301
|
Zhu S, Barbe MF, Amin N, Rani S, Popoff SN, Safadi FF, Litvin J. Immunolocalization of Periostin-like factor and Periostin during embryogenesis. J Histochem Cytochem 2007; 56:329-45. [PMID: 18040074 DOI: 10.1369/jhc.7a7321.2007] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Periostin-like factor (PLF) and Periostin are alternatively spliced mRNAs. Our findings are the first to show similarities and differences between PLF and Periostin location using isoform-specific antibodies. The differences in when and where they are present during mouse embryogenesis suggest that they may have different functions. Using immunostaining techniques, we observed that PLF was highly expressed at 12.5 days postconception (dpc) in the intermediate and outer zones of most brain regions, spinal cord, cranial and spinal nerves, and chondrocytes in developing bone and in the heart wall. By 16.5 dpc, PLF was also present in ameloblasts and odontoblasts in developing teeth, and by 19.5 dpc, PLF was present at low levels only in vagal nerve bundles, discrete white matter bundles in the brain, and chondrocytes of developing ribs. Periostin, on the other hand, was absent at 12.5 dpc from dorsal spinal cord and from cranial and spinal nerves. By 16.5 dpc, Periostin was present in many spinal nerves, but absent thereafter, and at 19.5 dpc, Periostin was present in chondrocytes in developing bone but not in neural tissues. The different spatial and temporal location of PLF and Periostin in cartilage and bone cells suggests different roles for these proteins in endochondral bone formation. The early expression of PLF in brain differentiation zones and in developing axon bundles and nerves suggests that it may facilitate axon growth.
Collapse
Affiliation(s)
- Shimei Zhu
- Department of Anatomy and Cell Biology, Temple Medical School, 3420 N. Broad Street, MRB 615, Philadelphia, PA 19140, USA
| | | | | | | | | | | | | |
Collapse
|
302
|
Norris RA, Damon B, Mironov V, Kasyanov V, Ramamurthi A, Moreno-Rodriguez R, Trusk T, Potts JD, Goodwin RL, Davis J, Hoffman S, Wen X, Sugi Y, Kern CB, Mjaatvedt CH, Turner DK, Oka T, Conway SJ, Molkentin JD, Forgacs G, Markwald RR. Periostin regulates collagen fibrillogenesis and the biomechanical properties of connective tissues. J Cell Biochem 2007; 101:695-711. [PMID: 17226767 PMCID: PMC3393091 DOI: 10.1002/jcb.21224] [Citation(s) in RCA: 483] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Periostin is predominantly expressed in collagen-rich fibrous connective tissues that are subjected to constant mechanical stresses including: heart valves, tendons, perichondrium, cornea, and the periodontal ligament (PDL). Based on these data we hypothesize that periostin can regulate collagen I fibrillogenesis and thereby affect the biomechanical properties of connective tissues. Immunoprecipitation and immunogold transmission electron microscopy experiments demonstrate that periostin is capable of directly interacting with collagen I. To analyze the potential role of periostin in collagen I fibrillogenesis, gene targeted mice were generated. Transmission electron microscopy and morphometric analyses demonstrated reduced collagen fibril diameters in skin dermis of periostin knockout mice, an indication of aberrant collagen I fibrillogenesis. In addition, differential scanning calorimetry (DSC) demonstrated a lower collagen denaturing temperature in periostin knockout mice, reflecting a reduced level of collagen cross-linking. Functional biomechanical properties of periostin null skin specimens and atrioventricular (AV) valve explant experiments provided direct evidence of the role that periostin plays in regulating the viscoelastic properties of connective tissues. Collectively, these data demonstrate for the first time that periostin can regulate collagen I fibrillogenesis and thereby serves as an important mediator of the biomechanical properties of fibrous connective tissues.
Collapse
Affiliation(s)
- Russell A Norris
- Department of Cell Biology and Anatomy, Medical University of South Carolina, Charleston, South Carolina 29425, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
303
|
Kühn B, del Monte F, Hajjar RJ, Chang YS, Lebeche D, Arab S, Keating MT. Periostin induces proliferation of differentiated cardiomyocytes and promotes cardiac repair. Nat Med 2007; 13:962-9. [PMID: 17632525 DOI: 10.1038/nm1619] [Citation(s) in RCA: 491] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2007] [Accepted: 06/13/2007] [Indexed: 01/07/2023]
Abstract
Adult mammalian hearts respond to injury with scar formation and not with cardiomyocyte proliferation, the cellular basis of regeneration. Although cardiogenic progenitor cells may maintain myocardial turnover, they do not give rise to a robust regenerative response. Here we show that extracellular periostin induced reentry of differentiated mammalian cardiomyocytes into the cell cycle. Periostin stimulated mononucleated cardiomyocytes to go through the full mitotic cell cycle. Periostin activated alphaV, beta1, beta3 and beta5 integrins located in the cardiomyocyte cell membrane. Activation of phosphatidylinositol-3-OH kinase was required for periostin-induced reentry of cardiomyocytes into the cell cycle and was sufficient for cell-cycle reentry in the absence of periostin. After myocardial infarction, periostin-induced cardiomyocyte cell-cycle reentry and mitosis were associated with improved ventricular remodeling and myocardial function, reduced fibrosis and infarct size, and increased angiogenesis. Thus, periostin and the pathway that it regulates may provide a target for innovative strategies to treat heart failure.
Collapse
Affiliation(s)
- Bernhard Kühn
- Department of Cardiology, Children's Hospital Boston, 300 Longwood Avenue, Boston, Massachusetts 02115, USA.
| | | | | | | | | | | | | |
Collapse
|
304
|
Yoshiba N, Yoshiba K, Hosoya A, Saito M, Yokoi T, Okiji T, Amizuka N, Ozawa H. Association of TIMP-2 with extracellular matrix exposed to mechanical stress and its co-distribution with periostin during mouse mandible development. Cell Tissue Res 2007; 330:133-45. [PMID: 17602244 DOI: 10.1007/s00441-007-0439-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2006] [Accepted: 04/27/2007] [Indexed: 01/16/2023]
Abstract
Matrix remodeling is regulated by matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs). Periostin, originally identified in a mouse osteoblastic library, plays a role in cell adhesion and migration and in mechanical stress-induced matrix remodeling. In this study, we analyzed and compared the distribution patterns of TIMP-2 and periostin during mouse mandible development. Immunohistochemical staining for TIMP-2 and periostin was carried out on serial cryosections obtained from mice at embryonic days 13-16, postnatal day 2 (P2), P35, and 12 weeks of age. TIMP-2 and periostin exhibited a strikingly similar protein distribution during mandible development. From bud to early bell stages of molars, TIMP-2 and periostin were highly expressed on the lingual and anterior sides of the basement membrane and on the adjacent jaw mesenchyme. In pre- and postnatal incisors, the basement membrane of the apical loop and dental follicle was immunostained for TIMP-2 and periostin. At postnatal stages, TIMP-2 and periostin were prominently confined to the extracellular matrix (ECM) of gingival tissues, periodontal ligaments, and tendons (all recipients of mechanical strain). However, periostin was solely detected in the lower portion of the inner root sheath of hair follicles. Gingiva of P2 cultured in anti-TIMP-2 antibody-conditioned medium showed markedly reduced staining of periostin. We suggest that TIMP-2 and periostin are co-distributed on ECM exposed to mechanical forces and coordinately function as ECM modulators.
Collapse
Affiliation(s)
- Nagako Yoshiba
- Division of Cariology, Operative Dentistry and Endodontics, Department of Oral Health Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
305
|
Oka T, Xu J, Kaiser RA, Melendez J, Hambleton M, Sargent MA, Lorts A, Brunskill EW, Dorn GW, Conway SJ, Aronow BJ, Robbins J, Molkentin JD. Genetic manipulation of periostin expression reveals a role in cardiac hypertrophy and ventricular remodeling. Circ Res 2007; 101:313-21. [PMID: 17569887 PMCID: PMC2680305 DOI: 10.1161/circresaha.107.149047] [Citation(s) in RCA: 401] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The cardiac extracellular matrix is a dynamic structural support network that is both influenced by, and a regulator of, pathological remodeling and hypertrophic growth. In response to pathologic insults, the adult heart reexpresses the secreted extracellular matrix protein periostin (Pn). Here we show that Pn is critically involved in regulating the cardiac hypertrophic response, interstitial fibrosis, and ventricular remodeling following long-term pressure overload stimulation and myocardial infarction. Mice lacking the gene encoding Pn (Postn) were more prone to ventricular rupture in the first 10 days after a myocardial infarction, but surviving mice showed less fibrosis and better ventricular performance. Pn(-/-) mice also showed less fibrosis and hypertrophy following long-term pressure overload, suggesting an intimate relationship between Pn and the regulation of cardiac remodeling. In contrast, inducible overexpression of Pn in the heart protected mice from rupture following myocardial infarction and induced spontaneous hypertrophy with aging. With respect to a mechanism underlying these alterations, Pn(-/-) hearts showed an altered molecular program in fibroblast function. Indeed, fibroblasts isolated from Pn(-/-) hearts were less effective in adherence to cardiac myocytes and were characterized by a dramatic alteration in global gene expression (7% of all genes). These are the first genetic data detailing the function of Pn in the adult heart as a regulator of cardiac remodeling and hypertrophy.
Collapse
Affiliation(s)
- Toru Oka
- Department of Pediatrics, University of Cincinnati, Division of Molecular Cardiovascular Biology, Children's Hospital Medical Center, Cincinnati, OH USA
| | - Jian Xu
- Department of Pediatrics, University of Cincinnati, Division of Molecular Cardiovascular Biology, Children's Hospital Medical Center, Cincinnati, OH USA
| | - Robert A. Kaiser
- Department of Pediatrics, University of Cincinnati, Division of Molecular Cardiovascular Biology, Children's Hospital Medical Center, Cincinnati, OH USA
| | - Jaime Melendez
- Department of Pediatrics, University of Cincinnati, Division of Molecular Cardiovascular Biology, Children's Hospital Medical Center, Cincinnati, OH USA
| | - Michael Hambleton
- Department of Pediatrics, University of Cincinnati, Division of Molecular Cardiovascular Biology, Children's Hospital Medical Center, Cincinnati, OH USA
| | - Michelle A. Sargent
- Department of Pediatrics, University of Cincinnati, Division of Molecular Cardiovascular Biology, Children's Hospital Medical Center, Cincinnati, OH USA
| | - Angela Lorts
- Department of Pediatrics, University of Cincinnati, Division of Molecular Cardiovascular Biology, Children's Hospital Medical Center, Cincinnati, OH USA
| | - Eric W. Brunskill
- Department of Pediatrics, University of Cincinnati, Division of Molecular Cardiovascular Biology, Children's Hospital Medical Center, Cincinnati, OH USA
- Department of Medicine, University of Cincinnati, Cincinnati, OH USA
| | - Gerald W. Dorn
- Department of Pediatrics, University of Cincinnati, Division of Molecular Cardiovascular Biology, Children's Hospital Medical Center, Cincinnati, OH USA
- Department of Medicine, University of Cincinnati, Cincinnati, OH USA
| | - Simon J. Conway
- Cardiovascular Development Group, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN USA
| | - Bruce J. Aronow
- Department of Pediatrics, University of Cincinnati, Division of Molecular Cardiovascular Biology, Children's Hospital Medical Center, Cincinnati, OH USA
| | - Jeffrey Robbins
- Department of Pediatrics, University of Cincinnati, Division of Molecular Cardiovascular Biology, Children's Hospital Medical Center, Cincinnati, OH USA
| | - Jeffery D. Molkentin
- Department of Pediatrics, University of Cincinnati, Division of Molecular Cardiovascular Biology, Children's Hospital Medical Center, Cincinnati, OH USA
- correspondence:
| |
Collapse
|
306
|
Lindsley A, Snider P, Zhou H, Rogers R, Wang J, Olaopa M, Kruzynska-Frejtag A, Koushik SV, Lilly B, Burch JB, Firulli AB, Conway. SJ. Identification and characterization of a novel Schwann and outflow tract endocardial cushion lineage-restricted periostin enhancer. Dev Biol 2007; 307:340-55. [PMID: 17540359 PMCID: PMC1995123 DOI: 10.1016/j.ydbio.2007.04.041] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2006] [Revised: 04/17/2007] [Accepted: 04/30/2007] [Indexed: 10/23/2022]
Abstract
Periostin is a fasciclin-containing adhesive glycoprotein that facilitates the migration and differentiation of cells that have undergone epithelial-mesenchymal transformation during embryogenesis and in pathological conditions. Despite the importance of post-transformational differentiation as a general developmental mechanism, little is known how periostin's embryonic expression is regulated. To help resolve this deficiency, a 3.9-kb periostin proximal promoter was isolated and shown to drive tissue-specific expression in the neural crest-derived Schwann cell lineage and in a subpopulation of periostin-expressing cells in the cardiac outflow tract endocardial cushions. In order to identify the enhancer and associated DNA binding factor(s) responsible, in vitro promoter dissection was undertaken in a Schwannoma line. Ultimately a 304-bp(peri) enhancer was identified and shown to be capable of recapitulating 3.9 kb(peri-lacZ)in vivo spatiotemporal patterns. Further mutational and EMSA analysis helped identify a minimal 37-bp region that is bound by the YY1 transcription factor. The 37-bp enhancer was subsequently shown to be essential for in vivo 3.9 kb(peri-lacZ) promoter activity. Taken together, these studies identify an evolutionary-conserved YY1-binding 37-bp region within a 304-bp periostin core enhancer that is capable of regulating simultaneous novel tissue-specific periostin expression in the cardiac outflow-tract cushion mesenchyme and Schwann cell lineages.
Collapse
Affiliation(s)
- Andrew Lindsley
- Cardiovascular Development Group, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Paige Snider
- Cardiovascular Development Group, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Hongming Zhou
- Cardiovascular Development Group, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Rhonda Rogers
- Cardiovascular Development Group, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Jian Wang
- Cardiovascular Development Group, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Michael Olaopa
- Cardiovascular Development Group, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202
| | | | | | - Brenda Lilly
- Vascular Biology Center, Medical College of Georgia, Augusta, Georgia, GA 30912
| | - John B.E. Burch
- Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111
| | - Anthony B. Firulli
- Cardiovascular Development Group, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Simon J. Conway.
- Cardiovascular Development Group, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202
- Address correspondence to: Simon J. Conway, Riley Hospital for Children, 1044 West Walnut Street, Room R4 W379, Indiana University School of Medicine, Indianapolis, IN 46202, USA. phone: (317) 278-8780; fax: (317) 278-5413; e-mail:
| |
Collapse
|
307
|
Popova SN, Barczyk M, Tiger CF, Beertsen W, Zigrino P, Aszodi A, Miosge N, Forsberg E, Gullberg D. Alpha11 beta1 integrin-dependent regulation of periodontal ligament function in the erupting mouse incisor. Mol Cell Biol 2007; 27:4306-16. [PMID: 17420280 PMCID: PMC1900066 DOI: 10.1128/mcb.00041-07] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The fibroblast integrin alpha11beta1 is a key receptor for fibrillar collagens. To study the potential function of alpha11 in vivo, we generated a null allele of the alpha11 gene. Integrin alpha11(-/-) mice are viable and fertile but display dwarfism with increased mortality, most probably due to severely defective incisors. Mutant incisors are characterized by disorganized periodontal ligaments, whereas molar ligaments appear normal. The primary defect in the incisor ligament leads to halted tooth eruption. alpha11beta1-defective embryonic fibroblasts displayed severe defects in vitro, characterized by (i) greatly reduced cell adhesion and spreading on collagen I, (ii) reduced ability to retract collagen lattices, and (iii) reduced cell proliferation. Analysis of matrix metalloproteinase in vitro and in vivo revealed disturbed MMP13 and MMP14 synthesis in alpha11(-/-) cells. We show that alpha11beta1 is the major receptor for collagen I on mouse embryonic fibroblasts and suggest that alpha11beta1 integrin is specifically required on periodontal ligament fibroblasts for cell migration and collagen reorganization to help generate the forces needed for axial tooth movement. Our data show a unique role for alpha11beta1 integrin during tooth eruption.
Collapse
Affiliation(s)
- Svetlana N Popova
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, Bergen, Norway
| | | | | | | | | | | | | | | | | |
Collapse
|
308
|
Xiao Z, Camalier CE, Nagashima K, Chan KC, Lucas DA, de la Cruz MJ, Gignac M, Lockett S, Issaq HJ, Veenstra TD, Conrads TP, Beck GR. Analysis of the extracellular matrix vesicle proteome in mineralizing osteoblasts. J Cell Physiol 2007; 210:325-35. [PMID: 17096383 DOI: 10.1002/jcp.20826] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Many key processes central to bone formation and homeostasis require the involvement of osteoblasts, cells responsible for accumulation and mineralization of the extracellular matrix (ECM). During this complex and only partially understood process, osteoblasts generate and secrete matrix vesicles (MVs) into the ECM to initiate mineralization. Although they are considered an important component of mineralization process, MVs still remain a mystery. To better understand their function and biogenesis, a proteomic analysis of MVs has been conducted. MVs were harvested by two sample preparation approaches and mass spectrometry was utilized for protein identification. A total of 133 proteins were identified in common from the two MV preparations, among which were previously known proteins, such as annexins and peptidases, along with many novel proteins including a variety of enzymes, osteoblast-specific factors, ion channels, and signal transduction molecules, such as 14-3-3 family members and Rab-related proteins. To compare the proteome of MV with that of the ECM we conducted a large-scale proteomic analysis of collagenase digested mineralizing osteoblast matrix. This analysis resulted in the identification of 1,327 unique proteins. A comparison of the proteins identified from the two MV preparations with the ECM analysis revealed 83 unique, non-redundant proteins identified in all three samples. This investigation represents the first systematic proteomic analysis of MVs and provides insights into both the function and origin of these important mineralization-regulating vesicles.
Collapse
Affiliation(s)
- Zhen Xiao
- Laboratory of Proteomics and Analytical Technologies, SAIC-Frederick, Inc., NCI-Frederick, Frederick, Maryland 21702, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
309
|
Markwald RR, Butcher JT. The next frontier in cardiovascular developmental biology—an integrated approach to adult disease? ACTA ACUST UNITED AC 2007; 4:60-1. [PMID: 17245398 DOI: 10.1038/ncpcardio0775] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2006] [Accepted: 11/16/2006] [Indexed: 11/08/2022]
Affiliation(s)
- Roger R Markwald
- Department of Anatomy and Cell Biology, Medical University of South Carolina, 171 Ashley Avenue, Charleston, SC 29425, USA.
| | | |
Collapse
|
310
|
Foster BL, Popowics TE, Fong HK, Somerman MJ. Advances in defining regulators of cementum development and periodontal regeneration. Curr Top Dev Biol 2007; 78:47-126. [PMID: 17338915 DOI: 10.1016/s0070-2153(06)78003-6] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Substantial advancements have been made in defining the cells and molecular signals that guide tooth crown morphogenesis and development. As a result, very encouraging progress has been made in regenerating crown tissues by using dental stem cells and recombining epithelial and mesenchymal tissues of specific developmental ages. To date, attempts to regenerate a complete tooth, including the critical periodontal tissues of the tooth root, have not been successful. This may be in part due to a lesser degree of understanding of the events leading to the initiation and development of root and periodontal tissues. Controversies still exist regarding the formation of periodontal tissues, including the origins and contributions of cells, the cues that direct root development, and the potential of these factors to direct regeneration of periodontal tissues when they are lost to disease. In recent years, great strides have been made in beginning to identify and characterize factors contributing to formation of the root and surrounding tissues, that is, cementum, periodontal ligament, and alveolar bone. This review focuses on the most exciting and important developments over the last 5 years toward defining the regulators of tooth root and periodontal tissue development, with special focus on cementogenesis and the potential for applying this knowledge toward developing regenerative therapies. Cells, genes, and proteins regulating root development are reviewed in a question-answer format in order to highlight areas of progress as well as areas of remaining uncertainty that warrant further study.
Collapse
Affiliation(s)
- Brian L Foster
- Department of Periodontics, School of Dentistry, University of Washington, Seattle, Washington 98195, USA
| | | | | | | |
Collapse
|
311
|
Miyata A, Baba O, Oda T, Ishikawa I, Takano Y. Diverse effects of c-src deficiency on molar tooth development and eruption in mice. ACTA ACUST UNITED AC 2007; 70:63-78. [PMID: 17558145 DOI: 10.1679/aohc.70.63] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
C-src deficiency is characterized by osteopetrosis due to impaired bone resorption by hypofunctional osteoclasts and the resultant failure of tooth eruption. In preliminary observations, we frequently encountered erupted molars in c-src deficient mice unlike in other osteopetrotic animals. Here we examine the effects of c-src deficiency on the development of molar teeth with an emphasis on the spatial relation of growing teeth with the surrounding bones. In c-src deficient mice, the magnitude of tooth impaction differed considerably among the types of molars; all maxillary 1st molars were totally impacted deep in the alveolar sockets, whereas most mandibular 1st molars fully erupted into oral cavity. Distribution of osteoclasts in the alveolar bone was identical among all types of molars, and electron microscopy revealed signs of bone resorbing activity in these osteoclasts despite the absence of a ruffled border. From early development, the alveolar space was much narrower in the upper molar tooth germs than in the lower ones in both wild type and homozygous animals, and particularly so in the upper 1st molars. Current observations thus indicate a significant contribution of "hypofunctional osteoclasts" in c-src deficient mice in molar tooth development except for the upper 1st molars, which appear to require highly functional osteoclasts to gain sufficient space for them to grow normally. Taken together, these findings on the seemingly tooth-type specific effects of c-src deficiency on the development and eruption of molar teeth in c-src deficient mice can be attributed to the given differential spatial relation of the respective tooth germs with the surrounding bones in the presence of hypofunctional osteoclasts.
Collapse
Affiliation(s)
- Atsushi Miyata
- Section of Periodontology, Department of Hard Tissue Engineering, Tokyo Medical and Dental University Graduate School, Tokyo, Japan
| | | | | | | | | |
Collapse
|
312
|
Baba O, Miyata A, Abe T, Shibata S, Nakano Y, Terashima T, Oda T, Kudo A, Takano Y. Formation of acellular cementum-like layers, with and without extrinsic fiber insertion, along inert bone surfaces of aging c-Src gene knockout mice. Eur J Oral Sci 2006; 114:524-34. [PMID: 17184236 DOI: 10.1111/j.1600-0722.2006.00408.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
To investigate the long-term effects of c-src deficiency on skeletal and dental tissues, we examined the lower jaws and long bones of c-src gene knockout (c-src KO) mice by histological and histochemical methods. Numerous multinucleated osteoclasts were distributed throughout the mandible in 5-wk-old c-src KO mice, but by 14 wk they had almost completely disappeared from the alveolar bone, leaving tartrate-resistant acid phosphatase (TRAP)-positive layers along the bone surface. Deposition of osteopontin-positive mineralized tissue, reminiscent of acellular afibrillar cementum (AAC), was confirmed along the TRAP-positive bone surface at 14 wk. The layer progressively thickened up to 21 months. A comparable mineralized layer was noted along the trabeculae of long bones as thickened cement lines. In the periostin-rich areas of jaw bones, but not in the long bones, portions of AAC-like mineralized layers were often replaced with and/or covered by acellular extrinsic fiber cementum (AEFC)-like tissue. These data suggest that the deposition of AAC-like mineralized tissue is a general phenomenon that may occur along inert or slowly remodeling bone surfaces under conditions characterized by reduced bone-resorbing activity, whereas the induction of AEFC-like tissue seems to be associated with the expression of certain molecules that are particularly abundant in the microenvironment of the periodontal ligament.
Collapse
Affiliation(s)
- Otto Baba
- Division of Biostructural Science, Tokyo Medical and Dental University Graduate School, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
313
|
Baril P, Gangeswaran R, Mahon PC, Caulee K, Kocher HM, Harada T, Zhu M, Kalthoff H, Crnogorac-Jurcevic T, Lemoine NR. Periostin promotes invasiveness and resistance of pancreatic cancer cells to hypoxia-induced cell death: role of the beta4 integrin and the PI3k pathway. Oncogene 2006; 26:2082-94. [PMID: 17043657 DOI: 10.1038/sj.onc.1210009] [Citation(s) in RCA: 232] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Pancreatic ductal adenocarcinoma is a devastating disease, characterized by a rapid progression and poor treatment response. Using gene expression profiling of pancreatic cancer tissues, we previously identified periostin as a potential diagnostic and therapeutic target. In this study, we report the overexpression of periostin in a larger set of pancreatic cancer tissues and show that although the periostin transcript is exclusively expressed in tumour cells, the protein product is only detected in the extracellular matrix adjacent to cancer cells. Using an enzyme-linked immunosorbent assay (ELISA) assay, we show significantly increased levels of periostin in the sera of pancreatic cancer patients compared to non-cancer controls. We demonstrate that periostin promotes the invasiveness of tumour cells by increasing the motility of cells without inducing expression of proteases, and enhances the survival of tumour cells exposed to hypoxic conditions. At the molecular level, we provide evidence that the alpha(6)beta(4) integrin complex acts as the cell receptor of periostin in pancreatic cancer cells and that interaction promotes phosphorylation of focal adhesion kinase (FAK) and protein kinase B (AKT) though activation of the PI3 kinase pathway, but not the RAS/MEK/ERK pathway. These findings suggest an important role of periostin in pancreatic cancer and provide a rationale to study periostin for diagnostic and therapeutic applications.
Collapse
Affiliation(s)
- P Baril
- Centre for Molecular Oncology, Institute of Cancer and the CR-UK Clinical Centre, Barts, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
314
|
Butcher JT, Norris RA, Hoffman S, Mjaatvedt CH, Markwald RR. Periostin promotes atrioventricular mesenchyme matrix invasion and remodeling mediated by integrin signaling through Rho/PI 3-kinase. Dev Biol 2006; 302:256-66. [PMID: 17070513 PMCID: PMC1913192 DOI: 10.1016/j.ydbio.2006.09.048] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2006] [Revised: 09/18/2006] [Accepted: 09/19/2006] [Indexed: 10/24/2022]
Abstract
Recent evidence suggests that extracellular matrix components may play a signaling role in embryonic valve development. We have previously identified the spatiotemporal expression patterns of periostin in developing valves, but its function during this process is largely unknown. To evaluate the functional role periostin plays during valvulogenesis, two separate three-dimensional culture assay systems, which model chick atrioventricular cushion development, were employed. These assays demonstrated that cushion mesenchymal cells adhered and spread on purified periostin in a dose-responsive manner, similar to collagen I and fibronectin via alpha(v)beta(3) and beta(1) integrin pairs. Periostin overexpression resulted in enhanced mesenchyme invasion through 3D collagen gels and increased matrix compaction. This invasion was dependent on alpha(v)beta(3) more than beta(1) integrin signaling, and was mediated differentially by Rho kinase and PI 3-kinase. Both matrix invasion and compaction were associated with a colocalization of periostin and beta(1) integrin expression to migratory cell phenotype in both surface and deep cells. The Rho/PI 3-kinase pathway also differentially mediated matrix compaction. Both Rho and PI 3-kinase were involved in normal cushion mesenchyme matrix compaction, but only PI 3-kinase was required for the enhanced matrix compaction due to periostin. Taken together, these results highlight periostin as a mediator of matrix remodeling by cushion mesenchyme towards a mature valve structure.
Collapse
Affiliation(s)
- Jonathan T Butcher
- Cardiovascular Developmental Biology Center, Chair of Cell Biology and Anatomy, Medical University of South Carolina, Charleston, SC 29425, USA
| | | | | | | | | |
Collapse
|
315
|
Visconti RP, Markwald RR. Recruitment of New Cells into the Postnatal Heart: Potential Modification of Phenotype by Periostin. Ann N Y Acad Sci 2006; 1080:19-33. [PMID: 17132772 DOI: 10.1196/annals.1380.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Establishment of the circulatory system occurs very early in development to support the rapid growth of the embryo. Therefore, the heart is the first functional organ to be formed during both avian and mammalian development. Historically, cardiac development has been considered to occur only during embryogenesis from cell sources located within the primordial structures that generate the myocardium and associated coronary vascular endothelium and smooth muscle and cardiac fibroblasts. Recently, however, contribution to the cardiac structures has been demonstrated to occur during embryonic development from extracardiac sources, like the anterior heart field, raising questions as to whether cardiogenesis may be an ongoing process that extends into adult life. In this brief article, we describe the contribution of circulating adult bone marrow hematopoietic stem cells to the cardiac cell populations and the potential regulation of their differentiation by the extracellular matrix protein, periostin.
Collapse
Affiliation(s)
- Richard P Visconti
- Department of Cell Biology and Anatomy, Medical University of South Carolina, 173 Ashley Avenue, CRI605 Charleston, SC 29425, USA
| | | |
Collapse
|
316
|
Yokoi T, Saito M, Kiyono T, Iseki S, Kosaka K, Nishida E, Tsubakimoto T, Harada H, Eto K, Noguchi T, Teranaka T. Establishment of immortalized dental follicle cells for generating periodontal ligament in vivo. Cell Tissue Res 2006; 327:301-11. [PMID: 17013589 DOI: 10.1007/s00441-006-0257-6] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2006] [Accepted: 05/24/2006] [Indexed: 10/24/2022]
Abstract
The dental follicle is a mesenchymal tissue that surrounds the developing tooth germ. During tooth root formation, periodontal components, viz., cementum, periodontal ligament (PDL), and alveolar bone, are created by dental follicle progenitors. Here, we report the presence of PDL progenitors in mouse dental follicle (MDF) cells. MDF cells were obtained from mouse incisor tooth germs and immortalized by the expression of a mutant human papilloma virus type 16 E6 gene lacking the PDZ-domain-binding motif. MDF cells expressing the mutant E6 gene (MDF( E6-EGFP ) cells) had an extended life span, beyond 150 population doublings (PD). In contrast, normal MDF cells failed to proliferate beyond 10 PD. MDF( E6-EGFP ) cells expressed tendon/ligament phenotype-related genes such as Scleraxis (Scx), growth and differentiation factor-5, EphA4, Six-1, and type I collagen. In addition, the expression of periostin was observed. To elucidate the differentiation capacity of MDF( E6-EGFP ) cells in vivo, the cells were transplanted into severe combined immunodeficiency mice. At 4 weeks, MDF( E6-EGFP ) cell transplants had the capacity to generate a PDL-like tissue that expressed periostin, Scx, and type XII collagen and the fibrillar assembly of type I collagen. Our findings suggest that MDF( E6-EGFP ) cells can act as PDL progenitors, and that these cells may be a useful research tool for studying PDL formation and for developing regeneration therapies.
Collapse
Affiliation(s)
- T Yokoi
- Department of Medicine, Division of Operative Dentistry and Endodontics, Kanagawa Dental College, Yokosuka, Kanagawa, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|