351
|
Pineda E, Jentsch JD, Shin D, Griesbach G, Sankar R, Mazarati A. Behavioral impairments in rats with chronic epilepsy suggest comorbidity between epilepsy and attention deficit/hyperactivity disorder. Epilepsy Behav 2014; 31:267-75. [PMID: 24262783 PMCID: PMC3946735 DOI: 10.1016/j.yebeh.2013.10.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 09/29/2013] [Accepted: 10/02/2013] [Indexed: 01/27/2023]
Abstract
Attention deficit/hyperactivity disorder (ADHD) is encountered among patients with epilepsy at a significantly higher rate than in the general population. Mechanisms of epilepsy-ADHD comorbidity remain largely unknown. We investigated whether a model of chronic epilepsy in rats produces signs of ADHD, and thus, whether it can be used for studying mechanisms of this comorbidity. Epilepsy was induced in male Wistar rats via pilocarpine status epilepticus. Half of the animals exhibited chronic ADHD-like abnormalities, particularly increased impulsivity and diminished attention in the lateralized reaction-time task. These impairments correlated with the suppressed noradrenergic transmission in locus coeruleus outputs. The other half of animals exhibited depressive behavior in the forced swimming test congruently with the diminished serotonergic transmission in raphe nucleus outputs. Attention deficit/hyperactivity disorder and depressive behavior appeared mutually exclusive. Therefore, the pilocarpine model of epilepsy affords a system for reproducing and studying mechanisms of comorbidity between epilepsy and both ADHD and/or depression.
Collapse
Affiliation(s)
- Eduardo Pineda
- Department of Pediatrics, David Geffen School of Medicine at UCLA
| | - J. David Jentsch
- Department of Psychology, David Geffen School of Medicine at UCLA,Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA
| | - Don Shin
- Department of Pediatrics, David Geffen School of Medicine at UCLA
| | - Grace Griesbach
- Department of Neurosurgery, David Geffen School of Medicine at UCLA
| | - Raman Sankar
- Department of Pediatrics, David Geffen School of Medicine at UCLA,Department of Neurology, David Geffen School of Medicine at UCLA,UCLA Children’s Discovery and Innovation Institute
| | - Andrey Mazarati
- Department of Pediatrics, David Geffen School of Medicine at UCLA, USA; UCLA Children's Discovery and Innovation Institute, USA.
| |
Collapse
|
352
|
Fineberg NA, Chamberlain SR, Goudriaan AE, Stein DJ, Vanderschuren LJ, Gillan CM, Shekar S, Gorwood PA, Voon V, Morein-Zamir S, Denys D, Sahakian BJ, Moeller FG, Robbins TW, Potenza MN. New developments in human neurocognition: clinical, genetic, and brain imaging correlates of impulsivity and compulsivity. CNS Spectr 2014; 19:69-89. [PMID: 24512640 PMCID: PMC4113335 DOI: 10.1017/s1092852913000801] [Citation(s) in RCA: 285] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Impulsivity and compulsivity represent useful conceptualizations that involve dissociable cognitive functions, which are mediated by neuroanatomically and neurochemically distinct components of cortico-subcortical circuitry. The constructs were historically viewed as diametrically opposed, with impulsivity being associated with risk-seeking and compulsivity with harm-avoidance. However, they are increasingly recognized to be linked by shared neuropsychological mechanisms involving dysfunctional inhibition of thoughts and behaviors. In this article, we selectively review new developments in the investigation of the neurocognition of impulsivity and compulsivity in humans, in order to advance our understanding of the pathophysiology of impulsive, compulsive, and addictive disorders and indicate new directions for research.
Collapse
Affiliation(s)
- Naomi A. Fineberg
- Hertfordshire Partnership NHS University Foundation Trust, Queen Elizabeth II Hospital, Howlands, Welwyn Garden City, Hertfordshire, UK
- University of Hertfordshire, School of Postgraduate Medicine, College Lane, Hatfield, Hertfordshire, UK
- Cambridge University, School of Clinical Medicine, Addenbrooke’s Hospital, Cambridge, UK
| | - Samuel R. Chamberlain
- Cambridge University, School of Clinical Medicine, Addenbrooke’s Hospital, Cambridge, UK
- Cambridge and Peterborough NHS Foundation Trust (CPFT), Cambridge, UK
| | - Anna E. Goudriaan
- Department of Psychiatry, Amsterdam Institute for Addiction Research, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
- Arkin Mental Health, Amsterdam, The Netherlands
| | - Dan J. Stein
- Department of Psychiatry, University of Cape Town, S. Africa
| | - Louk J.M.J. Vanderschuren
- Dept. of Animals in Science and Society, Division of Behavioural Neuroscience, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
- Rudolf Magnus Institute of Neuroscience, Dept. of Neuroscience and Pharmacology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Claire M. Gillan
- Behavioural and Clinical Neuroscience Institute (BCNI), University of Cambridge, Cambridge, UK
- Department of Psychology, University of Cambridge, Cambridge, UK
| | - Sameer Shekar
- Hertfordshire Partnership NHS University Foundation Trust, Queen Elizabeth II Hospital, Howlands, Welwyn Garden City, Hertfordshire, UK
| | - Philip A.P.M. Gorwood
- INSERM UMR894 (Centre of Psychiatry and Neuroscience), 2ter rue d’Alesia, Paris, FRANCE
- Sainte-Anne hospital, CMME (University Paris Descartes), 100 rue de la Santé, Paris, FRANCE
| | - Valerie Voon
- Behavioural and Clinical Neuroscience Institute (BCNI), University of Cambridge, Cambridge, UK
- Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Sharon Morein-Zamir
- Behavioural and Clinical Neuroscience Institute (BCNI), University of Cambridge, Cambridge, UK
- Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Damiaan Denys
- Department of Psychiatry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- The Netherlands Institute for Neuroscience, an institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - Barbara J. Sahakian
- Cambridge University, School of Clinical Medicine, Addenbrooke’s Hospital, Cambridge, UK
- Behavioural and Clinical Neuroscience Institute (BCNI), University of Cambridge, Cambridge, UK
| | - F. Gerard Moeller
- Departments of Psychiatry and Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Trevor W. Robbins
- Behavioural and Clinical Neuroscience Institute (BCNI), University of Cambridge, Cambridge, UK
- Department of Psychology, University of Cambridge, Cambridge, UK
| | - Marc N. Potenza
- Departments of Psychiatry, Child Study and Neurobiology, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
353
|
Hale TS, Kane AM, Kaminsky O, Tung KL, Wiley JF, McGough JJ, Loo SK, Kaplan JT. Visual Network Asymmetry and Default Mode Network Function in ADHD: An fMRI Study. Front Psychiatry 2014; 5:81. [PMID: 25076915 PMCID: PMC4097354 DOI: 10.3389/fpsyt.2014.00081] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 06/26/2014] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND A growing body of research has identified abnormal visual information processing in attention-deficit hyperactivity disorder (ADHD). In particular, slow processing speed and increased reliance on visuo-perceptual strategies have become evident. OBJECTIVE The current study used recently developed fMRI methods to replicate and further examine abnormal rightward biased visual information processing in ADHD and to further characterize the nature of this effect; we tested its association with several large-scale distributed network systems. METHOD We examined fMRI BOLD response during letter and location judgment tasks, and directly assessed visual network asymmetry and its association with large-scale networks using both a voxelwise and an averaged signal approach. RESULTS Initial within-group analyses revealed a pattern of left-lateralized visual cortical activity in controls but right-lateralized visual cortical activity in ADHD children. Direct analyses of visual network asymmetry confirmed atypical rightward bias in ADHD children compared to controls. This ADHD characteristic was atypically associated with reduced activation across several extra-visual networks, including the default mode network (DMN). We also found atypical associations between DMN activation and ADHD subjects' inattentive symptoms and task performance. CONCLUSION The current study demonstrated rightward VNA in ADHD during a simple letter discrimination task. This result adds an important novel consideration to the growing literature identifying abnormal visual processing in ADHD. We postulate that this characteristic reflects greater perceptual engagement of task-extraneous content, and that it may be a basic feature of less efficient top-down task-directed control over visual processing. We additionally argue that abnormal DMN function may contribute to this characteristic.
Collapse
Affiliation(s)
- T Sigi Hale
- Department of Psychiatry and Biobehavioral Sciences, UCLA Semel Institute for Neuroscience and Human Behavior , Los Angeles, CA , USA
| | - Andrea M Kane
- Department of Psychiatry and Biobehavioral Sciences, UCLA Semel Institute for Neuroscience and Human Behavior , Los Angeles, CA , USA
| | - Olivia Kaminsky
- Department of Psychiatry and Biobehavioral Sciences, UCLA Semel Institute for Neuroscience and Human Behavior , Los Angeles, CA , USA
| | - Kelly L Tung
- Department of Psychiatry and Biobehavioral Sciences, UCLA Semel Institute for Neuroscience and Human Behavior , Los Angeles, CA , USA
| | - Joshua F Wiley
- Department of Psychology, University of California Los Angeles , Los Angeles, CA , USA
| | - James J McGough
- Department of Psychiatry and Biobehavioral Sciences, UCLA Semel Institute for Neuroscience and Human Behavior , Los Angeles, CA , USA
| | - Sandra K Loo
- Department of Psychiatry and Biobehavioral Sciences, UCLA Semel Institute for Neuroscience and Human Behavior , Los Angeles, CA , USA
| | - Jonas T Kaplan
- Department of Psychology, Brain and Creativity Institute, University of Southern California , Los Angeles, CA , USA
| |
Collapse
|
354
|
del Campo N, Fryer TD, Hong YT, Smith R, Brichard L, Acosta-Cabronero J, Chamberlain SR, Tait R, Izquierdo D, Regenthal R, Dowson J, Suckling J, Baron JC, Aigbirhio FI, Robbins TW, Sahakian BJ, Müller U. A positron emission tomography study of nigro-striatal dopaminergic mechanisms underlying attention: implications for ADHD and its treatment. ACTA ACUST UNITED AC 2013; 136:3252-70. [PMID: 24163364 PMCID: PMC4125626 DOI: 10.1093/brain/awt263] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Through the combined use of 18F-fallypride positron emission tomography and magnetic resonance imaging this study examined the neural mechanisms underlying the attentional deficits associated with attention deficit/hyperactivity disorder and their potential reversal with a single therapeutic dose of methylphenidate. Sixteen adult patients with attention deficit/hyperactivity disorder and 16 matched healthy control subjects were positron emission tomography and magnetic resonance imaging scanned and tested on a computerized sustained attention task after oral methylphenidate (0.5 mg/kg) and placebo administration in a within-subject, double-blind, cross-over design. Although patients with attention deficit/hyperactivity disorder as a group showed significant attentional deficits and reduced grey matter volume in fronto-striato-cerebellar and limbic networks, they had equivalent D2/D3 receptor availability and equivalent increases in endogenous dopamine after methylphenidate treatment to that observed in healthy control subjects. However, poor attentional performers drawn from both the attention deficit/hyperactivity disorder and the control groups had significantly reduced left caudate dopamine activity. Methylphenidate significantly increased dopamine levels in all nigro-striatal regions, thereby normalizing dopamine levels in the left caudate in low performers. Behaviourally, methylphenidate improved sustained attention in a baseline performance-dependent manner, irrespective of diagnosis. This finding was accompanied by an equally performance-dependent effect of the drug on dopamine release in the midbrain, whereby low performers showed reduced dopamine release in this region. Collectively, these findings support a dimensional model of attentional deficits and underlying nigro-striatal dopaminergic mechanisms of attention deficit/hyperactivity disorder that extends into the healthy population. Moreover, they confer midbrain dopamine autoreceptors a hitherto neglected role in the therapeutic effects of oral methylphenidate in attention deficit/hyperactivity disorder. The absence of significant case–control differences in D2/D3 receptor availability (despite the observed relationships between dopamine activity and attention) suggests that dopamine dysregulation per se is unlikely to be the primary cause underlying attention deficit/hyperactivity disorder pathology in adults. This conclusion is reinforced by evidence of neuroanatomical changes in the same set of patients with attention deficit/hyperactivity disorder.
Collapse
Affiliation(s)
- Natalia del Campo
- 1 Department of Psychiatry, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
355
|
Setyawan J, Fridman M, Hodgkins P, Quintero J, Erder MH, Katić B, Harpin V. Physician-reported treatment outcomes for ADHD among children and adolescents in Europe. ACTA ACUST UNITED AC 2013. [DOI: 10.2217/npy.13.76] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
356
|
Bralten J, Franke B, Waldman I, Rommelse N, Hartman C, Asherson P, Banaschewski T, Ebstein RP, Gill M, Miranda A, Oades RD, Roeyers H, Rothenberger A, Sergeant JA, Oosterlaan J, Sonuga-Barke E, Steinhausen HC, Faraone SV, Buitelaar JK, Arias-Vásquez A. Candidate genetic pathways for attention-deficit/hyperactivity disorder (ADHD) show association to hyperactive/impulsive symptoms in children with ADHD. J Am Acad Child Adolesc Psychiatry 2013; 52:1204-1212.e1. [PMID: 24157394 DOI: 10.1016/j.jaac.2013.08.020] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 07/05/2013] [Accepted: 08/29/2013] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Because multiple genes with small effect sizes are assumed to play a role in attention-deficit/hyperactivity disorder (ADHD) etiology, considering multiple variants within the same analysis likely increases the total explained phenotypic variance, thereby boosting the power of genetic studies. This study investigated whether pathway-based analysis could bring scientists closer to unraveling the biology of ADHD. METHOD The pathway was described as a predefined gene selection based on a well-established database or literature data. Common genetic variants in pathways involved in dopamine/norepinephrine and serotonin neurotransmission and genes involved in neuritic outgrowth were investigated in cases from the International Multicentre ADHD Genetics (IMAGE) study. Multivariable analysis was performed to combine the effects of single genetic variants within the pathway genes. Phenotypes were DSM-IV symptom counts for inattention and hyperactivity/impulsivity (n = 871) and symptom severity measured with the Conners Parent (n = 930) and Teacher (n = 916) Rating Scales. RESULTS Summing genetic effects of common genetic variants within the pathways showed a significant association with hyperactive/impulsive symptoms ((p)empirical = .007) but not with inattentive symptoms ((p)empirical = .73). Analysis of parent-rated Conners hyperactive/impulsive symptom scores validated this result ((p)empirical = .0018). Teacher-rated Conners scores were not associated. Post hoc analyses showed a significant contribution of all pathways to the hyperactive/impulsive symptom domain (dopamine/norepinephrine, (p)empirical = .0004; serotonin, (p)empirical = .0149; neuritic outgrowth, (p)empirical = .0452). CONCLUSION The present analysis shows an association between common variants in 3 genetic pathways and the hyperactive/impulsive component of ADHD. This study demonstrates that pathway-based association analyses, using quantitative measurements of ADHD symptom domains, can increase the power of genetic analyses to identify biological risk factors involved in this disorder.
Collapse
Affiliation(s)
- Janita Bralten
- Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, the Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
357
|
Weafer J, de Wit H. Inattention, impulsive action, and subjective response to D-amphetamine. Drug Alcohol Depend 2013; 133:127-33. [PMID: 23790566 PMCID: PMC3786022 DOI: 10.1016/j.drugalcdep.2013.05.021] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 04/26/2013] [Accepted: 05/15/2013] [Indexed: 10/26/2022]
Abstract
BACKGROUND Both impulsivity and sensitivity to the rewarding effects of drugs have long been considered risk factors for drug abuse. There is some preclinical evidence to suggest that the two are related; however, there is little information about how specific behavioral components of impulsivity are related to the acute euphorigenic effects of drugs in humans. The aim of the current study was to examine the degree to which both inattention and impulsive action predicted subjective response to amphetamine. METHODS Healthy adults (n=165) performed the behavioral tasks and rated their subjective response to amphetamine (0, 5, 10, and 20 mg). Inattention was assessed as attention lapses on a simple reaction time task, and impulsive action was measured by stop RT on the stop task. Subjective response to amphetamine was assessed with the Drug Effects Questionnaire (DEQ) and the Profile of Mood States (POMS). RESULTS Hierarchical linear regression analyses showed significant negative associations between attention lapses and subjective response to amphetamine on DEQ measures. By contrast, stop RT was positively associated with responses on both DEQ and POMS measures. Additionally, a dose-response relationship was observed, such that the strength of these associations increased with higher doses of amphetamine. CONCLUSIONS These findings suggest that inattention is associated with less subjective response to amphetamine. By contrast, the heightened sensitivity to stimulant drug reward observed in individuals high in impulsive action suggests that this might be one mechanism contributing to increased risk for stimulant drug abuse in these individuals.
Collapse
Affiliation(s)
| | - Harriet de Wit
- Corresponding author: Harriet de Wit, Department of Psychiatry and Behavioral Neuroscience, MC 3077, University of Chicago, 5841 S. Maryland Ave., Chicago, IL 60637, Phone: 773-702-1537, Fax: 773-834-7698,
| |
Collapse
|
358
|
Timple JMV, Magalhães LG, Souza Rezende KC, Pereira AC, Cunha WR, Andrade e Silva ML, Mortensen OV, Fontana ACK. The lignan (-)-hinokinin displays modulatory effects on human monoamine and GABA transporter activities. JOURNAL OF NATURAL PRODUCTS 2013; 76:1889-95. [PMID: 24112084 DOI: 10.1021/np400452n] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The neurotransmitter transporters of the SLC6 family play critical roles in the regulation of neurotransmission and are the primary targets of therapeutic agents used to treat clinical disorders involving compromised neurotransmitter signaling. The dopamine and norepinephrine transporters have been implicated in clinical disorders such as attention deficit hyperactivity disorder (ADHD) and substance abuse. The GABA transporters (GATs) serve as a target for anxiolytic, antidepressant, and antiepileptic therapies. In this work, the interaction with neurotransmitter transporters was characterized for a derivative of the lignan (-)-cubebin (1), namely, (-)-hinokinin (2). Using in vitro pharmacological assays, 2 selectively inhibited the human dopamine and norepinephrine transporters, in a noncompetitive manner possibly mediated by binding to a novel site within the transporters, and displayed low affinity for the serotonin transporter. Compound 2 also specifically inhibited the GAT-1 GABA transporter subtype. Compound 2 is not a substrate of the carriers as it had no effect on the efflux of either of the neurotransmitters investigated. This compound is inactive toward glutamate and glycine transporters. These results suggest that 2 may serve as a tool to develop new therapeutic drugs for ADHD and anxiety that target the DAT, NET, and GAT-1 transporters.
Collapse
Affiliation(s)
- Julie Marie V Timple
- Department of Pharmacology and Physiology, Drexel University College of Medicine , Philadelphia, Pennsylvania 19102, United States
| | | | | | | | | | | | | | | |
Collapse
|
359
|
Sterley TL, Howells FM, Russell VA. Evidence for reduced tonic levels of GABA in the hippocampus of an animal model of ADHD, the spontaneously hypertensive rat. Brain Res 2013; 1541:52-60. [PMID: 24161405 DOI: 10.1016/j.brainres.2013.10.023] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2013] [Revised: 10/09/2013] [Accepted: 10/14/2013] [Indexed: 11/25/2022]
Abstract
Recent studies have investigated the role of γ-aminobutyric acid (GABA) in the behavioural symptoms of attention-deficit/hyperactivity disorder (ADHD), specifically in behavioural disinhibition. Spontaneously hypertensive rats (SHR) are widely accepted as an animal model of ADHD, displaying core symptoms of the disorder. Using an in vitro superfusion technique, we have shown that glutamate-stimulated release of radio-actively labelled norepinephrine ([(3)H]NE) from prefrontal cortex and hippocampal slices is greater in SHR than in their normotensive control strain, Wistar-Kyoto rats (WKY), and/or a standard control strain, Sprague-Dawley rats (SD). In the present study, we investigated how the level of extracellular (tonic) GABA affects release of [(3)H]NE in hippocampal slices of male and female SHR, WKY and SD rats, in response to 3 glutamate stimulations (S1, S2, and S3). The hippocampal slices were prelabelled with [(3)H]NE and superfused with buffer containing 0μM, 1μM, 10μM, or 100μM GABA. Three consecutive glutamate stimulations were achieved by exposing slices to 3 pulses of glutamate (1mM), each separated by 10min. Increasing tonic levels of GABA increased basal and stimulated release of [(3)H]NE in all strains. When GABA was omitted from the superfusion buffer used to perfuse SHR hippocampal slices, but present at 100µM in the buffer used to perfuse WKY and SD hippocampal slices, glutamate-stimulated release of [(3)H]NE was similar in all three strains. In these conditions, the decrease in [(3)H]NE release from S1 to S2 and S3 was also similar in all three strains. These findings suggest that extracellular concentrations of GABA may be reduced in SHR hippocampus, in vivo, compared to WKY and SD. An underlying defect in GABA function may be at the root of the dysfunction in catecholamine transmission noted in SHR, and may underlie their ADHD-like behaviours.
Collapse
Affiliation(s)
- Toni-Lee Sterley
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory 7925, South Africa.
| | | | | |
Collapse
|
360
|
Schweren LJS, de Zeeuw P, Durston S. MR imaging of the effects of methylphenidate on brain structure and function in attention-deficit/hyperactivity disorder. Eur Neuropsychopharmacol 2013; 23:1151-64. [PMID: 23165220 DOI: 10.1016/j.euroneuro.2012.10.014] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Revised: 09/04/2012] [Accepted: 10/26/2012] [Indexed: 11/30/2022]
Abstract
Methylphenidate is the first-choice pharmacological intervention for the treatment of Attention-Deficit/Hyperactivity Disorder (ADHD). The pharmacological and behavioral effects of methylphenidate are well described, but less is known about neurochemical brain changes induced by methylphenidate. This level of analysis may be informative on how the behavioral effects of methylphenidate are established. This paper reviews structural and functional MRI studies that have investigated effects of methylphenidate in children with ADHD. Structural MRI studies provide evidence that long-term stimulant treatment may normalize structural brain changes found in the white matter, the anterior cingulate cortex, the thalamus, and the cerebellum in ADHD. Moreover, preliminary evidence suggests that methylphenidate treatment may normalize the trajectory of cortical development in ADHD. Functional MRI has provided evidence that methylphenidate administration has acute effects on brain functioning, and even suggests that methylphenidate may normalize brain activation patterns as well as functional connectivity in children with ADHD during cognitive control, attention, and during rest. The effects of methylphenidate on the developing brain appear highly specific and dependent on numerous factors, including biological factors such as genetic predispositions, subject-related factors such as age and symptom severity, and task-related factors such as task difficulty. Future studies on structural and functional brain changes in ADHD may benefit from inclusion strategies guided by current medication status and medication history. Further studies on the effects of methylphenidate treatment on structural and functional MRI parameters are needed to address unresolved issues of the long-term effects of treatment, as well as the mechanism through which medication-induced brain changes bring about clinical improvement.
Collapse
Affiliation(s)
- Lizanne J S Schweren
- Neuroimaging Lab, Department of Psychiatry, Rudolf Magnus Institute of Neurosciences, University Medical Centre Utrecht, The Netherlands.
| | | | | |
Collapse
|
361
|
A novel translational assay of response inhibition and impulsivity: effects of prefrontal cortex lesions, drugs used in ADHD, and serotonin 2C receptor antagonism. Neuropsychopharmacology 2013; 38:2150-9. [PMID: 23657439 PMCID: PMC3773664 DOI: 10.1038/npp.2013.112] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 04/17/2013] [Accepted: 04/19/2013] [Indexed: 01/25/2023]
Abstract
Animal models are making an increasing contribution to our understanding of the psychology and brain mechanisms underlying behavioral inhibition and impulsivity. The aim here was to develop, for the first time, a mouse analog of the stop-signal reaction time task with high translational validity in order to be able to exploit this species in genetic and molecular investigations of impulsive behaviors. Cohorts of mice were trained to nose-poke to presentations of visual stimuli. Control of responding was manipulated by altering the onset of an auditory 'stop-signal' during the go response. The anticipated systematic changes in action cancellation were observed as stopping was made more difficult by placing the stop-signal closer to the execution of the action. Excitotoxic lesions of medial prefrontal cortex resulted in impaired stopping, while the clinically effective drugs methylphenidate and atomoxetine enhanced stopping abilities. The specific 5-HT2C receptor antagonist SB242084 also led to enhanced response control in this task. We conclude that stop-signal reaction time task performance can be successfully modeled in mice and is sensitive to prefrontal cortex dysfunction and drug treatments in a qualitatively similar manner to humans and previous rat models. Additionally, using this model we show novel and highly discrete effects of 5-HT2C receptor antagonism that suggest manipulation of 5-HT2C receptor function may be of use in correcting maladaptive impulsive behaviors and provide further evidence for dissociable contributions of serotonergic transmission to response control.
Collapse
|
362
|
A head-to-head randomized clinical trial of methylphenidate and atomoxetine treatment for executive function in adults with attention-deficit hyperactivity disorder. Int J Neuropsychopharmacol 2013; 16:1959-73. [PMID: 23672818 DOI: 10.1017/s1461145713000357] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Results regarding the effects of methylphenidate and atomoxetine on executive functions were inconsistent and no study has directly compared the efficacy of these two medications in improving executive functions in adults with attention-deficit hyperactivity disorder (ADHD). We conducted an 8-10 wk, open-label, head-to-head, randomized clinical trial involving adults with a clinical diagnosis of ADHD confirmed by psychiatric interview. The two treatment arms were immediate-release methylphenidate (IR-methylphenidate) (n = 31) and atomoxetine once daily (n = 32). Executive functions were assessed by the Cambridge Neuropsychological Test Automated Battery (CANTAB), including spatial working memory, spatial span, intra-extra dimensional set shifts, rapid visual information processing and Stockings of Cambridge (SOC). In addition to the symptom assessments at baseline (week 0), visit 2 (week 4-5) and visit 3 (week 8–10), they received CANTAB assessments at baseline and visit 3 (60.4 ± 6.3 d). Compared to baseline, adults treated with atomoxetine showed significant improvement in spatial working memory, spatial short-term memory, sustained attention and spatial planning at visit 3; adults treated with IR-methylphenidate showed significant improvement in spatial working memory at visit 3. Comparing the magnitude of improvement in executive functions between these two medications, the effect was generally similar for the two groups, although atomoxetine might have significantly greater efficacy than IR-methylphenidate in terms of improving spatial planning (SOC). Our results provide evidence to support that both IR-methylphenidate and atomoxetine improved various executive functions in adults with ADHD with greater improvement in atomoxetine than IR-methylphenidate in spatial planning.
Collapse
|
363
|
Ali EH, Elgoly AHM. Combined prenatal and postnatal butyl paraben exposure produces autism-like symptoms in offspring: Comparison with valproic acid autistic model. Pharmacol Biochem Behav 2013; 111:102-10. [DOI: 10.1016/j.pbb.2013.08.016] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 08/23/2013] [Accepted: 08/31/2013] [Indexed: 11/15/2022]
|
364
|
Green EA, Raj V, Shibao CA, Biaggioni I, Black BK, Dupont WD, Robertson D, Raj SR. Effects of norepinephrine reuptake inhibition on postural tachycardia syndrome. J Am Heart Assoc 2013; 2:e000395. [PMID: 24002370 PMCID: PMC3835251 DOI: 10.1161/jaha.113.000395] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Background Postural tachycardia syndrome (POTS) is a disorder of chronic orthostatic intolerance accompanied by excessive orthostatic tachycardia. Patients with POTS commonly have comorbid conditions such as attention deficit hyperactivity disorder, depression, or fibromyalgia that are treated with medications that inhibit the norepinephrine reuptake transporter (NRI). NRI medications can increase sympathetic nervous system tone, which may increase heart rate (HR) and worsen symptoms in POTS patients. We sought to determine whether NRI with atomoxetine increases standing tachycardia or worsens the symptom burden in POTS patients. Methods and Results Patients with POTS (n=27) underwent an acute drug trial of atomoxetine 40 mg and placebo on separate mornings in a randomized, crossover design. Blood pressure (BP), HR, and symptoms were assessed while seated and after standing prior to and hourly for 4 hours following study drug administration. Atomoxetine significantly increased standing HR compared with placebo (121±17 beats per minute versus 105±15 beats per minute; P=0.001) in POTS patients, with a trend toward higher standing systolic BP (P=0.072). Symptom scores worsened with atomoxetine compared to placebo (+4.2 au versus −3.5 au; P=0.028) from baseline to 2 hours after study drug administration. Conclusion Norepinephrine reuptake inhibition with atomoxetine acutely increased standing HR and symptom burden in patients with POTS. Clinical Trials Registration URL: http://clinicaltrials.gov. Unique identifier: NCT00262470.
Collapse
Affiliation(s)
- Elizabeth A Green
- Autonomic Dysfunction Center, Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University, Nashville, TN
| | | | | | | | | | | | | | | |
Collapse
|
365
|
Rommel AS, Halperin JM, Mill J, Asherson P, Kuntsi J. Protection from genetic diathesis in attention-deficit/hyperactivity disorder: possible complementary roles of exercise. J Am Acad Child Adolesc Psychiatry 2013; 52:900-10. [PMID: 23972692 PMCID: PMC4257065 DOI: 10.1016/j.jaac.2013.05.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 04/23/2013] [Accepted: 06/07/2013] [Indexed: 12/20/2022]
Abstract
OBJECTIVE The degree of functional impairment and adverse developmental outcomes in individuals with attention-deficit/hyperactivity disorder (ADHD) likely reflect interplay between genes and environment. To establish whether physical exercise might reduce the level of ADHD symptoms or ADHD-related impairments, we conducted a comprehensive review of the effect of exercise in children with ADHD. Findings on the impact of exercise in animals and typically developing human beings, and an overview of putative mechanisms involved, are also presented to provide the context in which to understand this review. METHOD The electronic databases PubMed, OVID, and Web of Knowledge were searched for all studies investigating the effect of exercise in children and adolescents with ADHD, as well as animal models of ADHD behaviors (available in January 2013). Of 2,150 initially identified records, 16 were included. RESULTS Animal studies indicate that exercise, especially early in development, may be beneficial for ADHD symptom reduction. The limited research investigating the effect of exercise in children and adolescents with ADHD suggests that exercise may improve executive functioning and behavioral symptoms associated with ADHD. Although animal research suggests that brain-derived neurotrophic factor (BDNF) and catecholamines (CAs) play a role in mediating these effects, the association between BDNF and ADHD remains unclear in human beings. CONCLUSIONS The potential protective qualities of exercise with regard to reducing symptoms and impairments commonly associated with ADHD may hold promise for the future. Further research is needed to firmly establish whether there are clinically significant effects of exercise on the severity of ADHD symptoms, impairments, and associated developmental outcomes.
Collapse
Affiliation(s)
- Anna-Sophie Rommel
- Medical Research Council Social, Genetic and Developmental Psychiatry Centre, the Institute of Psychiatry, King's College London.
| | | | | | | | | |
Collapse
|
366
|
Ding YS, Naganawa M, Gallezot JD, Nabulsi N, Lin SF, Ropchan J, Weinzimmer D, McCarthy TJ, Carson RE, Huang Y, Laruelle M. Clinical doses of atomoxetine significantly occupy both norepinephrine and serotonin transports: Implications on treatment of depression and ADHD. Neuroimage 2013; 86:164-71. [PMID: 23933039 DOI: 10.1016/j.neuroimage.2013.08.001] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2013] [Revised: 07/07/2013] [Accepted: 08/01/2013] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Atomoxetine (ATX), a drug for treatment of depression and ADHD, has a high affinity for the norepinephrine transporter (NET); however, our previous study showed it had a blocking effect similar to fluoxetine on binding of [(11)C]DASB, a selective serotonin transporter (SERT) ligand. Whether the therapeutic effects of ATX are due to inhibition of either or both transporters is not known. Here we report our comparative PET imaging studies with [(11)C]MRB (a NET ligand) and [(11)C]AFM (a SERT ligand) to evaluate in vivo IC50 values of ATX in monkeys. METHODS Rhesus monkeys were scanned up to four times with each tracer with up to four doses of ATX. ATX or saline (placebo) infusion began 2h before each PET scan, lasting until the end of the 2-h scan. The final infusion rates were 0.01-0.12mg/kg/h and 0.045-1.054mg/kg/h for the NET and SERT studies, respectively. ATX plasma levels and metabolite-corrected arterial input functions were measured. Distribution volumes (VT) and IC50 values were estimated. RESULTS ATX displayed dose-dependent occupancy on both NET and SERT, with a higher occupancy on NET: IC50 of 31±10 and 99±21ng/mL plasma for NET and SERT, respectively. At a clinically relevant dose (1.0-1.8mg/kg, approx. 300-600ng/mL plasma), ATX would occupy >90% of NET and >85% of SERT. This extrapolation assumes comparable free fraction of ATX in humans and non-human primates. CONCLUSION Our data suggests that ATX at clinically relevant doses greatly occupies both NET and SERT. Thus, therapeutic modes of ATX action for treatment of depression and ADHD may be more complex than selective blockade of NET.
Collapse
Affiliation(s)
- Y-S Ding
- Department of Diagnostic Radiology, Yale University, New Haven, CT, USA; Department of Psychiatry and Radiology, New York University, New York, NY, USA.
| | - M Naganawa
- Department of Diagnostic Radiology, Yale University, New Haven, CT, USA
| | - J-D Gallezot
- Department of Diagnostic Radiology, Yale University, New Haven, CT, USA
| | - N Nabulsi
- Department of Diagnostic Radiology, Yale University, New Haven, CT, USA
| | - S-F Lin
- Department of Diagnostic Radiology, Yale University, New Haven, CT, USA
| | - J Ropchan
- Department of Diagnostic Radiology, Yale University, New Haven, CT, USA
| | - D Weinzimmer
- Department of Diagnostic Radiology, Yale University, New Haven, CT, USA
| | | | - R E Carson
- Department of Diagnostic Radiology, Yale University, New Haven, CT, USA
| | - Y Huang
- Department of Diagnostic Radiology, Yale University, New Haven, CT, USA
| | - M Laruelle
- New Medicines, UCB Pharma S.A., Brussels, Belgium
| |
Collapse
|
367
|
Abstract
The noradrenaline (norepinephrine) system exerts profound influences on cognition via ascending projections to the forebrain, mostly originating from the locus coeruleus. This paper provides an overview of available infrahuman and healthy human studies, exploring the effects of specific noradrenergic manipulations on dissociable cognitive functions, including attention, working memory, cognitive flexibility, response inhibition and emotional memory. Remarkable parallels across species have been reported which may account for the mechanisms by which noradrenergic medications exert their beneficial effects in disorders such as depression and attention-deficit hyperactivity disorder (ADHD). The literature is discussed in relation to prevailing models of noradrenergic influences over cognition and novel therapeutic directions, including in relation to investigating the effects of noradrenergic manipulations on other disorders characterized by impulsivity, and dementias. Unanswered questions are also highlighted, along with key avenues for future research, both proof-of-concept and clinical.
Collapse
|
368
|
Groom MJ, Liddle EB, Scerif G, Liddle PF, Batty MJ, Liotti M, Hollis CP. Motivational incentives and methylphenidate enhance electrophysiological correlates of error monitoring in children with attention deficit/hyperactivity disorder. J Child Psychol Psychiatry 2013; 54:836-45. [PMID: 23662815 PMCID: PMC3807603 DOI: 10.1111/jcpp.12069] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/04/2013] [Indexed: 12/01/2022]
Abstract
BACKGROUND Children with attention deficit hyperactivity disorder (ADHD) are characterised by developmentally inappropriate levels of hyperactivity, impulsivity and/or inattention and are particularly impaired when performing tasks that require a high level of cognitive control. Methylphenidate (MPH) and motivational incentives may help improve cognitive control by enhancing the ability to monitor response accuracy and regulate performance accordingly. METHODS Twenty-eight children with DSM-IV ADHD (combined type) aged 9-15 years and pairwise-matched typically developing children (CTRL) performed a go/no-go task in which the incentives attached to performance on no-go trials were manipulated. The ADHD group performed the task off and on their usual dose of MPH. CTRL children performed the task twice but were never medicated. EEG data were recorded simultaneously and two electrophysiological indices of error monitoring, the error-related negativity (ERN) and error positivity (Pe) were measured. Amplitudes of each ERP were compared between diagnostic groups (CTRL, ADHD), medication days (Off MPH, On MPH) and motivational conditions (baseline - low incentive, reward, response cost). RESULTS Error rates were lower in the reward and response cost conditions compared with baseline across diagnostic groups and medication days. ERN and Pe amplitudes were significantly reduced in ADHD compared with CTRL, and were significantly enhanced by MPH. Incentives significantly increased ERN and Pe amplitudes in the ADHD group but had no effect in CTRL. The effects of incentives did not interact with the effects of MPH on either ERP. Effect sizes were computed and revealed larger effects of MPH than incentives on ERN and Pe amplitudes. CONCLUSIONS The findings reveal independent effects of motivational incentives and MPH on two electrophysiological markers of error monitoring in children with ADHD, suggesting that each may be important tools for enhancing or restoring cognitive control in these children.
Collapse
Affiliation(s)
- Madeleine J Groom
- Division of Psychiatry, Institute of Mental Health, University of NottinghamNottingham, UK,Correspondence Dr Maddie Groom, Division of Psychiatry, Institute of Mental Health, University of Nottingham Innovation Park, Triumph Road, Nottingham, NG7 2TU, UK;
| | - Elizabeth B Liddle
- Division of Psychiatry, Institute of Mental Health, University of NottinghamNottingham, UK
| | - Gaia Scerif
- Department of Experimental Psychology, University of Oxford and St. Catherine’s CollegeOxford, UK
| | - Peter F Liddle
- Division of Psychiatry, Institute of Mental Health, University of NottinghamNottingham, UK
| | - Martin J Batty
- Division of Psychiatry, Institute of Mental Health, University of NottinghamNottingham, UK
| | - Mario Liotti
- Department of Psychology, Simon Fraser UniversityBurnaby, BC, Canada
| | - Chris P Hollis
- Division of Psychiatry, Institute of Mental Health, University of NottinghamNottingham, UK
| |
Collapse
|
369
|
Furth KE, Mastwal S, Wang KH, Buonanno A, Vullhorst D. Dopamine, cognitive function, and gamma oscillations: role of D4 receptors. Front Cell Neurosci 2013; 7:102. [PMID: 23847468 PMCID: PMC3698457 DOI: 10.3389/fncel.2013.00102] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 06/11/2013] [Indexed: 12/29/2022] Open
Abstract
Cognitive deficits in individuals with schizophrenia (SCZ) are considered core symptoms of this disorder, and can manifest at the prodromal stage. Antipsychotics ameliorate positive symptoms but only modestly improve cognitive symptoms. The lack of treatments that improve cognitive abilities currently represents a major obstacle in developing more effective therapeutic strategies for this debilitating disorder. While D4 receptor (D4R)-specific antagonists are ineffective in the treatment of positive symptoms, animal studies suggest that D4R drugs can improve cognitive deficits. Moreover, recent work from our group suggests that D4Rs synergize with the neuregulin/ErbB4 signaling pathway, genetically identified as risk factors for SCZ, in parvalbumin (PV)-expressing interneurons to modulate gamma oscillations. These high-frequency network oscillations correlate with attention and increase during cognitive tasks in healthy subjects, and this correlation is attenuated in affected individuals. This finding, along with other observations indicating impaired GABAergic function, has led to the idea that abnormal neural activity in the prefrontal cortex (PFC) in individuals with SCZ reflects a perturbation in the balance of excitation and inhibition. Here we review the current state of knowledge of D4R functions in the PFC and hippocampus, two major brain areas implicated in SCZ. Special emphasis is given to studies focusing on the potential role of D4Rs in modulating GABAergic transmission and to an emerging concept of a close synergistic relationship between dopamine/D4R and neuregulin/ErbB4 signaling pathways that tunes the activity of PV interneurons to regulate gamma frequency network oscillations and potentially cognitive processes.
Collapse
Affiliation(s)
- Katrina E Furth
- Section on Molecular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health Bethesda, MD, USA ; Graduate Program for Neuroscience, Boston University Boston, MA, USA
| | | | | | | | | |
Collapse
|
370
|
Homma D, Katoh S, Tokuoka H, Ichinose H. The role of tetrahydrobiopterin and catecholamines in the developmental regulation of tyrosine hydroxylase level in the brain. J Neurochem 2013; 126:70-81. [PMID: 23647001 DOI: 10.1111/jnc.12287] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 04/22/2013] [Accepted: 04/29/2013] [Indexed: 11/30/2022]
Abstract
Tyrosine hydroxylase (TH) is a rate-limiting enzyme for dopamine synthesis and requires tetrahydrobiopterin (BH4) as an essential cofactor. BH4 deficiency leads to the loss of TH protein in the brain, although the underlying mechanism is poorly understood. To give insight into the role of BH4 in the developmental regulation of TH protein level, in this study, we investigated the effects of acute and subchronic administrations of BH4 or dopa on the TH protein content in BH4-deficient mice lacking sepiapterin reductase. We found that BH4 administration persistently elevated the BH4 and dopamine levels in the brain and fully restored the loss of TH protein caused by the BH4 deficiency in infants. On the other hand, dopa administration less persistently increased the dopamine content and only partially but significantly restored the TH protein level in infant BH4-deficient mice. We also found that the effects of BH4 or dopa administration on the TH protein content were attenuated in young adulthood. Our data demonstrate that BH4 and catecholamines are required for the post-natal augmentation of TH protein in the brain, and suggest that BH4 availability in early post-natal period is critical for the developmental regulation of TH protein level.
Collapse
Affiliation(s)
- Daigo Homma
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama, Japan
| | | | | | | |
Collapse
|
371
|
Buse J, Schoenefeld K, Münchau A, Roessner V. Neuromodulation in Tourette syndrome: Dopamine and beyond. Neurosci Biobehav Rev 2013; 37:1069-84. [DOI: 10.1016/j.neubiorev.2012.10.004] [Citation(s) in RCA: 136] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 09/28/2012] [Accepted: 10/08/2012] [Indexed: 01/11/2023]
|
372
|
Logemann HNA, Böcker KBE, Deschamps PKH, Kemner C, Kenemans JL. The effect of noradrenergic attenuation by clonidine on inhibition in the stop signal task. Pharmacol Biochem Behav 2013; 110:104-11. [PMID: 23792541 DOI: 10.1016/j.pbb.2013.06.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Revised: 06/05/2013] [Accepted: 06/13/2013] [Indexed: 12/13/2022]
Abstract
Understanding the neuropharmacology of inhibition is of importance to fuel optimal treatment for disorders such as Attention Deficit/Hyperactivity Disorder. The aim of the present study was to assess the effect of noradrenergic antagonism by clonidine on behavioral-performance and brain-activity indices of inhibition. A placebo-controlled, double-blind, randomized, crossover design was implemented. Male (N=21) participants performed in a visual stop signal task while EEG was recorded under clonidine in one session and under placebo in another. We expected that 100 μg clonidine would have a negative effect on EEG indices of inhibition, the Stop N2 and Stop P3. Furthermore, we expected that clonidine would negatively affect the behavioral measure of inhibition, the stop signal reaction time (SSRT). Behavioral analyses were performed on data of 17 participants, EEG analyses on a subset (N=13). Performance data suggested that clonidine negatively affected attention (response variability, omissions) without affecting inhibition as indexed by SSRT. Electrophysiological data show that clonidine reduced the Stop P3, but not the Stop N2, indicating a partial negative effect on inhibition. Results show that it is unlikely that the Stop P3 reduction was related to the effect of clonidine on lapses of attention and on peripheral cardiovascular functioning. In conclusion, the current dose of clonidine had a negative effect on attention and a partial effect on inhibitory control. This inhibitory effect was restricted to the dorsal region of the prefrontal cortex (presumably the superior frontal gyrus) as opposed to the ventral region of the prefrontal cortex (right inferior frontal gyrus).
Collapse
Affiliation(s)
- H N Alexander Logemann
- Helmholtz Research Institute, Department of Experimental Psychology, Utrecht University, P.O. Box 80140, 3508 TC Utrecht, The Netherlands.
| | | | | | | | | |
Collapse
|
373
|
Rostron CL, Kaplan E, Gaeta V, Nigriello R, Dommett EJ. The effects of methylphenidate on cognitive performance of healthy male rats. Front Neurosci 2013; 7:97. [PMID: 23781167 PMCID: PMC3680706 DOI: 10.3389/fnins.2013.00097] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 05/21/2013] [Indexed: 11/25/2022] Open
Abstract
WE AIMED TO INVESTIGATE THE EFFECTS OF METHYLPHENIDATE (MPH) IN HEALTHY RATS ON TWO DISTINCT RADIAL MAZE TASKS WHICH RELY ON BRAIN STRUCTURES AND NEUROTRANSMITTERS KNOWN TO BE AFFECTED BY MPH: the Random Foraging Non-Delay Task (RFNDT) and the Delayed Spatial Win Shift Task (DSWT). Hooded Lister rats were trained to complete either the RFNDT or the DSWT having received oral treatment of either a vehicle or MPH (3.0 mg/kg and 5.0 mg/kg for RFNDT, 3.0 mg/kg for DSWT). We found no effect of MPH on the RFNDT relative to the control group. However, those treated with 5.0 mg/kg MPH did take significantly longer to reach criterion performance than those treated with the 3.0 mg/kg MPH, suggesting some doses of MPH can have detrimental effects. For the DSWT, if MPH was present in both phases, performance did not differ from when it was absent in both phases. However, when present in only one phase there was an increase in errors made, although this only reached significance for when MPH was present only in the test-phase. These data suggest that MPH may have detrimental effects on task performance and can result in state-dependent effects in healthy individuals.
Collapse
Affiliation(s)
| | | | | | | | - Eleanor J. Dommett
- Brain and Behavioural Sciences, Biomedical Research Network, Department of Life, Health and Chemical Sciences, The Open UniversityMilton Keynes, UK
| |
Collapse
|
374
|
Ngounou Wetie AG, Sokolowska I, Wormwood K, Beglinger K, Michel TM, Thome J, Darie CC, Woods AG. Mass spectrometry for the detection of potential psychiatric biomarkers. J Mol Psychiatry 2013; 1:8. [PMID: 25408901 PMCID: PMC4223884 DOI: 10.1186/2049-9256-1-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Accepted: 02/12/2013] [Indexed: 12/20/2022] Open
Abstract
The search for molecules that can act as potential biomarkers is increasing in the scientific community, including in the field of psychiatry. The field of proteomics is evolving and its indispensability for identifying biomarkers is clear. Among proteomic tools, mass spectrometry is the core technique for qualitative and quantitative identification of protein markers. While significant progress has been made in the understanding of biomarkers for neurodegenerative diseases such as Alzheimer's disease, multiple sclerosis and Parkinson's disease, psychiatric disorders have not been as extensively investigated. Recent and successful applications of mass spectrometry-based proteomics in fields such as cardiovascular disease, cancer, infectious diseases and neurodegenerative disorders suggest a similar path for psychiatric disorders. In this brief review, we describe mass spectrometry and its use in psychiatric biomarker research and highlight some of the possible challenges of undertaking this type of work. Further, specific examples of candidate biomarkers are highlighted. A short comparison of proteomic with genomic methods for biomarker discovery research is presented. In summary, mass spectrometry-based techniques may greatly facilitate ongoing efforts to understand molecular mechanisms of psychiatric disorders.
Collapse
Affiliation(s)
- Armand G Ngounou Wetie
- Biochemistry and Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699-5810 USA
| | - Izabela Sokolowska
- Biochemistry and Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699-5810 USA
| | - Kelly Wormwood
- Biochemistry and Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699-5810 USA
| | - Katherine Beglinger
- Biochemistry and Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699-5810 USA
| | - Tanja Maria Michel
- Department of Psychiatry, University of Rostock, Rostock, Gehlsheimer Straße 20, D-18147 Germany
| | - Johannes Thome
- Department of Psychiatry, University of Rostock, Rostock, Gehlsheimer Straße 20, D-18147 Germany ; College of Medicine, Swansea University, Singleton Park, Swansea, SA2 8PP UK
| | - Costel C Darie
- Biochemistry and Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699-5810 USA
| | - Alisa G Woods
- Biochemistry and Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699-5810 USA ; Neuropsychology Clinic and Psychoeducation Services, SUNY Plattsburgh, 101 Broad St, Plattsburgh, 12901 NY USA
| |
Collapse
|
375
|
Nishino R, Mikami K, Takahashi H, Tomonaga S, Furuse M, Hiramoto T, Aiba Y, Koga Y, Sudo N. Commensal microbiota modulate murine behaviors in a strictly contamination-free environment confirmed by culture-based methods. Neurogastroenterol Motil 2013; 25:521-8. [PMID: 23480302 DOI: 10.1111/nmo.12110] [Citation(s) in RCA: 176] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Accepted: 02/05/2013] [Indexed: 02/08/2023]
Abstract
BACKGROUND There is increasing evidence suggesting the existence of an interaction between commensal microbiota, the gut and the brain. The aim of this study was to examine the influence of commensal microbiota on the host behaviors in a contamination-free environment, which was verified by culture-based methods. METHODS Open-field and marble-burying tests were used to analyze anxiety-like behaviors and locomotor activity in gnotobiotic BALB/c mice with a common genetic background in a sterile isolator. The monoamine levels in several regions of the brain were measured in germfree (GF) mice and commensal fecal microbiota-associated mice (EX-GF). KEY RESULTS A 24-h exposure to the environment outside the sterile isolators rendered GF mice less anxious than those not contaminated, while there was no change in the locomotion. EX-GF mice, the gnotobiotic mice with normal specific pathogen-free microbiota, were less anxious and active than GF mice using open-field and marble-burying tests. The norepinephrine, dopamine, and serotonin turnover rates were higher in the EX-GF mice than in the GF mice in most regions of the brain, suggesting that monoaminergic neurotransmission might increase in the EX-GF mice comparing the GF mice. Monoassociation with Brautia coccoides reduced the anxiety level, but it did not affect the locomotor activity. In contrast, colonization with Bifidobacterium infantis decreased the locomotor activity, while having little effect on the anxiety level. CONCLUSIONS & INFERENCES These results strongly support the current view that gut microorganisms modulate brain development and behavior.
Collapse
Affiliation(s)
- R Nishino
- Laboratory for Infectious Diseases, Isehara, Kanagawa, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
376
|
Impact of the ADHD-susceptibility gene CDH13 on development and function of brain networks. Eur Neuropsychopharmacol 2013; 23:492-507. [PMID: 22795700 DOI: 10.1016/j.euroneuro.2012.06.009] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 05/30/2012] [Accepted: 06/20/2012] [Indexed: 12/18/2022]
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a common, early onset and enduring neuropsychiatric disorder characterized by developmentally inappropriate inattention, hyperactivity, increased impulsivity and motivational/emotional dysregulation with similar prevalence rates throughout different cultural settings. Persistence of ADHD into adulthood is associated with considerable risk for co-morbidities such as depression and substance use disorder. Although the substantial heritability of ADHD is well documented the etiology is characterized by a complex coherence of genetic and environmental factors rendering identification of risk genes difficult. Genome-wide linkage as well as single nucleotide polymorphism (SNP) and copy-number variant (CNV) association scans recently allow to reliably define aetiopathogenesis-related genes. A considerable number of novel ADHD risk genes implicate biological processes involved in neurite outgrowth and axon guidance. Here, we focus on the gene encoding Cadherin-13 (CDH13), a cell adhesion molecule which was replicably associated with liability to ADHD and related neuropsychiatric conditions. Based on its unique expression pattern in the brain, we discuss the molecular structure and neuronal mechanisms of Cadherin-13 in relation to other cadherins and the cardiovascular system. An appraisal of various Cadherin-13-modulated signaling pathways impacting proliferation, migration and connectivity of specific neurons is also provided. Finally, we develop an integrative hypothesis of the mechanisms in which Cadherin-13 plays a central role in the regulation of brain network development, plasticity and function. The review concludes with emerging concepts about alterations in Cadherin-13 signaling contributing to the pathophysiology of neurodevelopmental disorders.
Collapse
|
377
|
Wang GJ, Volkow ND, Wigal T, Kollins SH, Newcorn JH, Telang F, Logan J, Jayne M, Wong CT, Han H, Fowler JS, Zhu W, Swanson JM. Long-term stimulant treatment affects brain dopamine transporter level in patients with attention deficit hyperactive disorder. PLoS One 2013; 8:e63023. [PMID: 23696790 PMCID: PMC3655054 DOI: 10.1371/journal.pone.0063023] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2012] [Accepted: 03/27/2013] [Indexed: 11/30/2022] Open
Abstract
Objective Brain dopamine dysfunction in attention deficit/hyperactivity disorder (ADHD) could explain why stimulant medications, which increase dopamine signaling, are therapeutically beneficial. However while the acute increases in dopamine induced by stimulant medications have been associated with symptom improvement in ADHD the chronic effects have not been investigated. Method We used positron emission tomography and [11C]cocaine (dopamine transporter radioligand) to measure dopamine transporter availability in the brains of 18 never-medicated adult ADHD subjects prior to and after 12 months of treatment with methylphenidate and in 11 controls who were also scanned twice at 12 months interval but without stimulant medication. Dopamine transporter availability was quantified as non-displaceable binding potential using a kinetic model for reversible ligands. Results Twelve months of methylphenidate treatment increased striatal dopamine transporter availability in ADHD (caudate, putamen and ventral striatum: +24%, p<0.01); whereas there were no changes in control subjects retested at 12-month interval. Comparisons between controls and ADHD participants revealed no significant difference in dopamine transporter availability prior to treatment but showed higher dopamine transporter availability in ADHD participants than control after long-term treatment (caudate: p<0.007; putamen: p<0.005). Conclusion Upregulation of dopamine transporter availability during long-term treatment with methylphenidate may decrease treatment efficacy and exacerbate symptoms while not under the effects of the medication. Our findings also suggest that the discrepancies in the literature regarding dopamine transporter availability in ADHD participants (some studies reporting increases, other no changes and other decreases) may reflect, in part, differences in treatment histories.
Collapse
Affiliation(s)
- Gene-Jack Wang
- Department of Radiology, Stony Brook University, Stony Brook, New York, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
378
|
Galeano P, Romero JI, Luque-Rojas MJ, Suárez J, Holubiec MI, Bisagno V, Santín LJ, De Fonseca FR, Capani F, Blanco E. Moderate and severe perinatal asphyxia induces differential effects on cocaine sensitization in adult rats. Synapse 2013; 67:553-67. [PMID: 23447367 DOI: 10.1002/syn.21660] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 02/21/2013] [Indexed: 12/20/2022]
Abstract
Perinatal asphyxia (PA) increases the likelihood of suffering from dopamine-related disorders, such as ADHD and schizophrenia. Since dopaminergic transmission plays a major role in cocaine sensitization, the purpose of this study was to determine whether PA could be associated with altered behavioral sensitization to cocaine. To this end, adult rats born vaginally (CTL), by caesarean section (C+), or by C+ with 15 min (PA15, moderate PA) or 19 min (PA19, severe PA) of global anoxia were repeatedly administered with cocaine (i.p., 15 mg/kg) and then challenged with cocaine (i.p., 15 mg/kg) after a 5-day withdrawal period. In addition, c-Fos, FosB/ΔFosB, DAT, and TH expression were assessed in dorsal (CPu) and ventral (NAcc) striatum. Results indicated that PA15 rats exhibited an increased locomotor sensitization to cocaine, while PA19 rats displayed an abnormal acquisition of locomotor sensitization and did not express a sensitized response to cocaine. c-Fos expression in NAcc, but not in CPu, was associated with these alterations in cocaine sensitization. FosB/ΔFosB expression was increased in all groups and regions after repeated cocaine administration, although it reached lower expression levels in PA19 rats. In CTL, C+, and PA15, but not in PA19 rats, the expression of TH in NAcc was reduced in groups repeatedly treated with cocaine, independently of the challenge test. Furthermore, this reduction was more pronounced in PA15 rats. DAT expression remained unaltered in all groups and regions studied. These results suggest that moderate PA may increase the vulnerability to drug abuse and in particular to cocaine addiction.
Collapse
Affiliation(s)
- Pablo Galeano
- Instituto de Investigaciones "Prof. Dr. Alberto C. Taquini"-ININCA, Facultad de Medicina, UBA-CONICET, Marcelo T. de Alvear 2270, C1122AAJ, Ciudad de Buenos Aires, Argentina
| | | | | | | | | | | | | | | | | | | |
Collapse
|
379
|
Schreiner MJ, Lazaro MT, Jalbrzikowski M, Bearden CE. Converging levels of analysis on a genomic hotspot for psychosis: insights from 22q11.2 deletion syndrome. Neuropharmacology 2013; 68:157-73. [PMID: 23098994 PMCID: PMC3677073 DOI: 10.1016/j.neuropharm.2012.09.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Revised: 09/04/2012] [Accepted: 09/17/2012] [Indexed: 10/27/2022]
Abstract
Schizophrenia is a devastating neurodevelopmental disorder that, despite extensive research, still poses a considerable challenge to attempts to unravel its heterogeneity, and the complex biochemical mechanisms by which it arises. While the majority of cases are of unknown etiology, accumulating evidence suggests that rare genetic mutations, such as 22q11.2 Deletion Syndrome (22qDS), can play a significant role in predisposition to the illness. Up to 25% of individuals with 22qDS eventually develop schizophrenia; conversely, this deletion is estimated to account for 1-2% of schizophrenia cases overall. This locus of Chromosome 22q11.2 contains genes that encode for proteins and enzymes involved in regulating neurotransmission, neuronal development, myelination, microRNA processing, and post-translational protein modifications. As a consequence of the deletion, affected individuals exhibit cognitive dysfunction, structural and functional brain abnormalities, and neurodevelopmental anomalies that parallel many of the phenotypic characteristics of schizophrenia. As an illustration of the value of rare, highly penetrant genetic subtypes for elucidating pathological mechanisms of complex neuropsychiatric disorders, we provide here an overview of the cellular, network, and systems-level anomalies found in 22qDS, and review the intriguing evidence for this disorder's association with schizophrenia. This article is part of the Special Issue entitled 'Neurodevelopmental Disorders'.
Collapse
Affiliation(s)
- Matthew J. Schreiner
- Interdepartmental Neuroscience Program, University of California, Los Angeles, USA
| | - Maria T. Lazaro
- Interdepartmental Neuroscience Program, University of California, Los Angeles, USA
| | | | - Carrie E. Bearden
- Department of Psychology, University of California, Los Angeles, USA
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, USA
| |
Collapse
|
380
|
Tang B, Dafny N. Dorsal raphe neuronal activities are modulated by methylphenidate. J Neural Transm (Vienna) 2013; 120:721-31. [PMID: 23269378 PMCID: PMC4036810 DOI: 10.1007/s00702-012-0917-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 11/07/2012] [Indexed: 12/12/2022]
Abstract
This study investigated the electrophysiological properties of the dorsal raphe nucleus (DR) neurons in response to the acute and repetitive administration of methylphenidate (MPH). Activities of DR neurons were recorded from non-anesthetized, freely behaving rats previously implanted bilaterally with permanent semi microelectrodes. The main findings were: (1) after initial (acute) administration of MPH (2.5 mg/kg i.p.) on experimental day one (ED1), 56 % of DR units significantly changed their firing rates. The majority of the responsive units (88 %) exhibited increased firing rate; (2) daily MPH injections were given on ED2 through ED6 followed by 3 washout days. On ED10, 83 % of the DR units significantly changed their baseline activity compared to the baseline activity on ED1; (3) after rechallenge MPH administration on ED10, 63 % of DR units exhibited significant change in their firing rate; the majority of the responsive units (76 %) exhibited a significant increase in their firing rate; (4) The effect of rechallenge MPH administration on ED10 was compared to the effect of initial MPH on ED1, 47 % DR units exhibited a further significant increase in their firing rate while 53 % DR units exhibited decrease or non-change in their firing rate which can be interpreted as electrophysiological sensitization or tolerance. In conclusion, this study demonstrated that acute MPH administration modulated the DR neuronal activities. Repetitive MPH administration modulated the baseline activities of DR units and elicited neurophysiological sensitization or tolerance. The results indicated that MPH affects DR neuronal activity.
Collapse
Affiliation(s)
- Bin Tang
- Department of Neurobiology and Anatomy, University of Texas Health Science Center at Houston, 6431 Fannin, MSB 7.208B, Houston, TX 77030, USA
| | - Nachum Dafny
- Department of Neurobiology and Anatomy, University of Texas Health Science Center at Houston, 6431 Fannin, MSB 7.208B, Houston, TX 77030, USA
| |
Collapse
|
381
|
Shang CY, Wu YH, Gau SS, Tseng WY. Disturbed microstructural integrity of the frontostriatal fiber pathways and executive dysfunction in children with attention deficit hyperactivity disorder. Psychol Med 2013; 43:1093-1107. [PMID: 22894768 DOI: 10.1017/s0033291712001869] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND Attention deficit hyperactivity disorder (ADHD) is recognized as an early-onset neuropsychiatric disorder with executive dysfunctions and neurobiological deficits. The authors compared executive functions and microstructural integrity of the frontostriatal circuit in children with ADHD and typically developing children. Method We assessed 25 children with ADHD and 25 age-, sex-, handedness- and intelligence-matched typically developing children by using psychiatric interviews, the Wechsler Intelligence Scale for Children - third edition, and the tasks involving executive functions in the Cambridge Neuropsychological Test Automated Battery. The frontostriatal tracts were reconstructed by diffusion spectrum imaging tractography and were subdivided into four functionally distinct segments, including dorsolateral, medial prefrontal, orbitofrontal and ventrolateral tracts. Tract-specific and matched case-control analyses were used and generalized fractional anisotropy values were computed. RESULTS Children with ADHD had lower generalized fractional anisotropy of all the bilateral frontostriatal fiber tracts and poorer performance in verbal and spatial working memory, set-shifting, sustained attention, cognitive inhibition and visuospatial planning. The symptom severity of ADHD and the executive functioning performance significantly correlated with integrity of the frontostriatal tracts, particularly the left orbitofrontal and ventrolateral tracts. Children with ADHD also demonstrated loss of the leftward asymmetry in the dorsolateral and medial prefrontal tracts that was present in typically developing children. CONCLUSIONS Our findings demonstrate disturbed structural connectivity of the frontostriatal circuitry in children with ADHD and add new evidence of associations between integrity of the frontostriatal tracts and measures of core symptoms of ADHD and a wide range of executive dysfunctions in both groups.
Collapse
Affiliation(s)
- C Y Shang
- Department of Psychiatry, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | | | | | | |
Collapse
|
382
|
Meta-analysis of the association between dopamine transporter genotype and response to methylphenidate treatment in ADHD. THE PHARMACOGENOMICS JOURNAL 2013; 14:77-84. [PMID: 23588108 DOI: 10.1038/tpj.2013.9] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Revised: 01/12/2013] [Accepted: 02/04/2013] [Indexed: 12/14/2022]
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a prevalent childhood-onset neuropsychiatric disorder. Treatment with methylphenidate, which blocks dopamine and noradrenaline transporters, is clinically efficacious in reducing the symptoms of ADHD. However, a considerable proportion of patients show no or only insufficient response to methylphenidate. Following a pharmacogenetic approach, a number of studies have suggested that heterogeneity in treatment response across subjects might to some extent be due to genetic factors. In particular, a variable number tandem repeat (VNTR) polymorphism in the 3' untranslated region of the SLC6A3 gene, which codes for the dopamine transporter, has been considered as a predictor of treatment success. However, the literature has so far been inconsistent. Here we present results of a meta-analysis of studies investigating the moderating effect of the SLC6A3 VNTR on response to methylphenidate treatment in subjects with ADHD. Outcome measures from 16 studies including data from 1572 subjects were entered into a random-effects model. There was no significant summary effect for the SLC6A3 VNTR on the response to methylphenidate treatment (P>0.5) and no effect on specific symptom dimensions of hyperactivity/impulsivity and inattention (all P>0.2). However, in a subanalysis of naturalistic trials, we observed a significant effect of d=-0.36 (P=0.03), indicating that 10R homozygotes show less improvement in symptoms following treatment than the non-10/10 carriers. This meta-analysis indicates that SLC6A3 VNTR is not a reliable predictor of methylphenidate treatment success in ADHD. Our study leaves unanswered the question of whether other genetic polymorphisms or nongenetic factors may contribute to the observed heterogeneity in treatment response across ADHD subjects.
Collapse
|
383
|
Abstract
Value-based decisions optimize the relation of costs and benefits. Costs and benefits confer not only value but also salience, which may influence decision making through attentional mechanisms. However, the computational and neurobiological role of salience in value-based decisions remains elusive. Here we develop and contrast two formal concepts of salience for value-based choices involving costs and benefits. Specifically, global salience (GS) first integrates costs and benefits and then determines salience based on this overall sum, whereas elemental salience (ES) first determines the salience of costs and benefits before integrating them. We dissociate the behavioral and neural effects of GS and ES from those of value using a value-based decision-making task and fMRI in humans. Specifically, we show that value guides choices and correlates with neural signals in the striatum. In contrast, only ES but not GS impacts decision making by speeding up reaction times. Moreover, activity in the right temporoparietal junction (RTPJ) reflects only ES and correlates with its response-accelerating behavioral effects. Finally, we report an ES-dependent change in functional connectivity between the RTPJ and the locus ceruleus, suggesting noradrenergic processes underlying the response-facilitating effects of ES on decision making. Together, these results support a novel concept of salience in value-based decision making and suggest a computational, anatomical, and neurochemical dissociation of value- and salience-based factors supporting value-based choices.
Collapse
|
384
|
Goodman DW. Sustained treatment effect in attention-deficit/hyperactivity disorder: focus on long-term placebo-controlled randomized maintenance withdrawal and open-label studies. Ther Clin Risk Manag 2013; 9:121-30. [PMID: 23576871 PMCID: PMC3616744 DOI: 10.2147/tcrm.s30762] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a neurodevelopmental disorder that often persists throughout life. Approximately two-thirds of patients with a childhood diagnosis of ADHD continue to experience clinically significant symptoms into adulthood. Nevertheless, most of these individuals consider themselves “well,” and a vast majority discontinue medication treatment during adolescence. As evidence concerning the adult presentation of ADHD becomes more widely accepted, increasing numbers of physicians and patients will face decisions about the benefits and risks of continuing ADHD treatment. The risks associated with psychostimulant pharmacotherapy, including abuse, dependence, and cardiovascular events, are well understood. Multiple clinical trials demonstrate the efficacy of psychostimulants in controlling ADHD symptoms in the short term. Recent investigations using randomized withdrawal designs now provide evidence of a clinically significant benefit with continued long-term ADHD pharmacotherapy and provide insight into the negative consequences associated with discontinuation. Because many patients lack insight regarding their ADHD symptoms and impairments, they may place a low value on maintaining treatment. Nevertheless, for patients who choose to discontinue treatment, physicians can remain a source of support and schedule follow-up appointments to reassess patient status. Medication discontinuation can be used as an opportunity to help patients recognize their most impairing symptoms, learn and implement behavioral strategies to cope with ADHD symptoms, and understand when additional supportive resources and the resumption of medication management may be necessary.
Collapse
Affiliation(s)
- David W Goodman
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
385
|
Abstract
OBJECTIVE To review literature relevant to a possible prediction of stimulant side effects in attention deficit hyperactivity disorder (ADHD), with implications for guidelines. METHOD Recent literature on inverted-U effects of dopamine in the prefrontal cortex (PFC), default mode processing, and motor circuits relevant to stimulant side effects is reviewed. RESULTS The literature on inverted-U effects in the PFC suggests that catechol-O-methyltransferase (COMT) Met versus Val polymorphisms may predict excess dopaminergic effects, including headache and introversion in Met/Met subjects, but therapeutic effects in Val/Val subjects, while dopamine transporter polymorphisms may predict motor side effects. In particular, an understanding of 'inverted-U' effects helps to explain why some children may experience side effects while others show improvements at similar dose ranges. CONCLUSION Genetic prediction of stimulant side effects should be investigated, particularly given recent controversies in relation to National Health and Medical Research Council guidelines for stimulant use. A better understanding of treatment-emergent effects will also provide a better understanding of therapeutic effects.
Collapse
Affiliation(s)
- Florence Levy
- School of Psychiatry, University of New South Wales, Prince of Wales Hospital, Randwick, Australia.
| |
Collapse
|
386
|
Killeen PR, Russell VA, Sergeant JA. A behavioral neuroenergetics theory of ADHD. Neurosci Biobehav Rev 2013; 37:625-57. [PMID: 23454637 DOI: 10.1016/j.neubiorev.2013.02.011] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Revised: 02/02/2013] [Accepted: 02/18/2013] [Indexed: 02/02/2023]
Abstract
Energetic insufficiency in neurons due to inadequate lactate supply is implicated in several neuropathologies, including attention-deficit/hyperactivity disorder (ADHD). By formalizing the mechanism and implications of such constraints on function, the behavioral Neuroenergetics Theory (NeT) predicts the results of many neuropsychological tasks involving individuals with ADHD and kindred dysfunctions, and entails many novel predictions. The associated diffusion model predicts that response times will follow a mixture of Wald distributions from the attentive state, and ex-Wald distributions after attentional lapses. It is inferred from the model that ADHD participants can bring only 75-85% of the neurocognitive energy to bear on tasks, and allocate only about 85% of the cognitive resources of comparison groups. Parameters derived from the model in specific tasks predict performance in other tasks, and in clinical conditions often associated with ADHD. The primary action of therapeutic stimulants is to increase norepinephrine in active regions of the brain. This activates glial adrenoceptors, increasing the release of lactate from astrocytes to fuel depleted neurons. The theory is aligned with other approaches and integrated with more general theories of ADHD. Therapeutic implications are explored.
Collapse
Affiliation(s)
- Peter R Killeen
- Department of Psychology, Arizona State University, Tempe, AZ 85287-1104, USA.
| | | | | |
Collapse
|
387
|
Aarnoudse-Moens CSH, Weisglas-Kuperus N, Duivenvoorden HJ, van Goudoever JB, Oosterlaan J. Executive function and IQ predict mathematical and attention problems in very preterm children. PLoS One 2013; 8:e55994. [PMID: 23390558 PMCID: PMC3563540 DOI: 10.1371/journal.pone.0055994] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 01/03/2013] [Indexed: 11/19/2022] Open
Abstract
Objective of this study was to examine the impact of executive function (EF) on mathematical and attention problems in very preterm (gestational age ≤ 30 weeks) children. Participants were 200 very preterm (mean age 8.2 ± 2.5 years) and 230 term children (mean age 8.3 ± 2.3 years) without severe disabilities, born between 1996 and 2004. EFs assessed included verbal fluency, verbal working memory, visuospatial span, planning, and impulse control. Mathematics was assessed with the Dutch Pupil Monitoring System and parents and teachers rated attention problems using standardized behavior questionnaires. The impact of EF was calculated over and above processing speed indices and IQ. Interactions with group (very preterm versus term birth status) were examined. Analyses were conducted separately for two subsamples: children in preschool and children in primary school. Very preterm children performed poorer on tests for mathematics and had more parent and teacher rated attention problems than term controls (ß(s)>.11, P(s)<.01). IQ contributed unique variance to mathematics in preschool and in primary school (ß(s)>.16, P(s)<.007). A significant interaction of group with IQ (ß = -. 24, P = .02) showed that IQ contributed unique variance to attention problems as rated by teachers, but that effects were stronger for very preterm than for term infants. Over and above IQ, EF contributed unique variance to mathematics in primary school (ß = .13, P<.001), to parent rated inattention in preschool and in primary school (ß(s)>-.16, P(s)<.04), and to teacher rated inattention in primary school (ß = -.19; ß = .19, P(s)<.009). In conclusion, impaired EF is, over and above impaired IQ, an important predictor for poor mathematics and attention problems following very preterm birth.
Collapse
|
388
|
Increased sensorimotor gating in recreational and dependent cocaine users is modulated by craving and attention-deficit/hyperactivity disorder symptoms. Biol Psychiatry 2013; 73:225-34. [PMID: 22959126 DOI: 10.1016/j.biopsych.2012.08.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Revised: 08/03/2012] [Accepted: 08/03/2012] [Indexed: 02/01/2023]
Abstract
BACKGROUND Cocaine dependence has been associated with blunted dopamine and norepinephrine signaling, but it is unknown if recreational cocaine use is also associated with alterations of catecholamine systems. Prepulse inhibition (PPI) of the acoustic startle response-a measure of sensorimotor gating-is highly sensitive for manipulations of the catecholamine system. Therefore, we investigated whether relatively pure recreational users (RCU) and dependent cocaine users (DCU) display alterations of PPI, startle reactivity, and habituation. Moreover, the influences of methylenedioxymethamphetamine and cannabis co-use, craving, and attention-deficit/hyperactivity disorder (ADHD) symptoms on startle measures were examined. METHODS In 64 RCU, 29 DCU, and 66 stimulant-naïve control subjects, PPI of acoustic startle response, startle reactivity, habituation, ADHD symptoms, and cocaine craving were assessed. Drug use of all participants was controlled by hair and urine toxicologies. RESULTS Both RCU and DCU showed increased PPI in comparison with control participants (Cohen's d=.38 and d=.67, respectively), while RCU and DCU did not differ in PPI measures (d=.12). No significant group differences were found in startle reactivity or habituation measures. In cocaine users, PPI was positively correlated with cumulative cocaine dose used, craving for cocaine, and ADHD symptoms. Users with a diagnosis of ADHD and strong craving symptoms displayed the highest PPI levels compared with control subjects (d=.78). CONCLUSIONS The augmented PPI in RCU and DCU suggests that recreational use of cocaine is associated with altered catecholamine signaling, in particular if ADHD or craving symptoms are present. Finally, ADHD might be a critical risk factor for cocaine-induced changes of the catecholamine system.
Collapse
|
389
|
Jupp B, Caprioli D, Dalley JW. Highly impulsive rats: modelling an endophenotype to determine the neurobiological, genetic and environmental mechanisms of addiction. Dis Model Mech 2013; 6:302-11. [PMID: 23355644 PMCID: PMC3597013 DOI: 10.1242/dmm.010934] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Impulsivity describes the tendency of an individual to act prematurely without foresight and is associated with a number of neuropsychiatric co-morbidities, including drug addiction. As such, there is increasing interest in the neurobiological mechanisms of impulsivity, as well as the genetic and environmental influences that govern the expression of this behaviour. Tests used on rodent models of impulsivity share strong parallels with tasks used to assess this trait in humans, and studies in both suggest a crucial role of monoaminergic corticostriatal systems in the expression of this behavioural trait. Furthermore, rodent models have enabled investigation of the causal relationship between drug abuse and impulsivity. Here, we review the use of rodent models of impulsivity for investigating the mechanisms involved in this trait, and how these mechanisms could contribute to the pathogenesis of addiction.
Collapse
Affiliation(s)
- Bianca Jupp
- Behavioural and Cognitive Neurosciences Institute and The Department of Psychology, University of Cambridge, Downing Street, Cambridge, CB2 3EB, UK
| | | | | |
Collapse
|
390
|
Mansouri MT, Naghizadeh B, López-Larrubia P, Cauli O. Behavioral deficits induced by lead exposure are accompanied by serotonergic and cholinergic alterations in the prefrontal cortex. Neurochem Int 2012; 62:232-9. [PMID: 23266395 DOI: 10.1016/j.neuint.2012.12.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2012] [Revised: 12/12/2012] [Accepted: 12/15/2012] [Indexed: 11/24/2022]
Abstract
The effects of long-term lead (Pb) exposure producing a blood Pb concentration of lower than 20 μg/dL, i.e. below that associated with overt neurological deficits in occupationally exposed individuals, was studied in adult rats. In order to assess gender differences, we performed parallel behavioral experiments in male and female rats. Exposure to Pb acetate (50 ppm in drinking water) for 6 months induced motor and cognitive alterations, however these effects were gender- and task-dependent. Chronic lead exposure impaired spatial learning assessed in the Morris water maze test (MWM) in both genders, whereas it only induced hyperactivity in the open field and impaired motor coordination in the rotarod test, only in male rats. Hyperactivity in male rats was accompanied by an increase in extracellular level of acetylcholine in the prefrontal cortex. Extracellular dopamine concentration in the prefrontal cortex was unaffected by lead exposure whereas serotonin concentration in the same brain area was significantly decreased in both male and female rats exposed to lead. These results unveil new molecular mechanisms underlying neuropsychiatric alterations induced by chronic lead exposure.
Collapse
Affiliation(s)
- Mohammad Taghi Mansouri
- Department of Pharmacology, Physiology Research Center, School of Medicine, Ahwaz Jundishapur Univ. of Med. Sciences (AJUMS), Ahwaz, Iran
| | | | | | | |
Collapse
|
391
|
KLASS MALGORZATA, ROELANDS BART, LÉVÉNEZ MORGAN, FONTENELLE VINCIANE, PATTYN NATHALIE, MEEUSEN ROMAIN, DUCHATEAU JACQUES. Effects of Noradrenaline and Dopamine on Supraspinal Fatigue in Well-Trained Men. Med Sci Sports Exerc 2012; 44:2299-308. [DOI: 10.1249/mss.0b013e318265f356] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
392
|
Thakur GA, Sengupta SM, Grizenko N, Choudhry Z, Joober R. Comprehensive phenotype/genotype analyses of the norepinephrine transporter gene (SLC6A2) in ADHD: relation to maternal smoking during pregnancy. PLoS One 2012; 7:e49616. [PMID: 23185385 PMCID: PMC3502190 DOI: 10.1371/journal.pone.0049616] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Accepted: 10/11/2012] [Indexed: 12/23/2022] Open
Abstract
OBJECTIVE Despite strong pharmacological evidence implicating the norepinephrine transporter in ADHD, genetic studies have yielded largely insignificant results. We tested the association between 30 tag SNPs within the SLC6A2 gene and ADHD, with stratification based on maternal smoking during pregnancy, an environmental factor strongly associated with ADHD. METHODS Children (6-12 years old) diagnosed with ADHD according to DSM-IV criteria were comprehensively evaluated with regard to several behavioral and cognitive dimensions of ADHD as well as response to a fixed dose of methylphenidate (MPH) using a double-blind placebo controlled crossover trial. Family-based association tests (FBAT), including categorical and quantitative trait analyses, were conducted in 377 nuclear families. RESULTS A highly significant association was observed with rs36021 (and linked SNPs) in the group where mothers smoked during pregnancy. Association was noted with categorical DSM-IV ADHD diagnosis (Z=3.74, P=0.0002), behavioral assessments by parents (CBCL, P=0.00008), as well as restless-impulsive subscale scores on Conners'-teachers (P=0.006) and parents (P=0.006). In this subgroup, significant association was also observed with cognitive deficits, more specifically sustained attention, spatial working memory, planning, and response inhibition. The risk allele was associated with significant improvement of behavior as measured by research staff (Z=3.28, P=0.001), parents (Z=2.62, P=0.009), as well as evaluation in the simulated academic environment (Z=3.58, P=0.0003). CONCLUSIONS By using maternal smoking during pregnancy to index a putatively more homogeneous group of ADHD, highly significant associations were observed between tag SNPs within SLC6A2 and ADHD diagnosis, behavioral and cognitive measures relevant to ADHD and response to MPH. This comprehensive phenotype/genotype analysis may help to further understand this complex disorder and improve its treatment. Clinical trial registration information - Clinical and Pharmacogenetic Study of Attention Deficit with Hyperactivity Disorder (ADHD); www.clinicaltrials.gov; NCT00483106.
Collapse
Affiliation(s)
- Geeta A. Thakur
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada
- Douglas Mental Health University Institute, Montreal, Quebec, Canada
| | | | - Natalie Grizenko
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada
- Douglas Mental Health University Institute, Montreal, Quebec, Canada
| | - Zia Choudhry
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
- Douglas Mental Health University Institute, Montreal, Quebec, Canada
| | - Ridha Joober
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
- Douglas Mental Health University Institute, Montreal, Quebec, Canada
| |
Collapse
|
393
|
Tang B, Dafny N. Methylphenidate modulates the locus ceruleus neuronal activity in freely behaving rat. Eur J Pharmacol 2012; 695:48-56. [PMID: 22995580 PMCID: PMC4743872 DOI: 10.1016/j.ejphar.2012.08.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Revised: 08/15/2012] [Accepted: 08/27/2012] [Indexed: 11/28/2022]
Abstract
The electrophysiological properties of the locus coeruleus (LC) neurons in response to acute and chronic administration of methylphenidate (MPD) were investigated. The extracellular LC neuronal activities were recorded from non-anesthetized, freely behaving rats previously implanted bilaterally with permanent semi microelectrodes. The main findings were: (1) On experimental day 1 (ED1), 87% (94/108) of LC units significantly changed their firing rate after initial (acute) MPD (2.5mg/kg, i.p.) administration. The majority of the responsive units (80%, 75/94) increased their firing rate; (2) Daily MPD (2.5mg/kg) injection was given on ED2 through ED6 followed by 3 washout days (ED7 to 9). On ED10, all LC units exhibited a significant change of their baseline activity compared to their baseline activity on ED1; (3) MPD rechallenge on ED10 elicits 94% (101/108) of LC units significantly changed their firing rate; the majority of them (78%, 79/101) increased their firing rate; (4) The effect of rechallenge MPD administration on ED10 were compared to the effect of initial MPD on ED1, 98% of the LC units exhibited a significant change in their firing rate. 41% (43/106) of them exhibited a significant increase in their firing rate while 59% (63/106) units significantly decreased their firing rate which can be interpreted as electrophysiological sensitization or tolerance respectively. In conclusion, the majority of LC neurons significantly increased their firing rate after acute and chronic MPD administration. This data demonstrated that enhanced LC neuronal activities play important role in the effect of MPD.
Collapse
Affiliation(s)
- Bin Tang
- Dept. of Neurobiology and Anatomy, University of Texas Health Science Center at Houston, 6431 Fannin, Houston, TX 77030, USA
| | | |
Collapse
|
394
|
FTO at rs9939609, food responsiveness, emotional control and symptoms of ADHD in preschool children. PLoS One 2012; 7:e49131. [PMID: 23155456 PMCID: PMC3498333 DOI: 10.1371/journal.pone.0049131] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Accepted: 10/04/2012] [Indexed: 11/19/2022] Open
Abstract
The FTO minor allele at rs9939609 has been associated with body mass index (BMI: weight (kg)/height (m)2) in children from 5 years onwards, food intake, and eating behaviour. The high expression of FTO in the brain suggests that this gene may also be associated with behavioural phenotypes, such as impulsivity and control. We examined the effect of the FTO minor allele (A) at rs9939609 on eating behaviour, impulsivity and control in young children, thus before the BMI effect becomes apparent. This study was embedded in the Generation R Study, a population-based cohort from fetal life onwards. 1,718 children of European descent were genotyped for FTO at rs9939609. With logistic regression assuming an additive genetic model, we examined the association between the FTO minor allele and eating behaviour, impulsivity and control in preschool children. There was no relation between FTO at rs9939609 and child BMI at this age. The A allele at rs9939609 was associated with increased food responsiveness (OR 1.21, p = 0.03). Also, children with the A allele were less likely to have symptoms of ADHD (OR 0.74, p = 0.01) and showed more emotional control (OR 0.64, p = 0.01) compared to children without the A allele. Our findings suggest that before the association between FTO and BMI becomes apparent, the FTO minor allele at rs9939609 leads to increased food responsiveness, a decreased risk for symptoms of ADHD and better emotional control. Future studies are needed to investigate whether these findings represent one single mechanism or reflect pleiotropic effects of FTO.
Collapse
|
395
|
Hakvoort Schwerdtfeger RM, Alahyane N, Brien DC, Coe BC, Stroman PW, Munoz DP. Preparatory neural networks are impaired in adults with attention-deficit/hyperactivity disorder during the antisaccade task. Neuroimage Clin 2012; 2:63-78. [PMID: 24179760 PMCID: PMC3777763 DOI: 10.1016/j.nicl.2012.10.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Revised: 10/23/2012] [Accepted: 10/25/2012] [Indexed: 11/28/2022]
Abstract
Adults with attention-deficit/hyperactivity disorder (ADHD) often display executive function impairments, particularly in inhibitory control. The antisaccade task, which measures inhibitory control, requires one to suppress an automatic prosaccade toward a salient visual stimulus and voluntarily make an antisaccade in the opposite direction. ADHD patients not only have longer saccadic reaction times, but also make more direction errors (i.e., a prosaccade was executed toward the stimulus) during antisaccade trials. These deficits may stem from pathology in several brain areas that are important for executive control. Using functional MRI with a rapid event-related design, adults with combined subtype of ADHD (coexistence of attention and hyperactivity problems), who abstained from taking stimulant medication 20 h prior to experiment onset, and age-match controls performed pro- and antisaccade trials that were interleaved with pro- and anti-catch trials (i.e., instruction was presented but no target appeared, requiring no response). This method allowed us to examine brain activation patterns when participants either prepared (during instruction) or executed (after target appearance) correct pro or antisaccades. Behaviorally, ADHD adults displayed several antisaccade deficits, including longer and more variable reaction times and more direction errors, but saccade metrics (i.e., duration, velocity, and amplitude) were normal. When preparing to execute an antisaccade, ADHD adults showed less activation in frontal, supplementary, and parietal eye fields, compared to controls. However, activation in these areas was normal in the ADHD group during the execution of a correct antisaccade. Interestingly, unlike controls, adults with ADHD produced greater activation than controls in dorsolateral prefrontal cortex during antisaccade execution, perhaps as part of compensatory mechanisms to optimize antisaccade production. Overall, these data suggest that the saccade deficits observed in adults with ADHD do not result from an inability to execute a correct antisaccade but rather the failure to properly prepare (i.e., form the appropriate task set) for the antisaccade trial. The data support the view that the executive impairments, including inhibitory control, in ADHD adults are related to poor response preparation.
Collapse
Affiliation(s)
| | - Nadia Alahyane
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
| | - Donald C. Brien
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
| | - Brian C. Coe
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
| | - Patrick W. Stroman
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
- Department of Diagnostic Radiology, Queen's University, Kingston, Ontario, Canada
- Department of Physics, Queen's University, Kingston, Ontario, Canada
| | - Douglas P. Munoz
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
- Department of Medicine, Queen's University, Kingston, Ontario, Canada
- Department of Psychology, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
396
|
Cubillo A, Smith AB, Barrett N, Giampietro V, Brammer MJ, Simmons A, Rubia K. Shared and drug-specific effects of atomoxetine and methylphenidate on inhibitory brain dysfunction in medication-naive ADHD boys. ACTA ACUST UNITED AC 2012; 24:174-85. [PMID: 23048018 PMCID: PMC3862268 DOI: 10.1093/cercor/bhs296] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The stimulant methylphenidate (MPX) and the nonstimulant atomoxetine (ATX) are the most commonly prescribed medications for attention deficit hyperactivity disorder (ADHD). However, no functional magnetic resonance imaging (fMRI) study has as yet investigated the effects of ATX on inhibitory or any other brain function in ADHD patients or compared its effects with those of MPX. A randomized, double-blind, placebo-controlled, crossover pharmacological design was used to compare the neurofunctional effects of single doses of MPX, ATX, and placebo during a stop task, combined with fMRI within 19 medication-naive ADHD boys, and their potential normalization effects relative to 29 age-matched healthy boys. Compared with controls, ADHD boys under placebo showed bilateral ventrolateral prefrontal, middle temporal, and cerebellar underactivation. Within patients, MPX relative to ATX and placebo significantly upregulated right ventrolateral prefrontal activation, which correlated with enhanced inhibitory capacity. Relative to controls, both drugs significantly normalized the left ventrolateral prefrontal underactivation observed under placebo, while MPX had a drug-specific effect of normalizing right ventrolateral prefrontal and cerebellar underactivation observed under both placebo and ATX. The findings show shared and drug-specific effects of MPX and ATX on performance and brain activation during inhibitory control in ADHD patients with superior upregulation and normalization effects of MPX.
Collapse
|
397
|
Boucher O, Jacobson SW, Plusquellec P, Dewailly E, Ayotte P, Forget-Dubois N, Jacobson JL, Muckle G. Prenatal methylmercury, postnatal lead exposure, and evidence of attention deficit/hyperactivity disorder among Inuit children in Arctic Québec. ENVIRONMENTAL HEALTH PERSPECTIVES 2012; 120:1456-61. [PMID: 23008274 PMCID: PMC3491943 DOI: 10.1289/ehp.1204976] [Citation(s) in RCA: 138] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2012] [Accepted: 08/16/2012] [Indexed: 05/21/2023]
Abstract
BACKGROUND Prenatal exposure to methylmercury (MeHg) and polychlorinated biphenyls (PCBs) has been associated with impaired performance on attention tasks in previous studies, but the extent to which these cognitive deficits translate into behavioral problems in the classroom and attention deficit/hyperactivity disorder (ADHD) remains unknown. By contrast, lead (Pb) exposure in childhood has been associated with ADHD and disruptive behaviors in several studies. OBJECTIVES In this study we examined the relation of developmental exposure to MeHg, PCBs, and Pb to behavioral problems at school age in Inuit children exposed through their traditional diet. METHODS In a prospective longitudinal study conducted in the Canadian Arctic, exposure to contaminants was measured at birth and at school age. An assessment of child behavior (n = 279; mean age = 11.3 years) was obtained from the child's classroom teacher on the Teacher Report Form (TRF) from the Child Behavior Checklist, and the Disruptive Behavior Disorders Rating Scale (DBD). RESULTS Cord blood mercury concentrations were associated with higher TRF symptom scores for attention problems and DBD scores consistent with ADHD. Current blood Pb concentrations were associated with higher TRF symptom scores for externalizing problems and with symptoms of ADHD (hyperactive-impulsive type) based on the DBD. CONCLUSIONS To our knowledge, this study is the first to identify an association between prenatal MeHg and ADHD symptomatology in childhood and the first to replicate previously reported associations between low-level childhood Pb exposure and ADHD in a population exposed to Pb primarily from dietary sources.
Collapse
Affiliation(s)
- Olivier Boucher
- Centre de Recherche du Centre hospitalier universitaire de Québec, Québec, Québec, Canada
| | | | | | | | | | | | | | | |
Collapse
|
398
|
Emerging support for a role of exercise in attention-deficit/hyperactivity disorder intervention planning. Curr Psychiatry Rep 2012; 14:543-51. [PMID: 22895892 PMCID: PMC3724411 DOI: 10.1007/s11920-012-0297-4] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Recent years have seen an expansion of interest in non-pharmacological interventions for attention-deficit/hyperactivity disorder (ADHD). Although considerable treatment development has focused on cognitive training programs, compelling evidence indicates that intense aerobic exercise enhances brain structure and function, and as such, might be beneficial to children with ADHD. This paper reviews evidence for a direct impact of exercise on neural functioning and preliminary evidence that exercise may have positive effects on children with ADHD. At present, data are promising and support the need for further study, but are insufficient to recommend widespread use of such interventions for children with ADHD.
Collapse
|
399
|
Mawson AR. Toward a theory of childhood learning disorders, hyperactivity, and aggression. ISRN PSYCHIATRY 2012; 2012:589792. [PMID: 23762766 PMCID: PMC3671718 DOI: 10.5402/2012/589792] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 06/14/2012] [Indexed: 02/03/2023]
Abstract
Learning disorders are often associated with persistent hyperactivity and aggression and are part of a spectrum of neurodevelopmental disorders. A potential clue to understanding these linked phenomena is that physical exercise and passive forms of stimulation are calming, enhance cognitive functions and learning, and are recommended as complementary treatments for these problems. The theory is proposed that hyperactivity and aggression are intense stimulation-seeking behaviors (SSBs) driven by increased brain retinergic activity, and the stimulation thus obtained activates opposing nitrergic systems which inhibit retinergic activity, induce a state of calm, and enhance cognition and learning. In persons with cognitive deficits and associated behavioral disorders, the retinergic system may be chronically overactivated and the nitrergic system chronically underactivated due to environmental exposures occurring pre- and/or postnatally that affect retinoid metabolism or expression. For such individuals, the intensity of stimulation generated by SSB may be insufficient to activate the inhibitory nitrergic system. A multidisciplinary research program is needed to test the model and, in particular, to determine the extent to which applied physical treatments can activate the nitrergic system directly, providing the necessary level of intensity of sensory stimulation to substitute for that obtained in maladaptive and harmful ways by SSB, thereby reducing SSB and enhancing cognitive skills and performance.
Collapse
Affiliation(s)
- Anthony R. Mawson
- School of Health Sciences, College of Public Service, Jackson State University, 350 West Woodrow Wilson Drive, Room 229, Jackson, MS 39213, USA
| |
Collapse
|
400
|
The neurobiology and genetics of Attention-Deficit/Hyperactivity Disorder (ADHD): what every clinician should know. Eur J Paediatr Neurol 2012; 16:422-33. [PMID: 22306277 DOI: 10.1016/j.ejpn.2012.01.009] [Citation(s) in RCA: 176] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Revised: 12/18/2011] [Accepted: 01/12/2012] [Indexed: 01/07/2023]
Abstract
This review, addressed mainly to clinicians, considers commonly asked questions related to the neuroimaging, neurophysiology, neurochemistry and genetics of Attention-Deficit/Hyperactivity Disorder (ADHD). It provides answers based on the most recent meta-analyses and systematic reviews, as well as additional relevant original studies. Empirical findings from neurobiological research into ADHD reflect a shift in the conceptualisation of this disorder from simple theoretical views of a few isolated dysfunctions to more complex models integrating the heterogeneity of the clinical manifestations of ADHD. Thus, findings from structural and functional neuroimaging suggest the involvement of developmentally abnormal brain networks related to cognition, attention, emotion and sensorimotor functions. Brain functioning alterations are confirmed by neurophysiological findings, showing that individuals with ADHD have elevated theta/beta power ratios, and less pronounced responses and longer latencies of event-related potentials, compared with controls. At a molecular level, alterations in any single neurotransmitter system are unlikely to explain the complexity of ADHD; rather, the disorder has been linked to dysfunctions in several systems, including the dopaminergic, adrenergic, serotoninergic and cholinergic pathways. Genetic studies showing a heritability of ∼60-75% suggest that a plethora of genes, each one with a small but significant effect, interact with environmental factors to increase the susceptibility to ADHD. Currently, findings from neurobiological research do not have a direct application in daily clinical practice, but it is hoped that in the near future they will complement the diagnostic process and contribute to the long-term effective treatment of this impairing condition.
Collapse
|