301
|
Broeckling CD, Yao L, Isaac G, Gioioso M, Ianchis V, Vissers JPC. Application of Predicted Collisional Cross Section to Metabolome Databases to Probabilistically Describe the Current and Future Ion Mobility Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:661-669. [PMID: 33539078 DOI: 10.1021/jasms.0c00375] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Metabolomics is a powerful phenotyping platform with potential for high-throughput analyses. The primary technology for metabolite profiling is mass spectrometry. In recent years, the coupling of mass spectrometry with ion mobility spectrometry (IMS) has offered the promise of faster analysis time and greater resolving power. Our understanding of the potential impact of IMS on the field of metabolomics is limited by availability of comprehensive experimental data. In this analysis, we use a probabilistic approach to enumerate the strengths and limitations, the present and future, of this technology. This is accomplished through use of "model" metabolomes, predicted physicochemical properties, and probabilistic descriptions of resolving power. This analysis advances our understanding of the importance of orthogonality in resolving (separation) dimensions, describes the impact of the metabolome composition on resolution demands, and offers a system resolution landscape that may serve to guide practitioners in the coming years.
Collapse
Affiliation(s)
- Corey D Broeckling
- Analytical Resources Core, Bioanalysis and Omics Center, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Linxing Yao
- Analytical Resources Core, Bioanalysis and Omics Center, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Giorgis Isaac
- Waters Corporation, Milford, Massachusetts 01757, United States
| | - Marisa Gioioso
- Waters Corporation, Milford, Massachusetts 01757, United States
| | | | | |
Collapse
|
302
|
Abstract
Current studies on environmental chemistry mainly focus on a single stressor or single group of stressors, which does not reflect the multiple stressors in the dynamic exposome we are facing. Similarly, current studies on environmental toxicology mostly target humans, animals, or the environment separately, which are inadequate to solve the grand challenge of multiple receptors in One Health. Though chemical, biological, and physical stressors all pose health threats, the susceptibilities of different organisms are different. As such, significant relationships and interactions of the chemical, biological, and physical stressors in the environment and their holistic environmental and biological consequences remain unclear. Fortunately, the rapid developments in various techniques, as well as the concepts of multistressors in the exposome and multireceptor in One Health provide the possibilities to understand our environment better. Since the combined stressor is location-specific and mixture toxicity is species-specific, more comprehensive frameworks to guide risk assessment and environmental treatment are urgently needed. Here, three conceptual frameworks to categorize unknown stressors, spatially visualize the riskiest stressors, and investigate the combined effects of multiple stressors across multiple species within the concepts of the exposome and One Health are proposed for the first time.
Collapse
Affiliation(s)
- Peng Gao
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94304, United States
| |
Collapse
|
303
|
Villanueva CM, Grau-Pujol B, Evlampidou I, Escola V, Goñi-Irigoyen F, Kuckelkorn J, Grummt T, Arjona L, Lazaro B, Etxeandia A, Ulibarrena E, Nhacolo A, Muñoz J. Chemical and in vitro bioanalytical assessment of drinking water quality in Manhiça, Mozambique. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2021; 31:276-288. [PMID: 33414480 DOI: 10.1038/s41370-020-00282-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 11/06/2020] [Accepted: 11/19/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND The chemical quality of drinking water is widely unknown in low-income countries. OBJECTIVE We conducted an exploratory study in Manhiça district (Mozambique) to evaluate drinking water quality using chemical analyses and cell-based assays. METHODS We measured nitrate, fluoride, metals, pesticides, disinfection by-products, and industrial organochlorinated chemicals, and conducted the bioassays Ames test for mutagenicity, micronuclei assay (MN-FACS), ER-CALUX, and antiAR-CALUX in 20 water samples from protected and unprotected sources. RESULTS Nitrate was present in all samples (median 7.5 mg/L). Manganese, cobalt, chromium, aluminium, and barium were present in 90-100% of the samples, with median values of 32, 0.6, 2.0, 61, 250 μg/l, respectively. Manganese was above 50 μg/l (EU guideline) in eight samples. Arsenic, lead, nickel, iron, and selenium median values were below the quantification limit. Antimony, cadmium, copper, mercury, zinc and silver were not present. Trihalomethanes, haloacetic acids, haloacetonitriles and haloketones were present in 5-28% samples at levels ≤4.6 μg/l. DDT, dieldrin, diuron, and pirimiphos-methyl were quantified in 2, 3, 3, and 1 sample, respectively (range 12-60 ng/L). Fluoride was present in one sample (0.11 mg/l). Trichloroethene and tetrachloroethene were not present. Samples were negative in the in vitro assays. SIGNIFICANCE Results suggest low exposure to chemicals, mutagenicity, genotoxicity and endocrine disruption through drinking water in Manhiça population. High concentration of manganese in some samples warrants confirmatory studies, given the potential link to impaired neurodevelopment.
Collapse
Affiliation(s)
- Cristina M Villanueva
- ISGlobal, Barcelona, Spain.
- CIBER epidemiología y salud pública (CIBERESP), Madrid, Spain.
- Universitat Pompeu Fabra, Barcelona, Spain.
- IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain.
| | - Berta Grau-Pujol
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigação em Saúde da Manhiça (CISM), Maputo, Mozambique
- Fundación Mundo Sano, Buenos Aires, Argentina
| | - Iro Evlampidou
- ISGlobal, Barcelona, Spain
- CIBER epidemiología y salud pública (CIBERESP), Madrid, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Valdemiro Escola
- Centro de Investigação em Saúde da Manhiça (CISM), Maputo, Mozambique
| | - Fernando Goñi-Irigoyen
- CIBER epidemiología y salud pública (CIBERESP), Madrid, Spain
- Health Department of Basque Government, Public Health Laboratory (Gipuzkoa), San Sebastian, Spain
- Biodonostia Health Research Institute, San Sebastian, Spain
| | - Jochen Kuckelkorn
- Toxicology of Drinking Water and Swimming Pool Water, German Environment Agency, Bad Elster, Germany
| | - Tamara Grummt
- Toxicology of Drinking Water and Swimming Pool Water, German Environment Agency, Bad Elster, Germany
| | - Lourdes Arjona
- ISGlobal, Barcelona, Spain
- CIBER epidemiología y salud pública (CIBERESP), Madrid, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Beatriz Lazaro
- Health Department of Basque Government, Public Health Laboratory (Bizkaia), Derio, Spain
| | - Arsenio Etxeandia
- Health Department of Basque Government, Public Health Laboratory (Bizkaia), Derio, Spain
| | - Enrique Ulibarrena
- Health Department of Basque Government, Public Health Laboratory (Gipuzkoa), San Sebastian, Spain
| | - Ariel Nhacolo
- Centro de Investigação em Saúde da Manhiça (CISM), Maputo, Mozambique
| | - Jose Muñoz
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigação em Saúde da Manhiça (CISM), Maputo, Mozambique
| |
Collapse
|
304
|
Bart S, Jager T, Robinson A, Lahive E, Spurgeon DJ, Ashauer R. Predicting Mixture Effects over Time with Toxicokinetic-Toxicodynamic Models (GUTS): Assumptions, Experimental Testing, and Predictive Power. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:2430-2439. [PMID: 33499591 PMCID: PMC7893709 DOI: 10.1021/acs.est.0c05282] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 12/03/2020] [Accepted: 01/18/2021] [Indexed: 05/19/2023]
Abstract
Current methods to assess the impact of chemical mixtures on organisms ignore the temporal dimension. The General Unified Threshold model for Survival (GUTS) provides a framework for deriving toxicokinetic-toxicodynamic (TKTD) models, which account for effects of toxicant exposure on survival in time. Starting from the classic assumptions of independent action and concentration addition, we derive equations for the GUTS reduced (GUTS-RED) model corresponding to these mixture toxicity concepts and go on to demonstrate their application. Using experimental binary mixture studies with Enchytraeus crypticus and previously published data for Daphnia magna and Apis mellifera, we assessed the predictive power of the extended GUTS-RED framework for mixture assessment. The extended models accurately predicted the mixture effect. The GUTS parameters on single exposure data, mixture model calibration, and predictive power analyses on mixture exposure data offer novel diagnostic tools to inform on the chemical mode of action, specifically whether a similar or dissimilar form of damage is caused by mixture components. Finally, observed deviations from model predictions can identify interactions, e.g., synergism or antagonism, between chemicals in the mixture, which are not accounted for by the models. TKTD models, such as GUTS-RED, thus offer a framework to implement new mechanistic knowledge in mixture hazard assessments.
Collapse
Affiliation(s)
- Sylvain Bart
- Department
of Environment and Geography, University
of York, Heslington, York, YO10 5NG, U.K.
- UK
Centre for Ecology and Hydrology, Maclean Building, Benson Lane, Wallingford OX10 8BB, Oxfordshire, U.K.
| | | | - Alex Robinson
- UK
Centre for Ecology and Hydrology, Maclean Building, Benson Lane, Wallingford OX10 8BB, Oxfordshire, U.K.
| | - Elma Lahive
- UK
Centre for Ecology and Hydrology, Maclean Building, Benson Lane, Wallingford OX10 8BB, Oxfordshire, U.K.
| | - David J. Spurgeon
- UK
Centre for Ecology and Hydrology, Maclean Building, Benson Lane, Wallingford OX10 8BB, Oxfordshire, U.K.
| | - Roman Ashauer
- Department
of Environment and Geography, University
of York, Heslington, York, YO10 5NG, U.K.
- Syngenta
Crop Protection AG, Basel 4058, Switzerland
| |
Collapse
|
305
|
van Dijk J, Gustavsson M, Dekker SC, van Wezel AP. Towards 'one substance - one assessment': An analysis of EU chemical registration and aquatic risk assessment frameworks. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 280:111692. [PMID: 33293165 DOI: 10.1016/j.jenvman.2020.111692] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 10/05/2020] [Accepted: 11/16/2020] [Indexed: 06/12/2023]
Abstract
With the Green Deal the EU aims to achieve a circular economy, restore biodiversity and reduce environmental pollution. As a part of the Green Deal a 'one-substance one-assessment' (OS-OA) approach for chemicals has been proposed. The registration and risk assessment of chemicals on the European market is currently fragmented across different legal frameworks, dependent on the chemical's use. In this review, we analysed the five main European chemical registration frameworks and their risk assessment procedures for the freshwater environment, covering 1) medicines for human use, 2) veterinary medicines, 3) pesticides, 4) biocides and 5) industrial chemicals. Overall, the function of the current frameworks is similar, but important differences exist between the frameworks' environmental protection goals and risk assessment strategies. These differences result in inconsistent assessment outcomes for similar chemicals. Chemicals are also registered under multiple frameworks due to their multiple uses, and chemicals which are not approved under one framework are in some instances allowed on the market under other frameworks. In contrast, an OS-OA will require a uniform hazard assessment between all different frameworks. In addition, we show that across frameworks the industrial chemicals are the least hazardous for the freshwater environment (median PNEC of 2.60E-2 mg/L), whilst biocides are the most toxic following current regulatory assessment schemes (median PNEC of 1.82E-4 mg/L). Finally, in order to facilitate a successful move towards a OS-OA approach we recommend a) harmonisation of environmental protection goals and risk assessment strategies, b) that emission, use and production data should be made publicly available and that data sharing becomes a priority, and c) an alignment of the criteria used to classify problematic substances.
Collapse
Affiliation(s)
- Joanke van Dijk
- Copernicus Institute of Sustainable Development, Utrecht University, Princetonlaan 8a, CB, Utrecht, 3584, the Netherlands.
| | - Mikael Gustavsson
- Department of Mathematical Sciences, Chalmers University of Technology, Gothenburg, SE-412 96, Sweden
| | - Stefan C Dekker
- Copernicus Institute of Sustainable Development, Utrecht University, Princetonlaan 8a, CB, Utrecht, 3584, the Netherlands
| | - Annemarie P van Wezel
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Sciencepark 904, XH Amsterdam, 1098, the Netherlands
| |
Collapse
|
306
|
Perkons I, Rusko J, Zacs D, Bartkevics V. Rapid determination of pharmaceuticals in wastewater by direct infusion HRMS using target and suspect screening analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 755:142688. [PMID: 33059144 DOI: 10.1016/j.scitotenv.2020.142688] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/11/2020] [Accepted: 09/26/2020] [Indexed: 06/11/2023]
Abstract
A wide-scope screening of active pharmaceutical ingredients (APIs) and their transformation products (TPs) in wastewater can yield valuable insights and pinpoint emerging contaminants that have not been previously reported. Such information is relevant to investigate their occurrence and fate in various environmental compartments. In this study, we explored the applicability of direct infusion high resolution mass spectrometry (DI-HRMS) for comprehensive and rapid detection of APIs and their TPs in wastewater samples. The method was developed using a Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) system and incorporated both wide-scope suspect screening and semi-quantitative determination of selected analytes. The identification strategy was based on the following criteria: narrow accurate mass window (±1.25 ppm) for two most abundant full-MS signals, isotopic pattern fit and additional confirmation on the basis of MS2 spectra at three fragmentation levels. The tentative identification of suspects and target compounds relied on an in-house database containing more than 500 different APIs and TPs. The measured fragment spectra were matched against experimental MS2 patterns obtained from a publicly available spectral library (MassBank of North America) and in-silico generated fragmentation features (from the CFM-ID algorithm). In total, 79 suspects were identified and 24 target compounds were semi-quantified in 72 wastewater samples. The highest detection frequencies in treated wastewater effluents were observed for diclofenac, metoprolol and telmisartan, while hydroxydiclofenac, dextrorphan, and carbamazepine metabolites were the most frequently detected TPs. The obtained API profiles were in accordance with the national consumption statistics and the origin of wastewater samples. The developed method is suitable for rapid screening of APIs in wastewater and can be used as a complementary tool to characterize API emissions from wastewater treatment facilities and to identify problematic compounds that require more rigorous monitoring.
Collapse
Affiliation(s)
- Ingus Perkons
- Institute of Food Safety, Animal Health and Environment "BIOR", Lejupes iela 3, Riga LV-1076, Latvia; University of Latvia, Faculty of Chemistry, Jelgavas iela 1, Riga LV-1004, Latvia.
| | - Janis Rusko
- Institute of Food Safety, Animal Health and Environment "BIOR", Lejupes iela 3, Riga LV-1076, Latvia; University of Latvia, Faculty of Chemistry, Jelgavas iela 1, Riga LV-1004, Latvia
| | - Dzintars Zacs
- Institute of Food Safety, Animal Health and Environment "BIOR", Lejupes iela 3, Riga LV-1076, Latvia
| | - Vadims Bartkevics
- Institute of Food Safety, Animal Health and Environment "BIOR", Lejupes iela 3, Riga LV-1076, Latvia; University of Latvia, Faculty of Chemistry, Jelgavas iela 1, Riga LV-1004, Latvia
| |
Collapse
|
307
|
Prasse C. Reactivity-directed analysis - a novel approach for the identification of toxic organic electrophiles in drinking water. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2021; 23:48-65. [PMID: 33432313 DOI: 10.1039/d0em00471e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Drinking water consumption results in exposure to complex mixtures of organic chemicals, including natural and anthropogenic chemicals and compounds formed during drinking water treatment such as disinfection by-products. The complexity of drinking water contaminant mixtures has hindered efforts to assess associated health impacts. Existing approaches focus primarily on individual chemicals and/or the evaluation of mixtures, without providing information about the chemicals causing the toxic effect. Thus, there is a need for the development of novel strategies to evaluate chemical mixtures and provide insights into the species responsible for the observed toxic effects. This critical review introduces the application of a novel approach called Reactivity-Directed Analysis (RDA) to assess and identify organic electrophiles, the largest group of known environmental toxicants. In contrast to existing in vivo and in vitro approaches, RDA utilizes in chemico methodologies that investigate the reaction of organic electrophiles with nucleophilic biomolecules, including proteins and DNA. This review summarizes the existing knowledge about the presence of electrophiles in drinking water, with a particular focus on their formation in oxidative treatment systems with ozone, advanced oxidation processes, and UV light, as well as disinfectants such as chlorine, chloramines and chlorine dioxide. This summary is followed by an overview of existing RDA approaches and their application for the assessment of aqueous environmental matrices, with an emphasis on drinking water. RDA can be applied beyond drinking water, however, to evaluate source waters and wastewater for human and environmental health risks. Finally, future research demands for the detection and identification of electrophiles in drinking water via RDA are outlined.
Collapse
Affiliation(s)
- Carsten Prasse
- Department of Environmental Health and Engineering, Whiting School of Engineering and Bloomberg School of Public Health, Johns Hopkins University, 3400 N Charles St, Baltimore, MD-21318, USA.
| |
Collapse
|
308
|
Suzuki S, Hasegawa A, Uebori M, Shinomiya M, Yoshida Y, Ookubo K, Takino M, Hasegawa H, Takazawa M, Takemine S. Non-target environmental analysis by liquid chromatography/high-resolution mass spectrometry with a product ion and neutral loss database. JOURNAL OF MASS SPECTROMETRY : JMS 2021; 56:e4695. [PMID: 33410206 DOI: 10.1002/jms.4695] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 11/07/2020] [Accepted: 11/10/2020] [Indexed: 06/12/2023]
Abstract
Despite the increasing detection of emerging substances in the environment, the identity of most are left unknown due to the lack of efficient identification methods. We developed a non-target analysis method for identifying unknown substances in the environment by liquid chromatography/high-resolution mass spectrometry (LC/HRMS) with a product ion and neutral loss database (PNDB). The present analysis describes an elucidation method with elemental compositions of the molecules, product ions, and corresponding neutral losses of the unknown substance: (1) with the molecular formula, possible molecular structures are retrieved from two chemical structure databases (PubChem and ChemSpider); then (2) with the elemental compositions of product ions and neutral losses, possible partial structures are retrieved from the PNDB; and finally, (3) molecular structures that match the possible partial structures are listed in order of number of hits. A molecular structure with a higher number of hits is more similar to the structure of the analyzed substance. The performance of the non-target method was evaluated by simulated analysis of 150 LC/HRMS spectra registered in MassBank. First, all substances of the same mass data (41/41) and 68% (39/57) of the mass data of the same substances not registered in the PNDB were elucidated. It was demonstrated that 14% (7/52) and 31% (16/52) of the substances with no mass spectral data registered in the PNDB were obtained at the first and within the fifth place, respectively. Owing to the fact that 10 of the total hits occurred in product ions and neutral losses, almost 50% of the substances evaluated with this method were placed at the top 4 positions in the similarity ranking. Importantly, the proposed method is effective for analyzing mass spectral data that has not been registered in the PNDB and thus is expected to be used for a variety of non-target analyses.
Collapse
Affiliation(s)
- Shigeru Suzuki
- Graduate School of Bioscience and Biotechnology, Chubu University, Kasugai, Japan
| | - Atsuko Hasegawa
- Environmental Conservation Division, Kanagawa Environmental Research Center, 1-3-39, Shinomiya,, Hiratsuka, 254-0014, Japan
| | - Michiko Uebori
- Graduate School of Bioscience and Biotechnology, Chubu University, Kasugai, Japan
| | - Miho Shinomiya
- School of Health and Social Services, Saitama Prefectural University, 820 Sannomiya, Koshigaya, 343-8540, Japan
| | - Yasuko Yoshida
- Environment, Health and Safety Division, Sumica Chemical Analysis Service, Ltd., Sumitomo Fudosan Hongo Building 9F, 22-5, Hongo 3-chome, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Kaori Ookubo
- Physics and Chemistry Research and Investigate Division, Saga Prefectural Institute of Public Health and Pharmaceutical Research, 1-20 Hacchonawatemachi, Saga, 849-0925, Japan
| | - Masahiko Takino
- Chromatography and Mass Spectrometry Division, Agilent Technologies Japan Ltd., 9-1 Takakura-machi, Hachioji, 192-0033, Japan
| | - Hitomi Hasegawa
- Water Quality Division, Nagoya City Environmental Science Research Institute, 5-16-8 Toyoda, Minami-ku, Nagoya, 457-0841, Japan
| | - Mari Takazawa
- Graduate School of Bioscience and Biotechnology, Chubu University, Kasugai, Japan
- Water Environment Research Group, Public Works Research Institute, 1-6 Minamihara, Tsukuba, 305-8516, Japan
| | - Shusuke Takemine
- Chemical Substance Team, Center for Environmental Science in Saitama, 914 Oaza-Kamitanadare, Kisai-machi, Kazo, 347-0115, Japan
| |
Collapse
|
309
|
Escher BI, Neale PA. Effect-Based Trigger Values for Mixtures of Chemicals in Surface Water Detected with In Vitro Bioassays. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:487-499. [PMID: 33252775 DOI: 10.1002/etc.4944] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/04/2020] [Accepted: 11/23/2020] [Indexed: 05/12/2023]
Abstract
Effect-based trigger (EBT) values for in vitro bioassays are important for surface water quality monitoring because they define the threshold between acceptable and poor water quality. They have been derived for highly specific bioassays, such as hormone-receptor activation in reporter gene bioassays, by reading across from existing chemical guideline values. This read-across method is not easily applicable to bioassays indicative of adaptive stress responses, which are triggered by many different chemicals, and activation of nuclear receptors for xenobiotic metabolism, to which many chemicals bind with rather low specificity. We propose an alternative approach to define the EBT from the distribution of specificity ratios of all active chemicals. The specificity ratio is the ratio between the predicted baseline toxicity of a chemical in a given bioassay and its measured specific endpoint. Unlike many previous read-across methods to derive EBTs, the proposed method accounts for mixture effects and includes all chemicals, not only high-potency chemicals. The EBTs were derived from a cytotoxicity EBT that was defined as equivalent to 1% of cytotoxicity in a native surface water sample. The cytotoxicity EBT was scaled by the median of the log-normal distribution of specificity ratios to derive the EBT for effects specific for each bioassay. We illustrate the new approach using the example of the AREc32 assay, indicative of the oxidative stress response, and 2 nuclear receptor assays targeting the peroxisome proliferator-activated receptor gamma and the arylhydrocarbon receptor. The EBTs were less conservative than previously proposed but were able to differentiate untreated and insufficiently treated wastewater from wastewater treatment plant effluent with secondary or tertiary treatment and surface water. Environ Toxicol Chem 2021;40:487-499. © 2020 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Beate I Escher
- Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
- Center for Applied Geoscience, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Peta A Neale
- Australian Rivers Institute, School of Environment and Science, Griffith University, Southport, Queensland, Australia
| |
Collapse
|
310
|
Cheng Q, Li Q, Yuan Z, Li S, Xin JH, Ye D. Bifunctional Regenerated Cellulose/Polyaniline/Nanosilver Fibers as a Catalyst/Bactericide for Water Decontamination. ACS APPLIED MATERIALS & INTERFACES 2021; 13:4410-4418. [PMID: 33438389 DOI: 10.1021/acsami.0c20188] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
For antagonizing urgent water pollution and increasing environmental consciousness, the integration of renewable resources and nanotechnologies has become a trend to improve water quality in the ecosystem. Here, we designed a green route to fabricate regenerated cellulose fibers (CFs) with 3D micro- and nanoporous structures in NaOH/urea aqueous solvent systems via a scalable wet-spinning procedure as support materials for nanoparticles (NPs). Modification of CFs with polyaniline@Ag nanocomposites through in situ reduction of the silver ion with aqueous aniline led to enhanced pollutant removal efficiency of functional cellulose-based fibers (FCFs), demonstrating both rapid hydrogenation catalytic performance for the reduction of p-nitrophenol and high antibacterial properties for in-flow water purification. Most importantly, the hierarchically porous structures of FCFs not only provided carrier space but also formed a limiting domain guaranteeing the homogeneity of FCFs even with a Ag NP content as high as 36.47 wt %. The prepared functional fibers show good behavior in in-flow water purification, representing significant advancement in the use of biomass fibers for catalytic and bactericidal applications in liquid media.
Collapse
Affiliation(s)
- Qiaoyun Cheng
- Institute of Bioengineering, Guangdong Academy of Science, Research Center for Sugarcane Industry Engineering Technology of Light Industry, Guangzhou 510316, China
| | - Qihua Li
- School of Textile Materials and Engineering, Wuyi University, Jiangmen 529020, China
| | - Zhanhong Yuan
- School of Textile Materials and Engineering, Wuyi University, Jiangmen 529020, China
| | - Shufen Li
- School of Textile Materials and Engineering, Wuyi University, Jiangmen 529020, China
| | - John H Xin
- Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Dongdong Ye
- School of Textile Materials and Engineering, Wuyi University, Jiangmen 529020, China
| |
Collapse
|
311
|
Zhu Y, Wu X, Liu Y, Zhang J, Lin D. Synergistic growth inhibition effect of TiO 2 nanoparticles and tris(1,3-dichloro-2-propyl) phosphate on earthworms in soil. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111462. [PMID: 33069946 DOI: 10.1016/j.ecoenv.2020.111462] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 10/01/2020] [Accepted: 10/03/2020] [Indexed: 06/11/2023]
Abstract
The co-existence of organic pollutants and nanoparticles in the environment may lead to combined biological effects. The joint toxicity of pollutants and nanoparticles has been receiving increasing attention from researchers, but few studies have focused on soil biota due to the complexity of soil matrices. This study investigated the effects of tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) at 0, 5, and 25 mg/kg and nanoparticulate TiO2 (nTiO2) at 0, 500, and 2500 mg/kg in a 3 × 3 factorial arrangement of treatments for 28 days (d) on Eisenia fetida (earthworm). Compared with the control group (the 0 mg/kg TDCIPP + 0 mg/kg nTiO2 treatment), all other single (TDCIPP or nTiO2) and binary (TDCIPP + nTiO2) treatments except for the single 500 mg/kg nTiO2 treatment significantly reduced the weight gain rate of E. fetida. The binary treatments had significantly greater such effect than their corresponding single treatments, exhibiting a synergistic toxicity between TDCIPP and nTiO2 on the growth of E. fetida. Since TDCIPP and nTiO2 had no significant effect on their concentrations in the soil or in E. fetida during binary exposure, the synergistic toxicity could be a result of the superimposition of the toxicity pathways of TDCIPP and nTiO2. Transcriptomic analysis of E. fetida intestinal region revealed that exposure to 25 mg/kg TDCIPP or 2500 mg/kg nTiO2 affected nutrient-related or cell apoptosis and DNA damage related genes, respectively; their co-exposure greatly inhibited genes related to nutrient digestion and absorption, while causing abnormal transcription of genes related to the development and maintenance of E. fetida's muscles, leading to synergistic toxicity. These findings provide new insights into the environmental risks of organophosphorus flame retardants, nanoparticles, and their co-exposure.
Collapse
Affiliation(s)
- Ya Zhu
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Watershed Science and Health, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China
| | - Xinyue Wu
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Yaoxuan Liu
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Jianying Zhang
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Zhejiang University, Hangzhou 310058, China
| | - Daohui Lin
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
312
|
Tian Z, Zhao H, Peter KT, Gonzalez M, Wetzel J, Wu C, Hu X, Prat J, Mudrock E, Hettinger R, Cortina AE, Biswas RG, Kock FVC, Soong R, Jenne A, Du B, Hou F, He H, Lundeen R, Gilbreath A, Sutton R, Scholz NL, Davis JW, Dodd MC, Simpson A, McIntyre JK, Kolodziej EP. A ubiquitous tire rubber-derived chemical induces acute mortality in coho salmon. Science 2021; 371:185-189. [PMID: 33273063 DOI: 10.1126/science.abd6951] [Citation(s) in RCA: 460] [Impact Index Per Article: 153.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 11/05/2020] [Indexed: 12/27/2022]
Abstract
In U.S. Pacific Northwest coho salmon (Oncorhynchus kisutch), stormwater exposure annually causes unexplained acute mortality when adult salmon migrate to urban creeks to reproduce. By investigating this phenomenon, we identified a highly toxic quinone transformation product of N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine (6PPD), a globally ubiquitous tire rubber antioxidant. Retrospective analysis of representative roadway runoff and stormwater-affected creeks of the U.S. West Coast indicated widespread occurrence of 6PPD-quinone (<0.3 to 19 micrograms per liter) at toxic concentrations (median lethal concentration of 0.8 ± 0.16 micrograms per liter). These results reveal unanticipated risks of 6PPD antioxidants to an aquatic species and imply toxicological relevance for dissipated tire rubber residues.
Collapse
Affiliation(s)
- Zhenyu Tian
- Center for Urban Waters, Tacoma, WA 98421, USA
- Interdisciplinary Arts and Sciences, University of Washington Tacoma, Tacoma, WA 98421, USA
| | - Haoqi Zhao
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA 98195, USA
| | - Katherine T Peter
- Center for Urban Waters, Tacoma, WA 98421, USA
- Interdisciplinary Arts and Sciences, University of Washington Tacoma, Tacoma, WA 98421, USA
| | - Melissa Gonzalez
- Center for Urban Waters, Tacoma, WA 98421, USA
- Interdisciplinary Arts and Sciences, University of Washington Tacoma, Tacoma, WA 98421, USA
| | - Jill Wetzel
- School of the Environment, Washington State University, Puyallup, WA 98371, USA
| | - Christopher Wu
- Center for Urban Waters, Tacoma, WA 98421, USA
- Interdisciplinary Arts and Sciences, University of Washington Tacoma, Tacoma, WA 98421, USA
| | - Ximin Hu
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA 98195, USA
| | - Jasmine Prat
- School of the Environment, Washington State University, Puyallup, WA 98371, USA
| | - Emma Mudrock
- School of the Environment, Washington State University, Puyallup, WA 98371, USA
| | - Rachel Hettinger
- Center for Urban Waters, Tacoma, WA 98421, USA
- Interdisciplinary Arts and Sciences, University of Washington Tacoma, Tacoma, WA 98421, USA
| | - Allan E Cortina
- Center for Urban Waters, Tacoma, WA 98421, USA
- Interdisciplinary Arts and Sciences, University of Washington Tacoma, Tacoma, WA 98421, USA
| | - Rajshree Ghosh Biswas
- Department of Chemistry, University of Toronto, Scarborough Campus, 1265 Military Trail, Toronto, ON M1C 1A4, Canada
| | | | - Ronald Soong
- Department of Chemistry, University of Toronto, Scarborough Campus, 1265 Military Trail, Toronto, ON M1C 1A4, Canada
| | - Amy Jenne
- Department of Chemistry, University of Toronto, Scarborough Campus, 1265 Military Trail, Toronto, ON M1C 1A4, Canada
| | - Bowen Du
- Southern California Coastal Water Research Project, Costa Mesa, CA 92626, USA
| | - Fan Hou
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA 98195, USA
| | - Huan He
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA 98195, USA
| | - Rachel Lundeen
- Center for Urban Waters, Tacoma, WA 98421, USA
- Interdisciplinary Arts and Sciences, University of Washington Tacoma, Tacoma, WA 98421, USA
| | - Alicia Gilbreath
- San Francisco Estuary Institute, 4911 Central Avenue, Richmond, CA 94804, USA
| | - Rebecca Sutton
- San Francisco Estuary Institute, 4911 Central Avenue, Richmond, CA 94804, USA
| | - Nathaniel L Scholz
- Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA 98112, USA
| | - Jay W Davis
- U.S. Fish and Wildlife Service, Washington Fish and Wildlife Office, Lacey, WA 98503, USA
| | - Michael C Dodd
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA 98195, USA
| | - Andre Simpson
- Department of Chemistry, University of Toronto, Scarborough Campus, 1265 Military Trail, Toronto, ON M1C 1A4, Canada
| | - Jenifer K McIntyre
- School of the Environment, Washington State University, Puyallup, WA 98371, USA
| | - Edward P Kolodziej
- Center for Urban Waters, Tacoma, WA 98421, USA.
- Interdisciplinary Arts and Sciences, University of Washington Tacoma, Tacoma, WA 98421, USA
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
313
|
Suvorov A, Salemme V, McGaunn J, Poluyanoff A, Teffera M, Amir S. Unbiased approach for the identification of molecular mechanisms sensitive to chemical exposures. CHEMOSPHERE 2021; 262:128362. [PMID: 33182146 DOI: 10.1016/j.chemosphere.2020.128362] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/13/2020] [Accepted: 09/16/2020] [Indexed: 06/11/2023]
Abstract
Targeted methods that dominated toxicological research until recently did not allow for screening of all molecular changes involved in toxic response. Therefore, it is difficult to infer if all major mechanisms of toxicity have already been discovered, or if some of them are still overlooked. We used data on 591,084 unique chemical-gene interactions to identify genes and molecular pathways most sensitive to chemical exposures. The list of identified pathways did not change significantly when analyses were done on different subsets of data with non-overlapping lists of chemical compounds indicative that our dataset is saturated enough to provide unbiased results. One of the most important findings of this study is that almost every known molecular mechanism may be affected by chemical exposures. Predictably, xenobiotic metabolism pathways, and mechanisms of cellular response to stress and damage were among the most sensitive. Additionally, we identified highly sensitive molecular pathways, which are not widely recognized as major targets of toxicants, including lipid metabolism pathways, longevity regulation cascade, and cytokine-mediated signaling. These mechanisms are relevant to significant public health problems, such as aging, cancer, metabolic and autoimmune disease. Thus, public health field will benefit from future focus of toxicological research on identified sensitive mechanisms.
Collapse
Affiliation(s)
- Alexander Suvorov
- Department of Environmental Health Sciences, School of Public Health & Health Sciences, University of Massachusetts, 686 North Pleasant Street, Amherst, MA, 01003, USA.
| | - Victoria Salemme
- Department of Environmental Health Sciences, School of Public Health & Health Sciences, University of Massachusetts, 686 North Pleasant Street, Amherst, MA, 01003, USA
| | - Joseph McGaunn
- Department of Environmental Health Sciences, School of Public Health & Health Sciences, University of Massachusetts, 686 North Pleasant Street, Amherst, MA, 01003, USA
| | - Anthony Poluyanoff
- Department of Environmental Health Sciences, School of Public Health & Health Sciences, University of Massachusetts, 686 North Pleasant Street, Amherst, MA, 01003, USA
| | - Menna Teffera
- Department of Environmental Health Sciences, School of Public Health & Health Sciences, University of Massachusetts, 686 North Pleasant Street, Amherst, MA, 01003, USA
| | - Saira Amir
- Department of Environmental Health Sciences, School of Public Health & Health Sciences, University of Massachusetts, 686 North Pleasant Street, Amherst, MA, 01003, USA; Current Affiliation: Department of Biosciences, COMSATS University Islamabad, Pakistan
| |
Collapse
|
314
|
Cao Z, Lin S, Zhao F, Lv Y, Qu Y, Hu X, Yu S, Song S, Lu Y, Yan H, Liu Y, Ding L, Zhu Y, Liu L, Zhang M, Wang T, Zhang W, Fu H, Jin Y, Cai J, Zhang X, Yan C, Ji S, Zhang Z, Dai J, Zhu H, Gao L, Yang Y, Li C, Zhou J, Ying B, Zheng L, Kang Q, Hu J, Zhao W, Zhang M, Yu X, Wu B, Zheng T, Liu Y, Barry Ryan P, Barr DB, Qu W, Zheng Y, Shi X. Cohort profile: China National Human Biomonitoring (CNHBM)-A nationally representative, prospective cohort in Chinese population. ENVIRONMENT INTERNATIONAL 2021; 146:106252. [PMID: 33242729 PMCID: PMC7828642 DOI: 10.1016/j.envint.2020.106252] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 10/24/2020] [Accepted: 10/27/2020] [Indexed: 05/02/2023]
Abstract
OBJECTIVE Globally, developed countries such as the United States, Canada, Germany, Korea, have carried out long-term and systematic biomonitoring programs for environmental chemicals in their populations. The China National Human Biomonitoring (CNHBM) was to document the extent of human exposure to a wide array of environmental chemicals, to understand exposure profiles, magnitude and ongoing trends in exposure in the general Chinese population, and to establish a national biorepository. METHODS CNHBM adopted three-stage sampling method to obtain a nationally representative sample of the population. A total of 21,888 participants who were permanent residents in 31 provinces were designed to interviewed in this national biomonitoring (152 monitoring sites × 3 survey units × 2 sexes × 6 age groups × 4 persons = 21,888 persons) in 2017-2018. Unlike the US National Health and Nutrition Examination Survey, the CNHBM will follow the same participants in subsequent cycles allowing for dynamic, longitudinal data sets for epidemiologic follow-up. Each survey cycle of CNHBM will last 2 years and each subsequent cycle will occur 3 years after the prior cycle's completion. RESULTS In 2017-2018, the CNHBM created a large cohort of Chinese citizens that included districts/counties questionnaire, community questionnaire collecting information on villages/communities, individual questionnaire, household questionnaire, comprehensive medical examination, and collection of blood and urine samples for measurement of clinical and exposure biomarkers. A total of 21,746 participants were finally included in CNHBM, accounting for 99.4% of the designed sample size; and 152 PSUs questionnaires, 454 community questionnaires, 21,619 family questionnaires, 21,712 cases of medical examinations, 21,700 individual questionnaires, 21,701 blood samples and 21,704 urine samples were collected, respectively. Planned analyses of blood and urine samples were to measure both inorganic and organic chemicals, including 13 heavy metals and metalloids, 18 poly- and per-fluorinated alkyl substances, 12 phthalate metabolites, 9 polycyclic aromatic hydrocarbons metabolites, 4 environmental alkylated phenols, and 2 benzene metabolites. CONCLUSIONS CNHBM established the first nationally representative, prospective cohort in the Chinese population to understand the baseline and trend of internal exposure of environmental chemicals in general population, and to understand environmental toxicity.
Collapse
Affiliation(s)
- Zhaojin Cao
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Shaobin Lin
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Feng Zhao
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yuebin Lv
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yingli Qu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xiaojian Hu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Shicheng Yu
- Office of Epidemiology, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Shixun Song
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yifu Lu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Huifang Yan
- National Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yingchun Liu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Liang Ding
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Ying Zhu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Ling Liu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Miao Zhang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Tong Wang
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Wenli Zhang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Hui Fu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yongjin Jin
- School of Statistics, Renmin University of China, Beijing, China
| | - Jiayi Cai
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xu Zhang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Chonghuai Yan
- The Children's Hospital, Fudan University, Shanghai, China
| | - Saisai Ji
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Zhuona Zhang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jiayin Dai
- Institute of Zoology, Chinese Academy Sciences, Beijing, China
| | - Huijuan Zhu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Lixue Gao
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yanwei Yang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Chengcheng Li
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jinhui Zhou
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Bo Ying
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Lei Zheng
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Qi Kang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Junming Hu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Weixia Zhao
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Mingyuan Zhang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xiaoyi Yu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Bing Wu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Tongzhang Zheng
- Department of Epidemiology, Brown University, Providence, RI, USA
| | - Yang Liu
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, United States
| | - P Barry Ryan
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, United States
| | - Dana Boyd Barr
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, United States
| | - Weidong Qu
- Department of Environment Health, School of Public Health, Fudan University, Shanghai, China
| | - Yuxin Zheng
- School of Public Health, Qingdao University, Qingdao, Shandong, China
| | - Xiaoming Shi
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China.
| |
Collapse
|
315
|
Muz M, Escher BI, Jahnke A. Bioavailable Environmental Pollutant Patterns in Sediments from Passive Equilibrium Sampling. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:15861-15871. [PMID: 33213151 DOI: 10.1021/acs.est.0c05537] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Sediment-associated risks depend on the bioavailable fraction of organic chemicals and cannot be comprehended by their total concentrations. The present study investigated contamination patterns of bioavailable chemicals in sediments from various sites around the globe by using passive equilibrium sampling. The extracts had been characterized previously for mixture effects by in vitro reporter gene assays and were in this study analyzed using gas chromatography-high resolution mass spectrometry for 121 chemicals including both legacy and emerging contaminants. The spatial distribution of the detected chemicals revealed distinct contamination patterns among sampling sites. We identified compounds in common at the different sites but most contaminant mixtures were site-specific. The mixture effects of the detected chemicals were predicted with a mixture toxicity model from effect concentrations of bioactive single chemicals and detected concentrations, applying a joint model for concentration addition and independent action. The predicted mixture effects were dominated by polycyclic aromatic hydrocarbons, and among the chemicals with available effect data, 17% elicited oxidative stress response and 18% activated the arylhydrocarbon receptor. Except for two sites in Sweden, where 11 and 38% of the observed oxidative stress response were explained by the detected chemicals, less than 10% of effects in both biological end points were explained. These results provide a comprehensive investigation of bioavailable contamination patterns of sediments and may serve as an example of employing passive equilibrium sampling as a monitoring technique to integrate the risk of bioavailable sediment-associated chemicals in aquatic environments.
Collapse
Affiliation(s)
- Melis Muz
- Department of Cell Toxicology, UFZ Helmholtz Centre for Environmental Research, Permoserstr. 15, 04318 Leipzig, Germany
- Department of Effect Directed Analysis, UFZ Helmholtz Centre for Environmental Research, Permoserstr. 15, 04318 Leipzig, Germany
| | - Beate I Escher
- Department of Cell Toxicology, UFZ Helmholtz Centre for Environmental Research, Permoserstr. 15, 04318 Leipzig, Germany
- Environmental Toxicology, Center for Applied Geoscience, Eberhard Karls University Tübingen, Schnarrenbergstr. 94-96, 72076 Tübingen, Germany
| | - Annika Jahnke
- Department of Cell Toxicology, UFZ Helmholtz Centre for Environmental Research, Permoserstr. 15, 04318 Leipzig, Germany
- Department of Ecological Chemistry, UFZ Helmholtz Centre for Environmental Research, Permoserstr. 15, 04318 Leipzig, Germany
| |
Collapse
|
316
|
Subramanian M, Wojtusciszyn A, Favre L, Boughorbel S, Shan J, Letaief KB, Pitteloud N, Chouchane L. Precision medicine in the era of artificial intelligence: implications in chronic disease management. J Transl Med 2020; 18:472. [PMID: 33298113 PMCID: PMC7725219 DOI: 10.1186/s12967-020-02658-5] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 12/02/2020] [Indexed: 02/07/2023] Open
Abstract
Aberrant metabolism is the root cause of several serious health issues, creating a huge burden to health and leading to diminished life expectancy. A dysregulated metabolism induces the secretion of several molecules which in turn trigger the inflammatory pathway. Inflammation is the natural reaction of the immune system to a variety of stimuli, such as pathogens, damaged cells, and harmful substances. Metabolically triggered inflammation, also called metaflammation or low-grade chronic inflammation, is the consequence of a synergic interaction between the host and the exposome-a combination of environmental drivers, including diet, lifestyle, pollutants and other factors throughout the life span of an individual. Various levels of chronic inflammation are associated with several lifestyle-related diseases such as diabetes, obesity, metabolic associated fatty liver disease (MAFLD), cancers, cardiovascular disorders (CVDs), autoimmune diseases, and chronic lung diseases. Chronic diseases are a growing concern worldwide, placing a heavy burden on individuals, families, governments, and health-care systems. New strategies are needed to empower communities worldwide to prevent and treat these diseases. Precision medicine provides a model for the next generation of lifestyle modification. This will capitalize on the dynamic interaction between an individual's biology, lifestyle, behavior, and environment. The aim of precision medicine is to design and improve diagnosis, therapeutics and prognostication through the use of large complex datasets that incorporate individual gene, function, and environmental variations. The implementation of high-performance computing (HPC) and artificial intelligence (AI) can predict risks with greater accuracy based on available multidimensional clinical and biological datasets. AI-powered precision medicine provides clinicians with an opportunity to specifically tailor early interventions to each individual. In this article, we discuss the strengths and limitations of existing and evolving recent, data-driven technologies, such as AI, in preventing, treating and reversing lifestyle-related diseases.
Collapse
Affiliation(s)
- Murugan Subramanian
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, USA.,Genetic Intelligence Laboratory, Weill Cornell Medicine-Qatar, Qatar Foundation, Doha, Qatar
| | - Anne Wojtusciszyn
- Service of Endocrinology, Diabetology and Metabolism, Lausanne University Hospital, Lausanne, Switzerland
| | - Lucie Favre
- Service of Endocrinology, Diabetology and Metabolism, Lausanne University Hospital, Lausanne, Switzerland
| | - Sabri Boughorbel
- Clinical Bioinformatics Section, Research Division, Sidra Medicine, Doha, Qatar
| | - Jingxuan Shan
- Genetic Intelligence Laboratory, Weill Cornell Medicine-Qatar, Qatar Foundation, Doha, Qatar.,Department of Genetic Medicine, Weill Cornell Medicine, 45 E 69th Street, Suite 432, New York, NY, 10021, USA
| | - Khaled B Letaief
- Department of Electronic and Computer Engineering, Hong Kong University of Science and Technology, Kowloon, Hong Kong
| | - Nelly Pitteloud
- Service of Endocrinology, Diabetology and Metabolism, Lausanne University Hospital, Lausanne, Switzerland.
| | - Lotfi Chouchane
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, USA. .,Genetic Intelligence Laboratory, Weill Cornell Medicine-Qatar, Qatar Foundation, Doha, Qatar. .,Department of Genetic Medicine, Weill Cornell Medicine, 45 E 69th Street, Suite 432, New York, NY, 10021, USA.
| |
Collapse
|
317
|
Neale PA, O’Brien JW, Glauch L, König M, Krauss M, Mueller JF, Tscharke B, Escher BI. Wastewater treatment efficacy evaluated with in vitro bioassays. WATER RESEARCH X 2020; 9:100072. [PMID: 33089130 PMCID: PMC7559864 DOI: 10.1016/j.wroa.2020.100072] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 09/19/2020] [Accepted: 09/30/2020] [Indexed: 05/05/2023]
Abstract
Bioassays show promise as a complementary approach to chemical analysis to assess the efficacy of wastewater treatment processes as they can detect the mixture effects of all bioactive chemicals in a sample. We investigated the treatment efficacy of ten Australian wastewater treatment plants (WWTPs) covering 42% of the national population over seven consecutive days. Solid-phase extracts of influent and effluent were subjected to an in vitro test battery with six bioassays covering nine endpoints that captured the major modes of action detected in receiving surface waters. WWTP influents and effluents were compared on the basis of population- and flow-normalised effect loads, which provided insights into the biological effects exhibited by the mixture of chemicals before and after treatment. Effect removal efficacy varied between effect endpoints and depended on the treatment process. An ozonation treatment step had the best treatment efficacy, while WWTPs with only primary treatment resulted in poor removal of effects. Effect removal was generally better for estrogenic effects and the peroxisome proliferator-activated receptor than for inhibition of photosynthesis, which is consistent with the persistence of herbicides causing this effect. Cytotoxicity and oxidative stress response provided a sum parameter of all bioactive chemicals including transformation products and removal was poorer than for specific endpoints except for photosynthesis inhibition. Although more than 500 chemicals were analysed, the detected chemicals explained typically less than 10% of the measured biological effect, apart from algal toxicity, where the majority of the effect could be explained by one dominant herbicide, diuron. Overall, the current study demonstrated the utility of applying bioassays alongside chemical analysis to evaluate loads of chemical pollution reaching WWTPs and treatment efficacy.
Collapse
Affiliation(s)
- Peta A. Neale
- Australian Rivers Institute, School of Environment and Science, Griffith University, Southport, QLD, 4222, Australia
- QAEHS – Queensland Alliance for Environmental Health Sciences, The University of Queensland, Brisbane, Queensland, 4102, Australia
- Corresponding author. Australian Rivers Institute, School of Environment and Science, Griffith University, Southport, QLD, 4222, Australia.
| | - Jake W. O’Brien
- QAEHS – Queensland Alliance for Environmental Health Sciences, The University of Queensland, Brisbane, Queensland, 4102, Australia
| | - Lisa Glauch
- UFZ – Helmholtz Centre for Environmental Research, 04318, Leipzig, Germany
| | - Maria König
- UFZ – Helmholtz Centre for Environmental Research, 04318, Leipzig, Germany
| | - Martin Krauss
- UFZ – Helmholtz Centre for Environmental Research, 04318, Leipzig, Germany
| | - Jochen F. Mueller
- QAEHS – Queensland Alliance for Environmental Health Sciences, The University of Queensland, Brisbane, Queensland, 4102, Australia
| | - Ben Tscharke
- QAEHS – Queensland Alliance for Environmental Health Sciences, The University of Queensland, Brisbane, Queensland, 4102, Australia
| | - Beate I. Escher
- Australian Rivers Institute, School of Environment and Science, Griffith University, Southport, QLD, 4222, Australia
- QAEHS – Queensland Alliance for Environmental Health Sciences, The University of Queensland, Brisbane, Queensland, 4102, Australia
- UFZ – Helmholtz Centre for Environmental Research, 04318, Leipzig, Germany
- Eberhard Karls University Tübingen, Environmental Toxicology, Centre for Applied Geoscience, 72076, Tübingen, Germany
| |
Collapse
|
318
|
Price P. Interindividual Variation in Source-Specific Doses is a Determinant of Health Impacts of Combined Chemical Exposures. RISK ANALYSIS : AN OFFICIAL PUBLICATION OF THE SOCIETY FOR RISK ANALYSIS 2020; 40:2572-2583. [PMID: 32671861 PMCID: PMC7818457 DOI: 10.1111/risa.13550] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 06/01/2020] [Accepted: 06/13/2020] [Indexed: 06/11/2023]
Abstract
All individuals are exposed to multiple chemicals from multiple sources. These combined exposures are a concern because they may cause adverse effects that would not occur from an exposure recieved from any single source. Studies of combined chemical exposures, however, have found that the risks posed by such combined exposures are almost always driven by exposures from a few chemicals and sources and frequently by a single chemical from a single source. Here, a series of computer simulations of combined exposures are used to investigate when multiple sources of chemicals drive the largest risks in a population and when a single chemical from a single source is responsible for the largest risks. The analysis found that combined exposures drive the largest risks when the interindividual variation of source-specific doses is small, moderate-to-high correlations occur between the source-specific doses, and the number of sources affecting an individual varies across individuals. These findings can be used to identify sources with the greatest potential to cause combined exposures of concern.
Collapse
Affiliation(s)
- Paul Price
- Office of Research and DevelopmentUnited States Environmental Protection AgencyWashingtonDCUSA
| |
Collapse
|
319
|
Huang Y, Fang M. Nutritional and Environmental Contaminant Exposure: A Tale of Two Co-Existing Factors for Disease Risks. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:14793-14796. [PMID: 33180472 DOI: 10.1021/acs.est.0c05658] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Affiliation(s)
- Yichao Huang
- School of Environment, Jinan University, Guangdong Guangzhou, P. R. China 511443
| | - Mingliang Fang
- School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798
| |
Collapse
|
320
|
Du B, Fan G, Yu W, Yang S, Zhou J, Luo J. Occurrence and risk assessment of steroid estrogens in environmental water samples: A five-year worldwide perspective. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 267:115405. [PMID: 33618485 DOI: 10.1016/j.envpol.2020.115405] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 08/06/2020] [Accepted: 08/06/2020] [Indexed: 05/15/2023]
Abstract
The ubiquitous occurrence of steroid estrogens (SEs) in the aquatic environment has raised global concern for their potential environmental impacts. This paper extensively compiled and reviewed the available occurrence data of SEs, namely estrone (E1), 17α-estradiol (17α-E2), 17β-estradiol (17β-E2), estriol (E3), and 17α-ethinyl estradiol (EE2), based on 145 published articles in different regions all over the world including 51 countries and regions during January 2015-March 2020. The data regarding SEs concentrations and estimated 17β-estradiol equivalency (EEQ) values are then compared and analyzed in different environmental matrices, including natural water body, drinking and tap water, and wastewater treatment plants (WWTPs) effluent. The detection frequencies of E1, 17β-E2, and E3 between the ranges of 53%-83% in natural water and WWTPs effluent, and the concentration of SEs varied considerably in different countries and regions. The applicability for EEQ estimation via multiplying relative effect potency (REPi) by chemical analytical data, as well as correlation between EEQbio and EEQcal was also discussed. The risk quotient (RQ) values were on the descending order of EE2 > 17β-E2 > E1 > 17α-E2 > E3 in the great majority of investigations. Furthermore, E1, 17β-E2, and EE2 exhibited high or medium risks in water environmental samples via optimized risk quotient (RQf) approach at the continental-scale. This overview provides the latest insights on the global occurrence and ecological impacts of SEs and may act as a supportive tool for future SEs investigation and monitoring.
Collapse
Affiliation(s)
- Banghao Du
- College of Civil Engineering, Fuzhou University, 350116, Fujian, China
| | - Gongduan Fan
- College of Civil Engineering, Fuzhou University, 350116, Fujian, China; State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, 350002, Fujian, China; Fujian Provincial Key Laboratory of Electrochemical Energy Storage Materials, Fuzhou University, 350002, Fujian, China.
| | - Weiwei Yu
- Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education, School of River and Ocean Engineering, Chongqing Jiaotong University, 400074, Chongqing, China
| | - Shuo Yang
- Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education, School of River and Ocean Engineering, Chongqing Jiaotong University, 400074, Chongqing, China
| | - Jinjin Zhou
- College of Civil Engineering, Fuzhou University, 350116, Fujian, China
| | - Jing Luo
- College of Civil Engineering, Fuzhou University, 350116, Fujian, China
| |
Collapse
|
321
|
Saini A, Harner T, Chinnadhurai S, Schuster JK, Yates A, Sweetman A, Aristizabal-Zuluaga BH, Jiménez B, Manzano CA, Gaga EO, Stevenson G, Falandysz J, Ma J, Miglioranza KSB, Kannan K, Tominaga M, Jariyasopit N, Rojas NY, Amador-Muñoz O, Sinha R, Alani R, Suresh R, Nishino T, Shoeib T. GAPS-megacities: A new global platform for investigating persistent organic pollutants and chemicals of emerging concern in urban air. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 267:115416. [PMID: 32854027 DOI: 10.1016/j.envpol.2020.115416] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/16/2020] [Accepted: 08/08/2020] [Indexed: 06/11/2023]
Abstract
A pilot study was initiated in 2018 under the Global Atmospheric Passive Sampling (GAPS) Network named GAPS-Megacities. This study included 20 megacities/major cities across the globe with the goal of better understanding and comparing ambient air levels of persistent organic pollutants and other chemicals of emerging concern, to which humans residing in large cities are exposed. The first results from the initial period of sampling are reported for 19 cities for several classes of flame retardants (FRs) including organophosphate esters (OPEs), polybrominated diphenyl ethers (PBDEs), and halogenated flame retardants (HFRs) including new flame retardants (NFRs), tetrabromobisphenol A (TBBPA) and hexabromocyclododecane (HBCDD). The two cities, New York (USA) and London (UK) stood out with ∼3.5 to 30 times higher total FR concentrations as compared to other major cities, with total concentrations of OPEs of 15,100 and 14,100 pg/m3, respectively. Atmospheric concentrations of OPEs significantly dominated the FR profile at all sites, with total concentrations in air that were 2-5 orders of magnitude higher compared to other targeted chemical classes. A moderately strong and significant correlation (r = 0.625, p < 0.001) was observed for Gross Domestic Product index of the cities with total OPEs levels. Although large differences in FR levels were observed between some cities, when averaged across the five United Nations regions, the FR classes were more evenly distributed and varied by less than a factor of five. Results for Toronto, which is a 'reference city' for this study, agreed well with a more in-depth investigation of the level of FRs over different seasons and across eight sites representing different urban source sectors (e.g. traffic, industrial, residential and background). Future sampling periods under this project will investigate trace metals and other contaminant classes, linkages to toxicology, non-targeted analysis, and eventually temporal trends. The study provides a unique urban platform for evaluating global exposome.
Collapse
Affiliation(s)
- Amandeep Saini
- Air Quality Processes Research Section, Environment and Climate Change Canada, 4905 Dufferin Street, Toronto, M3H5T4, Canada.
| | - Tom Harner
- Air Quality Processes Research Section, Environment and Climate Change Canada, 4905 Dufferin Street, Toronto, M3H5T4, Canada
| | - Sita Chinnadhurai
- Air Quality Processes Research Section, Environment and Climate Change Canada, 4905 Dufferin Street, Toronto, M3H5T4, Canada
| | - Jasmin K Schuster
- Air Quality Processes Research Section, Environment and Climate Change Canada, 4905 Dufferin Street, Toronto, M3H5T4, Canada
| | - Alan Yates
- Australian Ultra-Trace Laboratory, National Measurement Institute, North Ryde, NSW, 2113, Australia
| | - Andrew Sweetman
- Lancaster Environment Centre, Lancaster University, Lancaster, K LA1 4YQ, United Kingdom
| | | | - Begoña Jiménez
- Department of Instrumental Analysis and Environmental Chemistry, Institute of Organic Chemistry, IQOG-CSIC, 28006, Madrid, Spain
| | - Carlos A Manzano
- Department of Chemistry, Faculty of Science, University of Chile, Las Palmeras, 3425, Santiago, Chile
| | - Eftade O Gaga
- Department of Environmental Engineering, Eskişehir Technical University, 26555, Eskişehir, Turkey
| | - Gavin Stevenson
- Australian Ultra-Trace Laboratory, National Measurement Institute, North Ryde, NSW, 2113, Australia
| | - Jerzy Falandysz
- University of Gdańsk, Environmental Chemistry and Ecotoxicology, 80-308, Gdańsk, Poland
| | - Jianmin Ma
- College of Urban and Environmental Science, Peking University, Beijing, 100871, China
| | | | - Kurunthachalam Kannan
- Department of Pediatrics and Department of Environmental Medicine, New York University School of Medicine, New York, NY, 10016, United States
| | - Maria Tominaga
- Sao Paulo State Environmental Company, Av. Prof. Frederico Hermann Jr, 345, São Paulo, Brazil
| | - Narumol Jariyasopit
- Siriraj Metabolomics and Phenomics Center, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | | | - Omar Amador-Muñoz
- Centro de Ciencias de la Atmósfera, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Ravindra Sinha
- IJRC-PTS, Department of Zoology, Patna University, Patna, 800 005, Bihar, India
| | - Rose Alani
- Department of Chemistry, Faculty of Science, University of Lagos, Lagos, Nigeria
| | - R Suresh
- Centre for Environmental Studies, The Energy and Resources Institute, Indian Habitat Centre, New Delhi, 110003, India
| | - Takahiro Nishino
- Tokyo Metropolitan Research Institute for Environmental Protection 1-7-5, Sinsuna Koto-ku, Tokyo, Japan
| | - Tamer Shoeib
- Department of Chemistry, The American University in Cairo, New Cairo, 11835, Egypt
| |
Collapse
|
322
|
Spilsbury FD, Warne MSJ, Backhaus T. Risk Assessment of Pesticide Mixtures in Australian Rivers Discharging to the Great Barrier Reef. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:14361-14371. [PMID: 33136377 DOI: 10.1021/acs.est.0c04066] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Rivers discharging to the Great Barrier Reef carry complex pesticide mixtures. Here we present a first comprehensive ecotoxicological risk assessment using species sensitivity distributions (SSDs), explore how risk changes with time and land use, and identify the drivers of mixture risks. The analyzed data set comprises 50 different pesticides and pesticide metabolites that were analyzed in 3741 samples from 18 river and creek catchments between 2011 and 2016. Pesticide mixtures were present in 82% of the samples, with a maximum of 23 pesticides and a median of five compounds per sample. Chemical-analytical techniques were insufficiently sensitive for at least seven pesticides (metsulfuron-methyl, terbutryn, imidacloprid, clothianidin, ametryn, prometryn, and thiamethoxam). The classical mixture concepts of concentration addition and independent action were applied to the pesticide SSDs, focusing on environmental threshold values protective for 95% of the species. Both concepts produced almost identical risk estimates. Mixture risk was therefore finally assessed using concentration addition, as the sum of the individual risk quotients. The sum of risk quotients ranges between 0.05 and 122 with a median of 0.66. An ecotoxicological risk (i.e., a sum of individual risk quotients exceeding 1) was indicated in 38.5% of the samples. Sixteen compounds accounted for 99% of the risk, with diuron, imidacloprid, atrazine, metolachlor, and hexazinone being the most important risk drivers. Analysis of land-use patterns in catchment areas showed an association between sugar cane farming and elevated risk levels, driven by the presence of diuron.
Collapse
Affiliation(s)
- Francis D Spilsbury
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg 40530, Sweden
- Curtin University, Perth, Western Australia 6845, Australia
| | - Michael St J Warne
- School of Earth and Environmental Sciences, University of Queensland, St Lucia, Queensland 4072, Australia
- Department of Environment and Science, Brisbane City, Queensland 4000, Australia
- Centre for Agroecology, Water and Resilience, Coventry University, Coventry CV83LG, United Kingdom
| | - Thomas Backhaus
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg 40530, Sweden
| |
Collapse
|
323
|
González A, Kroll KJ, Silva-Sanchez C, Carriquiriborde P, Fernandino JI, Denslow ND, Somoza GM. Steroid hormones and estrogenic activity in the wastewater outfall and receiving waters of the Chascomús chained shallow lakes system (Argentina). THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 743:140401. [PMID: 32653700 PMCID: PMC7492445 DOI: 10.1016/j.scitotenv.2020.140401] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 06/07/2020] [Accepted: 06/19/2020] [Indexed: 05/04/2023]
Abstract
Natural and synthetic steroid hormones, excreted by humans and farmed animals, have been considered as important sources of environmental endocrine disruptors. A suite of estrogens, androgens and progestogens was measured in the wastewater treatment plant outfall (WWTPO) of Chascomús city (Buenos Aires province, Argentina), and receiving waters located downstream and upstream from the WWTPO, using solid phase extraction and high-performance liquid chromatography mass spectrometry. The following natural hormones were measured: 17β-estradiol (E2), estrone (E1), estriol (E3), testosterone (T), 5α-dihydrotestosterone (DHT), progesterone (P), 17-hydroxyprogesterone (17OHP) and the synthetic estrogen 17α-ethinylestradiol (EE2). Also, in order to complement the analytical method, the estrogenic activity in these surface water samples was evaluated using the in vitro transactivation bioassay that measures the estrogen receptor (ER) activity using mammalian cells. All-natural steroid hormones measured, except 17OHP, were detected in all analyzed water samples. E3, E1, EE2 and DHT were the most abundant and frequently detected. Downstream of the WWTPO, the concentration levels of all compounds decreased reaching low levels at 4500 m from the WWTPO. Upstream, 1500 m from the WWTPO, six out of eight steroid hormones analyzed were detected: DHT, T, P, 17OHP, E3 and E2. Moreover, water samples from the WWTPO and 200 m downstream from it showed estrogenic activity exceeding that of the EC50 of the E2 standard curve. In sum, this work demonstrates the presence of sex steroid hormones and estrogenic activity, as measured by an in vitro assay, in superficial waters of the Pampas region. It also suggests the possibility of an unidentified source upstream of the wastewater outfall.
Collapse
Affiliation(s)
- Anelisa González
- Instituto Tecnológico de Chascomús (CONICET-UNSAM), Chascomús, Buenos Aires, Argentina
| | - Kevin J Kroll
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL, USA
| | - Cecilia Silva-Sanchez
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL, USA
| | - Pedro Carriquiriborde
- Centro de Investigaciones del Medioambiente (UNLP-CONICET), La Plata, Buenos Aires, Argentina
| | - Juan I Fernandino
- Instituto Tecnológico de Chascomús (CONICET-UNSAM), Chascomús, Buenos Aires, Argentina
| | - Nancy D Denslow
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL, USA.
| | - Gustavo M Somoza
- Instituto Tecnológico de Chascomús (CONICET-UNSAM), Chascomús, Buenos Aires, Argentina.
| |
Collapse
|
324
|
Orešič M, McGlinchey A, Wheelock CE, Hyötyläinen T. Metabolic Signatures of the Exposome-Quantifying the Impact of Exposure to Environmental Chemicals on Human Health. Metabolites 2020; 10:metabo10110454. [PMID: 33182712 PMCID: PMC7698239 DOI: 10.3390/metabo10110454] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/08/2020] [Accepted: 11/09/2020] [Indexed: 02/06/2023] Open
Abstract
Human health and well-being are intricately linked to environmental quality. Environmental exposures can have lifelong consequences. In particular, exposures during the vulnerable fetal or early development period can affect structure, physiology and metabolism, causing potential adverse, often permanent, health effects at any point in life. External exposures, such as the “chemical exposome” (exposures to environmental chemicals), affect the host’s metabolism and immune system, which, in turn, mediate the risk of various diseases. Linking such exposures to adverse outcomes, via intermediate phenotypes such as the metabolome, is one of the central themes of exposome research. Much progress has been made in this line of research, including addressing some key challenges such as analytical coverage of the exposome and metabolome, as well as the integration of heterogeneous, multi-omics data. There is strong evidence that chemical exposures have a marked impact on the metabolome, associating with specific disease risks. Herein, we review recent progress in the field of exposome research as related to human health as well as selected metabolic and autoimmune diseases, with specific emphasis on the impacts of chemical exposures on the host metabolome.
Collapse
Affiliation(s)
- Matej Orešič
- School of Medical Sciences, Örebro University, SE-701 82 Örebro, Sweden; (M.O.); (A.M.)
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520 Turku, Finland
| | - Aidan McGlinchey
- School of Medical Sciences, Örebro University, SE-701 82 Örebro, Sweden; (M.O.); (A.M.)
| | - Craig E. Wheelock
- Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institute, SE-171 77 Stockholm, Sweden;
| | - Tuulia Hyötyläinen
- MTM Research Centre, School of Science and Technology, Örebro University, SE-701 82 Örebro, Sweden
- Correspondence:
| |
Collapse
|
325
|
Wang S, Matt M, Murphy BL, Perkins M, Matthews DA, Moran SD, Zeng T. Organic Micropollutants in New York Lakes: A Statewide Citizen Science Occurrence Study. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:13759-13770. [PMID: 33064942 DOI: 10.1021/acs.est.0c04775] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The widespread occurrence of organic micropollutants (OMPs) is a challenge for aquatic ecosystem management, and closing the gaps in risk assessment of OMPs requires a data-driven approach. One promising tool for increasing the spatiotemporal coverage of OMP data sets is through the active involvement of citizen volunteers to expand the scale of OMP monitoring. Working collaboratively with volunteers from the Citizens Statewide Lake Assessment Program (CSLAP), we conducted the first statewide study on OMP occurrence in surface waters of New York lakes. Samples collected by CSLAP volunteers were analyzed for OMPs by a suspect screening method based on mixed-mode solid-phase extraction and liquid chromatography-high resolution mass spectrometry. Sixty-five OMPs were confirmed and quantified in samples from 111 lakes across New York. Hierarchical clustering of OMP occurrence data revealed the relevance of 11 most frequently detected OMPs for classifying the contamination status of lakes. Partial least squares regression and multiple linear regression analyses prioritized three water quality parameters linked to agricultural and developed land uses (i.e., total dissolved nitrogen, specific conductance, and a wastewater-derived fluorescent organic matter component) as the best combination of predictors that partly explained the interlake variability in OMP occurrence. Lastly, the exposure-activity ratio approach identified the potential for biological effects associated with detected OMPs that warrant further biomonitoring studies. Overall, this work demonstrated the feasibility of incorporating citizen science approaches into the regional impact assessment of OMPs.
Collapse
Affiliation(s)
- Shiru Wang
- Department of Civil and Environmental Engineering, Syracuse University, 151 Link Hall, Syracuse, New York 13244, United States
| | - Monica Matt
- Upstate Freshwater Institute, 224 Midler Park Drive, Syracuse, New York 13206, United States
| | - Bethany L Murphy
- Department of Civil and Environmental Engineering, Syracuse University, 151 Link Hall, Syracuse, New York 13244, United States
| | - MaryGail Perkins
- Upstate Freshwater Institute, 224 Midler Park Drive, Syracuse, New York 13206, United States
| | - David A Matthews
- Upstate Freshwater Institute, 224 Midler Park Drive, Syracuse, New York 13206, United States
| | - Sharon D Moran
- Department of Environmental Studies, SUNY College of Environmental Science and Forestry, 1 Forestry Drive, Syracuse, New York 13210, United States
| | - Teng Zeng
- Department of Civil and Environmental Engineering, Syracuse University, 151 Link Hall, Syracuse, New York 13244, United States
| |
Collapse
|
326
|
Salvito D, Fernandez M, Jenner K, Lyon DY, de Knecht J, Mayer P, MacLeod M, Eisenreich K, Leonards P, Cesnaitis R, León‐Paumen M, Embry M, Déglin SE. Improving the Environmental Risk Assessment of Substances of Unknown or Variable Composition, Complex Reaction Products, or Biological Materials. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2020; 39:2097-2108. [PMID: 32780492 PMCID: PMC7693076 DOI: 10.1002/etc.4846] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/11/2020] [Accepted: 08/03/2020] [Indexed: 05/20/2023]
Abstract
Substances of unknown or variable composition, complex reaction products, or biological materials (UVCBs) pose unique risk assessment challenges to regulators and to product registrants. These substances can contain many constituents, sometimes partially unknown and/or variable, depending on fluctuations in their source material and/or manufacturing process. International regulatory agencies have highlighted the difficulties in characterizing UVCBs and assessing their toxicity and environmental fate. Several industrial sectors have attempted to address these issues by developing frameworks and characterization methods. Based on the output of a 2016 workshop, this critical review examines current practices for UVCB risk assessment and reveals a need for a multipronged and transparent approach integrating whole-substance and constituent-based information. In silico tools or empirical measurements can provide information on discrete and/or blocks of UVCB constituents with similar hazard properties. Read-across and/or whole-substance toxicity and fate testing using adapted emerging methods can provide whole-substance information. Continued collaboration of stakeholders representing government, industry, and academia will facilitate the development of practical testing strategies and guidelines for addressing regulatory requirements for UVCBs. Environ Toxicol Chem 2020;39:2097-2108. © 2020 Health and Environmental Sciences Institute. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Daniel Salvito
- Research Institute for Fragrance Materials, Woodcliff LakeNew JerseyUSA
| | - Marc Fernandez
- Environment and Climate Change CanadaVancouverBritish ColumbiaCanada
| | | | | | - Joop de Knecht
- Netherlands National Institute for Public Health and the Environment, BilthovenThe Netherlands
| | - Philipp Mayer
- Technical University of Denmark, Kongens LyngbyDenmark
| | | | - Karen Eisenreich
- Office of Chemical Safety and Pollution Prevention, Office of Pollution Prevention and Toxics, US Environmental Protection AgencyWashingtonDC
| | - Pim Leonards
- Vrije Universiteit AmsterdamAmsterdamNetherlands
| | | | | | - Michelle Embry
- Health and Environmental Sciences InstituteWashingtonDCUSA
| | | |
Collapse
|
327
|
Ashauer R, Kuhl R, Zimmer E, Junghans M. Effect Modeling Quantifies the Difference Between the Toxicity of Average Pesticide Concentrations and Time-Variable Exposures from Water Quality Monitoring. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2020; 39:2158-2168. [PMID: 32735364 DOI: 10.1002/etc.4838] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/13/2020] [Accepted: 07/30/2020] [Indexed: 06/11/2023]
Abstract
Synthetic chemicals are frequently detected in water bodies, and their concentrations vary over time. Water monitoring programs typically employ either a sequence of grab samples or continuous sampling, followed by chemical analysis. Continuous time-proportional sampling yields the time-weighted average concentration, which is taken as proxy for the real, time-variable exposure. However, we do not know how much the toxicity of the average concentration differs from the toxicity of the corresponding fluctuating exposure profile. We used toxicokinetic-toxicodynamic models (invertebrates, fish) and population growth models (algae, duckweed) to calculate the margin of safety in moving time windows across measured aquatic concentration time series (7 pesticides) in 5 streams. A longer sampling period (14 d) for time-proportional sampling leads to more deviations from the real chemical stress than shorter sampling durations (3 d). The associated error is a factor of 4 or less in the margin of safety value toward underestimating and an error of factor 9 toward overestimating chemical stress in the most toxic time windows. Under- and overestimations occur with approximate equal frequency and are very small compared with the overall variation, which ranged from 0.027 to 2.4 × 1010 (margin of safety values). We conclude that continuous, time-proportional sampling for a period of 3 and 14 d for acute and chronic assessment, respectively, yields sufficiently accurate average concentrations to assess ecotoxicological effects. Environ Toxicol Chem 2020;39:2158-2168. © 2020 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Roman Ashauer
- Environment Department, University of York, Heslington, York, United Kingdom
| | | | | | | |
Collapse
|
328
|
Zhang X, Saini A, Hao C, Harner T. Passive air sampling and nontargeted analysis for screening POP-like chemicals in the atmosphere: Opportunities and challenges. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.116052] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
329
|
Martinez DST, Da Silva GH, de Medeiros AMZ, Khan LU, Papadiamantis AG, Lynch I. Effect of the Albumin Corona on the Toxicity of Combined Graphene Oxide and Cadmium to Daphnia magna and Integration of the Datasets into the NanoCommons Knowledge Base. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1936. [PMID: 33003330 PMCID: PMC7599915 DOI: 10.3390/nano10101936] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/22/2020] [Accepted: 09/24/2020] [Indexed: 12/12/2022]
Abstract
In this work, we evaluated the effect of protein corona formation on graphene oxide (GO) mixture toxicity testing (i.e., co-exposure) using the Daphnia magna model and assessing acute toxicity determined as immobilisation. Cadmium (Cd2+) and bovine serum albumin (BSA) were selected as co-pollutant and protein model system, respectively. Albumin corona formation on GO dramatically increased its colloidal stability (ca. 60%) and Cd2+ adsorption capacity (ca. 4.5 times) in reconstituted water (Daphnia medium). The acute toxicity values (48 h-EC50) observed were 0.18 mg L-1 for Cd2+-only and 0.29 and 0.61 mg L-1 following co-exposure of Cd2+ with GO and BSA@GO materials, respectively, at a fixed non-toxic concentration of 1.0 mg L-1. After coronation of GO with BSA, a reduction in cadmium toxicity of 110 % and 238% was achieved when compared to bare GO and Cd2+-only, respectively. Integration of datasets associated with graphene-based materials, heavy metals and mixture toxicity is essential to enable re-use of the data and facilitate nanoinformatics approaches for design of safer nanomaterials for water quality monitoring and remediation technologies. Hence, all data from this work were annotated and integrated into the NanoCommons Knowledge Base, connecting the experimental data to nanoinformatics platforms under the FAIR data principles and making them interoperable with similar datasets.
Collapse
Affiliation(s)
- Diego Stéfani T. Martinez
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas 13083-100, Sao Paulo, Brazil; (G.H.D.S.); (A.M.Z.d.M.); (L.U.K.)
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK;
- Center of Nuclear Energy in Agriculture (CENA), University of Sao Paulo (USP), Piracicaba 13416-000, Sao Paulo, Brazil
| | - Gabriela H. Da Silva
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas 13083-100, Sao Paulo, Brazil; (G.H.D.S.); (A.M.Z.d.M.); (L.U.K.)
| | - Aline Maria Z. de Medeiros
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas 13083-100, Sao Paulo, Brazil; (G.H.D.S.); (A.M.Z.d.M.); (L.U.K.)
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK;
- Center of Nuclear Energy in Agriculture (CENA), University of Sao Paulo (USP), Piracicaba 13416-000, Sao Paulo, Brazil
| | - Latif U. Khan
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas 13083-100, Sao Paulo, Brazil; (G.H.D.S.); (A.M.Z.d.M.); (L.U.K.)
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK;
- Synchrotron-Light for Experimental Science and Applications in the Middle East (SESAME), Allan 19252, Jordan
| | - Anastasios G. Papadiamantis
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK;
- NovaMechanics Ltd., Nicosia 1065, Cyprus
| | - Iseult Lynch
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK;
| |
Collapse
|
330
|
De Baat ML, Van der Oost R, Van der Lee GH, Wieringa N, Hamers T, Verdonschot PFM, De Voogt P, Kraak MHS. Advancements in effect-based surface water quality assessment. WATER RESEARCH 2020; 183:116017. [PMID: 32673894 DOI: 10.1016/j.watres.2020.116017] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 05/15/2020] [Accepted: 06/03/2020] [Indexed: 06/11/2023]
Abstract
Legally-prescribed chemical monitoring is unfit for determining the pollution status of surface waters, and there is a need for improved assessment methods that consider the aggregated risk of all bioavailable micropollutants present in the aquatic environment. Therefore, the present study aimed to advance effect-based water quality assessment by implementing methodological improvements and to gain insight into contamination source-specific bioanalytical responses. Passive sampling of non-polar and polar organic compounds and metals was applied at 14 surface water locations that were characterized by two major anthropogenic contamination sources, agriculture and wastewater treatment plant (WWTP) effluent, as well as reference locations with a low expected impact from micropollutants. Departing from the experience gained in previous studies, a battery of 20 in vivo and in vitro bioassays was composed and subsequently exposed to the passive sampler extracts. Next, the bioanalytical responses were divided by their respective effect-based trigger values to obtain effect-based risk quotients, which were summed per location. These cumulative ecotoxicological risks were lowest for reference locations (4.3-10.9), followed by agriculture locations (11.3-27.2) and the highest for WWTP locations (12.8-47.7), and were mainly driven by polar organic contaminants. The bioanalytical assessment of the joint risks of metals and (non-)polar organic compounds resulted in the successful identification of pollution source-specific ecotoxicological risk profiles: none of the bioassays were significantly associated with reference locations nor with multiple location types, while horticulture locations were significantly characterized by anti-AR and anti-PR activity and cytotoxicity, and WWTP sites by ERα activity and toxicity in the in vivo bioassays. It is concluded that the presently employed advanced effect-based methods can readily be applied in surface water quality assessment and that the integration of chemical- and effect-based monitoring approaches will foster future-proof water quality assessment strategies on the road to a non-toxic environment.
Collapse
Affiliation(s)
- M L De Baat
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, the Netherlands.
| | - R Van der Oost
- Department of Technology, Research and Engineering, Waternet Institute for the Urban Water Cycle, Amsterdam, the Netherlands
| | - G H Van der Lee
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, the Netherlands
| | - N Wieringa
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, the Netherlands
| | - T Hamers
- Department of Environment & Health, Vrije Universiteit Amsterdam, the Netherlands
| | - P F M Verdonschot
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, the Netherlands; Wageningen Environmental Research, Wageningen, UR, the Netherlands
| | - P De Voogt
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, the Netherlands
| | - M H S Kraak
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, the Netherlands
| |
Collapse
|
331
|
Cheroni C, Caporale N, Testa G. Autism spectrum disorder at the crossroad between genes and environment: contributions, convergences, and interactions in ASD developmental pathophysiology. Mol Autism 2020; 11:69. [PMID: 32912338 PMCID: PMC7488083 DOI: 10.1186/s13229-020-00370-1] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 08/07/2020] [Indexed: 12/12/2022] Open
Abstract
The complex pathophysiology of autism spectrum disorder encompasses interactions between genetic and environmental factors. On the one hand, hundreds of genes, converging at the functional level on selective biological domains such as epigenetic regulation and synaptic function, have been identified to be either causative or risk factors of autism. On the other hand, exposure to chemicals that are widespread in the environment, such as endocrine disruptors, has been associated with adverse effects on human health, including neurodevelopmental disorders. Interestingly, experimental results suggest an overlap in the regulatory pathways perturbed by genetic mutations and environmental factors, depicting convergences and complex interplays between genetic susceptibility and toxic insults. The pervasive nature of chemical exposure poses pivotal challenges for neurotoxicological studies, regulatory agencies, and policy makers. This highlights an emerging need of developing new integrative models, including biomonitoring, epidemiology, experimental, and computational tools, able to capture real-life scenarios encompassing the interaction between chronic exposure to mixture of substances and individuals' genetic backgrounds. In this review, we address the intertwined roles of genetic lesions and environmental insults. Specifically, we outline the transformative potential of stem cell models, coupled with omics analytical approaches at increasingly single cell resolution, as converging tools to experimentally dissect the pathogenic mechanisms underlying neurodevelopmental disorders, as well as to improve developmental neurotoxicology risk assessment.
Collapse
Affiliation(s)
- Cristina Cheroni
- High Definition Disease Modelling Lab, Stem Cell and Organoid Epigenetics, IEO, European Institute of Oncology, IRCCS, Milan, Italy.
- Department of Oncology and Hemato-oncology, University of Milan, Milan, Italy.
| | - Nicolò Caporale
- High Definition Disease Modelling Lab, Stem Cell and Organoid Epigenetics, IEO, European Institute of Oncology, IRCCS, Milan, Italy.
- Department of Oncology and Hemato-oncology, University of Milan, Milan, Italy.
- Human Technopole, Via Cristina Belgioioso 171, Milan, Italy.
| | - Giuseppe Testa
- High Definition Disease Modelling Lab, Stem Cell and Organoid Epigenetics, IEO, European Institute of Oncology, IRCCS, Milan, Italy.
- Department of Oncology and Hemato-oncology, University of Milan, Milan, Italy.
- Human Technopole, Via Cristina Belgioioso 171, Milan, Italy.
| |
Collapse
|
332
|
Posthuma L, Zijp MC, De Zwart D, Van de Meent D, Globevnik L, Koprivsek M, Focks A, Van Gils J, Birk S. Chemical pollution imposes limitations to the ecological status of European surface waters. Sci Rep 2020; 10:14825. [PMID: 32908203 PMCID: PMC7481305 DOI: 10.1038/s41598-020-71537-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 08/18/2020] [Indexed: 11/25/2022] Open
Abstract
Aquatic ecosystems are affected by man-made pressures, often causing combined impacts. The analysis of the impacts of chemical pollution is however commonly separate from that of other pressures and their impacts. This evolved from differences in the data available for applied ecology vis-à-vis applied ecotoxicology, which are field gradients and laboratory toxicity tests, respectively. With this study, we demonstrate that the current approach of chemical impact assessment, consisting of comparing measured concentrations to protective environmental quality standards for individual chemicals, is not optimal. In reply, and preparing for a method that would enable the comprehensive assessment and management of water quality pressures, we evaluate various quantitative chemical pollution pressure metrics for mixtures of chemicals in a case study with 24 priority substances of Europe-wide concern. We demonstrate why current methods are sub-optimal for water quality management prioritization and that chemical pollution currently imposes limitations to the ecological status of European surface waters. We discuss why management efforts may currently fail to restore a good ecological status, given that to date only 0.2% of the compounds in trade are considered in European water quality assessment and management.
Collapse
Affiliation(s)
- Leo Posthuma
- National Institute for Public Health and the Environment (Centre for Sustainability, Environment and Health, DMG), PO Box 1, 3720 BA, Bilthoven, The Netherlands. .,Department of Environmental Science, Radboud University Nijmegen, Heyendaalseweg, Nijmegen, The Netherlands.
| | - Michiel C Zijp
- National Institute for Public Health and the Environment (Centre for Sustainability, Environment and Health, DMG), PO Box 1, 3720 BA, Bilthoven, The Netherlands
| | - Dick De Zwart
- DdZ-Ecotox, Odijk, The Netherlands.,Mermayde, Groet, the Netherlands
| | - Dik Van de Meent
- Department of Environmental Science, Radboud University Nijmegen, Heyendaalseweg, Nijmegen, The Netherlands.,Mermayde, Groet, the Netherlands
| | - Lidija Globevnik
- Faculty of Civil and Geodetic Engineering, University of Ljubljana, Jamova 2, 1000, Ljubljana, Slovenia
| | - Maja Koprivsek
- Faculty of Civil and Geodetic Engineering, University of Ljubljana, Jamova 2, 1000, Ljubljana, Slovenia
| | - Andreas Focks
- Wageningen University and Research, PO Box 16, 6700 AA, Wageningen, The Netherlands
| | - Jos Van Gils
- Deltares, P.O. Box 177, 2600 MH, Delft, The Netherlands
| | - Sebastian Birk
- Faculty of Biology, Aquatic Ecology, University of Duisburg-Essen, Universitätsstr. 5, 45141, Essen, Germany.,Center for Water and Environmental Research, University of Duisburg-Essen, Universitätsstr. 5, 45141, Essen, Germany
| |
Collapse
|
333
|
Direct sample introduction GC-MS/MS for quantification of organic chemicals in mammalian tissues and blood extracted with polymers without clean-up. Anal Bioanal Chem 2020; 412:7295-7305. [PMID: 32803303 PMCID: PMC7497510 DOI: 10.1007/s00216-020-02864-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/27/2020] [Accepted: 08/05/2020] [Indexed: 01/10/2023]
Abstract
Solvent extracts of mammalian tissues and blood contain a large amount of co-extracted matrix components, in particular lipids, which can adversely affect instrumental analysis. Clean-up typically degrades non-persistent chemicals. Alternatively, passive sampling with the polymer polydimethylsiloxane (PDMS) has been used for a comprehensive extraction from tissue without altering the mixture composition. Despite a smaller fraction of matrix being co-extracted by PDMS than by solvent extraction, direct analysis of PDMS extracts was only possible with direct sample introduction (DSI) GC-MS/MS, which prevented co-extracted matrix components entering the system. Limits of quantitation (LOQ) ranged from 4 to 20 pg μL−1 ethyl acetate (PDMS extract) for pesticides and persistent organic pollutants (POPs). The group of organophosphorus flame retardants showed higher LOQs up to 107 pg μL−1 due to sorption to active sites at the injection system. Intraday precision ranged between 1 and 10%, while the range of interday precision was between 1 and 18% depending on the analyte. The method was developed using pork liver, brain, and fat as well as blood and was then applied to analyze human post-mortem tissues where polychlorinated biphenyls (PCBs) as well as dichlorodiphenyltrichloroethane (DDT) and DDT metabolites were detected. Graphical abstract ![]()
Collapse
|
334
|
Kaushal SS, Wood KL, Galella JG, Gion AM, Haq S, Goodling PJ, Haviland KA, Reimer JE, Morel CJ, Wessel B, Nguyen W, Hollingsworth JW, Mei K, Leal J, Widmer J, Sharif R, Mayer PM, Johnson TAN, Newcomb KD, Smith E, Belt KT. Making 'Chemical Cocktails' - Evolution of Urban Geochemical Processes across the Periodic Table of Elements. APPLIED GEOCHEMISTRY : JOURNAL OF THE INTERNATIONAL ASSOCIATION OF GEOCHEMISTRY AND COSMOCHEMISTRY 2020; 119:1-104632. [PMID: 33746355 PMCID: PMC7970522 DOI: 10.1016/j.apgeochem.2020.104632] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Urbanization contributes to the formation of novel elemental combinations and signatures in terrestrial and aquatic watersheds, also known as 'chemical cocktails.' The composition of chemical cocktails evolves across space and time due to: (1) elevated concentrations from anthropogenic sources, (2) accelerated weathering and corrosion of the built environment, (3) increased drainage density and intensification of urban water conveyance systems, and (4) enhanced rates of geochemical transformations due to changes in temperature, ionic strength, pH, and redox potentials. Characterizing chemical cocktails and underlying geochemical processes is necessary for: (1) tracking pollution sources using complex chemical mixtures instead of individual elements or compounds; (2) developing new strategies for co-managing groups of contaminants; (3) identifying proxies for predicting transport of chemical mixtures using continuous sensor data; and (4) determining whether interactive effects of chemical cocktails produce ecosystem-scale impacts greater than the sum of individual chemical stressors. First, we discuss some unique urban geochemical processes which form chemical cocktails, such as urban soil formation, human-accelerated weathering, urban acidification-alkalinization, and freshwater salinization syndrome. Second, we review and synthesize global patterns in concentrations of major ions, carbon and nutrients, and trace elements in urban streams across different world regions and make comparisons with reference conditions. In addition to our global analysis, we highlight examples from some watersheds in the Baltimore-Washington DC region, which show increased transport of major ions, trace metals, and nutrients across streams draining a well-defined land-use gradient. Urbanization increased the concentrations of multiple major and trace elements in streams draining human-dominated watersheds compared to reference conditions. Chemical cocktails of major and trace elements were formed over diurnal cycles coinciding with changes in streamflow, dissolved oxygen, pH, and other variables measured by high-frequency sensors. Some chemical cocktails of major and trace elements were also significantly related to specific conductance (p<0.05), which can be measured by sensors. Concentrations of major and trace elements increased, peaked, or decreased longitudinally along streams as watershed urbanization increased, which is consistent with distinct shifts in chemical mixtures upstream and downstream of other major cities in the world. Our global analysis of urban streams shows that concentrations of multiple elements along the Periodic Table significantly increase when compared with reference conditions. Furthermore, similar biogeochemical patterns and processes can be grouped among distinct mixtures of elements of major ions, dissolved organic matter, nutrients, and trace elements as chemical cocktails. Chemical cocktails form in urban waters over diurnal cycles, decades, and throughout drainage basins. We conclude our global review and synthesis by proposing strategies for monitoring and managing chemical cocktails using source control, ecosystem restoration, and green infrastructure. We discuss future research directions applying the watershed chemical cocktail approach to diagnose and manage environmental problems. Ultimately, a chemical cocktail approach targeting sources, transport, and transformations of different and distinct elemental combinations is necessary to more holistically monitor and manage the emerging impacts of chemical mixtures in the world's fresh waters.
Collapse
Affiliation(s)
- Sujay S Kaushal
- Department of Geology, University of Maryland, College Park, Maryland 20740, USA
- Earth System Science Interdisciplinary Center, University of Maryland, College Park, Maryland 20740, USA
| | - Kelsey L Wood
- Department of Geology, University of Maryland, College Park, Maryland 20740, USA
- Earth System Science Interdisciplinary Center, University of Maryland, College Park, Maryland 20740, USA
| | - Joseph G Galella
- Department of Geology, University of Maryland, College Park, Maryland 20740, USA
- Earth System Science Interdisciplinary Center, University of Maryland, College Park, Maryland 20740, USA
| | - Austin M Gion
- Department of Geology, University of Maryland, College Park, Maryland 20740, USA
| | - Shahan Haq
- Department of Geology, University of Maryland, College Park, Maryland 20740, USA
- Earth System Science Interdisciplinary Center, University of Maryland, College Park, Maryland 20740, USA
| | - Phillip J Goodling
- MD-DE-DC US Geological Survey Water Science Center, 5522 Research Park Drive, Catonsville, Maryland 21228, USA
| | | | - Jenna E Reimer
- Department of Geology, University of Maryland, College Park, Maryland 20740, USA
- Earth System Science Interdisciplinary Center, University of Maryland, College Park, Maryland 20740, USA
| | - Carol J Morel
- Department of Geology, University of Maryland, College Park, Maryland 20740, USA
- Earth System Science Interdisciplinary Center, University of Maryland, College Park, Maryland 20740, USA
| | - Barret Wessel
- Department of Environmental Science and Technology, University of Maryland, College Park, Maryland 20740, USA
| | - William Nguyen
- Department of Geology, University of Maryland, College Park, Maryland 20740, USA
- Earth System Science Interdisciplinary Center, University of Maryland, College Park, Maryland 20740, USA
| | - John W Hollingsworth
- Department of Geology, University of Maryland, College Park, Maryland 20740, USA
| | - Kevin Mei
- Department of Geology, University of Maryland, College Park, Maryland 20740, USA
| | - Julian Leal
- Department of Geology, University of Maryland, College Park, Maryland 20740, USA
| | - Jacob Widmer
- Department of Geology, University of Maryland, College Park, Maryland 20740, USA
| | - Rahat Sharif
- Department of Environmental Science and Technology, University of Maryland, College Park, Maryland 20740, USA
| | - Paul M Mayer
- US Environmental Protection Agency, Center for Public Health and Environmental Assessment, Pacific Ecological Systems Division, Western Ecology Division, 200 SW 35 Street, Corvallis, Oregon 97333, USA
| | - Tamara A Newcomer Johnson
- US Environmental Protection Agency, Center for Environmental Measurement and Modeling, Watershed and Ecosystem Characterization Division, 26 W. Martin Luther King Drive, Cincinnati, Ohio 45268, USA
| | | | - Evan Smith
- Department of Geology, University of Maryland, College Park, Maryland 20740, USA
- Earth System Science Interdisciplinary Center, University of Maryland, College Park, Maryland 20740, USA
| | - Kenneth T Belt
- Department of Geography and Environmental Systems, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21250
| |
Collapse
|
335
|
Leung KM, Yeung KW, You J, Choi K, Zhang X, Smith R, Zhou G, Yung MM, Arias‐Barreiro C, An Y, Burket SR, Dwyer R, Goodkin N, Hii YS, Hoang T, Humphrey C, Iwai CB, Jeong S, Juhel G, Karami A, Kyriazi‐Huber K, Lee K, Lin B, Lu B, Martin P, Nillos MG, Oginawati K, Rathnayake I, Risjani Y, Shoeb M, Tan CH, Tsuchiya MC, Ankley GT, Boxall AB, Rudd MA, Brooks BW. Toward Sustainable Environmental Quality: Priority Research Questions for Asia. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2020; 39:1485-1505. [PMID: 32474951 PMCID: PMC7496081 DOI: 10.1002/etc.4788] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/03/2020] [Accepted: 05/22/2020] [Indexed: 05/22/2023]
Abstract
Environmental and human health challenges are pronounced in Asia, an exceptionally diverse and complex region where influences of global megatrends are extensive and numerous stresses to environmental quality exist. Identifying priorities necessary to engage grand challenges can be facilitated through horizon scanning exercises, and to this end we identified and examined 23 priority research questions needed to advance toward more sustainable environmental quality in Asia, as part of the Global Horizon Scanning Project. Advances in environmental toxicology, environmental chemistry, biological monitoring, and risk-assessment methodologies are necessary to address the adverse impacts of environmental stressors on ecosystem services and biodiversity, with Asia being home to numerous biodiversity hotspots. Intersections of the food-energy-water nexus are profound in Asia; innovative and aggressive technologies are necessary to provide clean water, ensure food safety, and stimulate energy efficiency, while improving ecological integrity and addressing legacy and emerging threats to public health and the environment, particularly with increased aquaculture production. Asia is the largest chemical-producing continent globally. Accordingly, sustainable and green chemistry and engineering present decided opportunities to stimulate innovation and realize a number of the United Nations Sustainable Development Goals. Engaging the priority research questions identified herein will require transdisciplinary coordination through existing and nontraditional partnerships within and among countries and sectors. Answering these questions will not be easy but is necessary to achieve more sustainable environmental quality in Asia. Environ Toxicol Chem 2020;39:1485-1505. © 2020 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Kenneth M.Y. Leung
- Swire Institute of Marine Science and School of Biological SciencesUniversity of Hong KongPokfulamHong KongChina
- State Key Laboratory of Marine Pollution and Department of ChemistryCity University of Hong KongKowloonHong KongChina
| | - Katie W.Y. Yeung
- Swire Institute of Marine Science and School of Biological SciencesUniversity of Hong KongPokfulamHong KongChina
| | - Jing You
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and HealthJinan UniversityGuangzhouChina
| | | | - Xiaowei Zhang
- School of the EnvironmentNanjing UniversityNanjingChina
| | | | - Guang‐Jie Zhou
- Swire Institute of Marine Science and School of Biological SciencesUniversity of Hong KongPokfulamHong KongChina
| | | | | | | | | | | | | | | | | | - Chris Humphrey
- Supervising Scientist BranchCanberraAustralian Capital TerritoryAustralia
| | | | | | | | | | | | | | - Bin‐Le Lin
- National Institute of Advanced Industrial Science and TechnologyTokyoJapan
| | - Ben Lu
- International Copper Association–AsiaShanghaiChina
| | | | - Mae Grace Nillos
- College of Fisheries and Ocean SciencesUniversity of the Philippines VisayasIloilo CityPhilippines
| | | | - I.V.N. Rathnayake
- Department of MicrobiologyFaculty of Science, University of KelaniyaKelaniyaSri Lanka
| | | | | | | | | | | | | | | | - Bryan W. Brooks
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and HealthJinan UniversityGuangzhouChina
- Baylor UniversityWacoTexasUSA
| |
Collapse
|
336
|
Jaén-Gil A, Farré MJ, Sànchez-Melsió A, Serra-Compte A, Barceló D, Rodríguez-Mozaz S. Effect-Based Identification of Hazardous Antibiotic Transformation Products after Water Chlorination. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:9062-9073. [PMID: 32589847 DOI: 10.1021/acs.est.0c00944] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Antibiotic transformation products (TPs) generated during water treatment can be considered as an environmental concern, since they can retain part of the bioactivity of the parent compound. Effect-directed analysis (EDA) was applied for the identification of bioactive intermediates of azithromycin (AZI) and ciprofloxacin (CFC) after water chlorination. Fractionation of samples allowed the identification of bioactive intermediates by measuring the antibiotic activity and acute toxicity, combined with an automated suspect screening approach for chemical analysis. While the removal of AZI was in line with the decrease of bioactivity in chlorinated samples, an increase of bioactivity after complete removal of CFC was observed (at >0.5 mgCl2/L). Principal component analysis (PCA) revealed that some of the CFC intermediates could contribute to the overall toxicity of the chlorinated samples. Fractionation of bioactive samples identified that the chlorinated TP296 (generated from the destruction of the CFC piperazine ring) maintained 41%, 44%, and 30% of the antibiotic activity of the parent compound in chlorinated samples at 2.0, 3.0, and 4.0 mgCl2/L, respectively. These results indicate the spectrum of antibacterial activity can be altered by controlling the chemical substituents and configuration of the CFC structure with chlorine. On the other hand, the potential presence of volatile DBPs and fractionation losses do not allow for tentative confirmation of the main intermediates contributing to the acute toxic effects measured in chlorinated samples. Our results encourage further development of new and advanced methodologies to study the bioactivity of isolated unknown TPs to understand their hazardous effects in treated effluents.
Collapse
Affiliation(s)
- Adrián Jaén-Gil
- Catalan Institute for Water Research (ICRA), Carrer Emili Grahit 101, 17003 Girona, Spain
- Universitat de Girona, Girona, Spain
| | - María-José Farré
- Catalan Institute for Water Research (ICRA), Carrer Emili Grahit 101, 17003 Girona, Spain
- Universitat de Girona, Girona, Spain
| | - Alexandre Sànchez-Melsió
- Catalan Institute for Water Research (ICRA), Carrer Emili Grahit 101, 17003 Girona, Spain
- Universitat de Girona, Girona, Spain
| | - Albert Serra-Compte
- Catalan Institute for Water Research (ICRA), Carrer Emili Grahit 101, 17003 Girona, Spain
- Universitat de Girona, Girona, Spain
| | - Damià Barceló
- Catalan Institute for Water Research (ICRA), Carrer Emili Grahit 101, 17003 Girona, Spain
- Universitat de Girona, Girona, Spain
- Water and Soil Quality Research Group, Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, E-08034 Barcelona, Spain
| | - Sara Rodríguez-Mozaz
- Catalan Institute for Water Research (ICRA), Carrer Emili Grahit 101, 17003 Girona, Spain
- Universitat de Girona, Girona, Spain
| |
Collapse
|
337
|
Neale PA, Braun G, Brack W, Carmona E, Gunold R, König M, Krauss M, Liebmann L, Liess M, Link M, Schäfer RB, Schlichting R, Schreiner VC, Schulze T, Vormeier P, Weisner O, Escher BI. Assessing the Mixture Effects in In Vitro Bioassays of Chemicals Occurring in Small Agricultural Streams during Rain Events. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:8280-8290. [PMID: 32501680 DOI: 10.1021/acs.est.0c02235] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Rain events may impact the chemical pollution burden in rivers. Forty-four small streams in Germany were profiled during several rain events for the presence of 395 chemicals and five types of mixture effects in in vitro bioassays (cytotoxicity; activation of the estrogen, aryl hydrocarbon, and peroxisome proliferator-activated receptors; and oxidative stress response). While these streams were selected to cover a wide range of agricultural impacts, in addition to the expected pesticides, wastewater-derived chemicals and chemicals typical for street runoff were detected. The unexpectedly high estrogenic effects in many samples indicated the impact by wastewater or overflow of combined sewer systems. The 128 water samples exhibited a high diversity of chemical and effect patterns, even for different rain events at the same site. The detected 290 chemicals explained only a small fraction (<8%) of the measured effects. The experimental effects of the designed mixtures of detected chemicals that were expected to dominate the mixture effects of detected chemicals were consistent with predictions for concentration addition within a factor of two for 94% of the mixtures. Overall, the burden of chemicals and effects was much higher than that previously detected in surface water during dry weather, with the effects often exceeding proposed effect-based trigger values.
Collapse
Affiliation(s)
- Peta A Neale
- Australian Rivers Institute, School of Environment and Science, Griffith University, Southport, Queensland 4222, Australia
| | - Georg Braun
- UFZ-Helmholtz Centre for Environmental Research, Leipzig 04318, Germany
| | - Werner Brack
- UFZ-Helmholtz Centre for Environmental Research, Leipzig 04318, Germany
| | - Eric Carmona
- UFZ-Helmholtz Centre for Environmental Research, Leipzig 04318, Germany
| | - Roman Gunold
- UFZ-Helmholtz Centre for Environmental Research, Leipzig 04318, Germany
| | - Maria König
- UFZ-Helmholtz Centre for Environmental Research, Leipzig 04318, Germany
| | - Martin Krauss
- UFZ-Helmholtz Centre for Environmental Research, Leipzig 04318, Germany
| | - Liana Liebmann
- UFZ-Helmholtz Centre for Environmental Research, Leipzig 04318, Germany
| | - Matthias Liess
- UFZ-Helmholtz Centre for Environmental Research, Leipzig 04318, Germany
- Department of Ecosystem Analysis, Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, Aachen 52074, Germany
| | - Moritz Link
- University of Koblenz-Landau, iES - Institute for Environmental Sciences, Mainz 76829, Landau Germany
| | - Ralf B Schäfer
- University of Koblenz-Landau, iES - Institute for Environmental Sciences, Mainz 76829, Landau Germany
| | - Rita Schlichting
- UFZ-Helmholtz Centre for Environmental Research, Leipzig 04318, Germany
| | - Verena C Schreiner
- University of Koblenz-Landau, iES - Institute for Environmental Sciences, Mainz 76829, Landau Germany
| | - Tobias Schulze
- UFZ-Helmholtz Centre for Environmental Research, Leipzig 04318, Germany
| | - Philipp Vormeier
- UFZ-Helmholtz Centre for Environmental Research, Leipzig 04318, Germany
| | - Oliver Weisner
- UFZ-Helmholtz Centre for Environmental Research, Leipzig 04318, Germany
| | - Beate I Escher
- UFZ-Helmholtz Centre for Environmental Research, Leipzig 04318, Germany
| |
Collapse
|
338
|
Son S, Kim S, Yim YH, Kim S. Reproducibility of Crude Oil Spectra Obtained with Ultrahigh Resolution Mass Spectrometry. Anal Chem 2020; 92:9465-9471. [DOI: 10.1021/acs.analchem.0c00865] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Seungwoo Son
- Department of Chemistry, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
| | - Sungjune Kim
- Department of Chemistry, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
| | - Yong-Hyeon Yim
- Korea Research Institute of Standards and Science (KRISS), 267 Gajeong-Ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Sunghwan Kim
- Department of Chemistry, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
- Mass Spectrometry Convergence Research Center & Green-Nano Materials Research Center, Daegu 41566, Republic of Korea
| |
Collapse
|
339
|
Balusamy B, Senthamizhan A, Uyar T. Functionalized Electrospun Nanofibers as a Versatile Platform for Colorimetric Detection of Heavy Metal Ions in Water: A Review. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E2421. [PMID: 32466258 PMCID: PMC7288479 DOI: 10.3390/ma13102421] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/22/2020] [Accepted: 05/22/2020] [Indexed: 01/09/2023]
Abstract
The increasing heavy metal pollution in the aquatic ecosystem mainly driven by industrial activities has raised severe concerns over human and environmental health that apparently necessitate the design and development of ideal strategies for the effective monitoring of heavy metals. In this regard, colorimetric detection provides excellent opportunities for the easy monitoring of heavy metal ions, and especially, corresponding solid-state sensors enable potential opportunities for their applicability in real-world monitoring. As a result of the significant interest originating from their simplicity, exceptional characteristics, and applicability, the electrospun nanofiber-based colorimetric detection of heavy metal ions has undergone radical developments in the recent decade. This review illustrates the range of various approaches and functional molecules employed in the fabrication of electrospun nanofibers intended for the colorimetric detection of various metal ions in water. We highlight relevant investigations on the fabrication of functionalized electrospun nanofibers encompassing different approaches and functional molecules along with their sensing performance. Furthermore, we discuss upcoming prospectus and future opportunities in the exploration of designing electrospun nanofiber-based colorimetric sensors for real-world applications.
Collapse
Affiliation(s)
- Brabu Balusamy
- Department of Fiber Science & Apparel Design, College of Human Ecology, Cornell University, Ithaca, NY 14853, USA
| | - Anitha Senthamizhan
- Department of Fiber Science & Apparel Design, College of Human Ecology, Cornell University, Ithaca, NY 14853, USA
| | - Tamer Uyar
- Department of Fiber Science & Apparel Design, College of Human Ecology, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
340
|
Cheng F, Li H, Brooks BW, You J. Retrospective Risk Assessment of Chemical Mixtures in the Big Data Era: An Alternative Classification Strategy to Integrate Chemical and Toxicological Data. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:5925-5927. [PMID: 32356979 DOI: 10.1021/acs.est.0c01062] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Affiliation(s)
- Fei Cheng
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Huizhen Li
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Bryan W Brooks
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
- Department of Environmental Science, Institute of Biomedical Studies, Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, Texas United States
| | - Jing You
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| |
Collapse
|
341
|
Hammershøj R, Birch H, Sjøholm KK, Mayer P. Accelerated Passive Dosing of Hydrophobic Complex Mixtures-Controlling the Level and Composition in Aquatic Tests. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:4974-4983. [PMID: 32142613 DOI: 10.1021/acs.est.9b06062] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Petroleum products and essential oils are complex mixtures of hydrophobic and volatile chemicals and are categorized as substances of unknown or variable composition, complex reaction products, or biological materials (UVCBs). In aquatic testing and research of such mixtures, it is challenging to establish initial concentrations without the addition of cosolvents, to maintain constant concentrations during the test, and to keep a constant mixture composition in dilution series and throughout test duration. Passive dosing was here designed to meet these challenges by maximizing the surface area (Adonor/Vmedium = 3.8 cm2/mL) and volume (Vdonor/Vmedium > 0.1 L/L) of the passive dosing donor in order to ensure rapid mass transfer and avoid donor depletion for all mixture constituents. Cracked gas oil, cedarwood Virginia oil, and lavender oil served as model mixtures. This study advances the field by (i) showing accelerated passive dosing kinetics for 68 cracked gas oil constituents with typical equilibration times of 5-10 min and for 21 cederwood Virginia oil constituents with typical equilibration times < 1 h, (ii) demonstrating how to control mixture concentration and composition in aquatic tests, and (iii) discussing the fundamental differences between solvent spiking, water-accommodated fractions, and passive dosing.
Collapse
Affiliation(s)
- Rikke Hammershøj
- Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet, Building 115, 2800 Kongens Lyngby, Denmark
| | - Heidi Birch
- Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet, Building 115, 2800 Kongens Lyngby, Denmark
| | - Karina K Sjøholm
- Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet, Building 115, 2800 Kongens Lyngby, Denmark
| | - Philipp Mayer
- Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet, Building 115, 2800 Kongens Lyngby, Denmark
| |
Collapse
|
342
|
Du B, Tian Z, Peter KT, Kolodziej EP, Wong CS. Developing Unique Nontarget High-Resolution Mass Spectrometry Signatures to Track Contaminant Sources in Urban Waters. ENVIRONMENTAL SCIENCE & TECHNOLOGY LETTERS 2020; 7:923-930. [PMID: 34136585 PMCID: PMC8204317 DOI: 10.1021/acs.estlett.0c00749] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Diffuse pollution in urban receiving waters often adversely impacts both humans and ecosystems. Identifying such pollution sources is challenging and limits the effectiveness of management actions intended to reduce risk. Here, we evaluated the use of nontarget analysis via high-resolution mass spectrometry (HRMS) to develop chemical fingerprints/signatures for source tracking. Specifically, we applied nontarget HRMS to characterize and differentiate two urban chemical sources: roadway runoff and wastewater influent. We isolated 112 and 598 nontarget compounds (both known and unidentified chemicals) that co-occurred in all roadway runoff and wastewater influent samples, respectively, and were unique relative to other sampled sources. For example, methamphetamine, often considered wastewater derived, was detected in all samples, implying that individual wastewater indicators may lack sufficient specificity in urban receiving waters impacted by multiple sources. Hierarchical cluster analysis differentiated source types, and normalized abundance profiling prioritized nontarget compounds with consistent relative abundance patterns across field sites for a given source. Hexa(methoxymethyl)melamine, 1,3-diphenylguanidine, and polyethylene glycols co-occurred in roadway runoff across geographic areas and traffic intensities, supporting continued development of a universal roadway runoff fingerprint based on ubiquitous compounds. This study provides a proof-of-concept for isolating nontarget source fingerprints to track diffuse contamination in urban receiving waters.
Collapse
Affiliation(s)
- Bowen Du
- Southern California Coastal Water Research Project Authority, Costa Mesa, California 92626, United States
| | - Zhenyu Tian
- Interdisciplinary Arts and Sciences, University of Washington Tacoma, Tacoma, Washington 98421, United States; Center for Urban Waters, Tacoma, Washington 98421, United States
| | - Katherine T. Peter
- National Institute of Standards and Technology, Charleston, South Carolina 29412, United States
| | - Edward P. Kolodziej
- Interdisciplinary Arts and Sciences, University of Washington Tacoma, Tacoma, Washington 98421, United States; Center for Urban Waters, Tacoma, Washington 98421, United States; Department of Civil and Environmental Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Charles S. Wong
- Southern California Coastal Water Research Project Authority, Costa Mesa, California 92626, United States
| |
Collapse
|