351
|
Cai LB, Chaté H, Ma YQ, Shi XQ. Dynamical subclasses of dry active nematics. Phys Rev E 2019; 99:010601. [PMID: 30780307 DOI: 10.1103/physreve.99.010601] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Indexed: 06/09/2023]
Abstract
We show that the dominant mode of alignment plays an important role in dry active nematics, leading to two dynamical subclasses defined by the nature of the instability of the nematic bands that characterize, in these systems, the coexistence phase separating the isotropic and fluctuating nematic states. In addition to the well-known instability inducing long undulations along the band, another stronger instability leading to the breakup of the band in many transversal segments may arise. We elucidate the origin of this strong instability for a realistic model of self-propelled rods and determine the high-order nonlinear terms responsible for it at the hydrodynamic level.
Collapse
Affiliation(s)
- Li-Bing Cai
- National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, China
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou 215006, China
| | - Hugues Chaté
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou 215006, China
- Service de Physique de l'Etat Condensé, CEA, CNRS Université Paris-Saclay, CEA-Saclay, 91191 Gif-sur-Yvette, France
- Computational Science Research Center, Beijing 100094, China
| | - Yu-Qiang Ma
- National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, China
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou 215006, China
| | - Xia-Qing Shi
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou 215006, China
- Service de Physique de l'Etat Condensé, CEA, CNRS Université Paris-Saclay, CEA-Saclay, 91191 Gif-sur-Yvette, France
| |
Collapse
|
352
|
Banerjee S, Marchetti MC. Continuum Models of Collective Cell Migration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1146:45-66. [PMID: 31612453 DOI: 10.1007/978-3-030-17593-1_4] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Collective cell migration plays a central role in tissue development, morphogenesis, wound repair and cancer progression. With the growing realization that physical forces mediate cell motility in development and physiology, a key biological question is how cells integrate molecular activities for force generation on multicellular scales. In this review we discuss recent advances in modeling collective cell migration using quantitative tools and approaches rooted in soft matter physics. We focus on theoretical models of cell aggregates as continuous active media, where the feedback between mechanical forces and regulatory biochemistry gives rise to rich collective dynamical behavior. This class of models provides a powerful predictive framework for the physiological dynamics that underlies many developmental processes, where cells need to collectively migrate like a viscous fluid to reach a target region, and then stiffen to support mechanical stresses and maintain tissue cohesion.
Collapse
|
353
|
Abstract
Active matter comprises individual units that convert energy into mechanical motion. In many examples, such as bacterial systems and biofilament assays, constituent units are elongated and can give rise to local nematic orientational order. Such "active nematics" systems have attracted much attention from both theorists and experimentalists. However, despite intense research efforts, data-driven quantitative modeling has not been achieved, a situation mainly due to the lack of systematic experimental data and to the large number of parameters of current models. Here, we introduce an active nematics system made of swarming filamentous bacteria. We simultaneously measure orientation and velocity fields and show that the complex spatiotemporal dynamics of our system can be quantitatively reproduced by a type of microscopic model for active suspensions whose important parameters are all estimated from comprehensive experimental data. This provides unprecedented access to key effective parameters and mechanisms governing active nematics. Our approach is applicable to different types of dense suspensions and shows a path toward more quantitative active matter research.
Collapse
|
354
|
Abstract
In various physiological processes, the cell collective is organized in a monolayer, such as seen in a simple epithelium. The advances in the understanding of mechanical behavior of the monolayer and its underlying cellular and molecular mechanisms will help to elucidate the properties of cell collectives. In this Review, we discuss recent in vitro studies on monolayer mechanics and their implications on collective dynamics, regulation of monolayer mechanics by physical confinement and geometrical cues and the effect of tissue mechanics on biological processes, such as cell division and extrusion. In particular, we focus on the active nematic property of cell monolayers and the emerging approach to view biological systems in the light of liquid crystal theory. We also highlight the mechanosensing and mechanotransduction mechanisms at the sub-cellular and molecular level that are mediated by the contractile actomyosin cytoskeleton and cell-cell adhesion proteins, such as E-cadherin and α-catenin. To conclude, we argue that, in order to have a holistic understanding of the cellular response to biophysical environments, interdisciplinary approaches and multiple techniques - from large-scale traction force measurements to molecular force protein sensors - must be employed.
Collapse
Affiliation(s)
- Tianchi Chen
- Mechanobiology Institute, National University of Singapore, Singapore 117411
| | - Thuan Beng Saw
- Mechanobiology Institute, National University of Singapore, Singapore 117411.,National University of Singapore, Department of Biomedical Engineering, 4 Engineering Drive 3, Engineering Block 4, #04-08, Singapore 117583
| | - René-Marc Mège
- Institut Jacques Monod (IJM), CNRS UMR 7592 & Université Paris Diderot, 75205 Paris CEDEX 13, France
| | - Benoit Ladoux
- Institut Jacques Monod (IJM), CNRS UMR 7592 & Université Paris Diderot, 75205 Paris CEDEX 13, France
| |
Collapse
|
355
|
Abstract
Active matter is a wide class of nonequilibrium systems consisting of interacting self-propelled agents transducing the energy stored in the environment into mechanical motion. Numerous examples range from microscopic cytoskeletal filaments and swimming organisms (bacteria and unicellular algae), synthetic catalytic nanomotors, colloidal self-propelled Janus particles, to macroscopic bird flocks, fish schools, and even human crowds. Active matter demonstrates a remarkable tendency toward self-organization and development of collective states with the long-range spatial order. Furthermore, active materials exhibit properties that are not present in traditional materials like plastics or ceramics: self-repair, shape change, and adaptation. A suspension of microscopic swimmers, such as motile bacteria or self-propelled colloids (active suspensions), is possibly the simplest and the most explored realization of active matter. Recent studies of active suspensions revealed a wealth of unexpected behaviors, from a dramatic reduction of the effective viscosity, enhanced mixing and self-diffusion, rectification of chaotic motion, to artificial rheotaxis (drift against the imposed flow) and cross-stream migration. To date, most of the studies of active matter are performed in isotropic suspending medium, like water with the addition of some "fuel", e.g., nutrient for bacteria or H2O2 for catalytic bimetallic AuPt nanorods. A highly structured anisotropic suspending medium represented by lyotropic liquid crystal (water-soluble) opens enormous opportunities to control and manipulate active matter. Liquid crystals exhibit properties intermediate between solid and liquids; they may flow like a liquid but respond to deformations as a solid due to a crystal-like orientation of molecules. Liquid crystals doped by a small amount of active component represent a new class of composite materials (living liquid crystals or LLCs) with unusual mechanical and optical properties. LLCs demonstrate a variety of highly organized dynamic collective states, spontaneous formation of dynamic textures of topological defects (singularities of local molecular orientation), controlled and reconfigurable transport of cargo particles, manipulation of individual trajectories of microswimmers, and many others. Besides insights into fundamental mechanisms governing active materials, living liquid crystals may have intriguing applications, such as the design of new classes of soft adaptive bioinspired materials capable to respond to physical and chemical stimuli, such as light, magnetic, and electric fields, mechanical shear, airborne pollutants, and bacterial toxins. This Account details the most recent developments in the field of LLCs and discusses how the anisotropy of liquid crystals can be harnessed to control and manipulate active materials.
Collapse
Affiliation(s)
- Igor S. Aranson
- Departments of Biomedical Engineering, Chemistry and Mathematics, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
356
|
Mathijssen AJTM, Guzmán-Lastra F, Kaiser A, Löwen H. Nutrient Transport Driven by Microbial Active Carpets. PHYSICAL REVIEW LETTERS 2018; 121:248101. [PMID: 30608743 DOI: 10.1103/physrevlett.121.248101] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Indexed: 06/09/2023]
Abstract
We demonstrate that active carpets of bacteria or self-propelled colloids generate coherent flows towards the substrate, and propose that these currents provide efficient pathways to replenish nutrients that feed back into activity. A full theory is developed in terms of gradients in the active matter density and velocity, and applied to bacterial turbulence, topological defects and clustering. Currents with complex spatiotemporal patterns are obtained, which are tunable through confinement. Our findings show that diversity in carpet architecture is essential to maintain biofunctionality.
Collapse
Affiliation(s)
- Arnold J T M Mathijssen
- Department of Bioengineering, Stanford University, 443 Via Ortega, Stanford, California 94305, USA
| | - Francisca Guzmán-Lastra
- Facultad de Ciencias, Universidad Mayor, Av. Manuel Montt 367, Providencia, Santiago 7500994, Chile
- Departamento de Física, FCFM Universidad de Chile, Beauchef 850, Santiago 8370448, Chile
| | - Andreas Kaiser
- Department of Biomedical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Hartmut Löwen
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität, D-40225 Düsseldorf, Germany
| |
Collapse
|
357
|
Beppu K, Izri Z, Maeda YT, Sakamoto R. Geometric Effect for Biological Reactors and Biological Fluids. Bioengineering (Basel) 2018; 5:E110. [PMID: 30551608 PMCID: PMC6316181 DOI: 10.3390/bioengineering5040110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 12/07/2018] [Accepted: 12/10/2018] [Indexed: 01/21/2023] Open
Abstract
As expressed "God made the bulk; the surface was invented by the devil" by W. Pauli, the surface has remarkable properties because broken symmetry in surface alters the material properties. In biological systems, the smallest functional and structural unit, which has a functional bulk space enclosed by a thin interface, is a cell. Cells contain inner cytosolic soup in which genetic information stored in DNA can be expressed through transcription (TX) and translation (TL). The exploration of cell-sized confinement has been recently investigated by using micron-scale droplets and microfluidic devices. In the first part of this review article, we describe recent developments of cell-free bioreactors where bacterial TX-TL machinery and DNA are encapsulated in these cell-sized compartments. Since synthetic biology and microfluidics meet toward the bottom-up assembly of cell-free bioreactors, the interplay between cellular geometry and TX-TL advances better control of biological structure and dynamics in vitro system. Furthermore, biological systems that show self-organization in confined space are not limited to a single cell, but are also involved in the collective behavior of motile cells, named active matter. In the second part, we describe recent studies where collectively ordered patterns of active matter, from bacterial suspensions to active cytoskeleton, are self-organized. Since geometry and topology are vital concepts to understand the ordered phase of active matter, a microfluidic device with designed compartments allows one to explore geometric principles behind self-organization across the molecular scale to cellular scale. Finally, we discuss the future perspectives of a microfluidic approach to explore the further understanding of biological systems from geometric and topological aspects.
Collapse
Affiliation(s)
- Kazusa Beppu
- Department of Physics, Kyushu University, Fukuoka 819-0395, Japan.
| | - Ziane Izri
- Department of Physics, Kyushu University, Fukuoka 819-0395, Japan.
| | - Yusuke T Maeda
- Department of Physics, Kyushu University, Fukuoka 819-0395, Japan.
| | - Ryota Sakamoto
- Department of Physics, Kyushu University, Fukuoka 819-0395, Japan.
| |
Collapse
|
358
|
Moreno E, Valon L, Levillayer F, Levayer R. Competition for Space Induces Cell Elimination through Compaction-Driven ERK Downregulation. Curr Biol 2018; 29:23-34.e8. [PMID: 30554899 PMCID: PMC6331351 DOI: 10.1016/j.cub.2018.11.007] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 10/01/2018] [Accepted: 11/01/2018] [Indexed: 12/18/2022]
Abstract
The plasticity of developing tissues relies on the adjustment of cell survival and growth rate to environmental cues. This includes the effect of mechanical cues on cell survival. Accordingly, compaction of an epithelium can lead to cell extrusion and cell death. This process was proposed to contribute to tissue homeostasis but also to facilitate the expansion of pretumoral cells through the compaction and elimination of the neighboring healthy cells. However, we know very little about the pathways that can trigger apoptosis upon tissue deformation, and the contribution of compaction-driven death to clone expansion has never been assessed in vivo. Using the Drosophila pupal notum and a new live sensor of ERK, we show first that tissue compaction induces cell elimination through the downregulation of epidermal growth factor receptor/extracellular signal regulated kinase (EGFR/ERK) pathway and the upregulation of the pro-apoptotic protein Hid. Those results suggest that the sensitivity of EGFR/ERK pathway to mechanics could play a more general role in the fine tuning of cell elimination during morphogenesis and tissue homeostasis. Second, we assessed in vivo the contribution of compaction-driven death to pretumoral cell expansion. We found that the activation of the oncogene Ras in clones can downregulate ERK and activate apoptosis in the neighboring cells through their compaction, which eventually contributes to Ras clone expansion. The mechanical modulation of EGFR/ERK during growth-mediated competition for space may contribute to tumor progression. Caspase activity in Drosophila pupal notum is regulated by EGFR/ERK and hid EGFR/ERK can be activated or downregulated by tissue stretching or compaction Cell compaction near fast-growing clones downregulates ERK and triggers cell death Compaction-driven ERK downregulation promotes fast-growing clone expansion
Collapse
Affiliation(s)
- Eduardo Moreno
- Champalimaud Centre for the Unknown, Av. Brasília, 1400-038 Lisbon, Portugal.
| | - Léo Valon
- Department of Developmental and Stem Cell Biology, Institut Pasteur, 25 rue du Dr. Roux, 75015 Paris, France
| | - Florence Levillayer
- Department of Developmental and Stem Cell Biology, Institut Pasteur, 25 rue du Dr. Roux, 75015 Paris, France
| | - Romain Levayer
- Department of Developmental and Stem Cell Biology, Institut Pasteur, 25 rue du Dr. Roux, 75015 Paris, France.
| |
Collapse
|
359
|
Abstract
Mechanical constraints are recognized as a key regulator of biological processes, from molecules to organisms, throughout embryonic development, tissue regeneration and in situations of physiological regulation and pathological disturbances. The study of the influence of these physical constraints on the living, in particular on the cells and the organisms of the animal kingdom, has been the object for a decade of important work carried out at the interface between biology, physics and mechanics, constituting a new discipline: mechanobiology. Here we briefly describe the remarkable advances in understanding how cells and tissues both generate and perceive mechanical stresses, and how these constrains dictate cell shape, migration, cell differentiation and finally adaptation of tissues to their environment during morphogenesis, injury and repair.
Collapse
Affiliation(s)
- René Marc Mège
- Institut Jacques Monod, université Paris Diderot, Paris, France
| | - Benoit Ladoux
- Institut Jacques Monod, université Paris Diderot, Paris, France - Mechanobiology institute, National university of Singapore, Singapore, Singapore
| |
Collapse
|
360
|
Nier V, Peyret G, d'Alessandro J, Ishihara S, Ladoux B, Marcq P. Kalman Inversion Stress Microscopy. Biophys J 2018; 115:1808-1816. [PMID: 30301513 DOI: 10.1016/j.bpj.2018.09.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 08/29/2018] [Accepted: 09/12/2018] [Indexed: 10/28/2022] Open
Abstract
Although mechanical cues are crucial to tissue morphogenesis and development, the tissue mechanical stress field remains poorly characterized. Given traction force time-lapse movies, as obtained by traction force microscopy of in vitro cellular sheets, we show that the tissue stress field can be estimated by Kalman filtering. After validation using numerical data, we apply Kalman inversion stress microscopy to experimental data. We combine the inferred stress field with velocity and cell-shape measurements to quantify the rheology of epithelial cell monolayers in physiological conditions, found to be close to that of an elastic and active material.
Collapse
Affiliation(s)
- Vincent Nier
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, Sorbonne Université, CNRS, Paris, France
| | - Grégoire Peyret
- Institut Jacques Monod, CNRS, Université Paris Diderot, Paris, France
| | | | - Shuji Ishihara
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Benoit Ladoux
- Institut Jacques Monod, CNRS, Université Paris Diderot, Paris, France; Mechanobiology Institute, National University of Singapore, Singapore, Singapore
| | - Philippe Marcq
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, Sorbonne Université, CNRS, Paris, France.
| |
Collapse
|
361
|
Saw TB, Xi W, Ladoux B, Lim CT. Biological Tissues as Active Nematic Liquid Crystals. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1802579. [PMID: 30156334 DOI: 10.1002/adma.201802579] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 06/11/2018] [Indexed: 05/27/2023]
Abstract
Live tissues can self-organize and be described as active materials composed of cells that generate active stresses through continuous injection of energy. In vitro reconstituted molecular networks, as well as single-cell cytoskeletons show that their filamentous structures can portray nematic liquid crystalline properties and can promote nonequilibrium processes induced by active processes at the microscale. The appearance of collective patterns, the formation of topological singularities, and spontaneous phase transition within the cell cytoskeleton are emergent properties that drive cellular functions. More integrated systems such as tissues have cells that can be seen as coarse-grained active nematic particles and their interaction can dictate many important tissue processes such as epithelial cell extrusion and migration as observed in vitro and in vivo. Here, a brief introduction to the concept of active nematics is provided, and the main focus is on the use of this framework in the systematic study of predominantly 2D tissue architectures and dynamics in vitro. In addition how the nematic state is important in tissue behavior, such as epithelial expansion, tissue homeostasis, and the atherosclerosis disease state, is discussed. Finally, how the nematic organization of cells can be controlled in vitro for tissue engineering purposes is briefly discussed.
Collapse
Affiliation(s)
- Thuan Beng Saw
- Department of Biomedical Engineering, National University of Singapore, 4 Engineering Drive 3, Engineering Block 4, #04-08, Singapore, 117583, Singapore
| | - Wang Xi
- Institut Jacques Monod (IJM), CNRS UMR 7592 and Université Paris Diderot, Paris, France
| | - Benoit Ladoux
- Institut Jacques Monod (IJM), CNRS UMR 7592 and Université Paris Diderot, Paris, France
- Mechanobiology Institute (MBI), National University of Singapore, Singapore, 117411, Singapore
| | - Chwee Teck Lim
- Department of Biomedical Engineering, National University of Singapore, 4 Engineering Drive 3, Engineering Block 4, #04-08, Singapore, 117583, Singapore
- Mechanobiology Institute (MBI), National University of Singapore, Singapore, 117411, Singapore
- Biomedical Institute for Global Health, Research and Technology (BIGHEART), National University of Singapore, MD6, 14 Medical Drive, #14-01, Singapore, 117599, Singapore
| |
Collapse
|
362
|
Engineering bacterial vortex lattice via direct laser lithography. Nat Commun 2018; 9:4486. [PMID: 30367049 PMCID: PMC6203773 DOI: 10.1038/s41467-018-06842-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Accepted: 08/28/2018] [Indexed: 11/21/2022] Open
Abstract
A suspension of swimming bacteria is possibly the simplest realization of active matter, i.e. a class of systems transducing stored energy into mechanical motion. Collective swimming of hydrodynamically interacting bacteria resembles turbulent flow. This seemingly chaotic motion can be rectified by a geometrical confinement. Here we report on self-organization of a concentrated suspension of motile bacteria Bacillus subtilis constrained by two-dimensional (2D) periodic arrays of microscopic vertical pillars. We show that bacteria self-organize into a lattice of hydrodynamically bound vortices with a long-range antiferromagnetic order controlled by the pillars’ spacing. The patterns attain their highest stability and nearly perfect order for the pillar spacing comparable with an intrinsic vortex size of an unconstrained bacterial turbulence. We demonstrate that the emergent antiferromagnetic order can be further manipulated and turned into a ferromagnetic state by introducing chiral pillars. This strategy can be used to control a wide class of active 2D systems. Geometrically confined suspensions of swimming bacteria can self-organize into an ordered state. Here, the authors use tiny pillars to trigger organization of bacterial motion into a stable lattice of vortices with a long-range antiferromagnetic order and control vortex direction through pillar chirality.
Collapse
|
363
|
Acharya BR, Nestor-Bergmann A, Liang X, Gupta S, Duszyc K, Gauquelin E, Gomez GA, Budnar S, Marcq P, Jensen OE, Bryant Z, Yap AS. A Mechanosensitive RhoA Pathway that Protects Epithelia against Acute Tensile Stress. Dev Cell 2018; 47:439-452.e6. [PMID: 30318244 DOI: 10.1016/j.devcel.2018.09.016] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 07/16/2018] [Accepted: 09/15/2018] [Indexed: 12/22/2022]
Abstract
Adherens junctions are tensile structures that couple epithelial cells together. Junctional tension can arise from cell-intrinsic application of contractility or from the cell-extrinsic forces of tissue movement. Here, we report a mechanosensitive signaling pathway that activates RhoA at adherens junctions to preserve epithelial integrity in response to acute tensile stress. We identify Myosin VI as the force sensor, whose association with E-cadherin is enhanced when junctional tension is increased by mechanical monolayer stress. Myosin VI promotes recruitment of the heterotrimeric Gα12 protein to E-cadherin, where it signals for p114 RhoGEF to activate RhoA. Despite its potential to stimulate junctional actomyosin and further increase contractility, tension-activated RhoA signaling is necessary to preserve epithelial integrity. This is explained by an increase in tensile strength, especially at the multicellular vertices of junctions, that is due to mDia1-mediated actin assembly.
Collapse
Affiliation(s)
- Bipul R Acharya
- Division of Cell Biology and Molecular Medicine, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Alexander Nestor-Bergmann
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK
| | - Xuan Liang
- Division of Cell Biology and Molecular Medicine, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Shafali Gupta
- Division of Cell Biology and Molecular Medicine, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Kinga Duszyc
- Division of Cell Biology and Molecular Medicine, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Estelle Gauquelin
- Institut Jacques Monod, CNRS, UMR 7592, Universite Paris Diderot, Sorbonne Paris Cité, Paris 75205, France
| | - Guillermo A Gomez
- Division of Cell Biology and Molecular Medicine, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Srikanth Budnar
- Division of Cell Biology and Molecular Medicine, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Philippe Marcq
- Physico Chimie Curie, Institut Curie, Sorbonne Universite, PSL Research University, Paris and CNRS UMR 168, Paris 75005, France
| | - Oliver E Jensen
- School of Mathematics, University of Manchester, Manchester M13 9PL, UK
| | - Zev Bryant
- Department of Bioengineering, Stanford University and Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Alpha S Yap
- Division of Cell Biology and Molecular Medicine, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia.
| |
Collapse
|
364
|
Dell'Arciprete D, Blow ML, Brown AT, Farrell FDC, Lintuvuori JS, McVey AF, Marenduzzo D, Poon WCK. A growing bacterial colony in two dimensions as an active nematic. Nat Commun 2018; 9:4190. [PMID: 30305618 PMCID: PMC6180060 DOI: 10.1038/s41467-018-06370-3] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 08/23/2018] [Indexed: 11/18/2022] Open
Abstract
How a single bacterium becomes a colony of many thousand cells is important in biomedicine and food safety. Much is known about the molecular and genetic bases of this process, but less about the underlying physical mechanisms. Here we study the growth of single-layer micro-colonies of rod-shaped Escherichiacoli bacteria confined to just under the surface of soft agarose by a glass slide. Analysing this system as a liquid crystal, we find that growth-induced activity fragments the colony into microdomains of well-defined size, whilst the associated flow orients it tangentially at the boundary. Topological defect pairs with charges \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\pm {\textstyle{1 \over 2}}$$\end{document}±12 are produced at a constant rate, with the \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$+ {\textstyle{1 \over 2}}$$\end{document}+12 defects being propelled to the periphery. Theoretical modelling suggests that these phenomena have different physical origins from similar observations in other extensile active nematics, and a growing bacterial colony belongs to a new universality class, with features reminiscent of the expanding universe. Rod-shaped bacteria are an example of active matter. Here the authors find that a growing bacterial colony harbours internal cellular flows affecting orientational ordering in its interior and at the boundary. Results suggest this system may belong to a new active matter universality class.
Collapse
Affiliation(s)
- D Dell'Arciprete
- SUPA, School of Physics and Astronomy, The University of Edinburgh, James Clerk Maxwell Building, Peter Guthrie Tait Road, Edinburgh, EH9 3FD, UK.,Dipartimento di Fisica, Universita' di Roma La Sapienza, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - M L Blow
- SUPA, School of Physics and Astronomy, The University of Edinburgh, James Clerk Maxwell Building, Peter Guthrie Tait Road, Edinburgh, EH9 3FD, UK
| | - A T Brown
- SUPA, School of Physics and Astronomy, The University of Edinburgh, James Clerk Maxwell Building, Peter Guthrie Tait Road, Edinburgh, EH9 3FD, UK
| | - F D C Farrell
- SUPA, School of Physics and Astronomy, The University of Edinburgh, James Clerk Maxwell Building, Peter Guthrie Tait Road, Edinburgh, EH9 3FD, UK.,Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - J S Lintuvuori
- Université Bordeaux, CNRS, LOMA, UMR 5798, 33400, Talence, France
| | - A F McVey
- SUPA, School of Physics and Astronomy, The University of Edinburgh, James Clerk Maxwell Building, Peter Guthrie Tait Road, Edinburgh, EH9 3FD, UK
| | - D Marenduzzo
- SUPA, School of Physics and Astronomy, The University of Edinburgh, James Clerk Maxwell Building, Peter Guthrie Tait Road, Edinburgh, EH9 3FD, UK.
| | - W C K Poon
- SUPA, School of Physics and Astronomy, The University of Edinburgh, James Clerk Maxwell Building, Peter Guthrie Tait Road, Edinburgh, EH9 3FD, UK
| |
Collapse
|
365
|
Evstifeeva AY, Luchinskaia NN, Beloussov LV. Stress-generating tissue deformations in Xenopus embryos: Long-range gradients and local cell displacements. Biosystems 2018; 173:52-64. [PMID: 30273637 DOI: 10.1016/j.biosystems.2018.09.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 09/23/2018] [Accepted: 09/25/2018] [Indexed: 10/28/2022]
Abstract
BACKGROUND Although the role of endogenous mechanical stresses in regulating morphogenetic movements and cell differentiation is now well established, many aspects of mechanical stress generation and transmission in developing embryos remain unclear and require quantitative studies. RESULTS By measuring stress-bearing linear deformations (caused by differences in cell movement rates) in the outer cell layer of blastula - early tail-bud Xenopus embryos, we revealed a set of long-term tension-generating gradients of cell movement rates, modulated by short-term cell-cell displacements much increasing the rates of local deformations. Experimental relaxation of tensions distorted the gradients but preserved and even enhanced local cell-cell displacements. During development, an incoherent mode of cell behavior, characterized by extensive cell-cell displacements and poorly correlated cell trajectories, was exchanged for a more coherent regime with the opposite characteristics. In particular, cell shifts became more synchronous and acquired a periodicity of several dozen minutes. CONCLUSIONS Morphogenetic movements in Xenopus embryos are mediated by mechanically stressed dynamic structures of two different levels: extended gradients and short-term cell-cell displacements. As development proceeds, the latter component decreases and cell trajectories become more correlated. In particular, they acquire common periodicities, making morphogenesis more coherent.
Collapse
Affiliation(s)
- A Yu Evstifeeva
- Department of Embryology, Faculty of Biology Moscow State University, Moscow, 119899, Russia.
| | - N N Luchinskaia
- Department of Embryology, Faculty of Biology Moscow State University, Moscow, 119899, Russia
| | - L V Beloussov
- Department of Embryology, Faculty of Biology Moscow State University, Moscow, 119899, Russia
| |
Collapse
|
366
|
Mierke CT, Sauer F, Grosser S, Puder S, Fischer T, Käs JA. The two faces of enhanced stroma: Stroma acts as a tumor promoter and a steric obstacle. NMR IN BIOMEDICINE 2018; 31:e3831. [PMID: 29215759 DOI: 10.1002/nbm.3831] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 07/24/2017] [Accepted: 08/16/2017] [Indexed: 06/07/2023]
Abstract
In addition to genetic, morphological and biochemical alterations in cells, a key feature of the malignant progression of cancer is the stroma, including cancer cell motility as well as the emergence of metastases. Our current knowledge with regard to the biophysically driven experimental approaches of cancer progression indicates that mechanical aberrations are major contributors to the malignant progression of cancer. In particular, the mechanical probing of the stroma is of great interest. However, the impact of the tumor stroma on cellular motility, and hence the metastatic cascade leading to the malignant progression of cancer, is controversial as there are two different and opposing effects within the stroma. On the one hand, the stroma can promote and enhance the proliferation, survival and migration of cancer cells through mechanotransduction processes evoked by fiber alignment as a result of increased stroma rigidity. This enables all types of cancer to overcome restrictive biological capabilities. On the other hand, as a result of its structural constraints, the stroma acts as a steric obstacle for cancer cell motility in dense three-dimensional extracellular matrices, when the pore size is smaller than the cell's nucleus. The mechanical properties of the stroma, such as the tissue matrix stiffness and the entire architectural network of the stroma, are the major players in providing the optimal environment for cancer cell migration. Thus, biophysical methods determining the mechanical properties of the stroma, such as magnetic resonance elastography, are critical for the diagnosis and prediction of early cancer stages. Fibrogenesis and cancer are tightly connected, as there is an elevated risk of cancer on cystic fibrosis or, subsequently, cirrhosis. This also applies to the subsequent metastatic process.
Collapse
Affiliation(s)
- Claudia Tanja Mierke
- Faculty of Physics and Earth Science, Peter Debye Institute of Soft Matter Physics, Biological Physics Division, University of Leipzig, Leipzig, Germany
| | - Frank Sauer
- Faculty of Physics and Earth Science, Peter Debye Institute of Soft Matter Physics, Biological Physics Division, University of Leipzig, Leipzig, Germany
- Faculty of Physics and Earth Science, Peter Debye Institute of Soft Matter Physics, Soft Matter Physics Division, University of Leipzig, Leipzig, Germany
| | - Steffen Grosser
- Faculty of Physics and Earth Science, Peter Debye Institute of Soft Matter Physics, Soft Matter Physics Division, University of Leipzig, Leipzig, Germany
| | - Stefanie Puder
- Faculty of Physics and Earth Science, Peter Debye Institute of Soft Matter Physics, Biological Physics Division, University of Leipzig, Leipzig, Germany
| | - Tony Fischer
- Faculty of Physics and Earth Science, Peter Debye Institute of Soft Matter Physics, Biological Physics Division, University of Leipzig, Leipzig, Germany
| | - Josef Alfons Käs
- Faculty of Physics and Earth Science, Peter Debye Institute of Soft Matter Physics, Soft Matter Physics Division, University of Leipzig, Leipzig, Germany
| |
Collapse
|
367
|
Kumar N, Zhang R, de Pablo JJ, Gardel ML. Tunable structure and dynamics of active liquid crystals. SCIENCE ADVANCES 2018; 4:eaat7779. [PMID: 30333990 PMCID: PMC6184751 DOI: 10.1126/sciadv.aat7779] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 08/31/2018] [Indexed: 05/21/2023]
Abstract
Active materials are capable of converting free energy into directional motion, giving rise to notable dynamical phenomena. Developing a general understanding of their structure in relation to the underlying nonequilibrium physics would provide a route toward control of their dynamic behavior and pave the way for potential applications. The active system considered here consists of a quasi-two-dimensional sheet of short (≈1 μm) actin filaments driven by myosin II motors. By adopting a concerted theoretical and experimental strategy, new insights are gained into the nonequilibrium properties of active nematics over a wide range of internal activity levels. In particular, it is shown that topological defect interactions can be led to transition from attractive to repulsive as a function of initial defect separation and relative orientation. Furthermore, by examining the +1/2 defect morphology as a function of activity, we found that the apparent elastic properties of the system (the ratio of bend-to-splay elastic moduli) are altered considerably by increased activity, leading to an effectively lower bend elasticity. At high levels of activity, the topological defects that decorate the material exhibit a liquid-like structure and adopt preferred orientations depending on their topological charge. Together, these results suggest that it should be possible to tune internal stresses in active nematic systems with the goal of designing out-of-equilibrium structures with engineered dynamic responses.
Collapse
Affiliation(s)
- Nitin Kumar
- James Franck Institute, The University of Chicago, Chicago, IL 60637, USA
- Department of Physics, The University of Chicago, Chicago, IL 60637, USA
| | - Rui Zhang
- Institute for Molecular Engineering, The University of Chicago, Chicago, IL 60637, USA
| | - Juan J. de Pablo
- Institute for Molecular Engineering, The University of Chicago, Chicago, IL 60637, USA
- Institute for Molecular Engineering, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Margaret L. Gardel
- James Franck Institute, The University of Chicago, Chicago, IL 60637, USA
- Department of Physics, The University of Chicago, Chicago, IL 60637, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
368
|
Odenwald MA, Choi W, Kuo WT, Singh G, Sailer A, Wang Y, Shen L, Fanning AS, Turner JR. The scaffolding protein ZO-1 coordinates actomyosin and epithelial apical specializations in vitro and in vivo. J Biol Chem 2018; 293:17317-17335. [PMID: 30242130 DOI: 10.1074/jbc.ra118.003908] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 09/14/2018] [Indexed: 12/21/2022] Open
Abstract
Polarized epithelia assemble into sheets that compartmentalize organs and generate tissue barriers by integrating apical surfaces into a single, unified structure. This tissue organization is shared across organs, species, and developmental stages. The processes that regulate development and maintenance of apical epithelial surfaces are, however, undefined. Here, using an intestinal epithelial-specific knockout (KO) mouse and cultured epithelial cells, we show that the tight junction scaffolding protein zonula occludens-1 (ZO-1) is essential for development of unified apical surfaces in vivo and in vitro We found that U5 and GuK domains of ZO-1 are necessary for proper apical surface assembly, including organization of microvilli and cortical F-actin; however, direct interactions with F-actin through the ZO-1 actin-binding region (ABR) are not required. ZO-1 lacking the PDZ1 domain, which binds claudins, rescued apical structure in ZO-1-deficient epithelia, but not in cells lacking both ZO-1 and ZO-2, suggesting that heterodimerization with ZO-2 restores PDZ1-dependent ZO-1 interactions that are vital to apical surface organization. Pharmacologic F-actin disruption, myosin II motor inhibition, or dynamin inactivation restored apical epithelial structure in vitro and in vivo, indicating that ZO-1 directs epithelial organization by regulating actomyosin contraction and membrane traffic. We conclude that multiple ZO-1-mediated interactions contribute to coordination of epithelial actomyosin function and genesis of unified apical surfaces.
Collapse
Affiliation(s)
| | - Wangsun Choi
- the Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, and
| | - Wei-Ting Kuo
- the Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, and
| | - Gurminder Singh
- From the Departments of Pathology and.,the Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, and
| | | | | | - Le Shen
- From the Departments of Pathology and.,Surgery, University of Chicago, Chicago, Illinois 60637
| | - Alan S Fanning
- the Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Jerrold R Turner
- From the Departments of Pathology and .,the Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, and
| |
Collapse
|
369
|
Bade ND, Kamien RD, Assoian RK, Stebe KJ. Edges impose planar alignment in nematic monolayers by directing cell elongation and enhancing migration. SOFT MATTER 2018; 14:6867-6874. [PMID: 30079410 PMCID: PMC7359601 DOI: 10.1039/c8sm00612a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Boundaries play an important role in the emergence of nematic order in classical liquid crystal systems; we explore their importance in adhesive cells that form active nematics. In particular, we study how cells are affected by an edge, which in our experiments is a boundary between adhesive and non-adhesive domains on a planar surface. We find that such edges induce elongation and direct the migration of isolated fibroblasts. In confluent monolayers, these elongated cells co-align and migrate to form an active, two-dimensional nematic structure in which edges enforce planar alignment and provide local slip to streams of cells that move along them. On an adhesive square island of dimensions 1 mm × 1 mm, cells near the edges in confluent nematic monolayers have enhanced alignment and velocity. The corners of the adhesive island seed defects with signs that depend on the direction of the motion of the streams of cells that meet there. Distortions emerge with rotations of -π/2 to form a -1/4 defect for streams that move clockwise or counterclockwise, and +π/2 to form a +1/4 defect for converging streams. We explore how cells transmit alignment information to each other in the absence of an edge by studying cell pairs and find that while such pairs do co-align, this alignment is only transient and short lived. These results shed light on the importance of edges in imposing nematic order in confluent monolayers and how edges can be used as tools to pattern the long-range organization of cells for tissue engineering applications.
Collapse
Affiliation(s)
- Nathan D Bade
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA, USA.
| | - Randall D Kamien
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA, USA
| | - Richard K Assoian
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA and Center for Engineering MechanoBiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Kathleen J Stebe
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
370
|
Shankar S, Ramaswamy S, Marchetti MC, Bowick MJ. Defect Unbinding in Active Nematics. PHYSICAL REVIEW LETTERS 2018; 121:108002. [PMID: 30240234 DOI: 10.1103/physrevlett.121.108002] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 07/18/2018] [Indexed: 06/08/2023]
Abstract
We formulate the statistical dynamics of topological defects in the active nematic phase, formed in two dimensions by a collection of self-driven particles on a substrate. An important consequence of the nonequilibrium drive is the spontaneous motility of strength +1/2 disclinations. Starting from the hydrodynamic equations of active nematics, we derive an interacting particle description of defects that includes active torques. We show that activity, within perturbation theory, lowers the defect-unbinding transition temperature, determining a critical line in the temperature-activity plane that separates the quasi-long-range ordered (nematic) and disordered (isotropic) phases. Below a critical activity, defects remain bound as rotational noise decorrelates the directed dynamics of +1/2 defects, stabilizing the quasi-long-range ordered nematic state. This activity threshold vanishes at low temperature, leading to a reentrant transition. At large enough activity, active forces always exceed thermal ones and the perturbative result fails, suggesting that in this regime activity will always disorder the system. Crucially, rotational diffusion being a two-dimensional phenomenon, defect unbinding cannot be described by a simplified one-dimensional model.
Collapse
Affiliation(s)
- Suraj Shankar
- Physics Department and Syracuse Soft and Living Matter Program, Syracuse University, Syracuse, New York 13244, USA
- Kavli Institute for Theoretical Physics, University of California, Santa Barbara, California 93106, USA
| | - Sriram Ramaswamy
- Kavli Institute for Theoretical Physics, University of California, Santa Barbara, California 93106, USA
- Centre for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore 560 012, India
| | - M Cristina Marchetti
- Physics Department and Syracuse Soft and Living Matter Program, Syracuse University, Syracuse, New York 13244, USA
- Kavli Institute for Theoretical Physics, University of California, Santa Barbara, California 93106, USA
| | - Mark J Bowick
- Physics Department and Syracuse Soft and Living Matter Program, Syracuse University, Syracuse, New York 13244, USA
- Kavli Institute for Theoretical Physics, University of California, Santa Barbara, California 93106, USA
| |
Collapse
|
371
|
Doostmohammadi A, Ignés-Mullol J, Yeomans JM, Sagués F. Active nematics. Nat Commun 2018; 9:3246. [PMID: 30131558 PMCID: PMC6104062 DOI: 10.1038/s41467-018-05666-8] [Citation(s) in RCA: 312] [Impact Index Per Article: 44.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 06/28/2018] [Accepted: 07/19/2018] [Indexed: 11/09/2022] Open
Abstract
Active matter extracts energy from its surroundings at the single particle level and transforms it into mechanical work. Examples include cytoskeleton biopolymers and bacterial suspensions. Here, we review experimental, theoretical and numerical studies of active nematics - a type of active system that is characterised by self-driven units with elongated shape. We focus primarily on microtubule-kinesin mixtures and the hydrodynamic theories that describe their properties. An important theme is active turbulence and the associated motile topological defects. We discuss ways in which active turbulence may be controlled, a pre-requisite to harvesting energy from active materials, and we consider the appearance, and possible implications, of active nematics and topological defects to cellular systems and biological processes.
Collapse
Affiliation(s)
- Amin Doostmohammadi
- The Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Clarendon Laboratory, Parks Rd., Oxford, OX1 3PU, UK.
| | - Jordi Ignés-Mullol
- Departament de Ciència de Materials i Química Física and Institute of Nanoscience and Nanotechnology, Universitat de Barcelona, Martí I Franquès 1, 08028, Barcelona, Catalonia, Spain
| | - Julia M Yeomans
- The Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Clarendon Laboratory, Parks Rd., Oxford, OX1 3PU, UK
| | - Francesc Sagués
- Departament de Ciència de Materials i Química Física and Institute of Nanoscience and Nanotechnology, Universitat de Barcelona, Martí I Franquès 1, 08028, Barcelona, Catalonia, Spain
| |
Collapse
|
372
|
Shendruk TN, Thijssen K, Yeomans JM, Doostmohammadi A. Twist-induced crossover from two-dimensional to three-dimensional turbulence in active nematics. Phys Rev E 2018; 98:010601. [PMID: 30110824 DOI: 10.1103/physreve.98.010601] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Indexed: 12/27/2022]
Abstract
While studies of active nematics in two dimensions have shed light on various aspects of the flow regimes and topology of active matter, three-dimensional properties of topological defects and chaotic flows remain unexplored. By confining a film of active nematics between two parallel plates, we use continuum simulations and analytical arguments to demonstrate that the crossover from quasi-two-dimensional (quasi-2D) to three-dimensional (3D) chaotic flows is controlled by the morphology of the disclination lines. For small plate separations, the active nematic behaves as a quasi-2D material, with straight topological disclination lines spanning the height of the channel and exhibiting effectively 2D active turbulence. Upon increasing channel height, we find a crossover to 3D chaotic flows due to the contortion of disclinations above a critical activity. Above this critical activity highly contorted disclination lines and disclination loops are formed. We further show that these contortions are engendered by twist perturbations producing a sharp change in the curvature of disclinations.
Collapse
Affiliation(s)
- Tyler N Shendruk
- The Rockefeller University, 1230 York Avenue, New York, New York 10021, USA
| | - Kristian Thijssen
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford OX1 3PU, United Kingdom
| | - Julia M Yeomans
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford OX1 3PU, United Kingdom
| | - Amin Doostmohammadi
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford OX1 3PU, United Kingdom
| |
Collapse
|
373
|
Czajkowski M, Bi D, Manning ML, Marchetti MC. Hydrodynamics of shape-driven rigidity transitions in motile tissues. SOFT MATTER 2018; 14:5628-5642. [PMID: 29938290 DOI: 10.1039/c8sm00446c] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In biological tissues, it is now well-understood that mechanical cues are a powerful mechanism for pattern regulation. While much work has focused on interactions between cells and external substrates, recent experiments suggest that cell polarization and motility might be governed by the internal shear stiffness of nearby tissue, deemed "plithotaxis". Meanwhile, other work has demonstrated that there is a direct relationship between cell shapes and tissue shear modulus in confluent tissues. Joining these two ideas, we develop a hydrodynamic model that couples cell shape, and therefore tissue stiffness, to cell motility and polarization. Using linear stability analysis and numerical simulations, we find that tissue behavior can be tuned between largely homogeneous states and patterned states such as asters, controlled by a composite "morphotaxis" parameter that encapsulates the nature of the coupling between shape and polarization. The control parameter is in principle experimentally accessible, and depends both on whether a cell tends to move in the direction of lower or higher shear modulus, and whether sinks or sources of polarization tend to fluidize the system.
Collapse
|
374
|
Sunami K, Imamura K, Ouchi T, Yoshida H, Ozaki M. Shape control of surface-stabilized disclination loops in nematic liquid crystals. Phys Rev E 2018; 97:020701. [PMID: 29548110 DOI: 10.1103/physreve.97.020701] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Indexed: 11/06/2022]
Abstract
Recent studies on topological defects in conventional and active nematic liquid crystals have revealed their potential as sources of advanced functionality whereby the collective behavior of the constituent molecules or cells is controlled. On the other hand, the fact that they have high energies and are metastable makes their shape control a nontrivial issue. Here, we demonstrate stabilization of arbitrary-shaped closed disclination loops with 1/2 strength floating in the bulk by designing the twist angle distribution in a liquid crystal cell. Continuous variation of the twist angle from below to above |π/2| allows us to unambiguously position reverse twist disclinations at will. We also analyze the elastic free energy and uncover the relationship between the twist angle pattern and shrink rate of the surface-stabilized disclination loop.
Collapse
Affiliation(s)
- Kanta Sunami
- Division of Electrical, Electronic and Information Engineering, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Koki Imamura
- Division of Electrical, Electronic and Information Engineering, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Tomohiro Ouchi
- Division of Electrical, Electronic and Information Engineering, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Hiroyuki Yoshida
- Division of Electrical, Electronic and Information Engineering, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan.,PRESTO, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Masanori Ozaki
- Division of Electrical, Electronic and Information Engineering, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
375
|
Cortese D, Eggers J, Liverpool TB. Pair creation, motion, and annihilation of topological defects in two-dimensional nematic liquid crystals. Phys Rev E 2018; 97:022704. [PMID: 29548179 DOI: 10.1103/physreve.97.022704] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Indexed: 11/07/2022]
Abstract
We present a framework for the study of disclinations in two-dimensional active nematic liquid crystals and topological defects in general. The order tensor formalism is used to calculate exact multiparticle solutions of the linearized static equations inside a planar uniformly aligned state so that the total charge has to vanish. Topological charge conservation then requires that there is always an equal number of q=1/2 and q=-1/2 charges. Starting from a set of hydrodynamic equations, we derive a low-dimensional dynamical system for the parameters of the static solutions, which describes the motion of a half-disclination pair or of several pairs. Within this formalism, we model defect production and annihilation, as observed in experiments. Our dynamics also provide an estimate for the critical density at which production and annihilation rates are balanced.
Collapse
Affiliation(s)
- Dario Cortese
- School of Mathematics, University of Bristol, Bristol BS8 1TW, United Kingdom
| | - Jens Eggers
- School of Mathematics, University of Bristol, Bristol BS8 1TW, United Kingdom
| | | |
Collapse
|
376
|
Jülicher F, Grill SW, Salbreux G. Hydrodynamic theory of active matter. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2018; 81:076601. [PMID: 29542442 DOI: 10.1088/1361-6633/aab6bb] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2024]
Abstract
We review the general hydrodynamic theory of active soft materials that is motivated in particular by biological matter. We present basic concepts of irreversible thermodynamics of spatially extended multicomponent active systems. Starting from the rate of entropy production, we identify conjugate thermodynamic fluxes and forces and present generic constitutive equations of polar active fluids and active gels. We also discuss angular momentum conservation which plays a role in the the physics of active chiral gels. The irreversible thermodynamics of active gels provides a general framework to discuss the physics that underlies a wide variety of biological processes in cells and in multicellular tissues.
Collapse
Affiliation(s)
- Frank Jülicher
- Max-Planck-Institute for the Physics of Complex Systems, Nöthnitzerstr. 38, 01187 Dresden, Germany
| | | | | |
Collapse
|
377
|
Duclos G, Blanch-Mercader C, Yashunsky V, Salbreux G, Joanny JF, Prost J, Silberzan P. Spontaneous shear flow in confined cellular nematics. NATURE PHYSICS 2018; 14:728-732. [PMID: 30079095 PMCID: PMC6071846 DOI: 10.1038/s41567-018-0099-7] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 03/05/2018] [Indexed: 05/18/2023]
Abstract
In embryonic development or tumor evolution, cells often migrate collectively within confining tracks defined by their microenvironment 1,2. In some of these situations, the displacements within a cell strand are antiparallel 3, giving rise to shear flows. However, the mechanisms underlying these spontaneous flows remain poorly understood. Here, we show that an ensemble of spindle-shaped cells plated in a well-defined stripe spontaneously develop a shear flow whose characteristics depend on the width of the stripe. On wide stripes, the cells self-organize in a nematic phase with a director at a well-defined angle with the stripe's direction, and develop a shear flow close to the stripe's edges. However, on stripes narrower than a critical width, the cells perfectly align with the stripe's direction and the net flow vanishes. A hydrodynamic active gel theory provides an understanding of these observations and identifies the transition between the non-flowing phase oriented along the stripe and the tilted phase exhibiting shear flow as a Fréedericksz transition driven by the activity of the cells. This physical theory is grounded in the active nature of the cells and based on symmetries and conservation laws, providing a generic mechanism to interpret in vivo antiparallel cell displacements.
Collapse
Affiliation(s)
- G. Duclos
- Laboratoire PhysicoChimie Curie, Institut Curie, PSL Research
University - Sorbonne Universités, UPMC – CNRS. Equipe
labellisée Ligue Contre le Cancer ; 75005, Paris, France
| | - C. Blanch-Mercader
- Laboratoire PhysicoChimie Curie, Institut Curie, PSL Research
University - Sorbonne Universités, UPMC – CNRS. Equipe
labellisée Ligue Contre le Cancer ; 75005, Paris, France
| | - V. Yashunsky
- Laboratoire PhysicoChimie Curie, Institut Curie, PSL Research
University - Sorbonne Universités, UPMC – CNRS. Equipe
labellisée Ligue Contre le Cancer ; 75005, Paris, France
| | | | - J.-F. Joanny
- Laboratoire PhysicoChimie Curie, Institut Curie, PSL Research
University - Sorbonne Universités, UPMC – CNRS. Equipe
labellisée Ligue Contre le Cancer ; 75005, Paris, France
- ESPCI Paris, Paris, France
| | - J. Prost
- Laboratoire PhysicoChimie Curie, Institut Curie, PSL Research
University - Sorbonne Universités, UPMC – CNRS. Equipe
labellisée Ligue Contre le Cancer ; 75005, Paris, France
- Mechanobiology Institute, National University of Singapore,
Singapore
| | - P. Silberzan
- Laboratoire PhysicoChimie Curie, Institut Curie, PSL Research
University - Sorbonne Universités, UPMC – CNRS. Equipe
labellisée Ligue Contre le Cancer ; 75005, Paris, France
| |
Collapse
|
378
|
Abstract
Epithelial cells demonstrate different collective migratory modes when encountering two (2D) and three dimensional (3D) microenvironment. While planar micropatterns and constraint have been shown to strongly impact collective cell migration (CCM), how out-of-plane curvature and 3D confinement will affect epithelial organization and dynamics remains largely unknown. This is likely due to lack of proper 3D microscaffolds for studying CCM. In this chapter, we briefly review the latest achievement in microengineering approaches to control 3D microenvironment of epithelial development. Then, we introduce convenient and simple methods of fabricating elastomeric tubular biocompatible microchannels as 3D cell culture scaffolds. Afterwards, we describe in detail the experimental set-up for observing 3D coordinated cell migration on curved surfaces and under spatial constraint. Finally, we provide an approach to analyze 3D dynamics using available techniques for 2D images.
Collapse
|
379
|
Huber L, Suzuki R, Krüger T, Frey E, Bausch AR. Emergence of coexisting ordered states in active matter systems. Science 2018; 361:255-258. [DOI: 10.1126/science.aao5434] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 01/22/2018] [Accepted: 05/16/2018] [Indexed: 01/16/2023]
Abstract
Active systems can produce a far greater variety of ordered patterns than conventional equilibrium systems. In particular, transitions between disorder and either polar- or nematically ordered phases have been predicted and observed in two-dimensional active systems. However, coexistence between phases of different types of order has not been reported. We demonstrate the emergence of dynamic coexistence of ordered states with fluctuating nematic and polar symmetry in an actomyosin motility assay. Combining experiments with agent-based simulations, we identify sufficiently weak interactions that lack a clear alignment symmetry as a prerequisite for coexistence. Thus, the symmetry of macroscopic order becomes an emergent and dynamic property of the active system. These results provide a pathway by which living systems can express different types of order by using identical building blocks.
Collapse
Affiliation(s)
- L. Huber
- Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Department of Physics, Ludwig-Maximilians-Universität München, D-80333 Munich, Theresienstrasse 37, Germany
| | - R. Suzuki
- Lehrstuhl für Biophysik (E27), Technische Universität München, James-Franck-Strasse 1, D-85748 Garching, Germany
- Graduate School of Medicine, Kyoto University, 606-8501 Kyoto, Japan
- Institute for Integrated Cell-Material Sciences, Kyoto University, 606-8501 Kyoto, Japan
| | - T. Krüger
- Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Department of Physics, Ludwig-Maximilians-Universität München, D-80333 Munich, Theresienstrasse 37, Germany
| | - E. Frey
- Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Department of Physics, Ludwig-Maximilians-Universität München, D-80333 Munich, Theresienstrasse 37, Germany
| | - A. R. Bausch
- Lehrstuhl für Biophysik (E27), Technische Universität München, James-Franck-Strasse 1, D-85748 Garching, Germany
| |
Collapse
|
380
|
Armiger TJ, Lampi MC, Reinhart-King CA, Dahl KN. Determining mechanical features of modulated epithelial monolayers using subnuclear particle tracking. J Cell Sci 2018; 131:jcs.216010. [PMID: 29748381 DOI: 10.1242/jcs.216010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 05/04/2018] [Indexed: 12/29/2022] Open
Abstract
Force generation within cells, mediated by motor proteins along cytoskeletal networks, maintains the function of multicellular structures during homeostasis and when generating collective forces. Here, we describe the use of chromatin dynamics to detect cellular force propagation [a technique termed SINK (sensors from intranuclear kinetics)] and investigate the force response of cells to disruption of the monolayer and changes in substrate stiffness. We find that chromatin dynamics change in a substrate stiffness-dependent manner within epithelial monolayers. We also investigate point defects within monolayers to map the impact on the strain field of a heterogeneous monolayer. We find that cell monolayers behave as a colloidal assembly rather than as a continuum since the data fit an exponential decay; the lateral characteristic length of recovery from the mechanical defect is ∼50 µm for cells with a 10 µm spacing. At distances greater than this characteristic length, cells behave similarly to those in a fully intact monolayer. This work demonstrates the power of SINK to investigate diseases including cancer and atherosclerosis that result from single cells or heterogeneities in monolayers.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Travis J Armiger
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Marsha C Lampi
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | | | - Kris Noel Dahl
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| |
Collapse
|
381
|
Peruani F, Aranson IS. Cold Active Motion: How Time-Independent Disorder Affects the Motion of Self-Propelled Agents. PHYSICAL REVIEW LETTERS 2018; 120:238101. [PMID: 29932716 DOI: 10.1103/physrevlett.120.238101] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 04/18/2018] [Indexed: 06/08/2023]
Abstract
Assemblages of self-propelled particles, often termed active matter, exhibit collective behavior due to competition between neighbor alignment and noise-induced decoherence. However, very little is known of how the quenched (i.e., time-independent) disorder impacts active motion. Here we report on the effects of quenched disorder on the dynamics of self-propelled point particles. We identified three major types of quenched disorder relevant in the context of active matter: random torque, force, and stress. We demonstrate that even in the absence of external fluctuations ("cold active matter"), quenched disorder results in nontrivial dynamic phases not present in their "hot" counterpart. In particular, by analyzing when the equations of motion exhibit a Hamiltonian structure and when attractors may be present, we identify in which scenarios particle trapping, i.e., the asymptotic convergence of particle trajectories to bounded areas in space ("traps"), can and cannot occur. Our study provides new fundamental insights into active systems realized by self-propelled particles on natural and synthetic disordered substrates.
Collapse
Affiliation(s)
- Fernando Peruani
- Université Côte d'Azur, Laboratoire J.A. Dieudonné, UMR 7351 CNRS, Parc Valrose, F-06108 Nice Cedex 02, France
| | - Igor S Aranson
- Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA and Department of Biomedical Engineering, Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| |
Collapse
|
382
|
Braun E, Keren K. HydraRegeneration: Closing the Loop with Mechanical Processes in Morphogenesis. Bioessays 2018; 40:e1700204. [DOI: 10.1002/bies.201700204] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 04/29/2018] [Indexed: 12/17/2022]
Affiliation(s)
- Erez Braun
- Department of Physics & Network Biology Research LaboratoriesTechnion – Israel Institute of TechnologyHaifaIsrael
| | - Kinneret Keren
- Department of Physics & Network Biology Research LaboratoriesTechnion – Israel Institute of TechnologyHaifaIsrael
| |
Collapse
|
383
|
Atia L, Bi D, Sharma Y, Mitchel JA, Gweon B, Koehler S, DeCamp SJ, Lan B, Kim JH, Hirsch R, Pegoraro AF, Lee KH, Starr JR, Weitz DA, Martin AC, Park JA, Butler JP, Fredberg JJ. Geometric constraints during epithelial jamming. NATURE PHYSICS 2018; 14:613-620. [PMID: 30151030 PMCID: PMC6108541 DOI: 10.1038/s41567-018-0089-9] [Citation(s) in RCA: 151] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
As an injury heals, an embryo develops, or a carcinoma spreads, epithelial cells systematically change their shape. In each of these processes cell shape is studied extensively whereas variability of shape from cell-to-cell is regarded most often as biological noise. But where do cell shape and its variability come from? Here we report that cell shape and shape variability are mutually constrained through a relationship that is purely geometrical. That relationship is shown to govern processes as diverse as maturation of the pseudostratified bronchial epithelial layer cultured from non-asthmatic or asthmatic donors, and formation of the ventral furrow in the Drosophila embryo. Across these and other epithelial systems, shape variability collapses to a family of distributions that is common to all. That distribution, in turn, is accounted for by a mechanistic theory of cell-cell interaction showing that cell shape becomes progressively less elongated and less variable as the layer becomes progressively more jammed. These findings suggest a connection between jamming and geometry that spans living organisms and inert jammed systems, and thus transcends system details. Although molecular events are needed for any complete theory of cell shape and cell packing, observations point to the hypothesis that jamming behavior at larger scales of organization sets overriding geometrical constraints.
Collapse
Affiliation(s)
- Lior Atia
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, USA
| | - Dapeng Bi
- Northeastern University, Department of Physics, Boston, Massachusetts 02115, USA
| | - Yasha Sharma
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, USA
| | - Jennifer A Mitchel
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, USA
| | - Bomi Gweon
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, USA
- Hanyang University, Department of Biomedical Engineering, Seoul 04763, Korea
| | - Stephan Koehler
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, USA
| | - Stephen J DeCamp
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, USA
| | - Bo Lan
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, USA
| | - Jae Hun Kim
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, USA
| | - Rebecca Hirsch
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, USA
| | - Adrian F Pegoraro
- Harvard University, School of Engineering and Applied Sciences, Cambridge, Massachusetts 02138, USA
| | - Kyu Ha Lee
- The Forsyth Institute, Cambridge, Massachusetts 02142 USA
| | | | - David A Weitz
- Harvard University, School of Engineering and Applied Sciences, Cambridge, Massachusetts 02138, USA
| | - Adam C Martin
- Massachusetts Institute of Technology, Department of Biology, Cambridge, Massachusetts 02142, USA
| | - Jin-Ah Park
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, USA
| | - James P Butler
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, USA
- Dept. Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, 02115, USA
| | - Jeffrey J Fredberg
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, USA
| |
Collapse
|
384
|
Wickström SA, Niessen CM. Cell adhesion and mechanics as drivers of tissue organization and differentiation: local cues for large scale organization. Curr Opin Cell Biol 2018; 54:89-97. [PMID: 29864721 DOI: 10.1016/j.ceb.2018.05.003] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 04/09/2018] [Accepted: 05/08/2018] [Indexed: 02/07/2023]
Abstract
Biological patterns emerge through specialization of genetically identical cells to take up distinct fates according to their position within the organism. How initial symmetry is broken to give rise to these patterns remains an intriguing open question. Several theories of patterning have been proposed, most prominently Turing's reaction-diffusion model of a slowly diffusing activator and a fast diffusing inhibitor generating periodic patterns. Although these reaction-diffusion systems can generate diverse patterns, it is becoming increasingly evident that cell shape and tension anisotropies, mediated via cell-cell and/or cell-matrix contacts, also facilitate symmetry breaking and subsequent self-organized tissue patterning. This review will highlight recent studies that implicate local changes in adhesion and/or tension as key drivers of cell rearrangements. We will also discuss recent studies on the role of cadherin and integrin adhesive receptors in mediating and responding to local tissue tension asymmetries to coordinate cell fate, position and behavior essential for tissue self-organization and maintenance.
Collapse
Affiliation(s)
- Sara A Wickström
- Helsinki Institute of Life Science, Biomedicum Helsinki, University of Helsinki, FI-00014 Helsinki, Finland; Wihuri Research Institute, Biomedicum Helsinki, University of Helsinki, FI-00014 Helsinki, Finland; Paul Gerson Unna Group "Skin Homeostasis and Ageing" Max Planck Institute for Biology of Ageing, Cologne, Germany; Cologne Excellence Cluster on Stress Responses in Aging-associated Diseases (CECAD), Germany.
| | - Carien M Niessen
- Department of Dermatology, Cologne Excellence Cluster on Stress Responses in Aging-associated Diseases (CECAD), Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.
| |
Collapse
|
385
|
Blanch-Mercader C, Yashunsky V, Garcia S, Duclos G, Giomi L, Silberzan P. Turbulent Dynamics of Epithelial Cell Cultures. PHYSICAL REVIEW LETTERS 2018; 120:208101. [PMID: 29864293 DOI: 10.1103/physrevlett.120.208101] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Revised: 02/12/2018] [Indexed: 05/23/2023]
Abstract
We investigate the large length and long time scales collective flows and structural rearrangements within in vitro human bronchial epithelial cell (HBEC) cultures. Activity-driven collective flows result in ensembles of vortices randomly positioned in space. By analyzing a large population of vortices, we show that their area follows an exponential law with a constant mean value and their rotational frequency is size independent, both being characteristic features of the chaotic dynamics of active nematic suspensions. Indeed, we find that HBECs self-organize in nematic domains of several cell lengths. Nematic defects are found at the interface between domains with a total number that remains constant due to the dynamical balance of nucleation and annihilation events. The mean velocity fields in the vicinity of defects are well described by a hydrodynamic theory of extensile active nematics.
Collapse
Affiliation(s)
- C Blanch-Mercader
- Laboratoire PhysicoChimie Curie, Institut Curie, PSL Research University-Sorbonne Université, UPMC-CNRS-Equipe labellisée Ligue Contre le Cancer, 75005 Paris, France
| | - V Yashunsky
- Laboratoire PhysicoChimie Curie, Institut Curie, PSL Research University-Sorbonne Université, UPMC-CNRS-Equipe labellisée Ligue Contre le Cancer, 75005 Paris, France
| | - S Garcia
- Laboratoire PhysicoChimie Curie, Institut Curie, PSL Research University-Sorbonne Université, UPMC-CNRS-Equipe labellisée Ligue Contre le Cancer, 75005 Paris, France
| | - G Duclos
- Laboratoire PhysicoChimie Curie, Institut Curie, PSL Research University-Sorbonne Université, UPMC-CNRS-Equipe labellisée Ligue Contre le Cancer, 75005 Paris, France
| | - L Giomi
- Instituut-Lorentz, Universiteit Leiden, P.O. Box 9506, 2300 RA Leiden, The Netherlands
| | - P Silberzan
- Laboratoire PhysicoChimie Curie, Institut Curie, PSL Research University-Sorbonne Université, UPMC-CNRS-Equipe labellisée Ligue Contre le Cancer, 75005 Paris, France
| |
Collapse
|
386
|
Lai JKH, Collins MM, Uribe V, Jiménez-Amilburu V, Günther S, Maischein HM, Stainier DYR. The Hippo pathway effector Wwtr1 regulates cardiac wall maturation in zebrafish. Development 2018; 145:145/10/dev159210. [PMID: 29773645 DOI: 10.1242/dev.159210] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 04/23/2018] [Indexed: 12/14/2022]
Abstract
Cardiac trabeculation is a highly regulated process that starts with the delamination of compact layer cardiomyocytes. The Hippo signaling pathway has been implicated in cardiac development but many questions remain. We have investigated the role of Wwtr1, a nuclear effector of the Hippo pathway, in zebrafish and find that its loss leads to reduced cardiac trabeculation. However, in mosaic animals, wwtr1-/- cardiomyocytes contribute more frequently than wwtr1+/- cardiomyocytes to the trabecular layer of wild-type hearts. To investigate this paradox, we examined the myocardial wall at early stages and found that compact layer cardiomyocytes in wwtr1-/- hearts exhibit disorganized cortical actin structure and abnormal cell-cell junctions. Accordingly, wild-type cardiomyocytes in mosaic mutant hearts contribute less frequently to the trabecular layer than when present in mosaic wild-type hearts, indicating that wwtr1-/- hearts are not able to support trabeculation. We also found that Nrg/Erbb2 signaling, which is required for trabeculation, could promote Wwtr1 nuclear export in cardiomyocytes. Altogether, these data suggest that Wwtr1 establishes the compact wall architecture necessary for trabeculation, and that Nrg/Erbb2 signaling negatively regulates its nuclear localization and therefore its activity.
Collapse
Affiliation(s)
- Jason K H Lai
- Max Planck Institute for Heart and Lung Research, Department of Developmental Genetics, Bad Nauheim 61231, Germany
| | - Michelle M Collins
- Max Planck Institute for Heart and Lung Research, Department of Developmental Genetics, Bad Nauheim 61231, Germany
| | - Veronica Uribe
- Max Planck Institute for Heart and Lung Research, Department of Developmental Genetics, Bad Nauheim 61231, Germany
| | - Vanesa Jiménez-Amilburu
- Max Planck Institute for Heart and Lung Research, Department of Developmental Genetics, Bad Nauheim 61231, Germany
| | - Stefan Günther
- Max Planck Institute for Heart and Lung Research, ECCPS Bioinformatics and Deep Sequencing Platform, Bad Nauheim 61231, Germany
| | - Hans-Martin Maischein
- Max Planck Institute for Heart and Lung Research, Department of Developmental Genetics, Bad Nauheim 61231, Germany
| | - Didier Y R Stainier
- Max Planck Institute for Heart and Lung Research, Department of Developmental Genetics, Bad Nauheim 61231, Germany
| |
Collapse
|
387
|
Ellis PW, Huang S, Klaneček S, Vallamkondu J, Dannemiller E, Vernon M, Chang YW, Goldbart PM, Fernandez-Nieves A. Defect transitions in nematic liquid-crystal capillary bridges. Phys Rev E 2018; 97:040701. [PMID: 29758727 DOI: 10.1103/physreve.97.040701] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Indexed: 11/07/2022]
Abstract
We use experiment and computational modeling to understand the defect structure and director configuration in a nematic liquid crystal capillary bridge confined between two parallel plates. We find that tuning of the aspect ratio of the bridge drives a transition between a ring defect and a point defect. This transition exhibits hysteresis, due to the metastability of the point-defect structure. In addition, we see that the shape of the capillary-bridge surface determines whether the defect is hyperbolic or radial, with waistlike bridges containing hyperbolic defects and barrel-like bridges containing radial defects.
Collapse
Affiliation(s)
- Perry W Ellis
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332-0430, USA
| | - Shengnan Huang
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332-0430, USA
| | - Susannah Klaneček
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332-0430, USA
| | | | - Edward Dannemiller
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332-0430, USA
| | - Mark Vernon
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332-0430, USA
| | - Ya-Wen Chang
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332-0430, USA
| | - Paul M Goldbart
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332-0430, USA
| | | |
Collapse
|
388
|
Martella D, Parmeggiani C. Advances in Cell Scaffolds for Tissue Engineering: The Value of Liquid Crystalline Elastomers. Chemistry 2018; 24:12206-12220. [DOI: 10.1002/chem.201800477] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Indexed: 11/08/2022]
Affiliation(s)
- Daniele Martella
- Chemistry Department “Ugo Schiff”; University of Florence; Via della Lastruccia 3-13 Sesto Fiorentino Italy
- CNR-INO; European Laboratory for Non-Linear Spectroscopy (LENS); University of Florence; via Nello Carrara 1 Sesto Fiorentino Italy
| | - Camilla Parmeggiani
- Chemistry Department “Ugo Schiff”; University of Florence; Via della Lastruccia 3-13 Sesto Fiorentino Italy
- CNR-INO; European Laboratory for Non-Linear Spectroscopy (LENS); University of Florence; via Nello Carrara 1 Sesto Fiorentino Italy
| |
Collapse
|
389
|
Fadul J, Rosenblatt J. The forces and fates of extruding cells. Curr Opin Cell Biol 2018; 54:66-71. [PMID: 29727745 DOI: 10.1016/j.ceb.2018.04.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 04/04/2018] [Accepted: 04/12/2018] [Indexed: 02/07/2023]
Abstract
Cell extrusion drives most epithelial cell death while maintaining a functional epithelial barrier. To extrude, a cell produces a lipid signal that triggers the neighboring cells to reorganize actin and myosin basally to squeeze the extruding cell out apically from the barrier. More studies continue to reveal other signals and mechanisms controlling apical extrusion. New developmental studies are uncovering mechanisms controlling basal extrusion, or ingression, which occurs when apical extrusion is defective or during de-differentiation in development. Here, we review recent advances in epithelial extrusion, focusing particularly on forces exerted upon extruding cells and their various later fates ranging from cell death, normal development, and cancer.
Collapse
Affiliation(s)
- John Fadul
- Huntsman Cancer Institute, The University of Utah, Salt Lake City, UT, USA
| | - Jody Rosenblatt
- Huntsman Cancer Institute, The University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
390
|
Henkes S, Marchetti MC, Sknepnek R. Dynamical patterns in nematic active matter on a sphere. Phys Rev E 2018; 97:042605. [PMID: 29758687 DOI: 10.1103/physreve.97.042605] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Indexed: 01/24/2023]
Abstract
Using simulations of self-propelled agents with short-range repulsion and nematic alignment, we explore the dynamical phases of a dense active nematic confined to the surface of a sphere. We map the nonequilibrium phase diagram as a function of curvature, alignment strength, and activity. Our model reproduces several phases seen in recent experiments on active microtubule bundles confined the surfaces of vesicles. At low driving, we recover the equilibrium nematic ground state with four +1/2 defects. As the driving is increased, geodesic forces drive the transition to a polar band wrapping around an equator, with large empty spherical caps corresponding to two +1 defects at the poles. Upon further increasing activity, the bands fold onto themselves, and the system eventually transitions to a turbulent state marked by the proliferation of pairs of topological defects. We highlight the key role of the nematic persistence length in controlling pattern formation in these confined systems with positive Gaussian curvature.
Collapse
Affiliation(s)
- Silke Henkes
- Institute for Complex Systems and Mathematical Biology, Department of Physics, University of Aberdeen, Aberdeen AB24 3UE, United Kingdom
| | - M Cristina Marchetti
- Department of Physics and Soft Matter Program, Syracuse University, Syracuse, New York 13244, USA
| | - Rastko Sknepnek
- School of Sciences and Engineering and School of Life Sciences, University of Dundee, Dundee DD1 4HN, United Kingdom
| |
Collapse
|
391
|
Ganier O, Schnerch D, Oertle P, Lim RY, Plodinec M, Nigg EA. Structural centrosome aberrations promote non-cell-autonomous invasiveness. EMBO J 2018; 37:embj.201798576. [PMID: 29567643 PMCID: PMC5920242 DOI: 10.15252/embj.201798576] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 02/14/2018] [Accepted: 02/27/2018] [Indexed: 12/12/2022] Open
Abstract
Centrosomes are the main microtubule‐organizing centers of animal cells. Although centrosome aberrations are common in tumors, their consequences remain subject to debate. Here, we studied the impact of structural centrosome aberrations, induced by deregulated expression of ninein‐like protein (NLP), on epithelial spheres grown in Matrigel matrices. We demonstrate that NLP‐induced structural centrosome aberrations trigger the escape (“budding”) of living cells from epithelia. Remarkably, all cells disseminating into the matrix were undergoing mitosis. This invasive behavior reflects a novel mechanism that depends on the acquisition of two distinct properties. First, NLP‐induced centrosome aberrations trigger a re‐organization of the cytoskeleton, which stabilizes microtubules and weakens E‐cadherin junctions during mitosis. Second, atomic force microscopy reveals that cells harboring these centrosome aberrations display increased stiffness. As a consequence, mitotic cells are pushed out of mosaic epithelia, particularly if they lack centrosome aberrations. We conclude that centrosome aberrations can trigger cell dissemination through a novel, non‐cell‐autonomous mechanism, raising the prospect that centrosome aberrations contribute to the dissemination of metastatic cells harboring normal centrosomes.
Collapse
Affiliation(s)
| | | | - Philipp Oertle
- Biozentrum, University of Basel, Basel, Switzerland.,Swiss Nanoscience Institute, University of Basel, Basel, Switzerland
| | - Roderick Yh Lim
- Biozentrum, University of Basel, Basel, Switzerland.,Swiss Nanoscience Institute, University of Basel, Basel, Switzerland
| | - Marija Plodinec
- Biozentrum, University of Basel, Basel, Switzerland.,Swiss Nanoscience Institute, University of Basel, Basel, Switzerland
| | - Erich A Nigg
- Biozentrum, University of Basel, Basel, Switzerland
| |
Collapse
|
392
|
Mechanosensitive adhesion complexes in epithelial architecture and cancer onset. Curr Opin Cell Biol 2018; 50:42-49. [PMID: 29454273 DOI: 10.1016/j.ceb.2018.01.013] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 01/10/2018] [Accepted: 01/30/2018] [Indexed: 01/09/2023]
Abstract
Mechanical signals from the extracellular space are paramount to coordinate tissue morphogenesis and homeostasis. Although there is a wide variety of cellular mechanisms involved in transducing extracellular forces, recent literature emphasizes the central role of two main adhesion complexes in epithelial mechanosensitive processes: focal adhesions and adherens junctions. These biomechanical sensors can decode physical signals such as matrix stiffness or intercellular tension into a wide range of coordinated cellular responses, which can impact cell differentiation, migration, and proliferation. Communication between cells and their microenvironment plays a pivotal role both in physiological and pathological conditions. Here we summarize the most recent findings on the biology of these mechanotransduction pathways in epithelial cells, highlighting the extensive amount of biological processes coordinated by cell-matrix and cell-cell adhesion complexes.
Collapse
|
393
|
Ohsawa S, Vaughen J, Igaki T. Cell Extrusion: A Stress-Responsive Force for Good or Evil in Epithelial Homeostasis. Dev Cell 2018; 44:284-296. [PMID: 29408235 DOI: 10.1016/j.devcel.2018.01.009] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 01/08/2018] [Accepted: 01/10/2018] [Indexed: 12/31/2022]
Abstract
Epithelial tissues robustly respond to internal and external stressors via dynamic cellular rearrangements. Cell extrusion acts as a key regulator of epithelial homeostasis by removing apoptotic cells, orchestrating morphogenesis, and mediating competitive cellular battles during tumorigenesis. Here, we delineate the diverse functions of cell extrusion during development and disease. We emphasize the expanding role for apoptotic cell extrusion in exerting morphogenetic forces, as well as the strong intersection of cell extrusion with cell competition, a homeostatic mechanism that eliminates aberrant or unfit cells. While cell competition and extrusion can exert potent, tumor-suppressive effects, dysregulation of either critical homeostatic program can fuel cancer progression.
Collapse
Affiliation(s)
- Shizue Ohsawa
- Laboratory of Genetics, Graduate School of Biostudies, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - John Vaughen
- Department of Developmental Biology, Stanford School of Medicine, Beckman Center, 279 Campus Drive B300, Stanford, CA 94305, USA
| | - Tatsushi Igaki
- Laboratory of Genetics, Graduate School of Biostudies, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan.
| |
Collapse
|
394
|
Babakhanova G, Turiv T, Guo Y, Hendrikx M, Wei QH, Schenning APHJ, Broer DJ, Lavrentovich OD. Liquid crystal elastomer coatings with programmed response of surface profile. Nat Commun 2018; 9:456. [PMID: 29386512 PMCID: PMC5792610 DOI: 10.1038/s41467-018-02895-9] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 01/05/2018] [Indexed: 11/13/2022] Open
Abstract
Stimuli-responsive liquid crystal elastomers with molecular orientation coupled to rubber-like elasticity show a great potential as elements in soft robotics, sensing, and transport systems. The orientational order defines their mechanical response to external stimuli, such as thermally activated muscle-like contraction. Here we demonstrate a dynamic thermal control of the surface topography of an elastomer prepared as a coating with a pattern of in-plane molecular orientation. The inscribed pattern determines whether the coating develops elevations, depressions, or in-plane deformations when the temperature changes. The deterministic dependence of the out-of-plane dynamic profile on the in-plane orientation is explained by activation forces. These forces are caused by stretching-contraction of the polymer networks and by spatially varying molecular orientation. The activation force concept brings the responsive liquid crystal elastomers into the domain of active matter. The demonstrated relationship can be used to design coatings with functionalities that mimic biological tissues such as skin.
Collapse
Affiliation(s)
- Greta Babakhanova
- Liquid Crystal Institute, Kent State University, Kent, OH, 44242, USA
- Chemical Physics Interdisciplinary Program, Kent State University, Kent, OH, 44242, USA
| | - Taras Turiv
- Liquid Crystal Institute, Kent State University, Kent, OH, 44242, USA
- Chemical Physics Interdisciplinary Program, Kent State University, Kent, OH, 44242, USA
| | - Yubing Guo
- Liquid Crystal Institute, Kent State University, Kent, OH, 44242, USA
- Chemical Physics Interdisciplinary Program, Kent State University, Kent, OH, 44242, USA
| | - Matthew Hendrikx
- Functional Organic Materials and Devices, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, 5612 AZAE, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
| | - Qi-Huo Wei
- Liquid Crystal Institute, Kent State University, Kent, OH, 44242, USA
- Chemical Physics Interdisciplinary Program, Kent State University, Kent, OH, 44242, USA
| | - Albert P H J Schenning
- Functional Organic Materials and Devices, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, 5612 AZAE, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
| | - Dirk J Broer
- Functional Organic Materials and Devices, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, 5612 AZAE, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
| | - Oleg D Lavrentovich
- Liquid Crystal Institute, Kent State University, Kent, OH, 44242, USA.
- Chemical Physics Interdisciplinary Program, Kent State University, Kent, OH, 44242, USA.
- Department of Physics, Kent State University, Kent, OH, 44242, USA.
| |
Collapse
|
395
|
Sung B, Kim MH. Liquid-crystalline nanoarchitectures for tissue engineering. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2018; 9:205-215. [PMID: 29441265 PMCID: PMC5789436 DOI: 10.3762/bjnano.9.22] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 11/21/2017] [Indexed: 05/03/2023]
Abstract
Hierarchical orders are found throughout all levels of biosystems, from simple biopolymers, subcellular organelles, single cells, and macroscopic tissues to bulky organs. Especially, biological tissues and cells have long been known to exhibit liquid crystal (LC) orders or their structural analogues. Inspired by those native architectures, there has recently been increased interest in research for engineering nanobiomaterials by incorporating LC templates and scaffolds. In this review, we introduce and correlate diverse LC nanoarchitectures with their biological functionalities, in the context of tissue engineering applications. In particular, the tissue-mimicking LC materials with different LC phases and the regenerative potential of hard and soft tissues are summarized. In addition, the multifaceted aspects of LC architectures for developing tissue-engineered products are envisaged. Lastly, a perspective on the opportunities and challenges for applying LC nanoarchitectures in tissue engineering fields is discussed.
Collapse
Affiliation(s)
- Baeckkyoung Sung
- Liquid Crystal Institute and Chemical Physics Interdisciplinary Program, Kent State University, Kent, OH 44242, USA
- Department of Biological Sciences, Kent State University, Kent, OH 44242, USA
| | - Min-Ho Kim
- Department of Biological Sciences, Kent State University, Kent, OH 44242, USA
| |
Collapse
|
396
|
Hardin CC, Chattoraj J, Manomohan G, Colombo J, Nguyen T, Tambe D, Fredberg JJ, Birukov K, Butler JP, Del Gado E, Krishnan R. Long-range stress transmission guides endothelial gap formation. Biochem Biophys Res Commun 2018; 495:749-754. [PMID: 29137986 PMCID: PMC5761675 DOI: 10.1016/j.bbrc.2017.11.066] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 11/09/2017] [Indexed: 12/15/2022]
Abstract
In endothelial gap formation, local tractions exerted by the cell upon its basal adhesions are thought to exceed balancing tensile stresses exerted across the cell-cell junction, thus causing the junction to rupture. To test this idea, we mapped evolving tractions, intercellular stresses, and corresponding growth of paracellular gaps in response to agonist challenge. Contrary to expectation, we found little to no relationship between local tensile stresses and gap formation. Instead, we discovered that intercellular stresses were aligned into striking multi-cellular domains punctuated by defects in stress alignment. Surprisingly, gaps emerged preferentially not at stress hotspots, as predicted, but rather at stress defects. This unexpected behavior is captured by a minimal model of the cell layer as a jammed assembly of cohesive particles undergoing plastic rearrangements under tension. Together, experiments and model suggest a new physical picture in which gap formation, and its consequent effect on endothelial permeability, is determined not by a local stress imbalance at a cell-cell junction but rather by emergence of non-local, cooperative stress reorganization across the cellular collective.
Collapse
Affiliation(s)
- C. Corey Hardin
- Division of Pulmonary and Critical Care, Massachusetts General Hospital, Boston, MA
| | - Joyjit Chattoraj
- Department of Physics and Institute for Soft Matter Synthesis and Metrology, Georgetown University, Washington, DC
| | - Greeshma Manomohan
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Boston, MA
| | - Jader Colombo
- Department of Physics and Institute for Soft Matter Synthesis and Metrology, Georgetown University, Washington, DC,Department of Civil, Environmental and Geomatic Engineering, ETH Zurich, Zurich, Switzerland
| | - Trong Nguyen
- Division of Pulmonary and Critical Care, Massachusetts General Hospital, Boston, MA
| | - Dhananjay Tambe
- Department of Mechanical Engineering, University of South Alabama, Mobile, AL
| | - Jeffrey J. Fredberg
- Harvard TH Chan School of Public Health, Boston, MA and Dept. Medicine, Harvard Medical School
| | - Konstantin Birukov
- Department of Anesthesiology, Lung Biology Program, University of Maryland School of Medicine
| | - James P. Butler
- Harvard TH Chan School of Public Health, Boston, MA and Dept. Medicine, Harvard Medical School
| | - Emanuela Del Gado
- Department of Physics and Institute for Soft Matter Synthesis and Metrology, Georgetown University, Washington, DC
| | - Ramaswamy Krishnan
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Boston, MA
| |
Collapse
|
397
|
Laurent J, Blin G, Chatelain F, Vanneaux V, Fuchs A, Larghero J, Théry M. Convergence of microengineering and cellular self-organization towards functional tissue manufacturing. Nat Biomed Eng 2017; 1:939-956. [DOI: 10.1038/s41551-017-0166-x] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 11/07/2017] [Indexed: 12/18/2022]
|
398
|
Adhesion forces and cortical tension couple cell proliferation and differentiation to drive epidermal stratification. Nat Cell Biol 2017; 20:69-80. [PMID: 29230016 DOI: 10.1038/s41556-017-0005-z] [Citation(s) in RCA: 182] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 10/05/2017] [Indexed: 12/22/2022]
Abstract
To establish and maintain organ structure and function, tissues need to balance stem cell proliferation and differentiation rates and coordinate cell fate with position. By quantifying and modelling tissue stress and deformation in the mammalian epidermis, we find that this balance is coordinated through local mechanical forces generated by cell division and delamination. Proliferation within the basal stem/progenitor layer, which displays features of a jammed, solid-like state, leads to crowding, thereby locally distorting cell shape and stress distribution. The resulting decrease in cortical tension and increased cell-cell adhesion trigger differentiation and subsequent delamination, reinstating basal cell layer density. After delamination, cells establish a high-tension state as they increase myosin II activity and convert to E-cadherin-dominated adhesion, thereby reinforcing the boundary between basal and suprabasal layers. Our results uncover how biomechanical signalling integrates single-cell behaviours to couple proliferation, cell fate and positioning to generate a multilayered tissue.
Collapse
|
399
|
Abstract
Nuclear pore complexes tightly regulate nucleo-cytoplasmic transport, controlling the nuclear concentration of several transcription factors. In a recent issue of Cell, Elosegui-Artola et al. (2017) show that nuclear deformation modulates the nuclear entry rates of YAP/TAZ via nuclear pore stretching, clarifying how forces affect gene transcription.
Collapse
Affiliation(s)
- Alexis Lomakin
- King's College London, Guy's Campus, Centre for Stem Cells & Regenerative Medicine, 28th Floor, Tower Wing, Great Maze Pond, London SE1 9RT, UK; Institut Curie, PSL Research University, CNRS, UMR 144, 75005 Paris, France; Institut Pierre-Gilles de Gennes, PSL Research University, 75005 Paris, France
| | - Guilherme Nader
- Institut Curie, PSL Research University, CNRS, UMR 144, 75005 Paris, France; Institut Pierre-Gilles de Gennes, PSL Research University, 75005 Paris, France
| | - Matthieu Piel
- Institut Curie, PSL Research University, CNRS, UMR 144, 75005 Paris, France; Institut Pierre-Gilles de Gennes, PSL Research University, 75005 Paris, France.
| |
Collapse
|
400
|
Rupprecht JF, Ong KH, Yin J, Huang A, Dinh HHQ, Singh AP, Zhang S, Yu W, Saunders TE. Geometric constraints alter cell arrangements within curved epithelial tissues. Mol Biol Cell 2017; 28:3582-3594. [PMID: 28978739 PMCID: PMC5706987 DOI: 10.1091/mbc.e17-01-0060] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 09/27/2017] [Accepted: 09/27/2017] [Indexed: 01/13/2023] Open
Abstract
Organ and tissue formation are complex three-dimensional processes involving cell division, growth, migration, and rearrangement, all of which occur within physically constrained regions. However, analyzing such processes in three dimensions in vivo is challenging. Here, we focus on the process of cellularization in the anterior pole of the early Drosophila embryo to explore how cells compete for space under geometric constraints. Using microfluidics combined with fluorescence microscopy, we extract quantitative information on the three-dimensional epithelial cell morphology. We observed a cellular membrane rearrangement in which cells exchange neighbors along the apical-basal axis. Such apical-to-basal neighbor exchanges were observed more frequently in the anterior pole than in the embryo trunk. Furthermore, cells within the anterior pole skewed toward the trunk along their long axis relative to the embryo surface, with maximum skew on the ventral side. We constructed a vertex model for cells in a curved environment. We could reproduce the observed cellular skew in both wild-type embryos and embryos with distorted morphology. Further, such modeling showed that cell rearrangements were more likely in ellipsoidal, compared with cylindrical, geometry. Overall, we demonstrate that geometric constraints can influence three-dimensional cell morphology and packing within epithelial tissues.
Collapse
Affiliation(s)
| | - Kok Haur Ong
- IInstitute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*Star), Biopolis 138673, Singapore
| | - Jianmin Yin
- Mechanobiology Institute, National University of Singapore, Singapore 117411
| | - Anqi Huang
- Mechanobiology Institute, National University of Singapore, Singapore 117411
| | - Huy-Hong-Quan Dinh
- Mechanobiology Institute, National University of Singapore, Singapore 117411
| | - Anand P Singh
- Mechanobiology Institute, National University of Singapore, Singapore 117411
| | - Shaobo Zhang
- Mechanobiology Institute, National University of Singapore, Singapore 117411
| | - Weimiao Yu
- IInstitute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*Star), Biopolis 138673, Singapore
| | - Timothy E Saunders
- Mechanobiology Institute, National University of Singapore, Singapore 117411
- IInstitute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*Star), Biopolis 138673, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore 117411
| |
Collapse
|