301
|
Shehzad A, Rehmat S, Ul-Islam S, Ahmad R, Aljafary M, Alrushaid NA, Al-Suhaimi EA. Lirioresinol B dimethyl ether inhibits NF-κB and COX-2 and activates IκBα expression in CCl 4-induced hepatic fibrosis. BMC Complement Med Ther 2020; 20:49. [PMID: 32046692 PMCID: PMC7076869 DOI: 10.1186/s12906-020-2839-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 01/30/2020] [Indexed: 12/20/2022] Open
Abstract
Background Inflammation is one of the key components in the initiation and progression of hepatic diseases. If not treated, inflammation may cause cell dysplasia, and ultimately cancer. In the current study, we investigated the anti-inflammatory and anti-cancer activities of plant isolated compound Lirioresinol B Dimethyl Ether (LBDE) extracted from the seeds of Magnolia fargesii CHENG (Magnoliaceae) against HepG2 cells as well as in BALB/C male mice. Methods We assessed the antioxidant and anti-proliferative effects of plant compounds using DPPH assay and HepG2 cell lines. Carbon tetrachloride (CCl4) and Diethylnitrosamine (DEN) were used to induce liver cell dysplasia followed by hepatocellular carcinoma (HCC) in BALB/C male mice for 12 weeks. We investigated the underlying mechanism by using histopathology and immunoblot experiments. Results Intraperitoneal injection of LBDE (50 mg/kg body weight/day) inhibited CCl4-induced HCC. Free radical scavenging assay shows the strong anti-oxidant activity of LBDE. Western blot results show that LBDE down-regulated nuclear factor kappa B (NFκB) and cyclooxygenase (COX-2) by preventing the phosphorylation of I kappa B alpha (IκBα) in CCl4 treated group. LBDE also improved liver function by decreasing Alkaline Phosphatase (ALP), aspartate aminotransferase (AST) and Alanine Aminotransferase (ALT) levels. Histopathology results revealed that LBDE decreased granulomas and express normal morphology of hepatocytes. Conclusions These preliminary results show that LBDE has the potential to inhibit CCl4-induced liver cell dysplasia and prevents cancer development by regulating NFκB/COX-2 activation.
Collapse
Affiliation(s)
- Adeeb Shehzad
- Department of Clinical Pharmacy, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Shagufta Rehmat
- Department of Biomedical Engineering and Sciences, School of Mechanical and Manufacturing Engineering (SMME), National University of Sciences and Technology, Islamabad, Pakistan
| | - Salman Ul-Islam
- School of Life Sciences, Kyungpook National University, Daegu, South Korea
| | - Rizwan Ahmad
- Natural Products and Alternative Medicines, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Meneerah Aljafary
- Department of Biology, College of Sciences, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Noor A Alrushaid
- Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Ebtesam A Al-Suhaimi
- Department of Biology, College of Sciences, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia. .,Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia.
| |
Collapse
|
302
|
Napylov A, Reyes‐Garces N, Gomez‐Rios G, Olkowicz M, Lendor S, Monnin C, Bojko B, Hamani C, Pawliszyn J, Vuckovic D. In Vivo Solid‐Phase Microextraction for Sampling of Oxylipins in Brain of Awake, Moving Rats. Angew Chem Int Ed Engl 2020; 59:2392-2398. [DOI: 10.1002/anie.201909430] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 10/22/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Alexander Napylov
- Department of Chemistry and BiochemistryConcordia University 7141 Sherbrooke Street West Montreal QC H4B 1R6 Canada
| | - Nathaly Reyes‐Garces
- Department of ChemistryUniversity of Waterloo 200 University Avenue Waterloo ON N2L 3G1 Canada
- Current address: Restek Corporation Bellefonte PA 16823 USA
| | - German Gomez‐Rios
- Department of ChemistryUniversity of Waterloo 200 University Avenue Waterloo ON N2L 3G1 Canada
- Current address: Restek Corporation Bellefonte PA 16823 USA
| | - Mariola Olkowicz
- Department of ChemistryUniversity of Waterloo 200 University Avenue Waterloo ON N2L 3G1 Canada
| | - Sofia Lendor
- Department of ChemistryUniversity of Waterloo 200 University Avenue Waterloo ON N2L 3G1 Canada
| | - Cian Monnin
- Department of Chemistry and BiochemistryConcordia University 7141 Sherbrooke Street West Montreal QC H4B 1R6 Canada
| | - Barbara Bojko
- Department of ChemistryUniversity of Waterloo 200 University Avenue Waterloo ON N2L 3G1 Canada
- Current address: Department of Pharmacodynamics and Molecular PharmacologyFaculty of PharmacyCollegium Medicum in BydgoszczNicolaus Copernicus University in Toruń Bydgoszcz Poland
| | - Clement Hamani
- Neuroimaging Research SectionCentre for Addiction and Mental Health 250 College Street Toronto ON M5T 1R8 Canada
- Harquail Centre for NeuromodulationSunnybrook Research InstituteSunnybrook Health Sciences Centre 2075, Bayview Avenue Toronto ON M4N 3M5 Canada
| | - Janusz Pawliszyn
- Department of ChemistryUniversity of Waterloo 200 University Avenue Waterloo ON N2L 3G1 Canada
| | - Dajana Vuckovic
- Department of Chemistry and BiochemistryConcordia University 7141 Sherbrooke Street West Montreal QC H4B 1R6 Canada
| |
Collapse
|
303
|
Gonçalves WA, Rezende BM, de Oliveira MPE, Ribeiro LS, Fattori V, da Silva WN, Prazeres PHDM, Queiroz-Junior CM, Santana KTDO, Costa WC, Beltrami VA, Costa VV, Birbrair A, Verri WA, Lopes F, Cunha TM, Teixeira MM, Amaral FA, Pinho V. Sensory Ganglia-Specific TNF Expression Is Associated With Persistent Nociception After Resolution of Inflammation. Front Immunol 2020; 10:3120. [PMID: 32038637 PMCID: PMC6984351 DOI: 10.3389/fimmu.2019.03120] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 12/20/2019] [Indexed: 12/26/2022] Open
Abstract
Joint pain is a distressing symptom of arthritis, and it is frequently persistent even after treatments which reduce local inflammation. Continuous production of algogenic factors activate/sensitize nociceptors in the joint structures and contribute to persistent pain, a challenging and difficult condition to treat. TNF is a crucial cytokine for the pathogenesis of several rheumatic diseases, and its inhibition is a mainstay of treatment to control joint symptoms, including pain. Here, we sought to investigate the inflammatory changes and the role of TNF in dorsal root ganglia (DRG) during persistent hypernociception after the resolution of acute joint inflammation. Using a model of antigen-induced arthritis, the peak of joint inflammation occurred 12–24 h after local antigen injection and was characterized by an intense influx of neutrophils, pro-inflammatory cytokine production, and joint damage. We found that inflammatory parameters in the joint returned to basal levels between 6 and 8 days after antigen-challenge, characterizing the resolving phase of joint inflammation. Mechanical hyperalgesia was persistent up to 14 days after joint insult. The persistent nociception was associated with the inflammatory status of DRG after cessation of acute joint inflammation. The late state of neuroinflammation in the ipsilateral side was evidenced by gene expression of TNF, TNFR2, IL-6, IL-1β, CXCL2, COX2, and iNOS in lumbar DRG (L3-L5) and leukocyte adhesion in the lumbar intumescent vessels between days 6 and 8. Moreover, there were signs of resident macrophage activation in DRG, as evidenced by an increase in Iba1-positive cells. Intrathecal or systemic injection of etanercept, an agent clinically utilized for TNF neutralization, at day 7 post arthritis induction, alleviated the persistent joint hyperalgesia by specific action in DRG. Our data suggest that neuroinflammation in DRG after the resolution of acute joint inflammation drives continuous neural sensitization resulting in persistent joint nociception in a TNF-dependent mechanism.
Collapse
Affiliation(s)
- William Antonio Gonçalves
- Departamento de Morfologia, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Barbara Maximino Rezende
- Departamento de Enfermagem Básica, Escola de Enfermagem da Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Marcos Paulo Esteves de Oliveira
- Departamento de Morfologia, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Lucas Secchim Ribeiro
- Biomediziniches Zentrum (BMZ), Institut für Angeborene Immunität, Rheinische Friedrich-Wilhelms-Universität Bonn, Venusberg, Germany
| | - Victor Fattori
- Departamento de Patologia, Center of Biological Sciences, Londrina State University, Londrina, Brazil
| | - Walison Nunes da Silva
- Departamento de Patologia, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | | | - Celso Martins Queiroz-Junior
- Departamento de Morfologia, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Karina Talita de Oliveira Santana
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Walyson Coelho Costa
- Departamento de Morfologia, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Vinícius Amorim Beltrami
- Departamento de Morfologia, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Vivian Vasconcelos Costa
- Departamento de Morfologia, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Alexander Birbrair
- Departamento de Patologia, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Waldiceu A Verri
- Departamento de Patologia, Center of Biological Sciences, Londrina State University, Londrina, Brazil
| | - Fernando Lopes
- Institute of Parasitology and Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | - Thiago Mattar Cunha
- Departamento de Farmacologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, Brazil
| | - Mauro Martins Teixeira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Flávio Almeida Amaral
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Vanessa Pinho
- Departamento de Morfologia, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| |
Collapse
|
304
|
Lavin KM, Perkins RK, Jemiolo B, Raue U, Trappe SW, Trappe TA. Effects of aging and lifelong aerobic exercise on basal and exercise-induced inflammation. J Appl Physiol (1985) 2020; 128:87-99. [PMID: 31751180 PMCID: PMC6985808 DOI: 10.1152/japplphysiol.00495.2019] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 11/07/2019] [Accepted: 11/07/2019] [Indexed: 12/20/2022] Open
Abstract
Age-associated chronic basal inflammation compromises muscle mass and adaptability, but exercise training may exert an anti-inflammatory effect. This investigation assessed basal and exercise-induced inflammation in three cohorts of men: young exercisers [YE; n = 10 men; 25 ± 1 yr; maximal oxygen consumption (V̇o2max), 53 ± 3 mL·kg-1·min-1; quadriceps area, 78 ± 3 cm2; means ± SE], old healthy nonexercisers (OH; n = 10; 75 ± 1 yr; V̇o2max, 22 ± 1 mL·kg-1·min-1; quadriceps area, 56 ± 3 cm2), and lifelong exercisers with an aerobic training history of 53 ± 1 yr (LLE; n = 21; 74 ± 1 yr; V̇o2max, 34 ± 1 mL·kg-1·min-1; quadriceps area, 67 ± 2 cm2). Resting serum IL-6, TNF-α, C-reactive protein, and IGF-1 levels were measured. Vastus lateralis muscle biopsies were obtained at rest (basal) and 4 h after an acute exercise challenge (3 × 10 repetitions, 70% 1-repetition maximum) to assess gene expression of cytokines [IL-6, TNF-α, IL-1β, IL-10, IL-4, interleukin-1 receptor antagonist (IL-1Ra), and transforming growth factor-β (TGF-β)], chemokines [IL-8 and monocyte chemoattractant protein-1 (MCP-1)], cyclooxygenase enzymes [cyclooxygenase-1 and -2 (COX-1 and COX-2, respectively), prostaglandin E2 synthases [microsomal prostaglandin E synthase 1 (mPGES-1) and cytosolic prostaglandin E2 synthase (cPGES)] and receptors [prostaglandin E2 receptor EP3 and EP4 subtypes (EP3 and EP4, respectively), and macrophage markers [cluster of differentiation 16b (CD16b) and CD163], as well as basal macrophage abundance (CD68+ cells). Aging led to higher (P ≤ 0.05) circulating IL-6 and skeletal muscle COX-1, mPGES-1, and CD163 expression. However, LLE had significantly lower serum IL-6 levels (P ≤ 0.05 vs. OH) and a predominantly anti-inflammatory muscle profile [higher IL-10 (P ≤ 0.05 vs. YE), TNF-α, TGF-β, and EP4 levels (P ≤ 0.05 vs. OH)]. In OH only, acute exercise increased expression of proinflammatory factors TNF-α, TGF-β, and IL-8 (P ≤ 0.05). LLE had postexercise gene expression similar to YE, except lower IL-10 (P ≤ 0.10), mPGES-1, and EP3 expression (P ≤ 0.05). Thus, although aging led to a proinflammatory profile within blood and muscle, lifelong exercise partially prevented this and generally preserved the acute inflammatory response to exercise seen in young exercising men. Lifelong exercise may positively impact muscle health throughout aging by promoting anti-inflammation in skeletal muscle.NEW & NOTEWORTHY This study assessed a unique population of lifelong aerobic exercising men and demonstrated that their activity status exerts an anti-inflammatory effect in skeletal muscle and circulation. Furthermore, we provide evidence that the inflammatory response to acute exercise is dysregulated by aging but preserved with lifelong exercise, which might improve skeletal muscle resilience to unaccustomed loading and adaptability into late life.
Collapse
Affiliation(s)
- Kaleen M Lavin
- Human Performance Laboratory, Ball State University, Muncie, Indiana
| | - Ryan K Perkins
- Human Performance Laboratory, Ball State University, Muncie, Indiana
| | - Bozena Jemiolo
- Human Performance Laboratory, Ball State University, Muncie, Indiana
| | - Ulrika Raue
- Human Performance Laboratory, Ball State University, Muncie, Indiana
| | - Scott W Trappe
- Human Performance Laboratory, Ball State University, Muncie, Indiana
| | - Todd A Trappe
- Human Performance Laboratory, Ball State University, Muncie, Indiana
| |
Collapse
|
305
|
Liu J, Sun X, Zhang FL, Jin H, Yan XL, Huang S, Guo ZN, Yang Y. Clinical Potential of Extracellular Vesicles in Type 2 Diabetes. Front Endocrinol (Lausanne) 2020; 11:596811. [PMID: 33551993 PMCID: PMC7859486 DOI: 10.3389/fendo.2020.596811] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 12/01/2020] [Indexed: 12/17/2022] Open
Abstract
Type 2 diabetes (T2D) is a major public health disease which is increased in incidence and prevalence throughout the whole world. Insulin resistance (IR) in peripheral tissues and insufficient pancreatic β-cell mass and function have been recognized as primary mechanisms in the pathogenesis of T2D, while recently, systemic chronic inflammation resulting from obesity and a sedentary lifestyle has also gained considerable attention in T2D progression. Nowadays, accumulating evidence has revealed extracellular vesicles (EVs) as critical mediators promoting the pathogenesis of T2D. They can also be used in the diagnosis and treatment of T2D and its complications. In this review, we briefly introduce the basic concepts of EVs and their potential roles in the pathogenesis of T2D. Then, we discuss their diagnostic and therapeutic potentials in T2D and its complications, hoping to open new prospects for the management of T2D.
Collapse
Affiliation(s)
- Jie Liu
- Stroke Center & Clinical Trial and Research Center for Stroke, Department of Neurology, The First Hospital of Jilin University, Changchun, China
- China National Comprehensive Stroke Center, Changchun, China
- Jilin Provincial Key Laboratory of Cerebrovascular Disease, Changchun, China
| | - Xin Sun
- Stroke Center & Clinical Trial and Research Center for Stroke, Department of Neurology, The First Hospital of Jilin University, Changchun, China
- China National Comprehensive Stroke Center, Changchun, China
| | - Fu-Liang Zhang
- Stroke Center & Clinical Trial and Research Center for Stroke, Department of Neurology, The First Hospital of Jilin University, Changchun, China
- China National Comprehensive Stroke Center, Changchun, China
| | - Hang Jin
- Stroke Center & Clinical Trial and Research Center for Stroke, Department of Neurology, The First Hospital of Jilin University, Changchun, China
- China National Comprehensive Stroke Center, Changchun, China
| | - Xiu-Li Yan
- Stroke Center & Clinical Trial and Research Center for Stroke, Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Shuo Huang
- Stroke Center & Clinical Trial and Research Center for Stroke, Department of Neurology, The First Hospital of Jilin University, Changchun, China
- China National Comprehensive Stroke Center, Changchun, China
- Jilin Provincial Key Laboratory of Cerebrovascular Disease, Changchun, China
| | - Zhen-Ni Guo
- Stroke Center & Clinical Trial and Research Center for Stroke, Department of Neurology, The First Hospital of Jilin University, Changchun, China
- China National Comprehensive Stroke Center, Changchun, China
- Jilin Provincial Key Laboratory of Cerebrovascular Disease, Changchun, China
- *Correspondence: Zhen-Ni Guo, ; Yi Yang, ; ; orcid.org/0000-0002-9729-8522
| | - Yi Yang
- Stroke Center & Clinical Trial and Research Center for Stroke, Department of Neurology, The First Hospital of Jilin University, Changchun, China
- China National Comprehensive Stroke Center, Changchun, China
- Jilin Provincial Key Laboratory of Cerebrovascular Disease, Changchun, China
- *Correspondence: Zhen-Ni Guo, ; Yi Yang, ; ; orcid.org/0000-0002-9729-8522
| |
Collapse
|
306
|
Fatty acid metabolism in the progression and resolution of CNS disorders. Adv Drug Deliv Rev 2020; 159:198-213. [PMID: 31987838 DOI: 10.1016/j.addr.2020.01.004] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/13/2020] [Accepted: 01/23/2020] [Indexed: 12/15/2022]
Abstract
Recent advances in lipidomics and metabolomics have unveiled the complexity of fatty acid metabolism and the fatty acid lipidome in health and disease. A growing body of evidence indicates that imbalances in the metabolism and level of fatty acids drive the initiation and progression of central nervous system (CNS) disorders such as multiple sclerosis, Alzheimer's disease, and Parkinson's disease. Here, we provide an in-depth overview on the impact of the β-oxidation, synthesis, desaturation, elongation, and peroxidation of fatty acids on the pathophysiology of these and other neurological disorders. Furthermore, we discuss the impact of individual fatty acids species, acquired through the diet or endogenously synthesized in mammals, on neuroinflammation, neurodegeneration, and CNS repair. The findings discussed in this review highlight the therapeutic potential of modulators of fatty acid metabolism and the fatty acid lipidome in CNS disorders, and underscore the diagnostic value of lipidome signatures in these diseases.
Collapse
|
307
|
Oggero S, Austin-Williams S, Norling LV. The Contrasting Role of Extracellular Vesicles in Vascular Inflammation and Tissue Repair. Front Pharmacol 2019; 10:1479. [PMID: 31920664 PMCID: PMC6928593 DOI: 10.3389/fphar.2019.01479] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 11/13/2019] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles are a heterogeneous family of vesicles, generated from different subcellular compartments and released into the extracellular space. Composed of a lipid bilayer encompassing both soluble cytosolic material and nuclear components, these organelles have been recently described as novel regulators of intercellular communication between adjacent and remote cells. Due to their diversified composition and biological content, they portray specific signatures of cellular activation and pathological processes, their potential as diagnostic and prognostic biomarkers has raised significant interest in cardiovascular diseases. Circulating vesicles, especially those released from platelets, leukocytes, and endothelial cells are found to play a critical role in activating several fundamental cells within the vasculature, including endothelial cells and vascular smooth muscle cells. Their intrinsic activity and immunomodulatory properties lends them to not only promote vascular inflammation, but also enhance tissue regeneration, vascular repair, and indeed resolution. In this review we aim to recapitulate the recent findings concerning the roles played by EVs that originate from different circulating cells, with particular reference to their action on the endothelium. We focus herein, on the interaction of platelet and leukocyte EVs with the endothelium. In addition, their potential biological function in promoting tissue resolution and vascular repair will also be discussed.
Collapse
Affiliation(s)
- Silvia Oggero
- William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary University of London, London, United Kingdom
| | - Shani Austin-Williams
- William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary University of London, London, United Kingdom
| | - Lucy Victoria Norling
- William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary University of London, London, United Kingdom
- Centre for Inflammation and Therapeutic Innovation Queen Mary University of London, London, United Kingdom
| |
Collapse
|
308
|
Elkoshi Z. The Binary Classification Of Chronic Diseases. J Inflamm Res 2019; 12:319-333. [PMID: 31908517 PMCID: PMC6927256 DOI: 10.2147/jir.s227279] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 11/07/2019] [Indexed: 12/19/2022] Open
Abstract
Acute diseases start with an insult and end when insult disappears. If the trauma induces an immune reaction (which happens in most cases), this reaction must be terminated with some type of resolution mechanism, when the cause of the trauma ceases. Chronicity develops if insult is permanent or if the resolution mechanism is defective. Another way to reach disease chronicity is a positive feedback loop, whereby the immune reaction activates an internal, insult-like reaction. A distinction between chronic states characterized by a persistent, low suppressive effect and those characterized by a persistent, high suppressive effect of regulatory T cells (Treg), is proposed. This two-class division represents two ways to reach chronicity: (a) by maintaining inflammatory reaction long after insult disappears ("low Treg"), or (b) by suppressing inflammatory reaction prior to the disappearance of insult ("high Treg"). This two-class division may explain the strong association between certain pathogens and cancer, on one hand, and between several other pathogens and autoimmunity, on the other hand. The weak association between autoimmune diseases and HIV infection and the relatively weak association between autoimmune diseases and cancer may be elucidated as well. In addition, the model rationalizes why immune-modulating drugs, which are effective in cancer, are also effective in "high Treg" viral infections, while corticosteroids, which are generally effective in autoimmune diseases, are also effective in other "low Treg" diseases (such as asthma, atopic dermatitis, and "low Treg" infections) but are not effective in solid malignancies and "high Treg" infections. Moreover, the model expounds why certain bacteria inhibit tumor growth and why these very bacteria induce autoimmune diseases.
Collapse
Affiliation(s)
- Zeev Elkoshi
- Taro Pharmaceutical Industries, Haifa Bay, Israel
| |
Collapse
|
309
|
Napylov A, Reyes‐Garces N, Gomez‐Rios G, Olkowicz M, Lendor S, Monnin C, Bojko B, Hamani C, Pawliszyn J, Vuckovic D. In Vivo Solid‐Phase Microextraction for Sampling of Oxylipins in Brain of Awake, Moving Rats. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201909430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Alexander Napylov
- Department of Chemistry and BiochemistryConcordia University 7141 Sherbrooke Street West Montreal QC H4B 1R6 Canada
| | - Nathaly Reyes‐Garces
- Department of ChemistryUniversity of Waterloo 200 University Avenue Waterloo ON N2L 3G1 Canada
- Current address: Restek Corporation Bellefonte PA 16823 USA
| | - German Gomez‐Rios
- Department of ChemistryUniversity of Waterloo 200 University Avenue Waterloo ON N2L 3G1 Canada
- Current address: Restek Corporation Bellefonte PA 16823 USA
| | - Mariola Olkowicz
- Department of ChemistryUniversity of Waterloo 200 University Avenue Waterloo ON N2L 3G1 Canada
| | - Sofia Lendor
- Department of ChemistryUniversity of Waterloo 200 University Avenue Waterloo ON N2L 3G1 Canada
| | - Cian Monnin
- Department of Chemistry and BiochemistryConcordia University 7141 Sherbrooke Street West Montreal QC H4B 1R6 Canada
| | - Barbara Bojko
- Department of ChemistryUniversity of Waterloo 200 University Avenue Waterloo ON N2L 3G1 Canada
- Current address: Department of Pharmacodynamics and Molecular PharmacologyFaculty of PharmacyCollegium Medicum in BydgoszczNicolaus Copernicus University in Toruń Bydgoszcz Poland
| | - Clement Hamani
- Neuroimaging Research SectionCentre for Addiction and Mental Health 250 College Street Toronto ON M5T 1R8 Canada
- Harquail Centre for NeuromodulationSunnybrook Research InstituteSunnybrook Health Sciences Centre 2075, Bayview Avenue Toronto ON M4N 3M5 Canada
| | - Janusz Pawliszyn
- Department of ChemistryUniversity of Waterloo 200 University Avenue Waterloo ON N2L 3G1 Canada
| | - Dajana Vuckovic
- Department of Chemistry and BiochemistryConcordia University 7141 Sherbrooke Street West Montreal QC H4B 1R6 Canada
| |
Collapse
|
310
|
Aguilar-Cazares D, Chavez-Dominguez R, Carlos-Reyes A, Lopez-Camarillo C, Hernadez de la Cruz ON, Lopez-Gonzalez JS. Contribution of Angiogenesis to Inflammation and Cancer. Front Oncol 2019; 9:1399. [PMID: 31921656 PMCID: PMC6920210 DOI: 10.3389/fonc.2019.01399] [Citation(s) in RCA: 195] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 11/26/2019] [Indexed: 12/12/2022] Open
Abstract
During carcinogenesis, advanced tumors are surrounded by both stromal and immune cells, which support tumor development. In addition, inflammation and angiogenesis are processes that play important roles in the development of cancer, from the initiation of carcinogenesis, tumor in situ and advanced stages of cancer. During acute inflammation, vascular hyperpermeability allows inflammatory mediators and immune response cells, including leukocytes and monocytes/macrophages, to infiltrate the site of damage. As a factor that regulates vascular permeability, vascular endothelial growth factor (VEGF) also plays a vital role as a multifunctional molecule and growth factor. Furthermore, stromal and immune cells secrete soluble factors that activate endothelial cells and favor their transmigration to eliminate the aggressive agent. In this review, we present a comprehensive view of both the relationship between chronic inflammation and angiogenesis during carcinogenesis and the participation of endothelial cells in the inflammatory process. In addition, the regulatory mechanisms that contribute to the endothelium returning to its basal permeability state after acute inflammation are discussed. Moreover, the manner in which immune cells participate in pathological angiogenesis release pro-angiogenic factors that contribute to early tumor vascularization, even before the angiogenic switch occurs, is also examined. Also, we discuss the role of hypoxia as a mechanism that drives the acquisition of tumor hallmarks that make certain cancers more aggressive. Finally, some combinations of therapies that inhibit the angiogenesis process and that may be a successful strategy for cancer patients are indicated.
Collapse
Affiliation(s)
- Dolores Aguilar-Cazares
- Departamento de Enfermedades Cronico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosio Villegas", Mexico City, Mexico
| | - Rodolfo Chavez-Dominguez
- Departamento de Enfermedades Cronico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosio Villegas", Mexico City, Mexico.,Posgrado en Ciencias Biologicas, Universidad Nacional Autonoma de Mexico, Mexico City, Mexico
| | - Angeles Carlos-Reyes
- Departamento de Enfermedades Cronico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosio Villegas", Mexico City, Mexico
| | - César Lopez-Camarillo
- Posgrado en Ciencias Genomicas, Universidad Autonoma de la Ciudad de México, Mexico City, Mexico
| | | | - Jose S Lopez-Gonzalez
- Departamento de Enfermedades Cronico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosio Villegas", Mexico City, Mexico
| |
Collapse
|
311
|
Evidence That the Anti-Inflammatory Effect of Rubiadin-1-methyl Ether Has an Immunomodulatory Context. Mediators Inflamm 2019; 2019:6474168. [PMID: 31780865 PMCID: PMC6874871 DOI: 10.1155/2019/6474168] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 10/04/2019] [Indexed: 12/13/2022] Open
Abstract
Background In spite of the latest therapeutic developments, no effective treatments for handling critical conditions such as acute lung injuries have yet been found. Such conditions, which may result from lung infections, sepsis, multiple trauma, or shock, represent a significant challenge in intensive care medicine. Seeking ways to better deal with this challenge, the scientific community has recently devoted much attention to small molecules derived from natural products with anti-inflammatory and immunomodulatory effects. Aims In this context, we investigated the anti-inflammatory effect of Rubiadin-1-methyl ether isolated from Pentas schimperi, using an in vitro model of RAW 264.7 macrophages induced by LPS and an in vivo model of acute lung injury (ALI) induced by LPS. Methods The macrophages were pretreated with the compound and induced by LPS (1 μg/mL). After 24 h, using the supernatant, we evaluated the cytotoxicity, NOx, and IL-6, IL-1β, and TNF-α levels, as well as the effect of the compound on macrophage apoptosis. Next, the compound was administered in mice with acute lung injury (ALI) induced by LPS (5 mg/kg), and the pro- and anti-inflammatory parameters were analyzed after 12 h using the bronchoalveolar lavage fluid (BALF). Results Rubiadin-1-methyl ether was able to inhibit the pro-inflammatory parameters studied in the in vitro assays (NOx, IL-6, and IL-1β) and, at the same time, increased the macrophage apoptosis rate. In the in vivo experiments, this compound was capable of decreasing leukocyte infiltration; fluid leakage; NOx; IL-6, IL-12p70, IFN-γ, TNF-α, and MCP-1 levels; and MPO activity. In addition, Rubiadin-1-methyl ether increased the IL-10 levels in the bronchoalveolar lavage fluid (BALF). Conclusions These findings support the evidence that Rubiadin-1-methyl ether has important anti-inflammatory activity, with evidence of an immunomodulatory effect.
Collapse
|
312
|
Mühl H, Bachmann M. IL-18/IL-18BP and IL-22/IL-22BP: Two interrelated couples with therapeutic potential. Cell Signal 2019; 63:109388. [PMID: 31401146 DOI: 10.1016/j.cellsig.2019.109388] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/07/2019] [Accepted: 08/07/2019] [Indexed: 02/06/2023]
Abstract
Interleukin (IL)-18 and IL-22 are key components of cytokine networks that play a decisive role in (pathological) inflammation, host defense, and tissue regeneration. Tight regulation of cytokine-driven signaling, inflammation, and immunoactivation is supposed to enable nullification of a given deleterious trigger without mediating overwhelming collateral tissue damage or even activating a cancerous face of regeneration. In fact, feedback regulation by specific cytokine opponents is regarded as a major means by which the immune system is kept in balance. Herein, we shine a light on the interplay between IL-18 and IL-22 and their opponents IL-18 binding protein (IL-18BP) and IL-22BP in order to provide integrated information on their biology, pathophysiological significance, and prospect as targets and/or instruments of therapeutic intervention.
Collapse
Affiliation(s)
- Heiko Mühl
- pharmazentrum frankfurt/ZAFES, University Hospital Goethe University Frankfurt am Main, Theodor-Stern- Kai 7, 60590 Frankfurt am Main, Germany.
| | - Malte Bachmann
- pharmazentrum frankfurt/ZAFES, University Hospital Goethe University Frankfurt am Main, Theodor-Stern- Kai 7, 60590 Frankfurt am Main, Germany
| |
Collapse
|
313
|
Blaser N, Backert S, Pachathundikandi SK. Immune Cell Signaling by Helicobacter pylori: Impact on Gastric Pathology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1149:77-106. [PMID: 31049845 DOI: 10.1007/5584_2019_360] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Helicobacter pylori represents a highly successful colonizer of the human stomach. Infections with this Gram-negative bacterium can persist lifelong, and although in the majority of cases colonization is asymptomatic, it can trigger pathologies ranging from chronic gastritis and peptic ulceration to gastric cancer. The interaction of the bacteria with the human host modulates immune responses in different ways to enable bacterial survival and persistence. H. pylori uses various pathogenicity-associated factors such as VacA, NapA, CGT, GGT, lipopolysaccharide, peptidoglycan, heptose 1,7-bisphosphate, ADP-heptose, cholesterol glucosides, urease and a type IV secretion system for controlling immune signaling and cellular functions. It appears that H. pylori manipulates multiple extracellular immune receptors such as integrin-β2 (CD18), EGFR, CD74, CD300E, DC-SIGN, MINCLE, TRPM2, T-cell and Toll-like receptors as well as a number of intracellular receptors including NLRP3, NOD1, NOD2, TIFA and ALPK1. Consequently, downstream signaling pathways are hijacked, inducing tolerogenic dendritic cells, inhibiting effector T cell responses and changing the gastrointestinal microbiota. Here, we discuss in detail the interplay of bacterial factors with multiple immuno-regulatory cells and summarize the main immune evasion and persistence strategies employed by H. pylori.
Collapse
Affiliation(s)
- Nicole Blaser
- Department of Biology, Institute for Microbiology, Friedrich Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Steffen Backert
- Department of Biology, Institute for Microbiology, Friedrich Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Suneesh Kumar Pachathundikandi
- Department of Biology, Institute for Microbiology, Friedrich Alexander University Erlangen-Nuremberg, Erlangen, Germany.
| |
Collapse
|
314
|
Rammal H, Entz L, Dubus M, Moniot A, Bercu NB, Sergheraert J, Gangloff SC, Mauprivez C, Kerdjoudj H. Osteoinductive Material to Fine-Tune Paracrine Crosstalk of Mesenchymal Stem Cells With Endothelial Cells and Osteoblasts. Front Bioeng Biotechnol 2019; 7:256. [PMID: 31649927 PMCID: PMC6795130 DOI: 10.3389/fbioe.2019.00256] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 09/23/2019] [Indexed: 01/08/2023] Open
Abstract
While stem cell/biomaterial studies provide solid evidences that biomaterial intrinsic cues deeply affect cell fate, current strategies tend to neglect their effects on mesenchymal stem cells (MSCs) secretory activities and resulting cell-crosstalks. The present study aims to investigate the impact of bone-mimetic material (B-MM), with intrinsic osteoinductive property, on MSCs mediator secretions; and to explore underlying effects on cells involved in bone regeneration. Human MSCs were cultured, on B-MM, made from inorganic calcium phosphate supplemented with chitosan and hyaluronic acid biopolymers. Collected MSCs culture media were assessed for mediators release quantification and used further to stimulate endothelial cells (ECs) and alveolar bone derived osteoblasts (OBs). Without osteogenic supplements, MSCs committed into bone lineage forming thus 3D bone-like nodules after 21 days. Despite a weak percentage of cell commitment, our data elucidate new aspects of osteoinductive material effect on MSCs functions through the regulation of the secretion of mediators involved in bone regeneration and subsequently the MSCs/ECs indirect crosstalk with osteogenesis-boosting effect. Using MSCs culture media, we demonstrate a large potential of osteoinductive materials and MSCs in bone regenerative medicine. Such strategies could help to address some insights in cell-free therapies using MSCs derived media.
Collapse
Affiliation(s)
- Hassan Rammal
- EA 4691, Biomatériaux et Inflammation en Site Osseux (BIOS), SFR CAP Santé (FED4231), Université de Reims Champagne Ardenne, Reims, France.,UFR d'Odontologie, Université de Reims Champagne Ardenne, Reims, France
| | - Laura Entz
- EA 4691, Biomatériaux et Inflammation en Site Osseux (BIOS), SFR CAP Santé (FED4231), Université de Reims Champagne Ardenne, Reims, France
| | - Marie Dubus
- EA 4691, Biomatériaux et Inflammation en Site Osseux (BIOS), SFR CAP Santé (FED4231), Université de Reims Champagne Ardenne, Reims, France.,UFR d'Odontologie, Université de Reims Champagne Ardenne, Reims, France
| | - Aurélie Moniot
- EA 4691, Biomatériaux et Inflammation en Site Osseux (BIOS), SFR CAP Santé (FED4231), Université de Reims Champagne Ardenne, Reims, France
| | - Nicolae B Bercu
- EA 4682, Laboratoire de Recherche en Nanoscience (LRN), Université de Reims Champagne-Ardenne, Reims, France
| | - Johan Sergheraert
- EA 4691, Biomatériaux et Inflammation en Site Osseux (BIOS), SFR CAP Santé (FED4231), Université de Reims Champagne Ardenne, Reims, France.,UFR d'Odontologie, Université de Reims Champagne Ardenne, Reims, France.,Pôle Médecine bucco-dentaire, Hôpital Maison Blanche, Centre Hospitalier Universitaire de Reims, Reims, France
| | - Sophie C Gangloff
- EA 4691, Biomatériaux et Inflammation en Site Osseux (BIOS), SFR CAP Santé (FED4231), Université de Reims Champagne Ardenne, Reims, France.,UFR de Pharmacie, Université de Reims Champagne Ardenne, Reims, France
| | - Cédric Mauprivez
- EA 4691, Biomatériaux et Inflammation en Site Osseux (BIOS), SFR CAP Santé (FED4231), Université de Reims Champagne Ardenne, Reims, France.,UFR d'Odontologie, Université de Reims Champagne Ardenne, Reims, France.,Pôle Médecine bucco-dentaire, Hôpital Maison Blanche, Centre Hospitalier Universitaire de Reims, Reims, France
| | - Halima Kerdjoudj
- EA 4691, Biomatériaux et Inflammation en Site Osseux (BIOS), SFR CAP Santé (FED4231), Université de Reims Champagne Ardenne, Reims, France.,UFR d'Odontologie, Université de Reims Champagne Ardenne, Reims, France
| |
Collapse
|
315
|
Holopainen M, Colas RA, Valkonen S, Tigistu-Sahle F, Hyvärinen K, Mazzacuva F, Lehenkari P, Käkelä R, Dalli J, Kerkelä E, Laitinen S. Polyunsaturated fatty acids modify the extracellular vesicle membranes and increase the production of proresolving lipid mediators of human mesenchymal stromal cells. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1864:1350-1362. [DOI: 10.1016/j.bbalip.2019.06.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 05/23/2019] [Accepted: 06/13/2019] [Indexed: 12/14/2022]
|
316
|
Molino A, Terlizzi M, Colarusso C, Rossi A, Somma P, Saglia A, Pinto A, Sorrentino R. AIM2/IL-1α/TGF-β Axis in PBMCs From Exacerbated Chronic Obstructive Pulmonary Disease (COPD) Patients Is Not Related to COX-2-Dependent Inflammatory Pathway. Front Physiol 2019; 10:1235. [PMID: 31632288 PMCID: PMC6780005 DOI: 10.3389/fphys.2019.01235] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 09/09/2019] [Indexed: 01/10/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a lung disorder characterized by persistent respiratory symptoms and progressive airflow limitation as a consequence of a chronic inflammatory response. Corticosteroids are the main treatment for COPD patients with a history of exacerbation, in that they attenuate exacerbation and dyspnea, and improve the response to bronchodilators. Nevertheless, despite corticosteroid administration, COPD patients still undergo exacerbation phases. In this context, the aim of this study was to evaluate the activity of Absent in melanoma 2 (AIM2) inflammasome-dependent pathways under corticosteroid treatment during COPD exacerbation. Stable and exacerbated COPD-derived Peripheral Blood Mononuclear Cells (PBMCs) were treated with a well-known anti-inflammatory agent, Dexamethasone (DEX), in the presence or not of Poly (deoxyadenylic-deoxythymidylate) acid (Poly dA:dT), an AIM2 ligand. We found that IL-1α was highly increased when AIM2 was activated from Poly dA:dT in exacerbated, but not in stable, COPD-derived PBMCs. To note, the release of IL-1α after the stimulation of AIM2 in PBMCs obtained from stable (hospitalized) COPD patients was not higher from the basal conditions, though it was still as high as that observed for Poly dA:dT-stimulated PBMCs obtained from exacerbated patients. This effect was associated with a higher expression of AIM2 in pair-matched circulating CD14+ cells obtained from hospitalized patients who passed from the exacerbation to stable status. Because the difference between stable and exacerbated COPD patients relies on the treatment with corticosteroids, exacerbated and stable COPD-derived PBMCs were treated with DEX. Indeed, the release of IL-1α and TGF-β was not altered after DEX treatment. In conclusion, we found that the administration of DEX in vitro on exacerbated COPD-derived PBMCs was not able to revert the detrimental inflammatory mechanism associated with AIM2 activation responsible for the release of IL-1α and the ensuing TGF-β, contributing to the severity of disease.
Collapse
Affiliation(s)
- Antonio Molino
- Department of Respiratory Medicine, Respiratory Division, University of Naples Federico II, Naples, Italy
| | | | - Chiara Colarusso
- Department of Pharmacy, University of Salerno, Fisciano, Italy.,Ph.D. Program in Drug Discovery and Development, Department of Pharmacy, University of Salerno, Fisciano, Italy
| | - Antonietta Rossi
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Pasquale Somma
- Department of Anatomy and Pathology, Ospedale dei Colli "Monaldi-CTO", Naples, Italy
| | - Alessandro Saglia
- Department of Respiratory Medicine, Respiratory Division, University of Naples Federico II, Naples, Italy
| | - Aldo Pinto
- Department of Pharmacy, University of Salerno, Fisciano, Italy
| | | |
Collapse
|
317
|
Joffre C, Rey C, Layé S. N-3 Polyunsaturated Fatty Acids and the Resolution of Neuroinflammation. Front Pharmacol 2019; 10:1022. [PMID: 31607902 PMCID: PMC6755339 DOI: 10.3389/fphar.2019.01022] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 08/12/2019] [Indexed: 12/22/2022] Open
Abstract
In the past few decades, as a result of their anti-inflammatory properties, n-3 long chain polyunsaturated fatty acids (n-3 LC-PUFAs), have gained greater importance in the regulation of inflammation, especially in the central nervous system (in this case known as neuroinflammation). If sustained, neuroinflammation is a common denominator of neurological disorders, including Alzheimer’s disease and major depression, and of aging. Hence, limiting neuroinflammation is a real strategy for neuroinflammatory disease therapy and treatment. Recent data show that n-3 LC-PUFAs exert anti-inflammatory properties in part through the synthesis of specialized pro-resolving mediators (SPMs) such as resolvins, maresins and protectins. These SPMs are crucially involved in the resolution of inflammation. They could be good candidates to resolve brain inflammation and to contribute to neuroprotective functions and could lead to novel therapeutics for brain inflammatory diseases. This review presents an overview 1) of brain n-3 LC-PUFAs as precursors of SPMs with an emphasis on the effect of n-3 PUFAs on neuroinflammation, 2) of the formation and action of SPMs in the brain and their biological roles, and the possible regulation of their synthesis by environmental factors such as inflammation and nutrition and, in particular, PUFA consumption.
Collapse
Affiliation(s)
- Corinne Joffre
- INRA, Nutrition et Neurobiologie Intégrée, UMR 1286, Bordeaux, France.,Université de Bordeaux 2, Bordeaux, France
| | - Charlotte Rey
- INRA, Nutrition et Neurobiologie Intégrée, UMR 1286, Bordeaux, France.,Université de Bordeaux 2, Bordeaux, France.,ITERG, Nutrition Health and Lipid Biochemistry Department, Canéjan, France
| | - Sophie Layé
- INRA, Nutrition et Neurobiologie Intégrée, UMR 1286, Bordeaux, France.,Université de Bordeaux 2, Bordeaux, France
| |
Collapse
|
318
|
Na YR, Stakenborg M, Seok SH, Matteoli G. Macrophages in intestinal inflammation and resolution: a potential therapeutic target in IBD. Nat Rev Gastroenterol Hepatol 2019; 16:531-543. [PMID: 31312042 DOI: 10.1038/s41575-019-0172-4] [Citation(s) in RCA: 498] [Impact Index Per Article: 99.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/13/2019] [Indexed: 02/07/2023]
Abstract
Macrophages are the gatekeepers of intestinal immune homeostasis as they discriminate between innocuous antigens and potential pathogens to maintain oral tolerance. However, in individuals with a genetic and environmental predisposition, regulation of intestinal immunity is impaired, leading to chronic relapsing immune activation and pathologies of the gastrointestinal tract, such as IBD. As evidence suggests a causal link between defects in the resolution of intestinal inflammation and altered monocyte-macrophage differentiation in patients with IBD, macrophages have been considered as a novel potential target to develop new treatment approaches. This Review discusses the molecular and cellular mechanisms involved in the differentiation and function of intestinal macrophages in homeostasis and inflammation, and their role in resolving the inflammatory process. Understanding the molecular pathways involved in the specification of intestinal macrophages might lead to a new class of targets that promote remission in patients with IBD.
Collapse
Affiliation(s)
- Yi Rang Na
- Department of Microbiology and Immunology, and Institute of Endemic Disease, Seoul National University Medical College, Seoul, South Korea
| | - Michelle Stakenborg
- Department of Chronic Diseases, Metabolism and Ageing, Translational Research Center for Gastrointestinal Disorders (TARGID), University of Leuven, Leuven, Belgium
| | - Seung Hyeok Seok
- Department of Microbiology and Immunology, and Institute of Endemic Disease, Seoul National University Medical College, Seoul, South Korea.
| | - Gianluca Matteoli
- Department of Chronic Diseases, Metabolism and Ageing, Translational Research Center for Gastrointestinal Disorders (TARGID), University of Leuven, Leuven, Belgium.
| |
Collapse
|
319
|
Alnus Sibirica Extracts Suppress the Expression of Inflammatory Cytokines Induced by Lipopolysaccharides, Tumor Necrosis Factor-α, and Interferon-γ in Human Dermal Fibroblasts. Molecules 2019; 24:molecules24162883. [PMID: 31398908 PMCID: PMC6720580 DOI: 10.3390/molecules24162883] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/06/2019] [Accepted: 08/06/2019] [Indexed: 11/16/2022] Open
Abstract
The effects of Alnus sibirica (AS) extracts on cytokine expression induced by inflammatory stimulants were examined in human dermal fibroblasts (HDFs) and RAW264.7 cells. The anti-oxidative effect and effect on cell viability of AS extracts were evaluated, and four extracts with the highest anti-oxidative effects were selected. HDFs and RAW264.7 cells were treated with inflammatory stimulants, and the expression of cytokines involved in acute (IL-6 and IL-10) and chronic (IL-18) inflammation, the initiation of the immune response (IL-33), and non-specific immune responses (IL-1β, IL-8, and TNF-α) were determined using a reverse-transcription polymerase chain reaction. LPS increased the expression of all the cytokines, except for IL-18; however, AS extracts, particularly AS2 and AS4, reduced this increase, and TNF-α treatment markedly increased the expression of cytokines related to non-specific immune responses. IFN-γ treatment induced no significant changes, except for increased IL-33 expression in HDFs. AS extracts inhibited the increase in the expression of IL-33 and other cytokines in HDFs. Thus, the exposure of HDFs and RAW264.7 cells to inflammatory stimulants increased the expression of cytokines related to all the inflammatory processes. HDFs are involved not only in simple tissue regeneration but also in inflammatory reactions in the skin. AS2 and AS4 may offer effective therapy for related conditions.
Collapse
|
320
|
Lind S, Sundqvist M, Holmdahl R, Dahlgren C, Forsman H, Olofsson P. Functional and signaling characterization of the neutrophil FPR2 selective agonist Act-389949. Biochem Pharmacol 2019; 166:163-173. [DOI: 10.1016/j.bcp.2019.04.030] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 04/29/2019] [Indexed: 12/31/2022]
|
321
|
Holl EK, Frazier VN, Landa K, Beasley GM, Hwang ES, Nair SK. Examining Peripheral and Tumor Cellular Immunome in Patients With Cancer. Front Immunol 2019; 10:1767. [PMID: 31417550 PMCID: PMC6685102 DOI: 10.3389/fimmu.2019.01767] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 07/12/2019] [Indexed: 12/17/2022] Open
Abstract
Immunotherapies are rapidly being integrated into standard of care (SOC) therapy in conjunction with surgery, chemotherapy, and radiotherapy for many cancers and a large number of clinical studies continue to explore immunotherapy alone and as part of combination therapies in patients with cancer. It is evident that clinical effectiveness of immunotherapy is limited to a subset of patients and improving immunotherapy related outcomes remains a major scientific and clinical effort. Understanding the immune cell subset phenotype and activation/functional status (cellular immunome) prior to and post therapy is therefore critical to develop biomarkers that (1) will predict if a patient will respond to immunotherapy and (2) are a result of immunotherapy. In this study, we investigated local (tumor) and peripheral (blood) cellular immunome of patients with melanoma, breast cancer, and brain cancer using a rapid and reliable standardized, multiparameter flow cytometry assay. We used this approach to monitor changes in the peripheral cellular immunome in women with breast cancer undergoing SOC therapy. Our analysis is unique because it is conducted using matched fresh tumor tissue and blood from patients in real-time, within 2–3 h of sample acquisition, and provides insight into the innate and adaptive immune cell profile in blood and tumor. Specific to blood, this approach involves no manipulation and evaluates all immune subsets such as T cells, B cells, natural killer (NK) cells, monocytes, dendritic cells (DCs), neutrophils, eosinophils, and basophils using 0.5 ml of blood. Analysis of the corresponding tumor provides much needed insight into the phenotype and activation status of immune cells, especially T and B cells, in the tumor microenvironment vs. the periphery. This analysis will be used to assess baseline and therapy-mediated changes in local and peripheral cellular immunome in patients with glioblastoma, breast cancer, and melanoma in planned immunotherapy clinical studies.
Collapse
Affiliation(s)
- Eda K Holl
- Department of Surgery, Duke University, Durham, NC, United States
| | | | - Karenia Landa
- Department of Surgery, Duke University, Durham, NC, United States
| | | | - E Shelley Hwang
- Department of Surgery, Duke University, Durham, NC, United States
| | - Smita K Nair
- Department of Surgery, Duke University, Durham, NC, United States
| |
Collapse
|
322
|
Fosshaug LE, Colas RA, Anstensrud AK, Gregersen I, Nymo S, Sagen EL, Michelsen A, Vinge LE, Øie E, Gullestad L, Halvorsen B, Hansen TV, Aukrust P, Dalli J, Yndestad A. Early increase of specialized pro-resolving lipid mediators in patients with ST-elevation myocardial infarction. EBioMedicine 2019; 46:264-273. [PMID: 31345784 PMCID: PMC6711324 DOI: 10.1016/j.ebiom.2019.07.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 07/07/2019] [Accepted: 07/09/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Termination of acute inflammation is an active process orchestrated by lipid mediators (LM) derived from polyunsaturated fatty acids, referred to as specialized pro-resolving mediators (SPM). These mediators also provide novel therapeutic opportunities for treating inflammatory disease. However, the regulation of these molecules following acute myocardial infarction (MI) remains of interest. METHODS In this prospective observational study we aimed to profile plasma levels of SPMs in ST-elevation MI (STEMI) patients during the first week following MI. Plasma LM concentrations were measured in patients with STEMI (n = 15) at three time points and compared with stable coronary artery disease (CAD; n = 10) and healthy controls (n = 10). FINDINGS Our main findings were: (i) Immediately after onset of MI and before peak troponin T levels, STEMI patients had markedly increased levels of SPMs as compared with healthy controls and stable CAD patients, with levels of these mediators declining during follow-up. (ii) The increase in SPMs primarily reflected an increase in docosapentaenoic acid- and docosahexaenoic acid-derived protectins. (iii) Several individual protectins were correlated with the rapid increase in neutrophil counts, but not with CRP. (iv) A shift in 5-LOX activity from the leukotriene B4 pathway to the pro-resolving RvTs was observed. INTERPRETATION The temporal regulation of SPMs indicates that resolution mechanisms are activated early during STEMI as part of an endogenous mechanism to initiate repair. Thus strategies to boost the activity and/or efficacy of these endogenous mechanisms may represent novel therapeutic opportunities for treatment of patients with MI. FUND: This work was supported by grants from the South-Eastern Norwegian regional health authority, the European Research Council under the European Union's Horizon 2020 research and innovation program, a Sir Henry Dale Fellowship jointly funded by the Wellcome Trust and the Royal Society, and the Barts Charity.
Collapse
Affiliation(s)
- Linn E Fosshaug
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway; Department of Medicine, Diakonhjemmet Hospital, Oslo, Norway; Center for Heart Failure Research, Oslo University Hospital, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Norway.
| | - Romain A Colas
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, UK
| | - Anne K Anstensrud
- Center for Heart Failure Research, Oslo University Hospital, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Norway; Department of Cardiology, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Ida Gregersen
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Norway
| | - Ståle Nymo
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Ellen L Sagen
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Norway
| | - Annika Michelsen
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Norway
| | - Leif E Vinge
- Department of Medicine, Diakonhjemmet Hospital, Oslo, Norway; Center for Heart Failure Research, Oslo University Hospital, Oslo, Norway; Surgical Research, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Erik Øie
- Department of Medicine, Diakonhjemmet Hospital, Oslo, Norway; Center for Heart Failure Research, Oslo University Hospital, Oslo, Norway
| | - Lars Gullestad
- Center for Heart Failure Research, Oslo University Hospital, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Norway; Department of Cardiology, Oslo University Hospital Rikshospitalet, Oslo, Norway; KG Jebsen Center for Cardiac Research, University of Oslo, Oslo, Norway
| | - Bente Halvorsen
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Norway
| | - Trond V Hansen
- School of Pharmacy, Department of Pharmaceutical Chemistry, University of Oslo, Oslo, Norway
| | - Pål Aukrust
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Norway; School of Pharmacy, Department of Pharmaceutical Chemistry, University of Oslo, Oslo, Norway; Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Jesmond Dalli
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, UK; Centre for Inflammation and Therapeutic Innovation, Queen Mary University of London, London, UK
| | - Arne Yndestad
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway; Center for Heart Failure Research, Oslo University Hospital, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Norway
| |
Collapse
|
323
|
Kumar NP, Fukutani KF, Shruthi BS, Alves T, Silveira-Mattos PS, Rocha MS, West K, Natarajan M, Viswanathan V, Babu S, Andrade BB, Kornfeld H. Persistent inflammation during anti-tuberculosis treatment with diabetes comorbidity. eLife 2019; 8:46477. [PMID: 31271354 PMCID: PMC6660216 DOI: 10.7554/elife.46477] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 06/20/2019] [Indexed: 12/12/2022] Open
Abstract
Diabetes mellitus (DM) increases risk for pulmonary tuberculosis (TB) and adverse treatment outcomes. Systemic hyper-inflammation is characteristic in people with TB and concurrent DM (TBDM) at baseline, but the impact of TB treatment on this pattern has not been determined. We measured 17 plasma cytokines and growth factors in longitudinal cohorts of Indian and Brazilian pulmonary TB patients with or without DM. Principal component analysis revealed virtually complete separation of TBDM from TB individuals in both cohorts at baseline, with hyper-inflammation in TBDM that continued through treatment completion at six months. By one year after treatment completion, there was substantial convergence of mediator levels between groups within the India cohort. Non-resolving systemic inflammation in TBDM comorbidity could reflect delayed lesion sterilization or non-resolving sterile inflammation. Either mechanism portends unfavorable long-term outcomes including risk for recurrent TB and for damaging immune pathology.
Collapse
Affiliation(s)
- Nathella Pavan Kumar
- National Institutes of Health, National Institute for Research in Tuberculosis, International Center for Excellence in Research, Chennai, India
| | - Kiyoshi F Fukutani
- Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER), Fundação José Silveira, Salvador, Brazil.,Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil.,Faculdade de Tecnologia e Ciências, Salvador, Brazil
| | | | - Thabata Alves
- Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER), Fundação José Silveira, Salvador, Brazil.,Universidade Salvador, Laureate Universities, Salvador, Brazil
| | - Paulo S Silveira-Mattos
- Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER), Fundação José Silveira, Salvador, Brazil.,Faculdade de Tecnologia e Ciências, Salvador, Brazil
| | - Michael S Rocha
- Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER), Fundação José Silveira, Salvador, Brazil
| | - Kim West
- University of Massachusetts Medical School, Worcester, United States
| | - Mohan Natarajan
- National Institute for Research in Tuberculosis, Chennai, India
| | | | - Subash Babu
- National Institutes of Health, National Institute for Research in Tuberculosis, International Center for Excellence in Research, Chennai, India
| | - Bruno B Andrade
- Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER), Fundação José Silveira, Salvador, Brazil.,Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil.,Faculdade de Tecnologia e Ciências, Salvador, Brazil.,Universidade Salvador, Laureate Universities, Salvador, Brazil
| | - Hardy Kornfeld
- University of Massachusetts Medical School, Worcester, United States
| |
Collapse
|
324
|
Schultz D, Methling K, Rothe M, Lalk M. Eicosanoid Profile of Influenza A Virus Infected Pigs. Metabolites 2019; 9:E130. [PMID: 31277231 PMCID: PMC6680658 DOI: 10.3390/metabo9070130] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 06/28/2019] [Accepted: 06/28/2019] [Indexed: 12/26/2022] Open
Abstract
Respiratory tract infections caused by the Influenza A virus (IAV) are a worldwide problem for human and animal health. Within this study, we analyzed the impact of IAV infection on the immune-related lipidome (eicosanoids) of the pig as new infection model. For this purpose, we performed HPLC-MS/MS using dynamic multiple reaction monitoring and analyzed lung, spleen, blood plasma and bronchoalveolar lavages. IAV infection leads to collective changes in the levels of the analyzed hydroxyeicosatrienoic acids (HETEs), hydroxydocosahexaenoic acids (HDHAs) and epoxyeicosatrienoic acids (EETs), and moreover, unique eicosanoid changes in several sample types, even under mild infection conditions. In accordance with different mouse infection studies, we observed infection-related patterns for 12-HETE, 15-HETE and 17-HDHA, which seem to be common for IAV infection. Using a long-term approach of 21 days we established an experimental setup that can be used also for bacterial-viral coinfection experiments.
Collapse
Affiliation(s)
- Daniel Schultz
- Institute of Biochemistry, University of Greifswald, 17487 Greifswald, Germany
| | - Karen Methling
- Institute of Biochemistry, University of Greifswald, 17487 Greifswald, Germany
| | | | - Michael Lalk
- Institute of Biochemistry, University of Greifswald, 17487 Greifswald, Germany.
| |
Collapse
|
325
|
Besedovsky L, Lange T, Haack M. The Sleep-Immune Crosstalk in Health and Disease. Physiol Rev 2019; 99:1325-1380. [PMID: 30920354 PMCID: PMC6689741 DOI: 10.1152/physrev.00010.2018] [Citation(s) in RCA: 681] [Impact Index Per Article: 136.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 10/29/2018] [Accepted: 10/29/2018] [Indexed: 02/08/2023] Open
Abstract
Sleep and immunity are bidirectionally linked. Immune system activation alters sleep, and sleep in turn affects the innate and adaptive arm of our body's defense system. Stimulation of the immune system by microbial challenges triggers an inflammatory response, which, depending on its magnitude and time course, can induce an increase in sleep duration and intensity, but also a disruption of sleep. Enhancement of sleep during an infection is assumed to feedback to the immune system to promote host defense. Indeed, sleep affects various immune parameters, is associated with a reduced infection risk, and can improve infection outcome and vaccination responses. The induction of a hormonal constellation that supports immune functions is one likely mechanism underlying the immune-supporting effects of sleep. In the absence of an infectious challenge, sleep appears to promote inflammatory homeostasis through effects on several inflammatory mediators, such as cytokines. This notion is supported by findings that prolonged sleep deficiency (e.g., short sleep duration, sleep disturbance) can lead to chronic, systemic low-grade inflammation and is associated with various diseases that have an inflammatory component, like diabetes, atherosclerosis, and neurodegeneration. Here, we review available data on this regulatory sleep-immune crosstalk, point out methodological challenges, and suggest questions open for future research.
Collapse
Affiliation(s)
- Luciana Besedovsky
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen , Tübingen , Germany ; Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School , Boston, Massachusetts ; and Department of Rheumatology and Clinical Immunology, University of Lübeck , Lübeck , Germany
| | - Tanja Lange
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen , Tübingen , Germany ; Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School , Boston, Massachusetts ; and Department of Rheumatology and Clinical Immunology, University of Lübeck , Lübeck , Germany
| | - Monika Haack
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen , Tübingen , Germany ; Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School , Boston, Massachusetts ; and Department of Rheumatology and Clinical Immunology, University of Lübeck , Lübeck , Germany
| |
Collapse
|
326
|
Vago JP, Sugimoto MA, Lima KM, Negreiros-Lima GL, Baik N, Teixeira MM, Perretti M, Parmer RJ, Miles LA, Sousa LP. Plasminogen and the Plasminogen Receptor, Plg-R KT, Regulate Macrophage Phenotypic, and Functional Changes. Front Immunol 2019; 10:1458. [PMID: 31316511 PMCID: PMC6611080 DOI: 10.3389/fimmu.2019.01458] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 06/10/2019] [Indexed: 01/31/2023] Open
Abstract
Inflammation resolution is an active process that functions to restore tissue homeostasis. Clearance of apoptotic leukocytes by efferocytosis at inflammatory sites plays an important role in inflammation resolution and induces remarkable macrophage phenotypic and functional changes. Here, we investigated the effects of deletion of either plasminogen (Plg) or the Plg receptor, Plg-RKT, on the resolution of inflammation. In a murine model of pleurisy, the numbers of total mononuclear cells recruited to the pleural cavity were significantly decreased in both Plg−/− and Plg-RKT−/− mice, a response associated with decreased levels of the chemokine CCL2 in pleural exudates. Increased percentages of M1-like macrophages were determined in pleural lavages of Plg−/− and Plg-RKT−/− mice without significant changes in M2-like macrophage percentages. In vitro, Plg and plasmin (Pla) increased CD206/Arginase-1 expression and the levels of IL-10/TGF-β (M2 markers) while decreasing IFN/LPS-induced M1 markers in murine bone-marrow-derived macrophages (BMDMs) and human macrophages. Furthermore, IL4-induced M2-like polarization was defective in BMDMs from both Plg−/− and Plg-RKT−/− mice. Mechanistically, Plg and Pla induced transient STAT3 phosphorylation, which was decreased in Plg−/− and Plg-RKT−/− BMDMs after IL-4 or IL-10 stimulation. The extents of expression of CD206 and Annexin A1 (important for clearance of apoptotic cells) were reduced in Plg−/− and Plg-RKT−/− macrophage populations, which exhibited decreased phagocytosis of apoptotic neutrophils (efferocytosis) in vivo and in vitro. Taken together, these results suggest that Plg and its receptor, Plg-RKT, regulate macrophage polarization and efferocytosis, as key contributors to the resolution of inflammation.
Collapse
Affiliation(s)
- Juliana P Vago
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States.,Center for Drug Research and Development, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Michelle A Sugimoto
- Center for Drug Research and Development, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil.,Barts and The London School of Medicine, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Kátia M Lima
- Department of Clinical and Toxicological Analyses, School of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Graziele L Negreiros-Lima
- Department of Clinical and Toxicological Analyses, School of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Nagyung Baik
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States
| | - Mauro M Teixeira
- Center for Drug Research and Development, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Mauro Perretti
- Barts and The London School of Medicine, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Robert J Parmer
- Department of Medicine, Veterans Administration San Diego Healthcare System, University of California, San Diego, San Diego, CA, United States
| | - Lindsey A Miles
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States
| | - Lirlândia P Sousa
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States.,Center for Drug Research and Development, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil.,Department of Clinical and Toxicological Analyses, School of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
327
|
Lee WS, Lee WH, Bae YC, Suk K. Axon Guidance Molecules Guiding Neuroinflammation. Exp Neurobiol 2019; 28:311-319. [PMID: 31308791 PMCID: PMC6614065 DOI: 10.5607/en.2019.28.3.311] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/08/2019] [Accepted: 05/09/2019] [Indexed: 12/19/2022] Open
Abstract
Axon guidance molecules (AGMs), such as Netrins, Semaphorins, and Ephrins, have long been known to regulate axonal growth in the developing nervous system. Interestingly, the chemotactic properties of AGMs are also important in the postnatal period, such as in the regulation of immune and inflammatory responses. In particular, AGMs play pivotal roles in inflammation of the nervous system, by either stimulating or inhibiting inflammatory responses, depending on specific ligand-receptor combinations. Understanding such regulatory functions of AGMs in neuroinflammation may allow finding new molecular targets to treat neurodegenerative diseases, in which neuroinflammation underlies aetiology and progression.
Collapse
Affiliation(s)
- Won Suk Lee
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu 41944, Korea.,Brain Science and Engineering Institute, Kyungpook National University, Daegu 41944, Korea
| | - Won-Ha Lee
- BK21 Plus KNU Creative BioResearch Group, School of Life Sciences, Kyungpook National University, Daegu 41566, Korea
| | - Yong Chul Bae
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu 41940, Korea
| | - Kyoungho Suk
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu 41944, Korea.,Brain Science and Engineering Institute, Kyungpook National University, Daegu 41944, Korea
| |
Collapse
|
328
|
Leyrolle Q, Layé S, Nadjar A. Direct and indirect effects of lipids on microglia function. Neurosci Lett 2019; 708:134348. [PMID: 31238131 DOI: 10.1016/j.neulet.2019.134348] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 06/05/2019] [Accepted: 06/21/2019] [Indexed: 02/07/2023]
Abstract
Microglia are key players in brain function by maintaining brain homeostasis across lifetime. They participate to brain development and maturation through their ability to release neurotrophic factors, to remove immature synapses or unnecessary neural progenitors. They modulate neuronal activity in healthy adult brains and they also orchestrate the neuroinflammatory response in various pathophysiological contexts such as aging and neurodegenerative diseases. One of the main features of microglia is their high sensitivity to environmental factors, partly via the expression of a wide range of receptors. Recent data pinpoint that dietary fatty acids modulate microglia function. Both the quantity and the type of fatty acid are potent modulators of microglia physiology. The present review aims at dissecting the current knowledge on the direct and indirect mechanisms (focus on gut microbiota and hormones) through which fatty acids influence microglial physiology. We summarize main discoveries from in vitro and in vivo models on fatty acid-mediated microglial modulation. All these studies represent a promising field of research that could promote using nutrition as a novel therapeutic or preventive tool in diseases involving microglia dysfunctions.
Collapse
Affiliation(s)
- Q Leyrolle
- INRA, Nutrition et Neurobiologie Intégrée, UMR 1286, 33076 Bordeaux, France; Univ. Bordeaux, Nutrition et Neurobiologie Intégrée, UMR 1286, 33076 Bordeaux, France
| | - S Layé
- INRA, Nutrition et Neurobiologie Intégrée, UMR 1286, 33076 Bordeaux, France; Univ. Bordeaux, Nutrition et Neurobiologie Intégrée, UMR 1286, 33076 Bordeaux, France
| | - A Nadjar
- INRA, Nutrition et Neurobiologie Intégrée, UMR 1286, 33076 Bordeaux, France; Univ. Bordeaux, Nutrition et Neurobiologie Intégrée, UMR 1286, 33076 Bordeaux, France.
| |
Collapse
|
329
|
Kent-Dennis C, Pasternak A, Plaizier JC, Penner GB. Potential for a localized immune response by the ruminal epithelium in nonpregnant heifers following a short-term subacute ruminal acidosis challenge. J Dairy Sci 2019; 102:7556-7569. [PMID: 31229286 DOI: 10.3168/jds.2019-16294] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 04/24/2019] [Indexed: 12/31/2022]
Abstract
The aim of this study was to investigate whether the ruminal epithelium activates a local inflammatory response following a short-term subacute ruminal acidosis (SARA) challenge. Seven ruminally cannulated, nonpregnant, nonlactating beef heifers, fed a baseline total mixed ration (TMR) with 50:50 forage-to-concentrate ratio, were used in a crossover design with 2 periods and 2 treatments: SARA and control (CON). Induction of SARA included feed restriction (25% of dry matter intake [DMI] for 24 h) followed by a grain overload (30% of baseline DMI) and provision of the full TMR; whereas, the CON group received the TMR ad libitum. Ruminal pH was recorded using indwelling probes, and ruminal lipopolysaccharide (LPS) concentration was measured daily following the challenge until d 6. Biopsies of ruminal papillae from the ventral sac were collected on d 2 and 6 after the grain overload. Transcript abundance of genes associated with acute inflammation was measured by quantitative real-time PCR, normalized to the geometric mean of 3 stable housekeeping genes. Target genes included toll-like receptor-2 (TLR2), TLR4, TLR9, tumor necrosis factor-α (TNFA), prostaglandin endoperoxide synthase-1 (PTGS1), PTGS2 transforming growth factor β-1 (TGFB1), and 4 intermediate enzymes of leukotriene synthesis (ALOX5, ALOX5AP, LTA4H, and LTC4S). Protein localization and expression of TLR4 were quantified by image analysis of fluorescence intensity. Statistical analysis was performed using as a crossover design with fixed effects of treatment, day, and the treatment × day interaction with the random effect of day within period. Ruminal pH was below 5.6 for 4.5 h/d and below 5.8 for 6.9 h/d in the SARA group compared with 22 and 72 min/d, respectively, for CON. Ruminal LPS concentration peaked on d 2 in SARA heifers at 51,481 endotoxin units (EU)/mL compared with 13,331 EU/mL in CON. Following grain overload, small but statistically significant decreases in the transcriptional abundance of TLR2, TLR4, TNF, PTGS2, ALOX5, and ALOX5AP were seen in SARA versus CON heifers. A functionally relevant decrease in TLR4 expression in SARA heifers compared with CON was confirmed by a decrease in fluorescence intensity of the corresponding protein following immunohistofluorescent staining of papillae. The study results indicate a suppression of the inflammatory response in the ruminal epithelium and suggest that the response is tightly regulated, allowing for tissue recovery and return to homeostasis following SARA.
Collapse
Affiliation(s)
- C Kent-Dennis
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada
| | - A Pasternak
- Department of Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada
| | - J C Plaizier
- Department of Animal Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - G B Penner
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada.
| |
Collapse
|
330
|
Nguyen L, Castro O, De Dios R, Sandoval J, McKenna S, Wright CJ. Sex-differences in LPS-induced neonatal lung injury. Sci Rep 2019; 9:8514. [PMID: 31186497 PMCID: PMC6560218 DOI: 10.1038/s41598-019-44955-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 05/28/2019] [Indexed: 02/08/2023] Open
Abstract
Being of the male sex has been identified as a risk factor for multiple morbidities associated with preterm birth, including bronchopulmonary dysplasia (BPD). Exposure to inflammatory stress is a well-recognized risk factor for developing BPD. Whether there is a sex difference in pulmonary innate immune TLR4 signaling, lung injury and subsequent abnormal lung development is unknown. Neonatal (P0) male and female mice (ICR) were exposed to systemic LPS (5 mg/kg, IP) and innate immune signaling, and the transcriptional response were assessed (1 and 5 hours), along with lung development (P7). Male and female mice demonstrated a similar degree of impaired lung development with decreased radial alveolar counts, increased surface area, increased airspace area and increased mean linear intercept. We found no differences between male and female mice in the baseline pulmonary expression of key components of TLR4-NFκB signaling, or in the LPS-induced pulmonary expression of key mediators of neonatal lung injury. Finally, we found no difference in the kinetics of LPS-induced pulmonary NFκB activation between male and female mice. Together, these data support the conclusion that the innate immune response to early postnatal LPS exposure and resulting pulmonary sequelae is similar in male and female mice.
Collapse
Affiliation(s)
- Leanna Nguyen
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Odalis Castro
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Robyn De Dios
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Jeryl Sandoval
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Sarah McKenna
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Clyde J Wright
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, 80045, USA.
| |
Collapse
|
331
|
Macarini AF, Sobrinho TUC, Rizzi GW, Corrêa R. Pyrazole–chalcone derivatives as selective COX-2 inhibitors: design, virtual screening, and in vitro analysis. Med Chem Res 2019. [DOI: 10.1007/s00044-019-02368-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
332
|
Argilaguet J, Pedragosa M, Esteve-Codina A, Riera G, Vidal E, Peligero-Cruz C, Casella V, Andreu D, Kaisho T, Bocharov G, Ludewig B, Heath S, Meyerhans A. Systems analysis reveals complex biological processes during virus infection fate decisions. Genome Res 2019; 29:907-919. [PMID: 31138618 PMCID: PMC6581057 DOI: 10.1101/gr.241372.118] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 05/14/2019] [Indexed: 02/01/2023]
Abstract
The processes and mechanisms of virus infection fate decisions that are the result of a dynamic virus-immune system interaction with either an efficient effector response and virus elimination or an alleviated immune response and chronic infection are poorly understood. Here, we characterized the host response to acute and chronic lymphocytic choriomeningitis virus (LCMV) infections by gene coexpression network analysis of time-resolved splenic transcriptomes. First, we found an early attenuation of inflammatory monocyte/macrophage prior to the onset of T cell exhaustion, and second, a critical role of the XCL1-XCR1 communication axis during the functional adaptation of the T cell response to the chronic infection state. These findings not only reveal an important feedback mechanism that couples T cell exhaustion with the maintenance of a lower level of effector T cell response but also suggest therapy options to better control virus levels during the chronic infection phase.
Collapse
Affiliation(s)
- Jordi Argilaguet
- Infection Biology Laboratory, Department of Experimental and Health Sciences (DCEXS), Universitat Pompeu Fabra, Barcelona, Catalonia 08003, Spain
| | - Mireia Pedragosa
- Infection Biology Laboratory, Department of Experimental and Health Sciences (DCEXS), Universitat Pompeu Fabra, Barcelona, Catalonia 08003, Spain
| | - Anna Esteve-Codina
- CNAG-CRG, Center for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, 08028 Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Catalonia 08003, Spain
| | - Graciela Riera
- Infection Biology Laboratory, Department of Experimental and Health Sciences (DCEXS), Universitat Pompeu Fabra, Barcelona, Catalonia 08003, Spain
| | - Enric Vidal
- IRTA, Centre de Recerca en Sanitat Animal (CReSA-IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Catalonia, Spain
| | - Cristina Peligero-Cruz
- Infection Biology Laboratory, Department of Experimental and Health Sciences (DCEXS), Universitat Pompeu Fabra, Barcelona, Catalonia 08003, Spain
| | - Valentina Casella
- Infection Biology Laboratory, Department of Experimental and Health Sciences (DCEXS), Universitat Pompeu Fabra, Barcelona, Catalonia 08003, Spain
| | - David Andreu
- Laboratory of Proteomics and Protein Chemistry, DCEXS, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Tsuneyasu Kaisho
- Department of Immunology, Institute of Advanced Medicine, Wakayama Medical University, Wakayama 641-8509, Japan.,Laboratory for Immune Regulation, World Premier International Research Center Initiative, Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan
| | - Gennady Bocharov
- Marchuk Institute of Numerical Mathematics, Russian Academy of Sciences, Moscow, 119333, Russia.,Sechenov First Moscow State Medical University, Moscow, 119991, Russia
| | - Burkhard Ludewig
- Institute for Immunobiology, Kantonsspital St. Gallen, 9007 St. Gallen, Switzerland
| | - Simon Heath
- CNAG-CRG, Center for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, 08028 Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Catalonia 08003, Spain
| | - Andreas Meyerhans
- Infection Biology Laboratory, Department of Experimental and Health Sciences (DCEXS), Universitat Pompeu Fabra, Barcelona, Catalonia 08003, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, 08003, Spain
| |
Collapse
|
333
|
Wang J, Yi Y, Zhu Y. [Progress of mesenchymal stem cells derived exosomes in wound repair]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2019; 33:634-639. [PMID: 31090360 DOI: 10.7507/1002-1892.201901051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Objective To summarize the research progress of mesenchymal stem cells derived exosomes (MSCs-EXOs) in wound repair in recent years. Methods The literature about the role of MSCs-EXOs in wound repair at home and abroad was extensively consulted. The mechanism of MSCs-EXOs in wound repair and its clinical application prospects were summarized and analyzed. Results MSCs-EXOs can inhibit early inflammatory reaction, promote angiogenesis, proliferation, and migration of epithelial cells, regulate collagen synthesis, and inhibit scar proliferation in the later stage of wound healing. Compared with MSCs, MSCs-EXOs have many advantages, such as high stability, easy storage, non-tumorigenicity, no proliferation, easy quantitative use, and so on. It has broad clinical application prospects. Conclusion MSCs-EXOs can promote wound repair and hopefully develop into a clinical product to promote the repair of acute or chronic wounds.
Collapse
Affiliation(s)
- Jiangwen Wang
- Department of Plastic Surgery, Second Affiliated Hospital of Nanchang University, Nanchang Jiangxi, 330006, P.R.China
| | - Yangyan Yi
- Department of Plastic Surgery, Second Affiliated Hospital of Nanchang University, Nanchang Jiangxi, 330006,
| | - Yuanzheng Zhu
- Department of Plastic Surgery, Second Affiliated Hospital of Nanchang University, Nanchang Jiangxi, 330006, P.R.China
| |
Collapse
|
334
|
Tavares WR, Seca AML. Inula L. Secondary Metabolites against Oxidative Stress-Related Human Diseases. Antioxidants (Basel) 2019; 8:E122. [PMID: 31064136 PMCID: PMC6562470 DOI: 10.3390/antiox8050122] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/01/2019] [Accepted: 05/02/2019] [Indexed: 02/07/2023] Open
Abstract
An imbalance in the production of reactive oxygen species in the body can cause an increase of oxidative stress that leads to oxidative damage to cells and tissues, which culminates in the development or aggravation of some chronic diseases, such as inflammation, diabetes mellitus, cancer, cardiovascular disease, and obesity. Secondary metabolites from Inula species can play an important role in the prevention and treatment of the oxidative stress-related diseases mentioned above. The databases Scopus, PubMed, and Web of Science and the combining terms Inula, antioxidant and secondary metabolites were used in the research for this review. More than 120 articles are reviewed, highlighting the most active compounds with special emphasis on the elucidation of their antioxidative-stress mechanism of action, which increases the knowledge about their potential in the fight against inflammation, cancer, neurodegeneration, and diabetes. Alantolactone is the most polyvalent compound, reporting interesting EC50 values for several bioactivities, while 1-O-acetylbritannilactone can be pointed out as a promising lead compound for the development of analogues with interesting properties. The Inula genus is a good bet as source of structurally diverse compounds with antioxidant activity that can act via different mechanisms to fight several oxidative stress-related human diseases, being useful for development of new drugs.
Collapse
Affiliation(s)
- Wilson R Tavares
- Faculty of Sciences and Technology, University of Azores, 9501-801 Ponta Delgada, Portugal.
| | - Ana M L Seca
- cE3c-Centre for Ecology, Evolution and Environmental Changes/ Azorean Biodiversity Group & University of Azores, Rua Mãe de Deus, 9501-801 Ponta Delgada, Portugal.
- QOPNA & LAQV-REQUIMTE, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
335
|
Abstract
The global burden of chronic kidney disease will increase during the next century. As NFκB, first described more than 30 years ago, plays a major role in immune and non-immune-mediated diseases and in inflammatory and metabolic disorders, this review article summarizes current knowledge on the role of NFκB in in vivo kidney injury and describes the new and so far not completely understood crosstalk between canonical and non-canonical NFκB pathways in T-lymphocyte activation in renal disease.
Collapse
Affiliation(s)
- Ning Song
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Friedrich Thaiss
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Linlin Guo
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
336
|
Mansour A, Abu-Nada L, Al-Waeli H, Mezour MA, Abdallah MN, Kinsella JM, Kort-Mascort J, Henderson JE, Ramirez-Garcialuna JL, Tran SD, Elkashty OA, Mousa A, El-Hadad AA, Taqi D, Al-Hamad F, Alageel O, Kaartinen MT, Tamimi F. Bone extracts immunomodulate and enhance the regenerative performance of dicalcium phosphates bioceramics. Acta Biomater 2019; 89:343-358. [PMID: 30853609 DOI: 10.1016/j.actbio.2019.03.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 02/28/2019] [Accepted: 03/06/2019] [Indexed: 12/27/2022]
Abstract
Immunomodulation strategies are believed to improve the integration and clinical performance of synthetic bone substitutes. One potential approach is the modification of biomaterial surface chemistry to mimic bone extracellular matrix (ECM). In this sense, we hypothesized that coating synthetic dicalcium phosphate (DCP) bioceramics with bone ECM proteins would modulate the host immune reactions and improve their regenerative performance. To test this, we evaluated the in vitro proteomic surface interactions and the in vivo performance of ECM-coated bioceramic scaffolds. Our results demonstrated that coating DCP scaffolds with bone extracts, specifically those containing calcium-binding proteins, dramatically modulated their interaction with plasma proteins in vitro, especially those relating to the innate immune response. In vivo, we observed an attenuated inflammatory response against the bioceramic scaffolds and enhanced peri-scaffold new bone formation supported by the increased osteoblastogenesis and reduced osteoclastogenesis. Furthermore, the bone extract rich in calcium-binding proteins can be 3D-printed to produce customized hydrogels with improved regeneration capabilities. In summary, bone extracts containing calcium-binding proteins can enhance the integration of synthetic biomaterials and improve their ability to regenerate bone probably by modulating the host immune reaction. This finding helps understand how bone allografts regenerate bone and opens the door for new advances in tissue engineering and bone regeneration. STATEMENT OF SIGNIFICANCE: Foreign-body reaction is an important determinant of in vivo biomaterial integration, as an undesired host immune response can compromise the performance of an implanted biomaterial. For this reason, applying immunomodulation strategies to enhance biomaterial engraftment is of great interest in the field of regenerative medicine. In this article, we illustrated that coating dicalcium phosphate bioceramic scaffolds with bone-ECM extracts, especially those rich in calcium-binding proteins, is a promising approach to improve their surface proteomic interactions and modulate the immune responses towards such biomaterials in a way that improves their bone regeneration performance. Collectively, the results of this study may provide a conceivable explanation for the mechanisms involved in presenting the excellent regenerative efficacy of natural bone grafts.
Collapse
Affiliation(s)
- Alaa Mansour
- Faculty of Dentistry, McGill University, Montreal, QC, Canada.
| | - Lina Abu-Nada
- Faculty of Dentistry, McGill University, Montreal, QC, Canada.
| | - Haider Al-Waeli
- Faculty of Dentistry, McGill University, Montreal, QC, Canada.
| | | | | | - Joseph M Kinsella
- Department of Bioengineering, Faculty of Engineering, McGill University, Montreal, QC, Canada.
| | - Jacqueline Kort-Mascort
- Department of Bioengineering, Faculty of Engineering, McGill University, Montreal, QC, Canada.
| | - Janet E Henderson
- Faculty of Medicine, McGill University, Montreal, QC, Canada; The Bone Engineering Labs, Research Institute McGill University Health Center, Montreal, QC, Canada.
| | - Jose Luis Ramirez-Garcialuna
- Faculty of Medicine, McGill University, Montreal, QC, Canada; The Bone Engineering Labs, Research Institute McGill University Health Center, Montreal, QC, Canada.
| | - Simon D Tran
- Faculty of Dentistry, McGill University, Montreal, QC, Canada.
| | - Osama A Elkashty
- Faculty of Medicine, McGill University, Montreal, QC, Canada; Faculty of Dentistry, Mansoura University, Mansoura, Egypt.
| | - Aisha Mousa
- Faculty of Dentistry, McGill University, Montreal, QC, Canada.
| | - Amir A El-Hadad
- Faculty of Dentistry, McGill University, Montreal, QC, Canada.
| | - Doaa Taqi
- Faculty of Dentistry, McGill University, Montreal, QC, Canada.
| | - Faez Al-Hamad
- Faculty of Dentistry, McGill University, Montreal, QC, Canada.
| | - Omar Alageel
- Faculty of Dentistry, McGill University, Montreal, QC, Canada; College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia.
| | | | - Faleh Tamimi
- Faculty of Dentistry, McGill University, Montreal, QC, Canada.
| |
Collapse
|
337
|
Gurunathan S, Kang MH, Jeyaraj M, Qasim M, Kim JH. Review of the Isolation, Characterization, Biological Function, and Multifarious Therapeutic Approaches of Exosomes. Cells 2019; 8:cells8040307. [PMID: 30987213 PMCID: PMC6523673 DOI: 10.3390/cells8040307] [Citation(s) in RCA: 687] [Impact Index Per Article: 137.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 03/22/2019] [Accepted: 04/01/2019] [Indexed: 12/18/2022] Open
Abstract
Exosomes are extracellular vesicles that contain a specific composition of proteins, lipids, RNA, and DNA. They are derived from endocytic membranes and can transfer signals to recipient cells, thus mediating a novel mechanism of cell-to-cell communication. They are also thought to be involved in cellular waste disposal. Exosomes play significant roles in various biological functions, including the transfer of biomolecules such as RNA, proteins, enzymes, and lipids and the regulation of numerous physiological and pathological processes in various diseases. Because of these properties, they are considered to be promising biomarkers for the diagnosis and prognosis of various diseases and may contribute to the development of minimally invasive diagnostics and next generation therapies. The biocompatible nature of exosomes could enhance the stability and efficacy of imaging probes and therapeutics. Due to their potential use in clinical applications, exosomes have attracted much research attention on their roles in health and disease. To explore the use of exosomes in the biomedical arena, it is essential that the basic molecular mechanisms behind the transport and function of these vesicles are well-understood. Herein, we discuss the history, biogenesis, release, isolation, characterization, and biological functions of exosomes, as well as the factors influencing their biogenesis and their technical and biological challenges. We conclude this review with a discussion on the future perspectives of exosomes.
Collapse
Affiliation(s)
- Sangiliyandi Gurunathan
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, 1 Hwayang-Dong, Gwangin-gu, Seoul 05029, Korea.
| | - Min-Hee Kang
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, 1 Hwayang-Dong, Gwangin-gu, Seoul 05029, Korea.
| | - Muniyandi Jeyaraj
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, 1 Hwayang-Dong, Gwangin-gu, Seoul 05029, Korea.
| | - Muhammad Qasim
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, 1 Hwayang-Dong, Gwangin-gu, Seoul 05029, Korea.
| | - Jin-Hoi Kim
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, 1 Hwayang-Dong, Gwangin-gu, Seoul 05029, Korea.
| |
Collapse
|
338
|
Barbosa M, Lopes G, Andrade PB, Valentão P. Bioprospecting of brown seaweeds for biotechnological applications: Phlorotannin actions in inflammation and allergy network. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.02.037] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
339
|
Welz B, Bikker R, Junemann J, Christmann M, Neumann K, Weber M, Hoffmeister L, Preuß K, Pich A, Huber R, Brand K. Proteome and Phosphoproteome Analysis in TNF Long Term-Exposed Primary Human Monocytes. Int J Mol Sci 2019; 20:E1241. [PMID: 30871024 PMCID: PMC6429050 DOI: 10.3390/ijms20051241] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 02/27/2019] [Accepted: 03/06/2019] [Indexed: 12/24/2022] Open
Abstract
To better understand the inflammation-associated mechanisms modulating and terminating tumor necrosis factor (TNF-)induced signal transduction and the development of TNF tolerance, we analyzed both the proteome and the phosphoproteome in TNF long term-incubated (i.e., 48 h) primary human monocytes using liquid chromatography-mass spectrometry. Our analyses revealed the presence of a defined set of proteins characterized by reproducible changes in expression and phosphorylation patterns in long term TNF-treated samples. In total, 148 proteins and 569 phosphopeptides were significantly regulated (103 proteins increased, 45 proteins decreased; 377 peptides with increased and 192 peptides with decreased phosphorylation). A variety of these proteins are associated with the non-canonical nuclear factor κB (NF-κB) pathway (nuclear factor κB (NFKB) 2, v-rel reticuloendotheliosis viral oncogene homolog (REL) B, indolamin-2,3-dioxygenase (IDO), kynureninase (KYNU)) or involved in the negative regulation of the canonical NF-κB system. Within the phosphopeptides, binding motifs for specific kinases were identified. Glycogen synthase kinase (GSK) 3 proved to be a promising candidate, since it targets NF-κB inhibiting factors, such as CCAAT/enhancer binding protein (C/EBP) β. Our experiments demonstrate that both proteome and phosphoproteome analysis can be effectively applied to study protein/phosphorylation patterns of primary monocytes. These results provide new regulatory candidates and evidence for a complex network of specific but synergistically acting/cooperating mechanisms enabling the affected cells to resist sustained TNF exposure and resulting in the resolution of inflammation.
Collapse
Affiliation(s)
- Bastian Welz
- Institute of Clinical Chemistry, Hannover Medical School, 30625 Hannover, Germany; (B.W.); (R.B.); (M.C.); (K.N.); (M.W.); (L.H.); (K.P.); (R.H.)
| | - Rolf Bikker
- Institute of Clinical Chemistry, Hannover Medical School, 30625 Hannover, Germany; (B.W.); (R.B.); (M.C.); (K.N.); (M.W.); (L.H.); (K.P.); (R.H.)
| | - Johannes Junemann
- Institute of Toxicology, Hannover Medical School, 30625 Hannover, Germany; (J.J.); (A.P.)
- Core Unit Proteomics, Hannover Medical School, 30625 Hannover, Germany
| | - Martin Christmann
- Institute of Clinical Chemistry, Hannover Medical School, 30625 Hannover, Germany; (B.W.); (R.B.); (M.C.); (K.N.); (M.W.); (L.H.); (K.P.); (R.H.)
| | - Konstantin Neumann
- Institute of Clinical Chemistry, Hannover Medical School, 30625 Hannover, Germany; (B.W.); (R.B.); (M.C.); (K.N.); (M.W.); (L.H.); (K.P.); (R.H.)
| | - Mareike Weber
- Institute of Clinical Chemistry, Hannover Medical School, 30625 Hannover, Germany; (B.W.); (R.B.); (M.C.); (K.N.); (M.W.); (L.H.); (K.P.); (R.H.)
| | - Leonie Hoffmeister
- Institute of Clinical Chemistry, Hannover Medical School, 30625 Hannover, Germany; (B.W.); (R.B.); (M.C.); (K.N.); (M.W.); (L.H.); (K.P.); (R.H.)
| | - Katharina Preuß
- Institute of Clinical Chemistry, Hannover Medical School, 30625 Hannover, Germany; (B.W.); (R.B.); (M.C.); (K.N.); (M.W.); (L.H.); (K.P.); (R.H.)
| | - Andreas Pich
- Institute of Toxicology, Hannover Medical School, 30625 Hannover, Germany; (J.J.); (A.P.)
- Core Unit Proteomics, Hannover Medical School, 30625 Hannover, Germany
| | - René Huber
- Institute of Clinical Chemistry, Hannover Medical School, 30625 Hannover, Germany; (B.W.); (R.B.); (M.C.); (K.N.); (M.W.); (L.H.); (K.P.); (R.H.)
| | - Korbinian Brand
- Institute of Clinical Chemistry, Hannover Medical School, 30625 Hannover, Germany; (B.W.); (R.B.); (M.C.); (K.N.); (M.W.); (L.H.); (K.P.); (R.H.)
| |
Collapse
|
340
|
Neutrophils promote the development of reparative macrophages mediated by ROS to orchestrate liver repair. Nat Commun 2019; 10:1076. [PMID: 30842418 PMCID: PMC6403250 DOI: 10.1038/s41467-019-09046-8] [Citation(s) in RCA: 218] [Impact Index Per Article: 43.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 02/07/2019] [Indexed: 12/13/2022] Open
Abstract
Phagocytes, including neutrophils and macrophages, have been suggested to function in a cooperative way in the initial phase of inflammatory responses, but their interaction and integration in the resolution of inflammation and tissue repair remain unclear. Here we show that neutrophils have crucial functions in liver repair by promoting the phenotypic conversion of pro-inflammatory Ly6ChiCX3CR1lo monocytes/macrophages to pro-resolving Ly6CloCX3CR1hi macrophages. Intriguingly, reactive oxygen species (ROS), expressed predominantly by neutrophils, are important mediators that trigger this phenotypic conversion to promote liver repair. Moreover, this conversion is prevented by the depletion of neutrophils via anti-Ly6G antibody, genetic deficiency of granulocyte colony-stimulating factor, or genetic deficiency of NADPH oxidase 2 (Nox2). By contrast, adoptive transfer of WT rather than Nox2−/− neutrophils rescues the impaired phenotypic conversion of macrophages in neutrophil-depleted mice. Our findings thus identify an intricate cooperation between neutrophils and macrophages that orchestrate resolution of inflammation and tissue repair. Neutrophils and macrophages are both involved in the initiation of inflammation, but whether and how they may participate in inflammation resolution is unclear. Here the authors show that neutrophils may mediate the conversion of macrophage into a pro-resolution phenotype via reactive oxygen species production to promote liver repair.
Collapse
|
341
|
Sugimoto MA, Vago JP, Perretti M, Teixeira MM. Mediators of the Resolution of the Inflammatory Response. Trends Immunol 2019; 40:212-227. [DOI: 10.1016/j.it.2019.01.007] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/13/2019] [Accepted: 01/14/2019] [Indexed: 02/06/2023]
|
342
|
Hopkin SJ, Lewis JW, Krautter F, Chimen M, McGettrick HM. Triggering the Resolution of Immune Mediated Inflammatory Diseases: Can Targeting Leukocyte Migration Be the Answer? Front Pharmacol 2019; 10:184. [PMID: 30881306 DOI: 10.3389/fphar.2019.00184] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 02/14/2019] [Indexed: 12/16/2022] Open
Abstract
Leukocyte recruitment is a pivotal process in the regulation and resolution of an inflammatory episode. It is vital for the protective responses to microbial infection and tissue damage, but is the unwanted reaction contributing to pathology in many immune mediated inflammatory diseases (IMIDs). Indeed, it is now recognized that patients with IMIDs have defects in at least one, if not multiple, check-points regulating the entry and exit of leukocytes from the inflamed site. In this review, we will explore our understanding of the imbalance in recruitment that permits the accumulation and persistence of leukocytes in IMIDs. We will highlight old and novel pharmacological tools targeting these processes in an attempt to trigger resolution of the inflammatory response. In this context, we will focus on cytokines, chemokines, known pro-resolving lipid mediators and potential novel lipids (e.g., sphingosine-1-phosphate), along with the actions of glucocorticoids mediated by 11-beta hydroxysteroid dehydrogenase 1 and 2.
Collapse
Affiliation(s)
- Sophie J Hopkin
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Jonathan W Lewis
- Rheumatology Research Group, Arthritis Research UK Centre of Excellence in the Pathogenesis of Rheumatoid Arthritis, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Franziska Krautter
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Myriam Chimen
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Helen M McGettrick
- Rheumatology Research Group, Arthritis Research UK Centre of Excellence in the Pathogenesis of Rheumatoid Arthritis, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
343
|
Yang W, Zhao X, Tao Y, Wu Y, He F, Tang L. Proteomic analysis reveals a protective role of specific macrophage subsets in liver repair. Sci Rep 2019; 9:2953. [PMID: 30814596 PMCID: PMC6393665 DOI: 10.1038/s41598-019-39007-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 01/11/2019] [Indexed: 12/12/2022] Open
Abstract
Macrophages are a heterogeneous population of immune cells that play central roles in a broad range of biological processes, including the resolution of inflammation. Although diverse macrophage subpopulations have been identified, the characterization and functional specialization of certain macrophage subsets in inflamed tissues remain unclear. Here we uncovered a key role of specific macrophage subsets in tissue repair using proteomics, bioinformatics and functional analysis. We isolated two hepatic monocyte-derived macrophage subpopulations: Ly6ChiCX3CR1lo macrophages and Ly6CloCX3CR1hi macrophages during distinct phases of acute liver injury and employed label-free proteomics approach to profile the proteome of these cells. We found that the endocytosis- and apoptotic cell clearance-related proteins were specifically enriched in Ly6CloCX3CR1hi macrophages at the resolution phase. Intriguingly, 12/15-lipoxygenase (Alox15), the most strongly up-regulated protein in Ly6CloCX3CR1hi macrophages, was identified as a specific marker for these macrophages. In co-culture systems, Ly6CloCX3CR1hi macrophages specifically induced hepatocyte proliferation. Furthermore, selective depletion of this population in CD11b-diphtheria toxin receptor mice significantly delayed liver repair. Overall, our studies shed light on the functional specialization of distinct macrophage subsets from different phases in the resolution of inflammation.
Collapse
Affiliation(s)
- Wenting Yang
- State Key Laboratory of Proteomics, National Center for Protein Sciences, Beijing, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, 102206, P. R. China
| | - Xinyuan Zhao
- State Key Laboratory of Proteomics, National Center for Protein Sciences, Beijing, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, 102206, P. R. China
| | - Yuandong Tao
- State Key Laboratory of Proteomics, National Center for Protein Sciences, Beijing, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, 102206, P. R. China
| | - Yan Wu
- State Key Laboratory of Proteomics, National Center for Protein Sciences, Beijing, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, 102206, P. R. China
| | - Fuchu He
- State Key Laboratory of Proteomics, National Center for Protein Sciences, Beijing, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, 102206, P. R. China.
| | - Li Tang
- State Key Laboratory of Proteomics, National Center for Protein Sciences, Beijing, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, 102206, P. R. China. .,Department of Biochemistry and Molecular Biology, Anhui Medical University, Hefei, Anhui Province, 230032, P. R. China.
| |
Collapse
|
344
|
de Carvalho Santuchi M, Dutra MF, Vago JP, Lima KM, Galvão I, de Souza-Neto FP, Morais e Silva M, Oliveira AC, de Oliveira FCB, Gonçalves R, Teixeira MM, Sousa LP, dos Santos RAS, da Silva RF. Angiotensin-(1-7) and Alamandine Promote Anti-inflammatory Response in Macrophages In Vitro and In Vivo. Mediators Inflamm 2019; 2019:2401081. [PMID: 30918468 PMCID: PMC6409041 DOI: 10.1155/2019/2401081] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 11/12/2018] [Accepted: 12/10/2018] [Indexed: 02/06/2023] Open
Abstract
The renin-angiotensin system (RAS) peptides play an important role in inflammation. Resolution of inflammation contributes to restore tissue homeostasis, and it is characterized by neutrophil apoptosis and their subsequent removal by macrophages, which are remarkable plastic cells involved in the pathophysiology of diverse inflammatory diseases. However, the effects of RAS peptides on different macrophage phenotypes are still emerging. Here, we evaluated the effects of angiotensin-(1-7) (Ang-(1-7)) and the most novel RAS peptide, alamandine, on resting (M0), proinflammatory M(LPS+IFN-γ), and anti-inflammatory M(IL-4) macrophage phenotypes in vitro, as well as on specific immune cell populations and macrophage subsets into the pleural cavity of LPS-induced pleurisy in mice. Our results showed that Ang-(1-7) and alamandine, through Mas and MrgD receptors, respectively, do not affect M0 macrophages but reduce the proinflammatory TNF-α, CCL2, and IL-1β transcript expression levels in LPS+IFN-γ-stimulated macrophages. Therapeutic administration of these peptides in LPS-induced inflammation in mice decreased the number of neutrophils and M1 (F4/80lowGr1+CD11bmed) macrophage frequency without affecting the other investigated macrophage subsets. Our data suggested that both Ang-(1-7) and alamandine, through their respective receptors Mas and MrgD, promote an anti-inflammatory reprogramming of M(LPS+IFN-γ)/M1 macrophages under inflammatory circumstances and potentiate the reprogramming induced by IL-4. In conclusion, our work sheds light on the emerging proresolving properties of Ang-(1-7) and alamandine, opening new avenues for the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Melissa de Carvalho Santuchi
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Miriane Fernandes Dutra
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Juliana Priscila Vago
- Department of Clinical and Toxicological Analyses, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Kátia Maciel Lima
- Department of Clinical and Toxicological Analyses, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Izabela Galvão
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Fernando Pedro de Souza-Neto
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Mario Morais e Silva
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Aline Cristina Oliveira
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | - Ricardo Gonçalves
- Department of Pathology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Mauro Martins Teixeira
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Lirlândia Pires Sousa
- Department of Clinical and Toxicological Analyses, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Robson Augusto Souza dos Santos
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Rafaela Fernandes da Silva
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
345
|
Saldaña L, Bensiamar F, Vallés G, Mancebo FJ, García-Rey E, Vilaboa N. Immunoregulatory potential of mesenchymal stem cells following activation by macrophage-derived soluble factors. Stem Cell Res Ther 2019; 10:58. [PMID: 30760316 PMCID: PMC6375172 DOI: 10.1186/s13287-019-1156-6] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 01/09/2019] [Accepted: 01/27/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Immunoregulatory capacity of mesenchymal stem cells (MSC) is triggered by the inflammatory environment, which changes during tissue repair. Macrophages are essential in mediating the inflammatory response after injury and can adopt a range of functional phenotypes, exhibiting pro-inflammatory and anti-inflammatory activities. An accurate characterization of MSC activation by the inflammatory milieu is needed for improving the efficacy of regenerative therapies. In this work, we investigated the immunomodulatory functions of MSC primed with factors secreted from macrophages polarized toward a pro-inflammatory or an anti-inflammatory phenotype. We focused on the role of TNF-α and IL-10, prototypic pro-inflammatory and anti-inflammatory cytokines, respectively, as priming factors for MSC. METHODS Secretion of immunoregulatory mediators from human MSC primed with media conditioned by human macrophages polarized toward a pro-inflammatory or an anti-inflammatory phenotype was determined. Immunomodulatory potential of primed MSC on polarized macrophages was studied using indirect co-cultures. Involvement of TNF-α and IL-10 in priming MSC and of PGE2 in MSC-mediated immunomodulation was investigated employing neutralizing antibodies. Collagen hydrogels were used to study MSC and macrophages interactions in a more physiological environment. RESULTS Priming MSC with media conditioned by pro-inflammatory or anti-inflammatory macrophages enhanced their immunomodulatory potential through increased PGE2 secretion. We identified the pro-inflammatory cytokine TNF-α as a priming factor for MSC. Notably, the anti-inflammatory IL-10, mainly produced by pro-resolving macrophages, potentiated the priming effect of TNF-α. Collagen hydrogels acted as instructive microenvironments for MSC and macrophages functions and their crosstalk. Culturing macrophages on hydrogels stimulated anti-inflammatory versus pro-inflammatory cytokine secretion. Encapsulation of MSC within hydrogels increased PGE2 secretion and potentiated immunomodulation on macrophages, attenuating macrophage pro-inflammatory state and sustaining anti-inflammatory activation. Priming with inflammatory factors conferred to MSC loaded in hydrogels greater immunomodulatory potential, promoting anti-inflammatory activity of macrophages. CONCLUSIONS Factors secreted by pro-inflammatory and anti-inflammatory macrophages activated the immunomodulatory potential of MSC. This was partially attributed to the priming effect of TNF-α and IL-10. Immunoregulatory functions of primed MSC were enhanced after encapsulation in hydrogels. These findings may provide insight into novel strategies to enhance MSC immunoregulatory potency.
Collapse
Affiliation(s)
- Laura Saldaña
- Hospital Universitario La Paz-IdiPAZ, Paseo de la Castellana 261, 28046 Madrid, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Madrid, Spain
| | - Fátima Bensiamar
- Hospital Universitario La Paz-IdiPAZ, Paseo de la Castellana 261, 28046 Madrid, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Madrid, Spain
| | - Gema Vallés
- Hospital Universitario La Paz-IdiPAZ, Paseo de la Castellana 261, 28046 Madrid, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Madrid, Spain
| | - Francisco J. Mancebo
- Hospital Universitario La Paz-IdiPAZ, Paseo de la Castellana 261, 28046 Madrid, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Madrid, Spain
| | - Eduardo García-Rey
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Madrid, Spain
- Departamento de Cirugía Ortopédica y Traumatología, Hospital Universitario La Paz-IdiPAZ, Madrid, Spain
| | - Nuria Vilaboa
- Hospital Universitario La Paz-IdiPAZ, Paseo de la Castellana 261, 28046 Madrid, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Madrid, Spain
| |
Collapse
|
346
|
Quirós M, Nusrat A. Contribution of Wound-Associated Cells and Mediators in Orchestrating Gastrointestinal Mucosal Wound Repair. Annu Rev Physiol 2019; 81:189-209. [PMID: 30354933 PMCID: PMC7871200 DOI: 10.1146/annurev-physiol-020518-114504] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The gastrointestinal mucosa, structurally formed by the epithelium and lamina propria, serves as a selective barrier that separates luminal contents from the underlying tissues. Gastrointestinal mucosal wound repair is orchestrated by a series of spatial and temporal events that involve the epithelium, recruited immune cells, resident stromal cells, and the microbiota present in the wound bed. Upon injury, repair of the gastrointestinal barrier is mediated by collective migration, proliferation, and subsequent differentiation of epithelial cells. Epithelial repair is intimately regulated by a number of wound-associated cells that include immune cells and stromal cells in addition to mediators released by luminal microbiota. The highly regulated interaction of these cell types is perturbed in chronic inflammatory diseases that are associated with impaired wound healing. An improved understanding of prorepair mechanisms in the gastrointestinal mucosa will aid in the development of novel therapeutics that promote mucosal healing and reestablish the critical epithelial barrier function.
Collapse
Affiliation(s)
- Miguel Quirós
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, USA; ,
| | - Asma Nusrat
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, USA; ,
| |
Collapse
|
347
|
Werner M, Jordan PM, Romp E, Czapka A, Rao Z, Kretzer C, Koeberle A, Garscha U, Pace S, Claesson HE, Serhan CN, Werz O, Gerstmeier J. Targeting biosynthetic networks of the proinflammatory and proresolving lipid metabolome. FASEB J 2019; 33:6140-6153. [PMID: 30735438 DOI: 10.1096/fj.201802509r] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Nonsteroidal anti-inflammatory drugs interfere with the metabolism of arachidonic acid to proinflammatory prostaglandins and leukotrienes by targeting cyclooxygenases (COXs), 5-lipoxygenase (LOX), or the 5-LOX-activating protein (FLAP). These and related enzymes act in conjunction with marked crosstalk within a complex lipid mediator (LM) network where also specialized proresolving LMs (SPMs) are formed. Here, we present how prominent LM pathways can be differentially modulated in human proinflammatory M1 and proresolving M2 macrophage phenotypes that, upon exposure to Escherichia coli, produce either abundant prostaglandins and leukotrienes (M1) or SPMs (M2). Targeted liquid chromatography-tandem mass spectrometry-based metabololipidomics was applied to analyze and quantify the specific LM profiles. Besides expected on-target actions, we found that: 1) COX or 15-LOX-1 inhibitors elevate inflammatory leukotriene levels, 2) FLAP and 5-LOX inhibitors reduce leukotrienes in M1 but less so in M2 macrophages, 3) zileuton blocks resolution-initiating SPM biosynthesis, whereas FLAP inhibition increases SPM levels, and 4) that the 15-LOX-1 inhibitor 3887 suppresses SPM formation in M2 macrophages. Conclusively, interference with discrete LM biosynthetic enzymes in different macrophage phenotypes considerably affects the LM metabolomes with potential consequences for inflammation-resolution pharmacotherapy. Our data may allow better appraisal of the therapeutic potential of these drugs to intervene with inflammatory disorders.-Werner, M., Jordan, P. M., Romp, E., Czapka, A., Rao, Z., Kretzer, C., Koeberle, A., Garscha, U., Pace, S., Claesson, H.-E., Serhan, C. N., Werz, O., Gerstmeier, J. Targeting biosynthetic networks of the proinflammatory and proresolving lipid metabolome.
Collapse
Affiliation(s)
- Markus Werner
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Jena, Germany
| | - Paul M Jordan
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Jena, Germany
| | - Erik Romp
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Jena, Germany
| | - Anna Czapka
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Jena, Germany
| | - Zhigang Rao
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Jena, Germany
| | - Christian Kretzer
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Jena, Germany
| | - Andreas Koeberle
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Jena, Germany
| | - Ulrike Garscha
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Jena, Germany
| | - Simona Pace
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Jena, Germany
| | - Hans-Erik Claesson
- Division of Hematology, Department of Medicine, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Charles N Serhan
- Department of Anesthesia, Perioperative and Pain Medicine, Center for Experimental Therapeutics and Reperfusion Injury, Brigham and Women's Hospital-Harvard Medical School, Boston, Massachusetts, USA
| | - Oliver Werz
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Jena, Germany
| | - Jana Gerstmeier
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Jena, Germany
| |
Collapse
|
348
|
High-Density Lipoprotein from Chronic Kidney Disease Patients Modulates Polymorphonuclear Leukocytes. Toxins (Basel) 2019; 11:toxins11020073. [PMID: 30717079 PMCID: PMC6409858 DOI: 10.3390/toxins11020073] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/18/2019] [Accepted: 01/23/2019] [Indexed: 12/24/2022] Open
Abstract
The anti-inflammatory properties of high-density lipoproteins (HDL) are lost in uremia. These HDL may show pro-inflammatory features partially as a result of changed protein composition. Alterations of polymorphonuclear leukocytes (PMNLs) in chronic kidney disease (CKD) may contribute to chronic inflammation and high vascular risk. We investigated if HDL from uremic patients is related to systemic inflammation by interfering with PMNL function. PMNL apoptosis was investigated by assessing morphological features and DNA content. CD11b surface expression was quantified by flow cytometry. Oxidative burst was measured via cytochrome c reduction assay. Chemotaxis was assessed by using an under-agarose migration assay. We found that HDL from CKD and hemodialysis (HD) patients significantly attenuated PMNL apoptosis, whereas HDL isolated from healthy subjects had no effect on PMNL apoptosis. The use of signal transduction inhibitors indicated that uremic HDL exerts anti-apoptotic effects by activating pathways involving phosphoinositide 3-kinase and extracellular-signal regulated kinase. Healthy HDL attenuated the surface expression of CD11b, whereas HDL from CKD and HD patients had no effect. All tested isolates increased the stimulation of oxidative burst, but did not affect PMNL chemotactic movement. In conclusion, HDL may contribute to the systemic inflammation in uremic patients by modulating PMNL functions.
Collapse
|
349
|
Koziolová E, Venclíková K, Etrych T. Polymer-drug conjugates in inflammation treatment. Physiol Res 2019; 67:S281-S292. [PMID: 30379550 DOI: 10.33549/physiolres.933977] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Inflammation is a vital defense mechanism of living organisms. However, persistent and chronic inflammation may lead to severe pathological processes and evolve into various chronic inflammatory diseases (CID), e.g. rheumatoid arthritis, multiple sclerosis, multiple sclerosis, systemic lupus erythematosus or inflammatory bowel diseases, or certain types of cancer. Their current treatment usually does not lead to complete remission. The application of nanotherapeutics may significantly improve CID treatment, since their accumulation in inflamed tissues has been described and is referred to as extravasation through leaky vasculature and subsequent inflammatory cell-mediated sequestration (ELVIS). Among nanotherapeutics, water-soluble polymer-drug conjugates may be highly advantageous in CID treatment due to the possibility of their passive and active targeting to the inflammation site and controlled release of active agents once there. The polymer-drug conjugate consists of a hydrophilic biocompatible polymer backbone along which the drug molecules are covalently attached via a biodegradable linker that enables controlled drug release. Their active targeting or bio-imaging can be achieved by introducing the cell-specific targeting moiety or imaging agents into the polymer conjugate. Here, we review the relationship between polymer conjugates and inflammation, including the benefits of the application of polymer conjugates in inflammation treatment, the anti-inflammatory activity of polymer drug conjugates and potential polymer-promoted inflammation and immunogenicity.
Collapse
Affiliation(s)
- E Koziolová
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Prague 6, Czech Republic.
| | | | | |
Collapse
|
350
|
Galvão I, Queiroz-Junior CM, de Oliveira VLS, Pinho V, Hirsch E, Teixeira MM. The Inhibition of Phosphoinositide-3 Kinases Induce Resolution of Inflammation in a Gout Model. Front Pharmacol 2019; 9:1505. [PMID: 30666201 PMCID: PMC6330337 DOI: 10.3389/fphar.2018.01505] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 12/10/2018] [Indexed: 01/11/2023] Open
Abstract
Phosphoinositide-3 kinases (PI3Ks) are central signaling enzymes that are involved in many aspects of immune cell function. PI3Kγ and PI3Kδ are the major isoforms expressed in leukocytes. The role of PI3K isoforms in the resolution of inflammation is still poorly understood. Here, we investigated the contribution of PI3Kγ and PI3Kδ to the resolution of inflammation in a model of gout in mice. Methods and Results: Experiments were performed in wild-type male C57/Bl6 mice. Selective inhibitors of PI3K-γ (AS605240) or PI3Kδ (GSK045) were injected in the joint 12 h after injection of MSU crystals, hence at the peak of inflammation. Inhibition of either PI3K isoform decreased number of neutrophils that migrated in response to the injection of MSU crystals. This was associated with reduction of myeloperoxidase activity and IL-1β levels in periarticular tissues and reduction of histological score. Joint dysfunction, as seen by reduced mechanical hypernociception, was improved by treatment with either inhibitor. The decrease in neutrophil numbers was associated with enhanced apoptosis and efferocytosis of these cells. There was shortening of resolution intervals, suggesting inhibition of either isoform induced the resolution of neutrophilic inflammation. Blockade of PI3Kγ or PI3Kδ reduced Nuclear Factor kappa B (NF-κB) activation. A pan-PI3K inhibitor (CL27c) reduced inflammation induced by MSU crystals by a magnitude that was similar to that attained by the PI3Kγ or PI3Kδ selective inhibitors alone. Conclusion: Taken together, these results suggest that neutrophils can use PI3Kγ or PI3Kδ to remain in the cavity and blockade of either isoenzyme is sufficient to induce their apoptosis and resolve inflammation in a murine model of gout.
Collapse
Affiliation(s)
- Izabela Galvão
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Celso Martins Queiroz-Junior
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Vivian Louise Soares de Oliveira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Vanessa Pinho
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Emilio Hirsch
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Mauro Martins Teixeira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|