351
|
Abstract
Targeted gene mutations have established distinct, yet overlapping, developmental roles for receptors of the insulin/IGF family. IGF-I receptor mediates IGF-I and IGF-II action on prenatal growth and IGF-I action on postnatal growth. Insulin receptor mediates prenatal growth in response to IGF-II and postnatal metabolism in response to insulin. In rodents, unlike humans, insulin does not participate in embryonic growth until late gestation. The ability of the insulin receptor to act as a bona fide IGF-II-dependent growth promoter is underscored by its rescue of double knockout Igf1r/Igf2r mice. Thus, IGF-II is a true bifunctional ligand that is able to stimulate both insulin and IGF-I receptor signaling, although with different potencies. In contrast, the IGF-II/cation-independent mannose-6-phosphate receptor regulates IGF-II clearance. The growth retardation of mice lacking IGF-I and/or insulin receptors is due to reduced cell number, resulting from decreased proliferation. Evidence from genetically engineered mice does not support the view that insulin and IGF receptors promote cellular differentiation in vivo or that they are required for early embryonic development. The phenotypes of insulin receptor gene mutations in humans and in mice indicate important differences between the developmental roles of insulin and its receptor in the two species.
Collapse
Affiliation(s)
- J Nakae
- Naomi Berrie Diabetes Center, Department of Medicine, College of Physicians & Surgeons of Columbia University, New York, New York 10032, USA
| | | | | |
Collapse
|
352
|
Suryawan A, Nguyen HV, Bush JA, Davis TA. Developmental changes in the feeding-induced activation of the insulin-signaling pathway in neonatal pigs. Am J Physiol Endocrinol Metab 2001; 281:E908-15. [PMID: 11595645 DOI: 10.1152/ajpendo.2001.281.5.e908] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In neonatal animals, feeding stimulates skeletal muscle protein synthesis, a response that declines with development. Both the magnitude of the feeding response and its developmental decline can be reproduced by insulin infusion, suggesting that an altered responsiveness to insulin is a primary determinant of the developmental decline in the stimulation of protein synthesis by feeding. In this study, 7- and 26-day-old pigs were either fasted overnight or fed porcine milk after an overnight fast. We examined the abundance and degree of tyrosine phosphorylation of the insulin receptor (IR), insulin receptor substrate-1 (IRS-1), and IRS-2 in skeletal muscle and, for comparison, liver. We also evaluated the association of IRS-1 and IRS-2 with phosphatidylinositol 3-kinase (PI 3-kinase). The abundance of IR protein in muscle was twofold higher at 7 than at 26 days, but IRS-1 and IRS-2 abundances were similar in muscle of 7- and 26-day-old pigs. The feeding-induced phosphorylations were greater at 7 than at 26 days of age for IR (28- vs. 13-fold), IRS-1 (14- vs. 8-fold), and IRS-2 (21- vs. 12-fold) in muscle. The associations of IRS-1 and IRS-2 with PI 3-kinase were also increased by refeeding to a greater extent at 7 than at 26 days (9- vs. 5-fold and 6- vs. 4-fold, respectively). In liver, the abundance of IR, IRS-1, and IRS-2 was similar at 7 and 26 days of age. Feeding increased the activation of IR, IRS-1, IRS-2, and PI 3-kinase in liver only twofold, and these responses were unaffected by age. Thus our findings demonstrate that the feeding-induced activation of IR, IRS-1, IRS-2, and PI 3-kinase in skeletal muscle decreases with development. Further study is needed to ascertain whether the developmental decline in the feeding-induced activation of early insulin-signaling components contributes to the developmental decline in translation initiation in skeletal muscle.
Collapse
Affiliation(s)
- A Suryawan
- United States Department of Agriculture/Agricultural Research Service, Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
353
|
Xiao J, Gregersen S, Kruhøffer M, Pedersen SB, Ørntoft TF, Hermansen K. The effect of chronic exposure to fatty acids on gene expression in clonal insulin-producing cells: studies using high density oligonucleotide microarray. Endocrinology 2001; 142:4777-84. [PMID: 11606444 DOI: 10.1210/endo.142.11.8483] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Fatty acids affect insulin secretion of pancreatic beta-cells. Investigating gene expression profiles may help to characterize the underlying mechanism. INS-1 cells were cultured with palmitate (0, 50, and 200 microM) for up to 44 d. Insulin secretion and expressions of 8740 genes were studied. We found that basal insulin secretion increased in cells exposed to palmitate. The response to glucose stimulation declined on d 44 in cells cultured at 200 microM palmitate. In response to 50 and 200 microM palmitate exposure, expression was changed in 11 and 99 genes on d 2 and 134 and in 159 genes on d 44, respectively. Genes involved in fatty acid oxidation were up-regulated, whereas those involved in glycolysis were down-regulated with 200 microM palmitate. A suppression of insulin receptor and insulin receptor substate-2 gene expression was found on d 44 in cells cultured at 200 microM palmitate. In conclusion, chronic exposure to low palmitate alters insulin secretion as well as gene expression. The number of genes that changed expression was palmitate dose and exposure time dependent. Randle's fatty acid-glucose cycle seems to be operative on the gene transcription level. A modification of expression of various genes may contribute to the functional changes.
Collapse
Affiliation(s)
- J Xiao
- Department of Endocrinology and Metabolism C, Aarhus University Hospital, 8000 Aarhus C, Denmark
| | | | | | | | | | | |
Collapse
|
354
|
Tobe K, Suzuki R, Aoyama M, Yamauchi T, Kamon J, Kubota N, Terauchi Y, Matsui J, Akanuma Y, Kimura S, Tanaka J, Abe M, Ohsumi J, Nagai R, Kadowaki T. Increased expression of the sterol regulatory element-binding protein-1 gene in insulin receptor substrate-2(-/-) mouse liver. J Biol Chem 2001; 276:38337-40. [PMID: 11546755 DOI: 10.1074/jbc.c100160200] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Insulin receptor substrate (IRS)-2(-/-) mice develop diabetes because of insulin resistance in the liver and failure to undergo beta-cell hyperplasia. Here we show by DNA chip microarray analysis that expression of the sterol regulatory element-binding protein (SREBP)-1 gene, a downstream target of insulin, was paradoxically increased in 16-week-old IRS-2(-/-) mouse liver, where insulin-mediated intracellular signaling events were substantially attenuated. The expression of SREBP-1 downstream genes, such as the spot 14, ATP citrate-lyase, and fatty acid synthase genes, was also increased. Increased liver triglyceride content in IRS-2(-/-) mice assures the physiological importance of SREBP-1 gene induction. IRS-2(-/-) mice showed leptin resistance; low dose leptin administration, enough to reduce food intake and body weight in wild-type mice, failed to do so in IRS-2(-/-) mice. Interestingly, high dose leptin administration reduced SREBP-1 expression in IRS-2(-/-) mouse liver. Thus, IRS-2 gene disruption results in leptin resistance, causing an SREBP-1 gene induction, obesity, fatty liver, and diabetes.
Collapse
Affiliation(s)
- K Tobe
- Department of Internal Medicine, Graduate School of Medicine, University of Tokyo, Tokyo 113-8655, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
355
|
Cho H, Thorvaldsen JL, Chu Q, Feng F, Birnbaum MJ. Akt1/PKBalpha is required for normal growth but dispensable for maintenance of glucose homeostasis in mice. J Biol Chem 2001; 276:38349-52. [PMID: 11533044 DOI: 10.1074/jbc.c100462200] [Citation(s) in RCA: 750] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The serine-threonine kinase Akt, also known as protein kinase B (PKB), is an important effector for phosphatidylinositol 3-kinase signaling initiated by numerous growth factors and hormones. Akt2/PKBbeta, one of three known mammalian isoforms of Akt/PKB, has been demonstrated recently to be required for at least some of the metabolic actions of insulin (Cho, H., Mu, J., Kim, J. K., Thorvaldsen, J. L., Chu, Q., Crenshaw, E. B., Kaestner, K. H., Bartolomei, M. S., Shulman, G. I., and Birnbaum, M. J. (2001) Science 292, 1728-1731). Here we show that mice deficient in another closely related isoform of the kinase, Akt1/PKBalpha, display a conspicuous impairment in organismal growth. Akt1(-/-) mice demonstrated defects in both fetal and postnatal growth, and these persisted into adulthood. However, in striking contrast to Akt2/PKBbeta null mice, Akt1/PKBalpha-deficient mice are normal with regard to glucose tolerance and insulin-stimulated disposal of blood glucose. Thus, the characterization of the Akt1 knockout mice and its comparison to the previously reported Akt2 deficiency phenotype reveals the non-redundant functions of Akt1 and Akt2 genes with respect to organismal growth and insulin-regulated glucose metabolism.
Collapse
Affiliation(s)
- H Cho
- Department of Biology, University of Pennsylvania, Philadelphia 19104, USA
| | | | | | | | | |
Collapse
|
356
|
Guerra C, Navarro P, Valverde AM, Arribas M, Brüning J, Kozak LP, Kahn CR, Benito M. Brown adipose tissue-specific insulin receptor knockout shows diabetic phenotype without insulin resistance. J Clin Invest 2001; 108:1205-13. [PMID: 11602628 PMCID: PMC209529 DOI: 10.1172/jci13103] [Citation(s) in RCA: 164] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Although insulin regulates metabolism in both brown and white adipocytes, the role of these tissues in energy storage and utilization is quite different. Recombination technology using the Cre-loxP approach allows inactivation of the insulin receptor in a tissue-specific manner. Mice lacking insulin receptors in brown adipocytes show an age-dependent loss of interscapular brown fat but increased expression of uncoupling protein-1 and -2. In parallel, these mice develop an insulin-secretion defect resulting in a progressive glucose intolerance, without insulin resistance. This model provides direct evidence for not only a role for the insulin receptors in brown fat adipogenesis, the data also suggest a novel role of brown adipose tissue in the regulation of insulin secretion and glucose homeostasis.
Collapse
Affiliation(s)
- C Guerra
- Jackson Laboratory, Bar Harbor, Minnesota, USA
| | | | | | | | | | | | | | | |
Collapse
|
357
|
Sesti G, Federici M, Hribal ML, Lauro D, Sbraccia P, Lauro R. Defects of the insulin receptor substrate (IRS) system in human metabolic disorders. FASEB J 2001; 15:2099-111. [PMID: 11641236 DOI: 10.1096/fj.01-0009rev] [Citation(s) in RCA: 257] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Insulin receptor substrate (IRS) molecules are key mediators in insulin signaling and play a central role in maintaining basic cellular functions such as growth, survival, and metabolism. They act as docking proteins between the insulin receptor and a complex network of intracellular signaling molecules containing Src homology 2 (SH2) domains. Four members (IRS-1, IRS-2, IRS-3, IRS-4) of this family have been identified that differ as to tissue distribution, subcellular localization, developmental expression, binding to the insulin receptor, and interaction with SH2 domain-containing proteins. Results from targeted disruption of the IRS genes in mice have provided important clues to the functional differences among these related molecules, suggesting they play different and specific roles in vivo. The available data are consistent with the notion that IRS-1 and IRS-2 are not functionally interchangeable in tissues that are responsible for glucose production (liver), glucose uptake (skeletal muscle and adipose tissue), and insulin production (pancreatic beta cells). In fact, IRS-1 appears to have its major role in skeletal muscle whereas IRS-2 appears to regulate hepatic insulin action as well as pancreatic beta cell development and survival. By contrast, IRS-3 and IRS-4 genes appear to play a redundant role in the IRS signaling system. Defects in muscle IRS-1 expression and function have been reported in insulin-resistant states such as obesity and type 2 diabetes. Several polymorphisms in the IRS genes have been identified, but only the Gly-->Arg972 substitution of IRS-1, interacting with environmental factors, seems to have a pathogenic role in the development of type 2 diabetes. In contrast, polymorphisms of the other IRS genes do not appear to contribute to type 2 diabetes.
Collapse
Affiliation(s)
- G Sesti
- Department of Experimental and Clinical Medicine, University of Catanzaro-Magna Graecia, 88100 Catanzaro, Italy.
| | | | | | | | | | | |
Collapse
|
358
|
Holzenberger M, Hamard G, Zaoui R, Leneuve P, Ducos B, Beccavin C, Périn L, Le Bouc Y. Experimental IGF-I receptor deficiency generates a sexually dimorphic pattern of organ-specific growth deficits in mice, affecting fat tissue in particular. Endocrinology 2001; 142:4469-78. [PMID: 11564712 DOI: 10.1210/endo.142.10.8461] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Reduced IGF type I receptor levels diminish postnatal growth rate and adult body weight in mice. Here, we studied the impact of experimental IGF receptor deficiency on tissue-specific growth by Cre-lox-mediated dosage of a floxed IGF-IR gene. We generated mice with a wide spectrum of receptor deficiency (5-82%), and separated them into two groups with either strong (> or =50%) IGF-IR deficiency (XS mice) or moderate deficiency (<50%, M mice). The growth of XS mice was significantly retarded from 3 wk after birth onward, with respect to M littermates. This effect was twice as strong in males as in females. Growth deficits persisted throughout adult life, and at 10-12 months, most organs and tissues showed specific weight defects. Skin, bone and connective tissue, muscle, spleen, heart, lung, and brain were the most severely affected organs in the XS males. With the exception of muscle and spleen, the same tissues were also significantly reduced in size in females, although to a lesser extent. The most severe growth defect, however, concerned adipose tissue. Fat pad size in XS males was only 29% (females, 44%) of M mice. The estimated number of adipocytes in XS male fat pads was only 21% that of M males (XS female, 27%). Lipid content per cell was significantly higher in XS adipocytes, whereas plasma glucose and insulin levels were low in XS males. Thus, IGF type I receptor deficiency produced mice with disproportionate postnatal organ growth, and these effects depended strongly on sex. A marked reduction in IGF-IR levels resulted in a major defect in adipose tissue.
Collapse
Affiliation(s)
- M Holzenberger
- INSERM, U-515, Hôpital Saint-Antoine, 75571 Paris, France.
| | | | | | | | | | | | | | | |
Collapse
|
359
|
Tuttle RL, Gill NS, Pugh W, Lee JP, Koeberlein B, Furth EE, Polonsky KS, Naji A, Birnbaum MJ. Regulation of pancreatic beta-cell growth and survival by the serine/threonine protein kinase Akt1/PKBalpha. Nat Med 2001; 7:1133-7. [PMID: 11590437 DOI: 10.1038/nm1001-1133] [Citation(s) in RCA: 411] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The physiological performance of an organ depends on an interplay between changes in cellular function and organ size, determined by cell growth, proliferation and death. Nowhere is this more evident than in the endocrine pancreas, where disturbances in function or mass result in severe disease. Recently, the insulin signal-transduction pathway has been implicated in both the regulation of hormone secretion from beta cells in mammals as well as the determination of cell and organ size in Drosophila melanogaster. A prominent mediator of the actions of insulin and insulin-like growth factor 1 (IGF-1) is the 3'-phosphoinositide-dependent protein kinase Akt, also known as protein kinase B (PKB). Here we report that overexpression of active Akt1 in the mouse beta cell substantially affects compartment size and function. There was a significant increase in both beta-cell size and total islet mass, accompanied by improved glucose tolerance and complete resistance to experimental diabetes.
Collapse
Affiliation(s)
- R L Tuttle
- Howard Hughes Medical Institute, Department of Internal Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
360
|
Richards RG, Klotz DM, Bush MR, Walmer DK, DiAugustine RP. E2-induced degradation of uterine insulin receptor substrate-2: requirement for an IGF-I-stimulated, proteasome-dependent pathway. Endocrinology 2001; 142:3842-9. [PMID: 11517161 DOI: 10.1210/endo.142.9.8370] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The insulin receptor substrates are docking proteins that bind various receptor tyrosine kinases and signaling proteins. Previous studies have shown that E2 or progesterone can regulate the relative abundance of insulin receptor substrate-1 and -2 in cells and tissues. For instance, uterine insulin receptor substrate-2 was decreased markedly at 24 h after E2 treatment of mice. In the present study we used various in vivo experimental approaches to examine the mechanism by which E2 influences uterine insulin receptor substrate-2 expression. Uterine insulin receptor substrate-2 mRNA levels were diminished after E2 treatment, but this diminution did not account for the total reduction in insulin receptor substrate-2 protein, suggesting that the E2-induced decrease in insulin receptor substrate-2 is not regulated solely at the mRNA level. Cotreatment with progesterone prevented the E2-stimulated reduction in insulin receptor substrate-2 protein at 24 h after hormone exposure. In addition, MG-132 and epoxomicin, inhibitors of proteasomal protease activity, inhibited the E2-induced decrease in uterine insulin receptor substrate-2 protein levels, and this correlated to an increase in uterine protein ubiquitination. Insulin receptor substrate-2 protein was diminished in uteri of E2-treated insulin receptor substrate-1-null mutant mice, but not in E2-treated IGF-I-null mutant mice. Furthermore, E2-induced diminution of uterine insulin receptor substrate-2 protein was only partially inhibited in the presence of wortmannin, a PI3K inhibitor. Collectively, these data suggest that the E2-induced decrease in uterine insulin receptor substrate-2 requires IGF-I signaling, is not dependent solely on insulin receptor substrate-1 and PI3K, and is blocked by progesterone as well as by pharmacological inhibition of proteasomal protease activity. We speculate that the IGF-I-activated IGF-I receptor, in response to E2, directly or indirectly modifies insulin receptor substrate-2, probably through phosphorylation, leading to ubiquitination and subsequent degradation of this docking protein by the proteasome. This degradation could be a regulatory step to inhibit insulin receptor substrate-2-dependent signaling in the uterus.
Collapse
Affiliation(s)
- R G Richards
- Hormones and Cancer Group, Laboratory of Molecular Carcinogenesis, National Institute of Environmental and Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| | | | | | | | | |
Collapse
|
361
|
Rachdi L, El Ghazi L, Bernex F, Panthier JJ, Czernichow P, Scharfmann R. Expression of the receptor tyrosine kinase KIT in mature beta-cells and in the pancreas in development. Diabetes 2001; 50:2021-8. [PMID: 11522667 DOI: 10.2337/diabetes.50.9.2021] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In the pancreas, ligands of receptor tyrosine kinases (RTKs) are thought to be implicated in the development and function of the islets of Langerhans, which represent the endocrine part of the pancreas. In a previous study, we randomly screened by reverse transcriptase-polymerase chain reaction for RTKs expressed in the embryonic pancreas. One cDNA fragment that was cloned during this screen corresponded to the KIT receptor. The objective of the present study was to analyze the pattern of Kit expression in the pancreas. We demonstrated that Kit is expressed and functional in terms of signal transduction in the insulin-producing cell line INS-1. Indeed, upon treatment with the KIT ligand (KITL), the extracellular signal-regulated protein kinase was phosphorylated, and the expression of early responsive genes was induced. We also demonstrated that Kit mRNAs are present in fetal and adult rat islets. We next used mice that had integrated the lacZ reporter gene into the Kit locus. In these mice, beta-galactosidase (beta-gal) served as a convenient marker for expression of the endogenous Kit gene. Kit was found to be specifically transcribed in beta-cells (insulin-expressing cells), whereas no expression was found in other endocrine cell types or in the exocrine tissue. Interestingly, not all mature beta-cells expressed Kit, indicating that Kit is a marker of a subpopulation of beta-cells. Finally, by following beta-gal expression in the pancreas during fetal life, we found that at E14.5, Kit is expressed in both insulin- and glucagon-expressing cells present at that stage, and also in a specific cell population present in the epithelium that stained negative for endocrine markers. These data suggest that these Kit-positive/endocrine-negative cells could represent a subpopulation of endocrine cell precursors.
Collapse
Affiliation(s)
- L Rachdi
- Institut National de la Santé et de la Recherche Médicale U457, Hospital R. Debré, Paris, France
| | | | | | | | | | | |
Collapse
|
362
|
Kitamura T, Kido Y, Nef S, Merenmies J, Parada LF, Accili D. Preserved pancreatic beta-cell development and function in mice lacking the insulin receptor-related receptor. Mol Cell Biol 2001; 21:5624-30. [PMID: 11463843 PMCID: PMC87283 DOI: 10.1128/mcb.21.16.5624-5630.2001] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Receptors of the insulin/insulinlike growth factor (IGF) family have been implicated in the regulation of pancreatic beta-cell growth and insulin secretion. The insulin receptor-related receptor (IRR) is an orphan receptor of the insulin receptor gene (Ir) subfamily. It is expressed at considerably higher levels in beta cells than either insulin or IGF-1 receptors, and it has been shown to engage in heterodimer formation with insulin or IGF-1 receptors. To address whether IRR plays a physiologic role in beta-cell development and regulation of insulin secretion, we have characterized mice lacking IRR and generated a combined knockout of Ir and Irr. We report that islet morphology, beta-cell mass, and secretory function are not affected in IRR-deficient mice. Moreover, lack of IRR does not impair compensatory beta-cell hyperplasia in insulin-resistant Ir(+/-) mice, nor does it affect beta-cell development and function in Ir(-/-) mice. We conclude that glucose-stimulated insulin secretion and embryonic beta-cell development occur normally in mice lacking Irr.
Collapse
Affiliation(s)
- T Kitamura
- Naomi Berrie Diabetes Center and Department of Medicine, College of Physicians & Surgeons of Columbia University, New York, New York 10032, USA
| | | | | | | | | | | |
Collapse
|
363
|
Sone H, Suzuki H, Takahashi A, Yamada N. Disease model: hyperinsulinemia and insulin resistance. Part A-targeted disruption of insulin signaling or glucose transport. Trends Mol Med 2001; 7:320-2. [PMID: 11425641 DOI: 10.1016/s1471-4914(01)02041-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Insulin resistance and hyperinsulinemia are common pathophysiological features of several metabolic diseases, obesity and diabetes being two notable examples. In this article we review how the use of animal models has increased our understanding of insulin resistance and hyperinsulinemia, with a particular emphasis on the use of mice with targeted disruptions of the insulin signaling pathway.
Collapse
Affiliation(s)
- H Sone
- Department of Internal Medicine, Institute of Clinical Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba City, (305-8575), Ibaraki, Japan
| | | | | | | |
Collapse
|
364
|
Federici M, Hribal M, Perego L, Ranalli M, Caradonna Z, Perego C, Usellini L, Nano R, Bonini P, Bertuzzi F, Marlier LN, Davalli AM, Carandente O, Pontiroli AE, Melino G, Marchetti P, Lauro R, Sesti G, Folli F. High glucose causes apoptosis in cultured human pancreatic islets of Langerhans: a potential role for regulation of specific Bcl family genes toward an apoptotic cell death program. Diabetes 2001; 50:1290-301. [PMID: 11375329 DOI: 10.2337/diabetes.50.6.1290] [Citation(s) in RCA: 242] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Type 2 diabetes is characterized by insulin resistance and inadequate insulin secretion. In the advanced stages of the disease, beta-cell dysfunction worsens and insulin therapy may be necessary to achieve satisfactory metabolic control. Studies in autopsies found decreased beta-cell mass in pancreas of people with type 2 diabetes. Apoptosis, a constitutive program of cell death modulated by the Bcl family genes, has been implicated in loss of beta-cells in animal models of type 2 diabetes. In this study, we compared the effect of 5 days' culture in high glucose concentration (16.7 mmol/l) versus normal glucose levels (5.5 mmol/l) or hyperosmolar control (mannitol 11 mmol/l plus glucose 5 mmol/l) on the survival of human pancreatic islets. Apoptosis, analyzed by flow cytometry and electron and immunofluorescence microscopy, was increased in islets cultured in high glucose (HG5) as compared with normal glucose (NG5) or hyperosmolar control (NG5+MAN5). We also analyzed by reverse transcriptase-polymerase chain reaction and Western blotting the expression of the Bcl family genes in human islets cultured in normal glucose or high glucose. The antiapoptotic gene Bcl-2 was unaffected by glucose change, whereas Bcl-xl was reduced upon treatment with HG5. On the other hand, proapoptotic genes Bad, Bid, and Bik were overexpressed in the islets maintained in HG5. To define the pancreatic localization of Bcl proteins, we performed confocal immunofluorescence analysis on human pancreas. Bad and Bid were specifically expressed in beta-cells, and Bid was also expressed, although at low levels, in the exocrine pancreas. Bik and Bcl-xl were expressed in other endocrine islet cells as well as in the exocrine pancreas. These data suggest that in human islets, high glucose may modulate the balance of proapoptotic and antiapoptotic Bcl proteins toward apoptosis, thus favoring beta-cell death.
Collapse
Affiliation(s)
- M Federici
- Laboratory of Molecular Medicine, Department of Internal Medicine, University of Rome Tor Vergata, 00133 Rome, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
365
|
Zabolotny JM, Kim YB, Peroni OD, Kim JK, Pani MA, Boss O, Klaman LD, Kamatkar S, Shulman GI, Kahn BB, Neel BG. Overexpression of the LAR (leukocyte antigen-related) protein-tyrosine phosphatase in muscle causes insulin resistance. Proc Natl Acad Sci U S A 2001; 98:5187-92. [PMID: 11309481 PMCID: PMC33185 DOI: 10.1073/pnas.071050398] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Previous reports indicate that the expression and/or activity of the protein-tyrosine phosphatase (PTP) LAR are increased in insulin-responsive tissues of obese, insulin-resistant humans and rodents, but it is not known whether these alterations contribute to the pathogenesis of insulin resistance. To address this question, we generated transgenic mice that overexpress human LAR, specifically in muscle, to levels comparable to those reported in insulin-resistant humans. In LAR-transgenic mice, fasting plasma insulin was increased 2.5-fold compared with wild-type controls, whereas fasting glucose was normal. Whole-body glucose disposal and glucose uptake into muscle in vivo were reduced by 39-50%. Insulin injection resulted in normal tyrosyl phosphorylation of the insulin receptor and insulin receptor substrate 1 (IRS-1) in muscle of transgenic mice. However, phosphorylation of IRS-2 was reduced by 62%, PI3' kinase activity associated with phosphotyrosine, IRS-1, or IRS-2 was reduced by 34-57%, and association of p85alpha with both IRS proteins was reduced by 39-52%. Thus, overexpression of LAR in muscle causes whole-body insulin resistance, most likely due to dephosphorylation of specific regulatory phosphotyrosines on IRS proteins. Our data suggest that increased expression and/or activity of LAR or related PTPs in insulin target tissues of obese humans may contribute to the pathogenesis of insulin resistance.
Collapse
Affiliation(s)
- J M Zabolotny
- Division of Endocrinology and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, and Harvard Medical School, 99 Brookline Avenue, Boston, MA 02215, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
366
|
Valverde AM, Mur C, Pons S, Alvarez AM, White MF, Kahn CR, Benito M. Association of insulin receptor substrate 1 (IRS-1) y895 with Grb-2 mediates the insulin signaling involved in IRS-1-deficient brown adipocyte mitogenesis. Mol Cell Biol 2001; 21:2269-80. [PMID: 11259577 PMCID: PMC86861 DOI: 10.1128/mcb.21.7.2269-2280.2001] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have recently generated immortalized fetal brown adipocyte cell lines from insulin receptor substrate 1 (IRS-1) knockout mice and demonstrated an impairment in insulin-induced lipid synthesis as compared to wild-type cell lines. In this study, we investigated the consequences of IRS-1 deficiency on mitogenesis in response to insulin. The lack of IRS-1 resulted in the inability of insulin-stimulated IRS-1-deficient brown adipocytes to increase DNA synthesis and enter into S/G2/M phases of the cell cycle. These cells showed a severe impairment in activating mitogen-activated protein kinase kinase (MEK1/2) and p42-p44 mitogen-activated protein kinase (MAPK) upon insulin stimulation. IRS-1-deficient cells also lacked tyrosine phosphorylation of SHC and showed no SHC-Grb-2 association in response to insulin. The mitogenic response to insulin could be partially restored by enhancing IRS-2 tyrosine phosphorylation and its association with Grb-2 by inhibition of phosphatidylinositol 3-kinase activity through a feedback mechanism. Reconstitution of IRS-1-deficient brown adipocytes with wild-type IRS-1 restored insulin-induced IRS-1 and SHC tyrosine phosphorylation and IRS-1-Grb-2, IRS-1-SHC, and SHC-Grb-2 associations, leading to the activation of MAPK and enhancement of DNA synthesis. Reconstitution of IRS-1-deficient brown adipocytes with the IRS-1 mutant Tyr895Phe, which lacks IRS-1-Grb-2 binding, restored SHC-IRS-1 association and SHC-Grb-2 association. However, the lack of IRS-1-Grb-2 association impaired MAPK activation and DNA synthesis in insulin-stimulated mutant cells. These data provide strong evidence for an essential role of IRS-1 and its direct association with Grb-2 in the insulin signaling pathway leading to MAPK activation and mitogenesis in brown adipocytes.
Collapse
Affiliation(s)
- A M Valverde
- Departamento de Bioquímica y Biología Molecular, Centro Mixto CSIC/UCM, Facultad de Farmacia, Universidad Complutense, 28040 Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
367
|
Gogg S, Chen J, Efendic S, Smith U, Ostenson C. Effects of phosphotyrosine phosphatase inhibition on insulin secretion and intracellular signaling events in rat pancreatic islets. Biochem Biophys Res Commun 2001; 280:1161-8. [PMID: 11162649 DOI: 10.1006/bbrc.2000.4239] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Isolated rat pancreatic islets were incubated at 3.3 (low) and 16.7 (high) mM glucose with different concentrations of the phosphotyrosine phosphatase (PTP) inhibitor, peroxovanadate (pV). At low glucose, pV stimulated insulin secretion 2- to 4-fold, but it inhibited insulin secretion at 16.7 mM. The latter effect was not due to an inhibition of glucose metabolism, nor was it inhibited by pertussis toxin pretreatment. In addition, pV stimulated insulin secretion approximately 3-fold in depolarized cells at both low and high glucose. pV markedly increased the tyrosine phosphorylation of several proteins, including IRS-1 and -2, and also increased the phosphorylation of the downstream kinases PKB/Akt and MAPK. PKB/Akt, but not MAPK, was also phosphorylated in the absence of pV. Intracellular pV-stimulated tyrosine phosphorylation, including that of IRS-2, was generally increased by high glucose suggesting a further inhibition of PTP and/or enhanced tyrosine kinase activity. Thus, these data suggest that intracellular tyrosine and serine (PKB/Akt) phosphorylation are related to insulin secretion but they do not support a unique and direct link between IRS-2 tyrosine phosphorylation and glucose-stimulated insulin secretion.
Collapse
Affiliation(s)
- S Gogg
- Lundberg Laboratory for Diabetes Research, Sahlgrenska University Hospital, Goteborg, Sweden
| | | | | | | | | |
Collapse
|
368
|
Wadley GD, Tunstall RJ, Sanigorski A, Collier GR, Hargreaves M, Cameron-Smith D. Differential effects of exercise on insulin-signaling gene expression in human skeletal muscle. J Appl Physiol (1985) 2001; 90:436-40. [PMID: 11160039 DOI: 10.1152/jappl.2001.90.2.436] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Skeletal muscle insulin sensitivity is enhanced after acute exercise and short-term endurance training. We investigated the impact of exercise on the gene expression of key insulin-signaling proteins in humans. Seven untrained subjects (4 women and 3 men) completed 9 days of cycling at 63 +/- 2% of peak O(2) uptake for 60 min/day. Muscle biopsies were taken before, immediately after, and 3 h after the exercise bouts (on days 1 and 9). The gene expression of insulin receptor substrate-2 and the p85 alpha subunit of phosphatidylinositol 3-kinase was significantly higher 3 h after a single exercise bout, although short-term training ameliorated this effect. Gene expression of insulin receptor and insulin receptor substrate-1 was not significantly altered at any time point. These results suggest that exercise may have a transitory impact on the expression of insulin receptor substrate-2 and phosphatidylinositol 3-kinase; however, the predominant actions of exercise on insulin sensitivity appear not to reside in the transcriptional activation of the genes encoding major insulin-signaling proteins.
Collapse
Affiliation(s)
- G D Wadley
- School of Health Sciences, Deakin University, Burwood, Victoria 3125, Australia
| | | | | | | | | | | |
Collapse
|
369
|
Abstract
Type 2 diabetes is caused by genetic and environmental factors that affect the ability of the organism to respond to insulin. This impairment results from decreased insulin action in target tissues and insulin production in beta cells. Genetic factors play a key role in the development of type 2 diabetes. However, the inheritance of diabetes is non-Mendelian in nature because of genetic heterogeneity, polygenic pathogenesis, and incomplete penetrance. Novel insight into this complex process has been obtained from 'designer' mice bearing targeted mutations in genes of the insulin action and insulin secretion pathways. These mutant mice are beginning to challenge established paradigms in the pathogenesis of type 2 diabetes and to shed light on the genetic interactions underlying its complex inheritance. Here we review recent progress in the field and assess its relevance to the pathogenesis of diabetes in humans.
Collapse
Affiliation(s)
- J Nakae
- Naomi Berrie Diabetes Center, Department of Medicine, College of Physicians & Surgeons of Columbia University, New York, NY, USA
| | | | | |
Collapse
|
370
|
Affiliation(s)
- S K Kim
- Department of Developmental Biology and Medicine, Division of Oncology, Stanford University, Stanford, California, 94305-5329, USA.
| | | |
Collapse
|
371
|
Federici M, Hribal ML, Ranalli M, Marselli L, Porzio O, Lauro D, Borboni P, Lauro R, Marchetti P, Melino G, Sesti G. The common Arg972 polymorphism in insulin receptor substrate-1 causes apoptosis of human pancreatic islets. FASEB J 2001; 15:22-24. [PMID: 11099486 DOI: 10.1096/fj.00-0414fje] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Molecular scanning of human IRS-1 gene revealed a common polymorphism causing Gly-->Arg972 change. Diabetic and pre-diabetic carriers of Arg972 IRS-1 are characterized by low fasting levels of insulin and C-peptide. To investigate directly whether the Arg 972 IRS-1 affects human islet cells survival, we took advantage of the unique opportunity to analyze pancreatic islets isolated from three donors heterozygous for the Arg972 and six donors carrying wild-type IRS-1. Islets from carriers of Arg972 IRS-1 showed a two-fold increase in the number of apoptotic cells as compared with wild-type. IRS-1-associated PI3-kinase activity was decreased in islets from carriers of Arg972 IRS-1. Same results were reproduced in RIN rat b-cell lines stably expressing wild-type IRS-1 or Arg972 IRS-1. Using these cells, we characterized the downstream pathway by which Arg972 IRS-1 impairs b-cell survival. RIN-Arg972 cells exhibited a marked impairment in the sequential activation of PI3-kinase, Akt, and BAD as compared with RI N-WT. Impaired BAD phosphorylation resulted in increased binding to Bcl-XL instead of 14-3-3 protein, thus sequestering the Bcl-XL antiapoptotic protein to promote survival. Both caspase-9 and caspase-3 activities were increased in RIN-Arg972 cells. The results show that the common Arg972 polymorphism in IRS-1 impairs human b-cell survival and causes resistance to antiapoptotic effects of insulin by affecting the PI3-kinase/Akt survival pathway. These findings establish an important role for the insulin signaling in human b-cell survival and suggest that genetic defects in early steps of insulin signaling may contribute to b-cell failure.
Collapse
Affiliation(s)
- M Federici
- Laboratory of Molecular Medicine, Department of Internal Medicine, University of Rome-'Tor Vergata', 00133 Rome, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
372
|
Smith U, Gogg S, Johansson A, Olausson T, Rotter V, Svalstedt B. Thiazolidinediones (PPARgamma agonists) but not PPARalpha agonists increase IRS-2 gene expression in 3T3-L1 and human adipocytes. FASEB J 2001; 15:215-220. [PMID: 11149909 DOI: 10.1096/fj.00-0020com] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Thiazolidinediones (TZD) improve insulin sensitivity in human as well as in different animal models of insulin resistance and Type 2 diabetes. However, no clear link to the insulin signaling events has been identified. Using differentiated 3T3-L1 adipocytes, we found that TZD rapidly and markedly increased IRS-2 gene expression. This effect was specific for PPARgamma agonists and was not seen with PPARalpha agonists. It was rapidly induced (within 4 h) and maintained throughout the observation period of 48 h. It was also concentration dependent (EC50 approximately 50 nM) and not inhibited by cycloheximide, suggesting a direct effect on the IRS-2 promoter. There was no evidence that TZD altered IRS-2 mRNA stability, supporting that the increased mRNA levels were due to an increased gene transcription. IRS-2 protein expression was increased approximately 30% after 48 h and approximately 50% after 96 h. No effects of TZD were seen on IRS-1, PKB/Akt, or GLUT4 gene expression. TZD also increased IRS-2 mRNA levels in cultured human adipose tissue. These data show the first direct link between TZD and a critical molecule in insulin's signaling cascade in both 3T3-L1 and human adipocytes, and indicate a novel mode of action of these compounds.
Collapse
Affiliation(s)
- U Smith
- The Lundberg Laboratory for Diabetes Research, Department of Internal Medicine, Goteborg University, Sahlgrenska University Hospital, S-413 45 Goteborg, Sweden.
| | | | | | | | | | | |
Collapse
|
373
|
Kulkarni RN, Kahn CR. Genetic models of Insulin Resistance:Alterations in β-cell biology. MOLECULAR BASIS OF PANCREAS DEVELOPMENT AND FUNCTION 2001. [DOI: 10.1007/978-1-4615-1669-9_18] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
374
|
An Historical and Phylogenetic Perspective of Islet-Cell Development. MOLECULAR BASIS OF PANCREAS DEVELOPMENT AND FUNCTION 2001. [DOI: 10.1007/978-1-4615-1669-9_1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
375
|
Pende M, Kozma SC, Jaquet M, Oorschot V, Burcelin R, Le Marchand-Brustel Y, Klumperman J, Thorens B, Thomas G. Hypoinsulinaemia, glucose intolerance and diminished beta-cell size in S6K1-deficient mice. Nature 2000; 408:994-7. [PMID: 11140689 DOI: 10.1038/35050135] [Citation(s) in RCA: 372] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Insulin controls glucose homeostasis by regulating glucose use in peripheral tissues, and its own production and secretion in pancreatic beta cells. These responses are largely mediated downstream of the insulin receptor substrates, IRS-1 and IRS-2 (refs 4-8), through distinct signalling pathways. Although a number of effectors of these pathways have been identified, their roles in mediating glucose homeostasis are poorly defined. Here we show that mice deficient for S6 kinase 1, an effector of the phosphatidylinositide-3-OH kinase signalling pathway, are hypoinsulinaemic and glucose intolerant. Whereas insulin resistance is not observed in isolated muscle, such mice exhibit a sharp reduction in glucose-induced insulin secretion and in pancreatic insulin content. This is not due to a lesion in glucose sensing or insulin production, but to a reduction in pancreatic endocrine mass, which is accounted for by a selective decrease in beta-cell size. The observed phenotype closely parallels those of preclinical type 2 diabetes mellitus, in which malnutrition-induced hypoinsulinaemia predisposes individuals to glucose intolerance.
Collapse
Affiliation(s)
- M Pende
- Friedrich Miescher Institute, Basel, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
376
|
Previs SF, Withers DJ, Ren JM, White MF, Shulman GI. Contrasting effects of IRS-1 versus IRS-2 gene disruption on carbohydrate and lipid metabolism in vivo. J Biol Chem 2000; 275:38990-4. [PMID: 10995761 DOI: 10.1074/jbc.m006490200] [Citation(s) in RCA: 210] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
To examine the impact of homozygous genetic disruption of insulin receptor substrate (IRS)-1 (IRS-1(-/-)) or IRS-2 (IRS-2(-/-)) on basal and insulin-stimulated carbohydrate and lipid metabolism in vivo, we infused 18-h fasted mice (wild-type (WT), IRS-1(-/-), and IRS-2(-/-)) with [3-(3)H]glucose and [(2)H(5)]glycerol and assessed rates of glucose and glycerol turnover under basal (0-90 min) and hyperinsulinemic-euglycemic clamp (90-210 min; 5 mm glucose, and 5 milliunits of insulin.kg(-)(1).min(-)(1)) conditions. Both IRS-1(-)(/-) and IRS-2(-)(/-) mice were insulin-resistant as reflected by markedly impaired insulin-stimulated whole-body glucose utilization compared with WT mice. Insulin resistance in the IRS-1(-)(/-) mice could be ascribed mainly to decreased insulin-stimulated peripheral glucose metabolism. In contrast, IRS-2(-)(/-) mice displayed multiple defects in insulin-mediated carbohydrate metabolism as reflected by (i) decreased peripheral glucose utilization, (ii) decreased suppression of endogenous glucose production, and (iii) decreased hepatic glycogen synthesis. Additionally, IRS-2(-)(/-) mice also showed marked insulin resistance in adipose tissue as reflected by reduced suppression of plasma free fatty acid concentrations and glycerol turnover during the hyperinsulinemic-euglycemic clamp. These data suggest important tissue-specific roles for IRS-1 and IRS-2 in mediating the effect of insulin on carbohydrate and lipid metabolism in vivo in mice. IRS-1 appears to have its major role in muscle, whereas IRS-2 appears to impact on liver, muscle, and adipose tissue.
Collapse
Affiliation(s)
- S F Previs
- Department of Internal Medicine and the Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut 06536, USA
| | | | | | | | | |
Collapse
|
377
|
Okada T, Maeda A, Iwamatsu A, Gotoh K, Kurosaki T. BCAP: the tyrosine kinase substrate that connects B cell receptor to phosphoinositide 3-kinase activation. Immunity 2000; 13:817-27. [PMID: 11163197 DOI: 10.1016/s1074-7613(00)00079-0] [Citation(s) in RCA: 207] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Tyrosine phosphorylation of adaptor proteins permits the B cell antigen receptor (BCR)-associated protein tyrosine kinases to regulate downstream effector molecules. Here, we report the identification of a novel B cell adaptor for phosphoinositide 3-kinase (PI3K), termed BCAP. Tyrosine phosphorylation of BCAP is mediated by Syk and Btk, thereby providing binding site(s) for the p85 subunit of PI3K. Disruption of the BCAP gene in the DT40 B cell line inhibits BCR-mediated phosphatidylinositol 3,4,5-trisphosphate generation, leading to impaired Akt response. Moreover, recruitment of PI3K to glycolipid-enriched microdomains (GEMs) is significantly attenuated in the absence of BCAP. Hence, these data suggest that BCAP bridges BCR-associated kinases to the PI3K pathway by regulating PI3K localization.
Collapse
Affiliation(s)
- T Okada
- Department of Molecular Genetics, Institute for Liver Research, Kansai Medical University, Moriguchi, Japan
| | | | | | | | | |
Collapse
|
378
|
Wang H, Maechler P, Antinozzi PA, Hagenfeldt KA, Wollheim CB. Hepatocyte nuclear factor 4alpha regulates the expression of pancreatic beta -cell genes implicated in glucose metabolism and nutrient-induced insulin secretion. J Biol Chem 2000; 275:35953-9. [PMID: 10967120 DOI: 10.1074/jbc.m006612200] [Citation(s) in RCA: 163] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mutations in the HNF4alpha gene are associated with the subtype 1 of maturity-onset diabetes of the young (MODY1), which is characterized by impaired insulin secretory response to glucose in pancreatic beta-cells. Hepatocyte nuclear factor 4alpha (HNF4alpha) is a transcription factor critical for liver development and hepatocyte-specific gene expression. However, the role of HNF4alpha in the regulation of pancreatic beta-cell gene expression and its correlation with metabolism secretion coupling have not been previously investigated. The tetracycline-inducible system was employed to achieve tightly controlled expression of both wild type (WT) and dominant-negative mutant (DN) of HNF4alpha in INS-1 cells. The induction of WT-HNF4alpha resulted in a left shift in glucose-stimulated insulin secretion, whereas DN-HNF4alpha selectively impaired nutrient-stimulated insulin release. Induction of DN-HNF4alpha also caused defective mitochondrial function substantiated by reduced [(14)C]pyruvate oxidation, attenuated substrate-evoked mitochondrial membrane hyperpolarization, and blunted nutrient-generated cellular ATP production. Quantitative evaluation of HNF4alpha-regulated pancreatic beta-cell gene expression revealed altered mRNA levels of insulin, glucose transporter-2, L-pyruvate kinase, aldolase B, 2-oxoglutarate dehydrogenase E1 subunit, and mitochondrial uncoupling protein-2. The patterns of HNF4alpha-regulated gene expression are strikingly similar to that of its downstream transcription factor HNF1alpha. Indeed, HNF4alpha changed the HNF1alpha mRNA levels and HNF1alpha promoter luciferase activity through altered HNF4alpha binding. These results demonstrate the importance of HNF4alpha in beta-cell metabolism-secretion coupling.
Collapse
Affiliation(s)
- H Wang
- Division de Biochimie Clinique, Départment de Médecine Interne, Centre Médical Universitaire, CH-1211 Geneva 4, Switzerland
| | | | | | | | | |
Collapse
|
379
|
Burks DJ, Font de Mora J, Schubert M, Withers DJ, Myers MG, Towery HH, Altamuro SL, Flint CL, White MF. IRS-2 pathways integrate female reproduction and energy homeostasis. Nature 2000; 407:377-82. [PMID: 11014193 DOI: 10.1038/35030105] [Citation(s) in RCA: 317] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Severe dietary restriction, catabolic states and even short-term caloric deprivation impair fertility in mammals. Likewise, obesity is associated with infertile conditions such as polycystic ovary syndrome. The reproductive status of lower organisms such as Caenorhabditis elegans is also modulated by availability of nutrients. Thus, fertility requires the integration of reproductive and metabolic signals. Here we show that deletion of insulin receptor substrate-2 (IRS-2), a component of the insulin/insulin-like growth factor-1 signalling cascade, causes female infertility. Mice lacking IRS-2 have small, anovulatory ovaries with reduced numbers of follicles. Plasma concentrations of luteinizing hormone, prolactin and sex steroids are low in these animals. Pituitaries are decreased in size and contain reduced numbers of gonadotrophs. Females lacking IRS-2 have increased food intake and obesity, despite elevated levels of leptin. Our findings indicate that insulin, together with leptin and other neuropeptides, may modulate hypothalamic control of appetite and reproductive endocrinology. Coupled with findings on the role of insulin-signalling pathways in the regulation of fertility, metabolism and longevity in C. elegans and Drosophila, we have identified an evolutionarily conserved mechanism in mammals that regulates both reproduction and energy homeostasis.
Collapse
Affiliation(s)
- D J Burks
- Howard Hughes Medical Institute, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
380
|
Sachs M, Brohmann H, Zechner D, Müller T, Hülsken J, Walther I, Schaeper U, Birchmeier C, Birchmeier W. Essential role of Gab1 for signaling by the c-Met receptor in vivo. J Cell Biol 2000; 150:1375-84. [PMID: 10995442 PMCID: PMC2150711 DOI: 10.1083/jcb.150.6.1375] [Citation(s) in RCA: 224] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The docking protein Gab1 binds phosphorylated c-Met receptor tyrosine kinase directly and mediates signals of c-Met in cell culture. Gab1 is phosphorylated by c-Met and by other receptor and nonreceptor tyrosine kinases. Here, we report the functional analysis of Gab1 by targeted mutagenesis in the mouse, and compare the phenotypes of the Gab1 and c-Met mutations. Gab1 is essential for several steps in development: migration of myogenic precursor cells into the limb anlage is impaired in Gab1-/- embryos. As a consequence, extensor muscle groups of the forelimbs are virtually absent, and the flexor muscles reach less far. Fewer hindlimb muscles exist, which are smaller and disorganized. Muscles in the diaphragm, which also originate from migratory precursors, are missing. Moreover, Gab1-/- embryos die in a broad time window between E13.5 and E18.5, and display reduced liver size and placental defects. The labyrinth layer, but not the spongiotrophoblast layer, of the placenta is severely reduced, resulting in impaired communication between maternal and fetal circulation. Thus, extensive similarities between the phenotypes of c-Met and HGF/SF mutant mice exist, and the muscle migration phenotype is even more pronounced in Gab1-/-:c-Met+/- embryos. This is genetic evidence that Gab1 is essential for c-Met signaling in vivo. Analogy exists to signal transmission by insulin receptors, which require IRS1 and IRS2 as specific docking proteins.
Collapse
Affiliation(s)
- M Sachs
- Department of Growth and Differentiation, Max-Delbrueck-Center for Molecular Medicine, 13092 Berlin, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
381
|
Kadowaki T. Insights into insulin resistance and type 2 diabetes from knockout mouse models. J Clin Invest 2000; 106:459-65. [PMID: 10953020 PMCID: PMC380257 DOI: 10.1172/jci10830] [Citation(s) in RCA: 198] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Affiliation(s)
- T Kadowaki
- Department of Metabolic Diseases, Graduate School of Medicine, University of Tokyo, Tokyo 113-8655, Japan.
| |
Collapse
|
382
|
Rhodes CJ. Introduction: the molecular cell biology of insulin production. Semin Cell Dev Biol 2000; 11:223-5. [PMID: 10966855 DOI: 10.1006/scdb.2000.0170] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- CJ Rhodes
- Pacific Northwest Research Institute & Department of Pharmacology, University of Washington, 720 Broadway, Seattle, WA 98122, USA
| |
Collapse
|
383
|
Aspinwall CA, Qian WJ, Roper MG, Kulkarni RN, Kahn CR, Kennedy RT. Roles of insulin receptor substrate-1, phosphatidylinositol 3-kinase, and release of intracellular Ca2+ stores in insulin-stimulated insulin secretion in beta -cells. J Biol Chem 2000; 275:22331-8. [PMID: 10764813 DOI: 10.1074/jbc.m909647199] [Citation(s) in RCA: 138] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The signaling pathway by which insulin stimulates insulin secretion and increases in intracellular free Ca(2+) concentration ([Ca(2+)](i)) in isolated mouse pancreatic beta-cells and clonal beta-cells was investigated. Application of insulin to single beta-cells resulted in increases in [Ca(2+)](i) that were of lower magnitude, slower onset, and longer lifetime than that observed with stimulation with tolbutamide. Furthermore, the increases in [Ca(2+)](i) originated from interior regions of the cell rather than from the plasma membrane as with depolarizing stimuli. The insulin-induced [Ca(2+)](i) changes and insulin secretion at single beta-cells were abolished by treatment with 100 nm wortmannin or 1 micrometer thapsigargin; however, they were unaffected by 10 micrometer U73122, 20 micrometer nifedipine, or removal of Ca(2+) from the medium. Insulin-stimulated insulin secretion was also abolished by treatment with 2 micrometer bisindolylmaleimide I, but [Ca(2+)](i) changes were unaffected. In an insulin receptor substrate-1 gene disrupted beta-cell tumor line, insulin did not evoke either [Ca(2+)](i) changes or insulin secretion. The data suggest that autocrine-activated increases in [Ca(2+)](i) are due to release of intracellular Ca(2+) stores, especially the endoplasmic reticulum, mediated by insulin receptor substrate-1 and phosphatidylinositol 3-kinase. Autocrine activation of insulin secretion is mediated by the increase in [Ca(2+)](i) and activation of protein kinase C.
Collapse
Affiliation(s)
- C A Aspinwall
- Department of Chemistry, University of Florida, Gainesville, Florida 32611-7200, USA
| | | | | | | | | | | |
Collapse
|
384
|
Choi WS, Sung CK. Characterization of insulin receptor substrate 3 in rat liver derived cells. Biochem Biophys Res Commun 2000; 272:953-8. [PMID: 10860857 DOI: 10.1006/bbrc.2000.2869] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In rat liver derived HTC cells transfected with and expressing human insulin receptors, there are multiple p60-70 proteins that are tyrosine phosphorylated following insulin treatment of cells. Employing antibodies to insulin receptor substrate 3 (alpha-IRS-3), we found that IRS-3 is a major p60 phosphoprotein that is tyrosine phosphorylated following insulin treatment of cells and interacts with phosphatidylinositol-3-kinase (PI3K). Majority of IRS-3 when phosphorylated appears to interact with PI3K. Tyrosine phosphorylation of IRS-3 is robust at 2 min and steadily increases up to 30-90 min of insulin treatment. Following insulin treatment of cells, some high molecular weight phosphoproteins are coimmunoprecipitated with alpha-IRS-3. In summary, IRS-3 is the major p60 protein that is tyrosine phosphorylated and interacts with PI3K in HTC rat liver derived cells following insulin treatment of cells. Unlike related IRS-1/2 that is transiently phosphorylated, IRS-3 shows robust and prolonged tyrosine phosphorylation upon insulin treatment of cells and may play a role in delayed and/or prolonged insulin actions.
Collapse
Affiliation(s)
- W S Choi
- Department of Physiology and Biophysics, University of Southern California, Los Angeles 90033, USA
| | | |
Collapse
|
385
|
Withers DJ, White M. Perspective: The insulin signaling system--a common link in the pathogenesis of type 2 diabetes. Endocrinology 2000; 141:1917-21. [PMID: 10830270 DOI: 10.1210/endo.141.6.7584] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- D J Withers
- Department of Metabolic Medicine, Imperial College School of Medicine, London, United Kingdom
| | | |
Collapse
|
386
|
Aguirre V, Uchida T, Yenush L, Davis R, White MF. The c-Jun NH(2)-terminal kinase promotes insulin resistance during association with insulin receptor substrate-1 and phosphorylation of Ser(307). J Biol Chem 2000; 275:9047-54. [PMID: 10722755 DOI: 10.1074/jbc.275.12.9047] [Citation(s) in RCA: 1081] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Tumor necrosis factor alpha (TNFalpha) inhibits insulin action, in part, through serine phosphorylation of IRS proteins; however, the phosphorylation sites that mediate the inhibition are unknown. TNFalpha promotes multipotential signal transduction cascades, including the activation of the Jun NH(2)-terminal kinase (JNK). Endogenous JNK associates with IRS-1 in Chinese hamster ovary cells. Anisomycin, a strong activator of JNK in these cells, stimulates the activity of JNK bound to IRS-1 and inhibits the insulin-stimulated tyrosine phosphorylation of IRS-1. Serine 307 is a major site of JNK phosphorylation in IRS-1. Mutation of serine 307 to alanine eliminates phosphorylation of IRS-1 by JNK and abrogates the inhibitory effect of TNFalpha on insulin-stimulated tyrosine phosphorylation of IRS-1. These results suggest that phosphorylation of serine 307 might mediate, at least partially, the inhibitory effect of proinflammatory cytokines like TNFalpha on IRS-1 function.
Collapse
Affiliation(s)
- V Aguirre
- Howard Hughes Medical Institute, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | | | | | |
Collapse
|
387
|
Devedjian JC, George M, Casellas A, Pujol A, Visa J, Pelegrín M, Gros L, Bosch F. Transgenic mice overexpressing insulin-like growth factor-II in beta cells develop type 2 diabetes. J Clin Invest 2000; 105:731-40. [PMID: 10727441 PMCID: PMC377454 DOI: 10.1172/jci5656] [Citation(s) in RCA: 133] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
During embryonic development, insulin-like growth factor-II (IGF-II) participates in the regulation of islet growth and differentiation. We generated transgenic mice (C57BL6/SJL) expressing IGF-II in beta cells under control of the rat Insulin I promoter in order to study the role of islet hyperplasia and hyperinsulinemia in the development of type 2 diabetes. In contrast to islets from control mice, islets from transgenic mice displayed high levels of IGF-II mRNA and protein. Pancreases from transgenic mice showed an increase in beta-cell mass (about 3-fold) and in insulin mRNA levels. However, the organization of cells within transgenic islets was disrupted, with glucagon-producing cells randomly distributed throughout the core. We also observed enhanced glucose-stimulated insulin secretion and glucose utilization in islets from transgenic mice. These mice displayed hyperinsulinemia, mild hyperglycemia, and altered glucose and insulin tolerance tests, and about 30% of these animals developed overt diabetes when fed a high-fat diet. Furthermore, transgenic mice obtained from the N1 backcross to C57KsJ mice showed high islet hyperplasia and insulin resistance, but they also developed fatty liver and obesity. These results indicate that local overexpression of IGF-II in islets might lead to type 2 diabetes and that islet hyperplasia and hypersecretion of insulin might occur early in the pathogenesis of this disease.
Collapse
Affiliation(s)
- J C Devedjian
- Department of Biochemistry and Molecular Biology, School of Veterinary Medicine, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | | | | | | | | | | | | | | |
Collapse
|
388
|
Ueno H, Kondo E, Yamamoto-Honda R, Tobe K, Nakamoto T, Sasaki K, Mitani K, Furusaka A, Tanaka T, Tsujimoto Y, Kadowaki T, Hirai H. Association of insulin receptor substrate proteins with Bcl-2 and their effects on its phosphorylation and antiapoptotic function. Mol Biol Cell 2000; 11:735-46. [PMID: 10679027 PMCID: PMC14806 DOI: 10.1091/mbc.11.2.735] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Insulin receptor substrate (IRS) proteins are docking proteins that couple growth factor receptors to various effector molecules, including phosphoinositide-3 kinase, Grb-2, Syp, and Nck. Here we show that IRS-1 associates with the loop domain of Bcl-2 and synergistically up-regulates antiapoptotic function of Bcl-2. IRS-2 but not IRS-3 binds to Bcl-2, and IRS-1 associates with Bcl-XL but not with Bax or Bik. Overexpression of IRS-1 suppresses phosphorylation of Bcl-2 induced by stimulation with insulin, and the hypophosphorylation may lead to its enhanced antiapoptotic activity. The binding site for Bcl-2 is located on the carboxyl half-domain of IRS-1. IRS-3, which lacks the corresponding region, dominant-negatively abrogates the survival effects of IRS-1 and Bcl-2. For the antiapoptotic activity of IRS-1, binding to Bcl-2 is more critical than activating phosphoinositide-3 kinase. Our results indicate that IRS proteins transmit signals from the insulin receptor to Bcl-2, thus regulating cell survival probably through regulating phosphorylation of Bcl-2.
Collapse
Affiliation(s)
- H Ueno
- Department of Hematology and Oncology, Graduate School of Medicine, University of Tokyo, Tokyo 113, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
389
|
|
390
|
Kido Y, Burks DJ, Withers D, Bruning JC, Kahn CR, White MF, Accili D. Tissue-specific insulin resistance in mice with mutations in the insulin receptor, IRS-1, and IRS-2. J Clin Invest 2000; 105:199-205. [PMID: 10642598 PMCID: PMC377430 DOI: 10.1172/jci7917] [Citation(s) in RCA: 355] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Type 2 diabetes is characterized by abnormalities of insulin action in muscle, adipose tissue, and liver and by altered beta-cell function. To analyze the role of the insulin signaling pathway in these processes, we have generated mice with combined heterozygous null mutations in insulin receptor (ir), insulin receptor substrate (irs-1), and/or irs-2. Diabetes developed in 40% of ir/irs-1/irs-2(+/-), 20% of ir/irs-1(+/-), 17% of ir/irs-2(+/-), and 5% of ir(+/-) mice. Although combined heterozygosity for ir/irs-1(+/-) and ir/irs-2(+/-) results in a similar number of diabetic mice, there are significant differences in the underlying metabolic abnormalities. ir/irs-1(+/-) mice develop severe insulin resistance in skeletal muscle and liver, with compensatory beta-cell hyperplasia. In contrast, ir/irs-2(+/-) mice develop severe insulin resistance in liver, mild insulin resistance in skeletal muscle, and modest beta-cell hyperplasia. Triple heterozygotes develop severe insulin resistance in skeletal muscle and liver and marked beta-cell hyperplasia. These data indicate tissue-specific differences in the roles of IRSs to mediate insulin action, with irs-1 playing a prominent role in skeletal muscle and irs-2 in liver. They also provide a practical demonstration of the polygenic and genetically heterogeneous interactions underlying the inheritance of type 2 diabetes.
Collapse
Affiliation(s)
- Y Kido
- Developmental Endocrinology Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20842, USA
| | | | | | | | | | | | | |
Collapse
|
391
|
Kulkarni RN, Winnay JN, Daniels M, Brüning JC, Flier SN, Hanahan D, Kahn CR. Altered function of insulin receptor substrate-1-deficient mouse islets and cultured beta-cell lines. J Clin Invest 1999; 104:R69-75. [PMID: 10606633 PMCID: PMC409887 DOI: 10.1172/jci8339] [Citation(s) in RCA: 217] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Insulin receptor substrate-1 (IRS-1) is pivotal in mediating the actions of insulin and growth factors in most tissues of the body, but its role in insulin-producing beta islet cells is unclear. Freshly isolated islets from IRS-1 knockout mice and SV40-transformed IRS-1-deficient beta-cell lines exhibit marked insulin secretory defects in response to glucose and arginine. Furthermore, insulin expression is reduced by about 2-fold in the IRS-1-null islets and beta-cell lines, and this defect can be partially restored by transfecting the cells with IRS-1. These data provide evidence for an important role of IRS-1 in islet function and provide a novel functional link between the insulin signaling and insulin secretion pathways. This article may have been published online in advance of the print edition. The date of publication is available from the JCI website, http://www.jci.org.
Collapse
Affiliation(s)
- R N Kulkarni
- Division of Cellular and Molecular Physiology, Research Division, Joslin Diabetes Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | | | | | | | | | |
Collapse
|
392
|
|