301
|
Mackova M, Man JR, Chik CL, Ho AK. p38MAPK inhibition enhances basal and norepinephrine-stimulated p42/44MAPK phosphorylation in rat pinealocytes. Endocrinology 2000; 141:4202-8. [PMID: 11089554 DOI: 10.1210/endo.141.11.7797] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Interaction between p38MAPK and p42/44MAPK in rat pinealocytes was examined by determining the effects of p38MAPK inhibitors on the phosphorylation of p42/44MAPK using Western blot analysis. Treatment with SB202190, a specific inhibitor of p38MAPK, increased p42/44MAPK phosphorylation in a concentration-dependent manner. SB202190 also enhanced the magnitude and the duration of norepinephrine-activated p42/44MAPK phosphorylation. The effect of SB202190 on p42/44MAPK phosphorylation was abolished by PD98059 or UO126, inhibitors of MEK, suggesting that SB202190 is acting upstream of MEK in activating p42/44MAPK. The SB202190-induced phosphorylation of p42/44MAPK was not blocked by inhibitors of cGMP-dependent kinase (KT5823), protein kinase C (calphostin C) or Ca2+/calmodulin dependent kinase (KN93) suggesting that these pathways may not be involved in the effect of SB202190. SB202190 further increased p42/44MAPK phosphorylation that was stimulated by 8-bromo-cGMP, 4beta phorbol 12-myristate 13-acetate, or ionomycin. In contrast, inhibition of p42/44MAPK phosphorylation by dibutyryl-cAMP persisted when p42/44MAPK phosphorylation was increased by SB202190. Furthermore, inhibition of p42/44MAPK phosphorylation had no effect on p38MAPK activation. These results suggest that inhibition of p38MAPK causes activation of p42/44MAPK and acts synergistically with norepinephrine in the regulation of p42/44MAPK activation in rat pinealocytes.
Collapse
Affiliation(s)
- M Mackova
- Department of Physiology, Faculty of Medicine, University of Alberta, Edmonton, Canada
| | | | | | | |
Collapse
|
302
|
Conrad PW, Millhorn DE, Beitner-Johnson D. Hypoxia differentially regulates the mitogen- and stress-activated protein kinases. Role of Ca2+/CaM in the activation of MAPK and p38 gamma. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2000; 475:293-302. [PMID: 10849670 DOI: 10.1007/0-306-46825-5_28] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Hypoxic/ischemic trauma is a primary factor in the pathology of various vascular, pulmonary, and cerebral disease states. Yet, the signaling mechanisms by which cells respond and adapt to changes in oxygen levels are not clearly established. The effects of hypoxia on the stress- and mitogen-activated protein kinase (SAPK and MAPK) signaling pathways were studied in PC12 cells. Exposure to moderate hypoxia (5% O2) was found to progressively stimulate phosphorylation and activation of p38 gamma in particular, and also p38 alpha, two isoforms of the p38 family of stress-activated protein kinases. In contrast, hypoxia had no effect on enzyme activity of p38 beta, p38 beta 2, p38 delta, or on JNK, another stress-activated protein kinase. Prolonged hypoxia also induced phosphorylation and activation of p42/p44 MAPK, although this activation was modest when compared to NGF and UV-induced activation. We further showed that activation of p38 gamma and MAPK during hypoxia requires calcium, as treatment with Ca(2+)-free media or the calmodulin antagonist, W13, blocked the activation of p38 gamma and MAPK, respectively. These studies demonstrate that an extremely typical physiological stress (hypoxia) causes selective activation of specific elements of the SAPKs and MAPKs, and identifies Ca+2/CaM as a critical upstream activator.
Collapse
Affiliation(s)
- P W Conrad
- Department of Molecular and Cellular Physiology, College of Medicine, University of Cincinnati, OH 45267-0576, USA
| | | | | |
Collapse
|
303
|
Matsumoto M, Sudo T, Saito T, Osada H, Tsujimoto M. Involvement of p38 mitogen-activated protein kinase signaling pathway in osteoclastogenesis mediated by receptor activator of NF-kappa B ligand (RANKL). J Biol Chem 2000; 275:31155-61. [PMID: 10859303 DOI: 10.1074/jbc.m001229200] [Citation(s) in RCA: 442] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The receptor activator of NF-kappaB ligand (RANKL) induces osteoclast differentiation from bone marrow cells in the presence of macrophage colony-stimulating factor. We found that treatment of bone marrow cells with SB203580 inhibited osteoclast differentiation via inhibition of the RANKL-mediated signaling pathway. To elucidate the role of p38 mitogen-activated protein (MAP) kinase pathway in osteoclastogenesis, we employed RAW264 cells which could differentiate into osteoclast-like cells following treatment with RANKL. In a dose-dependent manner, SB203580 but not PD98059, inhibited RANKL-induced differentiation. Among three MAP kinase families tested, this inhibition profile coincided only with the activation of p38 MAP kinase. Expression in RAW264 cells of the dominant negative form of either p38alpha MAP kinase or MAP kinase kinase (MKK) 6 significantly inhibited RANKL-induced differentiation of the cells. These results indicate that activation of the p38 MAP kinase pathway plays an important role in RANKL-induced osteoclast differentiation of precursor bone marrow cells.
Collapse
Affiliation(s)
- M Matsumoto
- Laboratories of Cellular Biochemistry and Antibiotics, RIKEN (The Institute of Physical and Chemical Research), 2-1 Hirosawa, Wako, Saitama, 351-0198 Japan
| | | | | | | | | |
Collapse
|
304
|
Abstract
Following an overview of the biochemistry of mitogen-activated protein kinase (MAPK) pathways, the relevance of these signaling events to specific models of renal cell function and pathophysiology, both in vitro and in vivo, will be emphasized. In in vitro model systems, events activating the principal MAPK families [extracellular signal-regulated and c-Jun NH(2)-terminal kinase and p38] have been best characterized in mesangial and tubular epithelial cell culture systems and include peptide mitogens, cytokines, lipid mediators, and physical stressors. Several in vivo models of proliferative or toxic renal injury are also associated with aberrant MAPK regulation. It is anticipated that elucidation of downstream effector signaling mechanisms and a clearer understanding of the immediate and remote upstream activating pathways, when applied to these highly clinically relevant model systems, will ultimately provide much greater insight into the basis for specificity now seemingly absent from these signaling events.
Collapse
Affiliation(s)
- W Tian
- Divisions of Nephrology and Molecular Medicine, Oregon Health Sciences University, and Portland Veterans Affairs Medical Center, Portland, Oregon 97201, USA
| | | | | |
Collapse
|
305
|
Mudgett JS, Ding J, Guh-Siesel L, Chartrain NA, Yang L, Gopal S, Shen MM. Essential role for p38alpha mitogen-activated protein kinase in placental angiogenesis. Proc Natl Acad Sci U S A 2000; 97:10454-9. [PMID: 10973481 PMCID: PMC27045 DOI: 10.1073/pnas.180316397] [Citation(s) in RCA: 302] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The p38 family of mitogen-activated protein kinases (MAPKs) mediates signaling in response to environmental stresses and inflammatory cytokines, but the requirements for the p38 MAPK pathway in normal mammalian development have not been elucidated. Here, we show that targeted disruption of the p38alpha MAPK gene results in homozygous embryonic lethality because of severe defects in placental development. Although chorioallantoic placentation is initiated appropriately in p38alpha null homozygotes, placental defects are manifest at 10.5 days postcoitum as nearly complete loss of the labyrinth layer and significant reduction of the spongiotrophoblast. In particular, p38alpha mutant placentas display lack of vascularization of the labyrinth layer as well as increased rates of apoptosis, consistent with a defect in placental angiogenesis. Furthermore, p38alpha mutants display abnormal angiogenesis in the embryo proper as well as in the visceral yolk sac. Thus, our results indicate a requirement for p38alpha MAPK in diploid trophoblast development and placental vascularization and suggest a more general role for p38 MAPK signaling in embryonic angiogenesis.
Collapse
Affiliation(s)
- J S Mudgett
- Merck Research Laboratories, Rahway, NJ 07065, USA
| | | | | | | | | | | | | |
Collapse
|
306
|
Zhuang S, Demirs JT, Kochevar IE. p38 mitogen-activated protein kinase mediates bid cleavage, mitochondrial dysfunction, and caspase-3 activation during apoptosis induced by singlet oxygen but not by hydrogen peroxide. J Biol Chem 2000; 275:25939-48. [PMID: 10837470 DOI: 10.1074/jbc.m001185200] [Citation(s) in RCA: 228] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
p38 mitogen-activated protein kinase is activated and involved in cleavage of caspase-3 during apoptosis induced by a number of stimuli. However, the signaling events triggered by p38 that result in caspase-3 activation are still unknown. In human leukemia cells, two reactive oxygen species, singlet oxygen and hydrogen peroxide (H(2)O(2)), selectively stimulated the phosphorylation of p38. Preincubation of cells with SB203580, a specific inhibitor of p38, dose dependently inhibited DNA fragmentation induced by singlet oxygen but not by H(2)O(2). Protection from apoptosis by SB203580 correlated with inhibition of caspase-3, and several events that are associated with caspase-3 activation, including Bid cleavage, decrease in mitochondrial transmembrane potential and release of cytochrome c from mitochondria, whereas caspase-8 cleavage was not affected by this inhibitor. In contrast, blockade of caspase-8 with Ile-Glu-Thr-Asp-fluoromethyl ketone is sufficient to prevent formation of DNA fragments and to inhibit all the above signaling events, with exception of p38 phosphorylation, in both singlet oxygen- and H(2)O(2)-treated cells. These data suggest that caspase-3 activation is regulated through redundant signaling pathways that involve p38 and caspase-8 acting upstream of Bid during singlet oxygen-induced apoptosis, whereas the activation of caspase-3 by H(2)O(2) is only governed by a caspase-8-mediated apoptotic pathway.
Collapse
Affiliation(s)
- S Zhuang
- Wellman Laboratories of Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
| | | | | |
Collapse
|
307
|
The cJun N-terminal kinase (JNK) signaling pathway mediates induction of urokinase-type plasminogen activator (uPA) by the alkylating agent MNNG. Blood 2000. [DOI: 10.1182/blood.v96.4.1415.h8001415_1415_1424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The monofunctional alkylating agent N-methyl-N-nitro-N-nitrosoguanidine (MNNG) is a widespread environmental carcinogen that causes DNA lesions, leading to cell death. However, MNNG can also trigger a cell-protective response by inducing the expression of DNA repair/transcription-related genes. We demonstrate that the urokinase-type plasminogen activator (uPA) gene product, a broad spectrum extracellular protease to which no DNA repair function has been assigned, is transcriptionally induced by MNNG in C2C12 and NIH3T3 cells. This induction required an AP1-enhancer element located at −2.4 kilobase (kb), because it was abrogated by deletion of this site. MNNG was found to induce the activation of JNK/SAPK and p38 mitogen-activated protein kinases (MAPKs). Accordingly, we attempted to assess the contribution of each of these MNNG-inducible MAPKs to uPA gene induction by this alkylating agent. Coexpression of dominant negative versions of kinases of the JNK pathway, such as catalytically inactive forms of MEKK1, MKK7, and JNKK, and of cytoplasmic JNK-inhibitor JIP-1, as well as treatment of cells with curcumin (which blocks JNK activation by MNNG), inhibited MNNG-induced uPA transcriptional activity. In contrast, neither dominant negative MKK6 nor SB203580, which specifically inhibit p38 MAP kinase activation, abrogated the MNNG-induced effect. Taken together, our results show that the JNK signaling pathway links external MNNG stimulation and AP1-dependent uPA gene expression, providing the first functional dissection of a transcription-coupled signal transduction pathway for MNNG.
Collapse
|
308
|
The cJun N-terminal kinase (JNK) signaling pathway mediates induction of urokinase-type plasminogen activator (uPA) by the alkylating agent MNNG. Blood 2000. [DOI: 10.1182/blood.v96.4.1415] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractThe monofunctional alkylating agent N-methyl-N-nitro-N-nitrosoguanidine (MNNG) is a widespread environmental carcinogen that causes DNA lesions, leading to cell death. However, MNNG can also trigger a cell-protective response by inducing the expression of DNA repair/transcription-related genes. We demonstrate that the urokinase-type plasminogen activator (uPA) gene product, a broad spectrum extracellular protease to which no DNA repair function has been assigned, is transcriptionally induced by MNNG in C2C12 and NIH3T3 cells. This induction required an AP1-enhancer element located at −2.4 kilobase (kb), because it was abrogated by deletion of this site. MNNG was found to induce the activation of JNK/SAPK and p38 mitogen-activated protein kinases (MAPKs). Accordingly, we attempted to assess the contribution of each of these MNNG-inducible MAPKs to uPA gene induction by this alkylating agent. Coexpression of dominant negative versions of kinases of the JNK pathway, such as catalytically inactive forms of MEKK1, MKK7, and JNKK, and of cytoplasmic JNK-inhibitor JIP-1, as well as treatment of cells with curcumin (which blocks JNK activation by MNNG), inhibited MNNG-induced uPA transcriptional activity. In contrast, neither dominant negative MKK6 nor SB203580, which specifically inhibit p38 MAP kinase activation, abrogated the MNNG-induced effect. Taken together, our results show that the JNK signaling pathway links external MNNG stimulation and AP1-dependent uPA gene expression, providing the first functional dissection of a transcription-coupled signal transduction pathway for MNNG.
Collapse
|
309
|
Boppart MD, Asp S, Wojtaszewski JF, Fielding RA, Mohr T, Goodyear LJ. Marathon running transiently increases c-Jun NH2-terminal kinase and p38 activities in human skeletal muscle. J Physiol 2000; 526 Pt 3:663-9. [PMID: 10922016 PMCID: PMC2270029 DOI: 10.1111/j.1469-7793.2000.00663.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
We examined the pattern of activation and deactivation of the stress-activated protein kinase signalling molecules c-Jun NH2-terminal kinase (JNK) and p38 kinase in skeletal muscle in response to prolonged strenuous running exercise in human subjects. Male subjects (n = 14; age 32 +/- 2 years; VO2,max 60 +/- 2 ml kg-1 min-1) completed a 42.2 km marathon (mean race time 3 h 35 min). Muscle biopsies were obtained 10 days prior to the marathon, immediately following the race, and 1, 3 and 5 days after the race. The activation of JNK and p38, including both p38alpha and p38gamma, was measured with immune complex assays. The phosphorylation state of p38 (alpha and gamma) and the upstream regulators of JNK and p38, mitogen-activated protein kinase kinase 4 (MKK4) and mitogen-activated protein kinase kinase 6 (MKK6), were assessed using phosphospecific antibodies. JNK activity increased 7-fold over basal level immediately post-exercise, but decreased back to basal levels 1, 3 and 5 days after the exercise. p38gamma phosphorylation (4-fold) and activity (1.5-fold) increased immediately post-exercise and returned to basal levels at 1, 3 and 5 days following exercise. In contrast, p38alpha phosphorylation and activity did not change over the time course studied. MKK4 and MKK6 phosphorylation increased and decreased in a trend similar to that observed with JNK activity and p38gamma phosphorylation. Prolonged running exercise did not affect JNK, p38alpha, or p38gamma protein expression in the days following the race. This study demonstrates that both JNK and p38 intracellular signalling cascades are robustly, yet transiently increased following prolonged running exercise. The differential activation of the p38 isoforms with exercise in human skeletal muscle indicates that these proteins may have distinct functions in vivo.
Collapse
Affiliation(s)
- M D Boppart
- Research Division, Joslin Diabetes Center, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02215, USA
| | | | | | | | | | | |
Collapse
|
310
|
Role of p38 mitogen-activated protein kinase in axotomy-induced apoptosis of rat retinal ganglion cells. J Neurosci 2000. [PMID: 10864961 DOI: 10.1523/jneurosci.20-13-05037.2000] [Citation(s) in RCA: 133] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
p38 is a member of the mitogen-activated protein (MAP) kinase superfamily and mediates intracellular signal transduction. Recent studies suggest that p38 is involved in apoptotic signaling in several cell types, including neurons. In the mammalian retina, approximately 50% of the retinal ganglion cells (RGCs) die by apoptosis during development. Additionally, transection of the optic nerve close to the eye bulb causes apoptotic cell death of RGCs in adulthood. We investigated the role of p38 in axotomy-induced apoptosis of RGCs. One day after axotomy, activated (phosphorylated) p38 was visualized by immunocytochemistry in the nuclei of RGCs, but not in control retinas. Phosphorylated p38 was first detected on immunoblots 12 hr after axotomy, reached a maximum at 1 d, and then decreased. To investigate possible roles of p38 in RGC death, a p38 MAP kinase inhibitor, SB203580, was administered intravitreally at the time of axotomy and repeated at 5 and 10 d. Assayed 14 d after axotomy, SB203580 increased the number of surviving RGCs in a dose-dependent manner (the minimum effective concentration was 1.6 micrometer). Furthermore, MK801, a selective inhibitor of NMDA receptors, not only showed protective effects against RGC apoptosis but also attenuated p38 MAP kinase activation in a dose-dependent manner. Our findings imply that p38 is in the signaling pathway to RGC apoptosis mediated by glutamate neurotoxicity through NMDA receptors after damage to the optic nerve. p38 inhibitors could be potentially useful for the treatment of optic nerve trauma and neurodegenerative diseases that affect RGCs, such as glaucoma.
Collapse
|
311
|
Brauchle M, Glück D, Di Padova F, Han J, Gram H. Independent role of p38 and ERK1/2 mitogen-activated kinases in the upregulation of matrix metalloproteinase-1. Exp Cell Res 2000; 258:135-44. [PMID: 10912795 DOI: 10.1006/excr.2000.4913] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Matrix metalloproteinase-1 (MMP-1) plays an important role in the degradation of extracellular matrix components under several physiological and pathological conditions. The expression of this protease is upregulated by mitogenic growth factors and proinflammatory cytokines, which have been shown to activate different sets of mitogen-activated protein (MAP) kinase pathways. Here we provide evidence that activation of the extracellular signal-regulated kinase 1/2 (ERK1/2) or the p38 MAP kinase pathway is sufficient to induce transcription from the MMP-1 promoter in human primary fibroblasts, whereas modulation of mRNA stability seems to be of minor importance. Upregulation of MMP-1 expression by mitogenic or inflammatory stimuli is blocked by specific small molecular weight inhibitors of the ERK pathway or the p38 pathway, respectively, and constitutively active kinases within the ERK1/2 pathway (MEKK1, MEK1) or the p38 pathway (ASK1, MEKK1, MKK3) are potent activators of the MMP-1 promoter. The current study provides evidence that distinct extracellular signals leading to upregulation of MMP-1 expression in fibroblasts are relayed independently through different MAP kinase pathways and are integrated at the level of the promoter.
Collapse
|
312
|
Jing Q, Xin SM, Zhang WB, Wang P, Qin YW, Pei G. Lysophosphatidylcholine activates p38 and p42/44 mitogen-activated protein kinases in monocytic THP-1 cells, but only p38 activation is involved in its stimulated chemotaxis. Circ Res 2000; 87:52-9. [PMID: 10884372 DOI: 10.1161/01.res.87.1.52] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Oxidized LDLs (OxLDLs) have been shown to be involved in recruitment of blood monocytes into the arterial subendothelial space, which is the earliest step in atherogenesis, but the underlying molecular mechanisms are poorly understood. The present study demonstrated that lysophosphatidylcholine (LPC), a major phospholipid component of OxLDL, strongly evoked phosphorylation and activation of p38 and p42/44 mitogen-activated protein kinases in monocytic cells. The stimulation of p38 and p42/44 occurred in a dose- and time-dependent manner, reaching the maximal activation at 25 microg/mL LPC within 5 minutes. Interestingly, inhibition of p38 activation by OxLDL or LPC, using its selective inhibitors (SB203580 and SKF86002), completely blocked OxLDL- or LPC-stimulated chemotaxis of THP-1 cells, which was measured in a transwell chemotaxis assay. In contrast, inhibition of p42/44 activation by its potent inhibitor (PD98059) did not block OxLDL- or LPC-stimulated chemotaxis. Moreover, expression of a p38 dominant-negative mutant (p38AF) reduced cell chemotaxis significantly. In addition, activation of p38 by LPC was apparently mediated neither by scavenger receptors nor by tyrosine kinase receptors. It was, however, effectively blocked by pertussis toxin and substantially reduced by phospholipase C inhibitor (U73122) and phosphatidylinositol 3-kinase inhibitors (wortmannin and LY294002). LPC also inhibited forskolin-stimulated cAMP accumulation in a pertussis toxin-sensitive manner, indicating that Gi/Go proteins likely mediated the effects of LPC. Our results suggested that OxLDL/LPC efficiently activated both p38 and p42/44, but only the activation of p38 was functionally associated with OxLDL-/LPC-induced chemotaxis in THP-1 cells.
Collapse
Affiliation(s)
- Q Jing
- Shanghai Institute of Cell Biology, Chinese Academy of Sciences, and Department of Cardiology, Changhai Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | | | | | | | | | | |
Collapse
|
313
|
Abstract
p38 MAPKs are a conserved subfamily of MAPKs involved in the response to stress found in eukaryotic cells from yeast to mammals. The recent isolation of genes coding for members of this signalling cascade in Drosophila has provided us with the genetic tools to study their various biological roles and their regulatory interactions with other signalling pathways. This cascade participates in the immune response, a function that is remarkably conserved between flies and humans. Additionally, it appears to exert other fundamental roles during development, in cell fate specification in imaginal discs, and in cell polarity during oogenesis. These functions involve genetic and biochemical interactions with other signalling cascades, the decapentaplegic/TGFbeta, the wingless/Wnt and the torpedo/Ras-ERK pathways. In the near future, we can expect a flurry of information that will allow us to draw a comprehensive picture of the roles of signalling networks mediated by p38s during development.
Collapse
Affiliation(s)
- E Martín-Blanco
- Centro de Biología Molecular Severo Ochoa, CSIC, Facultad de Ciencias, Universidad Autónoma de Madrid, Cantoblanco, Spain.
| |
Collapse
|
314
|
Vallejo JG, Knuefermann P, Mann DL, Sivasubramanian N. Group B Streptococcus induces TNF-alpha gene expression and activation of the transcription factors NF-kappa B and activator protein-1 in human cord blood monocytes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 165:419-25. [PMID: 10861080 DOI: 10.4049/jimmunol.165.1.419] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
It has been postulated that production of TNF-alpha is central to the pathogenesis of septic shock induced by group B Streptococcus (GBS). In vitro studies using human cord blood monocytes have demonstrated that GBS induces TNF-alpha secretion, but little is known about the intracellular signaling pathways of TNF-alpha induction. In this report we show that heat-killed serotype III GBS induces host cell signal transduction pathways that lead to activation of the transcription factors NF-kappaB and AP-1. Using adenoviral transfer of IkappaBalpha (IkappaBalpha overexpression), the production of TNF-alpha induced by whole GBS was inhibited by only 20%. We also show that the p38 mitogen-activated protein kinase (MAPK) pathway is involved in GBS-induced TNF-alpha secretion, because TNF-alpha protein and mRNA levels in the presence of a specific inhibitor of p38 MAPK, SB 202190, were dramatically diminished. EMSAs showed that SB 202190 inhibited GBS-induced AP-1 activation, but had no effect on NF-kappaB-DNA binding activity. These results indicate that both NF-kappaB and AP-1 (via p38 MAPK) are involved in the regulation of TNF-alpha production in GBS-stimulated neonatal monocytes. Therefore, disrupting the signal transduction pathways induced by GBS has the potential to attenuate the production of immune response mediators, thereby halting or possibly reversing the course of this potentially fatal disease.
Collapse
Affiliation(s)
- J G Vallejo
- Infectious Diseases Section, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA.
| | | | | | | |
Collapse
|
315
|
Communal C, Colucci WS, Singh K. p38 mitogen-activated protein kinase pathway protects adult rat ventricular myocytes against beta -adrenergic receptor-stimulated apoptosis. Evidence for Gi-dependent activation. J Biol Chem 2000; 275:19395-400. [PMID: 10770956 DOI: 10.1074/jbc.m910471199] [Citation(s) in RCA: 123] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have shown that stimulation of beta-adrenergic receptors (beta-AR) by norepinephrine (NE) increases apoptosis in adult rat ventricular myocytes (ARVMs) via a cAMP-dependent mechanism that is antagonized by activation of G(i) protein. The family of mitogen-activated protein kinases (MAPKs) is involved in the regulation of cardiac myocyte growth and apoptosis. Here we show that beta-AR stimulation activates p38 kinase, c-jun N-terminal kinases (JNKs), and extracellular signal-regulated kinase (ERK1/2) in ARVMs. Inhibition of p38 kinase with SB-202190 (10 micrometer) potentiated beta-AR-stimulated apoptosis as measured by flow cytometry and terminal deoxynucleotidyl transferase-mediated nick end labeling (TUNEL) staining. SB-202190 at this concentration specifically blocked beta-AR-stimulated activation of p38 kinase and its downstream substrate MAPK-activated protein kinase-2 (MAPKAPK2). Pertussis toxin, an inhibitor of G(i)/G(o) proteins, blocked the activation of p38 kinase and potentiated beta-AR-stimulated apoptosis. Activation of G(i) protein with the muscarinic receptor agonist carbachol protected against beta-AR-stimulated apoptosis. Carbachol also activated p38 kinase, and the protective effect of carbachol was abolished by SB-202190. PD-98059 (10 micrometer), an inhibitor of ERK1/2 pathway, blocked beta-AR-stimulated activation of ERK1/2 but had no effect on apoptosis. These data suggest that 1) beta-AR stimulation activates p38 kinase, JNKs, and ERK1/2; 2) activation of p38 kinase plays a protective role in beta-AR-stimulated apoptosis in cardiac myocytes; and 3) the protective effects of G(i) are mediated via the activation of p38 kinase.
Collapse
Affiliation(s)
- C Communal
- Myocardial Biology Unit and Cardiovascular Division, Boston University Medical Center, Boston Veterans Affairs Medical Center and Boston University School of Medicine, Massachusetts 02118, USA
| | | | | |
Collapse
|
316
|
Sanz V, Arozarena I, Crespo P. Distinct carboxy-termini confer divergent characteristics to the mitogen-activated protein kinase p38alpha and its splice isoform Mxi2. FEBS Lett 2000; 474:169-74. [PMID: 10838079 DOI: 10.1016/s0014-5793(00)01598-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The p38 family of mitogen-activated protein kinases is composed of several isoforms. Mxi2 is a splicing variant of p38alpha that harbors a unique carboxy-terminus. Here we show that this sole divergence results in remarkable differences between Mxi2 and p38alpha. Mxi2 is distinctively activated by stress stimuli and potently activated by mitogens. Mxi2 affinity for bona fide p38 substrates is remarkably diminished and Mxi2 activity is largely unaffected by the phosphatase CL100. Also, Mxi2 sensitivity to inhibition by SB203580 is greatly reduced. Interestingly, we show that the p38 C-terminus is involved in conferring sensitivity to this compound. Overall, our results point to the p38 carboxy-terminus as a key determinant of the biochemical properties of this family of kinases.
Collapse
Affiliation(s)
- V Sanz
- Unidad de Biología Molecular del Cáncer, Departamento de Biología Molecular, Universidad de Cantabria, Santander, Spain
| | | | | |
Collapse
|
317
|
Lee SH, Park J, Che Y, Han PL, Lee JK. Constitutive activity and differential localization of p38alpha and p38beta MAPKs in adult mouse brain. J Neurosci Res 2000; 60:623-31. [PMID: 10820433 DOI: 10.1002/(sici)1097-4547(20000601)60:5<623::aid-jnr7>3.0.co;2-4] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
To understand the roles of p38 mitogen-activated protein kinase (p38 MAPK) isoforms in adult mouse brain, in vivo activities and detailed expression patterns of two p38 isoforms, p38alpha and p38beta, were examined by using biochemical and immunohistochemical analyses. The result indicated that the activity of both p38alpha and p38b MAPKs in normal adult mouse brain was remarkably high, and the nuclear pool of the p38 isoforms was primarily responsible for most of the constitutive p38 MAPK activity in brain. Both p38alpha and p38beta were highly expressed in brain areas including cerebral cortex, hippocampus, cerebellum, and few nuclei of the brainstem. At the subcellular level, p38alpha was distributed in dendrites and in cytoplasmic and nuclear regions of cell body of neurons, which is in contrast to p38beta, since p38beta was preferentially expressed in nucleus of neurons. These results suggest that the p38 pathway may play an important role, not only in inflammation and neuronal cell death as previously suggested, but also in normal physiology of adult mouse brain.
Collapse
Affiliation(s)
- S H Lee
- Bioscience Research Division, KRIBB, Taejon, Korea
| | | | | | | | | |
Collapse
|
318
|
Chang LC, Wang JP. The upstream regulation of p38 mitogen-activated protein kinase phosphorylation by arachidonic acid in rat neutrophils. J Pharm Pharmacol 2000; 52:539-46. [PMID: 10864142 DOI: 10.1211/0022357001774336] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
The signal transduction pathways activated by arachidonic acid that lead to p38 mitogen-activated protein kinase (MAPK) activation in neutrophils remains unclear. In this study, selective inhibitors of several signalling pathways were utilized to investigate the mechanisms of activation of p38 MAPK by arachidonic acid in rat neutrophils. Stimulation of p38 MAPK phosphorylation by arachidonic acid and its trifluoromethyl ketone analogue AACOCF3 was transient, peaking at 1 min, and was concentration-dependent. Arachidonic acid-stimulated p38 MAPK phosphorylation was attenuated in cells pretreated with the Gi/o inhibitor (pertussis toxin), but not with the dual cyclooxygenase/lipoxygenase inhibitor (BW755C) or the leukotriene biosynthesis inhibitor (MK886). Tyrosine kinase inhibitor (genistein), but not the extracellular signal-regulated kinase kinase inhibitors (PD98059 and U0126), attenuated the phosphorylation of p38 MAPK by arachidonic acid. Phosphoinositide 3-kinase inhibitors (wortmannin and LY294002) did not affect the arachidonic acid-induced response. After pretreatment of the cells with protein kinase C inhibitors (Gö6976, Gö6983 and GF109203X), only Gö6976 significantly attenuated the phosphorylation of p38 MAPK by arachidonic acid. In addition, phosphorylation of p38 MAPK by arachidonic acid was greatly attenuated by the phospholipase C inhibitor (U73122) and the Ca2+ chelator BAPTA ((1,2-bis-o-aminophenoxy)-ethane-N,N,N',N'-tetraacetic acid), but not altered by the nitric oxide synthase inhibitor, N-nitro-L-arginine methyl ester. Arachidonic acid did not cause an increase in cellular cyclic GMP level. This study revealed the involvement of pertussis toxin-sensitive G protein, non-receptor tyrosine kinase, phospholipase C/Ca2+, and probably Ca2+-dependent protein kinase C in arachidonic acid-stimulated p38 MAPK activation.
Collapse
Affiliation(s)
- L C Chang
- Department of Education and Research, Taichung Veterans General Hospital, Taiwan, Republic of China
| | | |
Collapse
|
319
|
Lee JC, Kumar S, Griswold DE, Underwood DC, Votta BJ, Adams JL. Inhibition of p38 MAP kinase as a therapeutic strategy. IMMUNOPHARMACOLOGY 2000; 47:185-201. [PMID: 10878289 DOI: 10.1016/s0162-3109(00)00206-x] [Citation(s) in RCA: 352] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Since the discovery of p38 MAP kinase in 1994, our understanding of its biology has progressed dramatically. The key advances include (1) identification of p38 MAP kinase homologs and protein kinases that act upstream and downstream from p38 MAP kinase, (2) identification of interesting and potentially important substrates, (3) elucidation of the role of p38 MAP kinase in cellular processes and (4) the establishment of the mechanism by which the pyridinylimidazole p38 MAP kinase inhibitors inhibit enzyme activity. It is now known that there are four members of the p38 MAP kinase family. They differ in their tissue distribution, regulation of kinase activation and subsequent phosphorylation of downstream substrates. They also differ in terms of their sensitivities toward the p38 MAP kinase inhibitors. The best-studied isoform is p38 alpha, whose activation has been observed in many hematopoietic and non-hematopoietic cell types upon treatment with appropriate stimuli. The pyridinylimidazole compounds, exemplified by SB 203580, were originally prepared as inflammatory cytokine synthesis inhibitors that subsequently were found to be selective inhibitors of p38 MAP kinase. SB 203580 inhibits the catalytic activity of p38 MAP kinase by competitive binding in the ATP pocket. X-ray crystallographic studies of the target enzyme complexed with inhibitor reinforce the observations made from site-directed mutagenesis studies, thereby providing a molecular basis for understanding the kinase selectivity of these inhibitors. The p38 MAP kinase inhibitors are efficacious in several disease models, including inflammation, arthritis and other joint diseases, septic shock, and myocardial injury. In all cases, p38 activation in key cell types correlated with disease initiation and progression. Treatment with p38 MAP kinase inhibitors attenuated both p38 activation and disease severity. Structurally diverse p38 MAP kinase inhibitors have been tested extensively in preclinical studies.
Collapse
Affiliation(s)
- J C Lee
- SmithKline Beecham Pharmaceuticals, 709 Swedeland Road, King of Prussia, PA 19406, USA.
| | | | | | | | | | | |
Collapse
|
320
|
Tschopp C, Knauf U, Brauchle M, Zurini M, Ramage P, Glueck D, New L, Han J, Gram H. Phosphorylation of eIF-4E on Ser 209 in response to mitogenic and inflammatory stimuli is faithfully detected by specific antibodies. MOLECULAR CELL BIOLOGY RESEARCH COMMUNICATIONS : MCBRC 2000; 3:205-211. [PMID: 10891393 DOI: 10.1006/mcbr.2000.0217] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Phosphorylation of Ser 209 is thought to modulate the activity of the cap-binding factor eIF-4E which is a crucial component in the initiation complex for cap-dependent translation of mRNA. We report here the full reconstitution of the p38 Map kinase cascade leading to phosphorylation of eIF-4E in vitro and the generation of antibodies specific for phospho-serine 209 in eIF-4E. These antibodies were used to probe the phosphorylation of eIF-4E in mammalian cells stimulated with mitogens and pro-inflammatory cytokines. Treatment of human dermal fibroblasts with FCS led to a transient hyperphosphorylation, followed by hypophosphorylation and return to normal state phosphorylation at 16 h after the initial stimulation. By using a potent small molecular weight inhibitor of Mnk1, the upstream kinase for eIF-4E, we observed a rapid dephosphorylation of eIF-4E within 45 min after addition of the inhibitor, suggesting a high turnover of phosphate on eIF-4E mediated by Mnk1 and a yet unidentified phosphatase.
Collapse
Affiliation(s)
- C Tschopp
- NOVARTIS Pharma AG, Basel, CH-4002, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
321
|
Warny M, Keates AC, Keates S, Castagliuolo I, Zacks JK, Aboudola S, Qamar A, Pothoulakis C, LaMont JT, Kelly CP. p38 MAP kinase activation by Clostridium difficile toxin A mediates monocyte necrosis, IL-8 production, and enteritis. J Clin Invest 2000; 105:1147-56. [PMID: 10772660 PMCID: PMC300827 DOI: 10.1172/jci7545] [Citation(s) in RCA: 162] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Clostridium difficile toxin A causes acute neutrophil infiltration and intestinal mucosal injury. In cultured cells, toxin A inactivates Rho proteins by monoglucosylation. In monocytes, toxin A induces IL-8 production and necrosis by unknown mechanisms. We investigated the role of mitogen-activated protein (MAP) kinases in these events. In THP-1 monocytic cells, toxin A activated the 3 main MAP kinase cascades within 1 to 2 minutes. Activation of p38 was sustained, whereas stimulation of extracellular signal-regulated kinases and c-Jun NH(2)-terminal kinase was transient. Rho glucosylation became evident after 15 minutes. IL-8 gene expression was reduced by 70% by the MEK inhibitor PD98059 and abrogated by the p38 inhibitor SB203580 or by overexpression of dominant-negative mutants of the p38-activating kinases MKK3 and MKK6. SB203580 also blocked monocyte necrosis and IL-1beta release caused by toxin A but not by other toxins. Finally, in mouse ileum, SB203580 prevented toxin A-induced neutrophil recruitment by 92% and villous destruction by 90%. Thus, in monocytes exposed to toxin A, MAP kinase activation appears to precede Rho glucosylation and is required for IL-8 transcription and cell necrosis. p38 MAP kinase also mediates intestinal inflammation and mucosal damage induced by toxin A.
Collapse
Affiliation(s)
- M Warny
- Gastroenterology Division, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
322
|
Faccio L, Chen A, Fusco C, Martinotti S, Bonventre JV, Zervos AS. Mxi2, a splice variant of p38 stress-activated kinase, is a distal nephron protein regulated with kidney ischemia. Am J Physiol Cell Physiol 2000; 278:C781-90. [PMID: 10751326 DOI: 10.1152/ajpcell.2000.278.4.c781] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mxi2 is one of three known alternative spliced forms of the stress-activated mitogen-activated protein kinase p38 (CSBP). Mxi2 was originally identified as a Max-interacting protein and is the smallest member of the family of stress-activated kinases isolated to date. Mxi2 lacks most of the XI domain found in p38 and instead has a distinct COOH-terminal sequence of 17 amino acids. Here we present the genomic structure of the Mxi2/p38 locus on human chromosome 6q21.2/21.3 and establish the origin of the three spliced forms of p38. Using Mxi2-specific antibodies in mouse organs, we found the Mxi2 protein to be present exclusively in the kidney. Mxi2 is present predominantly in the distal tubule of the nephron and the level of the protein decreased during kidney ischemia-reperfusion. Stress signals or other known activators of the p38 pathway including MAP kinase-kinase 3 and MAP kinase-kinase 6 did not induce the kinase activity of Mxi2 using ATF-2 as a substrate. With the use of hybrid proteins encoding different portions of Mxi2 and p38 polypeptides, the different properties of Mxi2 can be assigned to its unique COOH terminus.
Collapse
Affiliation(s)
- L Faccio
- Cutaneous Biology Research Center, Massachusetts General Hospital/Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | | | | | | | | | | |
Collapse
|
323
|
Wery-Zennaro S, Zugaza JL, Letourneur M, Bertoglio J, Pierre J. IL-4 regulation of IL-6 production involves Rac/Cdc42- and p38 MAPK-dependent pathways in keratinocytes. Oncogene 2000; 19:1596-604. [PMID: 10734320 DOI: 10.1038/sj.onc.1203458] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The stress-activated pathways leading to activation of p38 MAP kinase (p38 MAPK) and c-jun N-terminal kinases (JNK) have been shown to be activated by pro-inflammatory cytokines, physical and chemical stresses as well as a variety of hematopoietic growth factors. One exception is interleukin (IL)-4, which does not activate this pathway in hematopoietic cell. We report here that in A431, a keratinocytic cell line, IL-4 activates Rac and Cdc42 and their downstream effector p21-activated kinase (PAK). Rac and Cdc42 appear to regulate a protein kinase cascade initiated at the level of PAK and leading to activation of p38 MAPK, since IL-4 stimulates tyrosine phosphorylation of p38 MAPK and increases its catalytic activity. As A431 cells are able to produce IL-6 in response to IL-4 stimulation, we assessed the involvement of p38 MAPK in IL-6 gene expression. A pyrimidazole compound, SB203580, a specific inhibitor of p38 MAPK, inhibits production and gene expression of IL-6. SB203580 reduced significantly the stability of IL-6 mRNA. Here we provide evidence that p38 MAPK is activated in response to IL-4 and is involved in IL-6 synthesis by stabilizing IL-6 mRNA.
Collapse
Affiliation(s)
- S Wery-Zennaro
- INSERM U461, Faculté de Pharmacie, 5, rue J B Clément, 92296 Chätenay-Malabry, Cedex, France
| | | | | | | | | |
Collapse
|
324
|
Enslen H, Brancho DM, Davis RJ. Molecular determinants that mediate selective activation of p38 MAP kinase isoforms. EMBO J 2000; 19:1301-11. [PMID: 10716930 PMCID: PMC305671 DOI: 10.1093/emboj/19.6.1301] [Citation(s) in RCA: 174] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The p38 mitogen-activated protein kinase (MAPK) group is represented by four isoforms in mammals (p38alpha, p38beta2, p38gamma and p38delta). These p38 MAPK isoforms appear to mediate distinct functions in vivo due, in part, to differences in substrate phosphorylation by individual p38 MAPKs and also to selective activation by MAPK kinases (MAPKKs). Here we report the identification of two factors that contribute to the specificity of p38 MAPK activation. One mechanism of specificity is the selective formation of functional complexes between MAPKK and different p38 MAPKs. The formation of these complexes requires the presence of a MAPK docking site in the N-terminus of the MAPKK. The second mechanism that confers signaling specificity is the selective recognition of the activation loop (T-loop) of p38 MAPK isoforms. Together, these processes provide a mechanism that enables the selective activation of p38 MAPK in response to activated MAPKK.
Collapse
Affiliation(s)
- H Enslen
- Howard Hughes Medical Institute, Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | | | |
Collapse
|
325
|
Allen M, Svensson L, Roach M, Hambor J, McNeish J, Gabel CA. Deficiency of the stress kinase p38alpha results in embryonic lethality: characterization of the kinase dependence of stress responses of enzyme-deficient embryonic stem cells. J Exp Med 2000; 191:859-70. [PMID: 10704466 PMCID: PMC2195860 DOI: 10.1084/jem.191.5.859] [Citation(s) in RCA: 218] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The mitogen-activated protein (MAP) kinase p38 is a key component of stress response pathways and the target of cytokine-suppressing antiinflammatory drugs (CSAIDs). A genetic approach was employed to inactivate the gene encoding one p38 isoform, p38alpha. Mice null for the p38alpha allele die during embryonic development. p38alpha(1/)- embryonic stem (ES) cells grown in the presence of high neomycin concentrations demonstrated conversion of the wild-type allele to a targeted allele. p38alpha(-/)- ES cells lacked p38alpha protein and failed to activate MAP kinase-activated protein (MAPKAP) kinase 2 in response to chemical stress inducers. In contrast, p38alpha(1/+) ES cells and primary embryonic fibroblasts responded to stress stimuli and phosphorylated p38alpha, and activated MAPKAP kinase 2. After in vitro differentiation, both wild-type and p38alpha(-/)- ES cells yielded cells that expressed the interleukin 1 receptor (IL-1R). p38alpha(1/+) but not p38alpha(-/)- IL-1R-positive cells responded to IL-1 activation to produce IL-6. Comparison of chemical-induced apoptosis processes revealed no significant difference between the p38alpha(1/+) and p38alpha(-/)- ES cells. Therefore, these studies demonstrate that p38alpha is a major upstream activator of MAPKAP kinase 2 and a key component of the IL-1 signaling pathway. However, p38alpha does not serve an indispensable role in apoptosis.
Collapse
Affiliation(s)
- Melanie Allen
- Department of Genetic Technologies, Pfizer Central Research, Groton, Connecticut 06340
| | - Linne Svensson
- Department of Respiratory, Allergy, Immunology, Inflammation, and Infectious Diseases
| | - Marsha Roach
- Department of Genetic Technologies, Pfizer Central Research, Groton, Connecticut 06340
| | - John Hambor
- Department of Genetic Technologies, Pfizer Central Research, Groton, Connecticut 06340
| | - John McNeish
- Department of Genetic Technologies, Pfizer Central Research, Groton, Connecticut 06340
| | - Christopher A. Gabel
- Department of Respiratory, Allergy, Immunology, Inflammation, and Infectious Diseases
| |
Collapse
|
326
|
Barancik M, Htun P, Strohm C, Kilian S, Schaper W. Inhibition of the cardiac p38-MAPK pathway by SB203580 delays ischemic cell death. J Cardiovasc Pharmacol 2000; 35:474-83. [PMID: 10710135 DOI: 10.1097/00005344-200003000-00019] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We report that SB203580 (SB), a specific inhibitor of p38-MAPK, protects pig myocardium against ischemic injury in an in vivo model. SB was applied by local infusion into the subsequently ischemic myocardium for 60 min before a 60-min period of coronary occlusion followed by 60-min reperfusion (index ischemia). Infarct size was reduced from a control value of 69.3 +/- 2.7% to 36.8 +/- 3.7%. When SB was infused systemically for 10 min before index ischemia, infarct size was reduced to 36.1 +/- 5.6%. We measured the content of phosphorylated p38-MAPK after systemic infusion of SB and Krebs-Henseleit buffer (KHB; negative control) and during the subsequent ischemic period using an antibody that reacts specifically with dual-phosphorylated p38-MAPK (Thr180/ Tyr182). Ischemia with and without SB significantly increased phospho-p38-MAPK, with a maximum reached at 20 min but was less at 30 and 45 min under the influence of the inhibitor. The systemic infusion of SB for 10 min before index ischemia did not significantly change the p38-MAPK activities (compared with vehicle, studied by in-gel phosphorylation) < or =20 min of ischemia, but activities were reduced at 30 and 45 min. Measurements of p38-MAPK activities in situations in which SB was present during in-gel phosphorylation showed significant inhibition of p38-MAPK activities. The systemic infusion of SB significantly inhibited the ischemia-induced phosphorylation of nuclear activating transcription factor 2 (ATF-2). Using a specific ATF-2 antibody, we did not observe significant changes in ATF-2 abundance when nuclear fractions from untreated, KHB-, and SB-treated tissues were compared. We investigated also the effect of local and systemic infusion of SB on the cardioprotection induced by ischemic preconditioning (IP). The infusions (local or systemic) of SB before and during the IP protocol did not influence the infarct size reduction mediated by IP. The observed protection of the myocardium against ischemic damage by SB points to the negative role of the p38-MAPK pathway during ischemia.
Collapse
Affiliation(s)
- M Barancik
- Department of Experimental Cardiology, Max-Planck-Institute for Physiological and Clinical Research, Bad Nauheim, Germany
| | | | | | | | | |
Collapse
|
327
|
Chen G, Porter MD, Bristol JR, Fitzgibbon MJ, Pazhanisamy S. Kinetic mechanism of the p38-alpha MAP kinase: phosphoryl transfer to synthetic peptides. Biochemistry 2000; 39:2079-87. [PMID: 10684658 DOI: 10.1021/bi9919495] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
p38 is a member of the mitogen-activated protein (MAP) kinase family. Activation (phosphorylation) of p38 acts as a switch for the transcriptional and translational regulation of a number of proteins, including the proinflammatory cytokines. Investigation of a set of small peptides revealed that, as with protein substrates, p38-alpha behaves as a proline-directed Ser/Thr MAP kinase for a peptide substrate, peptide 4 (IPTSPITTTYFFFKKK). We investigated the steady-state kinetic mechanism of the p38-alpha-catalyzed kinase reaction with EGF receptor peptide, peptide 1, as a substrate. Lineweaver-Burk analysis of the substrate kinetics yielded a family of lines intersecting to the left of the ordinate, with either ATP or peptide 1 as the varied substrate. Kinetic analysis in the presence of ADP yielded a competitive inhibition pattern when ATP was the varied substrate and a noncompetitive pattern if peptide 1 was the varied substrate. At saturating peptide substrate concentrations, inhibition by phosphopeptide product yielded an uncompetitive pattern when ATP was the varied substrate. These data are consistent with ordered binding with ATP as the initial substrate. We provide further evidence of the existence of a productive p38.ATP binary complex in that (a) activated p38-alpha has intrinsic ATPase activity, (b) ATPase and kinase activities are coupled, and (c) inhibitors of ATPase activity also inhibit the kinase activity with a similar inhibition constant. The k(cat) for the kinase reaction was lowered by 1.8-fold when ATP-gamma-S was used. Microviscosity linearly affected the k(cat) values of both the ATP and ATP-gamma-S reactions with a slope of about 0.8. These observations were interpreted to mean that the phosphoryl transfer step is not rate-limiting and that the release of product and/or enzyme isomerization is a possible rate-limiting step(s).
Collapse
Affiliation(s)
- G Chen
- Vertex Pharmaceuticals Inc., 130 Waverly Street, Cambridge, Massachusetts 02139-4242, USA
| | | | | | | | | |
Collapse
|
328
|
Chang LC, Wang JP. Activation of p38 mitogen-activated protein kinase by formyl-methionyl-leucyl-phenylalanine in rat neutrophils. Eur J Pharmacol 2000; 390:61-6. [PMID: 10708707 DOI: 10.1016/s0014-2999(00)00033-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The signaling pathways leading to p38 mitogen-activated protein kinase (MAPK) activation in formyl-methionyl-leucyl-phenylalanine (fMLP)-stimulated rat neutrophils were examined. Immunoblot analysis with antibodies against a phosphorylated form of p38 MAPK showed that fMLP-stimulated p38 MAPK activation was dependent on a pertussis toxin-sensitive G protein. Two phosphatidylinositol 3-kinase inhibitors, wortmannin and 2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one (LY294002), did not affect the p38 MAPK activation. Phosphorylation of p38 MAPK was concentration dependently attenuated by a tyrosine kinase inhibitor, genistein, and by a Ca(2+)-dependent protein kinase C inhibitor, 13-cyanoethyl-12-methyl-6,7,12,13-tetrahydroindolo[2,3-a]pyrrolo[3 , 4-c]carbazole-7-one (Gö6976). However, the protein kinase C inhibitors with a broader spectrum, 2-[1-(3-dimethylaminopropyl)-5-methoxy-1H-indol-3-yl]-3-(1H-indol-3-y l)-maleimide (Gö6983) and 2-[1-(3-dimethylaminopropyl)-1H-indol-3-yl]-3-(1H-indol-3-yl)-maleimi de (GF109203X), had no inhibitory effect. fMLP-stimulated p38 MAPK phosphorylation was also reduced in cells pretreated with a phospholipase C inhibitor, 1-[6-((17beta-3-methoxyestra-1,3, 5(10)-trien-17-yl)amino)hexyl]-1H-pyrrole-2,5-dione (U73122), or preloaded with an intracellular Ca(2+) chelator, 1, 2-bis-(o-aminophenoxy)-ethane-N,N,N',N'-tetraacetic acid (BAPTA). We conclude that phosphorylation of p38 MAPK by fMLP stimulation in rat neutrophils is dependent on G(i/o) protein, nonreceptor tyrosine kinase, phospholipase C/Ca(2+), and probably Ca(2+)-dependent protein kinase C pathways.
Collapse
Affiliation(s)
- L C Chang
- Department of Education and Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | | |
Collapse
|
329
|
Abstract
Reactive oxygen species are produced by all aerobic cells and are widely believed to play a pivotal role in aging as well as a number of degenerative diseases. The consequences of the generation of oxidants in cells does not appear to be limited to promotion of deleterious effects. Alterations in oxidative metabolism have long been known to occur during differentiation and development. Experimental perturbations in cellular redox state have been shown to exert a strong impact on these processes. The discovery of specific genes and pathways affected by oxidants led to the hypothesis that reactive oxygen species serve as subcellular messengers in gene regulatory and signal transduction pathways. Additionally, antioxidants can activate numerous genes and pathways. The burgeoning growth in the number of pathways shown to be dependent on oxidation or antioxidation has accelerated during the last decade. In the discussion presented here, we provide a tabular summary of many of the redox effects on gene expression and signaling pathways that are currently known to exist.
Collapse
Affiliation(s)
- R G Allen
- Lankenau Medical Research Center, Thomas Jefferson University, Wynnewood, PA 19106, USA
| | | |
Collapse
|
330
|
Huwiler A, Wartmann M, van den Bosch H, Pfeilschifter J. Extracellular nucleotides activate the p38-stress-activated protein kinase cascade in glomerular mesangial cells. Br J Pharmacol 2000; 129:612-8. [PMID: 10711362 PMCID: PMC1571861 DOI: 10.1038/sj.bjp.0703077] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1. Extracellular ATP and UTP have been reported to activate a nucleotide receptor (P2Y2-receptor) that mediates arachidonic acid release with subsequent prostaglandin formation, a reaction critically depending on the activity of a cytosolic phospholipase A2. In addition, extracellular nucleotides trigger activation of the classical mitogen-activated protein kinase (MAPK) cascade and cell proliferation as well as of the stress-activated protein kinase (SAPK) cascade. 2. In this study, we report that ATP and UTP are also able to activate the p38-MAPK pathway as measured by phosphorylation of the p38-MAPK and its upstream activators MKK3/6, as well as phosphorylation of the transcription factor ATF2 in a immunocomplex-kinase assay. 3. Time courses reveal that ATP and UTP induce a rapid and transient activation of the p38-MAPK activity with a maximal activation after 5 min of stimulation which declined to control levels over the next 20 min. 4. A series of ATP and UPT analogues were tested for their ability to stimulate p38-MAPK activity. UTP and ATP were very effective analogues to activate p38-MAPK, whereas ADP and gamma-thio-ATP had only moderate activating effects. 2-Methyl-thio-ATP, beta gamma-imido-ATP, AMP, adenosine and UDP had no significant effects of p38-MAPK activity. In addition, the extracellular nucleotide-mediated effect on p38-MAPK was almost completely blocked by 1 mM of suramin, a putative P2-purinoceptor antagonist. 5. In summary, these results demonstrate for the first time that extracellular nucleotides are able to activate the MKK3/6- p38-MAPK cascade most likely via the P2Y2-receptor. Moreover, this finding implies that all three MAPK subtypes are signalling candidates for extracellular nucleotide-stimulated cell responses.
Collapse
Affiliation(s)
- A Huwiler
- Zentrum der Pharmakologie, Klinikum der J.W. Goethe-Universität, Frankfurt am Main, Germany
| | | | | | | |
Collapse
|
331
|
Monno S, Newman MV, Cook M, Lowe WL. Insulin-like growth factor I activates c-Jun N-terminal kinase in MCF-7 breast cancer cells. Endocrinology 2000; 141:544-50. [PMID: 10650934 DOI: 10.1210/endo.141.2.7307] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Insulin-like growth factor I (IGF-I) is an important mediator of breast cancer cell growth, although the signaling pathways important for IGF-I-mediated effects in breast cancer cells are still being elucidated. We had demonstrated previously that increased intracellular cAMP in MCF-7 breast cancer cells inhibited cell growth and IGF-I-induced gene expression, as determined using a reporter gene assay. This effect of cAMP on IGF-I signaling was independent of IGF-I-induced activation of the mitogen-activated protein kinases extracellular signal-regulated kinases 1 and 2 (ERK1 and -2). To determine whether this effect of cAMP may be mediated via another mitogen-activated protein kinase, the ability of IGF-I to activate the c-Jun N-terminal kinases (JNKs) was investigated. Treatment of MCF-7 cells with 100 ng/ml IGF-I increased the level of phosphorylated JNK, as determined by Western blot analysis. JNK phosphorylation was not evident until 15 min after treatment with IGF-I, and peak levels of phosphorylation were present at 30-60 min. This was in contrast to ERK phosphorylation, which was present within 7.5 min of IGF-I treatment. Determination of JNK activity using an immune complex assay demonstrated a 3.3- and 3.5-fold increase in JNK1 and -2 activity, respectively, 30 min after treatment with 100 ng/ml IGF-I. The use of PD98059, which inhibits activation of ERK1 and -2, and LY 294002, an inhibitor of phosphatidylinositol 3-kinase, demonstrated that IGF-I-induced activation of JNK1 is independent of ERK and phosphatidylinositol 3-kinase activation. In contrast, increasing intracellular cAMP with forskolin resulted in abrogation of IGF-I-induced JNK activity. In summary, these data demonstrate that IGF-I activates the JNKs in MCF-7 breast cancer cells and, taken together with the results of our previous study, suggest that JNK may contribute to IGF-I-mediated gene expression and, possibly, cell growth in MCF-7 breast cancer cells.
Collapse
Affiliation(s)
- S Monno
- Center for Endocrinology, Metabolism, and Molecular Medicine, Department of Medicine, Veterans Administration Chicago Healthcare System-Lakeside Division and Northwestern University Medical School, Illinois 60611, USA
| | | | | | | |
Collapse
|
332
|
Chevalier D, Thorin E, Allen BG. Simultaneous measurement of ERK, p38, and JNK MAP kinase cascades in vascular smooth muscle cells. J Pharmacol Toxicol Methods 2000; 44:429-39. [PMID: 11325585 PMCID: PMC5291723 DOI: 10.1016/s1056-8719(00)00118-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Activation of the mitogen-activated protein kinase (MAP kinase) pathways in cultured porcine aortic vascular smooth muscle cells (VSMCs) was determined following a 5-min stimulation with endothelin-1 (ET-1), phorbol 12-myristate 13-acetate (PMA), H2O2, or sodium arsenite. Extracellular signal-related kinase (ERK1/2), p38, and c-Jun N-terminal kinase (JNK1/2) MAP kinase activation was assessed using anti-phospho-MAPK kinase antibodies. The activation of these kinase cascades was also determined by resolving lysates on Mono Q using a fast protein liquid chromatography (FPLC) system and measuring the phosphorylation of specific substrates ERK1, c-Jun, and hsp27. The substrates were subsequently resolved from each other and the [gamma-32P]ATP in the reaction mixture by SDS-polyacrylamide gel electrophoresis (SDS-PAGE) and the incorporation of 32P was quantified by phosphor imaging. This technique revealed the presence of multiple peaks of activity phosphorylating ERK1 (5), c-Jun (7), and hsp27 (9). Differences in activation revealed by the chromatographic technique suggest that, although equivalent levels of activation may be detected by immunoblotting, the actual nature of the response differed depending upon the stimulus. Each stimulus that activated the MAP kinase cascades did not result in equivalent 'profile' of activation of kinase activities. These results suggest the presence of a mechanism of structural organization of the MAP kinase signaling molecules themselves resulting in the compartmentalization of responses with respect to the various cellular stimuli.
Collapse
Affiliation(s)
- Dominique Chevalier
- Centre de Recherche, Institut de Cardiologie de Montréal, 5000 rue Bélanger est, Montréal, PQ, Canada H1T 1C8
| | - Eric Thorin
- Centre de Recherche, Institut de Cardiologie de Montréal, 5000 rue Bélanger est, Montréal, PQ, Canada H1T 1C8
- Departments of Surgery and Physiology, Université de Montréal, Montréal, PQ, Canada H3C 3J7
| | - Bruce G. Allen
- Centre de Recherche, Institut de Cardiologie de Montréal, 5000 rue Bélanger est, Montréal, PQ, Canada H1T 1C8
- Departments of Medicine and Biochemistry, Université de Montréal, Montréal, PQ, Canada H3C 3J7
- Corresponding author. Centre de Recherche, Institut de Cardiologie de Montréal, 5000 rue Bélanger est, Montréal, PQ, Canada H1T 1C8. Tel.: +1-514-376-3330 ext. 3591; fax: +1-514-376-1355. (B.G. Allen)
| |
Collapse
|
333
|
Kunz J, Wilson MP, Kisseleva M, Hurley JH, Majerus PW, Anderson RA. The activation loop of phosphatidylinositol phosphate kinases determines signaling specificity. Mol Cell 2000; 5:1-11. [PMID: 10678164 DOI: 10.1016/s1097-2765(00)80398-6] [Citation(s) in RCA: 125] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Phosphatidylinositol-4,5-bisphosphate plays a pivotal role in the regulation of cell proliferation and survival, cytoskeletal reorganization, and membrane trafficking. However, little is known about the temporal and spatial regulation of its synthesis. Higher eukaryotic cells have the potential to use two distinct pathways for the generation of phosphatidylinositol-4,5-bisphosphate. These pathways require two classes of phosphatidylinositol phosphate kinases, termed type I and type II PIP kinases. While highly related by sequence, these kinases localize to different subcellular compartments, phosphorylate distinct substrates, and are functionally nonredundant. Here, we show that a 20- to 25-amino acid loop spanning the catalytic site, termed the activation loop, determines both enzymatic specificity and subcellular targeting of PIP kinases. Therefore, the activation loop controls signaling specificity and PIP kinase function at multiple levels.
Collapse
Affiliation(s)
- J Kunz
- Department of Pharmacology, University of Wisconsin Medical School, Madison 53706, USA
| | | | | | | | | | | |
Collapse
|
334
|
Guan Z, Buckman SY, Springer LD, Morrison AR. Both p38alpha(MAPK) and JNK/SAPK pathways are important for induction of nitric-oxide synthase by interleukin-1beta in rat glomerular mesangial cells. J Biol Chem 1999; 274:36200-6. [PMID: 10593906 DOI: 10.1074/jbc.274.51.36200] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Interleukin 1beta (IL-1beta) induces expression of the inducible nitric-oxide synthase (iNOS) with concomitant release of nitric oxide (NO) from glomerular mesangial cells. These events are preceded by activation of the c-Jun NH(2)-terminal kinase/stress-activated protein kinase (JNK/SAPK) and p38(MAPK). Our current study demonstrates that overexpression of the dominant negative form of JNK1 or p54 SAPKbeta/JNK2 significantly reduces the iNOS protein expression and NO production induced by IL-1beta. Similarly, overexpression of the kinase-dead mutant form of p38alpha(MAPK) also inhibits IL-1beta-induced iNOS expression and NO production. In previous studies we demonstrated that IL-1beta can activate MKK4/SEK1, MKK3, and MKK6 in renal mesangial cells; therefore, we examined the role of these MAPK kinases in the modulation of iNOS induced by IL-1beta. Overexpression of the dominant negative form of MKK4/SEK1 decreases IL-1beta-induced iNOS expression and NO production with inhibition of both SAPK/JNK and p38(MAPK) phosphorylation. Overexpression of the kinase-dead mutant form of MKK3 or MKK6 demonstrated that either of these two mutant kinase inhibited IL-1beta-induced p38(MAPK) (but not JNK/SAPK) phosphorylation and iNOS expression. Interestingly overexpression of wild type MKK3/6 was associated with phosphorylation of p38(MAPK); however, in the absence of IL-1beta, iNOS expression was not enhanced. This study suggests that the activation of both SAPK/JNK and p38alpha(MAPK) signaling cascades are necessary for the IL-1beta-induced expression of iNOS and production of NO in renal mesangial cells.
Collapse
Affiliation(s)
- Z Guan
- Department of Medicine and Molecular Biology and Pharmacology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | |
Collapse
|
335
|
Gum RJ, Young PR. Identification of two distinct regions of p38 MAPK required for substrate binding and phosphorylation. Biochem Biophys Res Commun 1999; 266:284-9. [PMID: 10581204 DOI: 10.1006/bbrc.1999.1787] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The mechanism by which different mitogen activated protein kinases (MAPKs) distinguish between different substrates is poorly understood. For example, p38 and SAPK4 are two closely related p38 MAPKs that both phosphorylate ATF2 and MBP. However, p38 phosphorylates MAPKAPK-2 and -3, whereas SAPK4 does not. In this study, we have used mutagenesis to determine the regions of p38 required for substrate selection. Alanine scanning mutagenesis identified one region of p38 that was required for its ability to phosphorylate MAPKAPK-2 and -3, but that did not significantly affect its binding to these substrates. Chimeras of p38 and SAPK4 identified a second region of p38 that affected the ability of p38 to both bind and phosphorylate MAPKAPK-2 and -3. Hence, we show for the first time that MAPKs contain two distinct regions for recognizing and phosphorylating protein substrates.
Collapse
Affiliation(s)
- R J Gum
- Department of Molecular Biology, SmithKline Beecham Pharmaceuticals, King of Prussia, PA19406, USA
| | | |
Collapse
|
336
|
Abstract
The cell signaling pathways that culminate in activation of a family of stress-activated MAP kinases are beginning to be defined. Determination of cell life and cell death is known to largely depend on the balance of intrinsic life and death signals within cells. Recently, two representative mammalian stress-activated kinases, the JNK and p38 MAP kinases, have been implicated in determination of cell fate by modifying the life, death and differentiation signals. However, the molecular mechanisms by which extracellular signals are transmitted from membrane receptors to the most upstream kinases in the JNK and p38 signaling modules are not fully understood. This review will provide an overview of current knowledge of molecular links between inflammatory cytokine receptors and stress-activated MAP kinase cascades.
Collapse
Affiliation(s)
- H Ichijo
- Department of Biomaterials Science, Faculty of Dentistry, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549, Japan
| |
Collapse
|
337
|
Ivaska J, Reunanen H, Westermarck J, Koivisto L, Kähäri VM, Heino J. Integrin alpha2beta1 mediates isoform-specific activation of p38 and upregulation of collagen gene transcription by a mechanism involving the alpha2 cytoplasmic tail. J Cell Biol 1999; 147:401-16. [PMID: 10525544 PMCID: PMC2174225 DOI: 10.1083/jcb.147.2.401] [Citation(s) in RCA: 177] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Two collagen receptors, integrins alpha1beta1 and alpha2beta1, can regulate distinct functions in cells. Ligation of alpha1beta1, unlike alpha2beta1, has been shown to result in recruitment of Shc and activation of the Ras/ERK pathway. To identify the downstream signaling molecules activated by alpha2beta1 integrin, we have overexpressed wild-type alpha2, or chimeric alpha2 subunit with alpha1 integrin cytoplasmic domain in human osteosarcoma cells (Saos-2) lacking endogenous alpha2beta1. The chimeric alpha2/alpha1 chain formed a functional heterodimer with beta1. In contrast to alpha2/alpha1 chimera, forced expression of alpha2 integrin resulted in upregulation of alpha1 (I) collagen gene transcription in response to three-dimensional collagen, indicating that the cytoplasmic domain of alpha2 integrin was required for signaling. Furthermore, signals mediated by alpha2beta1 integrin specifically activated the p38alpha isoform, and selective p38 inhibitors blocked upregulation of collagen gene transcription. Dominant negative mutants of Cdc42, MKK3, and MKK4 prevented alpha2beta1 integrin-mediated activation of p38alpha. RhoA had also some inhibitory effect, whereas dominant negative Rac was not effective. Our findings show the isoform-specific activation of p38 by alpha2beta1 integrin ligation and identify Cdc42, MKK3, and MKK4 as possible downstream effectors. These observations reveal a novel signaling mechanism of alpha2beta1 integrin that is distinct from ones previously described for other integrins.
Collapse
Affiliation(s)
- Johanna Ivaska
- MediCity Research Laboratory, Department of Medical Biochemistry, University of Turku, FIN-20520 Turku
| | - Hilkka Reunanen
- Department of Biological and Environmental Science, University of Jyväskylä, FIN-40351 Jyväskylä, Finland
| | - Jukka Westermarck
- MediCity Research Laboratory, Department of Medical Biochemistry, University of Turku, FIN-20520 Turku
| | - Leeni Koivisto
- MediCity Research Laboratory, Department of Medical Biochemistry, University of Turku, FIN-20520 Turku
| | - Veli-Matti Kähäri
- MediCity Research Laboratory, Department of Medical Biochemistry, University of Turku, FIN-20520 Turku
- Department of Dermatology, Turku University Central Hospital, FIN 20520 Turku
| | - Jyrki Heino
- MediCity Research Laboratory, Department of Medical Biochemistry, University of Turku, FIN-20520 Turku
- Department of Biological and Environmental Science, University of Jyväskylä, FIN-40351 Jyväskylä, Finland
| |
Collapse
|
338
|
Pugazhenthi S, Miller E, Sable C, Young P, Heidenreich KA, Boxer LM, Reusch JE. Insulin-like growth factor-I induces bcl-2 promoter through the transcription factor cAMP-response element-binding protein. J Biol Chem 1999; 274:27529-35. [PMID: 10488088 DOI: 10.1074/jbc.274.39.27529] [Citation(s) in RCA: 151] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Insulin-like growth factor-I (IGF-I) is known to prevent apoptosis induced by diverse stimuli. The present study examined the effect of IGF-I on the promoter activity of bcl-2, a gene with antiapoptotic function. A luciferase reporter driven by the promoter region of bcl-2 from -1640 to -1287 base pairs upstream of the translation start site containing a cAMP-response element was used in transient transfection assays. Treatment of PC12 cells with IGF-I enhanced the bcl-2 promoter activity by 2.3-fold, which was inhibited significantly (p < 0.01) by SB203580, an inhibitor of p38 mitogen-activated protein kinase (MAPK). Cotransfection of the bcl-2 promoter with MAPK kinase 6 and the beta isozyme of p38 MAPK resulted in 2-3-fold increase in the reporter activity. The dominant negative form of MAPKAP-K3, a downstream kinase activated by p38 MAPK, and the dominant negative form of cAMP-response element-binding protein, inhibited the reporter gene activation by IGF-I and p38beta MAPK significantly (p < 0.01). IGF-I increased the activity of p38beta MAPK introduced into the cells by adenoviral infection. Thus, we have characterized a novel signaling pathway (MAPK kinase 6/p38beta MAPK/MAPKAP-K3) that defines a transcriptional mechanism for the induction of the antiapoptotic protein Bcl-2 by IGF-I through the nuclear transcription factor cAMP-response element-binding protein in PC12 cells.
Collapse
Affiliation(s)
- S Pugazhenthi
- Section of Endocrinology, Veterans Affairs Medical Center, Denver, Colorado 80220, USA
| | | | | | | | | | | | | |
Collapse
|
339
|
Hsu SC, Gavrilin MA, Tsai MH, Han J, Lai MZ. p38 mitogen-activated protein kinase is involved in Fas ligand expression. J Biol Chem 1999; 274:25769-76. [PMID: 10464315 DOI: 10.1074/jbc.274.36.25769] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
p38 mitogen-activated protein kinase (MAPK) is activated by T cell receptor engagement. Here we showed that T cell receptor activated p38alpha but not p38delta. Inhibition of p38alpha by the specific inhibitor SB 203580 prevented activation-induced cell death in T cells. SB 203580 had no effect on Fas-initiated apoptosis. Instead, SB 203580 preferentially inhibited activation-induced Fas ligand (FasL) expression. The inhibition on FasL expression by SB 203580 was correlated with the suppression on the FasL promoter activation. Overexpression of active MAPK kinase 3b, the activator of p38 MAPK, led to activation of FasL promoter and induction of FasL transcripts in T cells. Stress stimulation of T cells by anisomycin also induced FasL expression in a p38 MAPK-dependent manner. The induction of FasL expression in nonlymphoid cells such as 293T also required activation of p38 MAPK. Our results suggest that p38 MAPK is essential for FasL expression.
Collapse
Affiliation(s)
- S C Hsu
- Graduate Institute of Microbiology, National Taiwan University School of Medicine, Taipei 10018, Taiwan, R.O.C
| | | | | | | | | |
Collapse
|
340
|
Matthews JS, O'Neill LA. Distinct roles for p42/p44 and p38 mitogen-activated protein kinases in the induction of IL-2 by IL-1. Cytokine 1999; 11:643-55. [PMID: 10479400 DOI: 10.1006/cyto.1998.0478] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Interleukin 1 (IL-1) activates p42/p44 and p38 mitogen-activated protein kinases (MAP kinases) in target cells. Here we have used two specific inhibitors, PD98059 which inhibits MAP kinase kinase (MEK), and SB203580 which inhibits p38 MAP kinase to explore the involvement of these kinases in the induction of IL-2 by IL-1 in the murine thymoma cell line EL4.NOB-1. Both kinase inhibitors suppressed IL-1-stimulated IL-2 production. PD98059 blocked IL-2 mRNA accumulation and the induction of a reporter gene linked to the IL-2 promoter. In contrast, SB203580 only marginally inhibited IL-2 promoter-linked reporter gene expression and had no inhibitory effect on IL-2 mRNA levels. Neither PD98059 nor SB203580 had an inhibitory effect on NFkappaB-driven reporter gene expression in response to IL-1. Surprisingly, higher concentrations of SB203580 (30 microM) potentiated the IL-1 responses. PD98059 also inhibited induction of IL-2 by phorbol 12-myristate 13-acetate (PMA), and AP1-linked reporter gene expression in response to PMA but not IL-1. These results indicate that p42/p44 MAP kinase is involved in the regulation of IL-2 gene transcription by IL-1, whilst p38 MAP kinase has a post-transcriptional target. Additional IL-1 signalling pathways can clearly compensate for the lack of p38 MAP kinase which result in potentiation of the IL-1 responses observed at high-dose SB203580.
Collapse
Affiliation(s)
- J S Matthews
- Department of Biochemistry, Trinity College, Dublin 2, Ireland.
| | | |
Collapse
|
341
|
Kozawa O, Tokuda H, Matsuno H, Uematsu T. Involvement of p38 mitogen-activated protein kinase in basic fibroblast growth factor-induced interleukin-6 synthesis in osteoblasts. J Cell Biochem 1999. [DOI: 10.1002/(sici)1097-4644(19990901)74:3<479::aid-jcb15>3.0.co;2-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
342
|
Conrad PW, Rust RT, Han J, Millhorn DE, Beitner-Johnson D. Selective activation of p38alpha and p38gamma by hypoxia. Role in regulation of cyclin D1 by hypoxia in PC12 cells. J Biol Chem 1999; 274:23570-6. [PMID: 10438538 DOI: 10.1074/jbc.274.33.23570] [Citation(s) in RCA: 148] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hypoxic/ischemic trauma is a primary factor in the pathology of a multitude of disease states. The effects of hypoxia on the stress- and mitogen-activated protein kinase signaling pathways were studied in PC12 cells. Exposure to moderate hypoxia (5% O(2)) progressively stimulated phosphorylation and activation of p38gamma in particular, and also p38alpha, two stress-activated protein kinases. In contrast, hypoxia had no effect on enzyme activity of p38beta, p38beta(2), p38delta, or on c-Jun N-terminal kinase, another stress-activated protein kinase. Prolonged hypoxia also induced phosphorylation and activation of p42/p44 mitogen-activated protein kinase, although this activation was modest compared with nerve growth factor- and ultraviolet light-induced activation. Hypoxia also dramatically down-regulated immunoreactivity of cyclin D1, a gene that is known to be regulated negatively by p38 at the level of gene expression (Lavoie, J. N., L'Allemain, G., Brunet, A., Muller, R., and Pouyssegur, J. (1996) J. Biol. Chem. 271, 20608-20616). This effect was partially blocked by SB203580, an inhibitor of p38alpha but not p38gamma. Overexpression of a kinase-inactive form of p38gamma was also able to reverse in part the effect of hypoxia on cyclin D1 levels, suggesting that p38alpha and p38gamma converge to regulate cyclin D1 during hypoxia. These studies demonstrate that an extremely typical physiological stress (hypoxia) causes selective activation of specific p38 signaling elements; and they also identify a downstream target of these pathways.
Collapse
Affiliation(s)
- P W Conrad
- Department of Molecular and Cellular Physiology, College of Medicine, University of Cincinnati, Cincinnati, Ohio 45267-0576, USA
| | | | | | | | | |
Collapse
|
343
|
Hetman M, Kanning K, Cavanaugh JE, Xia Z. Neuroprotection by brain-derived neurotrophic factor is mediated by extracellular signal-regulated kinase and phosphatidylinositol 3-kinase. J Biol Chem 1999; 274:22569-80. [PMID: 10428835 DOI: 10.1074/jbc.274.32.22569] [Citation(s) in RCA: 449] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Apoptosis is a form of programmed cell death that plays a pivotal role during development and in the homeostasis of the adult nervous systems. However, mechanisms that regulate neuronal apoptosis are not well defined. Here, we report that brain-derived neurotrophic factor (BDNF) protects cortical neurons against apoptosis induced by camptothecin or serum deprivation and activates the extracellular-signal-regulated kinase (ERK) and the phosphatidylinositol 3-kinase (PI 3-kinase) pathways. Using pharmacological agents and transient transfection with dominant interfering or constitutive active components of the ERK or the PI 3-kinase pathway, we demonstrate that the ERK pathway plays a major role in BDNF neuroprotection against camptothecin. Furthermore, ERK is activated in cortical neurons during camptothecin-induced apoptosis, and inhibition of ERK increases apoptosis. In contrast, the PI 3-kinase pathway is the dominant survival mechanism for serum-dependent survival under normal culture conditions and for BDNF protection against serum withdrawal. These results suggest that the ERK pathway is one of several neuroprotective mechanisms that are activated by stress to counteract death signals in central nervous system neurons. Furthermore, the relative contribution of the ERK and PI 3-kinase pathways to neuronal survival may depend on the type of cellular injury.
Collapse
Affiliation(s)
- M Hetman
- Toxicology Program, Department of Environmental Health, the Graduate Program in Neurobiology and Behavior, the Graduate Program in Molecular and Cell Biology, University of Washington, Seattle, Washington 98195-7234, USA
| | | | | | | |
Collapse
|
344
|
Abstract
Inflammatory and autoimmune diseases, including rheumatoid arthritis, inflammatory bowel diseases, multiple sclerosis, psoriasis and asthma, provide drug discoverers with a tremendous challenge. The precise causes of these diseases are not known, but our understanding of the molecular and cellular mechanisms associated with inflammatory diseases has increased dramatically. As a consequence, a wide array of gene targets have emerged that control cell influx and activation, inflammatory mediator release and activity, and tissue proliferation and degradation. Since multiple gene products have been identified at the sites of inflammation, there has been a surge of interest in identifying intracellular signaling targets, including transcription factors that control inflammatory gene expression and which are amenable to drug discovery.
Collapse
Affiliation(s)
- A J Lewis
- Signal Pharmaceuticals Inc., 5555 Oberlin Drive, San Diego, CA 92121, USA.
| | | |
Collapse
|
345
|
Itoh S, Hattori T, Hayashi H, Mizutani Y, Todo M, Takii T, Yang D, Lee JC, Matsufuji S, Murakami Y, Chiba T, Onozaki K. Antiproliferative Effect of IL-1 Is Mediated by p38 Mitogen-Activated Protein Kinase in Human Melanoma Cell A375. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.162.12.7434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Abstract
The role of p38 mitogen-activated protein kinase (MAPK) in IL-1-induced growth inhibition was investigated using IL-1-sensitive human melanoma A375-C2-1 cells and IL-1-resistant A375-R8 cells. In both cells, p38 MAPK was activated by IL-1. A selective inhibitor for p38 MAPK, SB203580, almost completely recovered the IL-1-induced growth inhibition in A375-C2-1 cells. IL-1-induced IL-6 production was also suppressed by SB203580. However, the reversal effect of SB203580 was not due to the suppression of IL-6 production because the SB203580 effect was still observed in the presence of exogenous IL-6. Down-regulation of ornithine decarboxylase (ODC) activity as well as its protein level has been shown to be essential for IL-1-induced growth inhibition. SB203580 also reversed the IL-1-induced down-regulation of ODC activity and intracellular polyamine levels without affecting ODC mRNA levels in A375-C2-1 cells. In IL-1-resistant R8 cells, however, IL-1 only slightly suppressed ODC activity. In A375-C2-1 cells, the mRNA expression level of antizyme (AZ), a regulatory factor of ODC activity, has been shown to be up-regulated by IL-1. IL-1-induced up-regulation of AZ mRNA level was not affected by SB203580. These findings demonstrate that p38 MAPK plays an important role in IL-1-induced growth inhibition in A375 cells through down-regulating ODC activity without affecting the level of ODC mRNA and AZ mRNA. In IL-1-resistant A375-R8 cells, IL-1 signaling pathway is deficient between p38 MAPK activation and down-regulation of ODC activity.
Collapse
Affiliation(s)
- Saotomo Itoh
- *Department of Hygienic Chemistry, Faculty of Pharmaceutical Sciences, Nagoya City University, Mizuho, Nagoya, Japan
| | - Takayuki Hattori
- *Department of Hygienic Chemistry, Faculty of Pharmaceutical Sciences, Nagoya City University, Mizuho, Nagoya, Japan
| | - Hidetoshi Hayashi
- *Department of Hygienic Chemistry, Faculty of Pharmaceutical Sciences, Nagoya City University, Mizuho, Nagoya, Japan
| | - Yukiko Mizutani
- *Department of Hygienic Chemistry, Faculty of Pharmaceutical Sciences, Nagoya City University, Mizuho, Nagoya, Japan
| | - Makoto Todo
- *Department of Hygienic Chemistry, Faculty of Pharmaceutical Sciences, Nagoya City University, Mizuho, Nagoya, Japan
| | - Takemasa Takii
- *Department of Hygienic Chemistry, Faculty of Pharmaceutical Sciences, Nagoya City University, Mizuho, Nagoya, Japan
| | - De Yang
- *Department of Hygienic Chemistry, Faculty of Pharmaceutical Sciences, Nagoya City University, Mizuho, Nagoya, Japan
| | - John C. Lee
- †SmithKline Beecham, King of Prussia, PA 19406; and
| | - Senya Matsufuji
- ‡Department of Biochemistry II, Jikei University of Medicine, Minato-ku, Tokyo, Japan
| | - Yasuko Murakami
- ‡Department of Biochemistry II, Jikei University of Medicine, Minato-ku, Tokyo, Japan
| | - Taku Chiba
- *Department of Hygienic Chemistry, Faculty of Pharmaceutical Sciences, Nagoya City University, Mizuho, Nagoya, Japan
| | - Kikuo Onozaki
- *Department of Hygienic Chemistry, Faculty of Pharmaceutical Sciences, Nagoya City University, Mizuho, Nagoya, Japan
| |
Collapse
|
346
|
Wilsbacher JL, Goldsmith EJ, Cobb MH. Phosphorylation of MAP kinases by MAP/ERK involves multiple regions of MAP kinases. J Biol Chem 1999; 274:16988-94. [PMID: 10358048 DOI: 10.1074/jbc.274.24.16988] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mitogen-activated protein (MAP) kinases are activated with great specificity by MAP/ERK kinases (MEKs). The basis for the specific activation is not understood. In this study chimeras composed of two MAP kinases, extracellular signal-regulated protein kinase 2 and p38, were assayed in vitro for phosphorylation and activation by different MEK isoforms to probe the requirements for productive interaction of MAP kinases with MEKs. Experimental results and modeling support the conclusion that the specificity of MEK/MAP kinase phosphorylation results from multiple contacts, including surfaces in both the N- and C-terminal domains.
Collapse
Affiliation(s)
- J L Wilsbacher
- Department of Pharmacology, The University of Texas Southwestern Medical Center, Dallas, Texas 75235-9041, USA
| | | | | |
Collapse
|
347
|
Abstract
MAP kinases help to mediate diverse processes ranging from transcription of protooncogenes to programmed cell death. More than a dozen mammalian MAP kinase family members have been discovered and include, among others, the well studied ERKs and several stress-sensitive enzymes. MAP kinases lie within protein kinase cascades. Each cascade consists of no fewer than three enzymes that are activated in series. Cascades convey information to effectors, coordinates incoming information from other signaling pathways, amplify signals, and allow for a variety of response patterns. Subcellular localization of enzymes in the cascades is an important aspect of their mechanisms of action and contributes to cell-type and ligand-specific responses. Recent findings on these properties of MAP kinase cascades are the major focus of this review.
Collapse
Affiliation(s)
- M H Cobb
- Department of Pharmacology, U.T. Southwestern Medical Center, Dallas, TX 75235-9041, USA
| |
Collapse
|
348
|
Deacon K, Blank JL. MEK kinase 3 directly activates MKK6 and MKK7, specific activators of the p38 and c-Jun NH2-terminal kinases. J Biol Chem 1999; 274:16604-10. [PMID: 10347227 DOI: 10.1074/jbc.274.23.16604] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase kinase kinase 3 (MEKK3) activates the c-Jun NH2-terminal kinase (JNK) pathway, although no substrates for MEKK3 have been identified. We have examined the regulation by MEKK3 of MAPK kinase 7 (MKK7) and MKK6, two novel MAPK kinases specific for JNK and p38, respectively. Coexpression of MKK7 with MEKK3 in COS-7 cells enhanced MKK7 autophosphorylation and its ability to activate recombinant JNK1 in vitro. MKK6 autophosphorylation and in vitro activation of p38alpha were also observed following coexpression of MKK6 with MEKK3. MEKK2, a closely related homologue of MEKK3, also activated MKK7 and MKK6 in COS-7 cells. Importantly, immunoprecipitates of either MEKK3 or MEKK2 directly activated recombinant MKK7 and MKK6 in vitro. These data identify MEKK3 as a MAPK kinase kinase specific for MKK7 and MKK6 in the JNK and p38 pathways. We have also examined whether MEKK3 or MEKK2 activates p38 in intact cells using MAPK-activated protein kinase-2 (MAPKAPK2) as an affinity ligand and substrate. Anisomycin, sorbitol, or the expression of MEKK3 in HEK293 cells enhanced MAPKAPK2 phosphorylation, whereas MEKK2 was less effective. Furthermore, MAPKAPK2 phosphorylation induced by MEKK3 or cellular stress was abolished by the p38 inhibitor SB-203580, suggesting that MEKK3 is coupled to p38 activation in intact cells.
Collapse
Affiliation(s)
- K Deacon
- Department of Cell Physiology and Pharmacology, University of Leicester School of Medicine, P. O. Box 138, Medical Sciences Building, University Road, Leicester LE1 9HN, United Kingdom
| | | |
Collapse
|
349
|
Arnould T, Sellin L, Benzing T, Tsiokas L, Cohen HT, Kim E, Walz G. Cellular activation triggered by the autosomal dominant polycystic kidney disease gene product PKD2. Mol Cell Biol 1999; 19:3423-34. [PMID: 10207066 PMCID: PMC84135 DOI: 10.1128/mcb.19.5.3423] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is caused by germ line mutations in at least three ADPKD genes. Two recently isolated ADPKD genes, PKD1 and PKD2, encode integral membrane proteins of unknown function. We found that PKD2 upregulated AP-1-dependent transcription in human embryonic kidney 293T cells. The PKD2-mediated AP-1 activity was dependent upon activation of the mitogen-activated protein kinases p38 and JNK1 and protein kinase C (PKC) epsilon, a calcium-independent PKC isozyme. Staurosporine, but not the calcium chelator BAPTA [1,2-bis(o-aminophenoxy)ethane-N,N,N', N'-tetraacetate], inhibited PKD2-mediated signaling, consistent with the involvement of a calcium-independent PKC isozyme. Coexpression of PKD2 with the interacting C terminus of PKD1 dramatically augmented PKD2-mediated AP-1 activation. The synergistic signaling between PKD1 and PKD2 involved the activation of two distinct PKC isozymes, PKC alpha and PKC epsilon, respectively. Our findings are consistent with others that support a functional connection between PKD1 and PKD2 involving multiple signaling pathways that converge to induce AP-1 activity, a transcription factor that regulates different cellular programs such as proliferation, differentiation, and apoptosis. Activation of these signaling cascades may promote the full maturation of developing tubular epithelial cells, while inactivation of these signaling cascades may impair terminal differentiation and facilitate the development of renal tubular cysts.
Collapse
Affiliation(s)
- T Arnould
- Department of Medicine, Renal Division Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, USA
| | | | | | | | | | | | | |
Collapse
|
350
|
Lee JC, Kassis S, Kumar S, Badger A, Adams JL. p38 mitogen-activated protein kinase inhibitors--mechanisms and therapeutic potentials. Pharmacol Ther 1999; 82:389-97. [PMID: 10454214 DOI: 10.1016/s0163-7258(99)00008-x] [Citation(s) in RCA: 281] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The pyridinylimidazole compounds, exemplified by SB 203580, originally were prepared as inflammatory cytokine synthesis inhibitors. Subsequently, the compounds were found to be selective inhibitors for p38 mitogen-activated protein kinase (MAPK), a member of the MAPK family. SB 203580 inhibits the catalytic activity of p38 MAPK by competitive binding in the ATP pocket. Four homologues of p38 MAPK have been identified to date, and interestingly, their biochemical properties and their respective sensitivities to the inhibitors are distinct. X-ray crystallographic analysis of p38-inhibitor complexes reinforces the observations made from site-directed mutagenesis studies, thereby providing a molecular basis for understanding the kinase selectivity of these inhibitors. The p38 MAPK inhibitors are efficacious in several disease models, including inflammation, arthritis and other joint diseases, septic shock, and myocardial injury.
Collapse
Affiliation(s)
- J C Lee
- Smithkline Beecham Pharmaceuticals, King of Prussia, PA 19406, USA
| | | | | | | | | |
Collapse
|