351
|
Garcion E, Halilagic A, Faissner A, ffrench-Constant C. Generation of an environmental niche for neural stem cell development by the extracellular matrix molecule tenascin C. Development 2004; 131:3423-32. [PMID: 15226258 DOI: 10.1242/dev.01202] [Citation(s) in RCA: 227] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Stem cells in the embryonic mammalian CNS are initially responsive to fibroblast growth factor 2 (FGF2). They then undergo a developmental programme in which they acquire epidermal growth factor (EGF) responsiveness, switch from the production of neuronal to glial precursors and become localized in specialized germinal zones such as the subventricular zone (SVZ). Here we show that extracellular matrix molecules act as regulators of this programme. Tenascin C is highly expressed in the SVZ, and transgenic mice lacking tenascin C show delayed acquisition of the EGF receptor. This results from alterations in the response of the stem cells to the growth factors FGF2 and bone morphogenic protein 4 (BMP4), which normally promote and inhibit acquisition of the EGF receptor, respectively. Tenascin C-deficient mice also have altered numbers of CNS stem cells and these stem cells have an increased probability of generating neurones when grown in cell culture. We conclude that tenascin C contributes to the generation of a stem cell 'niche' within the SVZ, acting to orchestrate growth factor signalling so as to accelerate neural stem cell development.
Collapse
Affiliation(s)
- Emmanuel Garcion
- Cambridge Centre for Brain Repair, and Department of Medical Genetics, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | | | | | | |
Collapse
|
352
|
Fan XT, Xu HW, Cai WQ, Yang H, Liu S. Antisense Noggin oligodeoxynucleotide administration decreases cell proliferation in the dentate gyrus of adult rats. Neurosci Lett 2004; 366:107-11. [PMID: 15265600 DOI: 10.1016/j.neulet.2004.05.043] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2004] [Revised: 03/27/2004] [Accepted: 05/18/2004] [Indexed: 11/23/2022]
Abstract
The dentate gyrus of the hippocampus is one of few regions in the adult mammalian brain characterized by ongoing neurogenesis. It has been demonstrated that Noggin antagonizes bone morphogenetic protein-4 (BMP4) to create a niche for subventricular zone neurogenesis. We previously demonstrated that Noggin and BMP4 showed strong expression in the proliferative subgranular layer of the dentate gyrus in adult rats. To examine the action of Noggin on cell proliferation in the dentate gyrus of adult rats, we administered antisense oligodeoxynucleotide (ASODN) to Noggin by continuous infusion into the lateral ventricle of rats. Antisense-infused rats displayed significant reduction in number of bromodeoxyuridine (BrdU) labeled cells in the dentate gyrus. This indicated that endogenous Noggin activity is important for naturally occurring cell proliferation in the dentate gyrus, and perhaps neurogenesis, and is one of the many factors involved in its regulation.
Collapse
Affiliation(s)
- Xiao-tang Fan
- Department of Neurobiology, The Third Military Medical University, Chongqing 400038, PR China
| | | | | | | | | |
Collapse
|
353
|
Fukuda S, Kondo T, Takebayashi H, Taga T. Negative regulatory effect of an oligodendrocytic bHLH factor OLIG2 on the astrocytic differentiation pathway. Cell Death Differ 2004; 11:196-202. [PMID: 14576772 DOI: 10.1038/sj.cdd.4401332] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
In the developing vertebrate nervous system, multipotent neural stem cells produce both neurons and glia. OLIG2 is a basic helix-loop-helix transcription factor that plays critical roles in oligodendrocyte and motor neuron development; however, its role in astrocytic development remains elusive. In this study, we analyzed an effect of OLIG2 on cytokine-induced astrocytic differentiation from mouse telencephalic neuroepithelial cells. We show that the presence of OLIG2 protein leads to inhibition of the promoter activation of astrocyte-specific glial fibrillary acidic protein gene. We found that OLIG2 abolishes complex formation between a transcriptional coactivator p300 and a transcription factor, signal transducer and activator of transcription 3 (STAT3), which is activated by astrocytic differentiation-inducing cytokines, such as leukemia inhibitory factor (LIF). The enforced expression of OLIG2 in neuroepithelial cells inhibits the LIF-induced astrocytic differentiation. We also show that the OLIG2 protein in the nuclei of neural precursor cells disappears in accordance with astrocytic differentiation during culture with LIF. Together, these results reveal a novel molecular function of OLIG2 on the astrocyte development. Cell Death and Differentiation (2004) 11, 196-202. doi:10.1038/sj.cdd.4401332 Published online 24 October 2003
Collapse
Affiliation(s)
- S Fukuda
- Department of Cell Fate Modulation, Institute of Molecular Embryology and Genetics, Kumamoto University, Japan
| | | | | | | |
Collapse
|
354
|
Gajavelli S, Wood PM, Pennica D, Whittemore SR, Tsoulfas P. BMP signaling initiates a neural crest differentiation program in embryonic rat CNS stem cells. Exp Neurol 2004; 188:205-23. [PMID: 15246821 DOI: 10.1016/j.expneurol.2004.03.026] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2003] [Revised: 02/04/2004] [Accepted: 03/16/2004] [Indexed: 02/08/2023]
Abstract
Bone morphogenetic proteins (BMPs) have an important role in neuronal and astrocytic differentiation of embryonic and adult neural stem cells (NSCs). Here, we show that BMP6, BMP7, GDF5, and GDF6 instructively differentiate E12, E14, and E17 rat cortical NSCs into a variety of neural crest lineages. Clonal analysis shows that BMP7-treated NSCs develop mostly into smooth muscle and peripheral glia. We observed a rapid induction of premigratory neural crest markers like p75NTR, and AP-2 alpha followed by Msx1, Msx2, and Slug, transcription factors that participate in neural crest development. These results suggest that NSCs cultured in vitro in the presence of FGF2 display expanded developmental potential.
Collapse
Affiliation(s)
- Shyam Gajavelli
- Department of Neurosurgery, The Miami Project to Cure Paralysis, University of Miami School of Medicine, FL 33136, USA
| | | | | | | | | |
Collapse
|
355
|
Brederlau A, Faigle R, Elmi M, Zarebski A, Sjöberg S, Fujii M, Miyazono K, Funa K. The bone morphogenetic protein type Ib receptor is a major mediator of glial differentiation and cell survival in adult hippocampal progenitor cell culture. Mol Biol Cell 2004; 15:3863-75. [PMID: 15194807 PMCID: PMC491842 DOI: 10.1091/mbc.e03-08-0584] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Bone morphogenetic proteins (BMPs) act as growth regulators and inducers of differentiation. They transduce their signal via three different type I receptors, termed activin receptor-like kinase 2 (Alk2), Alk3, or bone morphogenetic protein receptor Ia (BMPRIa) and Alk6 or BMPRIb. Little is known about functional differences between the three type I receptors. Here, we have investigated consequences of constitutively active (ca) and dominant negative (dn) type I receptor overexpression in adult-derived hippocampal progenitor cells (AHPs). The dn receptors have a nonfunctional intracellular but functional extracellular domain. They thus trap BMPs that are endogenously produced by AHPs. We found that effects obtained by overexpression of dnAlk2 and dnAlk6 were similar, suggesting similar ligand binding patterns for these receptors. Thus, cell survival was decreased, glial fibrillary acidic protein (GFAP) expression was reduced, whereas the number of oligodendrocytes increased. No effect on neuronal differentiation was seen. Whereas the expression of Alk2 and Alk3 mRNA remained unchanged, the Alk6 mRNA was induced after impaired BMP signaling. After dnAlk3 overexpression, cell survival and astroglial differentiation increased in parallel to augmented Alk6 receptor signaling. We conclude that endogenous BMPs mediate cell survival, astroglial differentiation and the suppression of oligodendrocytic cell fate mainly via the Alk6 receptor in AHP culture.
Collapse
Affiliation(s)
- A Brederlau
- Institute of Anatomy and Cell Biology, Göteborg University, SE-405 30 Gothenburg, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
356
|
Agasse F, Roger M, Coronas V. Neurogenic and intact or apoptotic non-neurogenic areas of adult brain release diffusible molecules that differentially modulate the development of subventricular zone cell cultures. Eur J Neurosci 2004; 19:1459-68. [PMID: 15066142 DOI: 10.1111/j.1460-9568.2004.03259.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Abstract In the adult mammalian brain, neurogenic activity is maintained in the subventricular zone (SVZ). Damage to non-neurogenic areas can stimulate SVZ cell proliferation and trigger addition of new neurons in the affected areas. We therefore examined the possible control exerted by specific microenvironment cues on SVZ neurogenic activity. To this end, neonatal SVZ neurospheres were maintained in the presence of diffusible signals derived from the adult neurogenic SVZ or from the non-neurogenic cerebral cortex either previously treated (apoptotic cortex) or not (untreated cortex) with staurosporine, a known apoptosis inducer. To restrict interactions to soluble signals, the explants were separated from the SVZ neurospheres by a microporous membrane. The results indicated that molecules released by the SVZ itself promoted the expansion of SVZ cell population through increased proliferation and reduced apoptosis. In contrast, untreated cortex factors reduced the expansion of SVZ cell population by decreasing proliferation. In addition, SVZ or untreated cortex factors, respectively, promoted or inhibited neuronal differentiation. Following apoptotic damage, cortex factors no longer inhibited and instead promoted the expansion of the SVZ cell population by increasing proliferation. These effects on cell numbers were replicated following use of culture media conditioned with the different explants but were no longer present following heat inactivation, which indicates that proteins were involved. These findings indicate that the neurogenic SVZ delivers autocrine/paracrine signals that promote neurogenesis whereas the non-neurogenic cerebral cortex releases signals that inhibit proliferation and neuronal differentiation. Interestingly, this constitutive growth inhibitory effect of the cerebral cortex is inverted following apoptotic lesion.
Collapse
Affiliation(s)
- Fabienne Agasse
- CNRS: UMR 6187, Laboratoire de Biomembranes et Signalisation Cellulaire, Faculté des Sciences, Université de Poitiers, 40 Avenue du Recteur Pineau, 86022 Poitiers Cedex, France
| | | | | |
Collapse
|
357
|
Affiliation(s)
- David H Rowitch
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA.
| |
Collapse
|
358
|
Hudson JE, Chen N, Song S, Walczak P, Jendelová P, Sykova E, Willing AE, Saporta S, Bickford P, Sanchez-Ramos J, Zigova T. Green fluorescent protein bone marrow cells express hematopoietic and neural antigens in culture and migrate within the neonatal rat brain. J Neurosci Res 2004; 76:255-64. [PMID: 15048923 PMCID: PMC2720828 DOI: 10.1002/jnr.20043] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Finding a reliable source of alternative neural stem cells for treatment of various diseases and injuries affecting the central nervous system is a challenge. Numerous studies have shown that hematopoietic and nonhematopoietic progenitors derived from bone marrow (BM) under specific conditions are able to differentiate into cells of all three germ layers. Recently, it was reported that cultured, unfractionated (whole) adult BM cells form nestin-positive spheres that can later initiate neural differentiation (Kabos et al., 2002). The identity of the subpopulation of BM cells that contributes to neural differentiation remains unknown. We therefore analyzed the hematopoietic and neural features of cultured, unfractionated BM cells derived from a transgenic mouse that expresses green fluorescent protein (GFP) in all tissues. We also transplanted the BM cells into the subventricular zone (SVZ), a region known to support postnatal neurogenesis. After injection of BM cells into the neurogenic SVZ in neonatal rats, we found surviving GFP+ BM cells close to the injection site and in various brain regions, including corpus callosum and subcortical white matter. Many of the grafted cells were detected within the rostral migratory stream (RMS), moving toward the olfactory bulb (OB), and some cells reached the subependymal zone of the OB. Our in vitro experiments revealed that murine GFP+ BM cells retained their proliferation and differentiation potential and predominantly preserved their hematopoietic identity (CD45, CD90, CD133), although a few expressed neural antigens (nestin, glial fibrillary acdiic protein, TuJ1).
Collapse
Affiliation(s)
- J E Hudson
- Department of Neurosurgery, College of Medicine, Center of Excellence for Aging and Brain Repair, University of South Florida, Tampa, Florida 33612, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
359
|
Chmielnicki E, Benraiss A, Economides AN, Goldman SA. Adenovirally expressed noggin and brain-derived neurotrophic factor cooperate to induce new medium spiny neurons from resident progenitor cells in the adult striatal ventricular zone. J Neurosci 2004; 24:2133-42. [PMID: 14999064 PMCID: PMC6730416 DOI: 10.1523/jneurosci.1554-03.2004] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Neurogenesis from endogenous progenitor cells in the adult forebrain ventricular wall may be induced by the local viral overexpression of cognate neuronal differentiation agents, in particular BDNF. Here, we show that the overexpression of noggin, by acting to inhibit glial differentiation by subependymal progenitor cells, can potentiate adenoviral BDNF-mediated recruitment of new neurons to the adult rat neostriatum. The new neurons survive at least 2 months after their genesis in the subependymal zone and are recruited primarily as GABAergic DARPP-32+ medium spiny neurons in the caudate-putamen. The new medium spiny neurons successfully project to the globus pallidus, their usual developmental target, extending processes over several millimeters of the normal adult striatum. Thus, concurrent suppression of subependymal glial differentiation and promotion of neuronal differentiation can mobilize endogenous subependymal progenitor cells to achieve substantial neuronal addition to otherwise non-neurogenic regions of the adult brain.
Collapse
Affiliation(s)
- Eva Chmielnicki
- Department of Neurology and Neuroscience, Cornell University Medical College, New York, New York 10021, USA
| | | | | | | |
Collapse
|
360
|
Miller RH, Dinsio K, Wang R, Geertman R, Maier CE, Hall AK. Patterning of spinal cord oligodendrocyte development by dorsally derived BMP4. J Neurosci Res 2004; 76:9-19. [PMID: 15048926 DOI: 10.1002/jnr.20047] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Oligodendrocyte precursors (OPCs) initially arise in the motor neuron domain of the ventral ventricular zone of the developing spinal cord. After dispersal throughout gray and white matter, OPCs differentiate in a characteristic ventral to dorsal sequence. The spatial localization of OPC induction is in part a result of both positive local sonic hedgehog signaling and dorsally derived inhibitory cues. One component of dorsal inhibitory signals seems to be members of the transforming growth factor beta (TGFbeta) superfamily such as the bone morphogenetic proteins (BMPs). We show that during the initial appearance and subsequent maturation of OPCs, BMP4 was expressed specifically in the dorsal midline and its expression was correlated spatially and temporally with phospho-Smad 1+, BMP4-responsive cells. Implantation of sonic hedgehog (Shh)-coated beads adjacent to dorsal spinal cord in Xenopus embryos induced ectopic dorsal OPCs whereas BMP4-coated beads inhibited OPC appearance. More importantly, blocking endogenous dorsal BMP4 with anti-BMP4-coated beads locally induced ectopic OPCs. Similar results were obtained using soluble ligands on slice preparations of rodent spinal cord in vitro. In dissociated cell cultures of embryonic rat spinal cord, Shh and BMP4 had antagonistic effects on OPC development and the sensitivity of oligodendrocyte lineage cells to BMP4 increased with maturation. These data suggest that BMP4 contributes to the pattern of spinal cord oligodendrogenesis by regulating both induction and maturation of spinal cord OPCs.
Collapse
Affiliation(s)
- Robert H Miller
- Department of Neurosciences, Case Western Reserve University, School of Medicine, Cleveland, Ohio 44106, USA.
| | | | | | | | | | | |
Collapse
|
361
|
Maragakis NJ, Dietrich J, Wong V, Xue H, Mayer-Proschel M, Rao MS, Rothstein JD. Glutamate transporter expression and function in human glial progenitors. Glia 2004; 45:133-43. [PMID: 14730707 DOI: 10.1002/glia.10310] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Glutamate is the major neurotransmitter of the brain, whose extracellular levels are tightly controlled by glutamate transporters. Five glutamate transporters in the human brain (EAAT1-5) are present on both astroglia and neurons. We characterize the profile of three different human astroglial progenitors in vitro: human glial restricted precursors (HGRP), human astrocyte precursors (HAPC), and early-differentiated astrocytes. EAAT 1, EAAT3, and EAAT4 are all expressed in GRPs with a subsequent upregulation of EAAT1 following differentiation of GRPs into GRP-derived astrocytes in the presence of bone morphogenic protein (BMP-4). This corresponds to a significant increase in the glutamate transport capacity of these cells. EAAT2, the transporter responsible for the bulk of glutamate transport in the adult brain, is not expressed as a full-length protein, nor does it appear to have functional significance (as determined by the EAAT2 inhibitor dihydrokainate) in these precursors. A splice variant of EAAT2, termed EAAT2b, does appear to be present in low levels, however. EAAT3 and EAAT4 expression is reduced as glial maturation progresses both in astrocyte precursors and early-differentiated astrocytes and is consistent with their role in adult tissues as primarily neuronal glutamate transporters. These human glial precursors offer several advantages as tools for understanding glial biology because they can be passaged extensively in the presence of mitogens, afford the potential to study the temporal changes in glutamate transporter expression in a tightly controlled fashion, and are cultured in the absence of neuronal coculture, allowing for the independent study of astroglial biology.
Collapse
Affiliation(s)
- Nicholas J Maragakis
- Department of Neurology and Neuroscience, Johns Hopkins University, Meyer 6-109, 600 N. Wolfe Street, Baltimore, MD 21287-5953, USA
| | | | | | | | | | | | | |
Collapse
|
362
|
Chandran S, Kato H, Gerreli D, Compston A, Svendsen CN, Allen ND. FGF-dependent generation of oligodendrocytes by a hedgehog-independent pathway. Development 2004; 130:6599-609. [PMID: 14660548 DOI: 10.1242/dev.00871] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
During development, spinal cord oligodendrocyte precursors (OPCs) originate from the ventral, but not dorsal, neuroepithelium. Sonic hedgehog (SHH) has crucial effects on oligodendrocyte production in the ventral region of the spinal cord; however, less is known regarding SHH signalling and oligodendrocyte generation from neural stem cells (NSCs). We show that NSCs isolated from the dorsal spinal cord can generate oligodendrocytes following FGF2 treatment, a MAP kinase dependent phenomenon that is associated with induction of the obligate oligogenic gene Olig2. Cyclopamine, a potent inhibitor of hedgehog signalling, did not block the formation of oligodendrocytes from FGF2-treated neurosphere cultures. Furthermore, neurospheres generated from SHH null mice also produced oligodendrocytes, even in the presence of cyclopamine. These findings are compatible with the idea of a hedgehog independent pathway for oligodendrocyte generation from neural stem cells.
Collapse
Affiliation(s)
- Siddharthan Chandran
- Cambridge Centre for Brain Repair, University of Cambridge, ED Adrian Building, Forvie Site, Robinson Way, Cambridge CB2 2PY, UK.
| | | | | | | | | | | |
Collapse
|
363
|
Muroyama Y, Kondoh H, Takada S. Wnt proteins promote neuronal differentiation in neural stem cell culture. Biochem Biophys Res Commun 2004; 313:915-21. [PMID: 14706629 DOI: 10.1016/j.bbrc.2003.12.023] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Wnt signaling is implicated in the control of cell growth and differentiation during CNS development from studies of mouse and chick models, but its action at the cellular level has been poorly understand. In this study, we examine the in vitro function of Wnt signaling in embryonic neural stem cells, dissociated from neurospheres derived from E11.5 mouse telencephalon. Conditioned media containing active Wnt-3a proteins are added to the neural stem cells and its effect on regeneration of neurospheres and differentiation into neuronal and glial cells was examined. Wnt-3a proteins inhibit regeneration of neurospheres, but promote differentiation into MAP2-positive neuronal cells. Wnt-3a proteins also increase the number of GFAP-positive astrocytes but suppress the number of oligodendroglial lineage cells expressing PDGFR or O4. These results indicate that Wnt-3a signaling can inhibit the maintenance of neural stem cells, but rather promote the differentiation of neural stem cells into several cell lineages.
Collapse
Affiliation(s)
- Yuko Muroyama
- Kondoh Differentiation Signaling Project, Exploratory Research for Advanced Technology (ERATO), Japan Science and Technology Corporation (JST), Kinki Innovation Center, 14 Yoshida-Kawaramachi, Sakyo-ku, Kyoto 606-8305, Japan
| | | | | |
Collapse
|
364
|
Song MR, Ghosh A. FGF2-induced chromatin remodeling regulates CNTF-mediated gene expression and astrocyte differentiation. Nat Neurosci 2004; 7:229-35. [PMID: 14770186 DOI: 10.1038/nn1192] [Citation(s) in RCA: 189] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2003] [Accepted: 12/29/2003] [Indexed: 11/08/2022]
Abstract
The generation of distinct cell types during development depends on the competence of progenitor populations to differentiate along specific lineages. Here we investigate the mechanisms that regulate competence of rodent cortical progenitors to differentiate into astrocytes in response to ciliary neurotrophic factor (CNTF). We found that fibroblast growth factor 2 (FGF2), which by itself does not induce astrocyte-specific gene expression, regulates the ability of CNTF to induce expression of glial fibrillary acidic protein (GFAP). FGF2 facilitates access of the STAT/CBP (signal transducer and activator of transcription/CRE binding protein) complex to the GFAP promoter by inducing Lys4 methylation and suppressing Lys9 methylation of histone H3 at the STAT binding site. Histone methylation at this site is specific to the cell's state of differentiation. In progenitors, the promoter is bound by Lys9-methylated histones, and in astrocytes, it is bound by Lys4-methylated histones, indicating that astrocyte differentiation in vivo involves this switch in chromatin state. Our observations indicate that extracellular signals can regulate access of transcription factors to genomic promoters by local chromatin modification, and thereby regulate developmental competence.
Collapse
Affiliation(s)
- Mi-Ryoung Song
- Department of Neuroscience, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, Maryland 21205, USA
| | | |
Collapse
|
365
|
Faigle R, Brederlau A, Elmi M, Arvidsson Y, Hamazaki TS, Uramoto H, Funa K. ASK1 inhibits astroglial development via p38 mitogen-activated protein kinase and promotes neuronal differentiation in adult hippocampus-derived progenitor cells. Mol Cell Biol 2004; 24:280-93. [PMID: 14673162 PMCID: PMC303334 DOI: 10.1128/mcb.24.1.280-293.2004] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The mechanisms controlling differentiation and lineage specification of neural stem cells are still poorly understood, and many of the molecules involved in this process and their specific functions are yet unknown. We investigated the effect of apoptosis signal-regulating kinase 1 (ASK1) on neural stem cells by infecting adult hippocampus-derived rat progenitors with an adenovirus encoding the constitutively active form of ASK1. Following ASK1 overexpression, a significantly larger number of cells differentiated into neurons and a substantial increase in Mash1 transcription was observed. Moreover, a marked depletion of glial cells was observed, persisting even after additional treatment of ASK1-infected cultures with potent glia inducers such as leukemia inhibitory factor and bone morphogenetic protein. Analysis of the promoter for glial fibrillary acidic protein revealed that ASK1 acts as a potent inhibitor of glial-specific gene transcription. However, the signal transducers and activators of transcription 3 (STAT3)-binding site in the promoter was dispensable, while the activation of p38 mitogen-activated protein kinase was crucial for this effect, suggesting the presence of a novel mechanism for the inhibition of glial differentiation.
Collapse
Affiliation(s)
- Roland Faigle
- Department of Medical Cell Biology, Institute of Anatomy and Cell Biology, Göteborg University, Gothenburg, Sweden
| | | | | | | | | | | | | |
Collapse
|
366
|
A novel secretory factor, Neurogenesin-1, provides neurogenic environmental cues for neural stem cells in the adult hippocampus. J Neurosci 2004. [PMID: 14684875 DOI: 10.1523/jneurosci.23-37-11732.2003] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Neurogenesis occurs in restricted regions in the adult mammalian brain, among which the neurogenesis in the hippocampal dentate gyrus plays the crucial role in learning and memory. To date, little is known about neurogenic cues, which result in the neuronal fate adoption of neural stem cells residing in neurogenic regions, especially neurogenic cues in adult hippocampal neurogenesis. In the present study, we show that hippocampal astrocytes and also dentate granule cells adjacent to neural stem cells secrete a newly cloned novel secretory factor, Neurogenesin-1. This protein contains three cysteine-rich domains and a unique sequence and contributes to neuronal differentiation of neural stem cells in the adult brain by preventing the adoption of a glial fate. Furthermore, the neurogenic activity detected in the hippocampal culture medium was markedly suppressed by the administration of an anti-Neurogenesin-1 antibody. These findings suggest endogenous mechanisms that induce adult hippocampal neurogenesis and propose an innovative treatment for the neurodegenerative diseases that cause loss of hippocampal neurons.
Collapse
|
367
|
Nakane S, Zoecklein LJ, Gamez JD, Papke LM, Pavelko KD, Bureau J, Brahic M, Pease LR, Rodriguez M. A 40-cM region on chromosome 14 plays a critical role in the development of virus persistence, demyelination, brain pathology and neurologic deficits in a murine viral model of multiple sclerosis. Brain Pathol 2004; 13:519-33. [PMID: 14655757 PMCID: PMC8095950 DOI: 10.1111/j.1750-3639.2003.tb00482.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Theiler virus persists and induces immune-mediated demyelination in susceptible mice and serves as a model of multiple sclerosis. Previously, we identified 4 markers--D14Mit54, D14Mit60, D14Mit61, and D14Mit90--in a 40-cM region of chromosome 14 that are associated with demyelination in a cross between susceptible DBA/2 and resistant B10.D2 mice. We generated congenic-inbred mice to examine the contribution of this 40-cM region to disease. DBA Chr.14B10 mice, containing the chromosomal segment marked by the microsatellite polymorphisms, developed less spinal cord demyelination than did DBA/2 mice. More demyelination was found in the reciprocal congenic mouse B10.D2 Chr.14D2 than in the B10.D2 strain. Introduction of the DBA/2 chromosomal region onto the B10.D2 genetic background resulted in more severe disease in the striatum and cortex relative to B10.D2 mice. The importance of the marked region of chromosome 14 is indicated by the decrease in neurological performance using the Rotarod test during chronic disease in B10.D2 Chr.14D2 mice in comparison to B10.D2 mice. Viral replication was increased in B10.D2 Chr.14D2 mice as determined by quantitative real-time RT-PCR. These results indicate that the 40-cM region on chromosome 14 of DBA/2 mice contributes to viral persistence, subsequent demyelination, and loss of neurological function.
Collapse
Affiliation(s)
- Shunya Nakane
- Department of Neurology and Mayo Clinic and Foundation, Rochester, Minn
| | | | - Jeffrey D. Gamez
- Department of Neurology and Mayo Clinic and Foundation, Rochester, Minn
| | - Louisa M. Papke
- Department of Neurology and Mayo Clinic and Foundation, Rochester, Minn
| | - Kevin D. Pavelko
- Department of Neurology and Mayo Clinic and Foundation, Rochester, Minn
| | | | - Michel Brahic
- Unité des Virus Lents, URA CNRS 1930, Institut Pasteur, Paris, France
| | | | - Moses Rodriguez
- Department of Neurology and Mayo Clinic and Foundation, Rochester, Minn
- Immunology, Mayo Clinic and Foundation, Rochester, Minn
| |
Collapse
|
368
|
Abstract
Recent studies have substantially expanded our conception of the roles for glia in function and maintenance of the adult nervous system. Of these reports, several have re-examined the lineage relationships among neural stem cells, their early radial glial derivatives and their mitotically competent neurogenic daughters. These studies have highlighted the role of radial cells in development, and of their glial progeny postnatally, as both progenitors and regulators of neuronal production and phenotype. In the adult mammalian brain, radial cell populations are scant, but their glial derivatives participate in a gliovascular network that organizes not only the structural and functional architecture of the brain but also its generative niches for resident progenitors - glial as well as neuronal. As in other organs, these progenitors can reside as transit-amplifying pools, by which lineage-biased progenitors expand to replenish discrete mature phenotypes. This review will consider the types of transit-amplifying progenitor cells persistent in the adult mammalian CNS, and the extent to which these derive from glial phenotypes. It will also discuss the interactions of progenitor cells with their brethren that could specify their phenotype and fate, while defining the permissive niches for cell genesis in the adult CNS.
Collapse
Affiliation(s)
- Steve Goldman
- Department of Neurology, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA.
| |
Collapse
|
369
|
Williams BP, Milligan CJ, Street M, Hornby FM, Deuchars J, Buckley NJ. Transcription of the M1 muscarinic receptor gene in neurons and neuronal progenitors of the embryonic rat forebrain. J Neurochem 2003; 88:70-7. [PMID: 14675151 DOI: 10.1111/j.1471-4159.2004.02117.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Development of the nervous system is accompanied by expansion and differentiation of the neuronal progenitors within the embryonic neuroepithelium. Although the role of growth factors in this process is well documented, there is increasing evidence for a role of neurotransmitters. Acetylcholine is known to exert many actions on developing neural cells, but its potential role in neurogenesis is unclear. Here, we show that the M1 muscarinic acetylcholine receptor is expressed in the neuroepithelium of the rat forebrain, where it is found on both nestin+ progenitor cells and TuJ1+ newly differentiated neurons. Furthermore, transcription is governed, at least in part, by regulatory cis elements that are also responsible for driving transcription in neuroblastoma cells. This represents the first demonstration of M1 receptors on neuronal progenitor cells and supports the notion that M1 muscarinic receptors may play a role in development of the nervous system prior to the onset of synaptogenesis and their subsequent role in neurotransmission.
Collapse
Affiliation(s)
- Brenda P Williams
- Department of Psychological Medicine, Section of Experimental Neuropathology and Psychiatry, Institute of Psychiatry, London, UK
| | | | | | | | | | | |
Collapse
|
370
|
Lennington JB, Yang Z, Conover JC. Neural stem cells and the regulation of adult neurogenesis. Reprod Biol Endocrinol 2003; 1:99. [PMID: 14614786 PMCID: PMC293430 DOI: 10.1186/1477-7827-1-99] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2003] [Accepted: 11/13/2003] [Indexed: 12/02/2022] Open
Abstract
Presumably, the 'hard-wired' neuronal circuitry of the adult brain dissuades addition of new neurons, which could potentially disrupt existing circuits. This is borne out by the fact that, in general, new neurons are not produced in the mature brain. However, recent studies have established that the adult brain does maintain discrete regions of neurogenesis from which new neurons migrate and become incorporated into the functional circuitry of the brain. These neurogenic zones appear to be vestiges of the original developmental program that initiates brain formation. The largest of these germinal regions in the adult brain is the subventricular zone (SVZ), which lines the lateral walls of the lateral ventricles. Neural stem cells produce neuroblasts that migrate from the SVZ along a discrete pathway, the rostral migratory stream, into the olfactory bulb where they form mature neurons involved in the sense of smell. The subgranular layer (SGL) of the hippocampal dentate gyrus is another neurogenic region; new SGL neurons migrate only a short distance and differentiate into hippocampal granule cells. Here, we discuss the surprising finding of neural stem cells in the adult brain and the molecular mechanisms that regulate adult neurogenesis.
Collapse
Affiliation(s)
- Jessica B Lennington
- Center for Regenerative Biology and the Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT 06269, USA
| | - Zhengang Yang
- Shandong University School of Medicine, Jinan, People's Republic of China 250012
| | - Joanne C Conover
- Center for Regenerative Biology and the Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
371
|
Imitola J, Snyder EY, Khoury SJ. Genetic programs and responses of neural stem/progenitor cells during demyelination: potential insights into repair mechanisms in multiple sclerosis. Physiol Genomics 2003; 14:171-97. [PMID: 12923300 DOI: 10.1152/physiolgenomics.00021.2002] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In recent years, it has become evident that the adult mammalian CNS contains a population of neural stem cells (NSCs) described as immature, undifferentiated, multipotent cells, that may be called upon for repair in neurodegenerative and demyelinating diseases. NSCs may give rise to oligodendrocyte progenitor cells (OPCs) and other myelinating cells. This article reviews recent progress in elucidating the genetic programs and dynamics of NSC and OPC proliferation, differentiation, and apoptosis, including the response to demyelination. Emerging knowledge of the molecules that may be involved in such responses may help in the design of future stem cell-based treatment of demyelinating diseases such as multiple sclerosis.
Collapse
Affiliation(s)
- Jaime Imitola
- Center for Neurologic Diseases, Partners MS Center, Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
372
|
La Russa VF, Mondal D, Miller A, Safah H, Rozans M, Curiel T, Agrawal K, Weiner R. Neuronal Stem Cells Biology and Plasticity. Cancer Invest 2003; 21:792-804. [PMID: 14628437 DOI: 10.1081/cnv-120023777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Recent studies have suggested that stem cells are able to cross primordial tissue barriers. Their ability to respond to unrelated microenvironmental signals strongly suggest that they have greater potential than previously imagined especially for their future clinical use for the regeneration of tissues or even perhaps organ systems. In particular there is an intriguing reciprocal relationship between the hematopoietic and neuronal stem cell systems. Both stem cell pools appear to respond to microenvironmental signals that are not developmental related. These intriguing observations have led to a number of studies that have attempted to explore this apparent phenomenon of plasticity associated with both hematopoietic and neuronal stem cell populations.
Collapse
Affiliation(s)
- Vincent F La Russa
- Bone Marrow Transplant Laboratory, Tulane Cancer Center, 1430 Tulane Avenue, SL-34, New Orleans, LA 70112, USA.
| | | | | | | | | | | | | | | |
Collapse
|
373
|
Hao HN, Parker GC, Zhao J, Barami K, Lyman WD. Human neural stem cells are more sensitive than astrocytes to ethanol exposure. Alcohol Clin Exp Res 2003; 27:1310-7. [PMID: 12966327 DOI: 10.1097/01.alc.0000080671.56559.ef] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Exposure to ethanol (EtOH) can be deleterious to the developing central nervous system. The mechanisms by which EtOH exposure induces neural pathology in utero remain unclear. However, EtOH-induced increases in protein kinase C (PKC) have been associated with apoptosis in human primary cell cultures. Although the toxic effects of EtOH on differentiated neural cells have been studied in laboratory animal models, the susceptibility of the human neural stem cells (NSCs) that predominate in the central nervous system during embryonic development has not been addressed. METHODS For this study, fetal human brain cells, which satisfied the criteria for NSCs by being CD133-positive, nestin-positive, and differentiated glial fibrillary acidic protein-positive human astrocytes, were studied. The cytotoxic potential of EtOH in NSC and astrocyte cultures was studied by using morphological and biochemical methods. In addition, membrane and cytosolic fraction PKC activity for each cell type was assessed. RESULTS NSC showed a dose-dependent increase in EtOH-induced toxicity as estimated by terminal transferase-mediated dUTP nick end labeling (TUNEL) stain and viability assays. TUNEL staining indicating DNA degradation consistent with programmed (apoptotic) cell death was detectable in 90% of NSC 16 hr after 2 hr exposure to 10 mM EtOH. NSC also showed a concentration-dependent increase in membrane, but not cytosol, PKC activity over the same EtOH dose range. By contrast, astrocytes showed no cytotoxic effects at any concentrations of EtOH used (0-10 mM). PKC activity of both the membrane and cytosolic fragments from astrocytes also was unaffected by this range of doses. CONCLUSIONS This study demonstrates the susceptibility of human NSCs, compared with astrocytes, to EtOH and indicates that alterations in PKC signal transduction in NSC may play a role in EtOH-induced neuropathological processes.
Collapse
Affiliation(s)
- Hsiao-Nan Hao
- Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI, USA.
| | | | | | | | | |
Collapse
|
374
|
Lee JY, Chang MY, Park CH, Kim HY, Kim JH, Son H, Lee YS, Lee SH. Ascorbate-induced differentiation of embryonic cortical precursors into neurons and astrocytes. J Neurosci Res 2003; 73:156-65. [PMID: 12836158 DOI: 10.1002/jnr.10647] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A specific role for ascorbate (AA) in brain development has been postulated based on a rise of AA levels in fetal brain (Kratzing et al., 1985). To evaluate the role of AA during CNS development, we analyzed the survival, proliferation, and differentiation of AA-treated CNS precursor cells isolated from rat embryonic cortex. Immunocytochemical analyses revealed that AA promoted the in vitro differentiation of CNS precursor cells into neurons and astrocytes in a cell density-dependent manner. Additionally, AA increased the frequency and amplitude of miniature excitatory postsynaptic currents (mEPSCs) of postmitotic neurons in primary neuronal cultures. Differential expression analysis of genes specific to neuronal or glial differentiation revealed an AA-dependent increase in the expression of genes that could potentially compound the effects of AA on cell differentiation. These data suggest that AA may act in the developing brain to stimulate the generation of CNS neurons and glia, thereby assisting in the formation of neural circuits by promoting the acquisition of neuronal synaptic functions.
Collapse
Affiliation(s)
- Ji-Yeon Lee
- Department of Biochemistry, College of Medicine, Hanyang University, Seoul, Korea
| | | | | | | | | | | | | | | |
Collapse
|
375
|
Abstract
Transcription factors with bHLH motifs modulate critical events in the development of the mammalian neocortex. Multipotent cortical progenitors are maintained in a proliferative state by bHLH factors from the Id and Hes families. The transition from proliferation to neurogenesis involves a coordinate increase in the activity of proneural bHLH factors (Mash1, Neurogenin1, and Neurogenin2) and a decrease in the activity of Hes and Id factors. As development proceeds, inhibition of proneural bHLH factors in cortical progenitors promotes the formation of astrocytes. Finally, the formation of oligodendrocytes is triggered by an increase in the activity of bHLH factors Olig1 and Olig2 that may be coupled with a decrease in Id activity. Thus, bHLH factors have key roles in corticogenesis, affecting the timing of differentiation and the specification of cell fate.
Collapse
Affiliation(s)
- Sarah E Ross
- Division of Neuroscience, Children's Hospital, Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | | | | |
Collapse
|
376
|
Chang MY, Son H, Lee YS, Lee SH. Neurons and astrocytes secrete factors that cause stem cells to differentiate into neurons and astrocytes, respectively. Mol Cell Neurosci 2003; 23:414-26. [PMID: 12837625 DOI: 10.1016/s1044-7431(03)00068-x] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
We examined the role of soluble factors secreted by neurons and astrocytes in the differentiation of CNS stem cells. We showed that the soluble factors from neurons strongly induced multipotent cortical stem cells to acquire neuronal identity, while the factors from astrocytes promoted astrocytic differentiation. Neurons secreted the brain-derived neurotrophic factor and neurotrophin-3 to induce neuron differentiation, while astrocytes secreted ciliary neurotrophic factor for astrocyte differentiation. Both neurons and astrocytes secrete bone morphogenetic proteins (BMPs). Using BMP antagonists it was shown that BMPs were responsible for the neuron-induced neuronal differentiation, as well as the astrocyte-induced astrocytic differentiation. These findings demonstrate the importance of soluble signals in lineage-specific differentiation and provide evidence for the roles of neurons and astrocytes in stem cell differentiation.
Collapse
Affiliation(s)
- Mi-Yoon Chang
- Department of Biochemistry, College of Medicine, Hanyang University, Seoul 133-791, South Korea
| | | | | | | |
Collapse
|
377
|
Marshall CAG, Suzuki SO, Goldman JE. Gliogenic and neurogenic progenitors of the subventricular zone: who are they, where did they come from, and where are they going? Glia 2003; 43:52-61. [PMID: 12761867 DOI: 10.1002/glia.10213] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The subventricular zone (SVZ) of the perinatal forebrain gives rise to both neurons and glia. The mechanisms governing the phenotypic specification of progenitors within this heterogeneous germinal zone are unclear. However, the characterization of subpopulations of SVZ cells has given us a better understanding of the basic architecture of the SVZ and presents us with the opportunity to ask more detailed questions regarding phenotype specification and cell fate. Recent work demonstrating the embryonic origins of SVZ cells is summarized, and a model describing the formation of the perinatal SVZ, noting contributions of cells from pallial as well as subpallial germinal zones, is presented. We further address differences among classes of SVZ cells based on molecular profile, phenotype, and migration behavior and present a model summarizing the organization of perinatal SVZ cells along coronal, sagittal, and horizontal axes. A detailed description of the SVZ in the adult, outlining classes of cells based on morphology, molecular profile, and proliferative behavior, was recently reported by Doetsch et al. (Proc Natl Acad Sci USA 93:14895-14900, 1997). Potential relationships among cells within the perinatal and adult SVZ will be discussed. GLIA 43:52-61, 2003.
Collapse
Affiliation(s)
- Christine A G Marshall
- Center for Neurobiology and Behavior, Division of Neuropathology, Department of Pathology, Columbia University, College of Physicians and Surgeons, New York, New York
| | - Satoshi O Suzuki
- Center for Neurobiology and Behavior, Division of Neuropathology, Department of Pathology, Columbia University, College of Physicians and Surgeons, New York, New York
| | - James E Goldman
- Center for Neurobiology and Behavior, Division of Neuropathology, Department of Pathology, Columbia University, College of Physicians and Surgeons, New York, New York
| |
Collapse
|
378
|
Kiyono M, Shibuya M. Bone morphogenetic protein 4 mediates apoptosis of capillary endothelial cells during rat pupillary membrane regression. Mol Cell Biol 2003; 23:4627-36. [PMID: 12808102 PMCID: PMC164857 DOI: 10.1128/mcb.23.13.4627-4636.2003] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Programmed capillary regression is essential for development, but little is known about the mechanism behind this phenomenon. In this study, we characterized the molecular determinants of capillary regression utilizing the pupillary membrane (PM) in the newborn rat's eye. We observed in the 1-day-culture system that apoptotic endothelial cells decrease in number with the addition of a natural antagonist, Noggin, strongly suggesting the involvement of the bone morphogenetic protein (BMP) family in PM regression. In addition, the lens-conditioned medium (Lens-CM) induced apoptosis of HUVE cells and inhibited endothelial tubulogenesis, which were completely blocked by both Noggin and the BMP4-specific neutralizing antibody. Activation of BMP4 pathway in endothelial cells was confirmed by both the up-regulation of Msx genes correlated with apoptosis and the translocation of Smad1 into the nucleus. We showed a transient expression of BMP4 in Lens-CM by immunoprecipitation assay. Furthermore, the transcorneal injection of BMP4 in rats enhanced the apoptosis of PMs, while that of Noggin attenuated it. These results indicate that BMP4 pathways play pivotal roles in capillary regression in a paracrine manner between lens and PMs.
Collapse
Affiliation(s)
- Mari Kiyono
- Department of Genetics, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | | |
Collapse
|
379
|
Rajan P, Panchision DM, Newell LF, McKay RDG. BMPs signal alternately through a SMAD or FRAP-STAT pathway to regulate fate choice in CNS stem cells. J Cell Biol 2003; 161:911-21. [PMID: 12796477 PMCID: PMC2172962 DOI: 10.1083/jcb.200211021] [Citation(s) in RCA: 168] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The ability of stem cells to generate distinct fates is critical for the generation of cellular diversity during development. Central nervous system (CNS) stem cells respond to bone morphogenetic protein (BMP) 4 by differentiating into a wide variety of dorsal CNS and neural crest cell types. We show that distinct mechanisms are responsible for the generation of two of these cell types, smooth muscle and glia. Smooth muscle differentiation requires BMP-mediated Smad1/5/8 activation and predominates where local cell density is low. In contrast, glial differentiation predominates at high local densities in response to BMP4 and is specifically blocked by a dominant-negative mutant Stat3. Upon BMP4 treatment, the serine-threonine kinase FKBP12/rapamycin-associated protein (FRAP), mammalian target of rapamycin (mTOR), associates with Stat3 and facilitates STAT activation. Inhibition of FRAP prevents STAT activation and glial differentiation. Thus, glial differentiation by BMP4 occurs by a novel pathway mediated by FRAP and STAT proteins. These results suggest that a single ligand can regulate cell fate by activating distinct cytoplasmic signals.
Collapse
Affiliation(s)
- Prithi Rajan
- Laboratory of Molecular Biology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
380
|
Epidermal growth factor receptors control competence to interpret leukemia inhibitory factor as an astrocyte inducer in developing cortex. J Neurosci 2003. [PMID: 12716946 DOI: 10.1523/jneurosci.23-08-03385.2003] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cortical progenitors begin to interpret leukemia inhibitory factor (LIF) and bone morphogenetic protein (BMP) as astrocyte-inducing signals during late embryonic cortical development, coincident with an increase in their expression of epidermal growth factor receptors (EGFRs). To determine whether the developmental change in EGFRs regulates the change in responsiveness to LIF and BMP, we analyzed cortical progenitors induced to express EGFRs prematurely and progenitors from late embryonic EGFR-null cortex. Premature elevation of EGFRs conferred premature competence to interpret LIF, but not BMP, as an astrocyte-inducing signal. EGFR-null progenitors from late embryonic cortex did not interpret LIF as an astrocyte-inducing signal but responded to BMP4. LIF responsiveness in EGFR-null cells was rescued by the addition of EGFRs but not by the stimulation of fibroblast growth factor receptors. Astrocyte differentiation induced by LIF depends on signal transducer and activator of transcription 3 (STAT3). We show that the level of STAT3 increases during late embryonic development in a subset of progenitors. EGFRs regulate this change in STAT3 and increase STAT3 phosphorylation in response to LIF. Increasing STAT3 prematurely with a retrovirus also increased the phosphorylation of STAT3 by LIF. In contrast to the finding with EGFRs, however, increasing STAT3 did not cause LIF to induce astrocytes, although it reduced expression of the neurogenic factor PAX6 (paired box gene 6 ). Our findings show that developmental changes in EGFRs regulate the competence of progenitors to interpret LIF as an astrocyte-inducing signal. EGFRs elevate STAT3 expression and increase its phosphorylation by LIF, but this is not sufficient to change LIF responsiveness to astrocyte induction, suggesting that EGFRs also regulate LIF responsiveness downstream of STAT3.
Collapse
|
381
|
Mehler MF. Mechanisms regulating lineage diversity during mammalian cerebral cortical neurogenesis and gliogenesis. Results Probl Cell Differ 2003; 39:27-52. [PMID: 12357985 DOI: 10.1007/978-3-540-46006-0_2] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
During mammalian cerebral cortical development, neural stem cells (NSCs) present within periventricular generative zones give rise to successive waves of neurons and radial glia, followed by oligodendrocytes and astrocytes. The molecular and cellular mechanisms that orchestrate these precisely timed and progressive maturational events are still largely undefined. These developmental processes are likely to involve the dynamic interplay of environmental signals, cell-cell interactions and transcriptional regulatory events. The bone morphogenetic proteins (BMPs), an expanding subclass of the transforming growth factor beta cytokine superfamily, may represent an important set of environmental cues for these progressive maturational events because of the broad profiles of developmental expression of the requisite BMP ligands, receptor subunits and intracellular transduction elements, and because of their versatile roles in promoting a spectrum of cellular processes intimately involved in progressive neural fate decisions. The BMPs also interact with complementary regional environmental signals such as the basic fibroblast growth factor (bFGF) and sonic hedgehog (Shh) that promote earlier stages of NSC expansion, self-renewal, lineage restriction and incipient lineage commitment. The ability of these cytokines and trophic signals to act within specific neurodevelopmental contexts may, in turn, depend on the composite actions of cell-cell contact-associated signals, such as Notch-Hes-mediated lateral inhibitory pathways, and additional transcriptional modulatory events, such as those mediated by members of the inhibitor of differentiation (ID) gene family that encode a novel set of negative basic helix-loop-helix (bHLH) transcription factors. In this chapter, we will examine the distinct roles of these different classes of developmental cues in defining the biological properties of an integrated cerebral cortical developmental signaling network. Ongoing studies in this exciting area of mammalian central nervous system (CNS) development will help to identify important molecular and cellular targets for evolving pharmacological, gene and stem cell therapeutic interventions to combat the pathological sequelae of a spectrum of acquired and genetic disorders of the central nervous system.
Collapse
Affiliation(s)
- Mark F Mehler
- Departments of Neurology, Neuroscience and Psychiatry, Rose F. Kennedy Center for Research in Mental Retardation and Developmental Disabilities, Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| |
Collapse
|
382
|
Dono R. Fibroblast growth factors as regulators of central nervous system development and function. Am J Physiol Regul Integr Comp Physiol 2003; 284:R867-81. [PMID: 12626354 DOI: 10.1152/ajpregu.00533.2002] [Citation(s) in RCA: 133] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Fibroblast growth factors (FGFs) are multifunctional signaling proteins that regulate developmental processes and adult physiology. Over the last few years, important progress has been made in understanding the function of FGFs in the embryonic and adult central nervous system. In this review, I will first discuss studies showing that FGF signaling is already required during formation of the neural plate. Next, I will describe how FGF signaling centers control growth and patterning of specific brain structures. Finally, I will focus on the function of FGF signaling in the adult brain and in regulating maintenance and repair of damaged neural tissues.
Collapse
Affiliation(s)
- Rosanna Dono
- Faculty of Biology, Department of Developmental Biology, Utrecht University, NL-3584CH Utrecht, The Netherlands.
| |
Collapse
|
383
|
Schmid RS, McGrath B, Berechid BE, Boyles B, Marchionni M, Sestan N, Anton ES. Neuregulin 1-erbB2 signaling is required for the establishment of radial glia and their transformation into astrocytes in cerebral cortex. Proc Natl Acad Sci U S A 2003; 100:4251-6. [PMID: 12649319 PMCID: PMC153079 DOI: 10.1073/pnas.0630496100] [Citation(s) in RCA: 153] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Radial glial cells and astrocytes function to support the construction and maintenance, respectively, of the cerebral cortex. However, the mechanisms that determine how radial glial cells are established, maintained, and transformed into astrocytes in the cerebral cortex are not well understood. Here, we show that neuregulin-1 (NRG-1) exerts a critical role in the establishment of radial glial cells. Radial glial cell generation is significantly impaired in NRG mutants, and this defect can be rescued by exogenous NRG-1. Down-regulation of expression and activity of erbB2, a member of the NRG-1 receptor complex, leads to the transformation of radial glial cells into astrocytes. Reintroduction of erbB2 transforms astrocytes into radial glia. The activated form of the Notch1 receptor, which promotes the radial glial phenotype, activates the erbB2 promoter in radial glial cells. These results suggest that developmental changes in NRG-1-erbB2 interactions modulate the establishment of radial glia and contribute to their appropriate transformation into astrocytes.
Collapse
Affiliation(s)
- Ralf S Schmid
- University of North Carolina Neuroscience Center and Department of Cell and Molecular Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | | | | | | | | | | | | |
Collapse
|
384
|
Gomes WA, Mehler MF, Kessler JA. Transgenic overexpression of BMP4 increases astroglial and decreases oligodendroglial lineage commitment. Dev Biol 2003; 255:164-77. [PMID: 12618141 DOI: 10.1016/s0012-1606(02)00037-4] [Citation(s) in RCA: 226] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Bone morphogenetic proteins (BMPs) promote astrocytic differentiation of cultured subventricular zone stem cells. To determine whether BMPs regulate the astrocytic lineage in vivo, transgenic mice were constructed that overexpress BMP4 under control of the neuron-specific enolase (NSE) promoter. Overexpression of BMP4 was first detectable by Western analysis on embryonic day 16 and persisted into the adult. The overexpression of BMP4 resulted in a remarkable 40% increase in the density of astrocytes in multiple brain regions accompanied by a decrease in the density of oligodendrocytes ranging between 11 and 26%, depending on the brain region and the developmental stage. No changes in neuron numbers or the pattern of myelination were detected, and there were no gross structural abnormalities. Similar phenotypes were observed in three independently derived transgenic lines. Coculture of transgenic neurons with neural progenitor cells significantly enhanced astrocytic lineage commitment by the progenitors; this effect was blocked by the BMP inhibitor Noggin, indicating that the stimulation of astrogliogenesis was due to BMP4 release by the transgenic neurons. These observations suggest that BMP4 directs progenitor cells in vivo to commit to the astrocytic rather than the oligodendroglial lineage. Further, differentiation of radial glial cells into astrocytes was accelerated, suggesting that radial glia were a source of at least some of the supernumerary astrocytes. Therefore, BMPs are likely important mediators of astrocyte development in vivo.
Collapse
Affiliation(s)
- William A Gomes
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | |
Collapse
|
385
|
Michaloudi H, Grivas I, Batzios C, Chiotelli M, Papadopoulos GC. Parallel development of blood vessels and mast cells in the lateral geniculate nuclei. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2003; 140:269-76. [PMID: 12586432 DOI: 10.1016/s0165-3806(02)00613-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The present study examined quantitatively developmental changes of the vasculature in the dorsal (dLGN) and the ventral (vLGN) lateral geniculate nuclei together with concomitant changes in the number of mast cells (MCs), known for their role in angiogenesis. Vascular network, marked after transcardial perfusion of India ink, and MCs detected with conventional histochemical techniques were examined at postnatal days (P) 1, 8, 14, 21, 31, 90 and 300 of Wistar rats. Quantitative analysis by means of an image analysis system showed age-dependent changes in both vascular parameters [vascular area and relative frequency (%) of capillaries and medium- and large-diameter vessels] and mast cells number in the developing dLGN and vLGN. Despite quantitative differences in the vascularization and MC infiltration between the two nuclei at some age points, MC number, vascular area and the percentage frequency of capillaries exhibited similar developmental time courses, especially up to the end of the first postnatal month. Both MC number and the capillary frequency reached maximal levels at P31 and declined thereafter, following a massive or a partial, respectively, decrease up to P300.
Collapse
Affiliation(s)
- Helen Michaloudi
- Department of Anatomy and Histology, Veterinary School, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece.
| | | | | | | | | |
Collapse
|
386
|
Lee J, Wu Y, Qi Y, Xue H, Liu Y, Scheel D, German M, Qiu M, Guillemot F, Rao M, Gradwohl G. Neurogenin3 participates in gliogenesis in the developing vertebrate spinal cord. Dev Biol 2003; 253:84-98. [PMID: 12490199 DOI: 10.1006/dbio.2002.0868] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To study the role of basic helix-loop-helix (bHLH) transcription factors in gliogenesis, we examined whether bHLH transcription factors were expressed in glial precursor cells and participated in regulating oligodendrocyte and astrocyte development. As assessed by reverse transcription-polymerase chain reaction (RT-PCR), Neurogenin3 (Ngn3) was transiently expressed in bipotential glial cells fated to become either oligodendrocytes or astrocytes. Mice lacking Ngn3 displayed a loss of Nkx2.2 expression, a transcription factor required for proper oligodendrogliogenesis. Furthermore, a reduction in the expression of myelin basic protein (MBP), proteolipid protein (PLP), and glial fibrillary acidic protein (GFAP), markers for mature oligodendrocytes and astrocytes, was observed in the Ngn3 null mice. Overexpression of Ngn3 was sufficient to drive expression from the PLP promoter in transient cotransfection assays. Overall, the data suggest that Ngn3 may regulate glial differentiation at a developmental stage prior to the segregation of the oligodendrocyte and astrocyte lineage.
Collapse
Affiliation(s)
- Jeffrey Lee
- IGBMC, Universite Louis Pasteur, 1 rue Laurent Fries, BP10142, 67404 Illkirch Cedex, CU de Strasbourg, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
387
|
Chmielnicki E, Goldman SA. Induced neurogenesis by endogenous progenitor cells in the adult mammalian brain. PROGRESS IN BRAIN RESEARCH 2002; 138:451-64. [PMID: 12432784 DOI: 10.1016/s0079-6123(02)38093-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Eva Chmielnicki
- Department of Neurology and Neuroscience, Cornell University Medical College, 1300 York Ave., Room E607, New York, NY 10021, USA
| | | |
Collapse
|
388
|
Gratacòs E, Gavaldà N, Alberch J. Bone morphogenetic protein-6 is a neurotrophic factor for calbindin-positive striatal neurons. J Neurosci Res 2002; 70:638-44. [PMID: 12424731 DOI: 10.1002/jnr.10438] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Bone morphogenetic proteins (BMPs) are a set of members of the transforming growth factor-beta superfamily recently described as promoting the differentiation of several neuronal populations within the basal ganglia. This study examined whether a member of this family, BMP-6, could exert neurotrophic effects on the neurons of the striatum, in which BMP-6 mRNA had been previously detected during development. Here we show that BMP-6 increases the number and differentiation of calbindin-positive neurons in vitro. Indeed, BMP-6 increased the total area, the perimeter, and the degree of arborization of this neuronal population. This trophic factor promoted dendritic growth without modifying axonal length or soma area. Furthermore, BMP-6 increased the number of glial fibrillary acidic protein-positive cells while decreasing the number of nestin-positive cells. The suppression of cell proliferation or glial development by the antimitotic fluorodeoxyuridine removed the effects on striatal neurons, suggesting the involvement of astroglial cells in the differentiation induced by BMP-6. The current results confirm the relevance of BMPs in the development of the striatum and emphasize the crucial importance of the trophic interaction between glial and neuronal cells.
Collapse
Affiliation(s)
- E Gratacòs
- Departament de Biologia Cellular i Anatomia Patològica, Facultat de Medicina, Universitat de Barcelona, IDIBAPS, Casanova 143, 08036 Barcelona, Spain
| | | | | |
Collapse
|
389
|
Mekki-Dauriac S, Agius E, Kan P, Cochard P. Bone morphogenetic proteins negatively control oligodendrocyte precursor specification in the chick spinal cord. Development 2002; 129:5117-30. [PMID: 12399304 DOI: 10.1242/dev.129.22.5117] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In the vertebrate spinal cord, oligodendrocytes originate from a restricted region of the ventral neuroepithelium. This ventral localisation of oligodendrocyte precursors (OLPs) depends on the inductive influence of sonic hedgehog (Shh) secreted by ventral midline cells. We have investigated whether the ventral restriction of OLP specification might also depend on inhibiting signals mediated by bone morphogenetic proteins (BMPs). BMPs invariably and markedly inhibited oligodendrocyte development in ventral neural tissue both in vitro and in vivo. Conversely, in vivo ablation of the dorsal most part of the chick spinal cord or inactivation of BMP signalling using grafts of noggin-producing cells promoted the appearance of neuroepithelial OLPs dorsal to their normal domain of emergence, showing that endogenous BMPs contribute to the inhibition of oligodendrocyte development in the spinal cord. BMPs were able to oppose the Shh-mediated induction of OLPs in spinal cord neuroepithelial explants dissected before oligodendrocyte induction,suggesting that BMPs may repress OLP specification by interfering with Shh signalling in vivo. Strikingly, among the transcription factors involved in OLP specification, BMP treatment strongly inhibited the expression of Olig2 but not of Nkx2.2, suggesting that BMP-mediated inhibition of oligodendrogenesis is controlled through the repression of the former transcription factor. Altogether, our data show that oligodendrogenesis is not only regulated by ventral inductive signals such as Shh, but also by dorsal inhibiting signals including BMP factors. They suggest that the dorsoventral position of OLPs depends on a tightly regulated balance between Shh and BMP activities.
Collapse
Affiliation(s)
- Soraya Mekki-Dauriac
- Centre de Biologie du Développement, UMR 5547 CNRS/UPS, Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse, France
| | | | | | | |
Collapse
|
390
|
Bongarzone ER. Induction of oligodendrocyte fate during the formation of the vertebrate neural tube. Neurochem Res 2002; 27:1361-9. [PMID: 12512941 DOI: 10.1023/a:1021675716848] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The development of the central nervous system (CNS) comprises a series of inductive and transforming events that includes rostro-caudal and dorso-ventral patterning, neuroglial specification and extensive cell migration. The patterning of the neural tube is also characterized by the transcription of specific genes, which encode for morphogens and transcription factors essential for cell fate specification. The generation of oligodendrocytes, the myelin forming glial cells in the CNS, appears to be restricted to specific domains localized in the ventral neuroepithelium. Signaling mediated by sonic hedgehog (Shh) seems to command the early phase of the specification of uncommitted neural stem cells into the oligodendroglial lineage. Once generated, oligodendrocyte progenitors have to follow a developmental program that involves changes in cell morphology, migratory capacity and sensitivity to extracellular trophic factors before becoming mature myelinating cells. This minireview aims to discuss molecular aspects of the early induction of oligodendroglial fate during the formation of the CNS.
Collapse
Affiliation(s)
- Ernesto R Bongarzone
- Neurobiochemistry Group, Mental Retardation Research Center, University of California, Los Angeles, CA, USA.
| |
Collapse
|
391
|
Peretto P, Cummings D, Modena C, Behrens M, Venkatraman G, Fasolo A, Margolis FL. BMP mRNA and protein expression in the developing mouse olfactory system. J Comp Neurol 2002; 451:267-78. [PMID: 12210138 DOI: 10.1002/cne.10343] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The bone morphogenetic proteins (BMPs) play fundamental roles during the organization of the central nervous system. The presence of these proteins has also been demonstrated in regions of the adult brain that are characterized by neural plasticity. In this study, we examined the expression of BMP4, 6, and 7 mRNAs and proteins in the murine olfactory system. The olfactory system is a useful model for studying cell proliferation and neural differentiation because both of these processes persist throughout life in the olfactory epithelium (OE) and olfactory bulb (OB). Our results demonstrate a differential expression of BMP4, 6, and 7 in the embryonic, postnatal, and adult olfactory system. In particular, BMP4 and BMP7 showed similar immunostaining patterns, being expressed in the olfactory region from the earliest stages studied (embryonic day 15.5) to adulthood. During development BMPs were expressed in the OE, olfactory bulb nerve layer, glomerular layer (GL), mitral cell layer (MCL), and subventricular zone. During the first postnatal week of life, BMP4 and 7 immunoreactivity (-ir) was particularly evident in the GL, MCL, and in the subependymal layer (SEL), which originates postnatally from the subventricular zone. In adults, BMP4 and 7 immunostaining was present in the GL and SEL. Within the SEL, BMP4 and 7 proteins were expressed primarily in association with the astrocytic glial compartment. BMP6-ir was always found in mature olfactory receptor neurons and their axonal projections to the OB. In summary, these data support the hypothesis that BMPs play a role in the morphogenesis of the olfactory system during development and in its plasticity during adulthood.
Collapse
Affiliation(s)
- Paolo Peretto
- Department of Human and Animal Biology, University of Torino, 10123 Torino, Italy
| | | | | | | | | | | | | |
Collapse
|
392
|
Israsena N, Kessler JA. Msx2 and p21(CIP1/WAF1) mediate the proapoptotic effects of bone morphogenetic protein-4 on ventricular zone progenitor cells. J Neurosci Res 2002; 69:803-9. [PMID: 12205674 DOI: 10.1002/jnr.10362] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Treatment of cultured ventricular zone (VZ) progenitor cells with bone morphogenetic protein-4 (BMP4) promoted cell death in a dose-dependent manner. VZ progenitor cells became progressively more resistant to the proapoptotic effects of BMP4 between E10 and E16, and, by E18 and thereafter, BMP4 treatment no longer led to progenitor cell death. BMP4 treatment of E13 progenitor cells promoted expression of msx2 and p21(CIP1/WAF1) (p21) and inhibition of expression of either gene prevented BMP4-mediated apoptosis. Treatment of E18 cells with BMP4 failed to induce apoptosis but still induced expression of low levels of msx2 and p21. Knockout of bax significantly reduced but did not prevent BMP4-mediated death of E13 murine progenitor cells. These observations indicate that msx2 and p21 mediate the proapoptotic effects of BMP4 on VZ progenitor cells and that each gene is necessary but insufficient to promote apoptosis.
Collapse
Affiliation(s)
- Nipan Israsena
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, USA
| | | |
Collapse
|
393
|
Gregg CT, Chojnacki AK, Weiss S. Radial glial cells as neuronal precursors: the next generation? J Neurosci Res 2002; 69:708-13. [PMID: 12205663 DOI: 10.1002/jnr.10340] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Christopher T Gregg
- Genes and Development Research Group, University of Calgary Faculty of Medicine, Calgary, Alberta, Canada
| | | | | |
Collapse
|
394
|
Coskun V, Luskin MB. Intrinsic and extrinsic regulation of the proliferation and differentiation of cells in the rodent rostral migratory stream. J Neurosci Res 2002; 69:795-802. [PMID: 12205673 PMCID: PMC4211629 DOI: 10.1002/jnr.10336] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
An overriding principle of development is that neurons become permanently postmitotic once they initiate differentiation. Work in our laboratory, however, has provided evidence for a population of progenitor cells in mammalian forebrain that express properties of differentiated neurons, even though they continue to divide. These neuronal progenitor cells are situated in the rostral migratory stream (RMS), which extends from a specialized portion of the subventricular zone surrounding the anterior tip of the lateral ventricle, referred to as the SVZa, to the middle of the olfactory bulb. As SVZa-derived cells migrate to the olfactory bulb, they undergo cell division, and they never deviate from the RMS. Once they reach their final destinations, they become terminally postmitotic interneurons. This Mini-Review concerns findings from our recent experiments designed to reveal the intrinsic and extrinsic mechanisms governing the proliferation and differentiation of the unique SVZa neuronal progenitor cells. We have investigated the role(s) of cell cycle regulatory proteins, in particular, the cell cycle inhibitor p19(INK4d), in the control of SVZa cell proliferation. Several studies have indicated that cells withdraw from the cell cycle once they express p19(INK4d). To begin to investigate whether p19(INK4d)(+) SVZa-derived cells are postmitotic, we analyzed the pattern of p19(INK4d) expression by the cells of the RMS. A pronounced gradient of p19(INK4d) expression was demonstrated; progressively more cells are p19(INK4d) immunoreactive as the olfactory bulb is approached. In addition, the capacity of p19(INK4d)(+) cells to incorporate bromodeoxyuridine was investigated. From the results of these studies, we conclude that SVZa cells in the RMS can successively down-regulate their expression of p19(INK4d) as they migrate and that they repeatedly exit and reenter the cell cycle while en route to the olfactory bulb. These studies led us to investigate whether bone morphogenetic proteins (BMPs) are involved in the regulation of SVZa cell proliferation and p19(INK4d) expression, because, elsewhere in the CNS, BMPs modulate cell proliferation and influence cell fate decisions. To determine the effects of BMP signaling on SVZa cell proliferation and differentiation, we altered the expression of the BMP receptor Ia (BMPR-Ia) using retrovirally mediated gene transfer. The cells in the SVZa encoding the wild-type BMPR-Ia exit the cell cycle and do not appear to migrate through the RMS. Conversely, both within the SVZa and along the RMS, the majority of SVZa-derived cells encoding a dominant-negative BMPR-Ia gene do not express p19(INK4d). These findings indicate that p19(INK4d) expression is suppressed when BMP signaling is inhibited. Furthermore, SVZa-derived cells with both augmented and inhibited BMP signaling retain their neuronal commitment. Collectively, these studies have revealed that SVZa cell proliferation and differentiation is under the control of several interacting intrinsic and extrinsic factors.
Collapse
Affiliation(s)
| | - Marla B. Luskin
- Correspondence to: Marla B. Luskin, PhD, Department of Cell Biology, Emory University School of Medicine, Whitehead Biomedical Research Building, Room 546, 615 Michael Street, Atlanta, GA 30322.
| |
Collapse
|
395
|
Bixby S, Kruger GM, Mosher JT, Joseph NM, Morrison SJ. Cell-intrinsic differences between stem cells from different regions of the peripheral nervous system regulate the generation of neural diversity. Neuron 2002; 35:643-56. [PMID: 12194865 DOI: 10.1016/s0896-6273(02)00825-5] [Citation(s) in RCA: 236] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Stem cells in different regions of the nervous system give rise to different types of mature cells. This diversity is assumed to arise in response to local environmental differences, but the contribution of cell-intrinsic differences between stem cells has been unclear. At embryonic day (E)14, neural crest stem cells (NCSCs) undergo primarily neurogenesis in the gut but gliogenesis in nerves. Yet gliogenic and neurogenic factors are expressed in both locations. NCSCs isolated by flow-cytometry from E14 sciatic nerve and gut exhibited heritable, cell-intrinsic differences in their responsiveness to lineage determination factors. Gut NCSCs were more responsive to neurogenic factors, while sciatic nerve NCSCs were more responsive to gliogenic factors. Upon transplantation of uncultured NCSCs into developing peripheral nerves in vivo, sciatic nerve NCSCs gave rise only to glia, while gut NCSCs gave rise primarily to neurons. Thus, cell fate in the nerve was stem cell determined.
Collapse
Affiliation(s)
- Suzanne Bixby
- Howard Hughes Medical Institute, Department of Internal Medicine, University of Michigan, 1500 E. Medical Center Drive, Ann Arbor, MI 48109, USA
| | | | | | | | | |
Collapse
|
396
|
Abstract
A complex orchestration of stem-cell specification, expansion and differentiation is required for the proper development of the nervous system. Although progress has been made on the role of individual genes in each of these processes, there are still unresolved questions about how gene function translates to the dynamic assembly of cells into tissues. Recently, stem-cell biology has emerged as a bridge between the traditional fields of cell biology and developmental genetics. In addition to their potential therapeutic role, stem cells are being exploited as experimental 'logic chips' that integrate information and exhibit self-organizing properties. Recent studies provide new insights on how morphogenic signals coordinate major stem cell decisions to regulate the size, shape and cellular diversity of the nervous system.
Collapse
Affiliation(s)
- David M Panchision
- Laboratory of Molecular Biology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 36 Convent Drive MSC 4092, Bethesda, Maryland 20892-4092, USA.
| | | |
Collapse
|
397
|
Engstrom CM, Demers D, Dooner M, McAuliffe C, Benoit BO, Stencel K, Joly M, Hulspas R, Reilly JL, Savarese T, Recht LD, Ross AH, Quesenberry PJ. A method for clonal analysis of epidermal growth factor-responsive neural progenitors. J Neurosci Methods 2002; 117:111-21. [PMID: 12100976 DOI: 10.1016/s0165-0270(02)00074-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Epidermal growth factor (EGF) responsive neural progenitors are defined by clonal growth from single cells. In previous studies we were unable to obtain clones at single cell densities using trypsinized cells and trituration alone always gave cellular aggregates. Here we report on single cell derived clones using a technique involving trituration of EGF responsive neurospheres, cell filtration, and single cell sorting using a MoFlo high speed fluorescence activated cell sorter. Single cell deposition was confirmed by labeling cells with Hoechst 33342 and Flow-check Fluorospheres, and visualization by fluorescence microscopy. The cells were deposited into liquid medium and grown from single cells in 10-20 ng/ml EGF for 12-14 days. This gave a cloning efficiency of 2.12%+/-0.37. New colonies occurred as late as day 18 post-sort. Tritiated thymidine suicide indicates that a percentage of these cells are cycling. Immunohistochemical analysis for oligodendrocytes, astroglia, and neuronal lineages performed on colonies at 10-14 and 21-28 days gave 39% uni-lineage, 36% bi-lineage, and 25% tri-lineage colonies. A total of five different types of progenitor cells were observed. In individual colonies, oligodendrons predominated with a lesser presence of astroglial or neuronal cell types. This approach establishes a reliable and reproducible method for single cell cloning of neurosphere cells.
Collapse
Affiliation(s)
- Caron M Engstrom
- Department of Neurology, Cancer Center, University of Massachusetts Medical Center, Worcester, MA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
398
|
Nakashima K, Taga T. Mechanisms underlying cytokine-mediated cell-fate regulation in the nervous system. Mol Neurobiol 2002; 25:233-44. [PMID: 12109873 DOI: 10.1385/mn:25:3:233] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Neurons, astrocytes, and oligodendrocytes, the three major cell types in the nervous system, are generated from common neural stem cells during development. Recent studies have provided evidence that neural stem cells are preserved in the adult brain, where, until recently, neurogenesis had not been considered to take place. The mechanisms that gOvern the fate of neural stem-cell determination have yet to be clarified. It is becoming apparent that soluble protein mediators referred to as cytokines play critical roles in cell-fate determination. For instance, bone morphogenetic proteins (BMPs) alter the fate of developing brain cells from a neurogenic differentiation to an astrocytic one. Different types of cytokines sometimes cooperate to modulate differentiation. For example, the interleukin-6 (IL-6) family cytokines and the BMP family cytokines act in synergy to elaborate astrocyte differentiation. In this review, we focus on recent progress that addresses the molecular mechanisms whereby cytokines regulate the fate of cells in neural lineages. We also discuss possible clinical applications of these findings to minimize the undesirable gliogenesis that occurs after neural stem-cell implantation and nerve injury.
Collapse
Affiliation(s)
- Kinichi Nakashima
- Department of Cell Fate Modulation, Institute of Molecular Embryology and Genetics, Kumamoto University, Japan
| | | |
Collapse
|
399
|
|
400
|
Magavi SS, Macklis JD. Manipulation of neural precursors in situ toward induction of neurogenesis in the adult brain: Potential and limitations. ACTA ACUST UNITED AC 2002. [DOI: 10.1016/s1566-2772(02)00006-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|