301
|
Hua Z, Gross AJ, Lamagna C, Ramos-Hernández N, Scapini P, Ji M, Shao H, Lowell CA, Hou B, DeFranco AL. Requirement for MyD88 signaling in B cells and dendritic cells for germinal center anti-nuclear antibody production in Lyn-deficient mice. THE JOURNAL OF IMMUNOLOGY 2013; 192:875-85. [PMID: 24379120 DOI: 10.4049/jimmunol.1300683] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The intracellular tyrosine kinase Lyn mediates inhibitory receptor function in B cells and myeloid cells, and Lyn(-/-) mice spontaneously develop an autoimmune and inflammatory disease that closely resembles human systemic lupus erythematosus. TLR-signaling pathways have been implicated in the production of anti-nuclear Abs in systemic lupus erythematosus and mouse models of it. We used a conditional allele of Myd88 to determine whether the autoimmunity of Lyn(-/-) mice is dependent on TLR/MyD88 signaling in B cells and/or in dendritic cells (DCs). The production of IgG anti-nuclear Abs, as well as the deposition of these Abs in the glomeruli of the kidneys, leading to glomerulonephritis in Lyn(-/-) mice, were completely abolished by selective deletion of Myd88 in B cells, and autoantibody production and glomerulonephritis were delayed or decreased by deletion of Myd88 in DCs. The reduced autoantibody production in mice lacking MyD88 in B cells or DCs was accompanied by a dramatic decrease in the spontaneous germinal center (GC) response, suggesting that autoantibodies in Lyn(-/-) mice may depend on GC responses. Consistent with this view, IgG anti-nuclear Abs were absent if T cells were deleted (TCRβ(-/-) TCRδ(-/-) mice) or if T cells were unable to contribute to GC responses as the result of mutation of the adaptor molecule SAP. Thus, the autoimmunity of Lyn(-/-) mice was dependent on T cells and on TLR/MyD88 signaling in B cells and in DCs, supporting a model in which DC hyperactivity combines with defects in tolerance in B cells to lead to a T cell-dependent systemic autoimmunity in Lyn(-/-) mice.
Collapse
Affiliation(s)
- Zhaolin Hua
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
302
|
Aldhamen YA, Seregin SS, Aylsworth CF, Godbehere S, Amalfitano A. Manipulation of EAT-2 expression promotes induction of multiple beneficial regulatory and effector functions of the human innate immune system as a novel immunomodulatory strategy. Int Immunol 2013; 26:291-303. [PMID: 24374770 DOI: 10.1093/intimm/dxt061] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The signaling lymphocytic activation molecule (SLAM) receptor-associated adaptor Ewing's sarcoma-associated transcript-2 (EAT-2) is primarily expressed in innate immune cells including dendritic cells (DCs), macrophages and NK cells. A recent human HIV vaccine study confirmed that EAT-2 expression was associated with the enhanced immunogenicity induced by the MRKAd5/HIV vaccine. We previously harnessed the capability of EAT-2 to modulate signaling mediated by SLAM receptors and demonstrated that by incorporating EAT-2 expression into vaccines, one could enhance innate and adaptive immune responses in mice, even in the face of pre-existing immunity to the vaccine vectors. Herein, we investigated the innate immune responses of human cells exposed to EAT-2-over-expressing vaccines. Our results demonstrate that EAT-2 over-expression can significantly alter the kinetics of critical pro-inflammatory cytokine and chemokine responses elaborated by human PBMCs. In addition, enhanced DC maturation and increased monocyte phagocytosis were observed in EAT-2-transduced human cells. We also found that EAT-2 over-expression improved antigen presentation by human cells. Moreover, EAT-2 over-expression increased the anti-tumor activity of human NK cells against K562 tumor cell targets. Many of these responses were extinguished with use of an EAT-2 variant carrying a mutant SH2 domain (R31Q), suggesting a critical role for the interaction between EAT-2 and SLAM receptors in mediating these responses. In conclusion, these results provide evidence that EAT-2 interacts with key components of multiple arms of the human innate immune system, and that this role highlights the potential for targeting EAT-2 functions so as to improve a number of human immunotherapeutic approaches, including vaccine development.
Collapse
Affiliation(s)
- Yasser A Aldhamen
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA
| | | | | | | | | |
Collapse
|
303
|
Identification of a new isoform of the murine Sh2d1a gene and its functional implications. SCIENCE CHINA-LIFE SCIENCES 2013; 57:81-7. [PMID: 24369347 DOI: 10.1007/s11427-013-4584-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 11/18/2013] [Indexed: 01/09/2023]
Abstract
Signaling lymphocytic activation molecule (SLAM)-associated protein (SAP) is a Src homology (SH) domain 2-containing intracellular adaptor protein that is predominantly expressed in the hematopoietic system by T lymphocytes and NK cells. SAP protein is encoded by the SH2D1A gene located on the X chromosome. Loss-of-function mutations in SAP cause the X-linked lymphoproliferative disease (XLP), a severe immunodeficiency characterized by heightened susceptibility to Epstein-Barr virus and impaired humoral immunity. Normal individuals express several functional and non-functional isoforms of SAP as a result of alternative splicing. In this study, we identify a cryptic exon in the murine Sh2d1a gene. At the mRNA level, the new isoform of SAP (SAP-2) that includes this new exon is widely expressed in lymphoid tissues by C57BL/6 and 129 strains of inbred mice. SAP-2 accounts for approximately 1%-3% of total SAP transcripts, and it is dynamically regulated during lymphocyte activation. At the protein level, the SAP-2 isoform is a 144 amino-acid protein. Compared to the dominant 126 aminoacid SAP-1 isoform, the additional 18 amino acids are inserted into a structural region that is critical for phosphotyrosine binding. Our functional analysis in vitro indicates that SAP-2 is a non-functional isoform due to decreased protein stability. Thus, both human and mouse have multiple SAP splice isoforms that may or may not function. Modulation of relative proportions of these isoforms is potentially a mechanism whereby cells can regulate SAP-mediated biological activities.
Collapse
|
304
|
Menard L, Cantaert T, Chamberlain N, Tangye SG, Riminton S, Church JA, Klion A, Cunningham-Rundles C, Nichols KE, Meffre E. Signaling lymphocytic activation molecule (SLAM)/SLAM-associated protein pathway regulates human B-cell tolerance. J Allergy Clin Immunol 2013; 133:1149-61. [PMID: 24373350 DOI: 10.1016/j.jaci.2013.10.051] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 08/28/2013] [Accepted: 10/15/2013] [Indexed: 01/15/2023]
Abstract
BACKGROUND Signaling lymphocytic activation molecule (SLAM)-associated protein (SAP) can mediate the function of SLAM molecules, which have been proposed to be involved in the development of autoimmunity in mice. OBJECTIVE We sought to determine whether the SLAM/SAP pathway regulates the establishment of human B-cell tolerance and what mechanisms of B-cell tolerance could be affected by SAP deficiency. METHODS We tested the reactivity of antibodies isolated from single B cells from SAP-deficient patients with X-linked lymphoproliferative disease (XLP). The expressions of SAP and SLAM family members were assessed in human bone marrow-developing B cells. We also analyzed regulatory T (Treg) cell function in patients with XLP and healthy control subjects. RESULTS We found that new emigrant/transitional B cells from patients with XLP were enriched in autoreactive clones, revealing a defective central B-cell tolerance checkpoint in the absence of functional SAP. In agreement with a B cell-intrinsic regulation of central tolerance, we identified SAP expression in a discrete subset of bone marrow immature B cells. SAP colocalized with SLAMF6 only in association with clustered B-cell receptors likely recognizing self-antigens, suggesting that SLAM/SAP regulate B-cell receptor-mediated central tolerance. In addition, patients with XLP displayed defective peripheral B-cell tolerance, which is normally controlled by Treg cells. Treg cells in patients with XLP seem functional, but SAP-deficient T cells were resistant to Treg cell-mediated suppression. Indeed, SAP-deficient T cells were hyperresponsive to T-cell receptor stimulation, which resulted in increased secretion of IL-2, IFN-γ, and TNF-α. CONCLUSIONS SAP expression is required for the counterselection of developing autoreactive B cells and prevents their T cell-dependent accumulation in the periphery.
Collapse
Affiliation(s)
- Laurence Menard
- Department of Immunobiology, Yale University School of Medicine, New Haven, Conn
| | - Tineke Cantaert
- Department of Immunobiology, Yale University School of Medicine, New Haven, Conn
| | - Nicolas Chamberlain
- Department of Immunobiology, Yale University School of Medicine, New Haven, Conn
| | - Stuart G Tangye
- Immunology Program, Garvan Institute of Medical Research, and St Vincent's Clinical School, University of New South Wales, Darlinghurst, Australia
| | - Sean Riminton
- Department of Immunology, Concord Hospital, Sydney, Australia
| | - Joseph A Church
- Divisions of Clinical Immunology and Allergy, Children's Hospital Los Angeles and Keck School of Medicine, University of Southern California, Los Angeles, Calif
| | - Amy Klion
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | | | - Kim E Nichols
- Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, Pa
| | - Eric Meffre
- Department of Immunobiology, Yale University School of Medicine, New Haven, Conn.
| |
Collapse
|
305
|
He J, Tsai LM, Leong YA, Hu X, Ma CS, Chevalier N, Sun X, Vandenberg K, Rockman S, Ding Y, Zhu L, Wei W, Wang C, Karnowski A, Belz GT, Ghali JR, Cook MC, Riminton DS, Veillette A, Schwartzberg PL, Mackay F, Brink R, Tangye SG, Vinuesa CG, Mackay CR, Li Z, Yu D. Circulating precursor CCR7(lo)PD-1(hi) CXCR5⁺ CD4⁺ T cells indicate Tfh cell activity and promote antibody responses upon antigen reexposure. Immunity 2013; 39:770-81. [PMID: 24138884 DOI: 10.1016/j.immuni.2013.09.007] [Citation(s) in RCA: 519] [Impact Index Per Article: 47.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Accepted: 09/13/2013] [Indexed: 02/07/2023]
Abstract
Follicular B helper T (Tfh) cells support high affinity and long-term antibody responses. Here we found that within circulating CXCR5⁺ CD4⁺ T cells in humans and mice, the CCR7(lo)PD-1(hi) subset has a partial Tfh effector phenotype, whereas CCR7(hi)PD-1(lo) cells have a resting phenotype. The circulating CCR7(lo)PD-1(hi) subset was indicative of active Tfh differentiation in lymphoid organs and correlated with clinical indices in autoimmune diseases. Thus the CCR7(lo)PD-1(hi) subset provides a biomarker to monitor protective antibody responses during infection or vaccination and pathogenic antibody responses in autoimmune diseases. Differentiation of both CCR7(hi)PD-1(lo) and CCR7(lo)PD-1(hi) subsets required ICOS and BCL6, but not SAP, suggesting that circulating CXCR5⁺ helper T cells are primarily generated before germinal centers. Upon antigen reencounter, CCR7(lo)PD-1(hi) CXCR5⁺ precursors rapidly differentiate into mature Tfh cells to promote antibody responses. Therefore, circulating CCR7(lo)PD-1(hi) CXCR5⁺ CD4⁺ T cells are generated during active Tfh differentiation and represent a new mechanism of immunological early memory.
Collapse
Affiliation(s)
- Jing He
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing 100044, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
306
|
Do inhibitory immune receptors play a role in the etiology of autoimmune disease? Clin Immunol 2013; 150:31-42. [PMID: 24333531 DOI: 10.1016/j.clim.2013.11.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 11/07/2013] [Accepted: 11/10/2013] [Indexed: 12/21/2022]
Abstract
Inhibitory receptors are thought to be important in balancing immune responses. The general assumption is that lack of inhibition predisposes for autoimmune diseases. As reviewed here, various experimental and clinical data support this assumption. However, in humans genetic evidence implicates only a limited number of inhibitory receptors. GWAS have established common variation in a few inhibitory receptor genes, such as FCγRIIB, PD-1 and CTLA-4 as risk factors. The question arises whether inhibitory receptor function is a major determinant of autoimmune disease. In this respect, the finding that genetic variation in CSK and PTPN22 is strongly associated with multiple autoimmune diseases is of interest. We propose a model in which the molecules encoded by these genes are downstream of inhibitory receptors. We conclude that common genetic variation of inhibitory receptors, with few exceptions, is not a determining factor for autoimmunity in humans. However, common downstream signaling pathways are.
Collapse
|
307
|
Control of TFH cell numbers: why and how? Immunol Cell Biol 2013; 92:40-8. [DOI: 10.1038/icb.2013.69] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 10/08/2013] [Accepted: 10/09/2013] [Indexed: 12/22/2022]
|
308
|
Follicular helper T‐cell memory: establishing new frontiers during antibody response. Immunol Cell Biol 2013; 92:57-63. [DOI: 10.1038/icb.2013.68] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 09/29/2013] [Accepted: 10/01/2013] [Indexed: 01/08/2023]
|
309
|
Straub C, Neulen ML, Sperling B, Windau K, Zechmann M, Jansen CA, Viertlboeck BC, Göbel TW. Chicken NK cell receptors. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2013; 41:324-333. [PMID: 23542703 DOI: 10.1016/j.dci.2013.03.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 03/19/2013] [Accepted: 03/19/2013] [Indexed: 06/02/2023]
Abstract
Natural killer cells are innate immune cells that destroy virally infected or transformed cells. They recognize these altered cells by a plethora of diverse receptors and thereby differ from other lymphocytes that use clonally distributed antigen receptors. To date, several receptor families that play a role in either activating or inhibiting NK cells have been identified in mammals. In the chicken, NK cells have been functionally and morphologically defined, however, a conclusive analysis of receptors involved in NK cell mediated functions has not been available. This is partly due to the low frequencies of NK cells in blood or spleen that has hampered their intensive characterization. Here we will review recent progress regarding the diverse NK cell receptor families, with special emphasis on novel families identified in the chicken genome with potential as chicken NK cell receptors.
Collapse
MESH Headings
- Animals
- Antigens, CD/genetics
- Antigens, CD/immunology
- Chickens/genetics
- Chickens/immunology
- Gene Expression Regulation
- Genome/immunology
- Immunity, Innate
- Killer Cells, Natural/cytology
- Killer Cells, Natural/immunology
- Lectins, C-Type/classification
- Lectins, C-Type/genetics
- Lectins, C-Type/immunology
- Ligands
- Mammals/immunology
- Phylogeny
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/immunology
- Receptors, Natural Killer Cell/classification
- Receptors, Natural Killer Cell/genetics
- Receptors, Natural Killer Cell/immunology
- Signal Transduction
- Signaling Lymphocytic Activation Molecule Family Member 1
Collapse
Affiliation(s)
- Christian Straub
- Institute for Animal Physiology, Department of Veterinary Sciences, University of Munich, Germany
| | | | | | | | | | | | | | | |
Collapse
|
310
|
Qi H, Chen X, Chu C, Lu P, Xu H, Yan J. Follicular T‐helper cells: controlled localization and cellular interactions. Immunol Cell Biol 2013; 92:28-33. [DOI: 10.1038/icb.2013.59] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 09/01/2013] [Accepted: 09/04/2013] [Indexed: 02/07/2023]
Affiliation(s)
- Hai Qi
- Tsinghua‐Peking Center for Life Sciences, Laboratory of Dynamic Immunobiology, School of Medicine, School of Life Sciences, Tsinghua UniversityBeijingChina
| | - Xin Chen
- Tsinghua‐Peking Center for Life Sciences, Laboratory of Dynamic Immunobiology, School of Medicine, School of Life Sciences, Tsinghua UniversityBeijingChina
| | - Coco Chu
- Tsinghua‐Peking Center for Life Sciences, Laboratory of Dynamic Immunobiology, School of Medicine, School of Life Sciences, Tsinghua UniversityBeijingChina
| | - Peiwen Lu
- Tsinghua‐Peking Center for Life Sciences, Laboratory of Dynamic Immunobiology, School of Medicine, School of Life Sciences, Tsinghua UniversityBeijingChina
| | - Heping Xu
- Tsinghua‐Peking Center for Life Sciences, Laboratory of Dynamic Immunobiology, School of Medicine, School of Life Sciences, Tsinghua UniversityBeijingChina
| | - Jiacong Yan
- Tsinghua‐Peking Center for Life Sciences, Laboratory of Dynamic Immunobiology, School of Medicine, School of Life Sciences, Tsinghua UniversityBeijingChina
| |
Collapse
|
311
|
Abstract
Diacylglycerol (DAG), a second messenger generated by phospholipase Cγ1 activity upon engagement of a T-cell receptor, triggers several signaling cascades that play important roles in T cell development and function. A family of enzymes called DAG kinases (DGKs) catalyzes the phosphorylation of DAG to phosphatidic acid, acting as a braking mechanism that terminates DAG-mediated signals. Two DGK isoforms, α and ζ, are expressed predominantly in T cells and synergistically regulate the development of both conventional αβ T cells and invariant natural killer T cells in the thymus. In mature T cells, the activity of these DGK isoforms aids in the maintenance of self-tolerance by preventing T-cell hyperactivation upon T cell receptor stimulation and by promoting T-cell anergy. In CD8 cells, reduced DGK activity is associated with enhanced primary responses against viruses and tumors. Recent work also has established an important role for DGK activity at the immune synapse and identified partners that modulate DGK function. In addition, emerging evidence points to previously unappreciated roles for DGK function in directional secretion and T-cell adhesion. This review describes the multitude of roles played by DGKs in T cell development and function and emphasizes recent advances in the field.
Collapse
Affiliation(s)
- Sruti Krishna
- Department of Pediatrics, Division of Allergy and Immunology and Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA
| | | |
Collapse
|
312
|
Li S, Kyei S, Timm-McCann M, Ogbomo H, Jones G, Shi M, Xiang R, Oykhman P, Huston S, Islam A, Gill M, Robbins S, Mody C. The NK Receptor NKp30 Mediates Direct Fungal Recognition and Killing and Is Diminished in NK Cells from HIV-Infected Patients. Cell Host Microbe 2013; 14:387-97. [DOI: 10.1016/j.chom.2013.09.007] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 07/20/2013] [Accepted: 08/30/2013] [Indexed: 01/10/2023]
|
313
|
Li Y, Cao G, Zheng X, Wang J, Wei H, Tian Z, Sun R. CRACC-CRACC interaction between Kupffer and NK cells contributes to poly I:C/D-GalN induced hepatitis. PLoS One 2013; 8:e76681. [PMID: 24098802 PMCID: PMC3786926 DOI: 10.1371/journal.pone.0076681] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2013] [Accepted: 08/23/2013] [Indexed: 12/14/2022] Open
Abstract
CD2-like receptor activating cytotoxic cells (CRACC) is known as a critical activating receptor of natural killer (NK) cells. We have previously reported that NK cells contribute to Poly I:C/D-galactosamine (D-GalN)-induced fulminant hepatitis. Since natural killer group 2, member D (NKG2D) is considered critical but not the only activating receptor for NK cells, we investigated the role of CRACC in this model. We found that CRACC was abundant on hepatic NK cells but with low expression levels on Kupffer cells under normal conditions. Expression of CRACC on NK cells and Kupffer cells was remarkably upregulated after poly I:C injection. Hepatic CRACC mRNA levels were also upregulated in Poly I:C/D-GalN-treated mice, and correlated positively with the serum alanine aminotransferase (ALT) levels. CRACC expression on Kupffer cells was specifically silenced by nano-particle encapsulated siRNA in vivo, which significantly reduced Poly I:C/D-GalN-induced liver injury. In co-culture experiments, it was further verified that silencing CRACC expression or blockade of CRACC activation by mAb reduced the production of interferon (IFN)-γ and tumor necrosis factor (TNF)-α. Collectively, our findings suggest that CRACC-CRACC interaction between NK cells and resident Kupffer cells contributes to Poly I:C/D-GalN-induced fulminant hepatitis.
Collapse
Affiliation(s)
- Yangxi Li
- Department of Immunology, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Guoshuai Cao
- Department of Immunology, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Xiaodong Zheng
- Department of Immunology, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Jun Wang
- Department of Immunology, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
- Hefei National Laboratory for Physical Sciences at Microscale, Hefei, Anhui, China
| | - Haiming Wei
- Department of Immunology, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
- Hefei National Laboratory for Physical Sciences at Microscale, Hefei, Anhui, China
| | - Zhigang Tian
- Department of Immunology, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
- Hefei National Laboratory for Physical Sciences at Microscale, Hefei, Anhui, China
| | - Rui Sun
- Department of Immunology, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
- Hefei National Laboratory for Physical Sciences at Microscale, Hefei, Anhui, China
- * E-mail:
| |
Collapse
|
314
|
Abstract
Individuals with X-linked lymphoproliferative disease lack invariant natural killer T (iNKT) cells and are exquisitely susceptible to Epstein-Barr virus (EBV) infection. To determine whether iNKT cells recognize or regulate EBV, resting B cells were infected with EBV in the presence or absence of iNKT cells. The depletion of iNKT cells increased both viral titers and the frequency of EBV-infected B cells. However, EBV-infected B cells rapidly lost expression of the iNKT cell receptor ligand CD1d, abrogating iNKT cell recognition. To determine whether induced CD1d expression could restore iNKT recognition in EBV-infected cells, lymphoblastoid cell lines (LCL) were treated with AM580, a synthetic retinoic acid receptor-α agonist that upregulates CD1d expression via the nuclear protein, lymphoid enhancer-binding factor 1 (LEF-1). AM580 significantly reduced LEF-1 association at the CD1d promoter region, induced CD1d expression on LCL, and restored iNKT recognition of LCL. CD1d-expressing LCL elicited interferon γ secretion and cytotoxicity by iNKT cells even in the absence of exogenous antigen, suggesting an endogenous iNKT antigen is expressed during EBV infection. These data indicate that iNKT cells may be important for early, innate control of B cell infection by EBV and that downregulation of CD1d may allow EBV to circumvent iNKT cell-mediated immune recognition.
Collapse
|
315
|
Hagberg N, Theorell J, Schlums H, Eloranta ML, Bryceson YT, Rönnblom L. Systemic lupus erythematosus immune complexes increase the expression of SLAM family members CD319 (CRACC) and CD229 (LY-9) on plasmacytoid dendritic cells and CD319 on CD56(dim) NK cells. THE JOURNAL OF IMMUNOLOGY 2013; 191:2989-98. [PMID: 23956418 DOI: 10.4049/jimmunol.1301022] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Patients with systemic lupus erythematosus (SLE) display an activated type I IFN system due to unceasing IFN-α release from plasmacytoid dendritic cells (pDCs) stimulated by nucleic acid-containing immune complexes (ICs). NK cells strongly promote the IFN-α production by pDCs; therefore, we investigated surface molecules that could be involved in the pDC-NK cell cross-talk. In human PBMCs stimulated with RNA-containing ICs (RNA-ICs), the expression of the signaling lymphocyte activation molecule (SLAM) family receptors CD319 and CD229 on pDCs and CD319 on CD56(dim) NK cells was selectively increased. Upregulation of CD319 and CD229 on RNA-IC-stimulated pDCs was induced by NK cells or cytokines (e.g., GM-CSF, IL-3). IFN-α-producing pDCs displayed a higher expression of SLAM molecules compared with IFN-α⁻ pDCs. With regard to signaling downstream of SLAM receptors, pDCs expressed SHIP-1, SHP-1, SHP-2, and CSK but lacked SLAM-associated protein (SAP) and Ewing's sarcoma-activated transcript 2 (EAT2), indicating that these receptors may act as inhibitory receptors on pDCs. Furthermore, pDCs from patients with SLE had decreased expression of CD319 on pDCs and CD229 on CD56(dim) NK cells, but RNA-IC stimulation increased CD319 and CD229 expression. In conclusion, this study reveals that the expression of the SLAM receptors CD319 and CD229 is regulated on pDCs and NK cells by lupus ICs and that the expression of these receptors is specifically altered in SLE. These results, together with the observed genetic association between the SLAM locus and SLE, suggest a role for CD319 and CD229 in the SLE disease process.
Collapse
Affiliation(s)
- Niklas Hagberg
- Section of Rheumatology, Department of Medical Sciences, Uppsala University, S-751 85 Uppsala, Sweden.
| | | | | | | | | | | |
Collapse
|
316
|
Dervovic DD, Liang HCY, Cannons JL, Elford AR, Mohtashami M, Ohashi PS, Schwartzberg PL, Zúñiga-Pflücker JC. Cellular and molecular requirements for the selection of in vitro-generated CD8 T cells reveal a role for Notch. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2013; 191:1704-15. [PMID: 23851691 PMCID: PMC3801448 DOI: 10.4049/jimmunol.1300417] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Differentiation of CD8 single-positive (SP) T cells is predicated by the ability of lymphocyte progenitors to integrate multiple signaling cues provided by the thymic microenvironment. In the thymus and the OP9-DL1 system for T cell development, Notch signals are required for progenitors to commit to the T cell lineage and necessary for their progression to the CD4(+)CD8(+) double-positive (DP) stage of T cell development. However, it remains unclear whether Notch is a prerequisite for the differentiation of DP cells to the CD8 SP stage of development. In this study, we demonstrate that Notch receptor-ligand interactions allow for efficient differentiation and selection of conventional CD8 T cells from bone marrow-derived hematopoietic stem cells. However, bone marrow-derived hematopoietic stem cells isolated from Itk(-/-)Rlk(-/-) mice gave rise to T cells with decreased IFN-γ production, but gained the ability to produce IL-17. We further reveal that positive and negative selection in vitro are constrained by peptide-MHC class I expressed on OP9 cells. Finally, using an MHC class I-restricted TCR-transgenic model, we show that the commitment of DP precursors to the CD8 T cell lineage is dependent on Notch signaling. Our findings further establish the requirement for Notch receptor-ligand interactions throughout T cell differentiation, including the final step of CD8 SP selection.
Collapse
MESH Headings
- Actins/immunology
- Animals
- Antigens, Viral/immunology
- CD4 Antigens/analysis
- CD8 Antigens/analysis
- CD8-Positive T-Lymphocytes/immunology
- Calcium-Binding Proteins
- Cell Lineage
- Cells, Cultured
- Cellular Microenvironment
- Clonal Selection, Antigen-Mediated
- Coculture Techniques
- Crosses, Genetic
- H-2 Antigens/immunology
- Hematopoietic Stem Cells/cytology
- Hematopoietic Stem Cells/immunology
- Histocompatibility Antigen H-2D/immunology
- Intercellular Signaling Peptides and Proteins/immunology
- Lymphopoiesis/immunology
- Mice
- Mice, Inbred C3H
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Peptide Fragments/immunology
- Receptors, Antigen, T-Cell/biosynthesis
- Receptors, Antigen, T-Cell/immunology
- Receptors, Notch/physiology
- Signal Transduction/immunology
- Specific Pathogen-Free Organisms
- Stromal Cells/cytology
- Stromal Cells/immunology
- T-Lymphocyte Subsets/immunology
Collapse
Affiliation(s)
- Dzana D. Dervovic
- Department of Immunology, University of Toronto and Sunnybrook Research Institute, Toronto, Ontario M4N 3M5, Canada
| | - Haydn C-Y. Liang
- Department of Immunology, University of Toronto and Sunnybrook Research Institute, Toronto, Ontario M4N 3M5, Canada
| | - Jennifer L. Cannons
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892
| | - Alisha R. Elford
- Campbell Family Institute for Breast Cancer Research, Ontario Cancer Institute, University Health Network, Toronto, ON, M5G 2C1, Canada
| | - Mahmood Mohtashami
- Department of Immunology, University of Toronto and Sunnybrook Research Institute, Toronto, Ontario M4N 3M5, Canada
| | - Pamela S. Ohashi
- Campbell Family Institute for Breast Cancer Research, Ontario Cancer Institute, University Health Network, Toronto, ON, M5G 2C1, Canada
| | - Pamela L. Schwartzberg
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892
| | - Juan Carlos Zúñiga-Pflücker
- Department of Immunology, University of Toronto and Sunnybrook Research Institute, Toronto, Ontario M4N 3M5, Canada
| |
Collapse
|
317
|
Pacheco Y, McLean AP, Rohrbach J, Porichis F, Kaufmann DE, Kavanagh DG. Simultaneous TCR and CD244 signals induce dynamic downmodulation of CD244 on human antiviral T cells. THE JOURNAL OF IMMUNOLOGY 2013; 191:2072-81. [PMID: 23913963 DOI: 10.4049/jimmunol.1300435] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Various cosignaling molecules on T cells can contribute to activation, inhibition, or exhaustion, depending on context. The surface receptor signaling lymphocytic activation molecule (SLAM) family receptor CD244 (2B4/SLAMf4) has been shown to be capable of either inhibitory or enhancing effects upon engagement of its ligand CD48 (SLAMf2). We examined phenotypes of CD8 T cells from HIV(+) and HIV(neg) human donors, specific for HIV and/or respiratory syncytial virus. Cultured and ex vivo CD8 T cells expressed PD-1, CD244, and TIM-3. We found that ex vivo CD8 T cells downregulated CD244 in response to superantigen. Furthermore, cognate peptide induced rapid downregulation of both CD244 and TIM-3, but not PD-1, on CD8 T cell clones. CD244 downmodulation required simultaneous signaling via both TCR and CD244 itself. Using a pH-sensitive fluorophore conjugated to avidin-Ab tetramers, we found that CD244 crosslinking in the presence of TCR signaling resulted in rapid transport of CD244 to an acidic intracellular compartment. Downregulation was not induced by PMA-ionomycin, or prevented by PI3K inhibition, implicating a TCR-proximal signaling mechanism. CD244 internalization occurred within hours of TCR stimulation and required less peptide than was required to induce IFN-γ production. The degree of CD244 internalization varied among cultured CD8 T cell lines of different specificities, and correlated with the enhancement of IFN-γ production in response to CD48 blockade in HIV(+), but not HIV(neg), subjects. Our results indicate that rapid CD244 internalization is induced by a two-signal mechanism and plays a role in modulation of antiviral CD8 T cell responses by CD48-CD244 signaling.
Collapse
Affiliation(s)
- Yovana Pacheco
- Ragon Institute of MGH, MIT and Harvard, Massachusetts General Hospital, Cambridge, MA 02139, USA
| | | | | | | | | | | |
Collapse
|
318
|
de Salort J, Cuenca M, Terhorst C, Engel P, Romero X. Ly9 (CD229) Cell-Surface Receptor is Crucial for the Development of Spontaneous Autoantibody Production to Nuclear Antigens. Front Immunol 2013; 4:225. [PMID: 23914190 PMCID: PMC3728625 DOI: 10.3389/fimmu.2013.00225] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 07/18/2013] [Indexed: 01/07/2023] Open
Abstract
The Signaling Lymphocyte Activation Molecule Family (SLAMF) genes, which encode cell-surface receptors that modulate innate and adaptive immune responses, lay within a genomic region of human and mouse chromosome 1 that confers a predisposition for the development of systemic lupus erythematosus (SLE). Herein, we demonstrate that the SLAMF member Ly9 arises as a novel receptor contributing to the reinforcement of tolerance. Specifically, Ly9-deficient mice spontaneously developed features of systemic autoimmunity such as the production of anti-nuclear antibodies (ANA), -dsDNA, and -nucleosome autoantibodies, independently of genetic background [(B6.129) or (BALB/c.129)]. In aged (10- to 12-month-old) Ly9−/− mice key cell subsets implicated in autoimmunity were expanded, e.g., T follicular helper (Tfh) as well as germinal center (GC) B cells. More importantly, in vitro functional experiments showed that Ly9 acts as an inhibitory receptor of IFN-γ producing CD4+ T cells. Taken together, our findings reveal that the Ly9 receptor triggers cell intrinsic safeguarding mechanisms to prevent a breach of tolerance, emerging as a new non-redundant inhibitory cell-surface receptor capable of disabling autoantibody responses.
Collapse
Affiliation(s)
- Jose de Salort
- Immunology Unit, Department of Cell Biology, Immunology and Neurosciences, Medical School, University of Barcelona , Barcelona , Spain
| | | | | | | | | |
Collapse
|
319
|
Zhu J, Zhang Y, Zhen ZJ, Chen Y, Wang J, Cai RQ, Sun XF. Lymphoma and cerebral vasculitis in association with X-linked lymphoproliferative disease. CHINESE JOURNAL OF CANCER 2013; 32:673-7. [PMID: 23816555 PMCID: PMC3870852 DOI: 10.5732/cjc.012.10238] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Lymphoma is seen in up to 30% of patients with X-linked lymphoproliferative disease (XLP), but cerebral vasculitis related with XLP after cure of Burkitt lymphoma is rarely reported. We describe a case of a 5-year-old boy with XLP who developed cerebral vasculitis two years after cure of Burkitt lymphoma. He had Burkitt lymphoma at the age of 3 years and received chemotherapy (non-Hodgkin's lymphoma-Berlin-Frankfurt-Milan-90 protocol plus rituximab), which induced complete remission over the following two years. At the age of 5 years, the patient first developed headache, vomiting, and then intellectual and motorial retrogression. His condition was not improved after anti-infection, dehydration, or dexamethasone therapy. No tumor cells were found in his cerebrospinal fluid. Magnetic resonance imaging showed multiple non-homogeneous, hypodense masses along the bilateral cortex. Pathology after biopsy revealed hyperplasia of neurogliocytes and vessels, accompanied by lymphocyte infiltration but no tumor cell infiltration. Despite aggressive treatment, his cognition and motor functions deteriorated in response to progressive cerebral changes. The patient is presently in a vegetative state. We present this case to inform clinicians of association between lymphoma and immunodeficiency and explore an optimal treatment for lymphoma patients with compromised immune system.
Collapse
Affiliation(s)
- Jia Zhu
- State Key Laboratory of Oncology in South China; Department of Pediatric Oncology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
320
|
Detre C, Yigit B, Keszei M, Castro W, Magelky EM, Terhorst C. SAP modulates B cell functions in a genetic background-dependent manner. Immunol Lett 2013; 153:15-21. [PMID: 23806511 DOI: 10.1016/j.imlet.2013.06.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 06/13/2013] [Indexed: 10/26/2022]
Abstract
Mutations affecting the SLAM-associated protein (SAP) are responsible for the X-linked lympho-proliferative syndrome (XLP), a severe primary immunodeficiency syndrome with disease manifestations that include fatal mononucleosis, B cell lymphoma and dysgammaglobulinemia. It is well accepted that insufficient help by SAP-/- CD4+ T cells, in particular during the germinal center reaction, is a component of dysgammaglobulinemia in XLP patients and SAP-/- animals. It is however not well understood whether in XLP patients and SAP-/- mice B cell functions are affected, even though B cells themselves do not express SAP. Here we report that B cell intrinsic responses to haptenated protein antigens are impaired in SAP-/- mice and in Rag-/- mice into which B cells derived from SAP-/- mice together with wt CD4+ T cells had been transferred. This impaired B cells functions are in part depending on the genetic background of the SAP-/- mouse, which affects B cell homeostasis. Surprisingly, stimulation with an agonistic anti-CD40 causes strong in vivo and in vitro B cell responses in SAP-/- mice. Taken together, the data demonstrate that genetic factors play an important role in the SAP-related B cell functions. The finding that anti-CD40 can in part restore impaired B cell responses in SAP-/- mice, suggests potentially novel therapeutic interventions in subsets of XLP patients.
Collapse
Affiliation(s)
- Cynthia Detre
- Division of Immunology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
321
|
Hu J, Havenar-Daughton C, Crotty S. Modulation of SAP dependent T:B cell interactions as a strategy to improve vaccination. Curr Opin Virol 2013; 3:363-70. [PMID: 23743125 DOI: 10.1016/j.coviro.2013.05.015] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Accepted: 05/10/2013] [Indexed: 11/15/2022]
Abstract
Generating long-term humoral immunity is a crucial component of successful vaccines and requires interactions between T cells and B cells in germinal centers (GC). In GCs, a specialized subset of CD4+ helper T cells, called T follicular helper cells (Tfh), provide help to B cells; this help directs the magnitude and quality of the antibody response. Tfh cell help influences B cell survival, proliferation, somatic hypermutation, class switch recombination, and differentiation. Sustained contact between Tfh cells and B cells is necessary for the provision of help to B cells. SAP (Signaling lymphocytic activation molecule (SLAM)-associated protein, encoded by Sh2d1a) regulates the duration of T:B cell interactions and is required for long-term humoral immunity in animal models and in humans. SAP binds to SLAM family receptors and mediates signaling that affects cell adhesion, cytokine secretion, and TCR signaling strength. Therefore, the modulation of SAP and SLAM family receptor expression represents a major axis by which the quality and duration of an antibody response is controlled after vaccination.
Collapse
Affiliation(s)
- Joyce Hu
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, United States
| | | | | |
Collapse
|
322
|
Veillette A, Guo H. CS1, a SLAM family receptor involved in immune regulation, is a therapeutic target in multiple myeloma. Crit Rev Oncol Hematol 2013; 88:168-77. [PMID: 23731618 DOI: 10.1016/j.critrevonc.2013.04.003] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2013] [Revised: 04/19/2013] [Accepted: 04/26/2013] [Indexed: 10/26/2022] Open
Abstract
Signaling lymphocytic activation molecule (SLAM) family receptors have been implicated in normal immunity, immunodeficiencies and autoimmunity. CS1 (also known as CRACC, CD319 and SLAMF7) is a member of the SLAM family expressed on several normal hematopoietic cell types. It is also highly and nearly universally expressed on multiple myeloma (MM) cells. This review focuses on the biology of CS1, both in normal hematopoietic cells and in MM cells. It also discusses the preclinical and clinical data on the use of a humanized anti-CS1 monoclonal antibody, elotuzumab, for the treatment of MM. Based on current knowledge, CS1 is a compelling new target for the treatment of MM.
Collapse
Affiliation(s)
- André Veillette
- Laboratory of Molecular Oncology, Institut de recherches cliniques de Montréal (IRCM), Montréal, Québec, Canada H2W 1R7; Department of Medicine, McGill University, Montréal, Québec, Canada H3G 1Y6; Department of Medicine, University of Montréal, Montréal, Québec, Canada H3T 1J4.
| | | |
Collapse
|
323
|
Kim JR, Horton NC, Mathew SO, Mathew PA. CS1 (SLAMF7) inhibits production of proinflammatory cytokines by activated monocytes. Inflamm Res 2013; 62:765-72. [DOI: 10.1007/s00011-013-0632-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 05/03/2013] [Indexed: 12/24/2022] Open
|
324
|
Yang B, Wang X, Jiang J, Cheng X. Involvement of CD244 in regulating CD4+ T cell immunity in patients with active tuberculosis. PLoS One 2013; 8:e63261. [PMID: 23638187 PMCID: PMC3640077 DOI: 10.1371/journal.pone.0063261] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Accepted: 03/31/2013] [Indexed: 01/16/2023] Open
Abstract
CD244 (2B4) is a member of the signaling lymphocyte activation molecule (SLAM) family of immune cell receptors and it plays an important role in modulating NK cell and CD8+ T cell immunity. In this study, we investigated the expression and function of CD244/2B4 on CD4+ T cells from active TB patients and latent infection individuals. Active TB patients had significantly elevated CD244/2B4 expression on M. tuberculosis antigen-specific CD4+ T cells compared with latent infection individuals. The frequencies of CD244/2B4-expressing antigen-specific CD4+ T cells were significantly higher in retreatment active TB patients than in new active TB patients. Compared with CD244/2B4-dull and -middle CD4+ T cells, CD244/2B4-bright CD4+ T cell subset had significantly reduced expression of IFN-γ, suggesting that CD244/2B4 expression may modulate IFN-γ production in M. tuberculosis antigen-responsive CD4+ T cells. Activation of CD244/2B4 signaling by cross-linking led to significantly decreased production of IFN-γ. Blockage of CD244/2B4 signaling pathway of T cells from patients with active TB resulted in significantly increased production of IFN-γ, compared with isotype antibody control. In conclusion, CD244/2B4 signaling pathway has an inhibitory role on M. tuberculosis antigen-specific CD4+ T cell function.
Collapse
Affiliation(s)
- Bingfen Yang
- Division of Research, Institute of Tuberculosis, 309 Hospital, Beijing, China
| | | | | | | |
Collapse
|
325
|
Das R, Bassiri H, Guan P, Wiener S, Banerjee PP, Zhong MC, Veillette A, Orange JS, Nichols KE. The adaptor molecule SAP plays essential roles during invariant NKT cell cytotoxicity and lytic synapse formation. Blood 2013; 121:3386-95. [PMID: 23430111 PMCID: PMC3637014 DOI: 10.1182/blood-2012-11-468868] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 02/15/2013] [Indexed: 12/22/2022] Open
Abstract
The adaptor molecule signaling lymphocytic activation molecule-associated protein (SAP) plays critical roles during invariant natural killer T (iNKT) cell ontogeny. As a result, SAP-deficient humans and mice lack iNKT cells. The strict developmental requirement for SAP has made it difficult to discern its possible involvement in mature iNKT cell functions. By using temporal Cre recombinase-mediated gene deletion to ablate SAP expression after completion of iNKT cell development, we demonstrate that SAP is essential for T-cell receptor (TCR)-induced iNKT cell cytotoxicity against T-cell and B-cell leukemia targets in vitro and iNKT-cell-mediated control of T-cell leukemia growth in vivo. These findings are not restricted to the murine system: silencing RNA-mediated suppression of SAP expression in human iNKT cells also significantly impairs TCR-induced cytolysis. Mechanistic studies reveal that iNKT cell killing requires the tyrosine kinase Fyn, a known SAP-binding protein. Furthermore, SAP expression is required within iNKT cells to facilitate their interaction with T-cell targets and induce reorientation of the microtubule-organizing center to the immunologic synapse (IS). Collectively, these studies highlight a novel and essential role for SAP during iNKT cell cytotoxicity and formation of a functional IS.
Collapse
Affiliation(s)
- Rupali Das
- Division of Oncology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
326
|
Abstract
Co-stimulatory and co-inhibitory receptors have a pivotal role in T cell biology, as they determine the functional outcome of T cell receptor (TCR) signalling. The classic definition of T cell co-stimulation continues to evolve through the identification of new co-stimulatory and co-inhibitory receptors, the biochemical characterization of their downstream signalling events and the delineation of their immunological functions. Notably, it has been recently appreciated that co-stimulatory and co-inhibitory receptors display great diversity in expression, structure and function, and that their functions are largely context dependent. Here, we focus on some of these emerging concepts and review the mechanisms through which T cell activation, differentiation and function is controlled by co-stimulatory and co-inhibitory receptors.
Collapse
Affiliation(s)
- Lieping Chen
- Department of Immunobiology and Yale Cancer Center, Yale University School of Medicine, New Haven, Connecticut 06519, USA.
| | | |
Collapse
|
327
|
Sandberg JK, Andersson SK, Bächle SM, Nixon DF, Moll M. HIV-1 Vpu interference with innate cell-mediated immune mechanisms. Curr HIV Res 2013; 10:327-33. [PMID: 22524181 PMCID: PMC3412205 DOI: 10.2174/157016212800792513] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2012] [Revised: 03/06/2012] [Accepted: 03/14/2012] [Indexed: 12/26/2022]
Abstract
The HIV-1 accessory protein Vpu is emerging as a viral factor with a range of activities devoted to counteracting host innate immunity. Here, we review recent findings concerning the role of Vpu in hampering activation of cellular immune responses mediated by CD1d-restricted invariant natural killer T (iNKT) cells and natural killer (NK) cells. The two key findings are that Vpu interferes with CD1d expression and antigen presentation, and also with expression of the NK cell activation ligand NK-T and B cell antigen (NTB-A). Both these activities are mechanistically distinct from CD4 and Tetherin (BST-2) down-modulation. We summarize the mechanistic insights gained into Vpu interference with CD1d and NTB-A, as well as important challenges going forward, and discuss these mechanisms in the context of the role that iNKT and NK cells play in HIV-1 immunity and immunopathogenesis.
Collapse
Affiliation(s)
- Johan K Sandberg
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden.
| | | | | | | | | |
Collapse
|
328
|
Mellor-Heineke S, Villanueva J, Jordan MB, Marsh R, Zhang K, Bleesing JJ, Filipovich AH, Risma KA. Elevated Granzyme B in Cytotoxic Lymphocytes is a Signature of Immune Activation in Hemophagocytic Lymphohistiocytosis. Front Immunol 2013; 4:72. [PMID: 23524976 PMCID: PMC3605512 DOI: 10.3389/fimmu.2013.00072] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 03/05/2013] [Indexed: 02/03/2023] Open
Abstract
Patients with hemophagocytic lymphohistiocytosis (HLH) exhibit immune hyper-activation as a consequence of genetic defects in secretory granule proteins of cytotoxic T lymphocytes (CTL) and natural killer (NK) cells. Murine models of HLH demonstrate significant activation of CTL as central to the disease pathogenesis, but evaluation of CTL and NK activation in children with HLH or inflammatory conditions is not well described. CD8 T cells only express granzyme B (GrB) following stimulation and differentiation into CTL; therefore, we reasoned that GrB expression may serve as a signature of CTL activation. It is unknown whether human NK cells are similarly activated in vivo, as marked by increased granule proteins. Perforin and GrB levels are measured in both CTL and NK cells by flow cytometry to diagnose perforin deficiency. We retrospectively compared GrB expression in blood samples from 130 children with clinically suspected and/or genetically defined HLH to age-matched controls. As predicted, CD8 expressing GrB cells were increased in HLH, regardless of genetic etiology. Remarkably, the GrB protein content also increased in NK cells in patients with HLH and decreased following immunosuppressive therapy. This suggests that in vivo activation of NK cells occurs in hyper-inflammatory conditions. We conclude that increased detection of GrB in CTL and NK are an immune signature for lymphocyte activation in HLH, irrespective of genetic subtype and may also be a useful measure of immune activation in other related conditions.
Collapse
Affiliation(s)
- Sabine Mellor-Heineke
- Immunodeficiency and Histiocytosis Program, Division of Bone Marrow Transplantation, Cincinnati Children's Hospital Medical Center Cincinnati, OH, USA
| | | | | | | | | | | | | | | |
Collapse
|
329
|
Chu CY, Chang CP, Chou YT, Handoko, Hu YL, Lo LC, Lin JJ. Development and evaluation of novel phosphotyrosine mimetic inhibitors targeting the Src homology 2 domain of signaling lymphocytic activation molecule (SLAM) associated protein. J Med Chem 2013; 56:2841-9. [PMID: 23470190 DOI: 10.1021/jm301610q] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Specific interactions between Src homology 2 (SH2) domain-containing proteins and the phosphotyrosine-containing counterparts play significant role in cellular protein tyrosine kinase (PTK) signaling pathways. The SH2 domain inhibitors could potentially serve as drug candidates in treating human diseases. Here we have incorporated a novel phosphotyrosine mimetic, which is an unusual amino acid carrying a cyclosaligenyl (cycloSal) phosphodiester moiety, into dipeptides to investigate the inhibitory effect on SH2 domain-containing proteins. A plate-based assay was also established to screen for inhibitors that disrupt the interaction between a phosphopeptide of SLAM (signaling lymphocytic activation molecule) and its interacting protein SAP (SLAM-associated protein). We identified a number of inhibitors with IC50 values in the range of 17-35 μM, implying that the cycloSal phosphodiester-carrying amino acid could mimic the phosphotyrosyl residue. Our results also raise the possibility of integrating the newly developed phosphotyrosine mimetic moiety into inhibitors designed for other SH2 domain-containing proteins.
Collapse
Affiliation(s)
- Chi-Yuan Chu
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan
| | | | | | | | | | | | | |
Collapse
|
330
|
Dutta M, Kraus ZJ, Gomez-Rodriguez J, Hwang SH, Cannons JL, Cheng J, Lee SY, Wiest DL, Wakeland EK, Schwartzberg PL. A role for Ly108 in the induction of promyelocytic zinc finger transcription factor in developing thymocytes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2013; 190:2121-8. [PMID: 23355739 PMCID: PMC3578000 DOI: 10.4049/jimmunol.1202145] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The promyelocytic zinc finger transcription factor (PLZF) is required for the development of activated phenotypes in NKT and other innate T lymphocytes. Although strong TCR stimulation has been implicated in the induction of PLZF, the factors regulating PLZF expression are incompletely understood. We show in this study that costimulation of preselection double-positive thymocytes through the signaling lymphocyte activation molecule family receptor Ly108 markedly enhanced PLZF expression compared with that induced by TCR stimulation alone. Costimulation with Ly108 increased expression of early growth response protein (Egr)-2 and binding of Egr-2 to the promoter of Zbtb16, which encodes PLZF, and resulted in PLZF levels similar to those seen in NKT cells. In contrast, costimulation with anti-CD28 failed to enhance Egr-2 binding and Zbtb16 expression. Moreover, mice lacking Ly108 showed decreased numbers of PLZF-expressing CD4(+) T cells. Together, these results support a potential role for Ly108 in the induction of PLZF.
Collapse
Affiliation(s)
- Mala Dutta
- National Human Genome Research Institute, NIH, Bethesda, MD 20892
- George Washington University Institute of Biomedical Sciences, Washington, DC 20052
| | - Zachary J. Kraus
- National Human Genome Research Institute, NIH, Bethesda, MD 20892
| | | | - Sun-hee Hwang
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX
| | | | - Jun Cheng
- National Human Genome Research Institute, NIH, Bethesda, MD 20892
| | - Sang-Yun Lee
- Immune Cell Development and Host Defense Program, Fox Chase Cancer Center, Philadelphia, PA 19111
| | - David L. Wiest
- Immune Cell Development and Host Defense Program, Fox Chase Cancer Center, Philadelphia, PA 19111
| | - Edward K. Wakeland
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX
| | | |
Collapse
|
331
|
Long EO, Kim HS, Liu D, Peterson ME, Rajagopalan S. Controlling natural killer cell responses: integration of signals for activation and inhibition. Annu Rev Immunol 2013; 31:227-58. [PMID: 23516982 PMCID: PMC3868343 DOI: 10.1146/annurev-immunol-020711-075005] [Citation(s) in RCA: 900] [Impact Index Per Article: 81.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Understanding how signals are integrated to control natural killer (NK) cell responsiveness in the absence of antigen-specific receptors has been a challenge, but recent work has revealed some underlying principles that govern NK cell responses. NK cells use an array of innate receptors to sense their environment and respond to alterations caused by infections, cellular stress, and transformation. No single activation receptor dominates; instead, synergistic signals from combinations of receptors are integrated to activate natural cytotoxicity and cytokine production. Inhibitory receptors for major histocompatibility complex class I (MHC-I) have a critical role in controlling NK cell responses and, paradoxically, in maintaining NK cells in a state of responsiveness to subsequent activation events, a process referred to as licensing. MHC-I-specific inhibitory receptors both block activation signals and trigger signals to phosphorylate and inactivate the small adaptor Crk. These different facets of inhibitory signaling are incorporated into a revocable license model for the reversible tuning of NK cell responsiveness.
Collapse
Affiliation(s)
- Eric O. Long
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland 20852
| | - Hun Sik Kim
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland 20852
- Department of Medicine, Graduate School, University of Ulsan, Seoul 138-736, Korea;
| | - Dongfang Liu
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland 20852
- Center for Human Immunobiology, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas 77030;
| | - Mary E. Peterson
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland 20852
| | - Sumati Rajagopalan
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland 20852
| |
Collapse
|
332
|
Scheinman R. NF-κB and Rheumatoid Arthritis: Will Understanding Genetic Risk Lead to a Therapeutic Reward? ACTA ACUST UNITED AC 2013; 4:93-110. [PMID: 24678426 DOI: 10.1615/forumimmundisther.2013008408] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
NF-κB has long been known to play an important role in autoimmune diseases such as rheumatoid arthritis (RA). Indeed, as our understanding of how NF-κB is utilized has increased, we have been hard put to find a process not associated with this transcription factor family in some way. However, new data originating, in part, from genome-wide association studies have demonstrated that very specific alterations in components of the NF-κB pathway are sufficient to confer increased risk of developing disease. Here we review the data which have identified specific components of the NF-κB pathway, and consider what is known of their mechanisms of action and how these mechanisms might play into the disease process. In addition, the use of genetic information to predict RA is considered.
Collapse
Affiliation(s)
- Robert Scheinman
- University of Colorado Denver, School of Pharmacy, Department of Pharmaceutical Sciences, Aurora, CO 80045;
| |
Collapse
|
333
|
Waggoner SN, Kumar V. Evolving role of 2B4/CD244 in T and NK cell responses during virus infection. Front Immunol 2012; 3:377. [PMID: 23248626 PMCID: PMC3518765 DOI: 10.3389/fimmu.2012.00377] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 11/26/2012] [Indexed: 01/22/2023] Open
Abstract
The signaling lymphocyte activation molecule (SLAM) family receptor, 2B4/CD244, was first implicated in anti-viral immunity by the discovery that mutations of the SLAM-associated protein, SAP/SH2D1A, impaired 2B4-dependent stimulation of T and natural killer (NK) cell anti-viral functions in X-linked lymphoproliferative syndrome patients with uncontrolled Epstein-Barr virus infections. Engagement of 2B4 has been variably shown to either activate or inhibit lymphocytes which express this receptor. While SAP expression is required for stimulatory functions of 2B4 on lymphocytes, it remains unclear whether inhibitory signals derived from 2B4 can predominate even in the presence of SAP. Regardless, mounting evidence suggests that 2B4 expression by NK and CD8 T cells is altered by virus infection in mice as well as in humans, and 2B4-mediated signaling may be an important determinant of effective immune control of chronic virus infections. In this review, recent findings regarding the expression and function of 2B4 as well as SAP on T and NK cells during virus infection is discussed, with a focus on the role of 2B4-CD48 interactions in crosstalk between innate and adaptive immunity.
Collapse
Affiliation(s)
- Stephen N Waggoner
- Department of Pathology, University of Massachusetts Medical School Worcester, MA, USA ; Program in Immunology and Virology, University of Massachusetts Medical School Worcester, MA, USA
| | | |
Collapse
|
334
|
Ding S, Liang Y, Zhao M, Liang G, Long H, Zhao S, Wang Y, Yin H, Zhang P, Zhang Q, Lu Q. Decreased microRNA-142-3p/5p expression causes CD4+ T cell activation and B cell hyperstimulation in systemic lupus erythematosus. ACTA ACUST UNITED AC 2012; 64:2953-63. [PMID: 22549634 DOI: 10.1002/art.34505] [Citation(s) in RCA: 153] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECTIVE To examine the role of microRNA-142-3p/5p (miR-142-3p/5p) in the development of autoimmunity in patients with systemic lupus erythematosus (SLE). METHODS MicroRNA-142-3p/5p expression levels were determined by real-time quantitative polymerase chain reaction, and potential target genes were verified using luciferase reporter gene assays. The effects of miR-142-3p/5p on T cell function were assessed by transfection with miR-142-3p/5p inhibitors or mimics. Histone modifications and methylation levels within a putative regulatory region of the miR-142 locus were detected by chromatin immunoprecipitation assay and bisulfite sequencing, respectively. RESULTS We confirmed that miR-142-3p and miR-142-5p were significantly down-regulated in SLE CD4+ T cells compared with healthy controls and observed that miR-142-3p/5p levels were inversely correlated with the putative SLE-related targets signaling lymphocytic activation molecule-associated protein (SAP), CD84, and interleukin-10 (IL-10). We demonstrated that miR-142-3p and miR-142-5p directly inhibit SAP, CD84, and IL-10 translation, and that reduced miR-142-3p/5p expression in CD4+ T cells can significantly increase protein levels of these target genes. Furthermore, inhibiting miR-142-3p/5p in healthy donor CD4+ T cells caused T cell overactivation and B cell hyperstimulation, whereas overexpression of miR-142-3p/5p in SLE CD4+ T cells had the opposite effect. We also observed that the decrease in miR-142 expression in SLE CD4+ T cells correlated with changes to histone modifications and DNA methylation levels upstream of the miR-142 precursor sequence. CONCLUSION The results of this study indicate that reduced expression of miR-142-3p/5p in the CD4+ T cells of patients with SLE causes T cell activity and B cell hyperstimulation.
Collapse
Affiliation(s)
- Shu Ding
- Second Xiangya Hospital and Central South University, Changsha, Hunan, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
335
|
Rébé C, Filomenko R, Raveneau M, Chevriaux A, Ishibashi M, Lagrost L, Junien JL, Gambert P, Masson D. Identification of biological markers of liver X receptor (LXR) activation at the cell surface of human monocytes. PLoS One 2012. [PMID: 23185273 PMCID: PMC3504056 DOI: 10.1371/journal.pone.0048738] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Background Liver X receptor (LXR) α and LXR β (NR1H3 and NR1H2) are oxysterol-activated nuclear receptors involved in the control of major metabolic pathways such as cholesterol homeostasis, lipogenesis, inflammation and innate immunity. Synthetic LXR agonists are currently under development and could find applications in various fields such as cardiovascular diseases, cancer, diabetes and neurodegenerative diseases. The clinical development of LXR agonists requires the identification of biological markers for pharmacodynamic studies. In this context, monocytes represent an attractive target to monitor LXR activation. They are easily accessible cells present in peripheral blood; they express LXR α and β and respond to LXR agonist stimulation in vitro. The aim of our study was to identify cell surface markers of LXR agonists on monocytes. For this, we focused on clusters of differentiation (CD) markers because they are well characterized and accessible cell surface molecules allowing easy immuno-phenotyping. Methodology/Principal Findings By using microarray analysis of monocytes treated or not with an LXR agonist in vitro, we selected three CD, i.e. CD82, CD226, CD244 for further analysis by real time PCR and flow cytometry. The three CD were up-regulated by LXR agonist treatment in vitro in a time- and dose- dependent manner and this induction was LXR specific as assessed by a SiRNA or LXR antagonist strategy. By using flow cytometry, we could demonstrate that the expression of these molecules at the cell surface of monocytes was significantly increased after LXR agonist treatment. Conclusions/Significance We have identified three new cell surface markers that could be useful to monitor LXR activation. Future studies will be required to confirm the biological and diagnostic significance of the markers.
Collapse
Affiliation(s)
- Cédric Rébé
- Centre de Recherche Institut National de la Santé et de la Recherche Médicale Unité Mixte de Recherche 866, Université de Bourgogne, Dijon, France
- Structure Fédérative de Recherche Santé-Sciences et Techniques de l'Information et de la Communication, Université de Bourgogne, Dijon, France
- Centre Georges-François Leclerc, Dijon, France
| | - Rodolphe Filomenko
- Structure Fédérative de Recherche Santé-Sciences et Techniques de l'Information et de la Communication, Université de Bourgogne, Dijon, France
| | - Magalie Raveneau
- Structure Fédérative de Recherche Santé-Sciences et Techniques de l'Information et de la Communication, Université de Bourgogne, Dijon, France
| | - Angélique Chevriaux
- Centre de Recherche Institut National de la Santé et de la Recherche Médicale Unité Mixte de Recherche 866, Université de Bourgogne, Dijon, France
- Structure Fédérative de Recherche Santé-Sciences et Techniques de l'Information et de la Communication, Université de Bourgogne, Dijon, France
- Centre Georges-François Leclerc, Dijon, France
| | - Minako Ishibashi
- Centre de Recherche Institut National de la Santé et de la Recherche Médicale Unité Mixte de Recherche 866, Université de Bourgogne, Dijon, France
- Structure Fédérative de Recherche Santé-Sciences et Techniques de l'Information et de la Communication, Université de Bourgogne, Dijon, France
| | - Laurent Lagrost
- Centre de Recherche Institut National de la Santé et de la Recherche Médicale Unité Mixte de Recherche 866, Université de Bourgogne, Dijon, France
- Structure Fédérative de Recherche Santé-Sciences et Techniques de l'Information et de la Communication, Université de Bourgogne, Dijon, France
- Centre Hospitalier Universitaire Dijon, Dijon, France
| | - Jean Louis Junien
- Structure Fédérative de Recherche Santé-Sciences et Techniques de l'Information et de la Communication, Université de Bourgogne, Dijon, France
| | - Philippe Gambert
- Centre de Recherche Institut National de la Santé et de la Recherche Médicale Unité Mixte de Recherche 866, Université de Bourgogne, Dijon, France
- Structure Fédérative de Recherche Santé-Sciences et Techniques de l'Information et de la Communication, Université de Bourgogne, Dijon, France
- Centre Hospitalier Universitaire Dijon, Dijon, France
| | - David Masson
- Centre de Recherche Institut National de la Santé et de la Recherche Médicale Unité Mixte de Recherche 866, Université de Bourgogne, Dijon, France
- Structure Fédérative de Recherche Santé-Sciences et Techniques de l'Information et de la Communication, Université de Bourgogne, Dijon, France
- Centre Hospitalier Universitaire Dijon, Dijon, France
- * E-mail:
| |
Collapse
|
336
|
Hwang SH, Lee H, Yamamoto M, Jones LA, Dayalan J, Hopkins R, Zhou XJ, Yarovinsky F, Connolly JE, Curotto de Lafaille MA, Wakeland EK, Fairhurst AM. B cell TLR7 expression drives anti-RNA autoantibody production and exacerbates disease in systemic lupus erythematosus-prone mice. THE JOURNAL OF IMMUNOLOGY 2012; 189:5786-96. [PMID: 23150717 DOI: 10.4049/jimmunol.1202195] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Systemic lupus erythematosus (SLE) is a chronic systemic autoimmune disease characterized by the production of antinuclear autoantibodies. Antinuclear autoantibody development is recognized as one of the initial stages of disease that often results in systemic inflammation, kidney disease, and death. The etiology is complex, but it is clear that innate pathways may play an important role in disease progression. Recent data have highlighted an important role for the TLR family, particularly TLR7, in both human disease and murine models. In this study, we have presented a low copy conditional TLR7 transgenic (Tg7) mouse strain that does not develop spontaneous autoimmunity. When we combine Tg7 with the Sle1 lupus susceptibility locus, the mice develop severe disease. Using the CD19(Cre) recombinase system, we normalized expression of TLR7 solely within the B cells. Using this method we demonstrated that overexpression of TLR7 within the B cell compartment reduces the marginal zone B cell compartment and increases B and T cell activation but not T follicular helper cell development. Moreover, this enhanced B cell TLR7 expression permits the specific development of Abs to RNA/protein complexes and exacerbates SLE disease.
Collapse
Affiliation(s)
- Sun-Hee Hwang
- Department of Immunology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
337
|
Wong EB, Khan TN, Mohan C, Rahman ZSM. The lupus-prone NZM2410/NZW strain-derived Sle1b sublocus alters the germinal center checkpoint in female mice in a B cell-intrinsic manner. THE JOURNAL OF IMMUNOLOGY 2012; 189:5667-81. [PMID: 23144494 DOI: 10.4049/jimmunol.1201661] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
C57BL/6 (B6) mice carrying the Sle1b sublocus (named B6.Sle1b), which harbors the lupus-associated NZM2410/NZW SLAM family genes, produce antinuclear Abs (ANAs). However, the role and mechanism(s) involved in the alteration of the germinal center (GC) tolerance checkpoint in the development of ANAs in these mice is not defined. In this study, we show significantly higher spontaneously formed GCs (Spt-GCs) in B6.Sle1b female mice compared with B6 controls. We also found a significant increase in CD4(+)CXCR5(hi)PD-1(hi) spontaneously activated follicular Th cells in B6.Sle1b female mice. Compared with B6 controls, B6.Sle1b female mice had increased numbers of proliferating B cells predominantly located in Spt-GCs. The elevated Spt-GCs in B6.Sle1b female mice were strongly associated with increased ANA-specific Ab-forming cells and ANA titers. The increased numbers of Spt-GCs and spontaneously activated follicular Th cells in B6.Sle1b mice were not the result of a generalized defect in B cells expressing Sle1b. Consistent with the elevated spontaneous response in B6.Sle1b mice, the attenuated GC response characteristic of DNA and p-azophenylarsonate reactive B cells from Ig V(H) knock-in mice (termed HKIR) were relieved in adoptively transferred recipients in the presence of Sle1b. Finally, by generating mixed bone marrow chimeras, we showed that the effect of Sle1b on Spt-GC, follicular Th cell, and autoantibody responses in B6.Sle1b mice was B cell autonomous. These data indicate that the NZM2410/NZW-derived Sle1b sublocus in conjunction with the female sex primarily affects B cells, leading to the alteration of the GC tolerance checkpoint and the generation of ANA-specific Ab-forming cells.
Collapse
Affiliation(s)
- Eric B Wong
- Department of Microbiology and Immunology, Jefferson Medical College, Philadelphia, PA 19107, USA
| | | | | | | |
Collapse
|
338
|
Abstract
Leukocytes play a critical role in recognizing and responding to infection and cancer. Central to this function is an array of cell-surface receptors that lack sequence homology. Many of these receptors have in common the fact that their signaling involves phosphorylation of cytoplasmic domains by extrinsic tyrosine kinases. These non-catalytic tyrosine-phosphorylated receptors (NTRs) share a number of other features, including small size and optimal stimulation by surface-associated ligands. We argue here that NTRs are also likely to share the same kinetic-segregation triggering mechanism, which involves segregation of the engaged NTR from receptor tyrosine phosphatases with large ectodomains such as CD45 and CD148. NTRs signal through tyrosine-containing cytoplasmic motifs, which recruit distinct cytoplasmic signaling proteins when phosphorylated, transducing activatory or inhibitory signals. They have two features that make them uniquely well suited to their role in immune recognition of infection and cancer. Their modular structure enables the coupling of many rapidly evolving receptors with diverse ligand specificities to the same conserved signaling machinery. Their similarity in size and shared signaling machinery enables them to colocalize at cell-cell interfaces when they engage ligands, facilitating the integration of activatory and inhibitory signals from multiple receptors at the cell surface.
Collapse
Affiliation(s)
- Omer Dushek
- Sir William Dunn School of Pathology, University of Oxford, UK
| | | | | |
Collapse
|
339
|
|
340
|
Abstract
In this issue of Immunity, Kageyama et al. (2012), Zhao et al. (2012), and Dong et al. (2012) show that the adaptor protein SAP regulates both positive and negative signals through SLAM receptors to stabilize intercellular contacts.
Collapse
|
341
|
Petrovas C, Yamamoto T, Gerner MY, Boswell KL, Wloka K, Smith EC, Ambrozak DR, Sandler NG, Timmer KJ, Sun X, Pan L, Poholek A, Rao SS, Brenchley JM, Alam SM, Tomaras GD, Roederer M, Douek DC, Seder RA, Germain RN, Haddad EK, Koup RA. CD4 T follicular helper cell dynamics during SIV infection. J Clin Invest 2012; 122:3281-94. [PMID: 22922258 DOI: 10.1172/jci63039] [Citation(s) in RCA: 278] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Accepted: 07/05/2012] [Indexed: 12/16/2022] Open
Abstract
CD4 T follicular helper (TFH) cells interact with and stimulate the generation of antigen-specific B cells. TFH cell interaction with B cells correlates with production of SIV-specific immunoglobulins. However, the fate of TFH cells and their participation in SIV-induced antibody production is not well understood. We investigated the phenotype, function, location, and molecular signature of TFH cells in rhesus macaques. Similar to their human counterparts, TFH cells in rhesus macaques represented a heterogeneous population with respect to cytokine function. In a highly differentiated subpopulation of TFH cells, characterized by CD150lo expression, production of Th1 cytokines was compromised while IL-4 production was augmented, and cells exhibited decreased survival, cycling, and trafficking capacity. TFH cells exhibited a distinct gene profile that was markedly altered by SIV infection. TFH cells were infected by SIV; yet, in some animals, these cells actually accumulated during chronic SIV infection. Generalized immune activation and increased IL-6 production helped drive TFH differentiation during SIV infection. Accumulation of TFH cells was associated with increased frequency of activated germinal center B cells and SIV-specific antibodies. Therefore, chronic SIV does not disturb the ability of TFH cells to help B cell maturation and production of SIV-specific immunoglobulins.
Collapse
|
342
|
DeFranco AL, Rookhuizen DC, Hou B. Contribution of Toll-like receptor signaling to germinal center antibody responses. Immunol Rev 2012; 247:64-72. [PMID: 22500832 DOI: 10.1111/j.1600-065x.2012.01115.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Toll-like receptors (TLRs) have emerged as one of the most important families of innate immune receptors for initiating inflammation and also for promoting adaptive immune responses. Recent studies have examined the ability of TLRs to promote antibody responses, including T-cell-dependent antibody responses. Initial study suggested that TLR stimulation promotes primarily an extrafollicular antibody response, which rapidly produces moderate affinity antibodies made by short-lived plasma cells. Recent studies, however, have shown that TLRs can also enhance the germinal center response, which produces high affinity class-switched antibody made by long-lived plasma cells. TLR stimulation can increase the magnitude of the latter response and also enhance selection for high affinity IgG. This review summarizes recent advances in understanding the roles of TLRs in B cells and also in other cell types for enhancement of antibody responses, with an emphasis on T-cell-dependent and germinal center antibody responses.
Collapse
Affiliation(s)
- Anthony L DeFranco
- Department of Microbiology and Immunology, University of California, San Francisco, CA 94143-0414, USA.
| | | | | |
Collapse
|
343
|
Abstract
T-cell help to B cells is a fundamental aspect of adaptive immunity and the generation of B-cell memory (memory B cells and plasma cells). Follicular helper CD4(+) T (Tfh) cells are the specialized providers of B-cell help, and Tfh cells depend on Bcl6 for their differentiation. This review discusses Tfh cell functions, transcription factors, and induction signals, with particular focus on the richness of the underlying biology and assessing the simplicity or complexity of each of these processes.
Collapse
Affiliation(s)
- Shane Crotty
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA.
| |
Collapse
|
344
|
Choubey D. Interferon-inducible Ifi200-family genes as modifiers of lupus susceptibility. Immunol Lett 2012; 147:10-7. [PMID: 22841963 DOI: 10.1016/j.imlet.2012.07.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2012] [Revised: 07/10/2012] [Accepted: 07/10/2012] [Indexed: 10/28/2022]
Abstract
Both genetic and environmental factors contribute to the development and progression of systemic lupus erythematosus (SLE), a complex autoimmune disease. The disease exhibits a strong gender bias and develops predominantly in females. Additionally, most SLE patients exhibit increased serum levels of interferon-α (IFN-α) and the "IFN signature". Studies using the mouse models of lupus have identified several lupus susceptibility loci, including the New Zealand Black (NZB)-derived autoimmunity 2 (Nba2) interval on the chromosome 1. The interval, which is syntenic to the human chromosome 1q region, harbors the FcγR family, SLAM/CD2-family, and the IFN-inducible Ifi200-family genes (encoding for the p200-family proteins). Studies involving the B6.Nba2 congenic mice revealed that the development of antinuclear autoantibodies (ANAs) depends on the age, gender, and activation of type I IFN-signaling. Interestingly, recent studies involving the generation of Nba2 subcongenic mouse lines and generation of mice deficient for the Fcgr2b or Aim2 gene within the interval have provided evidence that epistatic interactions among the Nba2 genes contribute to increased lupus susceptibility. Given that the expression of some of the p200-family proteins is differentially regulated by sex hormones and these proteins differentially regulate cytosolic DNA-induced production of type I IFN and proinflammatory cytokines (IL-1β and IL-18), the major known contributors of SLE-associated inflammation, we discuss the recent advancements in our understanding of the role of p200-family proteins in lupus susceptibility modification. An improved understanding of the role of p200-family proteins in the development of autoimmunity is likely to identify new approaches to treat SLE patients.
Collapse
Affiliation(s)
- Divaker Choubey
- Department of Environmental Health, University of Cincinnati, 3223 Eden Avenue, P.O. Box 670056, Cincinnati, OH 45267, United States.
| |
Collapse
|
345
|
Calderón J, Maganto-Garcia E, Punzón C, Carrión J, Terhorst C, Fresno M. The receptor Slamf1 on the surface of myeloid lineage cells controls susceptibility to infection by Trypanosoma cruzi. PLoS Pathog 2012; 8:e1002799. [PMID: 22807679 PMCID: PMC3395606 DOI: 10.1371/journal.ppat.1002799] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2012] [Accepted: 05/30/2012] [Indexed: 02/06/2023] Open
Abstract
Trypanosoma cruzi, the protozoan parasite responsible for Chagas' disease, causes severe myocarditis often resulting in death. Here, we report that Slamf1-/- mice, which lack the hematopoietic cell surface receptor Slamf1, are completely protected from an acute lethal parasite challenge. Cardiac damage was reduced in Slamf1-/- mice compared to wild type mice, infected with the same doses of parasites, as a result of a decrease of the number of parasites in the heart even the parasitemia was only marginally less. Both in vivo and in vitro experiments reveal that Slamf1-defIcient myeloid cells are impaired in their ability to replicate the parasite and show altered production of cytokines. Importantly, IFN-γ production in the heart of Slamf1 deficient mice was much lower than in the heart of wt mice even though the number of infiltrating dendritic cells, macrophages, CD4 and CD8 T lymphocytes were comparable. Administration of an anti-Slamf1 monoclonal antibody also reduced the number of parasites and IFN-γ in the heart. These observations not only explain the reduced susceptibility to in vivo infection by the parasite, but they also suggest human Slamf1 as a potential target for therapeutic target against T. cruzi infection.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal
- Antibodies, Protozoan/biosynthesis
- Antigens, CD/genetics
- Antigens, CD/physiology
- CD4-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/immunology
- Cells, Cultured
- Chagas Cardiomyopathy/immunology
- Chagas Cardiomyopathy/parasitology
- Chagas Disease/immunology
- Chagas Disease/parasitology
- Cytokines/biosynthesis
- Dendritic Cells/immunology
- Disease Susceptibility
- Heart/parasitology
- Interferon-gamma/biosynthesis
- Macrophages/immunology
- Mice
- Mice, Inbred BALB C
- Mice, Knockout
- Myeloid Cells/metabolism
- Myeloid Cells/parasitology
- Myocardium/metabolism
- Parasitemia
- Receptors, Cell Surface/deficiency
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/physiology
- Signaling Lymphocytic Activation Molecule Family Member 1
- Trypanosoma cruzi/immunology
- Trypanosoma cruzi/physiology
Collapse
Affiliation(s)
- Jossela Calderón
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain
- Instituto de Investigación Sanitaria Princesa (IP), Madrid, Spain
| | - Elena Maganto-Garcia
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain
| | - Carmen Punzón
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain
- Instituto de Investigación Sanitaria Princesa (IP), Madrid, Spain
| | - Javier Carrión
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain
| | - Cox Terhorst
- The Division of Immunology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Manuel Fresno
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain
- Instituto de Investigación Sanitaria Princesa (IP), Madrid, Spain
- * E-mail:
| |
Collapse
|
346
|
Zhao F, Cannons JL, Dutta M, Griffiths GM, Schwartzberg PL. Positive and negative signaling through SLAM receptors regulate synapse organization and thresholds of cytolysis. Immunity 2012; 36:1003-16. [PMID: 22683123 PMCID: PMC3389133 DOI: 10.1016/j.immuni.2012.05.017] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 04/18/2012] [Accepted: 05/08/2012] [Indexed: 02/01/2023]
Abstract
X-linked lymphoproliferative syndrome, characterized by fatal responses to Epstein-Barr virus infection, is caused by mutations affecting the adaptor SAP, which links SLAM family receptors to downstream signaling. Although cytotoxic defects in SAP-deficient T cells are documented, the mechanism remains unclear. We show that SAP-deficient murine CD8(+) T cells exhibited normal cytotoxicity against fibrosarcoma targets, yet had impaired adhesion to and killing of B cell and low-avidity T cell targets. SAP-deficient cytotoxic lymphocytes showed specific defects in immunological synapse organization with these targets, resulting in inefficient actin clearance. In the absence of SAP, signaling through the SLAM family members Ly108 and 2B4 resulted in increased recruitment of the SHP-1 phosphatase, associated with altered SHP-1 localization and decreased activation of Src kinases at the synapse. Hence, SAP and SLAM receptors regulate positive and negative signals required for organizing the T cell:B cell synapse and setting thresholds for cytotoxicity against distinct cellular targets.
Collapse
Affiliation(s)
- Fang Zhao
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
- Department of Medicine, Cambridge Institute for Medical Research, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0XY, UK
| | - Jennifer L. Cannons
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Mala Dutta
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Gillian M. Griffiths
- Department of Medicine, Cambridge Institute for Medical Research, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0XY, UK
| | - Pamela L. Schwartzberg
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
347
|
Germain RN, Robey EA, Cahalan MD. A decade of imaging cellular motility and interaction dynamics in the immune system. Science 2012; 336:1676-81. [PMID: 22745423 PMCID: PMC3405774 DOI: 10.1126/science.1221063] [Citation(s) in RCA: 288] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
To mount an immune response, lymphocytes must recirculate between the blood and lymph nodes, recognize antigens upon contact with specialized presenting cells, proliferate to expand a small number of clonally relevant lymphocytes, differentiate to antibody-producing plasma cells or effector T cells, exit from lymph nodes, migrate to tissues, and engage in host-protective activities. All of these processes involve motility and cellular interactions--events that were hidden from view until recently. Introduced to immunology by three papers in this journal in 2002, in vivo live-cell imaging studies are revealing the behavior of cells mediating adaptive and innate immunity in diverse tissue environments, providing quantitative measurement of cellular motility, interactions, and response dynamics. Here, we review themes emerging from such studies and speculate on the future of immunoimaging.
Collapse
Affiliation(s)
- Ronald N. Germain
- Laboratory of Systems Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Ellen A. Robey
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA 94720
| | - Michael D. Cahalan
- Department of Physiology and Biophysics, University of California Irvine, Irvine, CA 92697
| |
Collapse
|
348
|
Tian Z, Gershwin ME, Zhang C. Regulatory NK cells in autoimmune disease. J Autoimmun 2012; 39:206-15. [PMID: 22704425 DOI: 10.1016/j.jaut.2012.05.006] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Accepted: 05/20/2012] [Indexed: 12/26/2022]
Abstract
As major components of innate immunity, NK cells not only exert cell-mediated cytotoxicity against tumor cells or infected cells, but also act to regulate the function of other immune cells by secretion of cytokines and chemokines, thus providing surveillance in early defense against viruses, intracellular bacteria and cancer cells. However, the effector function of NK cells must be exquisitely controlled in order to prevent inadvertent attack against self normal cells. The activity of NK cells is defined by integration of signals coming from inhibitory and activation receptors. Inhibitory receptors not only distinguish healthy from diseased cells by recognize self-MHC class I molecules on cell surfaces with "missing-self" model, but also provide an educational signal that generates functional NK cells. NK cells enrich in immunotolerance organ and recent findings of different regulatory NK cell subsets have indicated the unique role of NK cells in maintenance of homeostasis. Once the self-tolerance is broken, autoimmune response may occur. Although data has demonstrated that NK cells play important role in autoimmune disorders, NK cells seemed to act as a two edged weapon and play opposite roles with both regulatory and inducer activity even in the same disease. The precise role and regulatory mechanisms need to be further determined. In this review, we focus on recent research on the association of NK cells and antoimmune diseases, particularly the genetic correlation, the immune tolerance and misrecognition of NK cells, the regulatory function of NK cells, and their potential role in autoimmunity.
Collapse
Affiliation(s)
- Zhigang Tian
- School of Life Sciences, University of Science and Technology of China, Hefei 230027, China.
| | | | | |
Collapse
|
349
|
Kageyama R, Cannons JL, Zhao F, Yusuf I, Lao C, Locci M, Schwartzberg PL, Crotty S. The receptor Ly108 functions as a SAP adaptor-dependent on-off switch for T cell help to B cells and NKT cell development. Immunity 2012; 36:986-1002. [PMID: 22683125 DOI: 10.1016/j.immuni.2012.05.016] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 04/17/2012] [Accepted: 05/08/2012] [Indexed: 01/01/2023]
Abstract
Humans and mice deficient in the adaptor protein SAP (Sh2d1a) have a major defect in humoral immunity, resulting from a lack of T cell help for B cells. The role of SAP in this process is incompletely understood. We found that deletion of receptor Ly108 (Slamf6) in CD4(+) T cells reversed the Sh2d1a(-/-) phenotype, eliminating the SAP requirement for germinal centers. This potent negative signaling by Ly108 required immunotyrosine switch motifs (ITSMs) and SHP-1 recruitment, resulting in high amounts of SHP-1 at the T cell:B cell synapse, limiting T cell:B cell adhesion. Ly108-negative signaling was important not only in CD4(+) T cells; we found that NKT cell differentiation was substantially restored in Slamf6(-/-)Sh2d1a(-/-) mice. The ability of SAP to regulate both positive and negative signals in T cells can explain the severity of SAP deficiency and highlights the importance of SAP and SHP-1 competition for Ly108 ITSM binding as a rheostat for the magnitude of T cell help to B cells.
Collapse
Affiliation(s)
- Robin Kageyama
- Division of Vaccine Discovery, La Jolla Institute for Allergy & Immunology, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | |
Collapse
|
350
|
The development and function of follicular helper T cells in immune responses. Cell Mol Immunol 2012; 9:375-9. [PMID: 22659733 DOI: 10.1038/cmi.2012.18] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Follicular helper T cells (Tfh) have been referred as a lineage that provides a help for B cells to proliferate and undergo antibody affinity maturation in the germinal center. Evidence has supported that Tfh subset development, like other lineages, is dependent on microenvironment where a particular transcriptional program is initiated. It has been shown that Bcl-6 and IL-21 act as master regulators for the development and function of Tfh cells. Tfh dysregulation is involved in the development of autoimmune pathologies, such as systemic lupus erythematosus, rheumatoid arthritis and other autoimmune diseases. The present review highlights the recent advances in the field of Tfh cells and focus on their development and function.
Collapse
|