogne Franche-Comté (UBFC), 21000 Dijon, France; (D.G.); (D.M.); (J.-P.P.d.B.); (J.G.)
- Department of Cell & Developmental Biology, and The Rocky Mountain Taste & Smell Center, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - David Masson
- Center for Translational Medicine, UMR1231 INSERM-uB-AgroSupDijon, Université de Bourgogne Franche-Comté (UBFC), 21000 Dijon, France; (D.G.); (D.M.); (J.-P.P.d.B.); (J.G.)
- LipSTIC LabEx, Université de Bourgogne Franche-Comté (UBFC), 21000 Dijon, France
- Biochemistry Department, University Hospital François Mitterrand, 21000 Dijon, France
| | - Erwan Garo
- IGBMC, CNRS UMR 7104, INSERM U 1258, 67400 Illkirch, France;
| | - Maamar Souidi
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), 92260 Fontenay-aux-Roses, France;
| | - Jean-Paul Pais de Barros
- Center for Translational Medicine, UMR1231 INSERM-uB-AgroSupDijon, Université de Bourgogne Franche-Comté (UBFC), 21000 Dijon, France; (D.G.); (D.M.); (J.-P.P.d.B.); (J.G.)
- LipSTIC LabEx, Université de Bourgogne Franche-Comté (UBFC), 21000 Dijon, France
- Lipidomic Facility, Université de Bourgogne Franche-Comté (UBFC), 21078 Dijon, France
| | - Kristina Schoonjans
- Institute of Bioengineering, Life Science Faculty, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland;
| | - Jacques Grober
- Center for Translational Medicine, UMR1231 INSERM-uB-AgroSupDijon, Université de Bourgogne Franche-Comté (UBFC), 21000 Dijon, France; (D.G.); (D.M.); (J.-P.P.d.B.); (J.G.)
- LipSTIC LabEx, Université de Bourgogne Franche-Comté (UBFC), 21000 Dijon, France
| | - Philippe Besnard
- Center for Translational Medicine, UMR1231 INSERM-uB-AgroSupDijon, Université de Bourgogne Franche-Comté (UBFC), 21000 Dijon, France; (D.G.); (D.M.); (J.-P.P.d.B.); (J.G.)
- LipSTIC LabEx, Université de Bourgogne Franche-Comté (UBFC), 21000 Dijon, France
- Physiologie de la Nutrition, AgroSup Dijon, 21000 Dijon, France
| | - Charles Thomas
- Center for Translational Medicine, UMR1231 INSERM-uB-AgroSupDijon, Université de Bourgogne Franche-Comté (UBFC), 21000 Dijon, France; (D.G.); (D.M.); (J.-P.P.d.B.); (J.G.)
- LipSTIC LabEx, Université de Bourgogne Franche-Comté (UBFC), 21000 Dijon, France
| |
Collapse
|
337
|
Petersen AØ, Julienne H, Hyötyläinen T, Sen P, Fan Y, Pedersen HK, Jäntti S, Hansen TH, Nielsen T, Jørgensen T, Hansen T, Myers PN, Nielsen HB, Ehrlich SD, Orešič M, Pedersen O. Conjugated C-6 hydroxylated bile acids in serum relate to human metabolic health and gut Clostridia species. Sci Rep 2021; 11:13252. [PMID: 34168163 PMCID: PMC8225906 DOI: 10.1038/s41598-021-91482-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 05/24/2021] [Indexed: 12/13/2022] Open
Abstract
Knowledge about in vivo effects of human circulating C-6 hydroxylated bile acids (BAs), also called muricholic acids, is sparse. It is unsettled if the gut microbiome might contribute to their biosynthesis. Here, we measured a range of serum BAs and related them to markers of human metabolic health and the gut microbiome. We examined 283 non-obese and obese Danish adults from the MetaHit study. Fasting concentrations of serum BAs were quantified using ultra-performance liquid chromatography-tandem mass-spectrometry. The gut microbiome was characterized with shotgun metagenomic sequencing and genome-scale metabolic modeling. We find that tauro- and glycohyocholic acid correlated inversely with body mass index (P = 4.1e-03, P = 1.9e-05, respectively), waist circumference (P = 0.017, P = 1.1e-04, respectively), body fat percentage (P = 2.5e-03, P = 2.3e-06, respectively), insulin resistance (P = 0.051, P = 4.6e-4, respectively), fasting concentrations of triglycerides (P = 0.06, P = 9.2e-4, respectively) and leptin (P = 0.067, P = 9.2e-4). Tauro- and glycohyocholic acids, and tauro-a-muricholic acid were directly linked with a distinct gut microbial community primarily composed of Clostridia species (P = 0.037, P = 0.013, P = 0.027, respectively). We conclude that serum conjugated C-6-hydroxylated BAs associate with measures of human metabolic health and gut communities of Clostridia species. The findings merit preclinical interventions and human feasibility studies to explore the therapeutic potential of these BAs in obesity and type 2 diabetes.
Collapse
Affiliation(s)
- Anders Ø Petersen
- Department of Health Technology, Technical University of Denmark, 2800, Lyngby, Denmark
| | - Hanna Julienne
- Department of Computational Biology-USR 3756 CNRS, Institut Pasteur, 75015, Paris, France
| | | | - Partho Sen
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520, Turku, Finland
| | - Yong Fan
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Helle Krogh Pedersen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
- Clinical Microbiomics A/S, Fruebjergvej 3 , 2100 , Copenhagen, Denmark
| | - Sirkku Jäntti
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, 00014, Helsinki, Finland
| | - Tue H Hansen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Trine Nielsen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Torben Jørgensen
- Department of Public Health, Faculty of Health and Medical Sciences , University of Copenhagen , Blegdamsvej 3B , 2200 , Copenhagen, Denmark
- Faculty of Medicine, Aalborg University, Niels Jernes Vej 10, 9200 , Aalborg East, Denmark
| | - Torben Hansen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Pernille Neve Myers
- Department of Health Technology, Technical University of Denmark, 2800, Lyngby, Denmark
| | - H Bjørn Nielsen
- Clinical Microbiomics A/S, Fruebjergvej 3 , 2100 , Copenhagen, Denmark
| | - S Dusko Ehrlich
- Department of Computational Biology-USR 3756 CNRS, Institut Pasteur, 75015, Paris, France
| | - Matej Orešič
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520, Turku, Finland
- School of Medical Sciences, Örebro University, 702 81, Örebro, Sweden
| | - Oluf Pedersen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark.
| |
Collapse
|
338
|
Bastos VC, Vitório JG, Martins-Chaves RR, Leite-Lima F, Lebron YAR, Moreira VR, Duarte-Andrade FF, Pereira TDSF, Santos LVDS, Lange LC, de Macedo AN, Canuto GAB, Gomes CC, Gomez RS. Age-Related Metabolic Pathways Changes in Dental Follicles: A Pilot Study. FRONTIERS IN ORAL HEALTH 2021; 2:677731. [PMID: 35048024 PMCID: PMC8757705 DOI: 10.3389/froh.2021.677731] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 05/12/2021] [Indexed: 01/10/2023] Open
Abstract
Aging is not a matter of choice; it is our fate. The “time-dependent functional decline that affects most living organisms” is coupled with several alterations in cellular processes, such as cell senescence, epigenetic alterations, genomic instability, stem cell exhaustion, among others. Age-related morphological changes in dental follicles have been investigated for decades, mainly motivated by the fact that cysts and tumors may arise in association with unerupted and/or impacted teeth. The more we understand the physiology of dental follicles, the more we are able to contextualize biological events that can be associated with the occurrence of odontogenic lesions, whose incidence increases with age. Thus, our objective was to assess age-related changes in metabolic pathways of dental follicles associated with unerupted/impacted mandibular third molars from young and adult individuals. For this purpose, a convenience sample of formalin-fixed paraffin-embedded (FFPE) dental follicles from young (<16 y.o., n = 13) and adult (>26 y.o., n = 7) individuals was selected. Samples were analyzed by high-performance liquid chromatography-mass spectrometry (HPLC-MS)-based untargeted metabolomics. Multivariate and univariate analyses were conducted, and the prediction of altered pathways was performed by mummichog and Gene Set Enrichment Analysis (GSEA) approaches. Dental follicles from young and older individuals showed differences in pathways related to C21-steroid hormone biosynthesis, bile acid biosynthesis, galactose metabolism, androgen and estrogen biosynthesis, starch and sucrose metabolism, and lipoate metabolism. We conclude that metabolic pathways differences related to aging were observed between dental follicles from young and adult individuals. Our findings support that similar to other human tissues, dental follicles associated with unerupted tooth show alterations at a metabolic level with aging, which can pave the way for further studies on oral pathology, oral biology, and physiology.
Collapse
Affiliation(s)
- Victor Coutinho Bastos
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Department of Pathology, Biological Sciences Institute, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Jéssica Gardone Vitório
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Roberta Rayra Martins-Chaves
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Flávia Leite-Lima
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Yuri Abner Rocha Lebron
- Department of Sanitary and Environmental Engineering, School of Engineering, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Victor Rezende Moreira
- Department of Sanitary and Environmental Engineering, School of Engineering, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Filipe Fideles Duarte-Andrade
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Lucilaine Valéria de Souza Santos
- Department of Sanitary and Environmental Engineering, School of Engineering, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Liséte Celina Lange
- Department of Sanitary and Environmental Engineering, School of Engineering, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Adriana Nori de Macedo
- Department of Chemistry, Exact Sciences Institute, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Carolina Cavaliéri Gomes
- Department of Pathology, Biological Sciences Institute, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ricardo Santiago Gomez
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- *Correspondence: Ricardo Santiago Gomez
| |
Collapse
|
339
|
Abstract
Cholestatic liver disease is a disease that causes liver damage and fibrosis owing to bile stasis. It is represented by primary biliary cholangitis (PBC) and primary sclerosing cholangitis (PSC), but the pathophysiological pathways that cause bile stasis in both diseases are different. The pathogenesis of the disease is still unclear, although autoimmune mechanisms have been postulated and partially elucidated. Although the disease may progress slowly with only mild liver dysfunction, it may progress to liver cirrhosis or liver failure, which require liver transplantation. As a medical treatment, ursodeoxycholic acid is widely used for PBC and has proved to be very effective against disease progression in cases of PBC. On the other hand, its efficacy is limited in cases of PSC, and the research and development of various drugs are underway. Furthermore, the clinical course of both diseases is quite variable, making the design of clinical trials fairly difficult. In this review, we present the general natural history of PBC and PSC, and provide information on the latest drug therapies currently available and those that are under investigation.
Collapse
|
340
|
Xiong F, Zheng Z, Xiao L, Su C, Chen J, Gu X, Tang J, Zhao Y, Luo H, Zha L. Soyasaponin A 2 Alleviates Steatohepatitis Possibly through Regulating Bile Acids and Gut Microbiota in the Methionine and Choline-Deficient (MCD) Diet-induced Nonalcoholic Steatohepatitis (NASH) Mice. Mol Nutr Food Res 2021; 65:e2100067. [PMID: 34047448 DOI: 10.1002/mnfr.202100067] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 04/21/2021] [Indexed: 12/21/2022]
Abstract
SCOPE Nonalcoholic steatohepatitis (NASH) is a chronic progressive disease with complex pathogenesis of which the bile acids (BAs) and gut microbiota are involved. Soyasaponins (SS) exhibits many health-promoting effects including hepatoprotection, but its prevention against NASH is unclear. This study aims to investigate the preventive bioactivities of SS monomer (SS-A2 ) against NASH and further clarify its mechanism by targeting the BAs and gut microbiota. METHODS AND RESULTS The methionine and choline deficient (MCD) diet-fed male C57BL/6 mice were intervened with obeticholic acid or SS-A2 for 16 weeks. Hepatic pathology is assessed by hematoxylin-eosin and Masson's trichrome staining. BAs in serum, liver, and colon are measured by ultra-performance liquid chromatography coupled with triple quadrupole mass spectrometry (UPLC-TQMS). Gut microbiota in caecum are determined by 16S rDNA amplicon sequencing. In the MCD diet-induced NASH mice, SS-A2 significantly reduces hepatic steatosis, lobular inflammation, ballooning, nonalcoholic fatty liver disease activity score (NAS) scores, and fibrosis, decreases Erysipelotrichaceae (Faecalibaculum) and Lactobacillaceae (Lactobacillus) and increases Desulfovibrionaceae (Desulfovibrio). Moreover, SS-A2 reduces serum BAs accumulation and promotes fecal BAs excretion. SS-A2 changes the BAs profiles in both liver and serum and specifically increases the taurohyodeoxycholic acid (THDCA) level. Faecalibaculum is negatively correlated with serum THDCA. CONCLUSION SS-A2 alleviates steatohepatitis possibly through regulating BAs and gut microbiota in the MCD diet-induced NASH mice.
Collapse
Affiliation(s)
- Fei Xiong
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China
| | - Zhongdaixi Zheng
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China
| | - Lingyu Xiao
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China
| | - Chuhong Su
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China
| | - Junbin Chen
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China
| | - Xiangfu Gu
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China
| | - Jiaqi Tang
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China
| | - Yue Zhao
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China
| | - Huiyu Luo
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China
| | - Longying Zha
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China
| |
Collapse
|
341
|
Agus A, Clément K, Sokol H. Gut microbiota-derived metabolites as central regulators in metabolic disorders. Gut 2021; 70:1174-1182. [PMID: 33272977 PMCID: PMC8108286 DOI: 10.1136/gutjnl-2020-323071] [Citation(s) in RCA: 688] [Impact Index Per Article: 172.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/17/2020] [Accepted: 11/20/2020] [Indexed: 02/06/2023]
Abstract
Metabolic disorders represent a growing worldwide health challenge due to their dramatically increasing prevalence. The gut microbiota is a crucial actor that can interact with the host by the production of a diverse reservoir of metabolites, from exogenous dietary substrates or endogenous host compounds. Metabolic disorders are associated with alterations in the composition and function of the gut microbiota. Specific classes of microbiota-derived metabolites, notably bile acids, short-chain fatty acids, branched-chain amino acids, trimethylamine N-oxide, tryptophan and indole derivatives, have been implicated in the pathogenesis of metabolic disorders. This review aims to define the key classes of microbiota-derived metabolites that are altered in metabolic diseases and their role in pathogenesis. They represent potential biomarkers for early diagnosis and prognosis as well as promising targets for the development of novel therapeutic tools for metabolic disorders.
Collapse
Affiliation(s)
- Allison Agus
- University Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, Île-de-France, France,Paris Center for Microbiome Medicine (PaCeMM) FHU, AP-HP, Paris, Île-de-France, France
| | - Karine Clément
- Paris Center for Microbiome Medicine (PaCeMM) FHU, AP-HP, Paris, Île-de-France, France,Nutrition and Obesity: systemic approach (NutriOmics) research unit, Assistance Publique Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Sorbonne Universités, INSERM, Paris, Île-de-France, France
| | - Harry Sokol
- Paris Center for Microbiome Medicine (PaCeMM) FHU, AP-HP, Paris, Île-de-France, France .,Centre de Recherche Saint-Antoine, CRSA, AP-HP, Saint Antoine Hospital, Gastroenterology department, Sorbonne Universite, INSERM, Paris, Île-de-France, France
| |
Collapse
|
342
|
Kunst RF, Verkade HJ, Oude Elferink RP, van de Graaf SF. Targeting the Four Pillars of Enterohepatic Bile Salt Cycling; Lessons From Genetics and Pharmacology. Hepatology 2021; 73:2577-2585. [PMID: 33222321 PMCID: PMC8252069 DOI: 10.1002/hep.31651] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/29/2020] [Accepted: 11/12/2020] [Indexed: 12/14/2022]
Abstract
Bile salts play a pivotal role in lipid homeostasis, are sensed by specialized receptors, and have been implicated in various disorders affecting the gut or liver. They may play a role either as culprit or as potential panacea. Four very efficient transporters mediate most of the hepatic and intestinal bile salt uptake and efflux, and are each essential for the efficient enterohepatic circulation of bile salts. Starting from the intestinal lumen, conjugated bile salts cross the otherwise impermeable lipid bilayer of (primarily terminal ileal) enterocytes through the apical sodium-dependent bile acid transporter (gene SLC10A2) and leave the enterocyte through the basolateral heteromeric organic solute transporter, which consists of an alpha and beta subunit (encoded by SLC51A and SLC51B). The Na+ -taurocholate cotransporting polypeptide (gene SLC10A1) efficiently clears the portal circulation of bile salts, and the apical bile salt export pump (gene ABCB11) pumps the bile salts out of the hepatocyte into primary bile, against a very steep concentration gradient. Recently, individuals lacking either functional Na+ -taurocholate cotransporting polypeptide or organic solute transporter have been described, completing the quartet of bile acid transport deficiencies, as apical sodium-dependent bile acid transporter and bile salt export pump deficiencies were already known for years. Novel pathophysiological insights have been obtained from knockout mice lacking functional expression of these genes and from pharmacological transporter inhibition in mice or humans. Conclusion: We provide a concise overview of the four main bile salt transport pathways and of their status as possible targets of interventions in cholestatic or metabolic disorders.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B, Member 11/genetics
- ATP Binding Cassette Transporter, Subfamily B, Member 11/metabolism
- Animals
- Bile Acids and Salts/metabolism
- Biological Transport, Active/drug effects
- Biological Transport, Active/physiology
- Drug Development
- Enterohepatic Circulation/drug effects
- Enterohepatic Circulation/physiology
- Humans
- Membrane Transport Proteins/genetics
- Membrane Transport Proteins/metabolism
- Organic Anion Transporters, Sodium-Dependent/antagonists & inhibitors
- Organic Anion Transporters, Sodium-Dependent/genetics
- Organic Anion Transporters, Sodium-Dependent/metabolism
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/metabolism
- Symporters/antagonists & inhibitors
- Symporters/genetics
- Symporters/metabolism
Collapse
Affiliation(s)
- Roni F. Kunst
- Tytgat Institute for Liver and Intestinal ResearchAmsterdam UMC, University of AmsterdamAmsterdamthe Netherlands
- Amsterdam Gastroenterology Endocrinology MetabolismAmsterdamthe Netherlands
| | - Henkjan J. Verkade
- Pediatric Gastroenterology/HepatologyDepartment of PediatricsUniversity of GroningenUniversity Medical Center GroningenGroningenthe Netherlands
| | - Ronald P.J. Oude Elferink
- Tytgat Institute for Liver and Intestinal ResearchAmsterdam UMC, University of AmsterdamAmsterdamthe Netherlands
- Amsterdam Gastroenterology Endocrinology MetabolismAmsterdamthe Netherlands
- Department of Gastroenterology and HepatologyAmsterdam UMCUniversity of AmsterdamAmsterdamthe Netherlands
| | - Stan F.J. van de Graaf
- Tytgat Institute for Liver and Intestinal ResearchAmsterdam UMC, University of AmsterdamAmsterdamthe Netherlands
- Amsterdam Gastroenterology Endocrinology MetabolismAmsterdamthe Netherlands
- Department of Gastroenterology and HepatologyAmsterdam UMCUniversity of AmsterdamAmsterdamthe Netherlands
| |
Collapse
|
343
|
Sun R, Xu C, Feng B, Gao X, Liu Z. Critical roles of bile acids in regulating intestinal mucosal immune responses. Therap Adv Gastroenterol 2021; 14:17562848211018098. [PMID: 34104213 PMCID: PMC8165529 DOI: 10.1177/17562848211018098] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 04/27/2021] [Indexed: 02/04/2023] Open
Abstract
Bile acids are a class of cholesterol derivatives that have been known for a long time for their critical roles in facilitating the digestion and absorption of lipid from the daily diet. The transformation of primary bile acids produced by the liver to secondary bile acids appears under the action of microbiota in the intestine, greatly expanding the molecular diversity of the intestinal environment. With the discovery of several new receptors of bile acids and signaling pathways, bile acids are considered as a family of important metabolites that play pleiotropic roles in regulating many aspects of human overall health, especially in the maintenance of the microbiota homeostasis and the balance of the mucosal immune system in the intestine. Accordingly, disruption of the process involved in the metabolism or circulation of bile acids is implicated in many disorders that mainly affect the intestine, such as inflammatory bowel disease and colon cancer. In this review, we discuss the different metabolism profiles in diseases associated with the intestinal mucosa and the diverse roles of bile acids in regulating the intestinal immune system. Furthermore, we also summarize recent advances in the field of new drugs that target bile acid signaling and highlight the importance of bile acids as a new target for disease intervention.
Collapse
Affiliation(s)
| | | | | | - Xiang Gao
- Department of Gastroenterology, The Shanghai Tenth People’s Hospital of Tongji University, Shanghai, China
| | | |
Collapse
|
344
|
Alamoudi JA, Li W, Gautam N, Olivera M, Meza J, Mukherjee S, Alnouti Y. Bile acid indices as biomarkers for liver diseases II: The bile acid score survival prognostic model. World J Hepatol 2021; 13:543-556. [PMID: 34131469 PMCID: PMC8173345 DOI: 10.4254/wjh.v13.i5.543] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/21/2021] [Accepted: 03/31/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Cholestatic liver diseases are characterized by an accumulation of toxic bile acids (BA) in the liver, blood and other tissues which lead to progressive liver injury and poor prognosis in patients. AIM To discover and validate prognostic biomarkers of cholestatic liver diseases based on the urinary BA profile. METHODS We analyzed urine samples by liquid chromatography-tandem mass spectrometry and investigated the use of the urinary BA profile to develop survival models that can predict the prognosis of hepatobiliary diseases. The urinary BA profile, a set of non-BA parameters, and the adverse events of liver transplant and/or death were monitored in 257 patients with cholestatic liver diseases for up to 7 years. The BA profile was characterized by calculating BA indices, which quantify the composition, metabolism, hydrophilicity, formation of secondary BA, and toxicity of the BA profile. We have developed and validated the bile-acid score (BAS) model (a survival model based on BA indices) to predict the prognosis of cholestatic liver diseases. RESULTS We have developed and validated a survival model based on BA (the BAS model) indices to predict the prognosis of cholestatic liver diseases. Our results demonstrate that the BAS model is more accurate and results in higher true-positive and true-negative prediction of death compared to both non-BAS and model for end-stage liver disease (MELD) models. Both 5- and 3-year survival probabilities markedly decreased as a function of BAS. Moreover, patients with high BAS had a 4-fold higher rate of death and lived for an average of 11 mo shorter than subjects with low BAS. The increased risk of death with high vs low BAS was also 2-4-fold higher and the shortening of lifespan was 6-7-mo lower compared to MELD or non-BAS. Similarly, we have shown the use of BAS to predict the survival of patients with and without liver transplant (LT). Therefore, BAS could be used to define the most seriously ill patients, who need earlier intervention such as LT. This will help provide guidance for timely care for liver patients. CONCLUSION The BAS model is more accurate than MELD and non-BAS models in predicting the prognosis of cholestatic liver diseases.
Collapse
Affiliation(s)
- Jawaher Abdullah Alamoudi
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198-6025, United States
| | - Wenkuan Li
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198-6025, United States
| | - Nagsen Gautam
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198-6025, United States
| | - Marco Olivera
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68105, United States
| | - Jane Meza
- Department of Biostatistics, University of Nebraska Medical Center, Omaha, NE 68198-4375, United States
| | - Sandeep Mukherjee
- Department of Internal Medicine, Creighton University Medical Center, Omaha, NE 68124, United States
| | - Yazen Alnouti
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198-6025, United States.
| |
Collapse
|
345
|
An JM, Shahriar SMS, Hwang YH, Hwang SR, Lee DY, Cho S, Lee YK. Oral Delivery of Parathyroid Hormone Using a Triple-Padlock Nanocarrier for Osteoporosis via an Enterohepatic Circulation Pathway. ACS APPLIED MATERIALS & INTERFACES 2021; 13:23314-23327. [PMID: 33587600 DOI: 10.1021/acsami.0c22170] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Intermittent subcutaneous (S.C.) injection of teriparatide [PTH (1-34)] is one of the effective therapies to cure osteoporosis. However, a long-term repeated administration of teriparatide by S.C. to the patients is highly challenging. Herein, a triple padlock nanocarrier prepared by a taurocholic acid-conjugated chondroitin sulfate A (TCSA) is designed to develop an oral dosage form of recombinant human teriparatide (rhPTH). Oral administration of TCSA/rhPTH to the bilateral ovariectomized (OVX) rats resulted in the recovery of the bone marrow density and healthy serum bone parameters from the severe osteoporotic conditions. Also, it enhanced new bone formation in the osteoporotic tibias. This triple padlock oral delivery platform overcame the current barriers associated with teriparatide administration and exhibited a promising therapeutic effect against osteoporosis.
Collapse
Affiliation(s)
- Jeong Man An
- Department of Chemical and Biological Engineering, Korea National University of Transportation, Chungju 27469, Republic of Korea
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - S M Shatil Shahriar
- Department of Chemical and Biological Engineering, Korea National University of Transportation, Chungju 27469, Republic of Korea
| | | | - Seung Rim Hwang
- College of Pharmacy, Chosun University, Gwangju 61452, Republic of Korea
| | - Dong Yun Lee
- Department of Bioengineering, College of Engineering, BK21 PLUS Future Biopharmaceutical Human Resources Training and Research Team, Institute of Nano Science & Technology (INST), Hanyang University, Seoul 04763, Republic of Korea
- Institute of Nano Science & Technology (INST), Hanyang University, Seoul 04763, Republic of Korea
| | - Sungpil Cho
- 4D Biomaterials Center, Korea National University of Transportation, Jeungpyeong, Chungju 27909, Republic of Korea
| | - Yong-Kyu Lee
- Department of Chemical and Biological Engineering, Korea National University of Transportation, Chungju 27469, Republic of Korea
- KB Biomed Inc., Chungju 27469, Republic of Korea
- 4D Biomaterials Center, Korea National University of Transportation, Jeungpyeong, Chungju 27909, Republic of Korea
| |
Collapse
|
346
|
Bile Salt Hydrolases: At the Crossroads of Microbiota and Human Health. Microorganisms 2021; 9:microorganisms9061122. [PMID: 34067328 PMCID: PMC8224655 DOI: 10.3390/microorganisms9061122] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/16/2021] [Accepted: 05/18/2021] [Indexed: 12/12/2022] Open
Abstract
The gut microbiota has been increasingly linked to metabolic health and disease over the last few decades. Several factors have been suggested to be involved in lipid metabolism and metabolic responses. One mediator that has gained great interest as a clinically important enzyme is bile salt hydrolase (BSH). BSH enzymes are widely distributed in human gastrointestinal microbial communities and are believed to play key roles in both microbial and host physiology. In this review, we discuss the current evidence related to the role of BSHs in health and provide useful insights that may pave the way for new therapeutic targets in human diseases.
Collapse
|
347
|
Matysik S, Krautbauer S, Liebisch G, Schött HF, Kjølbaek L, Astrup A, Blachier F, Beaumont M, Nieuwdorp M, Hartstra A, Rampelli S, Pagotto U, Iozzo P. Short-chain fatty acids and bile acids in human faeces are associated with the intestinal cholesterol conversion status. Br J Pharmacol 2021; 178:3342-3353. [PMID: 33751575 DOI: 10.1111/bph.15440] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 02/24/2021] [Accepted: 03/02/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND AND PURPOSE The analysis of human faecal metabolites can provide an insight into metabolic interactions between gut microbiota and the host organism. The creation of metabolic profiles in faeces has received little attention until now, and reference values, especially in the context of dietary and therapeutic interventions, are missing. Exposure to xenobiotics significantly affects the physiology of the microbiome, and microbiota manipulation and short-chain fatty acid administration have been proposed as treatment targets for several diseases. The aim of the present study is to give concomitant concentration ranges of faecal sterol species, bile acids and short-chain fatty acids, based on a large cohort. EXPERIMENTAL APPROACH Sterol species, bile acids and short-chain fatty acids in human faeces from 165 study participants were quantified by LC-MS/MS. For standardization, we refer all values to dry weight of faeces. Based on the individual intestinal sterol conversion, we classified participants into low and high converters according to their coprostanol/cholesterol ratio. KEY RESULTS Low converters excrete more straight-chain fatty acids and bile acids than high converters; 5th and 95th percentile and median of bile acids and short-chain fatty acids were calculated for both groups. CONCLUSION AND IMPLICATIONS We give concentration ranges for 16 faecal metabolites that can serve as reference values. Patient stratification into high or low sterol converter groups is associated with significant differences in faecal metabolites with biological activities. Such stratification should then allow better assessment of faecal metabolites before therapeutic interventions. LINKED ARTICLES This article is part of a themed issue on Oxysterols, Lifelong Health and Therapeutics. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.16/issuetoc.
Collapse
Affiliation(s)
- Silke Matysik
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Regensburg, Germany
| | - Sabrina Krautbauer
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Regensburg, Germany
| | - Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Regensburg, Germany
| | - Hans-Frieder Schött
- Singapore Lipidomics Incubator (SLING), Life Sciences Institute, National University of Singapore, Singapore
| | - Louise Kjølbaek
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Arne Astrup
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Francois Blachier
- Université Paris-Saclay, AgroParisTech, INRAE, UMR PNCA, Paris, France
| | - Martin Beaumont
- GenPhySE, Université De Toulouse, INRAE, ENVT, Toulouse, France
| | - Max Nieuwdorp
- Department of Internal and Vascular Medicine, Amsterdam UMC, location AMC, Amsterdam, The Netherlands
| | - Annick Hartstra
- Department of Internal and Vascular Medicine, Amsterdam UMC, location AMC, Amsterdam, The Netherlands
| | - Simone Rampelli
- Unit of Microbial Ecology of Health, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Uberto Pagotto
- Unit of Endocrinology and Prevention and Care of Diabetes, Sant'Orsola Hospital, Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Patricia Iozzo
- Institute of Clinical Physiology, National Research Council, Pisa, Italy
| |
Collapse
|
348
|
Alamoudi JA, Li W, Gautam N, Olivera M, Meza J, Mukherjee S, Alnouti Y. Bile acid indices as biomarkers for liver diseases I: Diagnostic markers. World J Hepatol 2021; 13:433-455. [PMID: 33959226 PMCID: PMC8080550 DOI: 10.4254/wjh.v13.i4.433] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/11/2021] [Accepted: 03/22/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Hepatobiliary diseases result in the accumulation of toxic bile acids (BA) in the liver, blood, and other tissues which may contribute to an unfavorable prognosis. AIM To discover and validate diagnostic biomarkers of cholestatic liver diseases based on the urinary BA profile. METHODS We analyzed urine samples by liquid chromatography-tandem mass spectrometry and compared the urinary BA profile between 300 patients with hepatobiliary diseases vs 103 healthy controls by statistical analysis. The BA profile was characterized using BA indices, which quantifies the composition, metabolism, hydrophilicity, and toxicity of the BA profile. BA indices have much lower inter- and intra-individual variability compared to absolute concentrations of BA. In addition, BA indices demonstrate high area under the receiver operating characteristic curves, and changes of BA indices are associated with the risk of having a liver disease, which demonstrates their use as diagnostic biomarkers for cholestatic liver diseases. RESULTS Total and individual BA concentrations were higher in all patients. The percentage of secondary BA (lithocholic acid and deoxycholic acid) was significantly lower, while the percentage of primary BA (chenodeoxycholic acid, cholic acid, and hyocholic acid) was markedly higher in patients compared to controls. In addition, the percentage of taurine-amidation was higher in patients than controls. The increase in the non-12α-OH BA was more profound than 12α-OH BA (cholic acid and deoxycholic acid) causing a decrease in the 12α-OH/ non-12α-OH ratio in patients. This trend was stronger in patients with more advanced liver diseases as reflected by the model for end-stage liver disease score and the presence of hepatic decompensation. The percentage of sulfation was also higher in patients with more severe forms of liver diseases. CONCLUSION BA indices have much lower inter- and intra-individual variability compared to absolute BA concentrations and changes of BA indices are associated with the risk of developing liver diseases.
Collapse
Affiliation(s)
- Jawaher Abdullah Alamoudi
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Wenkuan Li
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Nagsen Gautam
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Marco Olivera
- Department of Internal Medicine, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Jane Meza
- Department of Biostatistics, College of Public Health, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Sandeep Mukherjee
- Department of Internal Medicine, College of Medicine, Creighton University Medical Center, Omaha, NE 68124, United States
| | - Yazen Alnouti
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198, United States.
| |
Collapse
|
349
|
Integrated gut microbiota and fecal metabolomics reveal the renoprotective effect of Rehmanniae Radix Preparata and Corni Fructus on adenine-induced CKD rats. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1174:122728. [PMID: 33975272 DOI: 10.1016/j.jchromb.2021.122728] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 03/18/2021] [Accepted: 04/14/2021] [Indexed: 12/27/2022]
Abstract
Rehmanniae Radix Preparata (RR) and Corni Fructus (CF), well-known traditional Chinese medicines (TCMs), were generally used together in the clinical practices to treat chronic kidney disease (CKD) with synergistic effects for thousands of years, but their combination mechanism remains largely unknown so far. Recent evidences have implicated intestinal flora as potential targets for the therapy of CKD. In this study, the CKD rat model was induced by adenine. The levels of proteinuria, serum creatine (SCr), blood urea nitrogen (BUN) and creatinine clearance (Ccr) were used to assess the cooperation effect of RR and CF. Furthermore, high-throughput 16S ribosomal RNA (rRNA) gene sequencing combined with fecal metabonomics based on UPLC-Q-TOF-MS/MS were applied to explore the variations of intestinal flora and their metabolic profiles. 16S rRNA gene sequencing data indicated that CKD rats treated with RR, CF and RC showed the differences in the composition of gut microbiota. The abundance of beneficial bacteria including Ruminococcaceae UCG-014, Ruminococcus 1, Prevotellaceae_NK3B31_group, Lachnospiraceae NK4A136 group and Lachnospiraceae UCG-001 were elevated in various degrees, while the opportunistic pathogen such as Desulfovibrio was markedly decreased after the treatment. Moreover, fecal metabolite profiles revealed 15 different metabolites associated with CKD. These metabolites were mainly involved in the related metabolic pathways such as amino acid metabolism, bile acids metabolism and glycerophospholipid metabolism. The results implied that gut flora and their metabolites might play a vital role in the progress of CKD, which provided a potential target for the development of novel drugs for the therapy of CKD.
Collapse
|
350
|
Ma Y, Harris J, Li P, Cao H. Long noncoding RNAs-a new dimension in the molecular architecture of the bile acid/FXR pathway. Mol Cell Endocrinol 2021; 525:111191. [PMID: 33539963 PMCID: PMC8437140 DOI: 10.1016/j.mce.2021.111191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/25/2021] [Accepted: 01/28/2021] [Indexed: 11/15/2022]
Abstract
Bile acids, regarded as the body's detergent for digesting lipids, also function as critical signaling molecules that regulate cholesterol and triglyceride levels in the body. Bile acids are the natural ligands of the nuclear receptor, FXR, which controls an intricate network of cellular pathways to maintain metabolic homeostasis. In recent years, growing evidence supports that many cellular actions of the bile acid/FXR pathway are mediated by long non-coding RNAs (lncRNAs), and lncRNAs are in turn powerful regulators of bile acid levels and FXR activities. In this review, we highlight the substantial progress made in the understanding of the functional and mechanistic role of lncRNAs in bile acid metabolism and how lncRNAs connect bile acid activity to additional metabolic processes. We also discuss the potential of lncRNA studies in elucidating novel molecular mechanisms of the bile acid/FXR pathway and the promise of lncRNAs as potential diagnostic markers and therapeutic targets for diseases associated with altered bile acid metabolism.
Collapse
Affiliation(s)
- Yonghe Ma
- Cardiovascular Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jamie Harris
- Cardiovascular Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Ping Li
- Cardiovascular Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Haiming Cao
- Cardiovascular Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|