301
|
Saint-Jore-Dupas C, Nebenführ A, Boulaflous A, Follet-Gueye ML, Plasson C, Hawes C, Driouich A, Faye L, Gomord V. Plant N-glycan processing enzymes employ different targeting mechanisms for their spatial arrangement along the secretory pathway. THE PLANT CELL 2006; 18:3182-200. [PMID: 17138701 PMCID: PMC1693952 DOI: 10.1105/tpc.105.036400] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2005] [Revised: 08/31/2006] [Accepted: 11/02/2006] [Indexed: 05/12/2023]
Abstract
The processing of N-linked oligosaccharides in the secretory pathway requires the sequential action of a number of glycosidases and glycosyltransferases. We studied the spatial distribution of several type II membrane-bound enzymes from Glycine max, Arabidopsis thaliana, and Nicotiana tabacum. Glucosidase I (GCSI) localized to the endoplasmic reticulum (ER), alpha-1,2 mannosidase I (ManI) and N-acetylglucosaminyltransferase I (GNTI) both targeted to the ER and Golgi, and beta-1,2 xylosyltransferase localized exclusively to Golgi stacks, corresponding to the order of expected function. ManI deletion constructs revealed that the ManI transmembrane domain (TMD) contains all necessary targeting information. Likewise, GNTI truncations showed that this could apply to other type II enzymes. A green fluorescent protein chimera with ManI TMD, lengthened by duplicating its last seven amino acids, localized exclusively to the Golgi and colocalized with a trans-Golgi marker (ST52-mRFP), suggesting roles for protein-lipid interactions in ManI targeting. However, the TMD lengths of other plant glycosylation enzymes indicate that this mechanism cannot apply to all enzymes in the pathway. In fact, removal of the first 11 amino acids of the GCSI cytoplasmic tail resulted in relocalization from the ER to the Golgi, suggesting a targeting mechanism relying on protein-protein interactions. We conclude that the localization of N-glycan processing enzymes corresponds to an assembly line in the early secretory pathway and depends on both TMD length and signals in the cytoplasmic tail.
Collapse
Affiliation(s)
- Claude Saint-Jore-Dupas
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 6037, IFRMP 23, GDR 2590, UFR des Sciences, Université de Rouen, 76821 Mont-Saint-Aignan Cedex, France
| | | | | | | | | | | | | | | | | |
Collapse
|
302
|
Pompa A, Vitale A. Retention of a bean phaseolin/maize gamma-Zein fusion in the endoplasmic reticulum depends on disulfide bond formation. THE PLANT CELL 2006; 18:2608-21. [PMID: 17041149 PMCID: PMC1626613 DOI: 10.1105/tpc.106.042226] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Most seed storage proteins of the prolamin class accumulate in the endoplasmic reticulum (ER) as large insoluble polymers termed protein bodies (PBs), through mechanisms that are still poorly understood. We previously showed that a fusion between the Phaseolus vulgaris vacuolar storage protein phaseolin and the N-terminal half of the Zea mays prolamin gamma-zein forms ER-located PBs. Zeolin has 6 Cys residues and, like gamma-zein with 15 residues, is insoluble unless reduced. The contribution of disulfide bonds to zeolin destiny was determined by studying in vivo the effects of 2-mercaptoethanol (2-ME) and by zeolin mutagenesis. We show that in tobacco (Nicotiana tabacum) protoplasts, 2-ME enhances interactions of newly synthesized proteins with the ER chaperone BiP and inhibits the secretory traffic of soluble proteins with or without disulfide bonds. In spite of this general inhibition, 2-ME enhances the solubility of zeolin and relieves its retention in the ER, resulting in increased zeolin traffic. Consistently, mutated zeolin unable to form disulfide bonds is soluble and efficiently enters the secretory traffic without 2-ME treatment. We conclude that disulfide bonds that lead to insolubilization are a determinant for PB-mediated protein accumulation in the ER.
Collapse
Affiliation(s)
- Andrea Pompa
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche, 20133 Milano, Italy
| | | |
Collapse
|
303
|
Rollwitz I, Santaella M, Hille D, Flügge UI, Fischer K. Characterization of AtNST-KT1, a novel UDP-galactose transporter from Arabidopsis thaliana. FEBS Lett 2006; 580:4246-51. [PMID: 16831428 DOI: 10.1016/j.febslet.2006.06.082] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2006] [Revised: 06/21/2006] [Accepted: 06/23/2006] [Indexed: 10/24/2022]
Abstract
Nucleotide sugar transporters (NST) mediate the transfer of nucleotide sugars from the cytosol into the lumen of the endoplasmatic reticulum and the Golgi apparatus. Because the NSTs show similarities with the plastidic phosphate translocators (pPTs), these proteins were grouped into the TPT/NST superfamily. In this study, a member of the NST-KT family, AtNST-KT1, was functionally characterized by expression of the corresponding cDNA in yeast cells and subsequent transport experiments. The histidine-tagged protein was purified by affinity chromatography and reconstituted into proteoliposomes. The substrate specificity of AtNST-KT1 was determined by measuring the import of radiolabelled nucleotide mono phosphates into liposomes preloaded with various unlabelled nucleotide sugars. This approach has the advantage that only one substrate has to be used in a radioactively labelled form while all the nucleotide sugars can be provided unlabelled. It turned out that AtNST-KT1 represents a monospecific NST transporting UMP in counterexchange with UDP-Gal but did not transport other nucleotide sugars. The AtNST-KT1 gene is ubiquitously expressed in all tissues. AtNST-KT1 is localized to Golgi membranes. Thus, AtNST-KT1 is most probably involved in the synthesis of galactose-containing glyco-conjugates in plants.
Collapse
Affiliation(s)
- Inga Rollwitz
- Botanisches Institut, Universität zu Köln, Gyrhofstrasse 15, 50931 Köln, Germany
| | | | | | | | | |
Collapse
|
304
|
Påhlman LI, Mörgelin M, Eckert J, Johansson L, Russell W, Riesbeck K, Soehnlein O, Lindbom L, Norrby-Teglund A, Schumann RR, Björck L, Herwald H. Streptococcal M Protein: A Multipotent and Powerful Inducer of Inflammation. THE JOURNAL OF IMMUNOLOGY 2006; 177:1221-8. [PMID: 16818781 DOI: 10.4049/jimmunol.177.2.1221] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Severe infections with Streptococcus pyogenes, an important human pathogen, are associated with massive inflammatory reactions in the human host. Here we show that streptococcal M protein interacts with TLR2 on human peripheral blood monocytes. As a consequence, monocytes express the cytokines IL-6, IL-1beta, and TNF-alpha. This response is significantly increased in the presence of neutrophil-derived heparin-binding protein (HBP), which co-stimulates monocytes by interacting with CD11/CD18. Analysis of tissue biopsies from patients with necrotizing fasciitis revealed recruitment of neutrophils and monocytes to the infectious site, combined with the release of HBP. The results show that M protein, in synergy with HBP, evokes an inflammatory response that may contribute to the profound pathophysiological consequences seen in severe streptococcal infections.
Collapse
Affiliation(s)
- Lisa I Påhlman
- Department of Clinical Sciences, Section for Clinical and Experimental Infection Medicine, Biomedicinskt Centrum B14, Lund University, Tornavägen 10, SE-221 84 Lund, Sweden
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
305
|
Sieburth LE, Muday GK, King EJ, Benton G, Kim S, Metcalf KE, Meyers L, Seamen E, Van Norman JM. SCARFACE encodes an ARF-GAP that is required for normal auxin efflux and vein patterning in Arabidopsis. THE PLANT CELL 2006; 18:1396-411. [PMID: 16698946 PMCID: PMC1475492 DOI: 10.1105/tpc.105.039008] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
To identify molecular mechanisms controlling vein patterns, we analyzed scarface (sfc) mutants. sfc cotyledon and leaf veins are largely fragmented, unlike the interconnected networks in wild-type plants. SFC encodes an ADP ribosylation factor GTPase activating protein (ARF-GAP), a class with well-established roles in vesicle trafficking regulation. Quadruple mutants of SCF and three homologs (ARF-GAP DOMAIN1, 2, and 4) showed a modestly enhanced vascular phenotype. Genetic interactions between sfc and pinoid and between sfc and gnom suggest a possible function for SFC in trafficking of auxin efflux regulators. Genetic analyses also revealed interaction with cotyledon vascular pattern2, suggesting that lipid-based signals may underlie some SFC ARF-GAP functions. To assess possible roles for SFC in auxin transport, we analyzed sfc roots, which showed exaggerated responses to exogenous auxin and higher auxin transport capacity. To determine whether PIN1 intracellular trafficking was affected, we analyzed PIN1:green fluorescent protein (GFP) dynamics using confocal microscopy in sfc roots. We found normal PIN1:GFP localization at the apical membrane of root cells, but treatment with brefeldin A resulted in PIN1 accumulating in smaller and more numerous compartments than in the wild type. These data suggest that SFC is required for normal intracellular transport of PIN1 from the plasma membrane to the endosome.
Collapse
Affiliation(s)
- Leslie E Sieburth
- Department of Biology, University of Utah, Salt Lake City, Utah, 84112, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
306
|
Gutjahr C, Nick P. Acrylamide inhibits gravitropism and affects microtubules in rice coleoptiles. PROTOPLASMA 2006; 227:211-22. [PMID: 16736259 DOI: 10.1007/s00709-005-0140-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2005] [Accepted: 06/15/2005] [Indexed: 05/09/2023]
Abstract
To find components which participate in gravitropic signal transmission, we screened different cell biological inhibitors for their effect on gravitropic bending of rice coleoptiles. Acrylamide, which is known to affect intermediate filaments in mammalian cells, strongly inhibited gravitropic bending at concentrations that did not inhibit growth of coleoptile segments. This inhibition was reversible. Investigating the acrylamide effect further, we found that it interferes with an event that occurs around 15 min after the onset of stimulation. We also observed that acrylamide inhibits polar indolyl-3-acetic acid transport. Furthermore, acrylamide efficiently eliminated microtubules, whereas actin filaments remained intact. To our knowledge this is the first report of effects of monoacrylamide in plant cells.
Collapse
Affiliation(s)
- C Gutjahr
- Institut für Biologie II, Albert-Ludwigs-Universität Freiburg, Freiburg im Breisgau.
| | | |
Collapse
|
307
|
Hause G, Samaj J, Menzel D, Baluska F. Fine Structural Analysis of Brefeldin A-Induced Compartment Formation After High-Pressure Freeze Fixation of Maize Root Epidermis: Compound Exocytosis Resembling Cell Plate Formation during Cytokinesis. PLANT SIGNALING & BEHAVIOR 2006; 1:134-9. [PMID: 19521493 PMCID: PMC2635009 DOI: 10.4161/psb.1.3.2996] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2006] [Accepted: 05/09/2006] [Indexed: 05/23/2023]
Abstract
Formation of large perinuclear brefeldin A (BFA)-induced compartments is a characteristic feature of root apex cells, but it does not occur in shoot apex cells. BFA-induced compartments have been studied mostly using low resolution fluorescence microscopy techniques. Here, we have employed a high-resolution ultrastructural method based on ultra rapid freeze fixation of samples in order to study the formation of BFA-induced compartments in intact maize root epidermis cells in detail. This approach reveals five novel findings. Firstly, plant TGN/PGN elements are not tubular networks, as generally assumed, but rather vesicular compartments. Secondly, TGN/PGN vesicles interact with one another extensively via stalk-like connections and even fuse together via bridge-like structures. Thirdly, BFA-induced compartments are formed via extensive homotypic fusions of the TGN/PGN vesicles. Fourthly, multivesicular bodies (MVBs) are present within the BFA-induced compartments. Fifthly, mitochondria and small vacuoles accummulate abundantly around the large perinuclear BFA-induced compartments.
Collapse
Affiliation(s)
- G Hause
- Microscopy Unit; Biocenter; Martin-Luther-University Halle-Wittenberg; Halle, Germany
| | | | | | | |
Collapse
|
308
|
Hawtin SR. Pharmacological Chaperone Activity of SR49059 to Functionally Recover Misfolded Mutations of the Vasopressin V1a Receptor. J Biol Chem 2006; 281:14604-14. [PMID: 16565083 DOI: 10.1074/jbc.m511610200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Pharmacological chaperones represent a new class of ligand with the potential to facilitate the delivery of misfolded, but still active, G-protein-coupled receptors to the cell surface. Using transfected HEK 293T cells, treatment with a nonpeptide antagonist, SR49059, dramatically increased ( approximately 60-fold) the surface expression of a misfolded, nonfunctional and intracellularly localized vasopressin V(1a) receptor (V(1a)R) mutant (D148A). This rescue of surface expression (111 +/- 7%) was almost identical to wild type assessed by confocal microscopy and quantitative enzyme-linked immunosorbent assay-based techniques. Recovery was not specific to D148A, since other surface-impaired mutations, D148N and D148E, and wild type were also increased following SR49059 exposure. However, surface delivery was specific to SR49059, since V(1a)R-selective peptide ligands or unrelated ligands were unable to mimic this action, suggesting that SR49059 acts intracellularly. SR49059-mediated surface rescue was time-, mutant-, and concentration-dependent but not directly related to its binding affinity. Maximal recovery was achieved following 12 h of treatment and did not involve de novo receptor synthesis or a consequence of preventing endogenous constitutive activity and/or internalization. Once at the surface, all mutants displayed enhanced signaling ability, and D148A was able to undergo agonist-mediated internalization. SR49059 was not effectively removed from the receptor, since signaling (EC(50)) of both wild type and D148A was reduced approximately 40-fold. This is the first report of a pharmacological chaperone ligand to act on misfolded mutant V(1a) Rs. This work provides an excellent model to understand the mechanistic action of an important new class of drug that may have potential in the treatment of diseases caused by inherited mutations.
Collapse
Affiliation(s)
- Stuart R Hawtin
- Institute of Cell Signalling, School of Biomedical Sciences, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, United Kingdom.
| |
Collapse
|
309
|
Sutter JU, Campanoni P, Tyrrell M, Blatt MR. Selective mobility and sensitivity to SNAREs is exhibited by the Arabidopsis KAT1 K+ channel at the plasma membrane. THE PLANT CELL 2006; 18:935-54. [PMID: 16531497 PMCID: PMC1425843 DOI: 10.1105/tpc.105.038950] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2005] [Revised: 02/13/2006] [Accepted: 02/17/2006] [Indexed: 05/07/2023]
Abstract
Recent findings indicate that proteins in the SNARE superfamily are essential for cell signaling, in addition to facilitating vesicle traffic in plant cell homeostasis, growth, and development. We previously identified SNAREs SYP121/Syr1 from tobacco (Nicotiana tabacum) and the Arabidopsis thaliana homolog SYP121 associated with abscisic acid and drought stress. Disrupting tobacco SYP121 function by expressing a dominant-negative Sp2 fragment had severe effects on growth, development, and traffic to the plasma membrane, and it blocked K(+) and Cl(-) channel responses to abscisic acid in guard cells. These observations raise questions about SNARE control in exocytosis and endocytosis of ion channel proteins and their organization within the plane of the membrane. We have used a dual, in vivo tagging strategy with a photoactivatable green fluorescent protein and externally exposed hemagglutinin epitopes to monitor the distribution and trafficking dynamics of the KAT1 K(+) channel transiently expressed in tobacco leaves. KAT1 is localized to the plasma membrane within positionally stable microdomains of approximately 0.5 microm in diameter; delivery of the K(+) channel, but not of the PMA2 H(+)-ATPase, to the plasma membrane is suppressed by Sp2 fragments of tobacco and Arabidopsis SYP121, and Sp2 expression leads to profound changes in KAT1 distribution and mobility within the plane of the plasma membrane. These results offer direct evidence for SNARE-mediated traffic of the K(+) channel and a role in its distribution within subdomains of the plasma membrane, and they implicate a role for SNAREs in positional anchoring of the K(+) channel protein.
Collapse
Affiliation(s)
- Jens-Uwe Sutter
- Laboratory of Plant Physiology and Biophysics, Institute of Biomedical and Life Sciences-Plant Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | | | | | | |
Collapse
|
310
|
Kong SG, Suzuki T, Tamura K, Mochizuki N, Hara-Nishimura I, Nagatani A. Blue light-induced association of phototropin 2 with the Golgi apparatus. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2006; 45:994-1005. [PMID: 16507089 DOI: 10.1111/j.1365-313x.2006.02667.x] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Phototropins 1 and 2 (phot1 and phot2) function as blue light (BL) photoreceptors for phototropism, chloroplast relocation, stomatal opening and leaf flattening in Arabidopsis thaliana. Phototropin consists of two functional domains, the N-terminal photosensory domain and the C-terminal Ser/Thr kinase domain. However, little is known about the signal transduction pathway that links the photoreceptors and the physiological responses downstream of BL perception. To understand the mechanisms by which phot2 initiates these responses, we transformed the phot1phot2 double mutant of Arabidopsis with constructs encoding translationally fused phot2:green fluorescent protein (P2G). P2G was fully functional for the phot2-specific physiological responses in these transgenic plants. It localized strongly to the plasma membrane and weakly to the cytoplasm in the dark. Upon illumination with BL, punctate P2G staining was formed within a few minutes in addition to the constitutive plasma membrane staining. This punctate distribution pattern matched well with that of the Golgi-localized KAM1DeltaC:mRFP. Brefeldin A (BFA), an inhibitor of vesicle trafficking, induced accumulation of P2G around the perinuclear region even in darkness, but the punctate pattern was not observed. After treatment of these cells with BL, P2G exhibited the punctate distribution pattern that matched with that of the Golgi marker. Hence, the light-dependent association of P2G with the Golgi apparatus was BFA-insensitive. A structure/function analysis indicated that the kinase domain was essential for the Golgi localization of phot2. The BL-induced Golgi localization of phot2 may be one of important signaling steps in the phot2 signal transduction pathway.
Collapse
Affiliation(s)
- Sam-Geun Kong
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | | | | | | | | | | |
Collapse
|
311
|
Dettmer J, Hong-Hermesdorf A, Stierhof YD, Schumacher K. Vacuolar H+-ATPase activity is required for endocytic and secretory trafficking in Arabidopsis. THE PLANT CELL 2006; 18:715-30. [PMID: 16461582 PMCID: PMC1383645 DOI: 10.1105/tpc.105.037978] [Citation(s) in RCA: 678] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
In eukaryotic cells, compartments of the highly dynamic endomembrane system are acidified to varying degrees by the activity of vacuolar H(+)-ATPases (V-ATPases). In the Arabidopsis thaliana genome, most V-ATPase subunits are encoded by small gene families, thus offering potential for a multitude of enzyme complexes with different kinetic properties and localizations. We have determined the subcellular localization of the three Arabidopsis isoforms of the membrane-integral V-ATPase subunit VHA-a. Colocalization experiments as well as immunogold labeling showed that VHA-a1 is preferentially found in the trans-Golgi network (TGN), the main sorting compartment of the secretory pathway. Uptake experiments with the endocytic tracer FM4-64 revealed rapid colocalization with VHA-a1, indicating that the TGN may act as an early endosomal compartment. Concanamycin A, a specific V-ATPase inhibitor, blocks the endocytic transport of FM4-64 to the tonoplast, causes the accumulation of FM4-64 together with newly synthesized plasma membrane proteins, and interferes with the formation of brefeldin A compartments. Furthermore, nascent cell plates are rapidly stained by FM4-64, indicating that endocytosed material is redirected into the secretory flow after reaching the TGN. Together, our results suggest the convergence of the early endocytic and secretory trafficking pathways in the TGN.
Collapse
Affiliation(s)
- Jan Dettmer
- Center for Plant Molecular Biology-Plant Physiology, Universität Tübingen, 72076 Tübingen, Germany
| | | | | | | |
Collapse
|
312
|
Villanueva RA, Rouillé Y, Dubuisson J. Interactions between virus proteins and host cell membranes during the viral life cycle. ACTA ACUST UNITED AC 2006; 245:171-244. [PMID: 16125548 PMCID: PMC7112339 DOI: 10.1016/s0074-7696(05)45006-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The structure and function of cells are critically dependent on membranes, which not only separate the interior of the cell from its environment but also define the internal compartments. It is therefore not surprising that the major steps of the life cycle of viruses of animals and plants also depend on cellular membranes. Indeed, interactions of viral proteins with host cell membranes are important for viruses to enter into host cells, replicate their genome, and produce progeny particles. To replicate its genome, a virus first needs to cross the plasma membrane. Some viruses can also modify intracellular membranes of host cells to create a compartment in which genome replication will take place. Finally, some viruses acquire an envelope, which is derived either from the plasma membrane or an internal membrane of the host cell. This paper reviews recent findings on the interactions of viral proteins with host cell membranes during the viral life cycle.
Collapse
Affiliation(s)
- Rodrigo A Villanueva
- CNRS-UPR2511, Institut de Biologie de Lille, Institut Pasteur de Lille, 59021 Lille Cedex, France
| | | | | |
Collapse
|
313
|
|
314
|
Endoplasmic Reticulum-associated Protein Degradation in Plant Cells. PLANT CELL MONOGRAPHS 2006. [DOI: 10.1007/7089_066] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
315
|
Abstract
Multivesicular endosomes or prevacuolar compartments (PVCs) are membrane-bound organelles that play an important role in mediating protein traffic in the secretory and endocytic pathways of eukaryotic cells. PVCs function as an intermediate compartment for sorting proteins from the Golgi apparatus to vacuoles, sending missorted proteins back to the Golgi from the PVC, and receiving proteins from plasma membrane in the endocytic pathway. PVCs have been identified as multivesicular bodies in mammalian cells and yeast and more recently in plant cells. Whereas much is known about PVC-mediated protein trafficking and PVC biogenesis in mammalian cells and yeast, relatively little is known about the molecular mechanism of plant PVCs. In this review, we summarize and discuss our understanding of the plant PVC and compare it with its counterparts in yeast and mammalian cells.
Collapse
Affiliation(s)
- Beixin Mo
- Department of Biology and Molecular Biotechnology Program, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | | | | |
Collapse
|
316
|
Otegui MS, Verbrugghe KJ, Skop AR. Midbodies and phragmoplasts: analogous structures involved in cytokinesis. Trends Cell Biol 2005; 15:404-13. [PMID: 16009554 PMCID: PMC3677513 DOI: 10.1016/j.tcb.2005.06.003] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2005] [Revised: 06/09/2005] [Accepted: 06/24/2005] [Indexed: 12/21/2022]
Abstract
Cytokinesis is an event common to all organisms that involves the precise coordination of independent pathways involved in cell-cycle regulation and microtubule, membrane, actin and organelle dynamics. In animal cells, the spindle midzone/midbody with associated endo-membrane system are required for late cytokinesis events, including furrow ingression and scission. In plants, cytokinesis is mediated by the phragmoplast, an array of microtubules, actin filaments and associated molecules that act as a framework for the future cell wall. In this article (which is part of the Cytokinesis series), we discuss recent studies that highlight the increasing number of similarities in the components and function of the spindle midzone/midbody in animals and the phragmoplast in plants, suggesting that they might be analogous structures.
Collapse
Affiliation(s)
- Marisa S Otegui
- Department of Botany, University of Wisconsin-Madison, 430 Lincoln Drive, Madison, WI 53706, USA
| | | | | |
Collapse
|
317
|
Hörmanseder K, Obermeyer G, Foissner I. Disturbance of endomembrane trafficking by brefeldin A and calyculin A reorganizes the actin cytoskeleton of Lilium longiflorum pollen tubes. PROTOPLASMA 2005; 227:25-36. [PMID: 16389491 DOI: 10.1007/s00709-005-0132-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2005] [Accepted: 05/31/2005] [Indexed: 05/06/2023]
Abstract
We investigated the effect of brefeldin A on membrane trafficking and the actin cytoskeleton of pollen tubes of Lilium longiflorum with fluorescent dyes, inhibitor experiments, and confocal laser scanning microscopy. The formation of a subapical brefeldin A-induced membrane aggregation (BIA) was associated with the formation of an actin basket from which filaments extended towards the tip. The orientation of these actin filaments correlated with the trajectories of membrane material stained by FM dyes, suggesting that the BIA-associated actin filaments are used as tracks for retrograde transport. Analysis of time series indicated that these tracks (actin filaments) were either stationary or glided along the plasma membrane towards the BIA together with the attached membranes or organelles. Disturbance of the actin cytoskeleton by cytochalasin D or latrunculin B caused immediate arrest of membrane trafficking, dissipation of the BIA and the BIA-associated actin basket, and reorganization into randomly oriented actin rods. Our observations suggest that brefeldin A causes ectopic activation of actin-nucleating proteins at the BIA, resulting in retrograde movement of membranes not only along but also together with actin filaments. We show further that subapical membrane aggregations and actin baskets supporting retrograde membrane flow can also be induced by calyculin A, indicating that dephosphorylation by type 2 protein phosphatases is required for proper formation of membrane coats and polar membrane trafficking.
Collapse
Affiliation(s)
- K Hörmanseder
- Fachbereich Molekulare Biologie, Universität Salzburg, Hellbrunnerstrasse, Salzburg, Austria
| | | | | |
Collapse
|
318
|
Xu J, Scheres B. Cell polarity: ROPing the ends together. CURRENT OPINION IN PLANT BIOLOGY 2005; 8:613-8. [PMID: 16182602 DOI: 10.1016/j.pbi.2005.09.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2005] [Accepted: 09/12/2005] [Indexed: 05/04/2023]
Abstract
Cell polarity plays an important role in plant development, but the mechanisms that first establish polarity cues remain obscure. By contrast, a flurry of information has recently emerged on the elaboration of cell shape from such unknown initial cell-polarity cues. Recent studies suggest that Rho-related GTPases in plants (ROPs), and their effector targets among the ROP-interactive CRIB motif-containing proteins (RICs), mediate two antagonistic pathways that have opposing action on cell polarization. ROP proteins appear to interact directly with upstream regulators of the ARP2/3 complex, which are conserved modulators of the actin cytoskeleton. ROP function is dependent on the class 1 ADP-ribosylation factors (ARFs), which are core components of the vesicle transport machinery that are also involved in the polar localization of PIN-FORMED (PIN) family auxin efflux facilitators.
Collapse
Affiliation(s)
- Jian Xu
- Department of Molecular Genetics, Utrecht University, Padualaan 8, 3584CH Utrecht, The Netherlands
| | | |
Collapse
|
319
|
Wang Q, Kong L, Hao H, Wang X, Lin J, Samaj J, Baluska F. Effects of brefeldin A on pollen germination and tube growth. Antagonistic effects on endocytosis and secretion. PLANT PHYSIOLOGY 2005; 139:1692-703. [PMID: 16299176 PMCID: PMC1310552 DOI: 10.1104/pp.105.069765] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
We assessed the effects of brefeldin A (BFA) on pollen tube development in Picea meyeri using fluorescent marker FM4-64 as a membrane-inserted endocytic/recycling marker, together with ultrastructural studies and Fourier transform infrared analysis of cell walls. BFA inhibited pollen germination and pollen tube growth, causing morphological changes in a dose-dependent manner, and pollen tube tip growth recovered after transferring into BFA-free medium. FM4-64 labeling showed typical bright apical staining in normally growing P. meyeri pollen tubes; this apical staining pattern differed from the V-formation pattern found in angiosperm pollen tubes. Confocal microscopy revealed that exocytosis was greatly inhibited in the presence of BFA. In contrast, the overall uptake of FM4-64 dye was about 2-fold that in the control after BFA (5 microg mL(-1)) treatment, revealing that BFA stimulated endocytosis in a manner opposite to the induced changes in exocytosis. Transmission electron microscopic observation showed that the number of secretory vesicles at the apical zone dramatically decreased, together with the disappearance of paramural bodies, while the number of vacuoles and other larger organelles increased. An acid phosphatase assay confirmed that the addition of BFA significantly inhibited secretory pathways. Importantly, Fourier transform infrared microspectroscopy documented significant changes in the cell wall composition of pollen tubes growing in the presence of BFA. These results suggest that enhanced endocytosis, together with inhibited secretion, is responsible for the retarded growth of pollen tubes induced by BFA.
Collapse
Affiliation(s)
- Qinli Wang
- Key Laboratory of Photosynthesis and Molecular Environment Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | | | | | | | | | | | | |
Collapse
|
320
|
Struck NS, de Souza Dias S, Langer C, Marti M, Pearce JA, Cowman AF, Gilberger TW. Re-defining the Golgi complex inPlasmodium falciparumusing the novel Golgi markerPfGRASP. J Cell Sci 2005; 118:5603-13. [PMID: 16306223 DOI: 10.1242/jcs.02673] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Plasmodium falciparum, the causative agent of malaria, relies on a sophisticated protein secretion system for host cell invasion and transformation. Although the parasite displays a secretory pathway similar to those of all eukaryotic organisms, a classical Golgi apparatus has never been described. We identified and characterised the putative Golgi matrix protein PfGRASP, a homologue of the Golgi re-assembly stacking protein (GRASP) family. We show that PfGRASP is expressed as a 70 kDa protein throughout the asexual life cycle of the parasite. We generated PfGRASP-GFP-expressing transgenic parasites and showed that this protein is localised to a single, juxtanuclear compartment in ring-stage parasites. The PfGRASP compartment is distinct from the ER, restricted within the boundaries of the parasite and colocalises with the cis-Golgi marker ERD2. Correct subcellular localisation of this Golgi matrix protein depends on a cross-species conserved functional myristoylation motif and is insensitive to Brefeldin A. Taken together our results define the Golgi apparatus in Plasmodium and depict the morphological organisation of the organelle throughout the asexual life cycle of the parasite.
Collapse
Affiliation(s)
- Nicole S Struck
- Bernhard Nocht Institute for Tropical Medicine, Malaria II, Bernhard-Nocht-Str. 74, 20359 Hamburg, Germany
| | | | | | | | | | | | | |
Collapse
|
321
|
Latijnhouwers M, Hawes C, Carvalho C, Oparka K, Gillingham AK, Boevink P. An Arabidopsis GRIP domain protein locates to the trans-Golgi and binds the small GTPase ARL1. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2005; 44:459-70. [PMID: 16236155 DOI: 10.1111/j.1365-313x.2005.02542.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
GRIP domain proteins are a class of golgins that have been described in yeast and animals. They locate to the trans-Golgi network and are thought to play a role in endosome-to-Golgi trafficking. The Arabidopsis GRIP domain protein, AtGRIP, fused to the green fluorescent protein (GFP), locates to Golgi stacks but does not exactly co-locate with the Golgi marker sialyl transferase (ST)-mRFP, nor with the t-SNAREs Memb11, SYP31 and BS14a. We conclude that the location of AtGRIP is further to the trans side of the stack than STtmd-mRFP. The 185-aa C-terminus of AtGRIP containing the GRIP domain targeted GFP to the Golgi, although a proportion of the fusion protein was still found in the cytosol. Mutation of a conserved tyrosine (Y717) to alanine in the GRIP domain disrupted Golgi localization. ARL1 is a small GTPase required for Golgi targeting of GRIP domain proteins in other systems. An Arabidopsis ARL1 homologue was isolated and shown to target to Golgi stacks. The GDP-restricted mutant of ARL1, AtARL1-T31N, was observed to locate partially to the cytosol, whereas the GTP-restricted mutant AtARL1-Q71L labelled the Golgi and a population of small structures. Increasing the levels of AtARL1 in epidermal cells increased the proportion of GRIP-GFP fusion protein on Golgi stacks. We show, moreover, that AtARL1 interacted with the GRIP domain in a GTP-dependent manner in vitro in affinity chromatography and in the yeast two-hybrid system. This indicates that AtGRIP and AtARL1 interact directly. We conclude that the pathway involving ARL1 and GRIP domain golgins is conserved in plants.
Collapse
Affiliation(s)
- Maita Latijnhouwers
- Cell-to-Cell Communication Programme, Scottish Crop Research Institute, Invergowrie, Dundee DD2 5DA, UK
| | | | | | | | | | | |
Collapse
|
322
|
Melo RCN, Spencer LA, Perez SAC, Ghiran I, Dvorak AM, Weller PF. Human eosinophils secrete preformed, granule-stored interleukin-4 through distinct vesicular compartments. Traffic 2005; 6:1047-57. [PMID: 16190985 PMCID: PMC2715427 DOI: 10.1111/j.1600-0854.2005.00344.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Secretion of interleukin-4 (IL-4) by leukocytes is important for varied immune responses including allergic inflammation. Within eosinophils, unlike lymphocytes, IL-4 is stored in granules (termed specific granules) and can be rapidly released by brefeldin A (BFA)-inhibitable mechanisms upon stimulation with eotaxin, a chemokine that activates eosinophils. In studying eotaxin-elicited IL-4 secretion, we identified at the ultrastructural level distinct vesicular IL-4 transport mechanisms. Interleukin-4 traffics from granules via two vesicular compartments, large vesiculotubular carriers, which we term eosinophil sombrero vesicles (EoSV), and small classical spherical vesicles. These two vesicles may represent alternative pathways for transport to the plasma membrane. Loci of both secreted IL-4 and IL-4-loaded vesicles were imaged at the plasma membranes by a novel EliCell assay using a fluoronanogold probe. Three dimensional electron tomographic reconstructions revealed EoSVs to be folded, flattened and elongated tubules with substantial membrane surfaces. As documented with quantitative electron microscopy, eotaxin-induced significant formation of EoSVs while BFA pretreatment suppressed eotaxin-elicited EoSVs. Electron tomography showed that both EoSVs and small vesicles interact with and arise from granules in response to stimulation. Thus, this intracellular vesicular system mediates the rapid mobilization and secretion of preformed IL-4 by activated eosinophils. These findings, highlighting the participation of large tubular carriers, provide new insights into vesicular trafficking of cytokines.
Collapse
Affiliation(s)
- Rossana C. N. Melo
- Laboratory of Cellular Biology, Department of Biology, Federal University of Juiz de Fora, UFJF, Juiz de Fora, MG, Brazil
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Lisa A. Spencer
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Sandra A. C. Perez
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Ionita Ghiran
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Ann M. Dvorak
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Peter F. Weller
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
323
|
Norambuena L, Nilo R, Handford M, Reyes F, Marchant L, Meisel L, Orellana A. AtUTr2 is an Arabidopsis thaliana nucleotide sugar transporter located in the Golgi apparatus capable of transporting UDP-galactose. PLANTA 2005; 222:521-9. [PMID: 15891899 DOI: 10.1007/s00425-005-1557-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2005] [Accepted: 04/02/2005] [Indexed: 05/02/2023]
Abstract
The synthesis of noncellulosic polysaccharides and glycoproteins in the plant cell Golgi apparatus requires UDP-galactose as a substrate. We have cloned and characterized a nucleotide sugar transporter from Arabidopsis thaliana (L.) Heynh. named AtUTr2. Expression in tobacco and Saccharomyces cerevisiae and subsequent biochemical characterization indicate that AtUTr2 transports UDP-galactose, but not UDP-glucose, UDP-N-acetyl glucosamine, UDP-xylose, UDP-glucuronic acid, GDP-fucose or GDP-mannose. Experiments expressing an AtUTr2-GFP fusion protein in onion epidermal cells suggest that AtUTr2 is located in the Golgi apparatus. Finally, northern analysis indicates that the AtUTr2 transcript was more abundant in roots and calli although it was also present in other Arabidopsis organs but at lower levels. Therefore, AtUTr2 is a nucleotide sugar transporter capable of transporting UDP-galactose that may play an important role in the synthesis of galactose-containing glycoconjugates in Arabidopsis.
Collapse
Affiliation(s)
- Lorena Norambuena
- Plant Cell Biology Millennium Nucleus, Department of Biology, Faculty of Science, University of Chile and Centre of Plant Biotechnology, University Andrés Bello, Republica 217, Santiago, Chile.
| | | | | | | | | | | | | |
Collapse
|
324
|
Baluska F, Liners F, Hlavacka A, Schlicht M, Van Cutsem P, McCurdy DW, Menzel D. Cell wall pectins and xyloglucans are internalized into dividing root cells and accumulate within cell plates during cytokinesis. PROTOPLASMA 2005; 225:141-55. [PMID: 16228896 DOI: 10.1007/s00709-005-0095-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2004] [Accepted: 12/10/2004] [Indexed: 05/04/2023]
Abstract
Recently, we have reported that cell wall pectins are internalized into apical meristem root cells. In cells exposed to the fungal metabolite brefeldin A, all secretory pathways were inhibited, while endocytic pathways remained intact, resulting in accumulation of internalized cell wall pectins within brefeldin A-induced compartments. Here we report that, in addition to the already published cell wall epitopes, rhamnogalacturonan I and xyloglucans also undergo large-scale internalization into dividing root cells. Interestingly, multilamellar endosomes were identified as compartments internalizing arabinan cell wall pectins reactive to the 6D7 antibody, while large vacuole-like endosomes internalized homogalacturonans reactive to the 2F4 antibody. As all endosomes belong topographically to the exocellular space, cell wall pectins deposited in these "cell wall islands", enclosed by the plasma-membrane-derived membrane, are ideally suited to act as temporary stores for rapid formation of cell wall and generation of new plasma membrane. In accordance with this notion, we report that all cell wall pectins and xyloglucans that internalize into endosomes are highly enriched within cytokinetic cell plates and accumulate within brefeldin A compartments. On the other hand, only small amounts of the pectins reactive to the JIM7 antibody, which are produced in the Golgi apparatus, localize to cell plates and they do not accumulate within brefeldin A compartments. In conclusion, meristematic root cells have developed pathways for internalization and recycling of cell wall molecules which are relevant for plant-specific cytokinesis.
Collapse
Affiliation(s)
- F Baluska
- Institut für Zelluläre und Molekulare Botanik, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | | | | | | | | | | | | |
Collapse
|
325
|
Skalski M, Coppolino MG. SNARE-mediated trafficking of α5β1 integrin is required for spreading in CHO cells. Biochem Biophys Res Commun 2005; 335:1199-210. [PMID: 16112083 DOI: 10.1016/j.bbrc.2005.07.195] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2005] [Accepted: 07/25/2005] [Indexed: 12/29/2022]
Abstract
In this study, the role of SNARE-mediated membrane traffic in regulating integrin localization was examined and the requirement for SNARE function in cellular spreading was quantitatively assessed. Membrane traffic was inhibited with the VAMP-specific catalytic light chain from tetanus toxin (TeTx-LC), a dominant-negative form (E329Q) of N-ethylmaleimide-sensitive fusion protein (NSF), and brefeldin A (BfA). Inhibition of membrane traffic with either E329Q-NSF or TeTx-LC, but not BfA, significantly inhibited spreading of CHO cells on fibronectin. Spreading was rescued in TeTx-LC-expressing cells by co-transfection with a TeTx-resistant cellubrevin/VAMP3. E329Q-NSF, a general inhibitor of SNARE function, was a more potent inhibitor of cell spreading than TeTx-LC, suggesting that tetanus toxin-insensitive SNAREs contribute to adhesion. It was found that E329Q-NSF prevented trafficking of alpha5beta1 integrins from a central Rab11-containing compartment to sites of protrusion during cell adhesion, while TeTx-LC delayed this trafficking. These results are consistent with a model of cellular adhesion that implicates SNARE function as an important component of integrin trafficking during the process of cell spreading.
Collapse
Affiliation(s)
- Michael Skalski
- Department of Molecular and Cellular Biology, University of Guleph, Guelph, Ont., Canada N1G 2W1
| | | |
Collapse
|
326
|
Aniento F, Robinson DG. Testing for endocytosis in plants. PROTOPLASMA 2005; 226:3-11. [PMID: 16231096 DOI: 10.1007/s00709-005-0101-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2005] [Accepted: 03/30/2005] [Indexed: 05/04/2023]
Abstract
For many years endocytosis has been regarded with great scepsis by plant physiologists. Although now generally accepted, care must still be taken with experiments designed to demonstrate endocytic uptake at the plasma membrane. We have taken a critical look at the various agents which are in use as markers for plant endocytosis, pointing out pitfalls and precautions which should be taken. We also take this opportunity to introduce the tyrphostins--tyrosine kinase inhibitors--, which also seem to prevent endocytosis in plants.
Collapse
Affiliation(s)
- F Aniento
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Valencia, Valencia
| | | |
Collapse
|
327
|
Melo RC, Perez SA, Spencer LA, Dvorak AM, Weller PF. Intragranular vesiculotubular compartments are involved in piecemeal degranulation by activated human eosinophils. Traffic 2005; 6:866-79. [PMID: 16138901 PMCID: PMC2715425 DOI: 10.1111/j.1600-0854.2005.00322.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Eosinophils, leukocytes involved in allergic, inflammatory and immunoregulatory responses, have a distinct capacity to rapidly secrete preformed granule-stored proteins through piecemeal degranulation (PMD), a secretion process based on vesicular transport of proteins from within granules for extracellular release. Eosinophil-specific granules contain cytokines and cationic proteins, such as major basic protein (MBP). We evaluated structural mechanisms responsible for mobilizing proteins from within eosinophil granules. Human eosinophils stimulated for 30-60 min with eotaxin, regulated on activation, normal, T-cell expressed and secreted (RANTES) or platelet activating factor exhibited ultrastructural features of PMD (e.g. losses of granule contents) and extensive vesiculotubular networks within emptying granules. Brefeldin A inhibited granule emptying and collapsed intragranular vesiculotubular networks. By immunonanogold ultrastructural labelings, CD63, a tetraspanin membrane protein, was localized within granules and on vesicles outside of granules, and mobilization of MBP into vesicles within and extending from granules was demonstrated. Electron tomography with three dimension reconstructions revealed granule internal membranes to constitute an elaborate tubular network able to sequester and relocate granule products upon stimulation. We provide new insights into PMD and identify eosinophil specific granules as organelles whose internal tubulovesicular networks are important for the capacity of eosinophils to secrete, by vesicular transport, their content of preformed and granule-stored cytokines and cationic proteins.
Collapse
Affiliation(s)
- Rossana C.N. Melo
- Laboratory of Cellular Biology, Department of Biology, Federal University of Juiz de Fora, UFJF, Juiz de Fora, MG, Brazil
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Sandra A.C. Perez
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Lisa A. Spencer
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Ann M. Dvorak
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Peter F. Weller
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
328
|
Ju HJ, Samuels TD, Wang YS, Blancaflor E, Payton M, Mitra R, Krishnamurthy K, Nelson RS, Verchot-Lubicz J. The potato virus X TGBp2 movement protein associates with endoplasmic reticulum-derived vesicles during virus infection. PLANT PHYSIOLOGY 2005; 138:1877-95. [PMID: 16055678 PMCID: PMC1183379 DOI: 10.1104/pp.105.066019] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2005] [Revised: 06/08/2005] [Accepted: 06/08/2005] [Indexed: 05/03/2023]
Abstract
The green fluorescent protein (GFP) gene was fused to the potato virus X (PVX) TGBp2 gene, inserted into either the PVX infectious clone or pRTL2 plasmids, and used to study protein subcellular targeting. In protoplasts and plants inoculated with PVX-GFP:TGBp2 or transfected with pRTL2-GFP:TGBp2, fluorescence was mainly in vesicles and the endoplasmic reticulum (ER). During late stages of virus infection, fluorescence became increasingly cytosolic and nuclear. Protoplasts transfected with PVX-GFP:TGBp2 or pRTL2-GFP:TGBp2 were treated with cycloheximide and the decline of GFP fluorescence was greater in virus-infected protoplasts than in pRTL2-GFP:TGBp2-transfected protoplasts. Thus, protein instability is enhanced in virus-infected protoplasts, which may account for the cytosolic and nuclear fluorescence during late stages of infection. Immunogold labeling and electron microscopy were used to further characterize the GFP:TGBp2-induced vesicles. Label was associated with the ER and vesicles, but not the Golgi apparatus. The TGBp2-induced vesicles appeared to be ER derived. For comparison, plasmids expressing GFP fused to TGBp3 were transfected to protoplasts, bombarded to tobacco leaves, and studied in transgenic leaves. The GFP:TGBp3 proteins were associated mainly with the ER and did not cause obvious changes in the endomembrane architecture, suggesting that the vesicles reported in GFP:TGBp2 studies were induced by the PVX TGBp2 protein. In double-labeling studies using confocal microscopy, fluorescence was associated with actin filaments, but not with Golgi vesicles. We propose a model in which reorganization of the ER and increased protein degradation is linked to plasmodesmata gating.
Collapse
Affiliation(s)
- Ho-Jong Ju
- Department of Entomology and Plant Pathology , Oklahoma State University, Stillwater, Oklahoma 74078, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
329
|
Darlington PJ, Kirchhof MG, Criado G, Sondhi J, Madrenas J. Hierarchical Regulation of CTLA-4 Dimer-Based Lattice Formation and Its Biological Relevance for T Cell Inactivation. THE JOURNAL OF IMMUNOLOGY 2005; 175:996-1004. [PMID: 16002699 DOI: 10.4049/jimmunol.175.2.996] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CTLA-4 is an activation-induced, homodimeric inhibitory receptor in T cells. Recent crystallographic reports have suggested that it may form lattice-like arrays on the cell surface upon binding B7.1/B7.2 (CD80, CD86) molecules. To test the biological relevance of these CTLA-4-B7 lattices, we introduced a C122A point mutation in human CTLA-4, because this residue was shown to be essential for dimerization in solution. Surprisingly, we found that up to 35% of C122A CTLA-4 dimerized in human T lymphocytes. Moreover, C122A CTLA-4 partitioned within lipid rafts, colocalized with the TCR in the immunological synapse, and inhibited T cell activation. C122-independent dimerization of CTLA-4 involved N-glycosylation, because further mutation of the N78 and N110 glycosylation sites abrogated dimerization. Despite being monomeric, the N78A/N110A/C122A triple mutant CTLA-4 localized in the immunological synapse and inhibited T cell activation. Such functionality correlated with B7-induced dimerization of these mutant molecules. Based on these data, we propose a model of hierarchical regulation of CTLA-4 oligomerization by which B7 binding ultimately determines the formation of dimer-dependent CTLA-4 lattices that may be necessary for triggering B7-dependent T cell inactivation.
Collapse
Affiliation(s)
- Peter J Darlington
- FOCIS Center for Clinical Immunology and Immunotherapeutics, Robarts Research Institute, 100 Perth Drive, London, Ontario, Canada N6A 5K8
| | | | | | | | | |
Collapse
|
330
|
Sagi G, Katz A, Guenoune-Gelbart D, Epel BL. Class 1 reversibly glycosylated polypeptides are plasmodesmal-associated proteins delivered to plasmodesmata via the golgi apparatus. THE PLANT CELL 2005; 17:1788-800. [PMID: 15879561 PMCID: PMC1143077 DOI: 10.1105/tpc.105.031823] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2005] [Revised: 04/11/2005] [Accepted: 04/11/2005] [Indexed: 05/02/2023]
Abstract
SE-WAP41, a salt-extractable 41-kD wall-associated protein that is associated with walls of etiolated maize (Zea mays) seedlings and is recognized by an antiserum previously reported to label plasmodesmata and the Golgi, was cloned, sequenced, and found to be a class 1 reversibly glycosylated polypeptide ((C1)RGP). Protein gel blot analysis of cell fractions with an antiserum against recombinant SE-WAP41 showed it to be enriched in the wall fraction. RNA gel blot analysis along the mesocotyl developmental axis and during deetiolation demonstrates that high SE-WAP41 transcript levels correlate spatially and temporally with primary and secondary plasmodesmata (Pd) formation. All four of the Arabidopsis thaliana (C1)RGP proteins, when fused to green fluorescent protein (GFP) and transiently expressed in tobacco (Nicotiana tabacum) epidermal cells, display fluorescence patterns indicating they are Golgi- and plasmodesmal-associated proteins. Localization to the Golgi apparatus was verified by colocalization of transiently expressed AtRGP2 fused to cyan fluorescence protein together with a known Golgi marker, Golgi Nucleotide Sugar Transporter 1 fused to yellow fluorescent protein (GONST1:YFP). In transgenic tobacco, AtRGP2:GFP fluorescence is punctate, is present only in contact walls between cells, and colocalizes with aniline blue-stained callose present around Pd. In plasmolyzed cells, AtRGP2:GFP remains wall embedded, whereas GONST1:YFP cannot be found embedded in cell walls. This result implies that the targeting to Pd is not due to a default pathway for Golgi-localized fusion proteins but is specific to (C1)RGPs. Treatment with the Golgi disrupting drug Brefeldin A inhibits Pd labeling by AtRGP2:GFP. Integrating these data, we conclude that (C1)RGPs are plasmodesmal-associated proteins delivered to plasmodesmata via the Golgi apparatus.
Collapse
Affiliation(s)
- Guy Sagi
- Department of Plant Sciences, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | | | | | | |
Collapse
|
331
|
Yang YD, Elamawi R, Bubeck J, Pepperkok R, Ritzenthaler C, Robinson DG. Dynamics of COPII vesicles and the Golgi apparatus in cultured Nicotiana tabacum BY-2 cells provides evidence for transient association of Golgi stacks with endoplasmic reticulum exit sites. THE PLANT CELL 2005; 17:1513-31. [PMID: 15805489 PMCID: PMC1091771 DOI: 10.1105/tpc.104.026757] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2004] [Accepted: 03/03/2005] [Indexed: 05/17/2023]
Abstract
Despite the ubiquitous presence of the COPI, COPII, and clathrin vesicle budding machineries in all eukaryotes, the organization of the secretory pathway in plants differs significantly from that in yeast and mammalian cells. Mobile Golgi stacks and the lack of both transitional endoplasmic reticulum (ER) and a distinct ER-to-Golgi intermediate compartment are the most prominent distinguishing morphological features of the early secretory pathway in plants. Although the formation of COPI vesicles at periphery of Golgi cisternae has been demonstrated in plants, exit from the ER has been difficult to visualize, and the spatial relationship of this event is now a matter of controversy. Using tobacco (Nicotiana tabacum) BY-2 cells, which represent a highly active secretory system, we have used two approaches to investigate the location and dynamics of COPII binding to the ER and the relationship of these ER exit sites (ERES) to the Golgi apparatus. On the one hand, we have identified endogenous COPII using affinity purified antisera generated against selected COPII-coat proteins (Sar1, Sec13, and Sec23); on the other hand, we have prepared a BY-2 cell line expressing Sec13:green fluorescent protein (GFP) to perform live cell imaging with red fluorescent protein-labeled ER or Golgi stacks. COPII binding to the ER in BY-2 cells is visualized as fluorescent punctate structures uniformly distributed over the surface of the ER, both after antibody staining as well as by Sec13:GFP expression. These structures are smaller and greatly outnumber the Golgi stacks. They are stationary, but have an extremely short half-life (<10 s). Without correlative imaging data on the export of membrane or lumenal ER cargo it was not possible to equate unequivocally these COPII binding loci with ERES. When a GDP-fixed Sar1 mutant is expressed, ER export is blocked and the visualization of COPII binding is perturbed. On the other hand, when secretion is inhibited by brefeldin A, COPII binding sites on the ER remain visible even after the Golgi apparatus has been lost. Live cell imaging in a confocal laser scanning microscope equipped with spinning disk optics allowed us to investigate the relationship between mobile Golgi stacks and COPII binding sites. As they move, Golgi stacks temporarily associated with COPII binding sites at their rims. Golgi stacks were visualized with their peripheries partially or fully occupied with COPII. In the latter case, Golgi stacks had the appearance of a COPII halo. Slow moving Golgi stacks tended to have more peripheral COPII than faster moving ones. However, some stationary Golgi stacks entirely lacking COPII were also observed. Our results indicate that, in a cell type with highly mobile Golgi stacks like tobacco BY-2, the Golgi apparatus is not continually linked to a single ERES. By contrast, Golgi stacks associate intermittently and sometimes concurrently with several ERES as they move.
Collapse
Affiliation(s)
- Yao-Dong Yang
- Department of Cell Biology, Heidelberg Institute for Plant Sciences, University of Heidelberg, 69120 Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
332
|
Gifford ML, Robertson FC, Soares DC, Ingram GC. ARABIDOPSIS CRINKLY4 function, internalization, and turnover are dependent on the extracellular crinkly repeat domain. THE PLANT CELL 2005; 17:1154-66. [PMID: 15772284 PMCID: PMC1087993 DOI: 10.1105/tpc.104.029975] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2004] [Accepted: 02/21/2005] [Indexed: 05/18/2023]
Abstract
The study of the regulation and cellular dynamics of receptor kinase signaling in plants is a rapidly evolving field that promises to give enormous insights into the molecular control of signal perception. In this study, we have analyzed the behavior of the L1-specific receptor kinase ARABIDOPSIS CRINKLY4 (ACR4) from Arabidopsis thaliana in planta and have shown it to be present in two distinct compartments within cells. These represent protein export bodies and a population of internalized vesicles. In parallel, deletion analysis has shown that a predicted beta-propeller-forming extracellular domain is necessary for ACR4 function. Nonfunctional ACR4 variants with deletions or point mutations in this domain behave differently to wild-type fusion protein in that they are not internalized to the same extent. In addition, in contrast with functional ACR4, which appears to be rapidly turned over, they are stabilized. Thus, for ACR4, internalization and turnover are linked and depend on functionality, suggesting that ACR4 signaling may be subject to damping down via internalization and degradation. The observed rapid turnover of ACR4 sets it apart from other recently studied plant receptor kinases. Finally, ACR4 kinase activity is not required for protein function, leading us to propose, by analogy to animal systems, that ACR4 may hetero-oligomerize with a kinase-active partner during signaling. Plant and animal receptor kinases have distinct evolutionary origins. However, with other recent work, our study suggests that there has been considerable convergent evolution between mechanisms used to regulate their activity.
Collapse
Affiliation(s)
- Miriam L Gifford
- Institute of Molecular Plant Sciences, University of Edinburgh, Edinburgh EH9 3JR, United Kingdom
| | | | | | | |
Collapse
|
333
|
Kim H, Park M, Kim SJ, Hwang I. Actin filaments play a critical role in vacuolar trafficking at the Golgi complex in plant cells. THE PLANT CELL 2005; 17:888-902. [PMID: 15722471 PMCID: PMC1069706 DOI: 10.1105/tpc.104.028829] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Actin filaments are thought to play an important role in intracellular trafficking in various eukaryotic cells. However, their involvement in intracellular trafficking in plant cells has not been clearly demonstrated. Here, we investigated the roles actin filaments play in intracellular trafficking in plant cells using latrunculin B (Lat B), an inhibitor of actin filament assembly, or actin mutants that disrupt actin filaments when overexpressed. Lat B and actin2 mutant overexpression inhibited the trafficking of two vacuolar reporter proteins, sporamin:green fluorescent protein (GFP) and Arabidopsis thaliana aleurain-like protein:GFP, to the central vacuole; instead, a punctate staining pattern was observed. Colocalization experiments with various marker proteins indicated that these punctate stains corresponded to the Golgi complex. The A. thaliana vacuolar sorting receptor VSR-At, which mainly localizes to the prevacuolar compartment, also accumulated at the Golgi complex in the presence of Lat B. However, Lat B had no effect on the endoplasmic reticulum (ER) to Golgi trafficking of sialyltransferase or retrograde Golgi to ER trafficking. Lat B also failed to influence the Golgi to plasma membrane trafficking of H+-ATPase:GFP or the secretion of invertase:GFP. Based on these observations, we propose that actin filaments play a critical role in the trafficking of proteins from the Golgi complex to the central vacuole.
Collapse
Affiliation(s)
- Hyeran Kim
- Division of Molecular and Life Sciences, Pohang University of Science and Technology, Pohang, 790-784, Korea
| | | | | | | |
Collapse
|
334
|
Bloch D, Lavy M, Efrat Y, Efroni I, Bracha-Drori K, Abu-Abied M, Sadot E, Yalovsky S. Ectopic expression of an activated RAC in Arabidopsis disrupts membrane cycling. Mol Biol Cell 2005; 16:1913-27. [PMID: 15703216 PMCID: PMC1073671 DOI: 10.1091/mbc.e04-07-0562] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Rho GTPases regulate the actin cytoskeleton, exocytosis, endocytosis, and other signaling cascades. Rhos are subdivided into four subfamilies designated Rho, Racs, Cdc42, and a plant-specific group designated RACs/Rops. This research demonstrates that ectopic expression of a constitutive active Arabidopsis RAC, AtRAC10, disrupts actin cytoskeleton organization and membrane cycling. We created transgenic plants expressing either wild-type or constitutive active AtRAC10 fused to the green fluorescent protein. The activated AtRAC10 induced deformation of root hairs and leaf epidermal cells and was primarily localized in Triton X-100-insoluble fractions of the plasma membrane. Actin cytoskeleton reorganization was revealed by creating double transgenic plants expressing activated AtRAC10 and the actin marker YFP-Talin. Plants were further analyzed by membrane staining with N-[3-triethylammoniumpropyl]-4-[p-diethylaminophenylhexatrienyl] pyridinium dibromide (FM4-64) under different treatments, including the protein trafficking inhibitor brefeldin A or the actin-depolymeryzing agents latrunculin-B (Lat-B) and cytochalasin-D (CD). After drug treatments, activated AtRAC10 did not accumulate in brefeldin A compartments, but rather reduced their number and colocalized with FM4-64-labeled membranes in large intracellular vesicles. Furthermore, endocytosis was compromised in root hairs of activated AtRAC10 transgenic plants. FM4-64 was endocytosed in nontransgenic root hairs treated with the actin-stabilizing drug jasplakinolide. These findings suggest complex regulation of membrane cycling by plant RACs.
Collapse
Affiliation(s)
- Daria Bloch
- Department of Plant Sciences, Tel Aviv University, Israel
| | | | | | | | | | | | | | | |
Collapse
|
335
|
Baxter IR, Young JC, Armstrong G, Foster N, Bogenschutz N, Cordova T, Peer WA, Hazen SP, Murphy AS, Harper JF. A plasma membrane H+-ATPase is required for the formation of proanthocyanidins in the seed coat endothelium of Arabidopsis thaliana. Proc Natl Acad Sci U S A 2005; 102:2649-54. [PMID: 15695592 PMCID: PMC548969 DOI: 10.1073/pnas.0406377102] [Citation(s) in RCA: 148] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The plasma membrane in plant cells is energized with an electrical potential and proton gradient generated through the action of H+ pumps belonging to the P-type ATPase superfamily. The Arabidopsis genome encodes 11 plasma membrane H+ pumps. Auto-inhibited H+-ATPase isoform 10 (AHA10) is expressed primarily in developing seeds. Here we show that four independent gene disruptions of AHA10 result in seed coats with a transparent testa (tt) phenotype (light-colored seeds). A quantitative analysis of extractable flavonoids in aha10 seeds revealed an approximately 100-fold reduction of proanthocyanidin (PA), one of the two major end-product pigments in the flavonoid biosynthetic pathway. In wild-type seed coat endothelial cells, PA accumulates in a large central vacuole. In aha10 mutants, the formation of this vacuole is impaired, as indicated by the predominance of multiple small vacuoles observed by fluorescence microscopy using a vacuole-specific dye, 5-(and -6)-carboxy 2',7'-dichlorofluorescein diacetate. A similar vacuolar defect was also observed for another tt mutant, tt12, a proton-coupled multidrug and toxic compound extrusion transporter potentially involved in loading provacuoles with a flavonoid intermediate required for PA production. The endothelial cells in aha10 mutants are otherwise healthy, as indicated by the lack of a significant decrease in (i) the accumulation of other flavonoid pathway end products, such as anthocyanins, and (ii) mRNA levels for two endothelium-specific transcripts (TT12 and BAN). Thus, the specific effect of aha10 on vacuolar and PA biogenesis provides genetic evidence to support an unexpected endomembrane function for a member of the plasma membrane H+-ATPase family.
Collapse
Affiliation(s)
- Ivan R Baxter
- Center for Phytoremediation Research and Development, Purdue University, West Lafayette, IN 47907, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
336
|
Xu J, Scheres B. Dissection of Arabidopsis ADP-RIBOSYLATION FACTOR 1 function in epidermal cell polarity. THE PLANT CELL 2005; 17:525-36. [PMID: 15659621 PMCID: PMC548823 DOI: 10.1105/tpc.104.028449] [Citation(s) in RCA: 364] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2004] [Accepted: 12/02/2004] [Indexed: 05/19/2023]
Abstract
Vesicle trafficking is essential for the generation of asymmetries, which are central to multicellular development. Core components of the vesicle transport machinery, such as ADP-ribosylation factor (ARF) GTPases, have been studied primarily at the single-cell level. Here, we analyze developmental functions of the ARF1 subclass of the Arabidopsis thaliana multigene ARF family. Six virtually identical ARF1 genes are ubiquitously expressed, and single loss-of-function mutants in these genes reveal no obvious developmental phenotypes. Fluorescence colocalization studies reveal that ARF1 is localized to the Golgi apparatus and endocytic organelles in both onion (Allium cepa) and Arabidopsis cells. Apical-basal polarity of epidermal cells, reflected by the position of root hair outgrowth, is affected when ARF1 mutants are expressed at early stages of cell differentiation but after they exit mitosis. Genetic interactions during root hair tip growth and localization suggest that the ROP2 protein is a target of ARF1 action, but its localization is slowly affected upon ARF1 manipulation when compared with that of Golgi and endocytic markers. Localization of a second potential target of ARF1 action, PIN2, is also affected with slow kinetics. Although extreme redundancy precludes conventional genetic dissection of ARF1 functions, our approach separates different ARF1 downstream networks involved in local and specific aspects of cell polarity.
Collapse
Affiliation(s)
- Jian Xu
- Department of Molecular Cell Biology, Utrecht University, 3584 CH Utrecht, The Netherlands
| | | |
Collapse
|
337
|
Abstract
Brefeldin A (BFA) causes a block in the secretory system of eukaryotic cells. In the scaly green flagellate Scherffelia dubia, BFA also interfered with the function of the contractile vacuoles (CVs). The CV is an osmoregulatory organelle which periodically expels fluid from the cell in many freshwater protists. Fusion of the CV membrane with the plasma membrane is apparently blocked by BFA in S. dubia. The two CVs of S. dubia swell and finally form large central vacuoles (LCVs). BFA-induced formation of LCVs depends on V-ATPase activity, and can be reversed by hypertonic media, suggesting that water accumulation in the LCVs is driven by osmosis. We suggest that the BFA-induced formation of LCVs represents a prolonged diastole phase. A normal diastole phase takes about 20 s and is difficult to investigate. Therefore, BFA-induced formation of LCVs in S. dubia represents a unique model system to investigate the diastole phase of the CV cycle.
Collapse
Affiliation(s)
- Burkhard Becker
- Botanisches Institut, Universität zu Köln, Gyrhofstr. 15, D-50931 Köln, Germany.
| | | |
Collapse
|
338
|
Müller J, Piffanelli P, Devoto A, Miklis M, Elliott C, Ortmann B, Schulze-Lefert P, Panstruga R. Conserved ERAD-like quality control of a plant polytopic membrane protein. THE PLANT CELL 2005; 17:149-63. [PMID: 15598804 PMCID: PMC544496 DOI: 10.1105/tpc.104.026625] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2004] [Accepted: 10/01/2004] [Indexed: 05/18/2023]
Abstract
The endoplasmic reticulum (ER) of eukaryotic cells serves as a checkpoint tightly monitoring protein integrity and channeling malformed proteins into different rescue and degradation routes. The degradation of several ER lumenal and membrane-localized proteins is mediated by ER-associated protein degradation (ERAD) in yeast (Saccharomyces cerevisiae) and mammalian cells. To date, evidence for the existence of ERAD-like mechanisms in plants is indirect and based on heterologous or artificial substrate proteins. Here, we show that an allelic series of single amino acid substitution mutants of the plant-specific barley (Hordeum vulgare) seven-transmembrane domain mildew resistance o (MLO) protein generates substrates for a postinsertional quality control process in plant, yeast, and human cells, suggesting conservation of the underlying mechanism across kingdoms. Specific stabilization of mutant MLO proteins in yeast strains carrying defined defects in protein quality control demonstrates that MLO degradation is mediated by HRD pathway-dependent ERAD. In plants, individual aberrant MLO proteins exhibit markedly reduced half-lives, are polyubiquitinated, and can be stabilized through inhibition of proteasome activity. This and a dependence on homologs of the AAA ATPase CDC48/p97 to eliminate the aberrant variants strongly suggest that MLO proteins are endogenous substrates of an ERAD-related plant quality control mechanism.
Collapse
Affiliation(s)
- Judith Müller
- Max-Planck Institute for Plant Breeding Research, Department of Plant-Microbe Interactions, 50829 Köln, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
339
|
Takemoto D, Hardham AR. The cytoskeleton as a regulator and target of biotic interactions in plants. PLANT PHYSIOLOGY 2004; 136:3864-76. [PMID: 15591444 PMCID: PMC535820 DOI: 10.1104/pp.104.052159] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2004] [Revised: 10/15/2004] [Accepted: 10/18/2004] [Indexed: 05/18/2023]
Affiliation(s)
- Daigo Takemoto
- Plant Cell Biology Group, Research School of Biological Sciences, The Australian National University, Canberra, ACT 2601, Australia
| | | |
Collapse
|
340
|
Sun H, Shikano S, Xiong Q, Li M. Function recovery after chemobleaching (FRAC): evidence for activity silent membrane receptors on cell surface. Proc Natl Acad Sci U S A 2004; 101:16964-9. [PMID: 15548608 PMCID: PMC534715 DOI: 10.1073/pnas.0404178101] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Membrane proteins represent approximately 30% of the proteome of both prokaryotes and eukaryotes. Unique to cell surface receptors is their biogenesis pathway, which involves vesicular trafficking from the endoplasmic reticulum through the Golgi apparatus and to the cell surface. Increasing evidence suggests specific regulation of biogenesis for different membrane receptors, hence affecting their surface expression. We report the development of a pulse-chase assay to monitor function recovery after chemobleaching (FRAC) to probe the transit time of the Kir2.1 K+ channel to reach the cell surface. Our results reveal that the channel activity is contributed by a small fraction of channel protein, providing evidence of activity-silent "sleeping" molecules on the cell surface. This method distinguishes molecular density from functional density, and the assay strategy is generally applicable to other membrane receptors. The ability of the reported method to access the biogenesis pathways in a high-throughput manner facilitates the identification and evaluation of molecules affecting receptor trafficking.
Collapse
Affiliation(s)
- Haiyan Sun
- Department of Neuroscience and High Throughput Biology Center, The Johns Hopkins University School of Medicine, 733 North Broadway, Baltimore, MD 21205, USA
| | | | | | | |
Collapse
|
341
|
Flores-Jasso CF, Valdes VJ, Sampieri A, Valadez-Graham V, Recillas-Targa F, Vaca L. Silencing structural and nonstructural genes in baculovirus by RNA interference. Virus Res 2004; 102:75-84. [PMID: 15068883 DOI: 10.1016/j.virusres.2004.01.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We review several aspects of RNAi and gene silencing with baculovirus. We show that the potency of RNAi in Spodoptera frugiperda (Sf21) insect cells correlates well with the efficiency of transfection of the siRNA. Using a fluorescein-labeled siRNA we found that the siRNA localized in areas surrounding the endoplasmic reticulum (ER). Both long (700 nucleotides long) and small ( approximately 25 nucleotides long) interfering RNAs were equally effective in initiating RNA interference (RNAi), and the duration of the interfering effect was indistinguishable. Even though RNAi in Sf21 cells is very effective, in vitro experiments show that these cells fragment the long dsRNA into siRNA poorly, when compared to HEK cells. Finally, we show that in vivo inhibition of baculovirus infection with dsRNA homologous to genes that are essential for baculovirus infectivity depends strongly on the amount of dsRNA used in the assays. Five hundred nanogram of dsRNA directly injected into the haemolymph of insects prevent animal death to over 95%. In control experiments, over 96% of insects not injected with dsRNA or injected with an irrelevant dsRNA died within a week. These results demonstrate the efficiency of dsRNA for in vivo prevention of a viral infection by virus that is very cytotoxic and lytic in animals.
Collapse
Affiliation(s)
- C Fabian Flores-Jasso
- Departamento de Biología Celular, Instituto de Fisiología Celular, UNAM, Ciudad Universitaria, Mexico, D.F. 04510, Mexico
| | | | | | | | | | | |
Collapse
|
342
|
Weber RWS, Stenger E, Meffert A, Hahn M. Brefeldin A production by Phoma medicaginis in dead pre-colonized plant tissue: a strategy for habitat conquest? ACTA ACUST UNITED AC 2004; 108:662-71. [PMID: 15323249 DOI: 10.1017/s0953756204000243] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Phoma medicaginis was isolated as the dominant endophyte from surface-sterilized shoots of Medicago sativa and M. lupulina growing outdoors. Plants were either symptomless or showed signs of infection in the shape of limited lesions which sometimes contained melanized pycnidial initials. Rapid colonization of host tissue and sporulation were observed within 9 d on dead plant material upon incubation in a moist chamber. Such colonized material, but not freshly harvested living tissue, contained brefeldin A (1.7 microg g(-1) D.W.). This toxin was also produced in pure culture (20 mg l(-1)) and in artificially inoculated autoclaved M. sativa stems (3 mg g(-1) D.W. =920 microg ml(-1)). The latter concentration of brefeldin A should be similar to that produced within a fruiting lesion of P. medicaginis and suppressed spore germination and growth of nine of 11 common phylloplane fungi tested. This metabolite may thus have a function in substrate defence after the switch from the endophytic to the saprotrophic period in the life-cycle of P. medicaginis following the death of infected host tissue.
Collapse
Affiliation(s)
- Roland W S Weber
- Lehrbereich Biotechnologie, Universität Kaiserslautern, Paul-Ehrlich-Str. 23, D-67663 Kaiserslautern, Germany.
| | | | | | | |
Collapse
|
343
|
Cervelli M, Di Caro O, Di Penta A, Angelini R, Federico R, Vitale A, Mariottini P. A novel C-terminal sequence from barley polyamine oxidase is a vacuolar sorting signal. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2004; 40:410-8. [PMID: 15469498 DOI: 10.1111/j.1365-313x.2004.02221.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Barley contains two different isoforms of flavin-containing polyamine oxidase (BPAO1 and BPAO2). We have previously demonstrated that BPAO2 is a symplastic protein in barley leaves. On the contrary, maize polyamine oxidase (MPAO), the best characterized member of this enzyme class, is apoplastic. Comparison of the derived amino-acid sequences of BPAO2 and MPAO has revealed that both precursor proteins include a cleavable N-terminal signal peptide of 25 amino acid residues, but the barley enzyme shows an extra C-terminal extension of eight amino acids. By means of MPAO engineering with BPAO2 C-terminal tail (MPAO-T) and exploiting transient expression in Nicotiana tabacum protoplasts, we demonstrate that this oligopeptide is a signal for protein sorting to the plant vacuole. The vacuolar sorting of MPAO-T was saturable. Specific mutations of the C-terminal tail were constructed to determine which amino acid residues of this novel propeptide affect proper protein sorting. No consensus sequence or common structural determinant is required for the intracellular retention of the MPAO-T protein, but a gradual lowering of the efficiency was observed as a result of progressive deletion of the C-terminus.
Collapse
Affiliation(s)
- Manuela Cervelli
- Dipartimento di Biologia, Università Roma Tre, Viale Guglielmo Marconi 446, 00146 Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
344
|
Memon AR. The role of ADP-ribosylation factor and SAR1 in vesicular trafficking in plants. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2004; 1664:9-30. [PMID: 15238254 DOI: 10.1016/j.bbamem.2004.04.005] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2003] [Revised: 03/22/2004] [Accepted: 04/19/2004] [Indexed: 12/27/2022]
Abstract
Ras-like small GTP binding proteins regulate a wide variety of intracellular signalling and vesicular trafficking pathways in eukaryotic cells including plant cells. They share a common structure that operates as a molecular switch by cycling between active GTP-bound and inactive GDP-bound conformational states. The active GTP-bound state is regulated by guanine nucleotide exchange factors (GEF), which promote the exchange of GDP for GTP. The inactive GDP-bound state is promoted by GTPase-activating proteins (GAPs) which accelerate GTP hydrolysis by orders of magnitude. Two types of small GTP-binding proteins, ADP-ribosylation factor (Arf) and secretion-associated and Ras-related (Sar), are major regulators of vesicle biogenesis in intracellular traffic and are founding members of a growing family that also includes Arf-related proteins (Arp) and Arf-like (Arl) proteins. The most widely involved small GTPase in vesicular trafficking is probably Arf1, which not only controls assembly of COPI- and AP1, AP3, and AP4/clathrin-coated vesicles but also recruits other proteins to membranes, including some that may be components of further coats. Recent molecular, structural and biochemical studies have provided a wealth of detail of the interactions between Arf and the proteins that regulate its activity as well as providing clues for the types of effector molecules which are controlled by Arf. Sar1 functions as a molecular switch to control the assembly of protein coats (COPII) that direct vesicle budding from ER. The crystallographic analysis of Sar1 reveals a number of structurally unique features that dictate its function in COPII vesicle formation. In this review, I will summarize the current knowledge of Arf and Sar regulation in vesicular trafficking in mammalian and yeast cells and will highlight recent advances in identifying the elements involved in vesicle formation in plant cells. Additionally, I will briefly discuss the similarities and dissimilarities of vesicle traffic in plant, mammalian and yeast cells.
Collapse
Affiliation(s)
- Abdul R Memon
- TUBITAK, Research Institute for Genetic Engineering and Biotechnology, P.O. Box 21, 41470 Gebze, Kocaeli, Turkey.
| |
Collapse
|
345
|
Geldner N. The plant endosomal system--its structure and role in signal transduction and plant development. PLANTA 2004; 219:547-560. [PMID: 15221385 DOI: 10.1007/s00425-004-1302-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2004] [Accepted: 04/29/2004] [Indexed: 05/24/2023]
Abstract
Endosomes are highly dynamic membrane systems that receive endocytosed plasma membrane proteins and sort them for either degradation or recycling back to the cell surface. In addition, they receive newly synthesised proteins destined for vacuolar/lysosomal compartments. Sorting in the endosomes is necessary for the establishment and maintenance of cell polarity and it is needed to control levels and function of receptors and transporters at the cellular surface. Both processes are crucial for correct cell behaviour during tissue and organ development and for intercellular communication in general. It has therefore become an imperative to investigate structure and function of the endosomal system if we want to obtain a deeper mechanistic understanding of signal transduction and development. This review will compare our current understanding of endosomal trafficking in animals and yeast with what is known in plants, and will highlight some important breakthroughs in our understanding of the role of endosomes in signal transduction and multicellular development in Drosophila, as well as in Arabidopsis.
Collapse
Affiliation(s)
- Niko Geldner
- ZMBP, Entwicklungsgenetik, Universität Tübingen, Auf der Morgenstelle 3, 72076, Germany.
| |
Collapse
|
346
|
Samaj J, Baluska F, Voigt B, Schlicht M, Volkmann D, Menzel D. Endocytosis, actin cytoskeleton, and signaling. PLANT PHYSIOLOGY 2004; 135:1150-61. [PMID: 15266049 PMCID: PMC519036 DOI: 10.1104/pp.104.040683] [Citation(s) in RCA: 176] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2004] [Revised: 04/21/2004] [Accepted: 04/21/2004] [Indexed: 05/17/2023]
Affiliation(s)
- Jozef Samaj
- Institute of Cellular and Molecular Botany, University of Bonn, D-53115 Bonn, Germany.
| | | | | | | | | | | |
Collapse
|
347
|
Zouhar J, Hicks GR, Raikhel NV. Sorting inhibitors (Sortins): Chemical compounds to study vacuolar sorting in Arabidopsis. Proc Natl Acad Sci U S A 2004; 101:9497-501. [PMID: 15190181 PMCID: PMC439005 DOI: 10.1073/pnas.0402121101] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Chemical genomics is an interdisciplinary approach that unites the power of chemical screens and genomics strategies to dissect biological processes such as endomembrane trafficking. We have taken advantage of the evolutionary conservation between plants and Saccharomyces cerevisiae to identify such chemicals. Using S. cerevisiae, we screened a library of diverse chemical structures for compounds that induce the secretion of carboxypeptidase Y, which is normally targeted to the vacuole. Among 4,800 chemicals screened, 14 compounds, termed sorting inhibitors (Sortins), were identified that stimulated secretion in yeast. In Arabidopsis seedlings, application of Sortin1 and -2 led to reversible defects in vacuole biogenesis and root development. Sortin1 was found to redirect the vacuolar destination of plant carboxypeptidase Y and other proteins in Arabidopsis suspension cells and cause these proteins to be secreted. Sortin1 treatment of whole Arabidopsis seedlings also resulted in carboxypeptidase Y secretion, indicating that the drug has a similar mode of action in cells and intact plants. We have demonstrated that screening of a simple eukaryote, in which vacuolar biogenesis is not essential, can be a powerful tool to find chemicals that interfere with vacuolar delivery of proteins in plants, where vacuole biogenesis is essential. Our studies were done by using a sublethal dose of Sortin1, demonstrating the powerful ability of the chemical to control the induced phenotype in a manner that would be difficult to achieve using conventional genetics.
Collapse
Affiliation(s)
- Jan Zouhar
- Center for Plant Cell Biology and Department of Botany and Plant Sciences, University of California, Riverside, 92521, USA
| | | | | |
Collapse
|
348
|
Contreras I, Ortiz-Zapater E, Aniento F. Sorting signals in the cytosolic tail of membrane proteins involved in the interaction with plant ARF1 and coatomer. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2004; 38:685-698. [PMID: 15125774 DOI: 10.1111/j.1365-313x.2004.02075.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
In mammals and yeast, a cytosolic dilysine motif is critical for endoplasmic reticulum (ER) localization of type I membrane proteins. Retrograde transport of type I membrane proteins containing dilysine motifs at their cytoplasmic carboxy (C)-terminal tail involves the interaction of these motifs with the COPI coat. The C-terminal dilysine motif has also been shown to confer ER localization to type I membrane proteins in plant cells. Using in vitro binding assays, we have analyzed sorting motifs in the cytosolic tail of membrane proteins, which may be involved in the interaction with components of the COPI coat in plant cells. We show that a dilysine motif in the -3,-4 position (relative to the cytosolic C-terminus) recruits in a very specific manner all the subunits of the plant coatomer complex. Lysines cannot be replaced by arginines or histidines to bind plant coatomer. A diphenylalanine motif in the -7,-8 position, which by itself has a low ability to bind plant coatomer, shows a clear cooperativity with the dilysine motif. Both dilysine and diphenylalanine motifs are present in the cytosolic tail of several proteins of the p24 family of putative cargo receptors, which has several members in plant cells. The cytosolic tail of a plant p24 protein is shown to recruit not only coatomer but also ADP ribosylation factor 1 (ARF1), a process which depends on both dilysine and diphenylalanine motifs. ARF1 binding increases twofold upon treatment with brefeldin A (BFA) and is completely abolished upon treatment with GTPgammaS, suggesting that ARF1 can only interact with the cytosolic tail of p24 proteins in its GDP-bound form.
Collapse
Affiliation(s)
- Inmaculada Contreras
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Valencia, Avenida Vicente Andrés Estellés s/n, E-46100 Burjassot, Valencia, Spain
| | | | | |
Collapse
|
349
|
Surpin M, Raikhel N. Traffic jams affect plant development and signal transduction. Nat Rev Mol Cell Biol 2004; 5:100-9. [PMID: 15040443 DOI: 10.1038/nrm1311] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Analysis of the Arabidopsis thaliana endomembrane system has shown that plant cell viability depends on a properly functioning vacuole and intact vesicular trafficking. The endomembrane system is also essential for various aspects of plant development and signal transduction. In this review, we discuss examples of these newly discovered roles for the endomembrane system in plants, and new experimental approaches and technologies that are based on high-throughput screens, which combine chemical genetics and automated confocal microscopy.
Collapse
Affiliation(s)
- Marci Surpin
- Center for Plant Cell Biology, University of California, Riverside, California 92521, USA.
| | | |
Collapse
|
350
|
Tse YC, Mo B, Hillmer S, Zhao M, Lo SW, Robinson DG, Jiang L. Identification of multivesicular bodies as prevacuolar compartments in Nicotiana tabacum BY-2 cells. THE PLANT CELL 2004; 16:672-93. [PMID: 14973159 PMCID: PMC385280 DOI: 10.1105/tpc.019703] [Citation(s) in RCA: 200] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2003] [Accepted: 12/20/2003] [Indexed: 05/17/2023]
Abstract
Little is known about the dynamics and molecular components of plant prevacuolar compartments (PVCs). We have demonstrated recently that vacuolar sorting receptor (VSR) proteins are concentrated on PVCs. In this study, we generated transgenic Nicotiana tabacum (tobacco) BY-2 cell lines expressing two yellow fluorescent protein (YFP)-fusion reporters that mark PVC and Golgi organelles. Both transgenic cell lines exhibited typical punctate YFP signals corresponding to distinct PVC and Golgi organelles because the PVC reporter colocalized with VSR proteins, whereas the Golgi marker colocalized with mannosidase I in confocal immunofluorescence. Brefeldin A induced the YFP-labeled Golgi stacks but not the YFP-marked PVCs to form typical enlarged structures. By contrast, wortmannin caused YFP-labeled PVCs but not YFP-labeled Golgi stacks to vacuolate. VSR antibodies labeled multivesicular bodies (MVBs) on thin sections prepared from high-pressure frozen/freeze substituted samples, and the enlarged PVCs also were indentified as MVBs. MVBs were further purified from BY-2 cells and found to contain VSR proteins via immunogold negative staining. Similar to YFP-labeled Golgi stacks, YFP-labeled PVCs are mobile organelles in BY-2 cells. Thus, we have unequivocally identified MVBs as PVCs in N. tabacum BY-2 cells. Uptake studies with the styryl dye FM4-64 strongly indicate that PVCs also lie on the endocytic pathway of BY-2 cells.
Collapse
Affiliation(s)
- Yu Chung Tse
- Department of Biology, Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | | | | | | | | | | | | |
Collapse
|