301
|
Sagor GHM, Simm S, Kim DW, Niitsu M, Kusano T, Berberich T. Effect of thermospermine on expression profiling of different gene using massive analysis of cDNA ends (MACE) and vascular maintenance in Arabidopsis. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:577-586. [PMID: 33854285 PMCID: PMC7981342 DOI: 10.1007/s12298-021-00967-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 02/27/2021] [Accepted: 03/03/2021] [Indexed: 05/24/2023]
Abstract
Arabidopsis thaliana polyamine oxidase 5 gene (AtPAO5) functions as a thermospermine (T-Spm) oxidase. Aerial growth of its knock-out mutant (Atpao5-2) was significantly repressed by low dose(s) of T-Spm but not by other polyamines. To figure out the underlying mechanism, massive analysis of 3'-cDNA ends was performed. Low dose of T-Spm treatment modulates more than two fold expression 1,398 genes in WT compared to 3186 genes in Atpao5-2. Cell wall, lipid and secondary metabolisms were dramatically affected in low dose T-Spm-treated Atpao5-2, in comparison to other pathways such as TCA cycle-, amino acid- metabolisms and photosynthesis. The cell wall pectin metabolism, cell wall proteins and degradation process were highly modulated. Intriguingly Fe-deficiency responsive genes and drought stress-induced genes were also up-regulated, suggesting the importance of thermospermi'ne flux on regulation of gene network. Histological observation showed that the vascular system of the joint part between stem and leaves was structurally dissociated, indicating its involvement in vascular maintenance. Endogenous increase in T-Spm and reduction in H2O2 contents were found in mutant grown in T-Spm containing media. The results indicate that T-Spm homeostasis by a fine tuned balance of its synthesis and catabolism is important for maintaining gene regulation network and the vascular system in plants.
Collapse
Affiliation(s)
- G. H. M. Sagor
- Plant Molecular Genetics Laboratory, Department of Genetics & Plant Breeding, Bangladesh Agricultural University, Mymensingh, 2202 Bangladesh
| | - Stefan Simm
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, Frankfurt am Main, Germany
| | - Dong Wook Kim
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba, Sendai, Miyagi 980-8577 Japan
| | - Masaru Niitsu
- Faculty of Pharmaceutical Sciences, Josai University, Sakado, Saitama 370-0290 Japan
| | - Tomonobu Kusano
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba, Sendai, Miyagi 980-8577 Japan
| | - Thomas Berberich
- Senckenberg Biodiversity and Climate Research Center, Georg-Voigt-Str. 14-16, 60325 Frankfurt am Main, Germany
| |
Collapse
|
302
|
Chen W, Li W. Definition and Usage of Texture Feature for Biological Sequence. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2021; 18:773-776. [PMID: 32070991 DOI: 10.1109/tcbb.2020.2973084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In recent years, sequencing technology has developed rapidly. This produces a large number of biological sequence data. Because of its importance, there have been many studies on biological sequences. However, there is still a lack of an effective quantitative method for defining and calculating texture features of biological sequences. Texture is an important visual feature. It is generally used to describe the spatial arrangement of intensities of images. Here we defined the texture features of biological sequence. Combining the digital coding of biological sequence with the calculation method of image texture features, we defined the texture features of biological sequence and designed the calculation method. We applied this method to DNA sequence features quantification and analysis. Using these quantified features, we can compute the similarity distance matrix of DNA sequences and construct the phylogenetic relationships based on the clustering of the quantified features. This method can be applied to analyze any biological sequence, and all biological sequences can be digitally coded and texture features can be calculated by this method. This is a novel study of biological sequence texture features. This will usher in a new era of quantitative and mathematical calculation of biological sequence features.
Collapse
|
303
|
Liu T, Li M, Liu Z, Ai X, Li Y. Reannotation of the cultivated strawberry genome and establishment of a strawberry genome database. HORTICULTURE RESEARCH 2021; 8:41. [PMID: 33642572 PMCID: PMC7917095 DOI: 10.1038/s41438-021-00476-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 12/16/2020] [Accepted: 12/22/2020] [Indexed: 05/04/2023]
Abstract
Cultivated strawberry (Fragaria × ananassa) is an important fruit crop species whose fruits are enjoyed by many worldwide. An octoploid of hybrid origin, the complex genome of this species was recently sequenced, serving as a key reference genome for cultivated strawberry and related species of the Rosaceae family. The current annotation of the F. ananassa genome mainly relies on ab initio predictions and, to a lesser extent, transcriptome data. Here, we present the structure and functional reannotation of the F. ananassa genome based on one PacBio full-length RNA library and ninety-two Illumina RNA-Seq libraries. This improved annotation of the F. ananassa genome, v1.0.a2, comprises a total of 108,447 gene models, with 97.85% complete BUSCOs. The models of 19,174 genes were modified, 360 new genes were identified, and 11,044 genes were found to have alternatively spliced isoforms. Additionally, we constructed a strawberry genome database (SGD) for strawberry gene homolog searching and annotation downloading. Finally, the transcriptome of the receptacles and achenes of F. ananassa at four developmental stages were reanalyzed and qualified, and the expression profiles of all the genes in this annotation are also provided. Together, this study provides an updated annotation of the F. ananassa genome, which will facilitate genomic analyses across the Rosaceae family and gene functional studies in cultivated strawberry.
Collapse
Affiliation(s)
- Tianjia Liu
- Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences/Fruit and Tea Subcenter of Hubei Innovation Center of Agricultural Science and Technology, Wuhan, China
| | - Muzi Li
- Department of Cell Biology and Molecular Genetics, University of Maryland College Park, College Park, MD, USA
| | - Zhongchi Liu
- Department of Cell Biology and Molecular Genetics, University of Maryland College Park, College Park, MD, USA
| | - Xiaoyan Ai
- Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences/Fruit and Tea Subcenter of Hubei Innovation Center of Agricultural Science and Technology, Wuhan, China.
| | - Yongping Li
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, Chinese University of Hong Kong, Shatin, Hong Kong, China.
| |
Collapse
|
304
|
Eosinophil Responses at the Airway Epithelial Barrier during the Early Phase of Influenza A Virus Infection in C57BL/6 Mice. Cells 2021; 10:cells10030509. [PMID: 33673645 PMCID: PMC7997358 DOI: 10.3390/cells10030509] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/09/2021] [Accepted: 02/12/2021] [Indexed: 02/07/2023] Open
Abstract
Eosinophils, previously considered terminally differentiated effector cells, have multifaceted functions in tissues. We previously found that allergic mice with eosinophil-rich inflammation were protected from severe influenza and discovered specialized antiviral effector functions for eosinophils including promoting cellular immunity during influenza. In this study, we hypothesized that eosinophil responses during the early phase of influenza contribute to host protection. Using in vitro and in vivo models, we found that eosinophils were rapidly and dynamically regulated upon influenza A virus (IAV) exposure to gain migratory capabilities to traffic to lymphoid organs after pulmonary infection. Eosinophils were capable of neutralizing virus upon contact and combinations of eosinophil granule proteins reduced virus infectivity through hemagglutinin inactivation. Bi-directional crosstalk between IAV-exposed epithelial cells and eosinophils occurred after IAV infection and cross-regulation promoted barrier responses to improve antiviral defenses in airway epithelial cells. Direct interactions between eosinophils and airway epithelial cells after IAV infection prevented virus-induced cytopathology in airway epithelial cells in vitro, and eosinophil recipient IAV-infected mice also maintained normal airway epithelial cell morphology. Our data suggest that eosinophils are important in the early phase of IAV infection providing immediate protection to the epithelial barrier until adaptive immune responses are deployed during influenza.
Collapse
|
305
|
Abdelgawad ME, Desterke C, Uzan G, Naserian S. Single-cell transcriptomic profiling and characterization of endothelial progenitor cells: new approach for finding novel markers. Stem Cell Res Ther 2021; 12:145. [PMID: 33627177 PMCID: PMC7905656 DOI: 10.1186/s13287-021-02185-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 01/24/2021] [Indexed: 12/14/2022] Open
Abstract
Background Endothelial progenitor cells (EPCs) are promising candidates for the cellular therapy of peripheral arterial and cardiovascular diseases. However, hitherto there is no specific marker(s) defining precisely EPCs. Herein, we are proposing a new in silico approach for finding novel EPC markers. Methods We assembled five groups of chosen EPC-related genes/factors using PubMed literature and Gene Ontology databases. This shortened database of EPC factors was fed into publically published transcriptome matrix to compare their expression between endothelial colony-forming cells (ECFCs), HUVECs, and two adult endothelial cell types (ECs) from the skin and adipose tissue. Further, the database was used for functional enrichment on Mouse Phenotype database and protein-protein interaction network analyses. Moreover, we built a digital matrix of healthy donors’ PBMCs (33 thousand single-cell transcriptomes) and analyzed the expression of these EPC factors. Results Transcriptome analyses showed that BMP2, 4, and ephrinB2 were exclusively highly expressed in EPCs; the expression of neuropilin-1 and VEGF-C were significantly higher in EPCs and HUVECs compared with other ECs; Notch 1 was highly expressed in EPCs and skin-ECs; MIR21 was highly expressed in skin-ECs; PECAM-1 was significantly higher in EPCs and adipose ECs. Moreover, functional enrichment of EPC-related genes on Mouse Phenotype and STRING protein database has revealed significant relations between chosen EPC factors and endothelial and vascular functions, development, and morphogenesis, where ephrinB2, BMP2, and BMP4 were highly expressed in EPCs and were connected to abnormal vascular functions. Single-cell RNA-sequencing analyses have revealed that among the EPC-regulated markers in transcriptome analyses, (i) ICAM1 and Endoglin were weekly expressed in the monocyte compartment of the peripheral blood; (ii) CD163 and CD36 were highly expressed in the CD14+ monocyte compartment whereas CSF1R was highly expressed in the CD16+ monocyte compartment, (iii) L-selectin and IL6R were globally expressed in the lymphoid/myeloid compartments, and (iv) interestingly, PLAUR/UPAR and NOTCH2 were highly expressed in both CD14+ and CD16+ monocytic compartments. Conclusions The current study has identified novel EPC markers that could be used for better characterization of EPC subpopulation in adult peripheral blood and subsequent usage of EPCs for various cell therapy and regenerative medicine applications.
Collapse
Affiliation(s)
- Mohamed Essameldin Abdelgawad
- Biochemistry & Molecular Biotechnology Division, Chemistry Department, Faculty of Science; Innovative Cellular Microenvironment Optimization Platform (ICMOP), Helwan University, Cairo, Egypt. .,Inserm UMR-S-MD 1197, Hôpital Paul Brousse - Bâtiment Lavoisier, 12-14 avenue Paul Vaillant Couturier, 94800, Villejuif, France. .,Paris-Saclay University, Villejuif, France.
| | - Christophe Desterke
- Paris-Saclay University, Villejuif, France.,Inserm UMR-S-MD A9, Hôpital Paul Brousse, Villejuif, France
| | - Georges Uzan
- Inserm UMR-S-MD 1197, Hôpital Paul Brousse - Bâtiment Lavoisier, 12-14 avenue Paul Vaillant Couturier, 94800, Villejuif, France.,Paris-Saclay University, Villejuif, France
| | - Sina Naserian
- Inserm UMR-S-MD 1197, Hôpital Paul Brousse - Bâtiment Lavoisier, 12-14 avenue Paul Vaillant Couturier, 94800, Villejuif, France. .,Paris-Saclay University, Villejuif, France. .,CellMedEx, Saint Maur des Fossés, France.
| |
Collapse
|
306
|
Arrey-Salas O, Caris-Maldonado JC, Hernández-Rojas B, Gonzalez E. Comprehensive Genome-Wide Exploration of C2H2 Zinc Finger Family in Grapevine ( Vitis vinifera L.): Insights into the Roles in the Pollen Development Regulation. Genes (Basel) 2021; 12:302. [PMID: 33672655 PMCID: PMC7924211 DOI: 10.3390/genes12020302] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 02/13/2021] [Accepted: 02/16/2021] [Indexed: 01/02/2023] Open
Abstract
Some C2H2 zinc-finger proteins (ZFP) transcription factors are involved in the development of pollen in plants. In grapevine (Vitis vinifera L.), it has been suggested that abnormalities in pollen development lead to the phenomenon called parthenocarpy that occurs in some varieties of this cultivar. At present, a network involving several transcription factors types has been revealed and key roles have been assigned to members of the C2H2 zinc-finger proteins (ZFP) family in model plants. However, particularities of the regulatory mechanisms controlling pollen formation in grapevine remain unknown. In order to gain insight into the participation of ZFPs in grapevine gametophyte development, we performed a genome-wide identification and characterization of genes encoding ZFP (VviZFP family). A total of 98 genes were identified and renamed based on the gene distribution into grapevine genome. The analysis performed indicate significant changes throughout VviZFP genes evolution explained by high heterogeneity in sequence, length, number of ZF and presence of another conserved domains. Moreover, segmental duplication participated in the gene family expansion in grapevine. The VviZFPs were classified based on domain and phylogenetic analysis into three sets and different groups. Heat-map demonstrated differential and tissue-specific expression patterns of these genes and k-means clustering allowed to identify a group of putative orthologs to some ZFPs related to pollen development. In transgenic plants carrying the promVviZFP13::GUS and promVviZFP68::GUS constructs, GUS signals were detectable in the anther and mature pollen grains. Expression profiling of selected VviZFP genes showed differential expression pattern during flower development and provides a basis for deepening in the understanding of VviZFPs role on grapevine reproductive development.
Collapse
Affiliation(s)
- Oscar Arrey-Salas
- Laboratorio de Genómica Funcional, Instituto de Ciencias Biológicas, Universidad de Talca, 3460000 Talca, Chile;
| | | | - Bairon Hernández-Rojas
- Ph.D Program in Sciences Mention in Modeling of Chemical and Biological Systems, Faculty of Engineering, University of Talca, Calle 1 Poniente, 1141, 3462227 Talca, Chile;
| | - Enrique Gonzalez
- Laboratorio de Genómica Funcional, Instituto de Ciencias Biológicas, Universidad de Talca, 3460000 Talca, Chile;
| |
Collapse
|
307
|
Guo J, Satoh K, Tabata S, Mori M, Tomita M, Soga T. Reprogramming of glutamine metabolism via glutamine synthetase silencing induces cisplatin resistance in A2780 ovarian cancer cells. BMC Cancer 2021; 21:174. [PMID: 33596851 PMCID: PMC7891143 DOI: 10.1186/s12885-021-07879-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 02/04/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Cisplatin (CDDP) significantly prolongs survival in various cancers, but many patients also develop resistance that results in treatment failure. Thus, this study aimed to elucidate the underlying mechanisms by which ovarian cancer cells acquire CDDP resistance. METHODS We evaluated the metabolic profiles in CDDP-sensitive ovarian cancer A2780 cells and CDDP-resistant A2780cis cells using capillary electrophoresis-time-of-flight mass spectrometry (CE-TOFMS). We further examined the expression of glutamine metabolism enzymes using real-time PCR and Western blot analyses. Cell viability was accessed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. RESULTS The results showed that levels of glutamine, glutamate, and glutathione (GSH), a key drug resistance mediator synthesized from glutamate, were significantly elevated in A2780cis cells than those in A2780 cells. Furthermore, glutamine starvation decreased the GSH levels and CDDP resistance in A2780cis cells. Interestingly, the expression of glutamine synthetase (GS/GLUL), which synthesizes glutamine from glutamate and thereby negatively regulates GSH production, was almost completely suppressed in resistant A2780cis cells. In addition, treatment of A2780cis cells with 5-aza-2'-deoxycytidine, a DNA-demethylating agent, restored GS expression and reduced CDDP resistance. In contrast, GS knockdown in CDDP-sensitive A2780 cells induced CDDP resistance. CONCLUSIONS The results indicate that upregulation of GSH synthesis from glutamine via DNA methylation-mediated silencing of GS causes CDDP resistance in A2780cis cells. Therefore, glutamine metabolism could be a novel therapeutic target against CDDP resistance.
Collapse
Affiliation(s)
- Jing Guo
- Institute for Advanced Biosciences, Keio University, 246-2 Mizukami, Kakuganji, Tsuruoka, 997-0052, Japan.,Graduate School of Media and Governance, Keio University, 5322 Endo, Fujisawa, 252-0882, Japan
| | - Kiyotoshi Satoh
- Institute for Advanced Biosciences, Keio University, 246-2 Mizukami, Kakuganji, Tsuruoka, 997-0052, Japan. .,Graduate School of Media and Governance, Keio University, 5322 Endo, Fujisawa, 252-0882, Japan.
| | - Sho Tabata
- Institute for Advanced Biosciences, Keio University, 246-2 Mizukami, Kakuganji, Tsuruoka, 997-0052, Japan
| | - Masaru Mori
- Institute for Advanced Biosciences, Keio University, 246-2 Mizukami, Kakuganji, Tsuruoka, 997-0052, Japan.,Graduate School of Media and Governance, Keio University, 5322 Endo, Fujisawa, 252-0882, Japan
| | - Masaru Tomita
- Institute for Advanced Biosciences, Keio University, 246-2 Mizukami, Kakuganji, Tsuruoka, 997-0052, Japan.,Graduate School of Media and Governance, Keio University, 5322 Endo, Fujisawa, 252-0882, Japan.,Faculty of Environment and Information Studies, Keio University, 5322 Endo, Fujisawa, 252-0882, Japan
| | - Tomoyoshi Soga
- Institute for Advanced Biosciences, Keio University, 246-2 Mizukami, Kakuganji, Tsuruoka, 997-0052, Japan.,Graduate School of Media and Governance, Keio University, 5322 Endo, Fujisawa, 252-0882, Japan.,Faculty of Environment and Information Studies, Keio University, 5322 Endo, Fujisawa, 252-0882, Japan
| |
Collapse
|
308
|
Selection of Rhizobium strains for inoculation of Lithuanian Pisum sativum breeding lines. Symbiosis 2021. [DOI: 10.1007/s13199-021-00747-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
309
|
Sharma A, Bhagat M, Urfan M, Ahmed B, Langer A, Ali V, Vyas D, Yadav NS, Hakla HR, Sharma S, Pal S. Nickel excess affects phenology and reproductive attributes of Asterella wallichiana and Plagiochasma appendiculatum growing in natural habitats. Sci Rep 2021; 11:3369. [PMID: 33564007 PMCID: PMC7873240 DOI: 10.1038/s41598-020-73441-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 08/26/2020] [Indexed: 11/09/2022] Open
Abstract
Bryophytes are potent metal absorbers, thriving well on heavy metal (HM)-polluted soils. Mechanisms controlling uptake, compartmentalization and impacts of HMs on bryophytes life cycle are largely unknown. The current study is an effort to decipher mechanisms of nickel (Ni) excess-induced effects on the phenological events of two bryophytes, Asterella wallichiana and Plagiochasma apendiculatum growing in natural habitats. Observations revealed Ni-excess induced negative impacts on abundance, frequency of occurrence of reproductive organs, population viability and morphological traits, spore viability and physiological attributes of both the liverworts. Results led us conclude that P. appendiculatum survived better with the lowest impact on its life cycle events than A. wallichiana under Ni excess in natural habitats. Our findings collectively provide insights into the previously unknown mechanisms of Ni-induced responses in liverworts with respect to phenological attributes, as well as demonstrate the potential of P. appendiculatum to survive better in Ni excess habitats.
Collapse
Affiliation(s)
- Anil Sharma
- Department of Botany, University of Jammu, Jammu, 180-006, India
| | - Madhu Bhagat
- Department of Botany, University of Jammu, Jammu, 180-006, India
| | - Mohammad Urfan
- Department of Botany, University of Jammu, Jammu, 180-006, India
| | - Bilal Ahmed
- Department of Botany, University of Jammu, Jammu, 180-006, India
| | - Anima Langer
- Department of Botany, University of Jammu, Jammu, 180-006, India
| | - Villayat Ali
- Biodiversity and Applied Botany Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
| | - Dhiraj Vyas
- Biodiversity and Applied Botany Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
| | - Narendra Singh Yadav
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, T1K 3M4, Canada
| | | | - Shubham Sharma
- Department of Botany, University of Jammu, Jammu, 180-006, India
| | - Sikander Pal
- Department of Botany, University of Jammu, Jammu, 180-006, India.
| |
Collapse
|
310
|
Jardine L, Cytlak U, Gunawan M, Reynolds G, Green K, Wang XN, Pagan S, Paramitha M, Lamb CA, Long AK, Hurst E, Nair S, Jackson GH, Publicover A, Bigley V, Haniffa M, Simpson AJ, Collin M. Donor monocyte-derived macrophages promote human acute graft-versus-host disease. J Clin Invest 2021; 130:4574-4586. [PMID: 32453711 PMCID: PMC7456218 DOI: 10.1172/jci133909] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 05/19/2020] [Indexed: 12/16/2022] Open
Abstract
Myelopoiesis is invariably present and contributes to pathology in animal models of graft-versus-host disease (GVHD). In humans, a rich inflammatory infiltrate bearing macrophage markers has also been described in histological studies. In order to determine the origin, functional properties, and role in pathogenesis of these cells, we isolated single-cell suspensions from acute cutaneous GVHD and subjected them to genotype, transcriptome, and in vitro functional analysis. A donor-derived population of CD11c+CD14+ cells was the dominant population of all leukocytes in GVHD. Surface phenotype and NanoString gene expression profiling indicated the closest steady-state counterpart of these cells to be monocyte-derived macrophages. In GVHD, however, there was upregulation of monocyte antigens SIRPα and S100A8/9 transcripts associated with leukocyte trafficking, pattern recognition, antigen presentation, and costimulation. Isolated GVHD macrophages stimulated greater proliferation and activation of allogeneic T cells and secreted higher levels of inflammatory cytokines than their steady-state counterparts. In HLA-matched mixed leukocyte reactions, we also observed differentiation of activated macrophages with a similar phenotype. These exhibited cytopathicity to a keratinocyte cell line and mediated pathological damage to skin explants independently of T cells. Together, these results define the origin, functional properties, and potential pathogenic roles of human GVHD macrophages.
Collapse
Affiliation(s)
- Laura Jardine
- Human Dendritic Cell Laboratory, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom.,Northern Centre for Bone Marrow Transplantation and.,NIHR Newcastle Biomedical Research Centre, Freeman Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Urszula Cytlak
- Human Dendritic Cell Laboratory, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Merry Gunawan
- Human Dendritic Cell Laboratory, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Gary Reynolds
- NIHR Newcastle Biomedical Research Centre, Freeman Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom.,Institute of Cellular Medicine and
| | - Kile Green
- Human Dendritic Cell Laboratory, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | | | - Sarah Pagan
- Human Dendritic Cell Laboratory, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Maharani Paramitha
- Human Dendritic Cell Laboratory, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Christopher A Lamb
- NIHR Newcastle Biomedical Research Centre, Freeman Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom.,Institute of Cellular Medicine and
| | - Anna K Long
- NIHR Newcastle Biomedical Research Centre, Freeman Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom.,Institute of Cellular Medicine and
| | - Erin Hurst
- Northern Centre for Bone Marrow Transplantation and
| | - Smeera Nair
- Northern Centre for Bone Marrow Transplantation and
| | - Graham H Jackson
- Northern Centre for Bone Marrow Transplantation and.,Northern Institute of Cancer Research, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Amy Publicover
- Human Dendritic Cell Laboratory, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom.,Northern Centre for Bone Marrow Transplantation and.,NIHR Newcastle Biomedical Research Centre, Freeman Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Venetia Bigley
- Human Dendritic Cell Laboratory, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom.,Northern Centre for Bone Marrow Transplantation and.,NIHR Newcastle Biomedical Research Centre, Freeman Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Muzlifah Haniffa
- NIHR Newcastle Biomedical Research Centre, Freeman Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom.,Institute of Cellular Medicine and
| | - A J Simpson
- NIHR Newcastle Biomedical Research Centre, Freeman Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom.,Institute of Cellular Medicine and
| | - Matthew Collin
- Human Dendritic Cell Laboratory, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom.,Northern Centre for Bone Marrow Transplantation and.,NIHR Newcastle Biomedical Research Centre, Freeman Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
311
|
Basile A, De Pascale F, Bianca F, Rossi A, Frizzarin M, De Bernardini N, Bosaro M, Baldisseri A, Antoniali P, Lopreiato R, Treu L, Campanaro S. Large-scale sequencing and comparative analysis of oenological Saccharomyces cerevisiae strains supported by nanopore refinement of key genomes. Food Microbiol 2021; 97:103753. [PMID: 33653526 DOI: 10.1016/j.fm.2021.103753] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 12/09/2020] [Accepted: 01/27/2021] [Indexed: 12/30/2022]
Abstract
Saccharomyces cerevisiae has long been part of human activities related to the production of food and wine. The industrial demand for fermented beverages with well-defined and stable characteristics boosted the isolation and selection of strains conferring a distinctive aroma profile to the final product. To uncover variants characterizing oenological strains, the sequencing of 65 new S. cerevisiae isolates, and the comparison with other 503 publicly available genomes were performed. A hybrid approach based on short Illumina and long Oxford Nanopore reads allowed the in-depth investigation of eleven genomes and the identification of putative laterally transferred regions and structural variants. A comparative analysis between clusters of strains belonging to different datasets allowed the identification of novel relevant genetic features including single nucleotide polymorphisms, insertions and structural variants. Detection of oenological single nucleotide variants shed light on the existence of different levels of modulation for the mevalonate pathway relevant for the biosynthesis of aromatic compounds.
Collapse
Affiliation(s)
- Arianna Basile
- Department of Biology, University of Padua, 35131, Padova, Italy
| | - Fabio De Pascale
- Department of Biology, University of Padua, 35131, Padova, Italy
| | - Federico Bianca
- Department of Biology, University of Padua, 35131, Padova, Italy
| | - Alessandro Rossi
- Department of Biology, University of Padua, 35131, Padova, Italy
| | - Martina Frizzarin
- Department of Biomedical Sciences, University of Padua, 35131, Padova, Italy; Italiana Biotecnologie, Via Vigazzolo 112, 36054, Montebello Vicentino, Italy
| | | | - Matteo Bosaro
- Italiana Biotecnologie, Via Vigazzolo 112, 36054, Montebello Vicentino, Italy
| | - Anna Baldisseri
- Department of Biomedical Sciences, University of Padua, 35131, Padova, Italy
| | - Paolo Antoniali
- Italiana Biotecnologie, Via Vigazzolo 112, 36054, Montebello Vicentino, Italy
| | - Raffaele Lopreiato
- Department of Biomedical Sciences, University of Padua, 35131, Padova, Italy
| | - Laura Treu
- Department of Biology, University of Padua, 35131, Padova, Italy.
| | - Stefano Campanaro
- Department of Biology, University of Padua, 35131, Padova, Italy; CRIBI Biotechnology Center, University of Padua, 35121, Padova, Italy
| |
Collapse
|
312
|
Pinel A, Rigaudière JP, Jouve C, Montaurier C, Jousse C, LHomme M, Morio B, Capel F. Transgenerational supplementation with eicosapentaenoic acid reduced the metabolic consequences on the whole body and skeletal muscle in mice receiving an obesogenic diet. Eur J Nutr 2021; 60:3143-3157. [PMID: 33543364 DOI: 10.1007/s00394-021-02502-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 01/22/2021] [Indexed: 11/29/2022]
Abstract
PURPOSE The effect of manipulating the fatty acid profile of the diet over generations could affect the susceptibility to develop obesity and metabolic disorders. Although some acute effects were described, the impact of transgenerational continuous supplementation with omega 3 fatty acids on metabolic homeostasis and skeletal muscle metabolic flexibility during a nutritional stress is unknown. METHODS We analyzed the effect of an obesogenic diet in mice after transgenerational supplementation with an omega-3 rich oil (mainly EPA) or a control oil. Young F3 animals received a high fat and high sucrose diet for 4 months. Whole-body biometric data were recorded and lipidomic/transcriptomic adaptations were explored in the skeletal muscle. RESULTS F3 mice from the lineage supplemented with EPA gained less weight, fat mass, and exhibited better metabolic parameters after the obesogenic diet compared to mice from the control lineage. Transcriptomic exploration of skeletal muscle showed differential regulation of biological processes such as fibrosis, fatty acid catabolism, and inflammation between lineages. These adaptations were associated to subtle lipid remodeling of cellular membranes with an enrichment in phospholipids with omega 3 fatty acid in mice from the EPA lineage. CONCLUSION Transgenerational and continuous intake of EPA could help to reduce cardiovascular and metabolic risks related to an unbalanced diet by the modulation of insulin sensitivity, fatty acid metabolism, and fibrosis in skeletal muscle.
Collapse
Affiliation(s)
- Alexandre Pinel
- Unité de Nutrition Humaine (UNH), Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAE), Université Clermont Auvergne, CRNH Auvergne, 63000, Clermont-Ferrand, France
| | - Jean Paul Rigaudière
- Unité de Nutrition Humaine (UNH), Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAE), Université Clermont Auvergne, CRNH Auvergne, 63000, Clermont-Ferrand, France
| | - Chrystèle Jouve
- Unité de Nutrition Humaine (UNH), Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAE), Université Clermont Auvergne, CRNH Auvergne, 63000, Clermont-Ferrand, France
| | - Christophe Montaurier
- Unité de Nutrition Humaine (UNH), Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAE), Université Clermont Auvergne, CRNH Auvergne, 63000, Clermont-Ferrand, France
| | - Céline Jousse
- Unité de Nutrition Humaine (UNH), Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAE), Université Clermont Auvergne, CRNH Auvergne, 63000, Clermont-Ferrand, France
| | - Marie LHomme
- ICANalytics Lipidomic, Institute of Cardiometabolism and Nutrition (ICAN), Paris, France
| | - Béatrice Morio
- CarMeN Laboratory, INSERM U1060, INRAE U1397, University Lyon 1, 69310, Pierre-Bénite, France
| | - Frédéric Capel
- Unité de Nutrition Humaine (UNH), Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAE), Université Clermont Auvergne, CRNH Auvergne, 63000, Clermont-Ferrand, France. .,UFR de Medecine, UMR1019, Equipe ASMS, 28 Place Henri Dunant, BP 38, Clermont-Ferrand Cedex 1, 63001, Clermont-Ferrand, France.
| |
Collapse
|
313
|
Halsall JA, Andrews S, Krueger F, Rutledge CE, Ficz G, Reik W, Turner BM. Histone modifications form a cell-type-specific chromosomal bar code that persists through the cell cycle. Sci Rep 2021; 11:3009. [PMID: 33542322 PMCID: PMC7862352 DOI: 10.1038/s41598-021-82539-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/18/2021] [Indexed: 01/30/2023] Open
Abstract
Chromatin configuration influences gene expression in eukaryotes at multiple levels, from individual nucleosomes to chromatin domains several Mb long. Post-translational modifications (PTM) of core histones seem to be involved in chromatin structural transitions, but how remains unclear. To explore this, we used ChIP-seq and two cell types, HeLa and lymphoblastoid (LCL), to define how changes in chromatin packaging through the cell cycle influence the distributions of three transcription-associated histone modifications, H3K9ac, H3K4me3 and H3K27me3. We show that chromosome regions (bands) of 10-50 Mb, detectable by immunofluorescence microscopy of metaphase (M) chromosomes, are also present in G1 and G2. They comprise 1-5 Mb sub-bands that differ between HeLa and LCL but remain consistent through the cell cycle. The same sub-bands are defined by H3K9ac and H3K4me3, while H3K27me3 spreads more widely. We found little change between cell cycle phases, whether compared by 5 Kb rolling windows or when analysis was restricted to functional elements such as transcription start sites and topologically associating domains. Only a small number of genes showed cell-cycle related changes: at genes encoding proteins involved in mitosis, H3K9 became highly acetylated in G2M, possibly because of ongoing transcription. In conclusion, modified histone isoforms H3K9ac, H3K4me3 and H3K27me3 exhibit a characteristic genomic distribution at resolutions of 1 Mb and below that differs between HeLa and lymphoblastoid cells but remains remarkably consistent through the cell cycle. We suggest that this cell-type-specific chromosomal bar-code is part of a homeostatic mechanism by which cells retain their characteristic gene expression patterns, and hence their identity, through multiple mitoses.
Collapse
Affiliation(s)
- John A Halsall
- Chromatin and Gene Regulation Group, Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, B15 2TT, UK.
| | - Simon Andrews
- Bioinformatics, The Babraham Institute, Cambridge, UK
| | - Felix Krueger
- Bioinformatics, The Babraham Institute, Cambridge, UK
| | - Charlotte E Rutledge
- Chromatin and Gene Regulation Group, Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Gabriella Ficz
- Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Wolf Reik
- Epigenetics Programme, The Babraham Institute, Cambridge, UK
| | - Bryan M Turner
- Chromatin and Gene Regulation Group, Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, B15 2TT, UK.
| |
Collapse
|
314
|
Hu G, Su Y, Kang BH, Fan Z, Dong T, Brown DR, Cheah J, Wittrup KD, Chen J. High-throughput phenotypic screen and transcriptional analysis identify new compounds and targets for macrophage reprogramming. Nat Commun 2021; 12:773. [PMID: 33536439 PMCID: PMC7858590 DOI: 10.1038/s41467-021-21066-x] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 01/10/2021] [Indexed: 02/07/2023] Open
Abstract
Macrophages are plastic and, in response to different local stimuli, can polarize toward multi-dimensional spectrum of phenotypes, including the pro-inflammatory M1-like and the anti-inflammatory M2-like states. Using a high-throughput phenotypic screen in a library of ~4000 FDA-approved drugs, bioactive compounds and natural products, we find ~300 compounds that potently activate primary human macrophages toward either M1-like or M2-like state, of which ~30 are capable of reprogramming M1-like macrophages toward M2-like state and another ~20 for the reverse repolarization. Transcriptional analyses of macrophages treated with 34 non-redundant compounds identify both shared and unique targets and pathways through which the tested compounds modulate macrophage activation. One M1-activating compound, thiostrepton, is able to reprogram tumor-associated macrophages toward M1-like state in mice, and exhibit potent anti-tumor activity. Our compound-screening results thus help to provide a valuable resource not only for studying the macrophage biology but also for developing therapeutics through modulating macrophage activation.
Collapse
Affiliation(s)
- Guangan Hu
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA.
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA.
| | - Yang Su
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Byong Ha Kang
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Zhongqi Fan
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Ting Dong
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Douglas R Brown
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Jaime Cheah
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Karl Dane Wittrup
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Jianzhu Chen
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA.
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA.
| |
Collapse
|
315
|
Zhang C, Li J, Li S, Ma C, Liu H, Wang L, Qi J, Wu J. ZmMPK6 and ethylene signalling negatively regulate the accumulation of anti-insect metabolites DIMBOA and DIMBOA-Glc in maize inbred line A188. THE NEW PHYTOLOGIST 2021; 229:2273-2287. [PMID: 32996127 DOI: 10.1111/nph.16974] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/18/2020] [Indexed: 06/11/2023]
Abstract
2,4-Dihydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA) and DIMBOA-glucoside (DIMBOA-Glc) are anti-insect benzoxazinoids in maize, yet very little information is known about how they are regulated. Reverse genetics, kinase activity analysis, phytohormone and DIMBOA/DIMBOA-Glc quantification, bioassays and transcriptome analysis were employed to study the function of ZmMPK6, a mitogen-activated protein kinase, in maize response to herbivory. ZmMPK6 was rapidly activated by wounding and simulated herbivory. Silencing ZmMPK6 in maize A188 compromised simulated herbivory-induced ethylene levels but not those of jasmonic acid or salicylic acid, and the ZmMPK6-silenced plants exhibited elevated DIMBOA/DIMBOA-Glc and insect resistance. An ethylene complementation experiment revealed that ZmMPK6 repressed the accumulation of DIMBOA/DIMBOA-Glc in an ethylene-dependent manner. Transcriptome analysis revealed that ZmMPK6 might meditate the transcription of BX1 by controlling a MYB transcription factor that is likely to be located in the ethylene signalling pathway and, furthermore, ZmMPK6 and ethylene signalling also specifically and commonly regulate the transcription of other benzoxazinoid biosynthetic genes. We also show that different maize lines have very different responses to simulated herbivory in terms of ZmMPK6 activation, ethylene emission and benzoxazinoid levels. These results uncover that ZmMPK6 and ethylene pathway are novel repressors of DIMBOA/DIMBOA-Glc and provide new insight into the regulatory mechanisms underlying these two pathways.
Collapse
Affiliation(s)
- Cuiping Zhang
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing Li
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Sen Li
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Canrong Ma
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hui Liu
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Lei Wang
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Jinfeng Qi
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Jianqiang Wu
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| |
Collapse
|
316
|
Neeraja CN, Barbadikar KM, Krishnakanth T, Bej S, Rao IS, Srikanth B, Rao DS, Subrahmanyam D, Rao PR, Voleti SR. Down regulation of transcripts involved in selective metabolic pathways as an acclimation strategy in nitrogen use efficient genotypes of rice under low nitrogen. 3 Biotech 2021; 11:80. [PMID: 33505835 DOI: 10.1007/s13205-020-02631-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 12/28/2020] [Indexed: 11/26/2022] Open
Abstract
To understand the molecular mechanism of nitrogen use efficiency (NUE) in rice, two nitrogen (N) use efficient genotypes and two non-efficient genotypes were characterized using transcriptome analyses. The four genotypes were evaluated for 3 years under low and recommended N field conditions for 12 traits/parameters of yield, straw, nitrogen content along with NUE indices and 2 promising donors for rice NUE were identified. Using the transcriptome data generated from GS FLX 454 Roche and Illumina HiSeq 2000 of two efficient and two non-efficient genotypes grown under field conditions of low N and recommended N and their de novo assembly, differentially expressed transcripts and pathways during the panicle development were identified. Down regulation was observed in 30% of metabolic pathways in efficient genotypes and is being proposed as an acclimation strategy to low N. Ten sub metabolic pathways significantly enriched with additional transcripts either in the direction of the common expression or contra-regulated to the common expression were found to be critical for NUE in rice. Among the up-regulated transcripts in efficient genotypes, a hypothetical protein OsI_17904 with 2 alternative forms suggested the role of alternative splicing in NUE of rice and a potassium channel SKOR transcript (LOC_Os06g14030) has shown a positive correlation (0.62) with single plant yield under low N in a set of 16 rice genotypes. From the present study, we propose that the efficient genotypes appear to down regulate several not so critical metabolic pathways and divert the thus conserved energy to produce seed/yield under long-term N starvation. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-020-02631-5.
Collapse
Affiliation(s)
- C N Neeraja
- ICAR-Indian Institute of Rice Research, Rajendranagar, Hyderabad, Telangana India
| | - Kalyani M Barbadikar
- ICAR-Indian Institute of Rice Research, Rajendranagar, Hyderabad, Telangana India
| | - T Krishnakanth
- ICAR-Indian Institute of Rice Research, Rajendranagar, Hyderabad, Telangana India
| | - Sonali Bej
- ICAR-Indian Institute of Rice Research, Rajendranagar, Hyderabad, Telangana India
| | - I Subhakara Rao
- ICAR-Indian Institute of Rice Research, Rajendranagar, Hyderabad, Telangana India
| | - B Srikanth
- ICAR-Indian Institute of Rice Research, Rajendranagar, Hyderabad, Telangana India
| | - D Sanjeeva Rao
- ICAR-Indian Institute of Rice Research, Rajendranagar, Hyderabad, Telangana India
| | - D Subrahmanyam
- ICAR-Indian Institute of Rice Research, Rajendranagar, Hyderabad, Telangana India
| | - P Raghuveer Rao
- ICAR-Indian Institute of Rice Research, Rajendranagar, Hyderabad, Telangana India
| | - S R Voleti
- ICAR-Indian Institute of Rice Research, Rajendranagar, Hyderabad, Telangana India
| |
Collapse
|
317
|
Pavis GF, Jameson TSO, Dirks ML, Lee BP, Abdelrahman DR, Murton AJ, Porter C, Alamdari N, Mikus CR, Wall BT, Stephens FB. Improved recovery from skeletal muscle damage is largely unexplained by myofibrillar protein synthesis or inflammatory and regenerative gene expression pathways. Am J Physiol Endocrinol Metab 2021; 320:E291-E305. [PMID: 33284089 PMCID: PMC8260377 DOI: 10.1152/ajpendo.00454.2020] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The contribution of myofibrillar protein synthesis (MyoPS) to recovery from skeletal muscle damage in humans is unknown. Recreationally active men and women consumed a daily protein-polyphenol beverage targeted at increasing amino acid availability and reducing inflammation (PPB; n = 9), both known to affect MyoPS, or an isocaloric placebo (PLA; n = 9) during 168 h of recovery from 300 maximal unilateral eccentric contractions (EE). Muscle function was assessed daily. Muscle biopsies were collected for 24, 27, 36, 72, and 168 h for MyoPS measurements using 2H2O and expression of 224 genes using RT-qPCR and pathway analysis. PPB improved recovery of muscle function, which was impaired for 5 days after EE in PLA (interaction P < 0.05). Acute postprandial MyoPS rates were unaffected by nutritional intervention (24-27 h). EE increased overnight (27-36 h) MyoPS versus the control leg (PLA: 33 ± 19%; PPB: 79 ± 25%; leg P < 0.01), and PPB tended to increase this further (interaction P = 0.06). Daily MyoPS rates were greater with PPB between 72 and 168 h after EE, albeit after function had recovered. Inflammatory and regenerative signaling pathways were dramatically upregulated and clustered after EE but were unaffected by nutritional intervention. These results suggest that accelerated recovery from EE is not explained by elevated MyoPS or suppression of inflammation.NEW & NOTEWORTHY The present study investigated the contribution of myofibrillar protein synthesis (MyoPS) and associated gene signaling to recovery from 300 muscle-damaging, eccentric contractions. Measured with 2H2O, MyoPS rates were elevated during recovery and observed alongside expression of inflammatory and regenerative signaling pathways. A nutritional intervention accelerated recovery; however, MyoPS and gene signaling were unchanged compared with placebo. These data indicate that MyoPS and associated signaling do not explain accelerated recovery from muscle damage.
Collapse
Affiliation(s)
- George F Pavis
- Nutritional Physiology Group, Department of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Tom S O Jameson
- Nutritional Physiology Group, Department of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Marlou L Dirks
- Nutritional Physiology Group, Department of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Benjamin P Lee
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, University of Exeter, Exeter, United Kingdom
| | - Doaa R Abdelrahman
- Department of Surgery, University of Texas Medical Branch, Galveston, Texas
| | - Andrew J Murton
- Department of Surgery, University of Texas Medical Branch, Galveston, Texas
| | - Craig Porter
- Department of Surgery, University of Texas Medical Branch, Galveston, Texas
| | | | | | - Benjamin T Wall
- Nutritional Physiology Group, Department of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Francis B Stephens
- Nutritional Physiology Group, Department of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
318
|
Lee HW, Yoon SR, Yang JS, Lee HM, Kim SJ, Lee JY, Hwang IM, You SY, Ha JH. Proteomic evaluation of kimchi, a traditional Korean fermented vegetable, and comparison of kimchi manufactured in China and Korea. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2021; 58:389-396. [PMID: 33505084 DOI: 10.1007/s13197-020-04777-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 07/03/2020] [Accepted: 09/09/2020] [Indexed: 02/07/2023]
Abstract
Kimchi is a traditional Korean fermented vegetable, which is also widely consumed in Japan and China. However, little is known about the kimchi proteome. In this study, Korean and Chinese kimchi proteomes were evaluated by shotgun proteomics. A total of 250 proteins were annotated, and 29 of these were expressed at > 1% of the average relative abundance. Discrimination of the geographical origins of Korean and Chinese kimchi samples was possible using multivariate analysis of the proteomic data, and 23 proteins were expressed differently between the two types (p < 0.001), and represent possible markers to discriminate between Chinese and Korean kimchi. This study provides important insights into the kimchi proteome and illustrates the proteomic differences caused by geographical origin.
Collapse
Affiliation(s)
- Hae-Won Lee
- Hygienic Safety and Analysis Center, World Institute of Kimchi, Gwangju, 61755 Republic of Korea
| | - So-Ra Yoon
- Hygienic Safety and Analysis Center, World Institute of Kimchi, Gwangju, 61755 Republic of Korea
| | - Ji-Su Yang
- Hygienic Safety and Analysis Center, World Institute of Kimchi, Gwangju, 61755 Republic of Korea
| | - Hee Min Lee
- Hygienic Safety and Analysis Center, World Institute of Kimchi, Gwangju, 61755 Republic of Korea
| | - Su-Ji Kim
- Hygienic Safety and Analysis Center, World Institute of Kimchi, Gwangju, 61755 Republic of Korea
| | - Jae Yong Lee
- Hygienic Safety and Analysis Center, World Institute of Kimchi, Gwangju, 61755 Republic of Korea
| | - In Min Hwang
- Hygienic Safety and Analysis Center, World Institute of Kimchi, Gwangju, 61755 Republic of Korea
| | - Su-Yeon You
- Hygienic Safety and Analysis Center, World Institute of Kimchi, Gwangju, 61755 Republic of Korea
| | - Ji-Hyoung Ha
- Hygienic Safety and Analysis Center, World Institute of Kimchi, Gwangju, 61755 Republic of Korea
| |
Collapse
|
319
|
Mooi J, Chionh F, Savas P, Da Gama Duarte J, Chong G, Brown S, Wong R, Price TJ, Wann A, Skrinos E, Mariadason JM, Tebbutt NC. Dual Antiangiogenesis Agents Bevacizumab Plus Trebananib, without Chemotherapy, in First-line Treatment of Metastatic Colorectal Cancer: Results of a Phase II Study. Clin Cancer Res 2021; 27:2159-2167. [PMID: 33514526 DOI: 10.1158/1078-0432.ccr-20-2714] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/13/2020] [Accepted: 01/27/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE To assess the efficacy and safety of dual antiangiogenesis agents, bevacizumab plus trebananib, without chemotherapy, in first-line treatment of metastatic colorectal cancer (mCRC). PATIENTS AND METHODS This open-label phase II study enrolled patients with unresectable mCRC with no prior systemic treatment. All patients received bevacizumab 7.5 mg/kg 3-weekly and trebananib 15 mg/kg weekly. The primary endpoint was disease control [stable disease, partial response (PR), or complete response (CR)] at 6 months (DC6m). Secondary endpoints included toxicity, overall response rate (ORR), progression-free survival (PFS), and overall survival (OS). Exploratory biomarkers in plasma angiogenesis-related proteins, tumor gene expression, and plasma antibodies to tumor antigens were examined. RESULTS Forty-five patients were enrolled from four Australian sites. DC6m was 63% [95% confidence interval (CI), 47-77]. ORR was 17% (95% CI, 7-32), comprising of seven PRs. Median duration of response was 20 months (range, 10-48 months). Median PFS was 8.4 months and median OS 31.4 months. Grade 1-2 peripheral edema and joint-related symptoms were common. Overall incidence of grade 3-4 adverse events (AE) of any type was 33% (n = 15). Expected AEs of bevacizumab treatment did not appear to be increased by the addition of trebananib. CONCLUSIONS In a first-line mCRC population, the dual antiangiogenic combination, bevacizumab plus trebananib, without chemotherapy, was efficacious with durable responses. The toxicity profile of the combination was manageable and did not exceed that expected with bevacizumab +/- chemotherapy. Exploratory biomarker results raise the hypothesis that the antiangiogenic combination may enable the antitumor immune response in immunotolerant colorectal cancer.
Collapse
Affiliation(s)
- Jennifer Mooi
- Olivia Newton-John Cancer Research Institute, Melbourne, Victoria, Australia
| | - Fiona Chionh
- Olivia Newton-John Cancer Research Institute, Melbourne, Victoria, Australia
| | - Peter Savas
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Jessica Da Gama Duarte
- Olivia Newton-John Cancer Research Institute, Melbourne, Victoria, Australia.,La Trobe University, Melbourne, Victoria, Australia
| | - Geoffrey Chong
- University of Melbourne, Melbourne, Victoria, Australia.,Ballarat Regional Integrated Cancer Centre, Ballarat, Victoria, Australia
| | - Stephen Brown
- Ballarat Regional Integrated Cancer Centre, Ballarat, Victoria, Australia
| | - Rachel Wong
- Eastern Health, Box Hill, Victoria, Australia.,Monash University, Melbourne, Victoria, Australia
| | - Timothy J Price
- The Queen Elizabeth Hospital, Adelaide, South Australia, Australia.,University of Adelaide, Adelaide, South Australia, Australia
| | - Alysson Wann
- University of Melbourne, Melbourne, Victoria, Australia
| | - Effie Skrinos
- Olivia Newton-John Cancer Research Institute, Melbourne, Victoria, Australia
| | - John M Mariadason
- Olivia Newton-John Cancer Research Institute, Melbourne, Victoria, Australia.,La Trobe University, Melbourne, Victoria, Australia
| | - Niall C Tebbutt
- Olivia Newton-John Cancer Research Institute, Melbourne, Victoria, Australia. .,University of Melbourne, Melbourne, Victoria, Australia.,Austin Health, Melbourne, Victoria, Australia
| |
Collapse
|
320
|
Marotel M, Villard M, Drouillard A, Tout I, Besson L, Allatif O, Pujol M, Rocca Y, Ainouze M, Roblot G, Viel S, Gomez M, Loustaud V, Alain S, Durantel D, Walzer T, Hasan U, Marçais A. Peripheral natural killer cells in chronic hepatitis B patients display multiple molecular features of T cell exhaustion. eLife 2021; 10:60095. [PMID: 33507150 PMCID: PMC7870135 DOI: 10.7554/elife.60095] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 01/28/2021] [Indexed: 12/11/2022] Open
Abstract
Antiviral effectors such as natural killer (NK) cells have impaired functions in chronic hepatitis B (CHB) patients. The molecular mechanism responsible for this dysfunction remains poorly characterised. We show that decreased cytokine production capacity of peripheral NK cells from CHB patients was associated with reduced expression of NKp30 and CD16, and defective mTOR pathway activity. Transcriptome analysis of patients NK cells revealed an enrichment for transcripts expressed in exhausted T cells suggesting that NK cell dysfunction and T cell exhaustion employ common mechanisms. In particular, the transcription factor TOX and several of its targets were over-expressed in NK cells of CHB patients. This signature was predicted to be dependent on the calcium-associated transcription factor NFAT. Stimulation of the calcium-dependent pathway recapitulated features of NK cells from CHB patients. Thus, deregulated calcium signalling could be a central event in both T cell exhaustion and NK cell dysfunction occurring during chronic infections.
Collapse
Affiliation(s)
- Marie Marotel
- CIRI, Centre International de Recherche en Infectiologie, Team Innate Immunity in Infectious and Autoimmune Diseases, Univ Lyon, Inserm, Université Claude Bernard Lyon 1, CNRS, Lyon, France
| | - Marine Villard
- CIRI, Centre International de Recherche en Infectiologie, Team Innate Immunity in Infectious and Autoimmune Diseases, Univ Lyon, Inserm, Université Claude Bernard Lyon 1, CNRS, Lyon, France.,Service d'Immunologie biologique, Hôpital Lyon Sud, Hospices Civils de Lyon, Lyon, France
| | - Annabelle Drouillard
- CIRI, Centre International de Recherche en Infectiologie, Team Innate Immunity in Infectious and Autoimmune Diseases, Univ Lyon, Inserm, Université Claude Bernard Lyon 1, CNRS, Lyon, France
| | - Issam Tout
- CIRI, Centre International de Recherche en Infectiologie, Team Innate Immunity in Infectious and Autoimmune Diseases, Univ Lyon, Inserm, Université Claude Bernard Lyon 1, CNRS, Lyon, France
| | - Laurie Besson
- CIRI, Centre International de Recherche en Infectiologie, Team Innate Immunity in Infectious and Autoimmune Diseases, Univ Lyon, Inserm, Université Claude Bernard Lyon 1, CNRS, Lyon, France.,Service d'Immunologie biologique, Hôpital Lyon Sud, Hospices Civils de Lyon, Lyon, France
| | - Omran Allatif
- CIRI, Centre International de Recherche en Infectiologie, Team Innate Immunity in Infectious and Autoimmune Diseases, Univ Lyon, Inserm, Université Claude Bernard Lyon 1, CNRS, Lyon, France
| | - Marine Pujol
- CIRI, Centre International de Recherche en Infectiologie, Team Innate Immunity in Infectious and Autoimmune Diseases, Univ Lyon, Inserm, Université Claude Bernard Lyon 1, CNRS, Lyon, France
| | - Yamila Rocca
- CIRI, Centre International de Recherche en Infectiologie, Team Innate Immunity in Infectious and Autoimmune Diseases, Univ Lyon, Inserm, Université Claude Bernard Lyon 1, CNRS, Lyon, France
| | - Michelle Ainouze
- CIRI, Centre International de Recherche en Infectiologie, Team Innate Immunity in Infectious and Autoimmune Diseases, Univ Lyon, Inserm, Université Claude Bernard Lyon 1, CNRS, Lyon, France
| | - Guillaume Roblot
- CIRI, Centre International de Recherche en Infectiologie, Team Innate Immunity in Infectious and Autoimmune Diseases, Univ Lyon, Inserm, Université Claude Bernard Lyon 1, CNRS, Lyon, France
| | - Sébastien Viel
- CIRI, Centre International de Recherche en Infectiologie, Team Innate Immunity in Infectious and Autoimmune Diseases, Univ Lyon, Inserm, Université Claude Bernard Lyon 1, CNRS, Lyon, France.,Service d'Immunologie biologique, Hôpital Lyon Sud, Hospices Civils de Lyon, Lyon, France
| | - Melissa Gomez
- CHU Limoges, Service d'Hépatogastroentérologie, U1248 INSERM, Université Limoges, Limoges, France
| | - Veronique Loustaud
- CHU Limoges, Service d'Hépatogastroentérologie, U1248 INSERM, Université Limoges, Limoges, France
| | - Sophie Alain
- Département de Microbiologie, CHU de Limoges, Faculté de médecine-Université de Limoges, Limoges, France
| | - David Durantel
- Centre de Recherche en Cancérologie de Lyon (CRCL), INSERM, U1052, CNRS, Université de Lyon, Lyon, France
| | - Thierry Walzer
- CIRI, Centre International de Recherche en Infectiologie, Team Innate Immunity in Infectious and Autoimmune Diseases, Univ Lyon, Inserm, Université Claude Bernard Lyon 1, CNRS, Lyon, France
| | - Uzma Hasan
- CIRI, Centre International de Recherche en Infectiologie, Team Innate Immunity in Infectious and Autoimmune Diseases, Univ Lyon, Inserm, Université Claude Bernard Lyon 1, CNRS, Lyon, France
| | - Antoine Marçais
- CIRI, Centre International de Recherche en Infectiologie, Team Innate Immunity in Infectious and Autoimmune Diseases, Univ Lyon, Inserm, Université Claude Bernard Lyon 1, CNRS, Lyon, France
| |
Collapse
|
321
|
Tais L, Schulz H, Böttcher C. Comprehensive profiling of semi-polar phytochemicals in whole wheat grains (Triticum aestivum) using liquid chromatography coupled with electrospray ionization quadrupole time-of-flight mass spectrometry. Metabolomics 2021; 17:18. [PMID: 33502591 PMCID: PMC7840630 DOI: 10.1007/s11306-020-01761-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 12/15/2020] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Wheat (Triticum aestivum) it is one of the most important staple food crops worldwide and represents an important resource for human nutrition. Besides starch, proteins and micronutrients wheat grains accumulate a highly diverse set of phytochemicals. OBJECTIVES This work aimed at the development and validation of an analytical workflow for comprehensive profiling of semi-polar phytochemicals in whole wheat grains. METHOD Reversed-phase ultra-high performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight mass spectrometry (UHPLC/ESI-QTOFMS) was used as analytical platform. For annotation of metabolites accurate mass collision-induced dissociation mass spectra were acquired and interpreted in conjunction with literature data, database queries and analyses of reference compounds. RESULTS Based on reversed-phase UHPLC/ESI-QTOFMS an analytical workflow for comprehensive profiling of semi-polar phytochemicals in whole wheat grains was developed. For method development the extraction procedure and the chromatographic separation were optimized. Using whole grains of eight wheat cultivars a total of 248 metabolites were annotated and characterized by chromatographic and tandem mass spectral data. Annotated metabolites comprise hydroquinones, hydroxycinnamic acid amides, flavonoids, benzoxazinoids, lignans and other phenolics as well as numerous primary metabolites such as nucleosides, amino acids and derivatives, organic acids, saccharides and B vitamin derivatives. For method validation, recovery rates and matrix effects were determined for ten exogenous model compounds. Repeatability and linearity were assessed for 39 representative endogenous metabolites. In addition, the accuracy of relative quantification was evaluated for six exogenous model compounds. CONCLUSIONS In conjunction with non-targeted and targeted data analysis strategies the developed analytical workflow was successfully applied to discern differences in the profiles of semi-polar phytochemicals accumulating in whole grains of eight wheat cultivars.
Collapse
Affiliation(s)
- Leslie Tais
- Federal Research Centre for Cultivated Plants, Institute for Ecological Chemistry, Plant Analysis and Stored Product Protection, Julius Kühn-Institute, Königin-Luise-Strasse 19, 14195 Berlin, Germany
| | - Hartwig Schulz
- Federal Research Centre for Cultivated Plants, Institute for Ecological Chemistry, Plant Analysis and Stored Product Protection, Julius Kühn-Institute, Königin-Luise-Strasse 19, 14195 Berlin, Germany
- Consulting & Project Management for Medicinal & Aromatic Plants, Waltraudstrasse 4, 14532 Stahnsdorf, Germany
| | - Christoph Böttcher
- Federal Research Centre for Cultivated Plants, Institute for Ecological Chemistry, Plant Analysis and Stored Product Protection, Julius Kühn-Institute, Königin-Luise-Strasse 19, 14195 Berlin, Germany
| |
Collapse
|
322
|
Fattori S, Gorvel L, Granjeaud S, Rochigneux P, Rouvière MS, Ben Amara A, Boucherit N, Paul M, Dauplat MM, Thomassin-Piana J, Paciencia-Gros M, Avenin M, Pakradouni J, Barrou J, Charafe-Jauffret E, Houvenaeghel G, Lambaudie E, Bertucci F, Goncalves A, Tarpin C, Nunès JA, Devillier R, Chretien AS, Olive D. Quantification of Immune Variables from Liquid Biopsy in Breast Cancer Patients Links Vδ2 + γδ T Cell Alterations with Lymph Node Invasion. Cancers (Basel) 2021; 13:441. [PMID: 33503843 PMCID: PMC7865589 DOI: 10.3390/cancers13030441] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/15/2021] [Accepted: 01/21/2021] [Indexed: 01/12/2023] Open
Abstract
The rationale for therapeutic targeting of Vδ2+ γδ T cells in breast cancer is strongly supported by in vitro and murine preclinical investigations, characterizing them as potent breast tumor cell killers and source of Th1-related cytokines, backing cytotoxic αβ T cells. Nonetheless, insights regarding Vδ2+ γδ T cell phenotypic alterations in human breast cancers are still lacking. This paucity of information is partly due to the challenging scarcity of these cells in surgical specimens. αβ T cell phenotypic alterations occurring in the tumor bed are detectable in the periphery and correlate with adverse clinical outcomes. Thus, we sought to determine through an exploratory study whether Vδ2+ γδ T cells phenotypic changes can be detected within breast cancer patients' peripheral blood, along with association with tumor progression. By using mass cytometry, we quantified 130 immune variables from untreated breast cancer patients' peripheral blood. Supervised analyses and dimensionality reduction algorithms evidenced circulating Vδ2+ γδ T cell phenotypic alterations already established at diagnosis. Foremost, terminally differentiated Vδ2+ γδ T cells displaying phenotypes of exhausted senescent T cells associated with lymph node involvement. Thereby, our results support Vδ2+ γδ T cells implication in breast cancer pathogenesis and progression, besides shedding light on liquid biopsies to monitor surrogate markers of tumor-infiltrating Vδ2+ γδ T cell antitumor activity.
Collapse
Affiliation(s)
- Stéphane Fattori
- Team Immunity and Cancer, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS, UMR7258, Institut Paoli-Calmettes, Aix-Marseille University, UM 105, 13009 Marseille, France; (S.F.); (L.G.); (P.R.); (M.-S.R.); (A.B.A.); (N.B.); (M.P.); (J.A.N.); (R.D.)
- Cancer Immunomonitoring Platform, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS, UMR7258, Institut Paoli-Calmettes, 13009 Marseille, France
| | - Laurent Gorvel
- Team Immunity and Cancer, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS, UMR7258, Institut Paoli-Calmettes, Aix-Marseille University, UM 105, 13009 Marseille, France; (S.F.); (L.G.); (P.R.); (M.-S.R.); (A.B.A.); (N.B.); (M.P.); (J.A.N.); (R.D.)
- Cancer Immunomonitoring Platform, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS, UMR7258, Institut Paoli-Calmettes, 13009 Marseille, France
| | - Samuel Granjeaud
- Systems Biology Platform, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS, UMR7258, Institut Paoli-Calmettes, Aix-Marseille University, UM 105, 13009 Marseille, France;
| | - Philippe Rochigneux
- Team Immunity and Cancer, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS, UMR7258, Institut Paoli-Calmettes, Aix-Marseille University, UM 105, 13009 Marseille, France; (S.F.); (L.G.); (P.R.); (M.-S.R.); (A.B.A.); (N.B.); (M.P.); (J.A.N.); (R.D.)
- Cancer Immunomonitoring Platform, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS, UMR7258, Institut Paoli-Calmettes, 13009 Marseille, France
- Department of Medical Oncology, Institut Paoli-Calmettes, 13009 Marseille, France; (F.B.); (A.G.); (C.T.)
| | - Marie-Sarah Rouvière
- Team Immunity and Cancer, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS, UMR7258, Institut Paoli-Calmettes, Aix-Marseille University, UM 105, 13009 Marseille, France; (S.F.); (L.G.); (P.R.); (M.-S.R.); (A.B.A.); (N.B.); (M.P.); (J.A.N.); (R.D.)
- Cancer Immunomonitoring Platform, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS, UMR7258, Institut Paoli-Calmettes, 13009 Marseille, France
| | - Amira Ben Amara
- Team Immunity and Cancer, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS, UMR7258, Institut Paoli-Calmettes, Aix-Marseille University, UM 105, 13009 Marseille, France; (S.F.); (L.G.); (P.R.); (M.-S.R.); (A.B.A.); (N.B.); (M.P.); (J.A.N.); (R.D.)
- Cancer Immunomonitoring Platform, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS, UMR7258, Institut Paoli-Calmettes, 13009 Marseille, France
| | - Nicolas Boucherit
- Team Immunity and Cancer, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS, UMR7258, Institut Paoli-Calmettes, Aix-Marseille University, UM 105, 13009 Marseille, France; (S.F.); (L.G.); (P.R.); (M.-S.R.); (A.B.A.); (N.B.); (M.P.); (J.A.N.); (R.D.)
- Cancer Immunomonitoring Platform, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS, UMR7258, Institut Paoli-Calmettes, 13009 Marseille, France
| | - Magali Paul
- Team Immunity and Cancer, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS, UMR7258, Institut Paoli-Calmettes, Aix-Marseille University, UM 105, 13009 Marseille, France; (S.F.); (L.G.); (P.R.); (M.-S.R.); (A.B.A.); (N.B.); (M.P.); (J.A.N.); (R.D.)
- Cancer Immunomonitoring Platform, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS, UMR7258, Institut Paoli-Calmettes, 13009 Marseille, France
| | - Marie Mélanie Dauplat
- Department of Pathology, Institut Paoli-Calmettes, 13009 Marseille, France; (M.M.D.); (J.T.-P.); (M.P.-G.); (M.A.); (E.C.-J.)
| | - Jeanne Thomassin-Piana
- Department of Pathology, Institut Paoli-Calmettes, 13009 Marseille, France; (M.M.D.); (J.T.-P.); (M.P.-G.); (M.A.); (E.C.-J.)
| | - Maria Paciencia-Gros
- Department of Pathology, Institut Paoli-Calmettes, 13009 Marseille, France; (M.M.D.); (J.T.-P.); (M.P.-G.); (M.A.); (E.C.-J.)
| | - Morgan Avenin
- Department of Pathology, Institut Paoli-Calmettes, 13009 Marseille, France; (M.M.D.); (J.T.-P.); (M.P.-G.); (M.A.); (E.C.-J.)
| | - Jihane Pakradouni
- Department of Clinical Research and Innovations, Institut Paoli-Calmettes, 13009 Marseille, France;
| | - Julien Barrou
- Department of Surgical Oncology, Institut Paoli-Calmettes, 13009 Marseille, France; (J.B.); (G.H.); (E.L.)
| | - Emmanuelle Charafe-Jauffret
- Department of Pathology, Institut Paoli-Calmettes, 13009 Marseille, France; (M.M.D.); (J.T.-P.); (M.P.-G.); (M.A.); (E.C.-J.)
- Team Epithelial Stem Cells and Cancer, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS, UMR7258, Institut Paoli-Calmettes, Aix-Marseille University, UM 105, 13009 Marseille, France
- Faculty of Medical and Paramedic Sciences, Aix Marseille University, UM 105, 13005 Marseille, France
| | - Gilles Houvenaeghel
- Department of Surgical Oncology, Institut Paoli-Calmettes, 13009 Marseille, France; (J.B.); (G.H.); (E.L.)
- Faculty of Medical and Paramedic Sciences, Aix Marseille University, UM 105, 13005 Marseille, France
| | - Eric Lambaudie
- Department of Surgical Oncology, Institut Paoli-Calmettes, 13009 Marseille, France; (J.B.); (G.H.); (E.L.)
- Faculty of Medical and Paramedic Sciences, Aix Marseille University, UM 105, 13005 Marseille, France
| | - François Bertucci
- Department of Medical Oncology, Institut Paoli-Calmettes, 13009 Marseille, France; (F.B.); (A.G.); (C.T.)
- Team Predictive Oncology, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS, UMR7258, Institut Paoli-Calmettes, Aix-Marseille University, UM 105, 13009 Marseille, France
| | - Anthony Goncalves
- Department of Medical Oncology, Institut Paoli-Calmettes, 13009 Marseille, France; (F.B.); (A.G.); (C.T.)
- Team Predictive Oncology, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS, UMR7258, Institut Paoli-Calmettes, Aix-Marseille University, UM 105, 13009 Marseille, France
| | - Carole Tarpin
- Department of Medical Oncology, Institut Paoli-Calmettes, 13009 Marseille, France; (F.B.); (A.G.); (C.T.)
| | - Jacques A. Nunès
- Team Immunity and Cancer, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS, UMR7258, Institut Paoli-Calmettes, Aix-Marseille University, UM 105, 13009 Marseille, France; (S.F.); (L.G.); (P.R.); (M.-S.R.); (A.B.A.); (N.B.); (M.P.); (J.A.N.); (R.D.)
| | - Raynier Devillier
- Team Immunity and Cancer, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS, UMR7258, Institut Paoli-Calmettes, Aix-Marseille University, UM 105, 13009 Marseille, France; (S.F.); (L.G.); (P.R.); (M.-S.R.); (A.B.A.); (N.B.); (M.P.); (J.A.N.); (R.D.)
- Cancer Immunomonitoring Platform, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS, UMR7258, Institut Paoli-Calmettes, 13009 Marseille, France
- Faculty of Medical and Paramedic Sciences, Aix Marseille University, UM 105, 13005 Marseille, France
- Department of Haematology, Institut Paoli-Calmettes, 13009 Marseille, France
| | - Anne-Sophie Chretien
- Team Immunity and Cancer, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS, UMR7258, Institut Paoli-Calmettes, Aix-Marseille University, UM 105, 13009 Marseille, France; (S.F.); (L.G.); (P.R.); (M.-S.R.); (A.B.A.); (N.B.); (M.P.); (J.A.N.); (R.D.)
- Cancer Immunomonitoring Platform, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS, UMR7258, Institut Paoli-Calmettes, 13009 Marseille, France
- Faculty of Medical and Paramedic Sciences, Aix Marseille University, UM 105, 13005 Marseille, France
| | - Daniel Olive
- Team Immunity and Cancer, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS, UMR7258, Institut Paoli-Calmettes, Aix-Marseille University, UM 105, 13009 Marseille, France; (S.F.); (L.G.); (P.R.); (M.-S.R.); (A.B.A.); (N.B.); (M.P.); (J.A.N.); (R.D.)
- Cancer Immunomonitoring Platform, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS, UMR7258, Institut Paoli-Calmettes, 13009 Marseille, France
- Faculty of Medical and Paramedic Sciences, Aix Marseille University, UM 105, 13005 Marseille, France
| |
Collapse
|
323
|
TLR expression profiles are a function of disease status in rheumatoid arthritis and experimental arthritis. J Autoimmun 2021; 118:102597. [PMID: 33493980 DOI: 10.1016/j.jaut.2021.102597] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/21/2020] [Accepted: 01/07/2021] [Indexed: 11/23/2022]
Abstract
The role of the innate immune system has been established in the initiation and perpetuation of inflammatory disease, but less attention has been paid to its role in the resolution of inflammation and return to homeostasis. Toll-like receptor (TLR) expression profiles were analysed in tissues with differing disease status in rheumatoid arthritis (RA), ankylosing spondylitis (AS), and in experimental arthritis. TLR gene expression was measured in whole blood and monocytes, before and after TNF blockade. In RA and osteoarthritis synovia, the expression of TLRs was quantified by standard curve qPCR. In addition, four distinct stages of disease were defined and validated in collagen-induced arthritis (CIA), the gold standard animal model for RA - pre-onset, early disease, late disease and immunised mice that were resistant to the development of disease. TLR expression was measured in spleens, lymph nodes, blood cells, liver and the paws (inflamed and unaffected). In RA whole blood, the expression of TLR1, 4 and 6 was significantly reduced by TNF blockade but the differences in TLR expression profiles between responders and non-responders were less pronounced than the differences between RA and AS patients. In RA non-responders, monocytes had greater TLR2 expression prior to therapy compared to responders. The expression of TLR1, 2, 4 and 8 was higher in RA synovium compared to control OA synovium. Circulating cytokine levels in CIA resistant mice were similar to naïve mice, but anti-collagen antibodies were similar to arthritic mice. Distinct profiles of inflammatory gene expression were mapped in paws and organs with differing disease status. TLR expression in arthritic paws tended to be similar in early and late disease, with TLR1 and 2 moderately higher in late disease. TLR expression in unaffected paws varied according to gene and disease status but was generally lower in resistant paws. Disease status-specific profiles of TLR expression were observed in spleens, lymph nodes, blood cells and the liver. Notably, TLR2 expression rose then fell in the transition from naïve to pre-onset to early arthritis. TLR gene expression profiles are strongly associated with disease status. In particular, increased expression in the blood precedes clinical manifestation.
Collapse
|
324
|
Wang Y, Zhang W, Liu W, Ahammed GJ, Wen W, Guo S, Shu S, Sun J. Auxin is involved in arbuscular mycorrhizal fungi-promoted tomato growth and NADP-malic enzymes expression in continuous cropping substrates. BMC PLANT BIOLOGY 2021; 21:48. [PMID: 33461504 PMCID: PMC7814736 DOI: 10.1186/s12870-020-02817-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 12/22/2020] [Indexed: 05/18/2023]
Abstract
BACKGROUND Despite significant limitations of growth medium reuse, a large amount of organic substrate is reused in soilless cultivation of horticultural crops in China. Arbuscular mycorrhizal fungi (AMF) can promote nutrient absorption and improve plant tolerance to biotic and abiotic stresses. However, the mechanisms governing the effects of AMF on crop growth in organic continuous cropping substrates have not been elucidated. RESULTS In this study, we showed that the inoculation of AMF in continuous cropping substrates promoted growth and root development, and increased the root and NADP-malic enzyme (NADP-ME) activity of tomato seedlings. Root transcriptome analysis demonstrated that the plant hormone signal transduction pathway was highly enriched, and 109 genes that positively correlated with the AMF-inoculated plant phenotype were obtained by gene set enrichment analysis (GSEA), which identified 9 genes related to indole acetic acid (IAA). Importantly, the levels of endogenous IAA in tomato seedlings significantly increased after AMF inoculation. Furthermore, the application of AMF significantly increased the expression levels of NADP-ME1 and NADP-ME2, as well as the activity of NADP-ME, and enhanced the root activity of tomato seedlings in comparison to that observed without inoculation of AMF. However, these effects were blocked in plants treated with 2,3,5-triiodobenzoic acid (TIBA), a polar transport inhibitor of IAA. CONCLUSIONS These results suggest that IAA mediates the AMF-promoted tomato growth and expression of NADP-MEs in continuous cropping substrates. The study provides convincing evidence for the reuse of continuous cropping substrates by adding AMF as an amendment.
Collapse
Affiliation(s)
- Yu Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wenze Zhang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Weikang Liu
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Golam Jalal Ahammed
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, China
| | - Wenxu Wen
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shirong Guo
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Sheng Shu
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Jin Sun
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
325
|
Thongkorn S, Kanlayaprasit S, Panjabud P, Saeliw T, Jantheang T, Kasitipradit K, Sarobol S, Jindatip D, Hu VW, Tencomnao T, Kikkawa T, Sato T, Osumi N, Sarachana T. Sex differences in the effects of prenatal bisphenol A exposure on autism-related genes and their relationships with the hippocampus functions. Sci Rep 2021; 11:1241. [PMID: 33441873 PMCID: PMC7806752 DOI: 10.1038/s41598-020-80390-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 12/21/2020] [Indexed: 01/29/2023] Open
Abstract
Our recent study has shown that prenatal exposure to bisphenol A (BPA) altered the expression of genes associated with autism spectrum disorder (ASD). In this study, we further investigated the effects of prenatal BPA exposure on ASD-related genes known to regulate neuronal viability, neuritogenesis, and learning/memory, and assessed these functions in the offspring of exposed pregnant rats. We found that prenatal BPA exposure increased neurite length, the number of primary neurites, and the number of neurite branches, but reduced the size of the hippocampal cell body in both sexes of the offspring. However, in utero exposure to BPA decreased the neuronal viability and the neuronal density in the hippocampus and impaired learning/memory only in the male offspring while the females were not affected. Interestingly, the expression of several ASD-related genes (e.g. Mief2, Eif3h, Cux1, and Atp8a1) in the hippocampus were dysregulated and showed a sex-specific correlation with neuronal viability, neuritogenesis, and/or learning/memory. The findings from this study suggest that prenatal BPA exposure disrupts ASD-related genes involved in neuronal viability, neuritogenesis, and learning/memory in a sex-dependent manner, and these genes may play an important role in the risk and the higher prevalence of ASD in males subjected to prenatal BPA exposure.
Collapse
Affiliation(s)
- Surangrat Thongkorn
- grid.7922.e0000 0001 0244 7875The Ph.D. Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Songphon Kanlayaprasit
- grid.7922.e0000 0001 0244 7875The Ph.D. Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Pawinee Panjabud
- grid.7922.e0000 0001 0244 7875The Ph.D. Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Thanit Saeliw
- grid.7922.e0000 0001 0244 7875The Ph.D. Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Thanawin Jantheang
- grid.7922.e0000 0001 0244 7875The Ph.D. Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Kasidit Kasitipradit
- grid.7922.e0000 0001 0244 7875The Ph.D. Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Suthathip Sarobol
- grid.411628.80000 0000 9758 8584Specimen Center, Department of Laboratory Medicine, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Depicha Jindatip
- grid.7922.e0000 0001 0244 7875Department of Anatomy, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand ,grid.7922.e0000 0001 0244 7875SYstems Neuroscience of Autism and PSychiatric Disorders (SYNAPS) Research Unit, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Valerie W. Hu
- grid.253615.60000 0004 1936 9510Department of Biochemistry and Molecular Medicine, The George Washington University School of Medicine and Health Sciences, The George Washington University, Washington, DC USA
| | - Tewin Tencomnao
- grid.7922.e0000 0001 0244 7875Age-Related Inflammation and Degeneration Research Unit, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Takako Kikkawa
- grid.69566.3a0000 0001 2248 6943Department of Developmental Neuroscience, United Centers for Advanced Research and Translational Medicine (ART), Tohoku University Graduate School of Medicine, Sendai, Miyagi Japan
| | - Tatsuya Sato
- grid.412754.10000 0000 9956 3487Department of Healthcare Management, Faculty of Health Sciences, Tohoku Fukushi University, Sendai, Miyagi Japan
| | - Noriko Osumi
- grid.69566.3a0000 0001 2248 6943Department of Developmental Neuroscience, United Centers for Advanced Research and Translational Medicine (ART), Tohoku University Graduate School of Medicine, Sendai, Miyagi Japan
| | - Tewarit Sarachana
- grid.7922.e0000 0001 0244 7875SYstems Neuroscience of Autism and PSychiatric Disorders (SYNAPS) Research Unit, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand ,grid.7922.e0000 0001 0244 7875Age-Related Inflammation and Degeneration Research Unit, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
326
|
Verma A, Prakash G, Ranjan R, Tyagi AK, Agarwal P. Silencing of an Ubiquitin Ligase Increases Grain Width and Weight in indica Rice. Front Genet 2021; 11:600378. [PMID: 33510769 PMCID: PMC7835794 DOI: 10.3389/fgene.2020.600378] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 11/27/2020] [Indexed: 11/18/2022] Open
Abstract
Many quantitative trait loci (QTLs) have been identified by molecular genetic studies which control grain size by regulating grain width, length, and/or thickness. Grain width 2 (GW2) is one such QTL that codes for a RING-type E3 ubiquitin ligase and increases grain size by regulating grain width through ubiquitin-mediated degradation of unknown substrates. A natural variation (single-nucleotide polymorphism at the 346th position) in the functional domain-coding region of OsGW2 in japonica rice genotypes has been shown to cause an increase in grain width/weight in rice. However, this variation is absent in indica rice genotypes. In this study, we report that reduced expression of OsGW2 can alter grain size, even though natural sequence variation is not responsible for increased grain size in indica rice genotypes. OsGW2 shows high expression in seed development stages and the protein localizes to the nucleus and cytoplasm. Downregulation of OsGW2 by RNAi technology results in wider and heavier grains. Microscopic observation of grain morphology suggests that OsGW2 determines grain size by influencing both cell expansion and cell proliferation in spikelet hull. Using transcriptome analysis, upregulated genes related to grain size regulation have been identified among 1,426 differentially expressed genes in an OsGW2_RNAi transgenic line. These results reveal that OsGW2 is a negative regulator of grain size in indica rice and affects both cell number and cell size in spikelet hull.
Collapse
Affiliation(s)
- Ankit Verma
- National Institute of Plant Genome Research, New Delhi, India
| | - Geeta Prakash
- National Institute of Plant Genome Research, New Delhi, India.,Department of Botany, Gargi College, University of Delhi, New Delhi, India
| | - Rajeev Ranjan
- National Institute of Plant Genome Research, New Delhi, India.,Department of Plant Molecular Biology, University of Delhi, New Delhi, India
| | - Akhilesh K Tyagi
- National Institute of Plant Genome Research, New Delhi, India.,Department of Plant Molecular Biology, University of Delhi, New Delhi, India
| | - Pinky Agarwal
- National Institute of Plant Genome Research, New Delhi, India
| |
Collapse
|
327
|
Farinha AP, Schrama D, Silva T, Conceição LEC, Colen R, Engrola S, Rodrigues P, Cerqueira M. Data on European seabass fed with methionine-enriched diets obtained through label free shotgun proteomics. Data Brief 2021; 34:106675. [PMID: 33392368 PMCID: PMC7773569 DOI: 10.1016/j.dib.2020.106675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 12/16/2020] [Indexed: 11/29/2022] Open
Abstract
This data article is associated with the research article “Evaluating the impact of methionine-enriched diets in the liver of European seabass through label-free shotgun proteomics”. Here it is described the data obtained from proteomic analysis of 36 European seabass juveniles (3 fish x 3 replicate tanks) after 18 days of feeding with experimental diets containing four inclusion levels of methionine (Met): 0.77%, 1%, 1.36% and 1.66% Met (w/w). We analysed this dataset and compared it with that obtained during the long-term feeding period i.e., 85 days. Fish liver proteins were digested with trypsin and purified peptides were analysed by LC-MS/MS. Proteins were identified with at least two peptides at 0.1% Decoy false discovery rate (FDR). In this dataset, we present the analysis of the differential abundant proteins (DAP) with significant differences across treatments after 18 days of feeding (One-Way ANOVA, p < 0.05). Treatment's comparisons were also performed between the 18- and 85-days feeding trials through Two-Way ANOVA (p < 0.05). MS/MS raw data are available via ProteomeXChange with identifiers PXD019610 and 10.6019/PXD019610 (18-days dataset); and PXD019622 and 10.6019/PXD019622 (85-days dataset). This dataset corresponds to fish sampled after 18-days of experimental trial and is made available to support the study conducted in the afore-mentioned article, by performing the analysis during a short-term period of feeding. The data presented may be further used in other nutritional studies e.g., addressing hepatic changes mediated by Met.
Collapse
Affiliation(s)
- Ana Paula Farinha
- Centre of Marine Sciences (CCMAR), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal.,Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Denise Schrama
- Centre of Marine Sciences (CCMAR), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal.,Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Tomé Silva
- SPAROS Lda., Área Empresarial de Marim, Lote C, 8700-221 Olhão, Portugal
| | - Luís E C Conceição
- SPAROS Lda., Área Empresarial de Marim, Lote C, 8700-221 Olhão, Portugal
| | - Rita Colen
- Centre of Marine Sciences (CCMAR), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Sofia Engrola
- Centre of Marine Sciences (CCMAR), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Pedro Rodrigues
- Centre of Marine Sciences (CCMAR), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal.,Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Marco Cerqueira
- Centre of Marine Sciences (CCMAR), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal.,Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| |
Collapse
|
328
|
Chen Z, Zhao J, Song J, Han S, Du Y, Qiao Y, Liu Z, Qiao J, Li W, Li J, Wang H, Xing B, Pan Q. Influence of graphene on the multiple metabolic pathways of Zea mays roots based on transcriptome analysis. PLoS One 2021; 16:e0244856. [PMID: 33395448 PMCID: PMC7781479 DOI: 10.1371/journal.pone.0244856] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 12/18/2020] [Indexed: 12/11/2022] Open
Abstract
Graphene reportedly exerts positive effects on plant root growth and development, although the corresponding molecular response mechanism remains to be elucidated. Maize seeds were randomly divided into a control and experimental group, and the roots of Zea mays L. seedlings were watered with different concentrations (0-100 mg/L) of graphene to explore the effects and molecular mechanism of graphene on the growth and development of Z. mays L. Upon evaluating root growth indices, 50 mg/L graphene remarkably increased total root length, root volume, and the number of root tips and forks of maize seedlings compared to those of the control group. We observed that the contents of nitrogen and potassium in rhizosphere soil increased following the 50 mg/L graphene treatment. Thereafter, we compared the transcriptome changes in Z. mays roots in response to the 50 mg/L graphene treatment. Transcriptional factor regulation, plant hormone signal transduction, nitrogen and potassium metabolism, as well as secondary metabolism in maize roots subjected to graphene treatment, exhibited significantly upregulated expression, all of which could be related to mechanisms underlying the response to graphene. Based on qPCR validations, we proposed several candidate genes that might have been affected with the graphene treatment of maize roots. The transcriptional profiles presented here provide a foundation for deciphering the mechanism underlying graphene and maize root interaction.
Collapse
Affiliation(s)
- Zhiwen Chen
- Key Laboratory of National Forest and Grass Administration for the Application of Graphene in Forestry, Institute of Carbon Materials Science, Shanxi Datong University, Datong, P.R. China
- * E-mail: (ZC); (JZ)
| | - Jianguo Zhao
- Key Laboratory of National Forest and Grass Administration for the Application of Graphene in Forestry, Institute of Carbon Materials Science, Shanxi Datong University, Datong, P.R. China
- School of Chemistry and Chemical Engineering, Shanxi Datong University, Datong, P.R. China
- * E-mail: (ZC); (JZ)
| | - Jie Song
- Key Laboratory of National Forest and Grass Administration for the Application of Graphene in Forestry, Institute of Carbon Materials Science, Shanxi Datong University, Datong, P.R. China
| | - Shenghua Han
- School of Chemistry and Chemical Engineering, Shanxi Datong University, Datong, P.R. China
| | - Yaqin Du
- School of Chemistry and Chemical Engineering, Shanxi Datong University, Datong, P.R. China
| | - Yuying Qiao
- Key Laboratory of National Forest and Grass Administration for the Application of Graphene in Forestry, Institute of Carbon Materials Science, Shanxi Datong University, Datong, P.R. China
| | - Zehui Liu
- School of Chemistry and Chemical Engineering, Shanxi Datong University, Datong, P.R. China
| | - Jun Qiao
- School of Chemistry and Chemical Engineering, Shanxi Datong University, Datong, P.R. China
| | - Weijia Li
- Key Laboratory of National Forest and Grass Administration for the Application of Graphene in Forestry, Institute of Carbon Materials Science, Shanxi Datong University, Datong, P.R. China
| | - Jingwei Li
- Key Laboratory of National Forest and Grass Administration for the Application of Graphene in Forestry, Institute of Carbon Materials Science, Shanxi Datong University, Datong, P.R. China
| | - Haiyan Wang
- School of Chemistry and Chemical Engineering, Shanxi Datong University, Datong, P.R. China
| | - Baoyan Xing
- Key Laboratory of National Forest and Grass Administration for the Application of Graphene in Forestry, Institute of Carbon Materials Science, Shanxi Datong University, Datong, P.R. China
| | - Qiliang Pan
- Key Laboratory of National Forest and Grass Administration for the Application of Graphene in Forestry, Institute of Carbon Materials Science, Shanxi Datong University, Datong, P.R. China
| |
Collapse
|
329
|
Papathanasiou M, Tsiftsoglou SA, Polyzos AP, Papadopoulou D, Valakos D, Klagkou E, Karagianni P, Pliatska M, Talianidis I, Agelopoulos M, Thanos D. Identification of a dynamic gene regulatory network required for pluripotency factor-induced reprogramming of mouse fibroblasts and hepatocytes. EMBO J 2021; 40:e102236. [PMID: 33034061 PMCID: PMC7780151 DOI: 10.15252/embj.2019102236] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 08/27/2020] [Accepted: 09/07/2020] [Indexed: 01/04/2023] Open
Abstract
The generation of induced pluripotent stem cells (iPSCs) from somatic cells provides an excellent model to study mechanisms of transcription factor-induced global alterations of the epigenome and genome function. Here, we have investigated the early transcriptional events of cellular reprogramming triggered by the co-expression of Oct4, Sox2, Klf4, and c-Myc (OSKM) in mouse embryonic fibroblasts (MEFs) and mouse hepatocytes (mHeps). In this analysis, we identified a gene regulatory network composed of nine transcriptional regulators (9TR; Cbfa2t3, Gli2, Irf6, Nanog, Ovol1, Rcan1, Taf1c, Tead4, and Tfap4), which are directly targeted by OSKM, in vivo. Functional studies using single and double shRNA knockdowns of any of these factors caused disruption of the network and dramatic reductions in reprogramming efficiency, indicating that this network is essential for the induction and establishment of pluripotency. We demonstrate that the stochastic co-expression of 9TR network components occurs in a remarkably small number of cells, approximating the percentage of terminally reprogrammed cells as a result of dynamic molecular events. Thus, the early DNA-binding patterns of OSKM and the subsequent probabilistic co-expression of essential 9TR components in subpopulations of cells undergoing reprogramming steer the reconstruction of a gene regulatory network marking the transition to pluripotency.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Maria Pliatska
- Biomedical Research Foundation Academy of AthensAthensGreece
| | | | | | - Dimitris Thanos
- Biomedical Research Foundation Academy of AthensAthensGreece
| |
Collapse
|
330
|
Min MK, Kim R, Hong WJ, Jung KH, Lee JY, Kim BG. OsPP2C09 Is a Bifunctional Regulator in Both ABA-Dependent and Independent Abiotic Stress Signaling Pathways. Int J Mol Sci 2021; 22:ijms22010393. [PMID: 33401385 PMCID: PMC7795834 DOI: 10.3390/ijms22010393] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/04/2020] [Accepted: 12/08/2020] [Indexed: 11/16/2022] Open
Abstract
Clade A Type 2C protein phosphatases (PP2CAs) negatively regulate abscisic acid (ABA) signaling and have diverse functions in plant development and in response to various stresses. In this study, we showed that overexpression of the rice ABA receptor OsPYL/RCAR3 reduces the growth retardation observed in plants exposed to osmotic stress. By contrast, overexpression of the OsPYL/RCAR3-interacting protein OsPP2C09 rendered plant growth more sensitive to osmotic stress. We tested whether OsPP2CAs activate an ABA-independent signaling cascade by transfecting rice protoplasts with luciferase reporters containing the drought-responsive element (DRE) or ABA-responsive element (ABRE). We observed that OsPP2CAs activated gene expression via the cis-acting drought-responsive element. In agreement with this observation, transcriptome analysis of plants overexpressing OsPP2C09 indicated that OsPP2C09 induces the expression of genes whose promoters contain DREs. Further analysis showed that OsPP2C09 interacts with DRE-binding (DREB) transcription factors and activates reporters containing DRE. We conclude that, through activating DRE-containing promoters, OsPP2C09 positively regulates the drought response regulon and activates an ABA-independent signaling pathway.
Collapse
Affiliation(s)
- Myung Ki Min
- Division of Metabolic Engineering, National Institute of Agricultural Sciences, RDA, Jeonju-si 54874, Korea; (M.K.M.); (R.K.); (J.-Y.L.)
| | - Rigyeong Kim
- Division of Metabolic Engineering, National Institute of Agricultural Sciences, RDA, Jeonju-si 54874, Korea; (M.K.M.); (R.K.); (J.-Y.L.)
| | - Woo-Jong Hong
- Graduate School of Biotechnology & Crop Biotech Institute, Kyung Hee University, Yongin 17104, Korea; (W.-J.H.); (K.-H.J.)
| | - Ki-Hong Jung
- Graduate School of Biotechnology & Crop Biotech Institute, Kyung Hee University, Yongin 17104, Korea; (W.-J.H.); (K.-H.J.)
| | - Jong-Yeol Lee
- Division of Metabolic Engineering, National Institute of Agricultural Sciences, RDA, Jeonju-si 54874, Korea; (M.K.M.); (R.K.); (J.-Y.L.)
| | - Beom-Gi Kim
- Division of Metabolic Engineering, National Institute of Agricultural Sciences, RDA, Jeonju-si 54874, Korea; (M.K.M.); (R.K.); (J.-Y.L.)
- Correspondence:
| |
Collapse
|
331
|
Ma X, Xu W, Liu T, Chen R, Zhu H, Zhang H, Cai C, Li S. Functional characterization of soybean (Glycine max) DIRIGENT genes reveals an important role of GmDIR27 in the regulation of pod dehiscence. Genomics 2021; 113:979-990. [PMID: 33144217 DOI: 10.1016/j.ygeno.2020.10.033] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/02/2020] [Accepted: 10/29/2020] [Indexed: 11/18/2022]
Abstract
DIRIGENT (DIR) genes play important roles in regulating plant growth and development and have been studied in many plant species. However, information on DIR genes in soybean is limited. Here, we identified and characterized 54 GmDIRs and studied the characteristics of GmDIRs. Most of the GmDIRs contained a classical gene structure, one exon; 26 conserved motifs were found among these GmDIRs. The GmDIRs were grouped into four subfamilies, DIR-a, DIR-b, DIR-e and DIR-f, based on a phylogenetic analysis, and 24 duplicated gene pairs were identified. Differences in the cis-acting elements in the GmDIR promoter regions might result in distinct expression patterns of GmDIRs in different tissues. In addition, GmDIR27 had a close relationship with the pod dehiscence gene GmPdh1, and overexpression of GmDIR27 increased pod dehiscence by affecting several pod dehiscence-related gene expressions. Generally, our results provide essential information that aids future efforts to functionally characterize soybean GmDIR genes.
Collapse
Affiliation(s)
- Xiaofei Ma
- College of Life Sciences, Key Lab of Plant Biotechnology in Universities of Shandong Province, Qingdao Agricultural University, Qingdao 266109, China
| | - Wenying Xu
- College of Life Sciences, Key Lab of Plant Biotechnology in Universities of Shandong Province, Qingdao Agricultural University, Qingdao 266109, China
| | - Tong Liu
- College of Life Sciences, Key Lab of Plant Biotechnology in Universities of Shandong Province, Qingdao Agricultural University, Qingdao 266109, China
| | - Ruying Chen
- College of Life Sciences, Key Lab of Plant Biotechnology in Universities of Shandong Province, Qingdao Agricultural University, Qingdao 266109, China
| | - Hong Zhu
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
| | - Huiying Zhang
- College of Life Sciences, Key Lab of Plant Biotechnology in Universities of Shandong Province, Qingdao Agricultural University, Qingdao 266109, China
| | - Chunmei Cai
- College of Life Sciences, Key Lab of Plant Biotechnology in Universities of Shandong Province, Qingdao Agricultural University, Qingdao 266109, China
| | - Shuai Li
- College of Life Sciences, Key Lab of Plant Biotechnology in Universities of Shandong Province, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
332
|
Liu C, Zhang Q, Zhu H, Cai C, Li S. Characterization of Mungbean CONSTANS-LIKE Genes and Functional Analysis of CONSTANS-LIKE 2 in the Regulation of Flowering Time in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2021; 12:608603. [PMID: 33613600 PMCID: PMC7890258 DOI: 10.3389/fpls.2021.608603] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 01/11/2021] [Indexed: 05/05/2023]
Abstract
CONSTANS-LIKE (COL) genes play important roles in the regulation of plant growth and development, and they have been analyzed in many plant species. However, few studies have examined COL genes in mungbean (Vigna radiata). In this study, we identified and characterized 31 mungbean genes whose proteins contained B-Box domains. Fourteen were designated as VrCOL genes and were distributed on 7 of the 11 mungbean chromosomes. Based on their phylogenetic relationships, VrCOLs were clustered into three groups (I, II, and III), which contained 4, 6, and 4 members, respectively. The gene structures and conserved motifs of the VrCOL genes were analyzed, and two duplicated gene pairs, VrCOL1/VrCOL2 and VrCOL8/VrCOL9, were identified. A total of 82 cis-acting elements were found in the VrCOL promoter regions, and the numbers and types of cis-acting elements in each VrCOL promoter region differed. As a result, the expression patterns of VrCOLs varied in different tissues and throughout the day under long-day and short-day conditions. Among these VrCOL genes, VrCOL2 showed a close phylogenetic relationship with Arabidopsis thaliana CO and displayed daily oscillations in expression under short-day conditions but not long-day conditions. In addition, overexpression of VrCOL2 accelerated flowering in Arabidopsis under short-day conditions by affecting the expression of the flowering time genes AtFT and AtTSF. Our study lays the foundation for further investigation of VrCOL gene functions.
Collapse
Affiliation(s)
- Chenyang Liu
- Key Laboratory of Plant Biotechnology in Universities of Shandong Province, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Qianqian Zhang
- Key Laboratory of Plant Biotechnology in Universities of Shandong Province, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Hong Zhu
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Chunmei Cai
- Key Laboratory of Plant Biotechnology in Universities of Shandong Province, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Shuai Li
- Key Laboratory of Plant Biotechnology in Universities of Shandong Province, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
- *Correspondence: Shuai Li,
| |
Collapse
|
333
|
Xiang Q, Hu S, Ligaba-Osena A, Yang J, Tong F, Guo W. Seasonal Variation in Transcriptomic Profiling of Tetrastigma hemsleyanum Fully Developed Tuberous Roots Enriches Candidate Genes in Essential Metabolic Pathways and Phytohormone Signaling. FRONTIERS IN PLANT SCIENCE 2021; 12:659645. [PMID: 34305963 PMCID: PMC8300961 DOI: 10.3389/fpls.2021.659645] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 04/12/2021] [Indexed: 05/07/2023]
Abstract
Tetrastigma hemsleyanum Diels et Gilg (Sanyeqing, SYQ) is a perennial climbing liana and an endemic plant to southern China. Its tuberous roots (TRs) are used in traditional Chinese medicine for treating some diseases such as high fever, pneumonia, asthma, hepatitis, and cancers. However, the mechanisms underlying the development of TR and the content of flavonoids and phenylpropanoids (FPs) are not well-understood. In this study, we performed a transcriptomic analysis of 12 fully developed TR (FD-TR) samples harvested in four seasons [spring (Sp), summer (Su), autumn (Au), and winter (Wi)] using the RNA-Sequencing (RNA-Seq). We obtained a total of 78.54 Gb raw data and 65,578 unigenes. Then, the unigenes were annotated by using six databases such as non-redundant protein database (NR), Pfam, eggNOG, SWISSProt, Kyoto Encyclopedia of Genes and Genomes (KEGG), and gene ontology (GO). The transcriptomic profiling showed closer relationships between the samples obtained in Su and Au than those obtained in Sp and Wi based on the results of both total unigenes and differentially expressed genes (DEGs). Three pathways, including the biosynthesis of FPs, metabolism of starch and sucrose, and signaling of phytohormones, were highly enriched, suggesting a gene-level seasonal variation. Based on the numbers of DEGs, brassinosteroid (BR) signal transduction factors appeared to play a key role in modulating the development of TRs while most of the auxin signaling genes were mainly activated in Wi and Sp FD-TRs. Most genes in the biosynthesis and biodegradation of starch and biodegradation of cellulose were activated in Wi FD-TRs. As determined by the high performance liquid chromatography (HPLC) and aluminum nitrate colorimetric method, the contents of total flavonoids and most detected FP components increased from Sp to Au but decreased in Wi. Enhanced expression levels of some genes in the biosynthetic pathways of FPs were detected in Su and Au samples, which corroborated well with metabolite content. Our findings provide the first transcriptomic and biochemical data on a seasonal variation in the composition of medically important metabolites in SYQ FD-TRs.
Collapse
Affiliation(s)
- Qianqian Xiang
- Department of Biotechnology, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Siyuan Hu
- Department of Biotechnology, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Ayalew Ligaba-Osena
- Laboratory of Plant Molecular Biology and Biotechnology, Department of Biology, The University of North Carolina at Greensboro, Greensboro, NC, United States
| | - Jiayao Yang
- Department of Biotechnology, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Fudan Tong
- Department of Biotechnology, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Wanli Guo
- Department of Biotechnology, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
- *Correspondence: Wanli Guo ;
| |
Collapse
|
334
|
Gao J, van Kleeff PJM, de Boer MH, Erban A, Kopka J, Hincha DK, de Boer AH. Ion Homeostasis and Metabolome Analysis of Arabidopsis 14-3-3 Quadruple Mutants to Salt Stress. FRONTIERS IN PLANT SCIENCE 2021; 12:697324. [PMID: 34589094 PMCID: PMC8473882 DOI: 10.3389/fpls.2021.697324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 08/11/2021] [Indexed: 05/02/2023]
Abstract
Salinity is one of the major abiotic stresses that limits agricultural productivity worldwide. Many proteins with defined functions in salt stress adaptation are controlled through interactions with members of the 14-3-3 family. In the present study, we generated three 14-3-3 quadruple knockout mutants (qKOs: klpc, klun, and unpc) to study the role of six non-epsilon group 14-3-3 proteins for salt stress adaptation. The relative growth inhibition under 100 mM of NaCl stress was the same for wild-type (Wt) and qKOs, but the accumulation of Na+ in the shoots of klpc was significantly lower than that in Wt. This difference correlated with the higher expression of the HKT1 gene in klpc. Considering the regulatory role of 14-3-3 proteins in metabolism and the effect of salt stress on metabolite accumulation, we analyzed the effect of a 24-h salt treatment on the root metabolome of nutrient solution-grown genotypes. The results indicated that the klpc mutant had metabolome responses that were different from those of Wt. Notably, the reducing sugars, glucose and fructose, were lower in klpc under control and salt stress. On the other hand, their phosphorylated forms, glucose-6P and fructose-6P, were lower under salt stress as compared to Wt. This study provided insight into the functions of the 14-3-3 proteins from non-epsilon group members. In summary, it was found that these proteins control ion homeostasis and metabolite composition under salt stress conditions and non-stressed conditions. The analyses of single, double, and triple mutants that modify subsets from the most effective qKO mutant (klpc) may also reveal the potential redundancy for the observed phenotypes.
Collapse
Affiliation(s)
- Jing Gao
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
- Department of Structural Biology, Faculty of Earth and Life Sciences, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Paula J. M. van Kleeff
- Department of Structural Biology, Faculty of Earth and Life Sciences, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Mark H. de Boer
- Department of Structural Biology, Faculty of Earth and Life Sciences, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Alexander Erban
- Department Willmitzer, Max Planck Institute Molecular Plant Physiology, Potsdam, Germany
| | - Joachim Kopka
- Department Willmitzer, Max Planck Institute Molecular Plant Physiology, Potsdam, Germany
| | - Dirk K. Hincha
- Department Willmitzer, Max Planck Institute Molecular Plant Physiology, Potsdam, Germany
| | - Albertus H. de Boer
- Department of Structural Biology, Faculty of Earth and Life Sciences, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Department of Medicinal Chemistry, Beta Faculty, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- *Correspondence: Albertus H. de Boer
| |
Collapse
|
335
|
Chen T, Blanc C, Liu Y, Ishida E, Singer S, Xu J, Joe M, Jenny-Avital ER, Chan J, Lowary TL, Achkar JM. Capsular glycan recognition provides antibody-mediated immunity against tuberculosis. J Clin Invest 2020; 130:1808-1822. [PMID: 31935198 DOI: 10.1172/jci128459] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 01/03/2020] [Indexed: 12/16/2022] Open
Abstract
A better understanding of all immune components involved in protecting against Mycobacterium tuberculosis infection is urgently needed to inform strategies for novel immunotherapy and tuberculosis (TB) vaccine development. Although cell-mediated immunity is critical, increasing evidence supports that antibodies also have a protective role against TB. Yet knowledge of protective antigens is limited. Analyzing sera from 97 US immigrants at various stages of M. tuberculosis infection, we showed protective in vitro and in vivo efficacy of polyclonal IgG against the M. tuberculosis capsular polysaccharide arabinomannan (AM). Using recently developed glycan arrays, we established that anti-AM IgG induced in natural infection is highly heterogeneous in its binding specificity and differs in both its reactivity to oligosaccharide motifs within AM and its functions in bacillus Calmette-Guérin vaccination and/or in controlled (latent) versus uncontrolled (TB) M. tuberculosis infection. We showed that anti-AM IgG from asymptomatic but not from diseased individuals was protective and provided data suggesting a potential role of IgG2 and specific AM oligosaccharides. Filling a gap in the current knowledge of protective antigens in humans, our data support the key role of the M. tuberculosis surface glycan AM and suggest the importance of targeting specific glycan epitopes within AM in antibody-mediated immunity against TB.
Collapse
Affiliation(s)
- Tingting Chen
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Caroline Blanc
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Yanyan Liu
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Elise Ishida
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Sarah Singer
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Jiayong Xu
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Maju Joe
- Alberta Glycomics Centre and Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | | | - John Chan
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA.,Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Todd L Lowary
- Alberta Glycomics Centre and Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Jacqueline M Achkar
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA.,Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
336
|
Kaczynski P, Bauersachs S, Goryszewska E, Baryla M, Waclawik A. Synergistic action of estradiol and PGE2 on endometrial transcriptome in vivo resembles pregnancy effects better than estradiol alone†. Biol Reprod 2020; 104:818-834. [PMID: 33354726 DOI: 10.1093/biolre/ioaa230] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/10/2020] [Accepted: 12/16/2020] [Indexed: 01/01/2023] Open
Abstract
Successful pregnancy establishment in mammals depends on numerous interactions between embryos and the maternal organism. Estradiol-17β (E2) is the primary embryonic signal in the pig, and its importance has been questioned recently. However, E2 is not the only molecule of embryonic origin. In pigs, prostaglandin E2 (PGE2) is abundantly synthesized and secreted by conceptuses and endometrium. The present study aimed to determine the role of PGE2 and its simultaneous action with E2 in changes in porcine endometrial transcriptome during pregnancy establishment. The effects of PGE2 and PGE2 acting with E2 were studied using an in vivo model of intrauterine hormone infusions, and were compared to the effects of E2 alone and conceptuses' presence on day 12 of pregnancy. The endometrial transcriptome was profiled using gene expression microarrays followed by statistical analyses. Downstream analyses were performed using bioinformatics tools. Differential expression of selected genes was verified by quantitative polymerase chain reaction. Microarray analysis revealed 2413 differentially expressed genes (DEGs) in the endometrium treated simultaneously with PGE2 and E2 (P < 0.01). No significant effect of PGE2 administered alone on endometrial transcriptome was detected. Gene ontology annotations enriched for DEGs were related to multiple processes such as: focal adhesion, vascularization, cell migration and proliferation, glucose metabolism, tissue remodeling, and activation of immune response. Simultaneous administration of E2 and PGE2 induced more changes within endometrial transcriptome characteristic to pregnancy than infusion of E2 alone. The present findings suggest that synergistic action of estradiol-17β and PGE2 resembles the effects of pregnancy on endometrial transcriptome better than E2 alone.
Collapse
Affiliation(s)
- Piotr Kaczynski
- Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Olsztyn, Poland
| | - Stefan Bauersachs
- Vetsuisse Faculty, Institute of Veterinary Anatomy, Functional Genomics, University of Zurich, Zurich, Switzerland
| | - Ewelina Goryszewska
- Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Olsztyn, Poland
| | - Monika Baryla
- Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Olsztyn, Poland
| | - Agnieszka Waclawik
- Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Olsztyn, Poland
| |
Collapse
|
337
|
Denaro R, Aulenta F, Crisafi F, Di Pippo F, Cruz Viggi C, Matturro B, Tomei P, Smedile F, Martinelli A, Di Lisio V, Venezia C, Rossetti S. Marine hydrocarbon-degrading bacteria breakdown poly(ethylene terephthalate) (PET). THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 749:141608. [PMID: 32836129 DOI: 10.1016/j.scitotenv.2020.141608] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/07/2020] [Accepted: 08/08/2020] [Indexed: 05/09/2023]
Abstract
Pollution of aquatic ecosystems by plastic wastes poses severe environmental and health problems and has prompted scientific investigations on the fate and factors contributing to the modification of plastics in the marine environment. Here, we investigated, by means of microcosm studies, the role of hydrocarbon-degrading bacteria in the degradation of poly(ethylene terephthalate) (PET), the main constituents of plastic bottles, in the marine environment. To this aim, different bacterial consortia, previously acclimated to representative hydrocarbons fractions namely, tetradecane (aliphatic fraction), diesel (mixture of hydrocarbons), and naphthalene/phenantrene (aromatic fraction), were used as inocula of microcosm experiments, in order to identify peculiar specialization in poly(ethylene terephthalate) degradation. Upon formation of a mature biofilm on the surface of poly(ethylene terephthalate) films, the bacterial biodiversity and degradation efficiency of each selected consortium was analyzed. Notably, significant differences on biofilm biodiversity were observed with distinctive hydrocarbons-degraders being enriched on poly(ethylene terephthalate) surface, such as Alcanivorax, Hyphomonas, and Cycloclasticus species. Interestingly, ATR-FTIR analyses, supported by SEM and water contact angle measurements, revealed major alterations of the surface chemistry and morphology of PET films, mainly driven by the bacterial consortia enriched on tetradecane and diesel. Distinctive signatures of microbial activity were the alteration of the FTIR spectra as a consequence of PET chain scission through the hydrolysis of the ester bond, the increased sample hydrophobicity as well as the formation of small cracks and cavities on the surface of the film. In conclusion, our study demonstrates for the first time that hydrocarbons-degrading marine bacteria have the potential to degrade poly(ethylene terephthalate), although their degradative activity could potentially trigger the formation of harmful microplastics in the marine environment.
Collapse
Affiliation(s)
- R Denaro
- Water Research Institute (IRSA) (CNR), Via Salaria km 29, 300, 00015 Monterotondo, Rome, Italy.
| | - F Aulenta
- Water Research Institute (IRSA) (CNR), Via Salaria km 29, 300, 00015 Monterotondo, Rome, Italy
| | - F Crisafi
- Institute for Biological Resources and Marine Biotechnology (IRBIM) (CNR), Spianata San Raineri, 86, 98121 Messina, Italy
| | - F Di Pippo
- Water Research Institute (IRSA) (CNR), Via Salaria km 29, 300, 00015 Monterotondo, Rome, Italy
| | - C Cruz Viggi
- Water Research Institute (IRSA) (CNR), Via Salaria km 29, 300, 00015 Monterotondo, Rome, Italy
| | - B Matturro
- Water Research Institute (IRSA) (CNR), Via Salaria km 29, 300, 00015 Monterotondo, Rome, Italy
| | - P Tomei
- Water Research Institute (IRSA) (CNR), Via Salaria km 29, 300, 00015 Monterotondo, Rome, Italy
| | - F Smedile
- Institute for Biological Resources and Marine Biotechnology (IRBIM) (CNR), Spianata San Raineri, 86, 98121 Messina, Italy
| | - A Martinelli
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro, 5, 00185 Rome, Italy
| | - V Di Lisio
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro, 5, 00185 Rome, Italy
| | - C Venezia
- Water Research Institute (IRSA) (CNR), Via Salaria km 29, 300, 00015 Monterotondo, Rome, Italy
| | - S Rossetti
- Water Research Institute (IRSA) (CNR), Via Salaria km 29, 300, 00015 Monterotondo, Rome, Italy
| |
Collapse
|
338
|
Manolaki P, Tooulakou G, Byberg CU, Eller F, Sorrell BK, Klapa MI, Riis T. Probing the Response of the Amphibious Plant Butomus umbellatus to Nutrient Enrichment and Shading by Integrating Eco-Physiological With Metabolomic Analyses. FRONTIERS IN PLANT SCIENCE 2020; 11:581787. [PMID: 33391296 PMCID: PMC7772459 DOI: 10.3389/fpls.2020.581787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 11/18/2020] [Indexed: 06/12/2023]
Abstract
Amphibious plants, living in land-water ecotones, have to cope with challenging and continuously changing growth conditions in their habitats with respect to nutrient and light availability. They have thus evolved a variety of mechanisms to tolerate and adapt to these changes. Therefore, the study of these plants is a major area of ecophysiology and environmental ecological research. However, our understanding of their capacity for physiological adaptation and tolerance remains limited and requires systemic approaches for comprehensive analyses. To this end, in this study, we have conducted a mesocosm experiment to analyze the response of Butomus umbellatus, a common amphibious species in Denmark, to nutrient enrichment and shading. Our study follows a systematic integration of morphological (including plant height, leaf number, and biomass accumulation), ecophysiological (photosynthesis-irradiance responses, leaf pigment content, and C and N content in plant organs), and leaf metabolomic measurements using gas chromatography-mass spectrometry (39 mainly primary metabolites), based on bioinformatic methods. No studies of this type have been previously reported for this plant species. We observed that B. umbellatus responds to nutrient enrichment and light reduction through different mechanisms and were able to identify its nutrient enrichment acclimation threshold within the applied nutrient gradient. Up to that threshold, the morpho-physiological response to nutrient enrichment was profound, indicating fast-growing trends (higher growth rates and biomass accumulation), but only few parameters changed significantly from light to shade [specific leaf area (SLA); quantum yield (φ)]. Metabolomic analysis supported the morpho-physiological results regarding nutrient overloading, indicating also subtle changes due to shading not directly apparent in the other measurements. The combined profile analysis revealed leaf metabolite and morpho-physiological parameter associations. In this context, leaf lactate, currently of uncertain role in higher plants, emerged as a shading acclimation biomarker, along with SLA and φ. The study enhances both the ecophysiology methodological toolbox and our knowledge of the adaptive capacity of amphibious species. It demonstrates that the educated combination of physiological with metabolomic measurements using bioinformatic approaches is a promising approach for ecophysiology research, enabling the elucidation of discriminatory metabolic shifts to be used for early diagnosis and even prognosis of natural ecosystem responses to climate change.
Collapse
Affiliation(s)
- Paraskevi Manolaki
- Aarhus Institute of Advanced Studies, AIAS, Aarhus, Denmark
- Department of Biology-Aquatic Biology, Aarhus University, Aarhus, Denmark
| | - Georgia Tooulakou
- Metabolic Engineering and Systems Biology Laboratory, Institute of Chemical Engineering Sciences, Foundation for Research & Technology-Hellas (FORTH/ICE-HT), Patras, Greece
| | | | - Franziska Eller
- Department of Biology-Aquatic Biology, Aarhus University, Aarhus, Denmark
| | - Brian K Sorrell
- Department of Biology-Aquatic Biology, Aarhus University, Aarhus, Denmark
| | - Maria I Klapa
- Metabolic Engineering and Systems Biology Laboratory, Institute of Chemical Engineering Sciences, Foundation for Research & Technology-Hellas (FORTH/ICE-HT), Patras, Greece
| | - Tenna Riis
- Department of Biology-Aquatic Biology, Aarhus University, Aarhus, Denmark
| |
Collapse
|
339
|
Henderson LO, Gaballa A, Orsi RH, Boor KJ, Wiedmann M, Guariglia-Oropeza V. Transcriptional profiling of the L. monocytogenes PrfA regulon identifies six novel putative PrfA-regulated genes. FEMS Microbiol Lett 2020; 367:5998225. [PMID: 33220686 DOI: 10.1093/femsle/fnaa193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 11/19/2020] [Indexed: 12/28/2022] Open
Abstract
The transcriptional activator Positive Regulatory Factor A (PrfA) regulates expression of genes essential for virulence in Listeria monocytogenes. To define the PrfA regulon, the 10403S wildtype (WT) strain, a constitutively active prfA* mutant, and an isogenic ∆prfA mutant were grown under PrfA-inducing conditions in a medium containing glucose-1-phosphate and pre-treated with 0.2% activated charcoal. RNA-seq-generated transcript levels were compared as follows: (i) prfA* and WT; (ii) WT and ∆prfA and (iii) prfA* and ∆prfA. Significantly higher transcript levels in the induced WT or constitutively active PrfA* were identified for 18 genes and 2 ncRNAs in at least one of the three comparisons. These genes included: (i) 10/12 of the genes previously identified as directly PrfA-regulated; (ii) 2 genes previously identified as PrfA-regulated, albeit likely indirectly; and (iii) 6 genes newly identified as PrfA-regulated, including one (LMRG_0 2046) with a σA-dependent promoter and PrfA box located within an upstream open reading frame. LMRG_0 2046, which encodes a putative cyanate permease, is reported to be downregulated by a σB-dependent anti-sense RNA. This newly identified overlap between the σB and PrfA regulons highlights the complexity of regulatory networks important for fine-tuning bacterial gene expression in response to the rapidly changing environmental conditions associated with infection.
Collapse
Affiliation(s)
- L O Henderson
- Department of Food Science, Cornell University, 352 Stocking Hall Ithaca, NY 14853, USA
| | - A Gaballa
- Department of Food Science, Cornell University, 352 Stocking Hall Ithaca, NY 14853, USA
| | - R H Orsi
- Department of Food Science, Cornell University, 352 Stocking Hall Ithaca, NY 14853, USA
| | - K J Boor
- Department of Food Science, Cornell University, 352 Stocking Hall Ithaca, NY 14853, USA
| | - M Wiedmann
- Department of Food Science, Cornell University, 352 Stocking Hall Ithaca, NY 14853, USA
| | - V Guariglia-Oropeza
- Department of Food Science, Cornell University, 352 Stocking Hall Ithaca, NY 14853, USA
| |
Collapse
|
340
|
Azimi I, Robitaille M, Armitage K, So CL, Milevskiy MJG, Northwood K, Lim HF, Thompson EW, Roberts-Thomson SJ, Monteith GR. Activation of the Ion Channel TRPV4 Induces Epithelial to Mesenchymal Transition in Breast Cancer Cells. Int J Mol Sci 2020; 21:ijms21249417. [PMID: 33322037 PMCID: PMC7764818 DOI: 10.3390/ijms21249417] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/03/2020] [Accepted: 12/08/2020] [Indexed: 12/16/2022] Open
Abstract
Epithelial to mesenchymal transition (EMT) in cancer is important in therapeutic resistance and invasiveness. Calcium signaling is key to the induction of EMT in breast cancer cells. Although inhibition of specific calcium-permeable ion channels regulates the induction of a sub-set of EMT markers in breast cancer cells, it is still unclear if activation of a specific calcium channel can be a driver for the induction of EMT events. In this study, we exploited the availability of a selective pharmacological activator of the calcium-permeable ion channel TRPV4 to assess the direct role of calcium influx in EMT marker induction. Gene association studies revealed a link between TRPV4 and gene-ontologies associated with EMT and poorer relapse-free survival in lymph node-positive basal breast cancers. TRPV4 was an important component of the calcium influx phase induced in MDA-MB-468 breast cancer cells by the EMT inducer epidermal growth factor (EGF). Pharmacological activation of TRPV4 then drove the induction of a variety of EMT markers in breast cancer cells. These studies demonstrate that calcium influx through specific pathways appears to be sufficient to trigger EMT events.
Collapse
Affiliation(s)
- Iman Azimi
- School of Pharmacy and Pharmacology, College of Health and Medicine, University of Tasmania, Hobart, TAS 7005, Australia;
| | - Mélanie Robitaille
- School of Pharmacy, The University of Queensland, Brisbane, QLD 4102, Australia; (M.R.); (K.A.); (C.L.S.); (H.F.L.); (S.J.R.-T.)
| | - Kaela Armitage
- School of Pharmacy, The University of Queensland, Brisbane, QLD 4102, Australia; (M.R.); (K.A.); (C.L.S.); (H.F.L.); (S.J.R.-T.)
| | - Choon Leng So
- School of Pharmacy, The University of Queensland, Brisbane, QLD 4102, Australia; (M.R.); (K.A.); (C.L.S.); (H.F.L.); (S.J.R.-T.)
| | - Michael J. G. Milevskiy
- ACRF Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia;
| | - Korinne Northwood
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4067, Australia;
- UQ Centre for Clinical Research, The University of Queensland, Herston, QLD 4029, Australia
| | - Huai Fang Lim
- School of Pharmacy, The University of Queensland, Brisbane, QLD 4102, Australia; (M.R.); (K.A.); (C.L.S.); (H.F.L.); (S.J.R.-T.)
| | - Erik W. Thompson
- Institute of Health and Biomedical Innovation and School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, QLD 4102, Australia;
- Translational Research Institute, The University of Queensland, Brisbane, QLD 4102, Australia
- Department of Surgery, St. Vincent’s Hospital, University of Melbourne, Melbourne, VIC 3065, Australia
| | - Sarah J. Roberts-Thomson
- School of Pharmacy, The University of Queensland, Brisbane, QLD 4102, Australia; (M.R.); (K.A.); (C.L.S.); (H.F.L.); (S.J.R.-T.)
| | - Gregory R. Monteith
- School of Pharmacy, The University of Queensland, Brisbane, QLD 4102, Australia; (M.R.); (K.A.); (C.L.S.); (H.F.L.); (S.J.R.-T.)
- Mater Research Institute, Translational Research Institute, The University of Queensland, Brisbane, QLD 4102, Australia
- Correspondence: ; Tel.: +61-7-334-61855
| |
Collapse
|
341
|
Colson P, Pinault L, Azza S, Armstrong N, Chabriere E, La Scola B, Pontarotti P, Raoult D. A protein of the metallo-hydrolase/oxidoreductase superfamily with both beta-lactamase and ribonuclease activity is linked with translation in giant viruses. Sci Rep 2020; 10:21685. [PMID: 33303919 PMCID: PMC7729979 DOI: 10.1038/s41598-020-78658-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 11/23/2020] [Indexed: 12/21/2022] Open
Abstract
Proteins with a metallo-beta-lactamase (MBL) fold have been largely studied in bacteria in the framework of resistance to beta-lactams, but their spectrum of activities is broader. We show here that the giant Tupanvirus also encodes a MBL fold-protein that has orthologs in other giant viruses, a deep phylogenetic root and is clustered with tRNases. This protein is significantly associated with translation components in giant viruses. After expression in Escherichia coli, it was found to hydrolyse nitrocefin, a beta-lactam, and penicillin G. This was inhibited by sulbactam, a beta-lactamase inhibitor. In addition, the tupanvirus MBL fold-protein was not active on single- or double-stranded DNA, but degraded RNAs from bacteria and Acanthamoeba castellanii, the tupanvirus amoebal host. This activity was not neutralized by sulbactam. Overall, our results still broaden the host range of MBL fold-proteins, showing dual beta-lactamase/nuclease activities in giant viruses.
Collapse
Affiliation(s)
- Philippe Colson
- Aix-Marseille Univ., Institut de Recherche pour le Développement (IRD), Assistance Publique - Hôpitaux de Marseille (AP-HM), Microbes Evolution Phylogeny and Infections (MEPHI), 27 boulevard Jean Moulin, 13005, Marseille, France.,IHU Méditerranée Infection, 19-21 boulevard Jean Moulin, 13005, Marseille, France
| | - Lucile Pinault
- IHU Méditerranée Infection, 19-21 boulevard Jean Moulin, 13005, Marseille, France
| | - Said Azza
- IHU Méditerranée Infection, 19-21 boulevard Jean Moulin, 13005, Marseille, France
| | - Nicholas Armstrong
- IHU Méditerranée Infection, 19-21 boulevard Jean Moulin, 13005, Marseille, France
| | - Eric Chabriere
- Aix-Marseille Univ., Institut de Recherche pour le Développement (IRD), Assistance Publique - Hôpitaux de Marseille (AP-HM), Microbes Evolution Phylogeny and Infections (MEPHI), 27 boulevard Jean Moulin, 13005, Marseille, France.,IHU Méditerranée Infection, 19-21 boulevard Jean Moulin, 13005, Marseille, France
| | - Bernard La Scola
- Aix-Marseille Univ., Institut de Recherche pour le Développement (IRD), Assistance Publique - Hôpitaux de Marseille (AP-HM), Microbes Evolution Phylogeny and Infections (MEPHI), 27 boulevard Jean Moulin, 13005, Marseille, France.,IHU Méditerranée Infection, 19-21 boulevard Jean Moulin, 13005, Marseille, France
| | - Pierre Pontarotti
- Aix-Marseille Univ., Institut de Recherche pour le Développement (IRD), Assistance Publique - Hôpitaux de Marseille (AP-HM), Microbes Evolution Phylogeny and Infections (MEPHI), 27 boulevard Jean Moulin, 13005, Marseille, France.,CNRS, Marseille, France
| | - Didier Raoult
- Aix-Marseille Univ., Institut de Recherche pour le Développement (IRD), Assistance Publique - Hôpitaux de Marseille (AP-HM), Microbes Evolution Phylogeny and Infections (MEPHI), 27 boulevard Jean Moulin, 13005, Marseille, France. .,IHU Méditerranée Infection, 19-21 boulevard Jean Moulin, 13005, Marseille, France.
| |
Collapse
|
342
|
Siengdee P, Oster M, Reyer H, Viergutz T, Wimmers K, Ponsuksili S. Morphological and Molecular Features of Porcine Mesenchymal Stem Cells Derived From Different Types of Synovial Membrane, and Genetic Background of Cell Donors. Front Cell Dev Biol 2020; 8:601212. [PMID: 33363158 PMCID: PMC7755640 DOI: 10.3389/fcell.2020.601212] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/19/2020] [Indexed: 01/22/2023] Open
Abstract
Synovial mesenchymal stem cells (SMSCs) have become a great cell source for musculoskeletal stem cell research, especially related to cartilage and bone tissue regeneration, due to their superior cell proliferation properties and multidifferentiation potential into various cell lineages. This study revealed isolation methods, culture conditions, and morphological and molecular characterization of SMSCs derived fibrous synovium (FS) and adipose synovium (FP) of two pig breeds differing in growth performance [German Landrace (DL), and fat deposition (Angeln Saddleback (AS)]. Herein, FS possessed nucleated cell numbers nearly twice as high as those of FP at Passage 0. SMSCs derived from different types of synovial membrane and genetic background show similar cell morphologies and immunophenotypes, which were assessed by cell surface epitopes and multilineage differentiation potential, but differ significantly in their molecular characteristics. In addition, transcripts of SMSCs from AS were more enriched in IGF-1 signaling and VEGF ligand receptor, while SMSCs from DL were more enriched in growth hormone signaling and bone metabolism. The results indicate that genetics and tissues play significant roles for SMSC characteristics so that SMSCs can be traced back to the original cell donor and be used for fine turning in applications of medical research and therapies.
Collapse
Affiliation(s)
- Puntita Siengdee
- Institute for Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Michael Oster
- Institute for Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Henry Reyer
- Institute for Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Torsten Viergutz
- Institute for Reproductive Biology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Klaus Wimmers
- Institute for Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Siriluck Ponsuksili
- Institute for Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| |
Collapse
|
343
|
Imai T, Nishiyama K, Ueki K, Tanaka T, Kaku Y, Hara T, Ohga S. Involvement of activated cytotoxic T lymphocytes and natural killer cells in Henoch-Schönlein purpura nephritis. Clin Transl Immunology 2020; 9:e1212. [PMID: 33282293 PMCID: PMC7684975 DOI: 10.1002/cti2.1212] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/16/2020] [Accepted: 10/21/2020] [Indexed: 11/07/2022] Open
Abstract
Objectives Immunoglobulin A vasculitis/Henoch–Schönlein purpura (IgAV/HSP) is a major cause of vasculitis in children. It is often accompanied by nephritis (HSPN) and could progress to chronic kidney disease. Galactose‐deficient IgA1 was recently reported to be involved in the pathogenesis of HSPN, for which immunosuppressive drugs are considered key treatment. However, the involvement of immune cells in the development of HSPN remains unclear. Methods We compared gene expressions of peripheral blood mononuclear cells (PBMCs) among healthy controls (n = 10), IgAV/HSP patients (n = 21) and HSPN patients (n = 8), which required nephritis development within 3 months of IgAV/HSP onset. Immunohistochemistry analysis and flow cytometry were performed to assess renal biopsy specimens and PBMCs, respectively. Serum CX3CL1 levels were measured by ELISA. Results GNLY and GZMB expressions increased in HSPN patients, consistent with increased number of glomerular granulysin‐ and/or granzyme B‐positive cells demonstrated by immunohistochemistry analysis. Additionally, circulating cytotoxic T lymphocytes (CTLs) and natural killer (NK) cells were activated with the up‐regulated surface expressions of human leucocyte antigen DR (HLA‐DR) and CX3CR1 in HSPN patients with severe proteinuria. Renal biopsies demonstrated increased number of CD8+ cells and/or CD56+ cells and up‐regulated expression of glomerular CX3CL1, a specific ligand for CX3CR1, along with increased serum CX3CL1 level. Conclusion Activated CTLs and NK cells play roles in the development of nephritis in IgAV/HSP patients and can be used as novel biomarkers for HSPN.
Collapse
Affiliation(s)
- Takashi Imai
- Department of Pediatrics Graduate School of Medical Sciences Kyushu University Fukuoka Japan
| | - Kei Nishiyama
- Department of Pediatrics Graduate School of Medical Sciences Kyushu University Fukuoka Japan
| | - Kenji Ueki
- Department of Medicine and Clinical Science Graduate School of Medical Sciences Kyushu University Fukuoka Japan
| | - Tamami Tanaka
- Department of Pediatrics Graduate School of Medical Sciences Kyushu University Fukuoka Japan
| | - Yoshitsugu Kaku
- Department of Pediatric Nephrology Fukuoka Children's Hospital Fukuoka Japan
| | - Toshiro Hara
- Kawasaki Disease Center Fukuoka Children's Hospital Fukuoka Japan
| | - Shouichi Ohga
- Department of Pediatrics Graduate School of Medical Sciences Kyushu University Fukuoka Japan
| |
Collapse
|
344
|
Usansky I, Jaworska P, Asti L, Kenny FN, Hobbs C, Sofra V, Song H, Logan M, Graham A, Shaw TJ. A developmental basis for the anatomical diversity of dermis in homeostasis and wound repair. J Pathol 2020; 253:315-325. [PMID: 33197044 PMCID: PMC7898902 DOI: 10.1002/path.5589] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/27/2020] [Accepted: 11/09/2020] [Indexed: 12/13/2022]
Abstract
The dermis has disparate embryonic origins; abdominal dermis develops from lateral plate mesoderm, dorsal dermis from paraxial mesoderm and facial dermis from neural crest. However, the cell and molecular differences and their functional implications have not been described. We hypothesise that the embryonic origin of the dermis underpins regional characteristics of skin, including its response to wounding. We have compared abdomen, back and cheek, three anatomical sites representing the distinct embryonic tissues from which the dermis can arise, during homeostasis and wound repair using RNA sequencing, histology and fibroblast cultures. Our transcriptional analyses demonstrate differences between body sites that reflect their diverse origins. Moreover, we report histological and transcriptional variations during a wound response, including site differences in ECM composition, cell migration and proliferation, and re‐enactment of distinct developmental programmes. These findings reveal profound regional variation in the mechanisms of tissue repair. © 2020 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Ivy Usansky
- Centre for Inflammation Biology & Cancer Immunology, King's College London, London, UK
| | - Patrycja Jaworska
- Centre for Inflammation Biology & Cancer Immunology, King's College London, London, UK
| | - Ludovica Asti
- Centre for Inflammation Biology & Cancer Immunology, King's College London, London, UK
| | - Fiona N Kenny
- Randall Centre for Cell & Molecular Biophysics, King's College London, London, UK
| | - Carl Hobbs
- Wolfson Centre for Age-Related Disease, King's College London, London, UK
| | - Vasiliki Sofra
- Centre for Inflammation Biology & Cancer Immunology, King's College London, London, UK
| | - Hanfei Song
- Centre for Inflammation Biology & Cancer Immunology, King's College London, London, UK
| | - Malcolm Logan
- Randall Centre for Cell & Molecular Biophysics, King's College London, London, UK
| | - Anthony Graham
- Department of Developmental Neurobiology, King's College London, London, UK
| | - Tanya J Shaw
- Centre for Inflammation Biology & Cancer Immunology, King's College London, London, UK
| |
Collapse
|
345
|
Genome-wide identification and expression analysis of Arabidopsis GRAM-domain containing gene family in response to abiotic stresses and PGPR treatment. J Biotechnol 2020; 325:7-14. [PMID: 33279586 DOI: 10.1016/j.jbiotec.2020.11.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 11/16/2020] [Accepted: 11/30/2020] [Indexed: 12/20/2022]
Abstract
Characterization of stress-responsive genes is important to understand the genomics perspective of stress tolerance. In this purview, several gene-families are being identified and characterized in the model and non-model plant species, which has greatly enhanced the knowledge of molecular intricacies associated with stress tolerance. One such gene family is the GRAM-domain containing which have been found to be upregulated in response to plant growth-promoting rhizobacteria (PGPR) treatment followed by salinity stress. Thus, we aimed at understanding the involvement of GRAM domain-containing proteins in abiotic stress response under the influence of rhizobacteria in Arabidopsis thaliana. The study identified fourteen AtGRAM genes in A. thaliana. Further, comprehensive analyses of domain family including phylogenetic studies, domain architecture, gene structure and genomic composition analysis, promoter analysis, homology modelling, and duplication and divergence rates estimation was performed. RNA-Seq derived expression profiling of AtGRAM genes using GENVESTIGATOR in different stresses, developmental stages and hormonal treatments was performed, followed by qRT-PCR analysis under abiotic stresses in response to PGPR. Altogether, the study provided insights into the structure, organization, and evolutionary properties of AtGRAM gene family. Modulation in expression pattern in response to stresses influenced by PGPR-treatment suggests its multifaceted role in cross-talk among abiotic stresses and phytohormones. Further functional characterization of the selected candidate genes would enable understanding of the precise roles of GRAM-genes underlying stress tolerance.
Collapse
|
346
|
Xiao Y, Feng J, Li Q, Zhou Y, Bu Q, Zhou J, Tan H, Yang Y, Zhang L, Chen W. IiWRKY34 positively regulates yield, lignan biosynthesis and stress tolerance in Isatis indigotica. Acta Pharm Sin B 2020; 10:2417-2432. [PMID: 33354511 PMCID: PMC7745056 DOI: 10.1016/j.apsb.2019.12.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 11/14/2019] [Accepted: 12/24/2019] [Indexed: 12/14/2022] Open
Abstract
Yield potential, pharmaceutical compounds production and stress tolerance capacity are 3 classes of traits that determine the quality of medicinal plants. The autotetraploid Isatis indigotica has greater yield, higher bioactive lignan accumulation and enhanced stress tolerance compared with its diploid progenitor. Here we show that the transcription factor IiWRKY34, with higher expression levels in tetraploid than in diploid I. indigotica, has large pleiotropic effects on an array of traits, including biomass growth rates, lignan biosynthesis, as well as salt and drought stress tolerance. Integrated analysis of transcriptome and metabolome profiling demonstrated that IiWRKY34 expression had far-reaching consequences on both primary and secondary metabolism, reprograming carbon flux towards phenylpropanoids, such as lignans and flavonoids. Transcript–metabolite correlation analysis was applied to construct the regulatory network of IiWRKY34 for lignan biosynthesis. One candidate target Ii4CL3, a key rate-limiting enzyme of lignan biosynthesis as indicated in our previous study, has been demonstrated to indeed be activated by IiWRKY34. Collectively, the results indicate that the differentially expressed IiWRKY34 has contributed significantly to the polyploidy vigor of I. indigotica, and manipulation of this gene will facilitate comprehensive improvements of I. indigotica herb.
Collapse
|
347
|
Chang Y, Huynh CTT, Bastin KM, Rivera BN, Siddens LK, Tilton SC. Classifying polycyclic aromatic hydrocarbons by carcinogenic potency using in vitro biosignatures. Toxicol In Vitro 2020; 69:104991. [PMID: 32890658 PMCID: PMC7572825 DOI: 10.1016/j.tiv.2020.104991] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 08/15/2020] [Accepted: 08/29/2020] [Indexed: 01/26/2023]
Abstract
One of the most difficult challenges for risk assessment is evaluation of chemicals that predominately co-occur in mixtures like polycyclic aromatic hydrocarbons (PAHs). We previously developed a classification model in which systems biology data collected from mice short-term after chemical exposure accurately predict tumor outcome. The present study demonstrates translation of this approach into a human in vitro model in which chemical-specific bioactivity profiles from 3D human bronchial epithelial cells (HBEC) classify PAHs by carcinogenic potency. Gene expression profiles were analyzed from HBEC exposed to carcinogenic and non-carcinogenic PAHs and classification accuracies were identified for individual pathway-based gene sets. Posterior probabilities of best performing gene sets were combined via Bayesian integration resulting in a classifier with four gene sets, including aryl hydrocarbon receptor signaling, regulation of epithelial mesenchymal transition, regulation of angiogenesis, and cell cycle G2-M. In addition, transcriptional benchmark dose modeling of benzo[a]pyrene (BAP) showed that the most sensitive gene sets to BAP regulation were largely dissimilar from those that best classified PAH carcinogenicity challenging current assumptions that BAP carcinogenicity (and subsequent mode of action) is reflective of overall PAH carcinogenicity. These results illustrate utility of using systems toxicology approaches to analyze global gene expression towards carcinogenic hazard assessment.
Collapse
Affiliation(s)
- Yvonne Chang
- Environmental and Molecular Toxicology Department, Oregon State University, Corvallis, OR, USA
| | - Celine Thanh Thu Huynh
- Environmental and Molecular Toxicology Department, Oregon State University, Corvallis, OR, USA
| | - Kelley M Bastin
- Environmental and Molecular Toxicology Department, Oregon State University, Corvallis, OR, USA
| | - Brianna N Rivera
- Environmental and Molecular Toxicology Department, Oregon State University, Corvallis, OR, USA
| | - Lisbeth K Siddens
- Environmental and Molecular Toxicology Department, Oregon State University, Corvallis, OR, USA; Linus Pauling Institute, Oregon State University, Corvallis, OR, USA
| | - Susan C Tilton
- Environmental and Molecular Toxicology Department, Oregon State University, Corvallis, OR, USA; Superfund Research Program, Oregon State University, Corvallis, OR, USA.
| |
Collapse
|
348
|
van Westering TLE, Johansson HJ, Hanson B, Coenen-Stass AML, Lomonosova Y, Tanihata J, Motohashi N, Yokota T, Takeda S, Lehtiö J, Wood MJA, El Andaloussi S, Aoki Y, Roberts TC. Mutation-independent Proteomic Signatures of Pathological Progression in Murine Models of Duchenne Muscular Dystrophy. Mol Cell Proteomics 2020; 19:2047-2068. [PMID: 32994316 PMCID: PMC7710136 DOI: 10.1074/mcp.ra120.002345] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Indexed: 12/23/2022] Open
Abstract
The absence of the dystrophin protein in Duchenne muscular dystrophy (DMD) results in myofiber fragility and a plethora of downstream secondary pathologies. Although a variety of experimental therapies are in development, achieving effective treatments for DMD remains exceptionally challenging, not least because the pathological consequences of dystrophin loss are incompletely understood. Here we have performed proteome profiling in tibialis anterior muscles from two murine DMD models (mdx and mdx52) at three ages (8, 16, and 80 weeks of age), all n = 3. High-resolution isoelectric focusing liquid chromatography-tandem MS (HiRIEF-LC-MS/MS) was used to quantify the expression of 4974 proteins across all 27 samples. The two dystrophic models were found to be highly similar, whereas multiple proteins were differentially expressed relative to WT (C57BL/6) controls at each age. Furthermore, 1795 proteins were differentially expressed when samples were pooled across ages and dystrophic strains. These included numerous proteins associated with the extracellular matrix and muscle function that have not been reported previously. Pathway analysis revealed multiple perturbed pathways and predicted upstream regulators, which together are indicative of cross-talk between inflammatory, metabolic, and muscle growth pathways (e.g. TNF, INFγ, NF-κB, SIRT1, AMPK, PGC-1α, PPARs, ILK, and AKT/PI3K). Upregulation of CAV3, MVP and PAK1 protein expression was validated in dystrophic muscle by Western blot. Furthermore, MVP was upregulated during, but not required for, the differentiation of C2C12 myoblasts suggesting that this protein may affect muscle regeneration. This study provides novel insights into mutation-independent proteomic signatures characteristic of the dystrophic phenotype and its progression with aging.
Collapse
Affiliation(s)
| | - Henrik J Johansson
- Department of Oncology/Pathology, Cancer Proteomics Mass Spectrometry, SciLifeLab Stockholm, Karolinska Institutet, Stockholm, Sweden
| | - Britt Hanson
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK; Department of Paediatrics, University of Oxford, Oxford, UK
| | | | - Yulia Lomonosova
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Jun Tanihata
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Kodaira, Tokyo, Japan
| | - Norio Motohashi
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Kodaira, Tokyo, Japan
| | - Toshifumi Yokota
- Department of Medical, Genetics, School of Human Development Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Shin'ichi Takeda
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Kodaira, Tokyo, Japan
| | - Janne Lehtiö
- Department of Oncology/Pathology, Cancer Proteomics Mass Spectrometry, SciLifeLab Stockholm, Karolinska Institutet, Stockholm, Sweden
| | - Matthew J A Wood
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK; Department of Paediatrics, University of Oxford, Oxford, UK; MDUK Oxford Neuromuscular Centre, Oxford, UK
| | | | - Yoshitsugu Aoki
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Kodaira, Tokyo, Japan.
| | - Thomas C Roberts
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK; Department of Paediatrics, University of Oxford, Oxford, UK; Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden.
| |
Collapse
|
349
|
New insights on the function of plant acyl carrier proteins from comparative and evolutionary analysis. Genomics 2020; 113:1155-1165. [PMID: 33221517 DOI: 10.1016/j.ygeno.2020.11.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 10/02/2020] [Accepted: 11/16/2020] [Indexed: 11/20/2022]
Abstract
Acyl carrier proteins (ACPs) play a central role in both plastidial and mitochondrial Type II fatty acid synthesis in plant cells. However, a large proportion of plant ACPs remain functionally uncharacterized, and their evolutionary history remains elusive. In present study, 97 putative ACPs were identified from ten angiosperm species examined. Based on phylogenetic analysis, ACP genes were grouped into plastidial (cpACP: ACP1/2/3/4/5) and mitochondrial (mtACP: mtACP1/mtACP2/mtACP3) ACPs. Protein sequence (motifs and length), tertiary structure, and gene structure (exon number, average intron length, and intron phase) were highly conserved in different ACP subclades. The differentiation of ACPs into distinct types occurred 85-98 and 45-57 million years ago. A limited proportion of ACP genes experience tandem or segmental duplication, corresponding to two rounds of whole genome duplication. Ka/Ks ratios revealed that duplicated ACP genes underwent a purifying selection. Regarding expression patterns, most ACPs were expressed constitutively and tissue-specifically. Notably, the average expression levels of ACP1, mtACP3, and mtACP1 were positively correlated with those of ACP3, ACP4, and mtACP2, respectively. Analysis of cis-elements showed that seven motifs (CACTFTPPCA1, DOFCOREZM, GT1CONSENSUS, CAATBOX1, ARR1AT, POLLEN1LELAT52, and GATABOX) related to tissue-specific, ABA, and light-mediated gene regulation were ubiquitous in all ACPs investigated, which shed new light on the regulation patterns of these central enzymatic partners of the FAS system. This study presents a thorough overview of angiosperm ACP gene families and provides informative clues for the functional characterization of plant ACPs in the future.
Collapse
|
350
|
Evaluating the impact of methionine-enriched diets in the liver of European seabass through label-free shotgun proteomics. J Proteomics 2020; 232:104047. [PMID: 33217584 DOI: 10.1016/j.jprot.2020.104047] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/08/2020] [Accepted: 11/09/2020] [Indexed: 02/07/2023]
Abstract
Plant protein sources play an essential role in aquaculture by reducing the use of fish meal to sustainable levels, although further supplementation is needed to fulfill fish nutritional requirements. This work addressed fish growth performance and proteome changes to dietary methionine in European seabass juveniles. A dose-dependent response to methionine (Met) was observed on fish growth consistent with proteomic analyses, suggesting Met requirement ≥0.9% (w/w). Fish fed at 0.77% (w/w) exhibited reduced growth and an enrichment in proteins involved in cellular homeostasis. Proteomics data suggest an optimal nutritional status at 1.36% Met (w/w), together with putative beneficial effects on the immune system up to 1.66% Met (w/w). The response to dietary Met involved the convergence of different metabolic and signalling pathways implicated in cell growth and immune response e.g., mTOR, Hedgehog or the T Cell receptor signalling, coupled with a fine-tuning regulation of amino acid metabolism and translation.
Collapse
|