351
|
Jongeling AC, Johns ME, Murphy AZ, Hammond DL. Persistent inflammatory pain decreases the antinociceptive effects of the mu opioid receptor agonist DAMGO in the locus coeruleus of male rats. Neuropharmacology 2009; 56:1017-26. [PMID: 19265713 PMCID: PMC2680457 DOI: 10.1016/j.neuropharm.2009.02.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2007] [Revised: 02/14/2009] [Accepted: 02/19/2009] [Indexed: 12/18/2022]
Abstract
Persistent inflammatory nociception increases levels of endogenous opioids with affinity for delta opioid receptors in the ventromedial medulla and enhances the antinociceptive effects of the mu opioid receptor (MOPr) agonist [D-Ala2, N-Me-Phe4, Gly5-ol]enkephalin (DAMGO) [Hurley, R.W., Hammond, D.L., 2001. Contribution of endogenous enkephalins to the enhanced analgesic effects of supraspinal mu opioid receptor agonists after inflammatory injury. J. Neurosci. 21, 2536-2545]. It also increases levels of endogenous opioids that act at MOPr elsewhere in the CNS [Zangen, A., Herzberg, U., Vogel, Z., Yadid, G., 1998. Nociceptive stimulus induces release of endogenous beta-endorphin in the rat brain. Neuroscience 85, 659-662]. This study tested the hypothesis that a sustained release of endogenous opioids leads to a downregulation of MOPr in the locus coeruleus (LC) and induces a state of endogenous opioid tolerance. Four days after injection of complete Freund's adjuvant (CFA) in the left hindpaw of the rat, both the magnitude and duration of the antinociception produced by microinjection of DAMGO in the right LC were reduced. Saturation isotherms demonstrated a 50% decrease in MOPr B(max) in homogenates of the LC from CFA-treated rats; K(d) was unchanged. Receptor autoradiography revealed that this decrease was bilateral. The decreased efficacy of DAMGO in CFA-treated rats most likely results from a decreased number of MOPr in the LC. Microinjection of the MOPr antagonist D-Phe-Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH2 (CTAP) in the LC did not exacerbate hyperalgesia in the ipsilateral hindpaw or produce hyperalgesia in the contralateral hindpaw of CFA-treated rats. The downregulation in MOPr is therefore unlikely to result from the induction of endogenous opioid tolerance in the LC. These results indicate that persistent inflammatory nociception alters the antinociceptive actions of MOPr agonists in the CNS by diverse mechanisms that are nucleus specific and likely to have different physiological implications.
Collapse
Affiliation(s)
- Amy C. Jongeling
- Graduate Program in Neuroscience, The University of Iowa, Iowa City, IA 52242
- Medical Scientist Training Program, The University of Iowa, Iowa City, IA 52242
| | - Malcolm E. Johns
- Neuroscience Institute, Center for Behavioral Neurosciences Georgia State University, Atlanta, GA 30302
| | - Anne Z. Murphy
- Neuroscience Institute, Center for Behavioral Neurosciences Georgia State University, Atlanta, GA 30302
| | - Donna L. Hammond
- Department of Anesthesia, The University of Iowa, Iowa City, IA 52242
- Graduate Program in Neuroscience, The University of Iowa, Iowa City, IA 52242
| |
Collapse
|
352
|
Pierre S, Eschenhagen T, Geisslinger G, Scholich K. Capturing adenylyl cyclases as potential drug targets. Nat Rev Drug Discov 2009; 8:321-35. [PMID: 19337273 DOI: 10.1038/nrd2827] [Citation(s) in RCA: 181] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cyclic AMP (cAMP) is an important intracellular signalling mediator. It is generated in mammals by nine membrane-bound and one soluble adenylyl cyclases (ACs), each with distinct regulation and expression patterns. Although many drugs inhibit or stimulate AC activity through the respective upstream G-protein coupled receptors (for example, opioid or beta-adrenergic receptors), ACs themselves have not been major drug targets. Over the past decade studies on the physiological functions of the different mammalian AC isoforms as well as advances in the development of isoform-selective AC inhibitors and activators suggest that ACs could be useful drug targets. Here we discuss the therapeutic potential of isoform-selective compounds in various clinical settings, including neuropathic pain, neurodegenerative disorders, congestive heart failure, asthma and male contraception.
Collapse
Affiliation(s)
- Sandra Pierre
- Pharmazentrum Frankfurt, ZAFES, Institut für Klinische Pharmakologie, Klinikum der Goethe-Universität Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| | | | | | | |
Collapse
|
353
|
Stein C, Clark JD, Oh U, Vasko MR, Wilcox GL, Overland AC, Vanderah TW, Spencer RH. Peripheral mechanisms of pain and analgesia. BRAIN RESEARCH REVIEWS 2009; 60:90-113. [PMID: 19150465 PMCID: PMC2730351 DOI: 10.1016/j.brainresrev.2008.12.017] [Citation(s) in RCA: 193] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Accepted: 12/29/2008] [Indexed: 12/23/2022]
Abstract
This review summarizes recent findings on peripheral mechanisms underlying the generation and inhibition of pain. The focus is on events occurring in peripheral injured tissues that lead to the sensitization and excitation of primary afferent neurons, and on the modulation of such mechanisms. Primary afferent neurons are of particular interest from a therapeutic perspective because they are the initial generator of noxious impulses traveling towards relay stations in the spinal cord and the brain. Thus, if one finds ways to inhibit the sensitization and/or excitation of peripheral sensory neurons, subsequent central events such as wind-up, sensitization and plasticity may be prevented. Most importantly, if agents are found that selectively modulate primary afferent function and do not cross the blood-brain-barrier, centrally mediated untoward side effects of conventional analgesics (e.g. opioids, anticonvulsants) may be avoided. This article begins with the peripheral actions of opioids, turns to a discussion of the effects of adrenergic co-adjuvants, and then moves on to a discussion of pro-inflammatory mechanisms focusing on TRP channels and nerve growth factor, their signaling pathways and arising therapeutic perspectives.
Collapse
Affiliation(s)
- Christoph Stein
- Department of Anesthesiology and Critical Care Medicine, Charité Campus Benjamin Franklin, Freie Universität Berlin, Germany
| | - J. David Clark
- Department of Anesthesia, Stanford University School of Medicine, USA
| | - Uhtaek Oh
- Sensory Research Center, CRI, Seoul National University, Korea
| | - Michael R. Vasko
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, USA
| | - George L. Wilcox
- Department of Neuroscience, University of Minnesota, Minneapolis, USA
| | - Aaron C. Overland
- Department of Neuroscience, University of Minnesota, Minneapolis, USA
| | - Todd W. Vanderah
- Department of Pharmacology, University of Arizona Health Sciences Center, Tucson, USA
| | | |
Collapse
|
354
|
Jaferi A, Pickel VM. Mu-opioid and corticotropin-releasing-factor receptors show largely postsynaptic co-expression, and separate presynaptic distributions, in the mouse central amygdala and bed nucleus of the stria terminalis. Neuroscience 2009; 159:526-39. [PMID: 19166913 PMCID: PMC2678868 DOI: 10.1016/j.neuroscience.2008.12.061] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2008] [Revised: 12/03/2008] [Accepted: 12/29/2008] [Indexed: 10/21/2022]
Abstract
The anxiolytic effects of opiates active at the mu-opioid receptor (mu-OR) may be ascribed, in part, to suppression of neurons that are responsive to the stress-associated peptide, corticotropin releasing factor (CRF), in the central amygdala (CeA) and bed nucleus of the stria terminalis (BNST). The corticotropin releasing factor receptor (CRFr) and mu-OR are expressed in both the CeA and BNST, but their subcellular relationship to each other is not known in either region. To address this question, we used dual electron microscopic immunolabeling of mu-OR and CRFr in the mouse lateral CeA and anterolateral BNST. Immunolabeling for each receptor was detected in the same as well as in separate somatic, dendritic and axonal profiles of neurons in each region. CRFr had a plasmalemmal or cytoplasmic distribution in many dendrites, including those co-expressing mu-OR. The co-expression of CRFr and mu-OR also was seen near excitatory-type synapses on dendritic spines. In both the CeA and BNST, over 50% of the CRFr-labeled dendritic profiles (dendrites and spines) contained immunoreactivity for the mu-OR. However, less than 25% of the dendritic profiles containing the mu-OR were labeled for CRFr in either region, suggesting that opiate activation of the mu-OR affects many neurons in addition to those responsive to CRF. The dendritic profiles containing CRFr and/or mu-OR received asymmetric, excitatory-type synapses from unlabeled or CRFr-labeled axon terminals. In contrast, the mu-OR was identified in terminals forming symmetric, inhibitory-type synapses. Thus, in both the CeA and BNST, mu-OR and CRFr have strategic locations for mediation of CRF and opioid effects on the postsynaptic excitability of single neurons, and on the respective presynaptic release of excitatory and inhibitory neurotransmitters. The commonalities in the synaptic location of both receptors in the CeA and BNST suggest that this is a fundamental cellular association of relevance to both drug addiction and stress-induced disorders.
Collapse
Affiliation(s)
- A Jaferi
- Division of Neurobiology, Department of Neurology and Neuroscience, Weill Medical College of Cornell University, 407 East 61st Street, New York, NY 10065, USA.
| | | |
Collapse
|
355
|
Farhadinasab A, Shahidi S, Najafi A, Komaki A. Role of naloxone as an exogenous opioid receptor antagonist in spatial learning and memory of female rats during the estrous cycle. Brain Res 2009; 1257:65-74. [DOI: 10.1016/j.brainres.2008.12.043] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2007] [Revised: 12/12/2008] [Accepted: 12/13/2008] [Indexed: 01/10/2023]
|
356
|
Reyes BAS, Chavkin C, van Bockstaele EJ. Subcellular targeting of kappa-opioid receptors in the rat nucleus locus coeruleus. J Comp Neurol 2009; 512:419-31. [PMID: 19009591 PMCID: PMC2592510 DOI: 10.1002/cne.21880] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The dynorphin (DYN)-kappa opioid receptor (kappaOR) system has been implicated in stress modulation, depression, and relapse to drug-seeking behaviors. Previous anatomical and physiological data have indicated that the noradrenergic nucleus locus coeruleus (LC) is one site at which DYN may contribute to these effects. Using light microscopy, immunofluorescence, and electron microscopy, the present study investigated the cellular substrates for pre- and postsynaptic interactions of kappaOR in the LC. Dual immunocytochemical labeling for kappaOR and tyrosine hydroxylase (TH) or kappaOR and preprodynorphin (ppDYN) was examined in the same section of tissue. Light microscopic analysis revealed prominent kappaOR immunoreactivity in the nuclear core of the LC and in the peri-coerulear region where noradrenergic dendrites extend. Fluorescence and electron microscopy revealed kappaOR immunoreactivity within TH-immunoreactive somata and dendrites in the LC as well as localized to ppDYN-immunoreactive processes. In sections processed for kappaOR and TH, approximately 29% (200/688) of the kappaOR-containing axon terminals identified targeted TH-containing profiles. Approximately 49% (98/200) of the kappaOR-labeled axon terminals formed asymmetric synapses with TH-labeled dendrites. Sections processed for kappaOR and ppDYN showed that, of the axon terminals exhibiting kappaOR, 47% (223/477) also exhibited ppDYN. These findings indicate that kappaORs are poised to modulate LC activity by their localization to somata and dendrites. Furthermore, kappaORs are strategically localized to presynaptically modulate DYN afferent input to catecholamine-containing neurons in the LC. These data add to the growing literature showing that kappaORs can modulate diverse afferent signaling to the LC.
Collapse
Affiliation(s)
- B A S Reyes
- Department of Neurosurgery, Thomas Jefferson University, Farber Institute for Neurosciences, Philadelphia, Pennsylvania 19107, USA.
| | | | | |
Collapse
|
357
|
Hashimoto K, Amano T, Sakai N, Suzuki T, Narita M. Cell-dependent physiological synaptic action of morphine in the rat habenular nucleus: morphine both inhibits and facilitates excitatory synaptic transmission. Neurosci Lett 2009; 451:270-3. [PMID: 19159664 DOI: 10.1016/j.neulet.2009.01.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2008] [Revised: 12/26/2008] [Accepted: 01/07/2009] [Indexed: 12/01/2022]
Abstract
Although several lines of evidence have suggested that the activity of thalamic neurons is modulated by opioids, the mechanism by which morphine in the thalamus regulates the release of excitatory neurotransmitters remains unclear. In the present study, we investigated the synaptic modulation of morphine to regulate excitatory synaptic transmission, probably glutamatergic transmission, in habenular nucleus (Hb) and centrolateral nucleus (CL) neurons in the rat thalamus. Using the whole-cell patch-clamp technique, we found dual modulation by morphine in Hb neurons: morphine caused either inhibition or facilitation of the miniature excitatory postsynaptic current (mEPSC) frequency in the Hb. In Hb neurons that showed a morphine-induced decrease in the mEPSC frequency, the mEPSC amplitude was also decreased in the presence of morphine. In contrast, the mEPSC amplitude was markedly increased in Hb neurons that showed a morphine-induced increase in the mEPSC frequency. We also observed a significant decrease in the mEPSC frequency with morphine in CL neurons without any change in the mEPSC amplitude, whereas morphine did not facilitate the mEPSC frequency in CL neurons. These results suggest that morphine may induce cell-dependent dual modulation of glutamatergic synaptic transmission in the Hb.
Collapse
Affiliation(s)
- Keisuke Hashimoto
- Department of Toxicology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, Tokyo 142-8501, Japan
| | | | | | | | | |
Collapse
|
358
|
Mitchell JM, Bergren LJ, Chen KS, Rowbotham MC, Fields HL. Naltrexone aversion and treatment efficacy are greatest in humans and rats that actively consume high levels of alcohol. Neurobiol Dis 2009; 33:72-80. [DOI: 10.1016/j.nbd.2008.09.018] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2008] [Revised: 09/10/2008] [Accepted: 09/12/2008] [Indexed: 11/26/2022] Open
|
359
|
Abstract
This chapter reviews the expression and regulation of opioid receptors in sensory neurons and the interactions of these receptors with endogenous and exogenous opioid ligands. Inflammation of peripheral tissues leads to increased synthesis and axonal transport of opioid receptors in dorsal root ganglion neurons. This results in opioid receptor upregulation and enhanced G protein coupling at peripheral sensory nerve terminals. These events are dependent on neuronal electrical activity, and on production of proinflammatory cytokines and nerve growth factor within the inflamed tissue. Together with the disruption of the perineurial barrier, these factors lead to an enhanced analgesic efficacy of peripherally active opioids. The major local source of endogenous opioid ligands (e.g. beta-endorphin) is leukocytes. These cells contain and upregulate signal-sequence-encoding messenger RNA of the beta-endorphin precursor proopiomelanocortin and the entire enzymatic machinery necessary for its processing into the functionally active peptide. Opioid-containing immune cells extravasate using adhesion molecules and chemokines to accumulate in inflamed tissues. Upon stressful stimuli or in response to releasing agents such as corticotropin-releasing factor, cytokines, chemokines, and catecholamines, leukocytes secrete opioids. Depending on the cell type, this release is contingent on extracellular Ca(2+) or on inositol triphosphate receptor triggered release of Ca(2+) from endoplasmic reticulum. Once secreted, opioid peptides activate peripheral opioid receptors and produce analgesia by inhibiting the excitability of sensory nerves and/or the release of proinflammatory neuropeptides. These effects occur without central untoward side effects such as depression of breathing, clouding of consciousness, or addiction. Future aims include the development of peripherally restricted opioid agonists, selective targeting of opioid-containing leukocytes to sites of painful injury, and the augmentation of peripheral opioid peptide and receptor synthesis.
Collapse
Affiliation(s)
- Christoph Stein
- Klinik für Anaesthesiologie und operative Intensivmedizin, Freie Universität Berlin, Charité - Campus Benjamin Franklin, 12200 Berlin, Germany.
| | | |
Collapse
|
360
|
Greco MA, Fuller P, Jhou TC, Martin-Schild S, Zadina JE, Hu Z, Shiromani P, Lu J. Opioidergic projections to sleep-active neurons in the ventrolateral preoptic nucleus. Brain Res 2008; 1245:96-107. [PMID: 18840417 PMCID: PMC2753822 DOI: 10.1016/j.brainres.2008.09.043] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2008] [Revised: 09/01/2008] [Accepted: 09/08/2008] [Indexed: 11/22/2022]
Abstract
Although opioids are known to influence sleep-wake regulation, the neuroanatomic substrate(s) mediating these effects remain unresolved. We hypothesized that the influence of opiates on sleep may be mediated, at least in part, by the ventrolateral preoptic nucleus (VLPO), a key cell group for producing behavioral sleep. By combining in situ hybridization for kappa and mu receptor mRNA with immunostaining of Fos expressed by VLPO cells during sleep we show that >85% of sleep-active VLPO neurons contain mRNA for either or both opioid receptors. Microinfusions of a kappa receptor agonist into the VLPO region increased NREM sleep by 51% during the subjective night, whereas a mu receptor agonist increased wakefulness by 60% during the subjective day. The sleep- and wake-promoting effects of the kappa and mu agonists were blocked by prior administration of their respective antagonist. Combining retrograde tracing from the VLPO with immunohistochemistry for dynorphin (Dyn, the endogenous kappa receptor agonist) or endomorphin 1 (EM1, the endogenous mu receptor agonist) we show that the central lateral parabrachial subnucleus (PBcl) provides Dyn inputs to the VLPO, whereas hypothalamic histaminergic neurons provide EM1 inputs to the VLPO. In summary, results from the present study suggest that central opioid inputs to the VLPO may play a role in sleep-wake regulation and that the VLPO likely mediates the hypnotic response to high levels of opioid analgesics.
Collapse
MESH Headings
- Analgesics, Opioid/administration & dosage
- Analgesics, Opioid/metabolism
- Analgesics, Opioid/pharmacology
- Animals
- Dynorphins/administration & dosage
- Dynorphins/metabolism
- Dynorphins/pharmacology
- Electroencephalography
- Hypothalamus/cytology
- Hypothalamus/drug effects
- Hypothalamus/metabolism
- Immunohistochemistry
- In Situ Hybridization
- Male
- Narcotic Antagonists
- Neural Pathways/drug effects
- Neural Pathways/metabolism
- Neural Pathways/physiology
- Neurons/cytology
- Neurons/drug effects
- Neurons/metabolism
- Neurotransmitter Agents/administration & dosage
- Neurotransmitter Agents/metabolism
- Neurotransmitter Agents/pharmacology
- Oligopeptides/administration & dosage
- Oligopeptides/metabolism
- Oligopeptides/pharmacology
- Preoptic Area/cytology
- Preoptic Area/drug effects
- Preoptic Area/metabolism
- Proto-Oncogene Proteins c-fos/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rats
- Rats, Sprague-Dawley
- Receptors, Opioid/agonists
- Receptors, Opioid/genetics
- Receptors, Opioid, kappa/agonists
- Receptors, Opioid, kappa/antagonists & inhibitors
- Receptors, Opioid, kappa/genetics
- Receptors, Opioid, mu/agonists
- Receptors, Opioid, mu/antagonists & inhibitors
- Receptors, Opioid, mu/genetics
- Sleep/physiology
- Synaptic Transmission/drug effects
- Synaptic Transmission/physiology
- Wakefulness/physiology
Collapse
Affiliation(s)
- Mary-Ann Greco
- Behavioral Biochemistry Program, SRI International, Menlo Park, CA 94025
| | - Patrick Fuller
- Department of Neurology and Program in Neuroscience, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215
| | - Thomas C Jhou
- Department of Neurology and Program in Neuroscience, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215
| | - S Martin-Schild
- Neuroscience Program, Tulane University, New Orleans, Louisiana 70112-1262
| | - James E Zadina
- VA Medical Center, Dept of Medicine, Tulane University, New Orleans, Louisiana 70112-1262
- Neuroscience Program, Tulane University, New Orleans, Louisiana 70112-1262
| | - Zhian Hu
- Department of Physiology Third Military Medical University, Chongqing 400038, China
| | | | - Jun Lu
- Department of Neurology and Program in Neuroscience, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215
| |
Collapse
|
361
|
Denver RJ, Hu F, Scanlan TS, Furlow JD. Thyroid hormone receptor subtype specificity for hormone-dependent neurogenesis in Xenopus laevis. Dev Biol 2008; 326:155-68. [PMID: 19056375 DOI: 10.1016/j.ydbio.2008.11.005] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2008] [Revised: 10/31/2008] [Accepted: 11/04/2008] [Indexed: 11/30/2022]
Abstract
Thyroid hormone (T(3)) influences cell proliferation, death and differentiation during development of the central nervous system (CNS). Hormone action is mediated by T(3) receptors (TR) of which there are two subtypes, TRalpha and TRbeta. Specific roles for TR subtypes in CNS development are poorly understood. We analyzed involvement of TRalpha and TRbeta in neural cell proliferation during metamorphosis of Xenopus laevis. Cell proliferation in the ventricular/subventricular neurogenic zones of the tadpole brain increased dramatically during metamorphosis. This increase was dependent on T(3) until mid-prometamorphosis, after which cell proliferation decreased and became refractory to T(3). Using double labeling fluorescent histochemistry with confocal microscopy we found TRalpha expressed throughout the tadpole brain, with strongest expression in proliferating cells. By contrast, TRbeta was expressed predominantly outside of neurogenic zones. To corroborate the histochemical results we transfected living tadpole brain with a Xenopus TRbeta promoter-EGFP plasmid and found that most EGFP expressing cells were not dividing. Lastly, treatment with the TRalpha selective agonist CO23 increased brain cell proliferation; whereas, treatment with the TRbeta-selective agonists GC1 or GC24 did not. Our findings support the view that T(3) acts to induce cell proliferation in the tadpole brain predominantly, if not exclusively, via TRalpha.
Collapse
Affiliation(s)
- Robert J Denver
- Department of Molecular, Cellular and Developmental Biology, The University of Michigan, Ann Arbor, USA
| | | | | | | |
Collapse
|
362
|
Zhu M, Cho YK, Li CS. Activation of delta-opioid receptors reduces excitatory input to putative gustatory cells within the nucleus of the solitary tract. J Neurophysiol 2008; 101:258-68. [PMID: 19019978 DOI: 10.1152/jn.90648.2008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The rostral nucleus of the solitary tract (NST) is the first central relay in the gustatory pathway and plays a key role in processing and modulation of gustatory information. Here, we investigated the effects of opioid receptor agonists and antagonists on synaptic responses of the gustatory parabrachial nuclei (PbN)-projecting neurons in the rostral NST to electrical stimulation of the solitary tract (ST) using whole cell recordings in the hamster brain stem slices. ST-evoked excitatory postsynaptic currents (EPSCs) were significantly reduced by met-enkephalin (MetE) in a concentration-dependent fashion and this effect was eliminated by naltrexone hydrochloride, a nonselective opioid receptor antagonist. Bath application of naltrindole hydrochloride, a selective delta-opioid receptor antagonist, eliminated MetE-induced reduction of EPSCs, whereas CTOP, a selective mu-opioid receptor antagonist had no effect, indicating that delta-opioid receptors are involved in the reduction of ST-evoked EPSCs induced by MetE. SNC80, a selective delta-opioid receptor agonist, mimicked the effect of MetE. The SNC80-induced reduction of ST-evoked EPSCs was eliminated by 7-benzylidenenaltrexone, a selective delta1-opioid receptor antagonist but not by naltriben mesylate, a selective delta2-opioid receptor antagonist, indicating that delta1-opioid receptors mediate the reduction of ST-evoked EPSCs induced by SNC80. Single-cell reverse transcriptase-polymerase chain reaction analysis revealed the presence of delta1-opioid receptor mRNA in cells that responded to SNC80 with a reduction in ST-evoked EPSCs. Moreover, Western blot analysis demonstrated the presence of 40-kDa delta-opioid receptor proteins in the rostral NST tissue. These results suggest that postsynaptic delta1-opioid receptors are involved in opioid-induced reduction of ST-evoked EPSCs of PbN-projecting rostral NST cells.
Collapse
Affiliation(s)
- Mingyan Zhu
- Department of Anatomy, Southern Illinois University School of Medicine, Life Science III Room 2073, 1135 Lincoln Dr., Carbondale, IL 62901, USA
| | | | | |
Collapse
|
363
|
Wilson MA, Junor L. The role of amygdalar mu-opioid receptors in anxiety-related responses in two rat models. Neuropsychopharmacology 2008; 33:2957-68. [PMID: 18216773 PMCID: PMC2705758 DOI: 10.1038/sj.npp.1301675] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2007] [Revised: 11/28/2007] [Accepted: 11/29/2007] [Indexed: 01/04/2023]
Abstract
Amygdala opioids such as enkephalin appear to play some role in the control of anxiety and the anxiolytic effects of benzodiazepines, although the opioid receptor subtypes mediating such effects are unclear. This study compared the influences of mu-opioid receptor (MOR) activation in the central nucleus of the amygdala (CEA) on unconditioned fear or anxiety-like responses in two models, the elevated plus maze, and the defensive burying test. The role of MORs in the anxiolytic actions of the benzodiazepine agonist diazepam was also examined using both models. Either the MOR agonist [D-Ala(2), NMe-Phe(4), Gly-ol(5)]-enkephalin (DAMGO), or the MOR antagonists Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH(2) (CTAP) or beta-funaltrexamine (FNA) were bilaterally infused into the CEA of rats before testing. The results show that microinjection of DAMGO in the CEA decreased open-arm time in the plus maze, whereas CTAP increased open-arm behaviors. In contrast, DAMGO injections in the CEA reduced burying behaviors and increased rearing following exposure to a predator odor, suggesting a shift in the behavioral response in this context. Amygdala injections of the MOR agonist DAMGO or the MOR antagonist CTAP failed to change the anxiolytic effects of diazepam in either test. Our results demonstrate that MOR activation in the central amygdala exerts distinctive effects in two different models of unconditioned fear or anxiety-like responses, and suggest that opioids may exert context-specific regulation of amygdalar output circuits and behavioral responses during exposure to potential threats (open arms of the maze) vs discrete threats (predator odor).
Collapse
MESH Headings
- Amygdala/drug effects
- Amygdala/metabolism
- Amygdala/physiopathology
- Analgesics, Opioid/pharmacology
- Animals
- Anxiety Disorders/chemically induced
- Anxiety Disorders/metabolism
- Anxiety Disorders/physiopathology
- Behavior, Animal/drug effects
- Behavior, Animal/physiology
- Disease Models, Animal
- Enkephalin, Ala(2)-MePhe(4)-Gly(5)-/pharmacology
- Exploratory Behavior/drug effects
- Exploratory Behavior/physiology
- Fear/drug effects
- Fear/physiology
- Male
- Maze Learning/drug effects
- Maze Learning/physiology
- Narcotic Antagonists/pharmacology
- Neural Pathways/drug effects
- Neural Pathways/metabolism
- Opioid Peptides/metabolism
- Rats
- Rats, Long-Evans
- Receptors, Opioid, mu/agonists
- Receptors, Opioid, mu/antagonists & inhibitors
- Receptors, Opioid, mu/physiology
- Smell/drug effects
- Smell/physiology
Collapse
Affiliation(s)
- Marlene A Wilson
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC 29208, USA.
| | | |
Collapse
|
364
|
Secondary structure transitions and aggregation induced in dynorphin neuropeptides by the detergent sodium dodecyl sulfate. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2008; 1778:2580-7. [DOI: 10.1016/j.bbamem.2008.07.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2008] [Revised: 07/16/2008] [Accepted: 07/16/2008] [Indexed: 11/22/2022]
|
365
|
Sadana R, Dessauer CW. Physiological roles for G protein-regulated adenylyl cyclase isoforms: insights from knockout and overexpression studies. Neurosignals 2008; 17:5-22. [PMID: 18948702 PMCID: PMC2790773 DOI: 10.1159/000166277] [Citation(s) in RCA: 277] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2008] [Accepted: 04/22/2008] [Indexed: 01/08/2023] Open
Abstract
Cyclic AMP is a universal second messenger, produced by a family of adenylyl cyclase (AC) enzymes. The last three decades have brought a wealth of new information about the regulation of cyclic AMP production by ACs. Nine hormone-sensitive, membrane-bound AC isoforms have been identified in addition to a tenth isoform that lacks membrane spans and more closely resembles the cyanobacterial AC enzymes. New model systems for purifying and characterizing the catalytic domains of AC have led to the crystal structure of these domains and the mapping of numerous interaction sites. However, big hurdles remain in unraveling the roles of individual AC isoforms and their regulation in physiological systems. In this review we explore the latest on AC knockout and overexpression studies to better understand the roles of G protein regulation of ACs in the brain, olfactory bulb, and heart.
Collapse
Affiliation(s)
| | - Carmen W. Dessauer
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, Tex., USA
| |
Collapse
|
366
|
Chartoff EH, Potter D, Damez-Werno D, Cohen BM, Carlezon WA. Exposure to the selective kappa-opioid receptor agonist salvinorin A modulates the behavioral and molecular effects of cocaine in rats. Neuropsychopharmacology 2008; 33:2676-87. [PMID: 18185499 PMCID: PMC2564810 DOI: 10.1038/sj.npp.1301659] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2007] [Revised: 10/23/2007] [Accepted: 11/18/2007] [Indexed: 11/08/2022]
Abstract
Stress and chronic exposure to drugs of abuse can trigger addictive and depressive disorders. Both stimuli increase activity of dynorphin, a neuropeptide that acts at kappa-opioid receptors (KORs). In humans, KOR agonists cause dysphoria, raising the possibility that dynorphin modulates the depressive-like effects of stress and chronic drug use. We examined if KOR activation alters sensitivity to stimulant drugs by assessing the effects of the selective KOR agonist, salvinorin A (SalvA), on cocaine-induced locomotor activity and c-Fos expression. Acute administration of SalvA blocked the locomotor-stimulant effects of cocaine, whereas repeated SalvA together with concomitant exposure to activity testing chambers potentiated the locomotor response to a cocaine challenge. In contrast, repeated SalvA administered in home cages rather than the activity chambers failed to potentiate the locomotor response to a cocaine challenge. One potential explanation for these findings is that activation of KORs disrupts context conditioning: acute locomotor responses to SalvA alone did not fully habituate with repeated testing in the activity chambers. The effects of SalvA on locomotor activity paralleled its effects on cocaine-induced c-Fos expression in the dorsal striatum: acute SalvA attenuated cocaine-induced c-Fos, whereas repeated SalvA potentiated it when administered in the activity chambers but not the home cage. Acute SalvA also blocked the locomotor stimulant effects of the D1 receptor agonist SKF 82958, whereas repeated SalvA potentiated these effects when administered in the activity chambers. These findings suggest that SalvA regulates the stimulant effects of cocaine through interactions with D1 receptor-mediated signaling in the dorsal striatum.
Collapse
Affiliation(s)
- Elena H Chartoff
- Behavioral Genetics Laboratory, McLean Hospital, Harvard Medical School, Belmont, MA 02478, USA.
| | | | | | | | | |
Collapse
|
367
|
Hu F, Li G, Liang Z, Yang Y, Zhou Y. The morphological changes of pyramidal and spiny stellate cells in the primary visual cortex of chronic morphine treated cats. Brain Res Bull 2008; 77:77-83. [DOI: 10.1016/j.brainresbull.2008.06.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2007] [Revised: 05/12/2008] [Accepted: 06/18/2008] [Indexed: 10/21/2022]
|
368
|
Pacheco CMF, Queiroz-Junior CM, Maltos KLM, Caliari MV, Pacheco DF, Duarte IDG, Francischi JN. Crucial role of peripheral kappa-opioid receptors in a model of periodontal disease in rats. J Periodontal Res 2008; 43:730-6. [PMID: 18705652 DOI: 10.1111/j.1600-0765.2008.01102.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND AND OBJECTIVE Periodontal disease is a chronic inflammatory condition of the tooth supporting tissues, the periodontium. Opioids have been shown to account for the relief of various chronic and acute inflammatory conditions. The aim of the present study was to investigate the participation of peripheral opioid receptors in development of periodontal disease. MATERIAL AND METHODS Morphine and selective agonists and antagonists of opioid receptors were used in an experimental model of ligature-induced periodontal disease in rats. To evaluate the development of disease, the loss of fiber attachment, alveolar bone and number of cells in periodontal tissues were assessed. Measurements of these indicators were obtained by morphometric analysis of histological sections of periodontal-diseased tissues stained with hematoxylin and eosin. RESULTS Local administration of either morphine or a selective kappa-opioid agonist for three consecutive days from the onset of periodontal disease reduced the loss of periodontal tissues, without changing the number of leukocytes in inflamed periodontium. Nor-binaltorphimine, a selective kappa-antagonist, reversed the beneficial effects of both morphine and the compound U-50,488 in this model. The use of either an agonist or an antagonist of delta-opioid receptors, however, did not affect disease progression. CONCLUSION Our results showed that the beneficial effect of opioids in periodontal disease depended mainly on the activation of specific kappa-opioid receptors located in the periphery. Activation of such receptors could be considered in the management of periodontal disease, since it would not present the classical central side-effects associated with opioid use.
Collapse
Affiliation(s)
- C M F Pacheco
- Department of Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | | | | | | | | | | | | |
Collapse
|
369
|
Schnell SA, Wessendorf MW. Coexpression of the mu-opioid receptor splice variant MOR1C and the vesicular glutamate transporter 2 (VGLUT2) in rat central nervous system. J Comp Neurol 2008; 508:542-64. [PMID: 18381590 DOI: 10.1002/cne.21712] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
It has been reported that mu-opioid agonists depress glutamate release in some neurons but the specific receptor subtype mediating this effect is unclear. The purpose of the present study was to examine whether a particular mu-opioid receptor (MOR) splice-variant, MOR(1C), is expressed in rat central nervous system (CNS) by terminals expressing the vesicular glutamate transporter2 (VGLUT2), a marker of glutamatergic neurons. Several MOR splice variants have been identified in mice and MOR(1C) appears mainly to be localized to fibers and terminals, from which most neurotransmitter release would be expected. In addition, VGLUT2 has been found in the CNS and antibodies to it are reliable markers for glutamatergic terminals. Using fluorescence immunohistochemistry and confocal microscopy to examine spatial relationships between MOR(1C) and VGLUT2, we found that MOR(1C) and VGLUT2 puncta were widely distributed throughout the rat CNS; moreover, many regions contained terminals that expressed both. Thus, it appears that coexpression of MOR(1C) and VGLUT2 is common in the rat CNS. We hypothesize that activation of MOR(1C) by mu-opioid agonists at some glutamatergic terminals may be a mechanism by which glutamate release is inhibited.
Collapse
Affiliation(s)
- Stephen A Schnell
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, USA.
| | | |
Collapse
|
370
|
Abstract
Traditionally, biomedical research in the field of pain has been conducted with male animals and subjects. Over the past 20-30 yr, it has been increasingly recognized that this narrow approach has missed an important variable: sex. An ever-increasing number of studies have established sex differences in response to pain and analgesics. These studies have demonstrated that the differences between the sexes appear to have a biological and psychological basis. We will provide brief review of the epidemiology, rodent, and human experimental findings. The controversies and widespread disagreement in the literature highlight the need for a progressive approach to the questions involving collaborative efforts between those trained in the basic and clinical biomedical sciences and those in the epidemiological and social sciences. In order for patients suffering from acute and/or chronic pain to benefit from this work, the approach has to involve the use or development of clinically relevant models of nociception or pain to answer the basic, but complex, question. The present state of the literature allows no translation of the work to our clinical decision-making.
Collapse
Affiliation(s)
- Robert W Hurley
- Department of Anesthesiology and Critical Care Medicine, Division of Pain Medicine, The Johns Hopkins Medical Institutions, Baltimore, Maryland, USA.
| | | |
Collapse
|
371
|
Neto FL, Carvalhosa AR, Ferreira-Gomes J, Reguenga C, Castro-Lopes JM. Delta opioid receptor mRNA expression is changed in the thalamus and brainstem of monoarthritic rats. J Chem Neuroanat 2008; 36:122-7. [PMID: 18572383 DOI: 10.1016/j.jchemneu.2008.05.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2008] [Revised: 05/09/2008] [Accepted: 05/09/2008] [Indexed: 11/27/2022]
Abstract
Changes in the mRNA expression of neurotransmitters receptors under chronic pain conditions have been described in various areas of the central nervous system (CNS). Delta opioid receptors (DORs) have been implicated in pain mechanisms but, although its mRNA expression has been studied in the rat CNS, there are no reports describing its distribution in specific thalamic and brainstem nuclei during chronic inflammatory pain. Here, in situ hybridization for DOR mRNA was performed in brain sections from control and monoarthritic (MA) rats with 2, 4, 7 and 14 days of inflammation. Grain densities were determined bilaterally in the ventrobasal complex (VB), posterior (Po), centromedial/centrolateral (CM/CL) and reticular (Rt) nuclei of the thalamus, and in the dorsal reticular (DRt), lateral reticular (LRt) and parvocellular reticular (PCRt) nuclei of the brainstem. Control animals exhibited weak mRNA expression in the VB, Po and CM/CL, as well as in PCRt, while moderate grain densities were observed in the Rt, DRt and LRt. During MA, DOR mRNA expression was significantly decreased (22%) in the Rt contralateral to the affected joint at both 7 and 14 days of inflammation, as compared to controls. A bilateral reduction (35%) was also observed in the DRt at 14 days of MA, while a contralateral increase was found in the PCRt at 7 days (+39%). No significant changes were observed in the other regions analyzed. Thus, data show changes in the DOR mRNA expression during the development of chronic inflammatory pain, in thalamic and brainstem nuclei implicated in pain processing mechanisms.
Collapse
Affiliation(s)
- Fani Lourença Neto
- Institute of Histology and Embryology, Faculty of Medicine of Porto and IBMC, University of Porto, Portugal.
| | | | | | | | | |
Collapse
|
372
|
Valentino RJ, Van Bockstaele E. Convergent regulation of locus coeruleus activity as an adaptive response to stress. Eur J Pharmacol 2008; 583:194-203. [PMID: 18255055 PMCID: PMC2349983 DOI: 10.1016/j.ejphar.2007.11.062] [Citation(s) in RCA: 400] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2007] [Revised: 10/01/2007] [Accepted: 11/14/2007] [Indexed: 11/26/2022]
Abstract
Although hypothalamic-pituitary-adrenal axis activation is generally considered to be the hallmark of the stress response, many of the same stimuli that initiate this response also activate the locus coeruleus-norepinephrine system. Given its functional attributes, the parallel engagement of the locus coeruleus-norepinephrine system with the hypothalamic-pituitary-adrenal axis serves to coordinate endocrine and cognitive limbs of the stress response. The elucidation of stress-related afferents to the locus coeruleus and the electrophysiological characterization of these inputs are revealing how the activity of this system is fine-tuned by stressors to facilitate adaptive cognitive responses. Emerging from these studies, is a picture of complex interactions between the stress-related neuropeptide, corticotropin-releasing factor (CRF), endogenous opioids and the excitatory amino acid neurotransmitter, glutamate. The net effect of these interactions is to adjust the activity and reactivity of the locus coeruleus-norepinephrine system such that state of arousal and processing of sensory stimuli are modified to facilitate adaptive behavioral responses to stressors. This review begins with an introduction to the basic anatomical and physiological characteristics of locus coeruleus neurons. The concept that locus coeruleus neurons operate through two activity modes, i.e., tonic vs. phasic, that determine distinct behavioral strategies is emphasized in light of its relevance to stress. Anatomical and physiological evidence are then presented suggesting that interactions between stress-related neurotransmitters that converge on locus coeruleus neurons regulate shifts between these modes of discharge in response to the challenge of a stressor. This review focuses specifically on the locus coeruleus because it is the major source of norepinephrine to the forebrain and has been implicated in behavioral and cognitive aspects of stress responses.
Collapse
Affiliation(s)
- Rita J Valentino
- The Children's Hospital of Philadelphia, 402C Abramson Building, Osler Cr., Philadelphia, PA 19104, United States.
| | | |
Collapse
|
373
|
Zhang XJ, Li Z, Leung WM, Liu L, Xu HX, Bian ZX. The analgesic effect of paeoniflorin on neonatal maternal separation-induced visceral hyperalgesia in rats. THE JOURNAL OF PAIN 2008; 9:497-505. [PMID: 18387856 DOI: 10.1016/j.jpain.2007.12.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2007] [Revised: 12/06/2007] [Accepted: 12/06/2007] [Indexed: 02/07/2023]
Abstract
UNLABELLED Paeoniflorin (PF) is one of the principle active ingredients of the root of Paeonia lactiflora Pall (family Ranunculaceae), a Chinese herb traditionally used to relieve pain, especially visceral pain. The present study aimed to investigate both the effect of PF on neonatal maternal separation-induced visceral hyperalgesia in rats and the mechanism by which such effect is exerted. A dose-dependent analgesic effect was produced by PF (45, 90, 180, and 360 mg/kg i.p.). Centrally administered PF (4.5 mg/kg i.c.v) also produced a significant analgesic effect. The analgesic effect of PF (45 mg/kg i.p.) was maximal at 30 minutes after administration. Furthermore, it was found that nor-binaltorphimine (nor-BNI, 3 mg/kg i.p.), dl-alpha-methyltyrosine (alpha-AMPT, 250 mg/kg i.p.), and yohimbine (3 mg/kg i.p.) could block the analgesic effect of PF (45 mg/kg i.p.). Time course determination of PF in brain nuclei showed that the maximal concentration of PF was 30 minutes after intraperitoneal administration of PF (180 mg/kg) in cerebral nuclei, involving the amygdala, hypothalamus, thalamus, and cortex. These data indicate that PF has an analgesic effect on visceral pain in rats with neonatal maternal separation and that this effect may be mediated by kappa-opioid receptors and alpha(2)-adrenoceptors in the central nervous system. PERSPECTIVE This study demonstrates that PF has an analgesic effect on pain in visceral hyperalgesic rats. These results suggest that PF might be potentially useful in clinical therapy for irritable bowel syndrome as a pharmacological agent in alleviating visceral pain.
Collapse
Affiliation(s)
- Xiao-Jun Zhang
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | | | | | | | | | | |
Collapse
|
374
|
Burattini C, McGeehan AJ, Griffin WC, Gass JT, Kinder JR, Janak PH, Olive MF. A microdialysis study of extracellular levels of acamprosate and naltrexone in the rat brain following acute and repeated administration. Addict Biol 2008; 13:70-9. [PMID: 18269381 DOI: 10.1111/j.1369-1600.2008.00097.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Acamprosate and naltrexone are widely used in the treatment of alcoholism. However, numerous studies in rodents have shown differential effects of these compounds on alcohol consumption and/or relapse-like behavior following acute versus repeated administration. In order to determine if these differential behavioral effects could be attributable to changes in extracellular levels of these compounds, we used in vivo microdialysis to monitor extracellular levels of acamprosate and naltrexone in the rat medial prefrontal cortex following acute and repeated intraperitoneal administration. For acute treatment, animals received a single administration of acamprosate (100 or 300 mg/kg) or naltrexone (1 or 3 mg/kg). For repeated treatment, animals received once daily treatment with saline, acamprosate (300 mg/kg) or naltrexone (3 mg/kg) for 10 days before a subsequent challenge with the compound according to their respective pretreatment group. Dialysate levels of acamprosate and naltrexone were analyzed by liquid chromatography-tandem mass spectrometry and high performance liquid chromatography, respectively. Following acute administration, peak dialysate concentrations of each compound were dose-dependent, observed within 1 hour of administration, and were found to be in the low micromolar range for acamprosate and in the low to mid-nanomolar range for naltrexone. Pretreatment with acamprosate, but not naltrexone, for 10 days resulted in higher dialysate concentrations of the compound relative to saline-pretreated controls. Thus, repeated administration of acamprosate, but not naltrexone, results in augmented extracellular levels of the compound in the brain relative to saline-pretreated controls, which may explain the need for repeated administration of acamprosate in order to observe effects on alcohol consumption and/or relapse.
Collapse
|
375
|
Hugonin L, Vukojević V, Bakalkin G, Gräslund A. Calcium influx into phospholipid vesicles caused by dynorphin neuropeptides. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2008; 1778:1267-73. [PMID: 18339302 DOI: 10.1016/j.bbamem.2008.02.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2007] [Revised: 01/21/2008] [Accepted: 02/11/2008] [Indexed: 11/19/2022]
Abstract
Dynorphins, endogeneous opioid peptides, function as ligands to the opioid kappa receptors but also induce non-opioid excitotoxic effects. Dynorphin A can increase the intra-neuronal calcium concentration through a non-opioid and non-NMDA mechanism. In this investigation, we show that big dynorphin, dynorphin A and to some extent dynorphin A (1-13), but not dynorphin B, allow calcium to enter into large unilamellar phospholipid vesicles with partly negative headgroups. The effects parallel the previously studied potency of dynorphins to translocate through biological membranes and to cause calcein leakage from large unilamellar phospholipid vesicles. There is no calcium ion influx into vesicles with zwitterionic headgroups. We have also investigated if the dynorphins can translocate through the vesicle membranes and estimated the relative strength of interaction of the peptides with the vesicles by fluorescence resonance energy transfer. The results show that dynorphins do not translocate in this membrane model system. There is a strong electrostatic contribution to the interaction of the peptides with the membrane model system.
Collapse
Affiliation(s)
- Loïc Hugonin
- Department of Biochemistry and Biophysics, Arrhenius Laboratories, Stockholm University, S-10691 Stockholm, Sweden
| | | | | | | |
Collapse
|
376
|
Koehl M, Meerlo P, Gonzales D, Rontal A, Turek FW, Abrous DN. Exercise-induced promotion of hippocampal cell proliferation requires beta-endorphin. FASEB J 2008; 22:2253-62. [PMID: 18263701 DOI: 10.1096/fj.07-099101] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Adult hippocampal neurogenesis is influenced by a variety of stimuli, including exercise, but the mechanisms by which running affects neurogenesis are not yet fully understood. Because beta-endorphin, which is released in response to exercise, increases cell proliferation in vitro, we hypothesized that it could exert a similar effect in vivo and mediate the stimulatory effects of running on neurogenesis. We thus analyzed the effects of voluntary wheel-running on adult neurogenesis (proliferation, differentiation, survival/death) in wild-type and beta-endorphin-deficient mice. In wild-type mice, exercise promoted cell proliferation evaluated by sacrificing animals 24 h after the last 5-bromo-2'-deoxyuridine (BrdU) pulse and by using endogenous cell cycle markers (Ki67 and pH(3)). This was accompanied by an increased survival of 4-wk-old BrdU-labeled cells, leading to a net increase of neurogenesis. Beta-endorphin deficiency had no effect in sedentary mice, but it completely blocked the running-induced increase in cell proliferation; this blockade was accompanied by an increased survival of 4-wk-old cells and a decreased cell death. Altogether, adult neurogenesis was increased in response to exercise in knockout mice. We conclude that beta-endorphin released during running is a key factor for exercise-induced cell proliferation and that a homeostatic balance may regulate the final number of new neurons.
Collapse
Affiliation(s)
- M Koehl
- Centre de Recherche INSERM U862, Physiopathologie de la Plasticité Neuronale, 146 Rue Léo Saignat, 33077 Bordeaux Cedex, France.
| | | | | | | | | | | |
Collapse
|
377
|
Vergura R, Balboni G, Spagnolo B, Gavioli E, Lambert DG, McDonald J, Trapella C, Lazarus LH, Regoli D, Guerrini R, Salvadori S, Caló G. Anxiolytic- and antidepressant-like activities of H-Dmt-Tic-NH-CH(CH2-COOH)-Bid (UFP-512), a novel selective delta opioid receptor agonist. Peptides 2008; 29:93-103. [PMID: 18069089 DOI: 10.1016/j.peptides.2007.10.012] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2007] [Revised: 10/08/2007] [Accepted: 10/16/2007] [Indexed: 11/28/2022]
Abstract
Knockout and pharmacological studies have shown that delta opioid peptide (DOP) receptor signalling regulates emotional responses. In the present study, the in vitro and in vivo pharmacological profile of the DOP ligand, H-Dmt-Tic-NH-CH(CH2-COOH)-Bid (UFP-512) was investigated. In receptor binding experiments performed on membranes of CHO cells expressing the human recombinant opioid receptors, UFP-512 displayed very high affinity (pKi 10.20) and selectivity (>150-fold) for DOP sites. In functional studies ([35S]GTP gamma S binding in CHOhDOP membranes and electrically stimulated mouse vas deferens) UFP-512 behaved as a DOP selective full agonist showing potency values more than 100-fold higher than DPDPE. In vivo, in the mouse forced swimming test, UFP-512 reduced immobility time both after intracerebroventricular (i.c.v.) and intraperitoneal (i.p.) administration. Similar effects were recorded in rats. Moreover, UFP-512 evoked anxiolytic-like effects in the mouse elevated plus maze and light-dark aversion assays. All these in vivo actions of UFP-512 were fully prevented by the selective DOP antagonist naltrindole (3 mg/kg, s.c.). In conclusion, the present findings demonstrate that UFP-512 behaves as a highly potent and selective agonist at DOP receptors and corroborate the proposal that the selective activation of DOP receptors elicits robust anxiolytic- and antidepressant-like effects in rodents.
Collapse
Affiliation(s)
- Raffaella Vergura
- Department of Experimental and Clinical Medicine, Section of Pharmacology, and National Institute of Neuroscience, University of Ferrara, via Fossato di Mortara 19, 44100 Ferrara, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
378
|
Chen T, Hui R, Wang XL, Zhang T, Dong YX, Li YQ. Origins of endomorphin-immunoreactive fibers and terminals in different columns of the periaqueductal gray in the rat. J Comp Neurol 2008; 509:72-87. [DOI: 10.1002/cne.21728] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
379
|
In vivo rat brain opioid receptor binding of LY255582 assessed with a novel method using LC/MS/MS and the administration of three tracers simultaneously. Life Sci 2007; 81:1389-96. [DOI: 10.1016/j.lfs.2007.09.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2007] [Revised: 08/24/2007] [Accepted: 09/12/2007] [Indexed: 11/19/2022]
|
380
|
Poole SL, Deuchars J, Lewis DI, Deuchars SA. Subdivision-specific responses of neurons in the nucleus of the tractus solitarius to activation of mu-opioid receptors in the rat. J Neurophysiol 2007; 98:3060-71. [PMID: 17898143 DOI: 10.1152/jn.00755.2007] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Microinjection of opioid receptor agonists into the nucleus tractus solitarius (NTS) has differential effects on cardiovascular, respiratory, and gastrointestinal responses. This can be achieved either by presynaptic modulation of inputs onto neurons or by postsynaptic activation of receptors on neurons in specific regions. Therefore we sought to determine whether responses of neurons to activation of opioid receptors were dependent on their location within the NTS. Using whole cell patch-clamp recordings from neurons within the NTS, the mu opioid receptor (MOR) agonist [D-Ala(2), N-Me-Phe(4),Gly(5)-ol]-enkephalin (DAMGO, 100 nM) hyperpolarized a proportion of neurons in the medial, dorsomedial and dorsolateral NTS, whereas no postsynaptic responses were observed in remaining subdivisions. DAMGO reduced the amplitude of solitary tract-evoked excitatory postsynaptic potentials (EPSPs) in all neurons tested, regardless of subdivision. The kappa opioid receptor (KOR) agonist U69593 (10-20 microM) also hyperpolarized a small fraction of neurons (6/79) and decreased the amplitude of EPSPs in 50% of neurons. In contrast, the delta-opioid receptor agonist DPDPE (1-4 microM) had no presynaptic or postsynaptic effects on NTS neurons even after preincubation with bradykinin. Anatomical data at the light and electron microscopic level complemented electrophysiological observations with respect to MOR location and further showed that MORs were present at both presynaptic and postsynaptic sites in the dorsolateral NTS, often at the same synapse. These data demonstrate site specific responses of neurons to activation of MORs and KORs, which may underlie their ability to modulate different autonomic reflexes.
Collapse
MESH Headings
- Analgesics, Opioid/pharmacology
- Animals
- Animals, Newborn
- Drug Interactions
- Electric Stimulation/methods
- Excitatory Postsynaptic Potentials/drug effects
- Excitatory Postsynaptic Potentials/physiology
- Excitatory Postsynaptic Potentials/radiation effects
- In Vitro Techniques
- Male
- Microscopy, Immunoelectron/methods
- Neurons/physiology
- Neurons/ultrastructure
- Patch-Clamp Techniques/methods
- Rats
- Rats, Wistar
- Receptors, Opioid, mu/agonists
- Receptors, Opioid, mu/antagonists & inhibitors
- Receptors, Opioid, mu/metabolism
- Receptors, Opioid, mu/ultrastructure
- Solitary Nucleus/cytology
- Somatostatin/analogs & derivatives
- Somatostatin/pharmacology
Collapse
Affiliation(s)
- Sarah L Poole
- Institute of Membrane and Systems Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | | | | | | |
Collapse
|
381
|
Inyushkin AN. Effects of leucine-enkephalin on potassium currents in neurons in the rat respiratory center in vitro. ACTA ACUST UNITED AC 2007; 37:739-46. [PMID: 17763995 DOI: 10.1007/s11055-007-0076-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2005] [Indexed: 11/26/2022]
Abstract
Experiments to identify the neuronal mechanisms underlying the respiratory activity of the opioid peptide leucine-enkephalin were performed on transverse slices of the rat brainstem in voltage-clamped conditions; studies addressed the effects of this peptide (10 nM-1 microM) on the potassium A current and the inward potassium current of neurons in two areas of the respiratory center: the ventrolateral area of the solitary tract nucleus and the pre-Bötzinger complex. The parameters of the A current assessed in all respiratory center neurons studied showed no change in the presence of leucine-enkephalin. At the same time, leucine-enkephalin produced reversible increases in the amplitude of the inward potassium current. These results provide evidence that the inhibitory effect of leucine-enkephalin at the level of respiratory center neurons is at least in part explained by its stimulatory action on the inward potassium current but is not associated with modulation of the potassium A current.
Collapse
Affiliation(s)
- A N Inyushkin
- Samara State University, 1 Academician Pavlov Street, 443011 Samara, Russia
| |
Collapse
|
382
|
Zhao ZQ, Gao YJ, Sun YG, Zhao CS, Gereau RW, Chen ZF. Central serotonergic neurons are differentially required for opioid analgesia but not for morphine tolerance or morphine reward. Proc Natl Acad Sci U S A 2007; 104:14519-24. [PMID: 17724336 PMCID: PMC1964813 DOI: 10.1073/pnas.0705740104] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Opioids remain the most effective analgesics despite their potential adverse effects such as tolerance and addiction. Mechanisms underlying these opiate-mediated processes remain the subject of much debate. Here we describe opioid-induced behaviors of Lmx1b conditional knockout mice (Lmx1bf/f/p), which lack central serotonergic neurons, and we report that opioid analgesia is differentially dependent on the central serotonergic system. Analgesia induced by a kappa opioid receptor agonist administered at the supraspinal level was abolished in Lmx1bf/f/p mice compared with their wild-type littermates. Furthermore, compared with their wild-type littermates Lmx1bf/f/p mice exhibited significantly reduced analgesic effects of mu and delta opioid receptor agonists at both spinal and supraspinal sites. In contrast to the attenuation in opioid analgesia, Lmx1bf/f/p mice developed tolerance to morphine analgesia and displayed normal morphine reward behavior as measured by conditioned place preference. Our results provide genetic evidence supporting the view that the central serotonergic system is a key component of supraspinal pain modulatory circuitry mediating opioid analgesia. Furthermore, our data suggest that the mechanisms of morphine tolerance and morphine reward are independent of the central serotonergic system.
Collapse
Affiliation(s)
- Zhong-Qiu Zhao
- *Washington University Pain Center and
- Departments of Anesthesiology
| | - Yong-Jing Gao
- *Washington University Pain Center and
- Departments of Anesthesiology
| | - Yan-Gang Sun
- *Washington University Pain Center and
- Departments of Anesthesiology
| | - Cheng-Shui Zhao
- *Washington University Pain Center and
- Departments of Anesthesiology
| | - Robert W. Gereau
- *Washington University Pain Center and
- Departments of Anesthesiology
- Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, MO 63110
| | - Zhou-Feng Chen
- *Washington University Pain Center and
- Departments of Anesthesiology
- Psychiatry
- Molecular Biology and Pharmacology, and
- **To whom correspondence should be addressed. E-mail:
| |
Collapse
|
383
|
Chao D, Bazzy-Asaad A, Balboni G, Xia Y. delta-, but not mu-, opioid receptor stabilizes K(+) homeostasis by reducing Ca(2+) influx in the cortex during acute hypoxia. J Cell Physiol 2007; 212:60-7. [PMID: 17373650 DOI: 10.1002/jcp.21000] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Past work has shown that delta-opioid receptor (DOR) activation by [D-Ala(2),D-Leu(5)]-enkephalin (DADLE) attenuated the disruption of K(+) homeostasis induced by hypoxia or oxygen-glucose deprivation (OGD) in the cortex, while naltrindole, a DOR antagonist blocked this effect, suggesting that DOR activity stabilizes K(+) homeostasis in the cortex during hypoxic/ischemic stress. However, several important issues remain unclear regarding this new observation, especially the difference between DOR and other opioid receptors in the stabilization of K(+) homeostasis and the underlying mechanism. In this study, we asked whether DOR is different from micro-opioid receptors (MOR) in stabilizing K(+) homeostasis and which membrane channel(s) is critically involved in the DOR effect. The main findings are that (1) similar to DADLE (10 microM), H-Dmt-Tic-NH-CH (CH(2)--COOH)-Bid (1-10 microM), a more specific and potent DOR agonist significantly attenuated anoxic K(+) derangement in cortical slice; (2) [D-Ala(2), N-Me-Phe(4), glycinol(5)]-enkephalin (DAGO; 10 microM), a MOR agonist, did not produce any appreciable change in anoxic disruption of K(+) homeostasis; (3) absence of Ca(2+) greatly attenuated anoxic K(+) derangement; (4) inhibition of Ca(2+)-activated K(+) (BK) channels with paxilline (10 microM) reduced anoxic K(+) derangement; (5) DADLE (10 microM) could not further reduce anoxic K(+) derangement in the Ca(2+)-free perfused slices or in the presence of paxilline; and (6) glybenclamide (20 microM), a K(ATP) channel blocker, decreased anoxia-induced K(+) derangement, but DADLE (10 microM) could further attenuate anoxic K(+) derangement in the glybenclamide-perfused slices. These data suggest that DOR, but not MOR, activation is protective against anoxic K(+) derangement in the cortex, at least partially via an inhibition of hypoxia-induced increase in Ca(2+) entry-BK channel activity.
Collapse
Affiliation(s)
- Dongman Chao
- Department of Pediatrics, Section of Respiratory Medicine, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | | | | | |
Collapse
|
384
|
Petraschka M, Li S, Gilbert TL, Westenbroek RE, Bruchas MR, Schreiber S, Lowe J, Low MJ, Pintar JE, Chavkin C. The absence of endogenous beta-endorphin selectively blocks phosphorylation and desensitization of mu opioid receptors following partial sciatic nerve ligation. Neuroscience 2007; 146:1795-807. [PMID: 17467916 PMCID: PMC2012364 DOI: 10.1016/j.neuroscience.2007.03.029] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2006] [Revised: 03/15/2007] [Accepted: 03/19/2007] [Indexed: 10/23/2022]
Abstract
Phosphorylation of specific sites in the second intracellular loop and in the C-terminal domain have previously been suggested to cause desensitization and internalization of the mu-opioid receptor (MOP-R). To assess sites of MOP-R phosphorylation in vivo, affinity-purified, phosphoselective antibodies were raised against either phosphothreonine-180 in the second intracellular loop (MOR-P1) or the C-terminal domain of MOP-R containing phosphothreonine-370 and phosphoserine-375 (MOR-P2). We found that MOR-P2-immunoreactivity (IR) was significantly increased within the striatum of wild-type C57BL/6 mice after injection of the agonist fentanyl. Pretreatment with the antagonist naloxone blocked the fentanyl-induced increase. Furthermore, mutant mice lacking MOP-R showed only non-specific nuclear MOR-P2-IR before or after fentanyl treatment, confirming the specificity of the MOR-P2 antibodies. To assess whether MOP-R phosphorylation occurs following endogenous opioid release, we induced chronic neuropathic pain by partial sciatic nerve ligation (pSNL), which caused a significant increase in MOR-P2-IR in the striatum. pSNL also induced signs of mu opioid receptor tolerance demonstrated by a rightward shift in the morphine dose response in the tail withdrawal assay and by a reduction in morphine conditioned place preference (CPP). Mutant mice selectively lacking all forms of the beta-endorphin peptides derived from the proopiomelanocortin (Pomc) gene did not show increased MOR-P2-IR, decreased morphine antinociception, or reduced morphine CPP following pSNL. In contrast gene deletion of either proenkephalin or prodynorphin opioids did not block the effects of pSNL. These results suggest that neuropathic pain caused by pSNL in wild-type mice activates the release of the endogenous opioid beta-endorphin, which subsequently induces MOP-R phosphorylation and opiate tolerance.
Collapse
MESH Headings
- Analgesics, Opioid/pharmacology
- Analysis of Variance
- Animals
- Behavior, Animal
- Cell Line, Transformed
- Conditioning, Operant/drug effects
- Conditioning, Operant/physiology
- Corpus Striatum/drug effects
- Corpus Striatum/metabolism
- Drug Interactions
- Enkephalin, Ala(2)-MePhe(4)-Gly(5)-/pharmacology
- Green Fluorescent Proteins/biosynthesis
- Humans
- Hyperalgesia/etiology
- Mice
- Mice, Knockout
- Mutagenesis/physiology
- Naloxone/pharmacology
- Narcotic Antagonists/pharmacology
- Phosphorylation/drug effects
- Phosphothreonine/immunology
- Phosphothreonine/metabolism
- Receptors, Opioid, mu/chemistry
- Receptors, Opioid, mu/genetics
- Receptors, Opioid, mu/metabolism
- Sciatica/complications
- Sciatica/metabolism
- Sciatica/pathology
- Transfection
- beta-Endorphin/deficiency
- beta-Endorphin/metabolism
Collapse
Affiliation(s)
- M Petraschka
- Department of Pharmacology, University of Washington School of Medicine, Box 357280, 1959 Pacific Avenue Northeast, Seattle, WA 98195-7280, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
385
|
Béïque JC, Imad M, Mladenovic L, Gingrich JA, Andrade R. Mechanism of the 5-hydroxytryptamine 2A receptor-mediated facilitation of synaptic activity in prefrontal cortex. Proc Natl Acad Sci U S A 2007; 104:9870-5. [PMID: 17535909 PMCID: PMC1887564 DOI: 10.1073/pnas.0700436104] [Citation(s) in RCA: 163] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Classic hallucinogens such as lysergic acid diethylamide are thought to elicit their psychotropic actions via serotonin receptors of the 5-hydroxytryptamine 2A subtype (5-HT(2A)R). One likely site for these effects is the prefrontal cortex (PFC). Previous studies have shown that activation of 5-HT(2A)Rs in this region results in a robust increase in spontaneous glutamatergic synaptic activity, and these results have led to the widely held idea that hallucinogens elicit their effect by modulating synaptic transmission within the PFC. Here, we combine cellular and molecular biological approaches, including single-cell 5-HT(2A)Rs inactivation and 5-HT(2A)R rescue over a 5-HT(2A)R knockout genetic background, to distinguish between competing hypotheses accounting for these effects. The results from these experiments do not support the idea that 5-HT(2A)Rs elicit the release of an excitatory retrograde messenger nor that they activate thalamocortical afferents, the two dominant hypotheses. Rather, they suggest that 5-HT(2A)Rs facilitate intrinsic networks within the PFC. Consistent with this idea, we locate a discrete subpopulation of pyramidal cells that is strongly excited by 5-HT(2A)R activation.
Collapse
Affiliation(s)
| | - Mays Imad
- Cellular and Clinical Neurobiology Training Program, Wayne State University School of Medicine, Detroit, MI 48201; and
| | | | - Jay A. Gingrich
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Rodrigo Andrade
- Department of Pharmacology
- *Department of Psychiatry and Behavioral Neurosciences, and
- To whom correspondence should be addressed at:
Department of Pharmacology, Wayne State University School of Medicine, 540 East Canfield, Detroit, MI 48201. E-mail:
| |
Collapse
|
386
|
Buck BJ, Kerman IA, Burghardt PR, Koch LG, Britton SL, Akil H, Watson SJ. Upregulation of GAD65 mRNA in the medulla of the rat model of metabolic syndrome. Neurosci Lett 2007; 419:178-83. [PMID: 17490814 PMCID: PMC1945106 DOI: 10.1016/j.neulet.2007.04.042] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2007] [Revised: 04/17/2007] [Accepted: 04/20/2007] [Indexed: 02/07/2023]
Abstract
Metabolic syndrome is characterized by obesity, elevated blood pressure (BP), insulin resistance, and hypercholesterolemia. Recently an animal model of this disorder has been proposed in rats selectively bred based on their performance on a treadmill-running task. Accordingly, low capacity runner (LCR) rats exhibited all of the diagnostic criteria for metabolic syndrome, including elevated BP, as compared to their high capacity runner (HCR) counterparts [U. Wisløff, S.M. Najjar, O. Ellingsen, P.M. Haram, S. Swoap, Q. Al-Share, M. Fernstrom, K. Rezaei, S.J. Lee, L.G. Koch, S.L. Britton, Cardiovascular risk factors emerge after artificial selection for low aerobic capacity, Science 307 (2005) 418-420]. Previous studies have highlighted the importance of GABAergic neurotransmission in the medullary cardiovascular-regulatory areas in the central control of BP. Thus, we hypothesized a dysregulation in GABAergic transmission in the medullary cardiovascular-regulatory nuclei of LCR rats. To begin testing this hypothesis we carried out experiments examining expression of the GABA synthetic enzymes, GAD65 and GAD67, mRNAs in the two rat strains via radioactive in situ hybridization. Our results showed GAD65 and GAD67 mRNAs were widely expressed throughout the brainstem; quantification revealed increased GAD65 mRNA expression in LCR animals in the caudal nucleus tractus solitarius (NTS) and rostral ventrolateral medulla (VLM) as compared to HCR rats. Conversely, no differences in the expression of GAD67 were detected in these regions. These data are consistent with the notion of altered GABAergic neurotransmission in the NTS and VLM in metabolic syndrome, and point to the importance of these regions in cardiovascular regulation.
Collapse
Affiliation(s)
- Bradley J Buck
- Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | | | | | | | |
Collapse
|
387
|
Aubert I, Guigoni C, Li Q, Dovero S, Bioulac BH, Gross CE, Crossman AR, Bloch B, Bezard E. Enhanced preproenkephalin-B-derived opioid transmission in striatum and subthalamic nucleus converges upon globus pallidus internalis in L-3,4-dihydroxyphenylalanine-induced dyskinesia. Biol Psychiatry 2007; 61:836-44. [PMID: 16950226 DOI: 10.1016/j.biopsych.2006.06.038] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2005] [Revised: 05/24/2006] [Accepted: 06/28/2006] [Indexed: 11/22/2022]
Abstract
BACKGROUND A role for enhanced opioid peptide transmission has been suggested in the genesis of levodopa-induced dyskinesia. However, basal ganglia nuclei other than the striatum have not been regarded as potential sources, and the opioid precursors have never been quantified simultaneously with the levels of opioid receptors at the peak of dyskinesia severity. METHODS The levels of messenger RNA (mRNA) encoding the opioid precursors preproenkephalin-A and preproenkephalin-B in the striatum and the subthalamic nucleus and the levels of mu, delta, and kappa opioid receptors were measured within the basal ganglia of four groups of nonhuman primates killed at the peak of effect: normal, parkinsonian, parkinsonian chronically-treated with levodopa without exhibiting dyskinesia, and parkinsonian chronically-treated with levodopa showing overt dyskinesia. RESULTS Dyskinesia are associated with reduction in opioid receptor binding and specifically of kappa and mu receptor binding in the globus pallidus internalis (GPi), the main output structure of the basal ganglia. This decrease was correlated with enhancement of the expression of preproenkephalin-B mRNA but not that of preproenkephalin-A in the striatum and the subthalamic nucleus. CONCLUSIONS Abnormal transmission of preproenkephalin-B-derived opioid coming from the striatum and the subthalamic nucleus converges upon GPi at the peak of dose to induce levodopa-induced dyskinesia.
Collapse
Affiliation(s)
- Incarnation Aubert
- Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR) 5541, Bordeaux Cedex, France
| | | | | | | | | | | | | | | | | |
Collapse
|
388
|
da Silva LFS, Menescal-de-Oliveira L. Role of opioidergic and GABAergic neurotransmission of the nucleus raphe magnus in the modulation of tonic immobility in guinea pigs. Brain Res Bull 2007; 72:25-31. [PMID: 17303504 DOI: 10.1016/j.brainresbull.2006.12.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2006] [Revised: 12/06/2006] [Accepted: 12/13/2006] [Indexed: 11/19/2022]
Abstract
Tonic immobility (TI) is an inborn defensive behavior characterized by a temporary state of profound and reversible motor inhibition elicited by some forms of physical restraint. Previous results from our laboratory have demonstrated that nucleus raphe magnus (NRM) is also a structure involved in the modulation of TI behavior, as chemical stimulation through carbachol decreases the duration of TI in guinea pigs. In view of the fact that GABAergic and opioidergic circuits participate in the regulation of neuronal activity in the NRM and since these neurotransmitters are also involved in the modulation of TI, the objective of the present study was to evaluate the role of these circuits of the NRM in the modulation of the behavioral TI response. Microinjection of morphine (4.4 nmol/0.2 microl) or bicuculline (0.4 nmol/0.2 microl) into the NRM increased the duration of TI episodes while muscimol (0.5 nmol/0.2 microl) decreased it. The effect of morphine injection into the NRM was blocked by previous microinjection of naloxone (2.7 nmol/0.2 microl). Muscimol at 0.25 nmol did not produce any change in TI duration; however, it blocked the increased response induced by morphine. Our results indicate a facilitatory role of opioidergic neurotransmission in the modulation of the TI response within the NRM, whereas GABAergic activity plays an inhibitory role. In addition, in the present study the modulation of TI in the NRM possibly occurred via an interaction between opioidergic and GABAergic systems, where the opioidergic effect might be due to inhibition of tonically active GABAergic interneurons.
Collapse
Affiliation(s)
- Luis Felipe Souza da Silva
- Department of Physiology, Faculty of Medicine of Ribeirão Preto, University of São Paulo, 14049-900 Ribeirão Preto, SP, Brazil
| | | |
Collapse
|
389
|
Nũnéz S, Lee JS, Zhang Y, Bai G, Ro JY. Role of peripheral mu-opioid receptors in inflammatory orofacial muscle pain. Neuroscience 2007; 146:1346-54. [PMID: 17379421 DOI: 10.1016/j.neuroscience.2007.02.024] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2006] [Revised: 02/07/2007] [Accepted: 02/09/2007] [Indexed: 10/23/2022]
Abstract
The aims of this project were to investigate whether inflammation in the orofacial muscle alters mu opioid receptor (MOR) mRNA and protein expressions in trigeminal ganglia (TG), and to assess the contribution of peripheral MORs under acute and inflammatory muscle pain conditions. mRNA and protein levels for MOR were quantified by reverse-transcription-polymerase chain reaction (RT-PCR) and Western blot, respectively, from the TG of naïve rats, and compared with those from the rats treated with complete Freund's adjuvant (CFA) in the masseter. TG was found to express mRNA and protein for MOR, and CFA significantly up-regulated both MOR mRNA and protein by 3 days following the inflammation. The MOR protein up-regulation persisted to day 7 and returned to the baseline level by day 14. We then investigated whether peripheral application of a MOR agonist, D-Ala2, N-Me-Phe4, Gly5-ol-enkephalin acetate salt (DAMGO), attenuates masseter nociception induced by masseteric infusion of hypertonic saline (HS) in lightly anesthetized rats. DAMGO (1, 5, 10 microg) or vehicle was administered directly into the masseter 5-10 min prior to the HS infusion. The DAMGO effects were assessed on mean peak counts (MPC) and overall magnitude as calculated by the area under the curve (AUC) of the HS-evoked behavioral responses. Under this condition, only the highest dose of DAMGO (10 microg) significantly reduced MPC, which was prevented when H-D-Phe-Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH2 (CTAP), a selective MOR antagonist, was co-administered. DAMGO pre-treatment in the contralateral masseter did not attenuate MPC. The same doses of DAMGO administered into CFA-inflamed rats, however, produced a greater attenuation of both MPC and AUC of HS-evoked nocifensive responses. These results demonstrated that activation of peripheral MOR provides greater anti-nociception in inflamed muscle, and that the enhanced MOR effect can be partly explained by significant up-regulation of MOR expression in TG.
Collapse
MESH Headings
- Analgesics, Opioid/pharmacology
- Animals
- Behavior, Animal/physiology
- Blotting, Western
- Dose-Response Relationship, Drug
- Enkephalin, Ala(2)-MePhe(4)-Gly(5)-/pharmacology
- Facial Pain/physiopathology
- Facial Pain/psychology
- Freund's Adjuvant
- Functional Laterality/physiology
- Inflammation/chemically induced
- Inflammation/physiopathology
- Inflammation/psychology
- Male
- Masseter Muscle/metabolism
- Rats
- Rats, Sprague-Dawley
- Receptors, Opioid, mu/biosynthesis
- Receptors, Opioid, mu/genetics
- Receptors, Opioid, mu/physiology
- Reverse Transcriptase Polymerase Chain Reaction
- Trigeminal Ganglion/metabolism
Collapse
Affiliation(s)
- S Nũnéz
- Department of Biomedical Sciences, Program in Neuroscience, University of Maryland Baltimore School of Dentistry, 650 West Baltimore Street, Baltimore, MD 21201, USA
| | | | | | | | | |
Collapse
|
390
|
Fichna J, Janecka A, Costentin J, Do Rego JC. The endomorphin system and its evolving neurophysiological role. Pharmacol Rev 2007; 59:88-123. [PMID: 17329549 DOI: 10.1124/pr.59.1.3] [Citation(s) in RCA: 172] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Endomorphin-1 (Tyr-Pro-Trp-Phe-NH2) and endomorphin-2 (Tyr-Pro-Phe-Phe-NH2) are two endogenous opioid peptides with high affinity and remarkable selectivity for the mu-opioid receptor. The neuroanatomical distribution of endomorphins reflects their potential endogenous role in many major physiological processes, which include perception of pain, responses related to stress, and complex functions such as reward, arousal, and vigilance, as well as autonomic, cognitive, neuroendocrine, and limbic homeostasis. In this review we discuss the biological effects of endomorphin-1 and endomorphin-2 in relation to their distribution in the central and peripheral nervous systems. We describe the relationship between these two mu-opioid receptor-selective peptides and endogenous neurohormones and neurotransmitters. We also evaluate the role of endomorphins from the physiological point of view and report selectively on the most important findings in their pharmacology.
Collapse
Affiliation(s)
- Jakub Fichna
- Laboratory of Experimental Neuropsychopharmacology, CNRS FRE 2735, IFRMP 23, Faculty of Medicine & Pharmacy, University of Rouen, 22, Boulevard Gambetta, 76183 Rouen cedex, France
| | | | | | | |
Collapse
|
391
|
Formisano L, Noh KM, Miyawaki T, Mashiko T, Bennett MVL, Zukin RS. Ischemic insults promote epigenetic reprogramming of mu opioid receptor expression in hippocampal neurons. Proc Natl Acad Sci U S A 2007; 104:4170-5. [PMID: 17360495 PMCID: PMC1820727 DOI: 10.1073/pnas.0611704104] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Transient global ischemia is a neuronal insult that induces delayed, selective death of hippocampal CA1 pyramidal neurons. A mechanism underlying ischemia-induced cell death is activation of the gene silencing transcription factor REST (repressor element-1 silencing transcription factor)/NRSF (neuron-restrictive silencing factor) and REST-dependent suppression of the AMPA receptor subunit GluR2 in CA1 neurons destined to die. Here we show that REST regulates an additional gene target, OPRM1 (mu opioid receptor 1 or MOR-1). MORs are abundantly expressed by basket cells and other inhibitory interneurons of CA1. Global ischemia induces a marked decrease in MOR-1 mRNA and protein expression that is specific to the selectively vulnerable area CA1, as assessed by quantitative real-time RT-PCR, Western blotting, and ChIP. We further show that OPRM1 gene silencing is REST-dependent and occurs via epigenetic modifications. Ischemia promotes deacetylation of core histone proteins H3 and H4 and dimethylation of histone H3 at lysine-9 (H3-K9) over the MOR-1 promoter, an signature of epigenetic gene silencing. Acute knockdown of MOR-1 gene expression by administration of antisense oligodeoxynucleotides to hippocampal slices in vitro or injection of the MOR antagonist naloxone to rats in vivo affords protection against ischemia-induced death of CA1 pyramidal neurons. These findings implicate MORs in ischemia-induced death of CA1 pyramidal neurons and document epigenetic remodeling of expression of OPRM1 in CA1 inhibitory interneurons.
Collapse
Affiliation(s)
- Luigi Formisano
- *Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461; and
- Division of Pharmacology, Department of Neuroscience, School of Medicine, Federico II University of Naples, 80131 Naples, Italy
| | - Kyung-Min Noh
- *Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461; and
| | - Takahiro Miyawaki
- *Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461; and
| | - Toshihiro Mashiko
- *Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461; and
| | - Michael V. L. Bennett
- *Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461; and
- To whom correspondence may be addressed. E-mail:
or
| | - R. Suzanne Zukin
- *Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461; and
- To whom correspondence may be addressed. E-mail:
or
| |
Collapse
|
392
|
D'Addario C, Di Benedetto M, Candeletti S, Romualdi P. The kappa-opioid receptor agonist U-69593 prevents cocaine-induced phosphorylation of DARPP-32 at Thr(34) in the rat brain. Brain Res Bull 2007; 73:34-9. [PMID: 17499634 DOI: 10.1016/j.brainresbull.2007.01.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2006] [Revised: 01/26/2007] [Accepted: 01/26/2007] [Indexed: 11/15/2022]
Abstract
DARPP-32 (dopamine- and cAMP-regulated phosphoprotein) is a potent endogenous inhibitor of protein phosphatase-1, which plays an important role in dopaminergic transmission. A large body of evidence supports the key role of DARPP-32-dependent signalling in mediating the actions of multiple drugs of abuse, including cocaine, which, when acutely administered, increases the Thr(34) phosphorylation of DARPP-32 in the striatal and cortical areas. In this study, we have examined the contribution of the kappa opioid system to the regulation of DARPP-32 phosphorylation at Thr(34), following acute cocaine administration, in selected rat brain areas. Results showed that a single injection of cocaine induces a significant increase in DARPP-32 phosphorylation at Thr(34) in the hippocampus, caudate putamen and prefrontal cortex. In addition, pretreatment with the kappa opioid receptor agonist U-69593 prevented cocaine effects in all the investigated areas. These data could be considered consistent with the ability of kappa opioid agonists to attenuate many behavioural and neurochemical effects of cocaine.
Collapse
Affiliation(s)
- Claudio D'Addario
- Department of Pharmacology, University of Bologna, Irnerio 48, Bologna 40126, Italy
| | | | | | | |
Collapse
|
393
|
Li Y, van den Pol AN. Differential target-dependent actions of coexpressed inhibitory dynorphin and excitatory hypocretin/orexin neuropeptides. J Neurosci 2007; 26:13037-47. [PMID: 17167093 PMCID: PMC6674960 DOI: 10.1523/jneurosci.3380-06.2006] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The hypocretin/orexin arousal system plays a key role in maintaining an alert wake state. The hypocretin peptide is colocalized with an opioid peptide, dynorphin. As dynorphin may be coreleased with hypocretin, we asked what action simultaneous stimulation with the excitatory neuropeptide hypocretin and the inhibitory peptide dynorphin might exert on cells postsynaptic to hypocretin axons, including hypocretin neurons. Hypocretin neurons received direct synaptic contact from other hypocretin neurons but showed little direct response to hypocretin. Here, we show that mouse hypocretin neurons are acutely sensitive to dynorphin. Dynorphin inhibits the hypocretin system by direct postsynaptic actions (hyperpolarization, decreased spike frequency, increased GIRK (G-protein-gated inwardly rectifying K+ channel) current, and attenuated calcium current, and indirectly by reducing excitatory synaptic tone. Interestingly, a selective antagonist of kappa-opioid receptors enhanced activity of the hypocretin system, suggesting ongoing depression by endogenous hypothalamic opioids. Electrical stimulation of hypothalamic microslices that contained hypocretin cells and their axons evoked dynorphin release. Costimulation with dynorphin and hypocretin had three different effects on neurons postsynaptic to hypocretin axons: direct response to only one or the other of the two peptides [hypocretin cells respond to dynorphin, arcuate neuropeptide Y (NPY) cells respond to hypocretin], differential desensitization causing shift from inhibitory current to excitatory current with repeated coexposure (melanin-concentrating hormone neurons), synergistic direct excitation by hypocretin and presynaptic attenuation of inhibition by dynorphin (arcuate NPY neurons). These results suggest that hypocretin neurons may be able to exercise a high degree of modulatory control over postsynaptic targets using multiple neuropeptides with target-dependent actions.
Collapse
Affiliation(s)
- Ying Li
- Department of Neurosurgery, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Anthony N. van den Pol
- Department of Neurosurgery, Yale University School of Medicine, New Haven, Connecticut 06520
| |
Collapse
|
394
|
Zhang C, Marek GJ. Group III metabotropic glutamate receptor agonists selectively suppress excitatory synaptic currents in the rat prefrontal cortex induced by 5-hydroxytryptamine2A receptor activation. J Pharmacol Exp Ther 2007; 320:437-47. [PMID: 17021259 DOI: 10.1124/jpet.106.107490] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Activation and blockade of prefrontal cortical 5-hydroxytryptamine2A (5-HT2A) receptors have been linked to the action of hallucinogenic and antidepressant/antipsychotic drugs; these effects may involve modulation of glutamate release from thalamocortical afferents. Although activation of metabotropic glutamate 2 (mGlu2) receptors may suppress 5-HT-induced excitatory postsynaptic currents (EPSCs), group III mGlu receptors (mGlu4/7/8) also are expressed in the thalamus and may suppress 5-HT-induced EPSCs. We have found by intracellular recordings from layer V pyramidal cells of the medial prefrontal cortex (mPFC) that group III mGlu receptor agonists (R,S)-4-phosphonophenylglycine (PPG), L-4-phosphono-2-aminobutyric acid (L-AP4), L-serine-O-phosphate (L-SOP), and (S)-2-amino-2-methyl-4-phosphonobutanoic acid (MAP4) preferentially suppress 5-HT-induced EPSCs compared with excitatory postsynaptic potentials evoked by electrical stimulation of the white matter. A number of pharmacological features [e.g., the rank order of agonist potency; MAP4 partial agonist action; differential potency for the group III mGlu receptor antagonist (R,S)-alpha-cyclopropyl-4-phosphonophenylglycine (CPPG) in blocking the suppressant action of PPG or MAP4; and a relatively low potency of 2S-2-amino-2-(1S,2S-2-carboxycycloprop-1-yl)-3(xanthy-9-yl)propanoic acid (LY341495) in blocking the suppressant action of PPG or L-SOP] suggest that activation of both mGlu4 and mGlu8 receptors may play a role in suppressing 5-HT-induced EPSCs. Furthermore, L-SOP did not alter the synaptic currents or steady-state inward current induced by alpha-amino-3-hydroxy-5-methylisoxazole-4-proprionic acid. Thus, although both group III and group II mGlu receptor agonists suppress the frequency of 5-HT-induced EPSCs in the mPFC, they differ in that the group III mGlu receptor agonists appear to have relatively minimal effects on glutamate released by sources other than thalamocortical afferents.
Collapse
Affiliation(s)
- Ce Zhang
- Department of Psychiatry, Yale University School of Medicine, Ribicoff Research Facilities of the Connecticut Mental Health Center, New Haven, Connecticut, USA
| | | |
Collapse
|
395
|
Sánchez-Cardoso P, Higuera-Matas A, Martín S, del Olmo N, Miguéns M, García-Lecumberri C, Ambrosio E. Modulation of the endogenous opioid system after morphine self-administration and during its extinction: a study in Lewis and Fischer 344 rats. Neuropharmacology 2006; 52:931-48. [PMID: 17161852 DOI: 10.1016/j.neuropharm.2006.10.011] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2006] [Revised: 10/16/2006] [Accepted: 10/18/2006] [Indexed: 11/29/2022]
Abstract
Lewis (LEW) and Fischer 344 (F344) rats show differential morphine self-administration rates. In this study, after animals of both strains self-administered morphine (1mg/kg) or extinguished this behaviour for 3, 7 or 15days, we measured the binding to, and functional state of mu opioid receptors (MORs) as well as proenkephalin (PENK) mRNA content in several brain regions. The results showed that in most brain areas: 1) LEW rats had less binding to MORs in basal conditions than F344 rats; 2) after morphine self-administration, either one of the strains or both (depending on the brain area) showed increased levels of binding to MORs as compared to basal groups; and 3) these binding levels in morphine self-administration animals came down in each extinction group. Moreover, F344 rats exhibited, in general, an increased functionality of MORs after morphine self-administration, as compared to basal groups, which also went down during extinction. Finally, the basal content of PENK mRNA was lower in LEW rats than in F344 rats and it decreased more after self-administration; during extinction, the levels of PENK mRNA got normalized in this strain. This differential modulation of the endogenous opioid system might be related to the different rates of morphine self-administration behavior exhibited by both inbred rat strains.
Collapse
Affiliation(s)
- Pilar Sánchez-Cardoso
- Departamento de Psicobiología, Facultad de Psicología, UNED, Ciudad Universitaria, Madrid 28040, Spain
| | | | | | | | | | | | | |
Collapse
|
396
|
Liang J, Li Y, Ping X, Yu P, Zuo Y, Wu L, Han JS, Cui C. The possible involvement of endogenous ligands for mu-, delta- and kappa-opioid receptors in modulating morphine-induced CPP expression in rats. Peptides 2006; 27:3307-14. [PMID: 17097192 DOI: 10.1016/j.peptides.2006.08.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2006] [Revised: 08/13/2006] [Accepted: 08/14/2006] [Indexed: 11/26/2022]
Abstract
Previous studies suggested that electroacupuncture (EA) can suppress opioid dependence by the release of endogenous opioid peptides. To explore the site of action and the receptors involved, we tried to inject highly specific agonists for mu-, delta- and kappa-opioid receptors into the CNS to test whether it can suppress morphine-induced conditioned place preference (CPP) in the rat. Male Sprague-Dawley rats were trained with 4 mg/kg morphine, i.p. for 4 days to establish the CPP model. This CPP can be prevented by (a) i.p. injection of 3 mg/kg dose of morphine, (b) intracerebroventricular (i.c.v.) injection of micrograms doses of the selective mu-opioid receptor agonist DAMGO, delta-agonist DPDPE or kappa-agonist U-50,488H or (c) microinjection of DAMGO, DPDPE or U50488H into the shell of the nucleus accumbens (NAc). The results suggest that the release of endogenous mu-, delta- and kappa-opioid agonists in the NAc shell may play a role for EA suppression of opiate addiction.
Collapse
MESH Headings
- 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer/pharmacology
- Animals
- Behavior, Animal/drug effects
- Behavior, Animal/physiology
- Enkephalin, Ala(2)-MePhe(4)-Gly(5)-/physiology
- Enkephalin, D-Penicillamine (2,5)-/physiology
- Male
- Morphine/pharmacology
- Rats
- Receptors, Opioid, delta/agonists
- Receptors, Opioid, delta/physiology
- Receptors, Opioid, kappa/agonists
- Receptors, Opioid, kappa/physiology
- Receptors, Opioid, mu/agonists
- Receptors, Opioid, mu/physiology
Collapse
Affiliation(s)
- Jing Liang
- Neuroscience Research Institute and Department of Neurobiology, Peking University Health Science Center, Key Laboratory of Neuroscience, The Ministry of Education and Ministry of Public Health, 38 Xueyuan Road, Beijing 100083, PR China
| | | | | | | | | | | | | | | |
Collapse
|
397
|
Alvira-Botero MX, Garzón M. Cellular and subcellular distributions of delta opioid receptor activation sites in the ventral oral pontine tegmentum of the cat. Brain Res 2006; 1123:101-11. [PMID: 17045971 DOI: 10.1016/j.brainres.2006.09.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2006] [Revised: 09/11/2006] [Accepted: 09/12/2006] [Indexed: 10/23/2022]
Abstract
The ventral division of the reticular oral pontine nucleus (vRPO) is a pontine tegmentum region critically involved in REM sleep generation. Previous reports of morphine microinjections in the cat pontine tegmentum have shown that opioid receptor activation in this region modulates REM sleep. Even though opiate administration has marked effects on sleep-wake cycle architecture, the distribution of opioid receptors in vRPO has only been partially described. Using an antiserum directed against delta opioid receptor (DOR), to which morphine binds, in the present study, we use (1) light microscopy to determine DOR cellular distribution in the rostral pontine tegmentum and (2) electron microscopy to determine DOR subcellular distribution in the cat vRPO. In the dorsal pons, DOR immunoreactivity was evenly distributed throughout the neuropil of the reticular formation and was particularly intense in the parabrachial nuclei and locus coeruleus; the ventral and central areas of the RPO and locus coeruleus complex were especially rich in DOR-labeled somata. Within the vRPO, DOR was localized mainly in the cytoplasm and on plasma membranes of medium to large dendrites (47.8% of DOR-labeled profiles), which received both symmetric and asymmetric synaptic contacts mainly from non-labeled (82% of total inputs) axon terminals. Less frequently, DOR was distributed presynaptically in axon terminals (19% of DOR-labeled profiles). Our results suggest that DOR activation in vRPO regulates REM sleep occurrence by modulating postsynaptic responses to both excitatory and inhibitory afferents. DOR activation in vRPO could have, however, an additional role in direct modulation of neurotransmitter release from axon terminals.
Collapse
Affiliation(s)
- Maria Ximena Alvira-Botero
- Departamento de Anatomía, Histología y Neurociencia, Facultad de Medicina, Universidad Autónoma de Madrid, Calle Arzobispo Morcillo 4, 28029, Madrid, Spain
| | | |
Collapse
|
398
|
Characterizing exons 11 and 1 promoters of the mu opioid receptor (Oprm) gene in transgenic mice. BMC Mol Biol 2006; 7:41. [PMID: 17101047 PMCID: PMC1657025 DOI: 10.1186/1471-2199-7-41] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2006] [Accepted: 11/13/2006] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND The complexity of the mouse mu opioid receptor (Oprm) gene was demonstrated by the identification of multiple alternatively spliced variants and promoters. Our previous studies have identified a novel promoter, exon 11 (E11) promoter, in the mouse Oprm gene. The E11 promoter is located approximately 10 kb upstream of the exon 1 (E1) promoter. The E11 promoter controls the expression of nine splice variants in the mouse Oprm gene. Distinguished from the TATA-less E1 promoter, the E11 promoter resembles a typical TATA-containing eukaryote class II promoter. The aim of this study is to further characterize the E11 and E1 promoters in vivo using a transgenic mouse model. RESULTS We constructed a approximately 20 kb transgenic construct in which a 3.7 kb E11 promoter region and an 8.9 kb E1 promoter region controlled expression of tau/LacZ and tau/GFP reporters, respectively. The construct was used to establish a transgenic mouse line. The expression of the reporter mRNAs, determined by a RT-PCR approach, in the transgenic mice during embryonic development displayed a temporal pattern similar to that of the endogenous promoters. X-gal staining for tau/LacZ reporter and GFP imaging for tau/GFP reporter showed that the transgenic E11 and E1 promoters were widely expressed in various regions of the central nervous system (CNS). The distribution of tau/GFP reporter in the CNS was similar to that of MOR-1-like immunoreactivity using an exon 4-specific antibody. However, differential expression of both promoters was observed in some CNS regions such as the hippocampus and substantia nigra, suggesting that the E11 and E1 promoters were regulated differently in these regions. CONCLUSION We have generated a transgenic mouse line to study the E11 and E1 promoters in vivo using tau/LacZ and tau/GFP reporters. The reasonable relevance of the transgenic model was demonstrated by the temporal and spatial expression of the transgenes as compared to those of the endogenous transcripts. We believe that these transgenic mice will provide a useful model for further characterizing the E11 and E1 promoter in vivo under different physiological and pathological circumstances such as chronic opioid treatment and chronic pain models.
Collapse
|
399
|
Fujiyama F, Unzai T, Nakamura K, Nomura S, Kaneko T. Difference in organization of corticostriatal and thalamostriatal synapses between patch and matrix compartments of rat neostriatum. Eur J Neurosci 2006; 24:2813-24. [PMID: 17156206 DOI: 10.1111/j.1460-9568.2006.05177.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The neostriatum, which possesses a mosaic organization consisting of patch and matrix compartments, receives glutamatergic excitatory afferents from the cerebral cortex and thalamus. Differences in the synaptic organization of these striatopetal afferents between the patch and matrix compartments were examined in the rat using confocal laser scanning and electron microscopes. Thalamostriatal terminals immunopositive for vesicular glutamate transporter (VGluT) 2 were less dense in the patch than in the matrix compartment, although the density of VGluT1-immunopositive corticostriatal terminals was almost evenly distributed in both the compartments. Quantitative analysis of ultrastructural images revealed that 84% of VGluT2-positive synapses in the patch compartment were formed with dendritic spines, whereas 70% in the matrix compartment were made with dendritic shafts. By contrast, VGluT1-positive terminals display a similar preference for specific synaptic targets in both compartments: about 80% made synapses with dendritic spines. In addition, VGluT2-positive axospinous synapses in the patch compartment were larger than the VGluT1-positive axospinous synapses in both compartments. As axospinous synapses are generally found in neuronal connections showing high synaptic plasticity, the present findings suggest that the thalamostriatal connection requires higher synaptic plasticity in the patch compartment than in the matrix compartment.
Collapse
Affiliation(s)
- Fumino Fujiyama
- Department of Morphological Brain Science, Graduate School of Medicine, Faculty of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | | | | | | | | |
Collapse
|
400
|
Chieng BCH, Christie MJ, Osborne PB. Characterization of neurons in the rat central nucleus of the amygdala: cellular physiology, morphology, and opioid sensitivity. J Comp Neurol 2006; 497:910-27. [PMID: 16802333 DOI: 10.1002/cne.21025] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The central nucleus of the amygdala (CeA) orchestrates autonomic and other behavioral and physiological responses to conditioned stimuli that are aversive or elicit fear. As a related CeA function is the expression of hypoalgesia induced by conditioned stimuli or systemic morphine administration, we examined postsynaptic opioid modulation of neurons in each major CeA subdivision. Following electrophysiological recording, biocytin-filled neurons were precisely located in CeA regions identified by chemoarchitecture (enkephalin-immunoreactivity) and cytoarchitecture (DAPI nuclear staining) in fixed adult rat brain slices. This revealed a striking distribution of physiological types, as 92% of neurons in capsular CeA were classified as late-firing, whereas no neurons in the medial CeA were of this class. In contrast, 60% or more of neurons in the lateral and medial CeA were low-threshold bursting neurons. Mu-opioid receptor (MOPR) agonists induced postsynaptic inhibitory potassium currents in 61% of CeA cells, and this ratio was maintained in each subdivision and for each physiological class of neuron. However, MOPR agonists more frequently inhibited bipolar/fusiform cells than triangular or multipolar neurons. A subpopulation of MOPR-expressing neurons were also inhibited by delta opioid receptor agonists, whereas a separate population were inhibited kappa opioid receptors (KOPR). The MOPR agonist DAMGO inhibited 9/9 CeM neurons with projections to the parabrachial nucleus identified by retrograde tracer injection. These data support models of striatopallidal organization that have identified striatal-like and pallidal-like CeA regions. Opioids can directly inhibit output from each subdivision by activating postsynaptic MOPRs or KOPRs on distinct subpopulations of opioid-sensitive neurons.
Collapse
Affiliation(s)
- Billy C H Chieng
- Pain Management Research Institute, University of Sydney at Royal North Shore Hospital, NSW 2065, Australia
| | | | | |
Collapse
|