351
|
Lira VA, Soltow QA, Long JHD, Betters JL, Sellman JE, Criswell DS. Nitric oxide increases GLUT4 expression and regulates AMPK signaling in skeletal muscle. Am J Physiol Endocrinol Metab 2007; 293:E1062-8. [PMID: 17666490 DOI: 10.1152/ajpendo.00045.2007] [Citation(s) in RCA: 132] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Nitric oxide (NO) and 5'-AMP-activated protein kinase (AMPK) are involved in glucose transport and mitochondrial biogenesis in skeletal muscle. Here, we examined whether NO regulates the expression of the major glucose transporter in muscle (GLUT4) and whether it influences AMPK-induced upregulation of GLUT4. At low levels, the NO donor S-nitroso-N-penicillamine (SNAP, 1 and 10 microM) significantly increased GLUT4 mRNA ( approximately 3-fold; P < 0.05) in L6 myotubes, and cotreatment with the AMPK inhibitor compound C ablated this effect. The cGMP analog 8-bromo-cGMP (8-Br-cGMP, 2 mM) increased GLUT4 mRNA by approximately 50% (P < 0.05). GLUT4 protein expression was elevated 40% by 2 days treatment with 8-Br-cGMP, whereas 6 days treatment with 10 microM SNAP increased GLUT4 expression by 65%. Cotreatment of cultures with the guanylyl cyclase inhibitor 1H-[1,2,4]oxadiazolo[4,3,-a]quinoxalin-1-one prevented the SNAP-induced increase in GLUT4 protein. SNAP (10 microM) also induced significant phosphorylation of alpha-AMPK and acetyl-CoA carboxylase and translocation of phosphorylated alpha-AMPK to the nucleus. Furthermore, L6 myotubes exposed to 5-aminoimidazole-4-carboxamide-1-beta-d-ribofuranoside (AICAR) for 16 h presented an approximately ninefold increase in GLUT4 mRNA, whereas cotreatment with the non-isoform-specific NOS inhibitor N(G)-nitro-l-arginine methyl ester, prevented approximately 70% of this effect. In vivo, GLUT4 mRNA was increased 1.8-fold in the rat plantaris muscle 12 h after AICAR injection, and this induction was reduced by approximately 50% in animals cotreated with the neuronal and inducible nitric oxide synthases selective inhibitor 1-(2-trifluoromethyl-phenyl)-imidazole. We conclude that, in skeletal muscle, NO increases GLUT4 expression via a cGMP- and AMPK-dependent mechanism. The data are consistent with a role for NO in the regulation of AMPK, possibly via control of cellular activity of AMPK kinases and/or AMPK phosphatases.
Collapse
Affiliation(s)
- Vitor A Lira
- Department of Applied Physiology and Kinesiology, Center for Exercise Science, Univ. of Florida, Gainesville, FL 32611, USA
| | | | | | | | | | | |
Collapse
|
352
|
Abstract
Mitochondria cannot be made de novo but replicate by a mechanism of recruitment of new proteins, which are added to preexisting subcompartments. Although mitochondria have their own DNA, more than 98% of the total protein complement of the organelle is encoded by the nuclear genome. Mitochondrial biogenesis requires a coordination of expression of two genomes and therefore cross talk between the nucleus and mitochondria. In mammals, regulation of mitochondrial biogenesis and proliferation is influenced by external factors, such as nutrients, hormones, temperature, exercise, hypoxia, and aging. This complexity points to the existence of a coordinated and tightly regulated network connecting different pathways. Communications are also required for eliciting mitochondrial responses to specific stress pathways. This review covers the mechanisms of mitochondrial biogenesis and the way cells respond to external signals to maintain mitochondrial function and cellular homeostasis.
Collapse
Affiliation(s)
- Michael T Ryan
- Department of Biochemistry, La Trobe University, Melbourne 3086, Australia.
| | | |
Collapse
|
353
|
Dietrich CG, Martin IV, Porn AC, Voigt S, Gartung C, Trautwein C, Geier A. Fasting induces basolateral uptake transporters of the SLC family in the liver via HNF4alpha and PGC1alpha. Am J Physiol Gastrointest Liver Physiol 2007; 293:G585-90. [PMID: 17640976 DOI: 10.1152/ajpgi.00175.2007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Fasting induces numerous adaptive changes in metabolism by several central signaling pathways, the most important represented by the HNF4alpha/PGC-1alpha-pathway. Because HNF4alpha has been identified as central regulator of basolateral bile acid transporters and a previous study reports increased basolateral bile acid uptake into the liver during fasting, we hypothesized that HNF4alpha is involved in fasting-induced bile acid uptake via upregulation of basolateral bile acid transporters. In rats, mRNA of Ntcp, Oatp1, and Oatp2 were significantly increased after 48 h of fasting. Protein expression as determined by Western blot showed significant increases for all three transporters 72 h after the onset of fasting. Whereas binding activity of HNF1alpha in electrophoretic mobility shift assays remained unchanged, HNF4alpha binding activity to the Ntcp promoter was increased significantly. In line with this result, we found significantly increased mRNA expression of HNF4alpha and PGC-1alpha. Functional studies in HepG2 cells revealed an increased endogenous NTCP mRNA expression upon cotransfection with either HNF4alpha, PGC-1alpha, or a combination of both. We conclude that upregulation of the basolateral bile acid transporters Ntcp, Oatp1, and Oatp2 in fasted rats is mediated via the HNF4alpha/PGC-1alpha pathway.
Collapse
Affiliation(s)
- Christoph G Dietrich
- Department of Internal Medicine III, Division of Gastroenterology and Hepatology, University Hospital Aachen, Aachen University, Pauwelsstrasse 30, 52074 Aachen, Germany
| | | | | | | | | | | | | |
Collapse
|
354
|
Chao LC, Zhang Z, Pei L, Saito T, Tontonoz P, Pilch PF. Nur77 coordinately regulates expression of genes linked to glucose metabolism in skeletal muscle. Mol Endocrinol 2007; 21:2152-63. [PMID: 17550977 PMCID: PMC2602962 DOI: 10.1210/me.2007-0169] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Innervation is important for normal metabolism in skeletal muscle, including insulin-sensitive glucose uptake. However, the transcription factors that transduce signals from the neuromuscular junction to the nucleus and affect changes in metabolic gene expression are not well defined. We demonstrate here that the orphan nuclear receptor Nur77 is a regulator of gene expression linked to glucose utilization in muscle. In vivo, Nur77 is preferentially expressed in glycolytic compared with oxidative muscle and is responsive to beta-adrenergic stimulation. Denervation of rat muscle compromises expression of Nur77 in parallel with that of numerous genes linked to glucose metabolism, including glucose transporter 4 and genes involved in glycolysis, glycogenolysis, and the glycerophosphate shuttle. Ectopic expression of Nur77, either in rat muscle or in C2C12 muscle cells, induces expression of a highly overlapping set of genes, including glucose transporter 4, muscle phosphofructokinase, and glycogen phosphorylase. Furthermore, selective knockdown of Nur77 in rat muscle by small hairpin RNA or genetic deletion of Nur77 in mice reduces the expression of a battery of genes involved in skeletal muscle glucose utilization in vivo. Finally, we show that Nur77 binds the promoter regions of multiple genes involved in glucose metabolism in muscle. These results identify Nur77 as a potential mediator of neuromuscular signaling in the control of metabolic gene expression.
Collapse
Affiliation(s)
- Lily C. Chao
- Howard Hughes Medical Institute, Department of Pathology and Laboratory Medicine, UCLA, Los Angeles, California, USA
- The Center for Diabetes, Endocrinology and Metabolism, Childrens Hospital Los Angeles, University of Southern California, Los Angeles, California, USA
| | - Zidong Zhang
- Dept. of Biochemistry, Boston University Medical Center, 715 Albany St., Boston, MA, USA
| | - Liming Pei
- Howard Hughes Medical Institute, Department of Pathology and Laboratory Medicine, UCLA, Los Angeles, California, USA
| | - Tsugumichi Saito
- Dept. of Biochemistry, Boston University Medical Center, 715 Albany St., Boston, MA, USA
| | - Peter Tontonoz
- Howard Hughes Medical Institute, Department of Pathology and Laboratory Medicine, UCLA, Los Angeles, California, USA
| | - Paul F. Pilch
- Dept. of Biochemistry, Boston University Medical Center, 715 Albany St., Boston, MA, USA
| |
Collapse
|
355
|
Jäger S, Handschin C, St.-Pierre J, Spiegelman BM. AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1alpha. Proc Natl Acad Sci U S A 2007; 104:12017-22. [PMID: 17609368 PMCID: PMC1924552 DOI: 10.1073/pnas.0705070104] [Citation(s) in RCA: 1912] [Impact Index Per Article: 106.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2007] [Indexed: 12/19/2022] Open
Abstract
Activation of AMP-activated kinase (AMPK) in skeletal muscle increases glucose uptake, fatty acid oxidation, and mitochondrial biogenesis by increasing gene expression in these pathways. However, the transcriptional components that are directly targeted by AMPK are still elusive. The peroxisome-proliferator-activated receptor gamma coactivator 1alpha (PGC-1alpha) has emerged as a master regulator of mitochondrial biogenesis; furthermore, it has been shown that PGC-1alpha gene expression is induced by exercise and by chemical activation of AMPK in skeletal muscle. Using primary muscle cells and mice deficient in PGC-1alpha, we found that the effects of AMPK on gene expression of glucose transporter 4, mitochondrial genes, and PGC-1alpha itself are almost entirely dependent on the function of PGC-1alpha protein. Furthermore, AMPK phosphorylates PGC-1alpha directly both in vitro and in cells. These direct phosphorylations of the PGC-1alpha protein at threonine-177 and serine-538 are required for the PGC-1alpha-dependent induction of the PGC-1alpha promoter. These data indicate that AMPK phosphorylation of PGC-1alpha initiates many of the important gene regulatory functions of AMPK in skeletal muscle.
Collapse
Affiliation(s)
- Sibylle Jäger
- Dana–Farber Cancer Institute and the Department of Cell Biology, Harvard Medical School, Boston, MA 02115
| | - Christoph Handschin
- Dana–Farber Cancer Institute and the Department of Cell Biology, Harvard Medical School, Boston, MA 02115
| | - Julie St.-Pierre
- Dana–Farber Cancer Institute and the Department of Cell Biology, Harvard Medical School, Boston, MA 02115
| | - Bruce M. Spiegelman
- Dana–Farber Cancer Institute and the Department of Cell Biology, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
356
|
Affiliation(s)
- Michael Gaster
- Institute of Pathology and Department of Endocrinology, Odense University Hospital, 5000 Odense C
| |
Collapse
|
357
|
Manoli I, Alesci S, Blackman MR, Su YA, Rennert OM, Chrousos GP. Mitochondria as key components of the stress response. Trends Endocrinol Metab 2007; 18:190-8. [PMID: 17500006 DOI: 10.1016/j.tem.2007.04.004] [Citation(s) in RCA: 265] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2007] [Revised: 04/02/2007] [Accepted: 04/30/2007] [Indexed: 02/09/2023]
Abstract
The exquisitely orchestrated adaptive response to stressors that challenge the homeostasis of the cell and organism involves important changes in mitochondrial function. A complex signaling network enables mitochondria to sense internal milieu or environmental changes and to adjust their bioenergetic, thermogenic, oxidative and/or apoptotic responses accordingly, aiming at re-establishment of homeostasis. Mitochondrial dysfunction is increasingly recognized as a key component in both acute and chronic allostatic states, although the extent of its role in the pathogenesis of such conditions remains controversial. Genetic and environmental factors that determine mitochondrial function might contribute to the significant variation of the stress response. Understanding the often reciprocal interplay between stress mediators and mitochondrial function is likely to help identify potential therapeutic targets for many stress and mitochondria-related pathologies.
Collapse
Affiliation(s)
- Irini Manoli
- Human Biochemical Genetics Section, MGB, NHGRI, NIH, Bethesda, MD 20892, USA.
| | | | | | | | | | | |
Collapse
|
358
|
Kim EJ, Jung SN, Son KH, Kim SR, Ha TY, Park MG, Jo IG, Park JG, Choe W, Kim SS, Ha J. Antidiabetes and antiobesity effect of cryptotanshinone via activation of AMP-activated protein kinase. Mol Pharmacol 2007; 72:62-72. [PMID: 17429005 DOI: 10.1124/mol.107.034447] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Metabolic disorders, including type 2 diabetes and obesity, represent major health risks in industrialized countries. AMP-activated protein kinase (AMPK) has become the focus of a great deal of attention as a novel therapeutic target for the treatment of metabolic syndromes, because AMPK has been demonstrated to mediate, at least in part, the effects of a number of physiological and pharmacological factors that exert beneficial effects on these disorders. Thus, the identification of a compound that activates the AMPK pathway would contribute significantly to the treatment and management of such syndromes. In service of this goal, we have screened a variety of naturally occurring compounds and have identified one compound, cryptotanshinone, as a novel AMPK pathway activator. Cryptotanshinone was originally isolated from the dried roots of Salvia militorrhiza, an herb that is used extensively in Asian medicine and that is known to exert beneficial effects on the circulatory system. For the first time, in the present study, we have described the potent antidiabetic and antiobesity effects of cryptotanshinone, both in vitro and in vivo. Our findings suggest that the activation of the AMPK pathway might contribute to the development of novel therapeutic approaches for the treatment of metabolic disorders such as type 2 diabetes and obesity.
Collapse
Affiliation(s)
- Eun Ju Kim
- Department of Biochemistry and Molecular Biology, Medical Research Center for Bioreaction to Reactive Oxygen Species, Kyung Hee University School of Medicine, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
359
|
Cowell RM, Blake KR, Russell JW. Localization of the transcriptional coactivator PGC-1alpha to GABAergic neurons during maturation of the rat brain. J Comp Neurol 2007; 502:1-18. [PMID: 17335037 DOI: 10.1002/cne.21211] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The transcriptional coactivator peroxisome proliferator activated receptor gamma coactivator 1alpha (PGC-1alpha) can activate a number of transcription factors to regulate mitochondrial biogenesis and cell-specific responses to cold, fasting, and exercise. Recent studies indicate that PGC-1alpha knockout mice exhibit behavioral abnormalities and progressive vacuolization in various brain regions. To investigate the roles for PGC-1alpha in the nervous system, we evaluated the temporal and cell-specific expression of PGC-1alpha in the normal developing rat brain. Western blot of whole brain homogenates with a PGC-1alpha-specific antibody revealed that PGC-1alpha protein was most abundant in the embryonic and early postnatal forebrain and cerebellum. Using quantitative reverse-transcriptase polymerase chain reaction (RT-PCR), we determined that PGC-1alpha mRNA expression increased most markedly between postnatal days 3 (P3) and 14 in the cortex, striatum, and hippocampus. Immunohistochemical and immunofluorescence analyses of brain tissue indicated that while PGC-1alpha was found in most neuronal populations from embryonic day 15 to P3, it was specifically concentrated in GABAergic populations from P3 to adulthood. Interestingly, PGC-1alpha colocalized with the developmentally regulated chemoattractant reelin in the cortex and hippocampus, and the survival-promoting transcription factor myocyte enhancing factor 2 was highly concentrated in GABAergic populations in the striatum and cerebellum at times of PGC-1alpha expression. These results implicate PGC-1alpha as a regulator of metabolism and/or survival in GABAergic neurons during a phase of mitochondrial and synaptic changes in the developing brain and suggest that PGC-1alpha may be a good target for increasing metabolism in GABAergic populations in neurodevelopmental and neurodegenerative disorders.
Collapse
Affiliation(s)
- Rita Marie Cowell
- Department of Psychiatry, University of Alabama, Birmingham, Alabama 35294, USA
| | | | | |
Collapse
|
360
|
Pirinen E, Kuulasmaa T, Pietilä M, Heikkinen S, Tusa M, Itkonen P, Boman S, Skommer J, Virkamäki A, Hohtola E, Kettunen M, Fatrai S, Kansanen E, Koota S, Niiranen K, Parkkinen J, Levonen AL, Ylä-Herttuala S, Hiltunen JK, Alhonen L, Smith U, Jänne J, Laakso M. Enhanced polyamine catabolism alters homeostatic control of white adipose tissue mass, energy expenditure, and glucose metabolism. Mol Cell Biol 2007; 27:4953-67. [PMID: 17485446 PMCID: PMC1951486 DOI: 10.1128/mcb.02034-06] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1 alpha) is an attractive candidate gene for type 2 diabetes, as genes of the oxidative phosphorylation (OXPHOS) pathway are coordinatively downregulated by reduced expression of PGC-1 alpha in skeletal muscle and adipose tissue of patients with type 2 diabetes. Here we demonstrate that transgenic mice with activated polyamine catabolism due to overexpression of spermidine/spermine N(1)-acetyltransferase (SSAT) had reduced white adipose tissue (WAT) mass, high basal metabolic rate, improved glucose tolerance, high insulin sensitivity, and enhanced expression of the OXPHOS genes, coordinated by increased levels of PGC-1 alpha and 5'-AMP-activated protein kinase (AMPK) in WAT. As accelerated polyamine flux caused by SSAT overexpression depleted the ATP pool in adipocytes of SSAT mice and N(1),N(11)-diethylnorspermine-treated wild-type fetal fibroblasts, we propose that low ATP levels lead to the induction of AMPK, which in turn activates PGC-1 alpha in WAT of SSAT mice. Our hypothesis is supported by the finding that the phenotype of SSAT mice was reversed when the accelerated polyamine flux was reduced by the inhibition of polyamine biosynthesis in WAT. The involvement of polyamine catabolism in the regulation of energy and glucose metabolism may offer a novel target for drug development for obesity and type 2 diabetes.
Collapse
Affiliation(s)
- Eija Pirinen
- Department of Medicine, University of Kuopio, P.O. Box 1777, FI-70211 Kuopio, Finland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
361
|
Bisht B, Goel HL, Dey CS. Focal adhesion kinase regulates insulin resistance in skeletal muscle. Diabetologia 2007; 50:1058-69. [PMID: 17333113 DOI: 10.1007/s00125-007-0591-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2006] [Accepted: 10/15/2006] [Indexed: 10/23/2022]
Abstract
AIMS/HYPOTHESIS On the basis of our previous studies, we investigated the possible role of focal adhesion kinase (FAK) in the development of insulin resistance in skeletal muscle, a major organ responsible for insulin-stimulated glucose uptake. MATERIALS AND METHODS Insulin-resistant C2C12 skeletal muscle cells were transfected with FAK wild-type or FAK mutant plasmids, knocked down using small interfering RNA (siRNA), and their effects on the levels and activities of insulin-signalling molecules and on glucose uptake were determined. RESULTS A significant decrease in tyrosine phosphorylation of FAK in insulin-resistant C2C12 cells was observed. A similar decrease was observed in skeletal muscle obtained from insulin-resistant Sprague-Dawley rats fed a high-fat diet. Increased levels of FAK in insulin-resistant C2C12 skeletal muscle cells increased insulin sensitivity and glucose uptake. These effects were reversed by an increase in the level of kinase activity mutant FAK or suppression of endogenous FAK by siRNA. FAK was also found to interact downstream with insulin receptor substrate-1, phosphatidylinositol 3-kinase and protein kinase C and glycogen synthase kinase 3beta, leading to translocation of glucose transporter 4 and resulting in the regulation of glucose uptake. CONCLUSIONS/INTERPRETATION The present study provides strong evidence that the modulation of FAK level regulates the insulin sensitivity of skeletal muscle cells. The results demonstrate a direct role of FAK in insulin-resistant skeletal muscle cells for the first time.
Collapse
Affiliation(s)
- B Bisht
- Signal Transduction Research Laboratory, Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Chandigarh 160062, India
| | | | | |
Collapse
|
362
|
Bhat A, Koul A, Rai E, Sharma S, Dhar MK, Bamezai RNK. PGC-1alpha Thr394Thr and Gly482Ser variants are significantly associated with T2DM in two North Indian populations: a replicate case-control study. Hum Genet 2007; 121:609-14. [PMID: 17390150 DOI: 10.1007/s00439-007-0352-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2006] [Accepted: 03/05/2007] [Indexed: 01/19/2023]
Abstract
The recent observations that Peroxisome proliferator activated receptor gamma coactivator 1 alpha (PGC1A) is responsible for the induction of reactive oxygen species (ROS) detoxifying agents and that ROS triggers insulin resistance, support the role that this gene could play in the onset of Type 2 diabetes mellitus (T2DM). Two PGC1A variants Thr394Thr (rs2970847) and Gly482Ser (rs8192673) were genotyped in 822 subjects (351 T2DM cases and 471 controls) from two North Indian populations, represented as Group 1 (Kashmir population) and Group 2 (Punjab and Jammu population). Both Groups 1 and 2 showed a significant association of Thr394Thr variant with T2DM after applying Bonferroni corrections (P=0.001 and 0.012, respectively). Logistic regression analysis for Thr394Thr susceptible genotypes together (rs2970847 G/A and A/A) conferred a 1.89-(95%CI 1.25-2.85) fold higher risk for T2DM in Group 1 and 1.81-(95%CI 1.19-2.78) fold risk in Group 2. The susceptible, Ser482 (rs8192673 G/A and A/A) genotypes, gave a 2.04 (95%CI 1.47-3.03) fold higher risk for T2DM in Group 1. Mitochondrial genotype backgrounds observed in association with T2DM (Bhat et al. 2007), when studied in combination with PGC1A variants, showed an increased prevalence in controls with mt10398G and 16189T along with G/G genotype background at the two polymorphic loci of PGC1A. These observations suggest that the two genotype backgrounds together could provide protection against T2DM.
Collapse
Affiliation(s)
- Audesh Bhat
- National Centre of Applied Human Genetics, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | | | | | | | | | | |
Collapse
|
363
|
Nakata K, Tanaka Y, Nakano T, Adachi T, Tanaka H, Kaminuma T, Ishikawa T. Nuclear receptor-mediated transcriptional regulation in Phase I, II, and III xenobiotic metabolizing systems. Drug Metab Pharmacokinet 2007; 21:437-57. [PMID: 17220560 DOI: 10.2133/dmpk.21.437] [Citation(s) in RCA: 152] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Studies of the genetic regulation involved in drug metabolizing enzymes and drug transporters are of great interest to understand the molecular mechanisms of drug response and toxic events. Recent reports have revealed that hydrophobic ligands and several nuclear receptors are involved in the induction or down-regulation of various enzymes and transporters involved in Phase I, II, and III xenobiotic metabolizing systems. Nuclear receptors (NRs) form a family of ligand-activated transcription factors (TFs). These proteins modulate the regulation of target genes by contacting their promoter or enhancer sequences at specific recognition sites. These target genes include metabolizing enzymes such as cytochrome P450s (CYPs), transporters, and NRs. Thus it was now recognized that these NRs play essential role in sensing processing xenobiotic substances including drugs, environmental chemical pollutants and nutritional ingredients. From literature, we picked up target genes of each NR in xenobiotic response systems. Possible cross-talk, by which xenobiotics may exert undesirable effects, was listed. For example, the role of NRs was comprehensively drawn up in cholesterol and bile acid homeostasis in human hepatocyte. Summarizing current states of related research, especially for in silico response element search, we tried to elucidate nuclear receptor mediated xenobiotic processing loops and direct future research.
Collapse
|
364
|
Baar K. Involvement of PPARγ co-activator-1, nuclear respiratory factors 1 and 2, and PPARα in the adaptive response to endurance exercise. Proc Nutr Soc 2007; 63:269-73. [PMID: 15294042 DOI: 10.1079/pns2004334] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Endurance exercise training induces an increase in the respiratory capacity of muscle, resulting in an increased capacity to generate ATP as well as improved efficiency of muscle contraction. Such adaptations are largely the result of a coordinated genetic response that increases mitochondrial proteins, fatty acid oxidation enzymes and the exercise- and insulin-stimulated glucose transporter GLUT4, and shifts the contractile and regulatory proteins to their more efficient isoforms. In recent years a number of the transcriptional regulators involved in this genetic response have been identified and these factors can be classified into two different groups. The first group comprises transcription factors such as nuclear respiratory factors (NRF) 1 and 2 and PPARα that bind DNA in a sequence-specific manner. The second group, referred to as transcriptional co-activators, alter transcription without directly binding to DNA. The PPARγ co-activator (PGC) family of proteins have been identified as the central family of transcriptional co-activators for induction of mitochondrial biogenesis. PGC-1α is activated by exercise, and is sufficient to produce the endurance phenotype through direct interactions with NRF-1 and PPARα, and potentially NRF-2. Furthering the understanding of the activation of PGC proteins following exercise has implications beyond improving athletic performance, including the possibility of providing targets for the treatment of frailty in the elderly, obesity and diseases such as mitochondrial myopathies and diabetes.
Collapse
Affiliation(s)
- Keith Baar
- Department of Mechanical Engineering and Institute of Gerontology, University of Michigan, Ann Arbor, MI 48109-2007, USA.
| |
Collapse
|
365
|
Abstract
The classic work of Hickson demonstrated that training for both strength and endurance at the same time results in less adaptation compared with training for either one alone: this has been described as the concurrent training effect. Generally, resistance exercise results in an increase in muscle mass, and endurance exercise results in an increase in muscle capillary density, mitochondrial protein, fatty acid-oxidation enzymes, and more metabolically efficient forms of contractile and regulatory proteins. In the 25 yr since Hickson's initial description, there have been a number of important advances in the understanding of the molecular regulation of muscle's adaptation to exercise that may enable explanation of this phenomenon at the molecular level. As will be described in depth in the following four papers, two serine/threonine protein kinases in particular play a particularly important role in this process. Protein kinase B/Akt can both activate protein synthesis and decrease protein breakdown, thus leading to hypertrophy, and AMP-activated protein kinase can increase mitochondrial protein, glucose transport, and a number of other factors that result in an endurance phenotype. Not only are PKB and AMPK central to the generation of the resistance and endurance phenotypes, they also block each other's downstream signaling. The consequence of these interactions is a direct molecular blockade hindering the development of the concurrent training phenotype. A better understanding of the activation of these molecular pathways after exercise and how they interact will allow development of better training programs to maximize both strength and endurance.
Collapse
Affiliation(s)
- Keith Baar
- Division of Molecular Physiology, University of Dundee, Dundee, UK.
| |
Collapse
|
366
|
Jørgensen SB, Treebak JT, Viollet B, Schjerling P, Vaulont S, Wojtaszewski JFP, Richter EA. Role of AMPKalpha2 in basal, training-, and AICAR-induced GLUT4, hexokinase II, and mitochondrial protein expression in mouse muscle. Am J Physiol Endocrinol Metab 2007; 292:E331-9. [PMID: 16954334 DOI: 10.1152/ajpendo.00243.2006] [Citation(s) in RCA: 137] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We investigated the role of AMPKalpha2in basal, exercise training-, and AICAR-induced protein expression of GLUT4, hexokinase II (HKII), mitochondrial markers, and AMPK subunits. This was conducted in red (RG) and white gastrocnemius (WG) muscle from wild-type (WT) and alpha2-knockout (KO) mice after 28 days of activity wheel running or daily AICAR injection. Additional experiments were conducted to measure acute activation of AMPK by exercise and AICAR. At basal, mitochondrial markers were reduced by approximately 20% in alpha2-KO muscles compared with WT. In both muscle types, AMPKalpha2 activity was increased in response to both stimuli, whereas AMPKalpha1 activity was increased only in response to exercise. Furthermore, AMPK signaling was estimated to be 60-70% lower in alpha2-KO compared with WT muscles. In WG, AICAR treatment increased HKII, GLUT4, cytochrome c, COX-1, and CS, and the alpha2-KO abolished the AICAR-induced increases, whereas no AICAR responses were observed in RG. Exercise training increased GLUT4, HKII, COX-1, CS, and HAD protein in WG, but the alpha2-KO did not affect training-induced increases. Furthermore, AMPKalpha1, -alpha2, -beta1, -beta2, and -gamma3 subunits were reduced in RG, but not in WG, by 30-60% in response to exercise training. In conclusion, the alpha2-KO was associated with an approximately 20% reduction in mitochondrial markers in both muscle types and abolished AICAR-induced increases in protein expression in WG. However, the alpha2-KO did not reduce training-induced increases in HKII, GLUT4, COX-1, HAD, or CS protein in WG, suggesting that AMPKalpha2 may not be essential for metabolic adaptations of skeletal muscles to exercise training.
Collapse
Affiliation(s)
- Sebastian B Jørgensen
- Dept. of Human Physiology, Copenhagen Muscle Research Centre, Inst. of Exercise and Sport Sciences, 13-Universitetsparken, Univ. of Copenhagen, DK-2100 Copenhagen, Denmark.
| | | | | | | | | | | | | |
Collapse
|
367
|
Kusuhara K, Madsen K, Jensen L, Hellsten Y, Pilegaard H. Calcium signalling in the regulation of PGC-1α, PDK4 and HKII mRNA expression. Biol Chem 2007; 388:481-8. [PMID: 17516843 DOI: 10.1515/bc.2007.052] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The role of calcium signalling and specific intracellular calcium signalling pathways in regulating skeletal muscle tissue peroxisome proliferator-activated receptor gamma co-activator (PGC)-1alpha, hexokinase (HK)II and pyruvate dehydrogenase kinase (PDK)4 mRNA was examined. Cultured primary rat skeletal muscle cells were incubated for 6 h in caffeine or ionomycin. Because PGC-1alpha mRNA clearly showed greater induction with ionomycin, the latter was chosen for the main experiments, whereby cells were incubated for 6 h with either ionomycin alone or in combination with either cyclosporin A or KN-62. The PGC-1alpha mRNA level was increased (p<0.05) approximately six-fold and HKII mRNA content approximately two-fold by ionomycin relative to the corresponding controls, whereas the PDK4 mRNA content remained unaffected. Cyclosporin A abolished (p<0.05) and KN-62 reduced (p<0.1) the ionomycin-induced increase in PGC-1alpha mRNA. Electrical stimulation of in vitro incubated rat EDL muscle increased (p<0.05) PGC-1alpha mRNA by 2.2-fold after 4 h of recovery relative to a resting control, and this increase was absent when muscles were incubated with KN-62 or cyclosporin A. The present data strongly suggest that calcium signalling is involved in regulating the PGC-1alpha and HKII genes, but not PDK4. Both calcineurin and CaMK signalling seem to be involved in the calcium- and contraction-mediated PGC-1alpha up-regulation in skeletal muscle.
Collapse
Affiliation(s)
- Keiko Kusuhara
- Copenhagen Muscle Research Centre and Centre of Inflammation and Metabolism, The August Krogh Building, Department of Molecular Biology, University of Copenhagen, Copenhagen Ø, Denmark
| | | | | | | | | |
Collapse
|
368
|
Stachowiak M, Szydlowski M, Cieslak J, Switonski M. SNPs in the porcine PPARGC1a gene: interbreed differences and their phenotypic effects. Cell Mol Biol Lett 2006; 12:231-9. [PMID: 17149556 PMCID: PMC6275938 DOI: 10.2478/s11658-006-0066-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2006] [Accepted: 10/19/2006] [Indexed: 01/21/2023] Open
Abstract
Due to its function, the peroxisome proliferative activated receptor-γ, coactivator-1α (PPARGC1A) gene is a candidate in the search for genes that may affect production traits in the pig. The purpose of this study was to screen for new SNPs in exon 8 of the porcine PPARGC1A gene and to test their possible association with production traits. Altogether 736 pigs representing five breeds Polish Landrace, n=242; Polish Large White, n=192; Hampshire, n=27; Duroc, 21; Pietrain, n=12) and synthetic line 990 (n=242) were scanned via SSCP assay. Four SNPs were found; two new ones: C/G (His338Gln) and G/A Thr359Thr), and two previously reported ones: C/A (Arg369Arg) and T/A Cys430Ser). The missense T/A and C/G SNPs demonstrated pronounced interbreed variability in terms of allele frequencies, including the exclusive presence of the C/G substitution in the Hampshire breed. The tested SNPs occurred in five putative haplotypes, and their frequency also differed substantially between breeds. The association of the SNPs with production traits was tested for G/A (Thr359Thr), C/A (Arg369Arg) and T/A (Cys430Ser) substitutions in Polish Large White, Polish Landrace and line 990. The analysis revealed only breed-specific associations. The T/A (Cys430Ser) SNP was related to the feed conversion ratio in the Polish Large White (P=0.02), and the silent G/A and C/A substitutions were respectively associated with abdominal fat in line 990 and backfat thickness in Polish Landrace (P=0.04). The combined effects of the substitutions were estimated as haplotype effects. Three significant contrasts between haplotypes were calculated, but the observed associations were again only breed-specific.
Collapse
Affiliation(s)
- Monika Stachowiak
- Department of Genetics and Animal Breeding, Agricultural University of Poznan, 60-637 Poznan, Poland
| | - Maciej Szydlowski
- Department of Genetics and Animal Breeding, Agricultural University of Poznan, 60-637 Poznan, Poland
| | - Jakub Cieslak
- Department of Genetics and Animal Breeding, Agricultural University of Poznan, 60-637 Poznan, Poland
| | - Marek Switonski
- Department of Genetics and Animal Breeding, Agricultural University of Poznan, 60-637 Poznan, Poland
| |
Collapse
|
369
|
Handschin C, Spiegelman BM. Peroxisome proliferator-activated receptor gamma coactivator 1 coactivators, energy homeostasis, and metabolism. Endocr Rev 2006; 27:728-35. [PMID: 17018837 DOI: 10.1210/er.2006-0037] [Citation(s) in RCA: 897] [Impact Index Per Article: 47.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Many biological programs are regulated at the transcriptional level. This is generally achieved by the concerted actions of several transcription factors. Recent findings have shown that, in many cases, transcriptional coactivators coordinate the overall regulation of the biological programs. One of the best-studied examples of coactivator control of metabolic pathways is the peroxisome proliferator-activated receptor coactivator 1 (PGC-1) family. These proteins are strong activators of mitochondrial function and are thus dominant regulators of oxidative metabolism in a variety of tissues. The PGC-1 coactivators themselves are subject to powerful regulation at the transcriptional and posttranslational levels. Recent studies have elucidated the function of the PGC-1 coactivators in different tissues and have highlighted the implications of PGC-1 dysregulation in diseases such as diabetes, obesity, cardiomyopathy, or neurodegeneration.
Collapse
Affiliation(s)
- Christophe Handschin
- Dana-Farber Cancer Institute and Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
370
|
Vianna CR, Huntgeburth M, Coppari R, Choi CS, Lin J, Krauss S, Barbatelli G, Tzameli I, Kim YB, Cinti S, Shulman GI, Spiegelman BM, Lowell BB. Hypomorphic mutation of PGC-1beta causes mitochondrial dysfunction and liver insulin resistance. Cell Metab 2006; 4:453-464. [PMID: 17141629 PMCID: PMC1764615 DOI: 10.1016/j.cmet.2006.11.003] [Citation(s) in RCA: 152] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2006] [Revised: 10/03/2006] [Accepted: 11/06/2006] [Indexed: 01/06/2023]
Abstract
PGC-1beta is a transcriptional coactivator that potently stimulates mitochondrial biogenesis and respiration of cells. Here, we have generated mice lacking exons 3 to 4 of the Pgc-1beta gene (Pgc-1beta(E3,4-/E3,4-) mice). These mice express a mutant protein that has reduced coactivation activity on a subset of transcription factors, including ERRalpha, a major target of PGC-1beta in the induction of mitochondrial gene expression. The mutant mice have reduced expression of OXPHOS genes and mitochondrial dysfunction in liver and skeletal muscle as well as elevated liver triglycerides. Euglycemic-hyperinsulinemic clamp and insulin signaling studies show that PGC-1beta mutant mice have normal skeletal muscle response to insulin but have hepatic insulin resistance. These results demonstrate that PGC-1beta is required for normal expression of OXPHOS genes and mitochondrial function in liver and skeletal muscle. Importantly, these abnormalities do not cause insulin resistance in skeletal muscle but cause substantially reduced insulin action in the liver.
Collapse
MESH Headings
- Animals
- Gene Expression Regulation/drug effects
- Glucose Clamp Technique
- Hypoglycemic Agents/pharmacology
- Insulin/pharmacology
- Insulin Resistance/genetics
- Liver/metabolism
- Liver/pathology
- Mice
- Mice, Knockout
- Mitochondria, Liver/genetics
- Mitochondria, Liver/metabolism
- Mitochondria, Liver/pathology
- Mitochondria, Muscle/genetics
- Mitochondria, Muscle/metabolism
- Mitochondria, Muscle/pathology
- Mitochondrial Proteins/biosynthesis
- Mitochondrial Proteins/genetics
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Mutation
- Organ Specificity
- Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha
- Receptors, Estrogen/genetics
- Receptors, Estrogen/metabolism
- Trans-Activators/deficiency
- Trans-Activators/metabolism
- Transcription Factors
- ERRalpha Estrogen-Related Receptor
Collapse
Affiliation(s)
- Claudia R. Vianna
- Department of Medicine, Division of Endocrinology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02215
| | - Michael Huntgeburth
- Department of Medicine, Division of Endocrinology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02215
- Clinic III for Internal Medicine, University of Cologne, 50937 Cologne, Germany
| | - Roberto Coppari
- Department of Medicine, Division of Endocrinology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02215
| | - Cheol Soo Choi
- Department of Internal Medicine and Cellular & Molecular Physiology, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Jiandie Lin
- Dana-Farber Cancer Institute and Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115
| | - Stefan Krauss
- Department of Medicine, Division of Endocrinology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02215
| | - Giorgio Barbatelli
- Institute of Normal Human Morphology, Faculty of Medicine, University of Marche, Ancona 60020, Italy
| | - Iphigenia Tzameli
- Department of Medicine, Division of Endocrinology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02215
| | - Young-Bum Kim
- Department of Medicine, Division of Endocrinology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02215
| | - Saverio Cinti
- Institute of Normal Human Morphology, Faculty of Medicine, University of Marche, Ancona 60020, Italy
| | - Gerald I. Shulman
- Department of Internal Medicine and Cellular & Molecular Physiology, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Bruce M. Spiegelman
- Dana-Farber Cancer Institute and Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115
| | - Bradford B. Lowell
- Department of Medicine, Division of Endocrinology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02215
| |
Collapse
|
371
|
Liang H, Ward WF. PGC-1alpha: a key regulator of energy metabolism. ADVANCES IN PHYSIOLOGY EDUCATION 2006; 30:145-51. [PMID: 17108241 DOI: 10.1152/advan.00052.2006] [Citation(s) in RCA: 909] [Impact Index Per Article: 47.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Peroxisome proliferator-activated receptor-gamma coactivator (PGC)-1alpha is a member of a family of transcription coactivators that plays a central role in the regulation of cellular energy metabolism. It is strongly induced by cold exposure, linking this environmental stimulus to adaptive thermogenesis. PGC-1alpha stimulates mitochondrial biogenesis and promotes the remodeling of muscle tissue to a fiber-type composition that is metabolically more oxidative and less glycolytic in nature, and it participates in the regulation of both carbohydrate and lipid metabolism. It is highly likely that PGC-1alpha is intimately involved in disorders such as obesity, diabetes, and cardiomyopathy. In particular, its regulatory function in lipid metabolism makes it an inviting target for pharmacological intervention in the treatment of obesity and Type 2 diabetes.
Collapse
Affiliation(s)
- Huiyun Liang
- Department of Cellular and Structural Biology, Audie Murphy Veterans Administration Medical Center and University of Texas Health Science Center, San Antonio, Texas 78229-3900, USA
| | | |
Collapse
|
372
|
Wu GQ, Deng XM, Li JY, Li N, Yang N. A Potential Molecular Marker for Selection Against Abdominal Fatness in Chickens. Poult Sci 2006; 85:1896-9. [PMID: 17032820 DOI: 10.1093/ps/85.11.1896] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The peroxisome proliferators-activated receptor-gamma coactivator-1alpha (PGC-1alpha) was investigated as a candidate gene for growth and fatness traits in chicken because of its prominent role in muscle fiber specialization and adipogenesis. A single nucleotide polymorphism (SNP) from G to A at position 646 of the open reading frame of chicken PGC-1alpha gene causing an Asp216Asn amino acid substitution was identified. The frequencies of alleles and genotypes were significantly different among 6 chicken breeds (P < 0.01). The White Plymouth Rock had the highest frequency (0.67) of allele G, whereas the White Leghorn had the lowest (0.18). The associations of the SNP with the growth and fatness traits were evaluated in 332 F(2) birds from an experimental cross of White Plymouth Rock x Silkies. No association was found between the SNP and growth-related traits. However, abdominal fat weight at 12 wk of age for birds with genotype GG was 34.26 and 28.71% higher than those with genotypes AA and AG, respectively (P < 0.01), indicating that the Asp216Asn polymorphism of the PGC-1alpha gene could be used as a novel potential molecular marker for selection against abdominal fatness without interfering in regular breeding for growth rate of chickens.
Collapse
Affiliation(s)
- G Q Wu
- MOA Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100094
| | | | | | | | | |
Collapse
|
373
|
Ikeda S, Kawamoto H, Kasaoka K, Hitomi Y, Kizaki T, Sankai Y, Ohno H, Haga S, Takemasa T. Muscle type-specific response of PGC-1 alpha and oxidative enzymes during voluntary wheel running in mouse skeletal muscle. Acta Physiol (Oxf) 2006; 188:217-23. [PMID: 17054661 DOI: 10.1111/j.1748-1716.2006.01623.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIM It is generally accepted that endurance exercise increases the expression of peroxisome proliferator-activated receptor gamma coactivator-1alpha (PGC-1alpha), which governs the expression of oxidative metabolic enzymes. A previous report demonstrated that the regulation of mitochondrial protein expression in skeletal muscles in response to cold exposure depends on muscle fibre type. Cold exposure and endurance exercise are both metabolic challenges that require adjustments in mitochondrial energy metabolism, we hypothesized that the exercise-induced increase in oxidative enzymes and PGC-1alpha expression is higher in fast-type than in slow-type muscle. METHODS Female ICR mice were individually housed in cages equipped with running wheel for 1, 2, 4, 6 or 8 weeks. The soleus, plantaris (PLA) and tibialis anterior (TA) muscles were then prepared from each mouse. The expression levels of PGC-1alpha, mitochondrial proteins and GLUT4 were evaluated by Western blotting. RESULTS The expression level of PGC-1alpha was increased only in the PLA muscle. Furthermore, the expression levels of all mitochondrial proteins and GLUT4 in the PLA muscle were increased. In the TA muscle, although there was no increase in PGC-1alpha expression, the expression levels of mitochondrial proteins and GLUT4 were increased. CONCLUSIONS These results suggest that muscle type-specific responses occur during endurance exercise, and that the increase in PGC-1alpha expression is not the only factor that promotes oxidative capacity as a result of endurance exercise.
Collapse
Affiliation(s)
- S Ikeda
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
374
|
Winder WW, Taylor EB, Thomson DM. Role of AMP-Activated Protein Kinase in the Molecular Adaptation to Endurance Exercise. Med Sci Sports Exerc 2006; 38:1945-9. [PMID: 17095928 DOI: 10.1249/01.mss.0000233798.62153.50] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
What are the molecular signals induced by muscle contraction that result in an increase in GLUT4, hexokinase 2, mitochondrial oxidative enzymes, and other adaptations to endurance exercise training? Could repetitive activation of AMP-activated protein kinase (AMPK) be responsible in part? There is substantial evidence for a role of AMPK in inducing adaptations to endurance training: 1) AMPK is activated in response to muscle contraction; 2) chronic chemical activation of AMPK results in increases in GLUT4, hexokinase 2, UCP-3, and citric acid cycle enzymes; 3) muscle contraction and chemical activation of AMPK both result in increases in PGC-1alpha, a transcriptional coactivator involved in stimulation of mitochondrial biogenesis; and 4) increases in muscle PGC-1 alpha, delta-aminolevulinic acid synthetase, and mitochondrial DNA induced by chronic creatine phosphate depletion in wild-type mice are not observed in dominant-negative AMPK mice. These observations lend credence to the hypothesis that AMPK activation induced by muscle contraction is responsible in part for adaptations to endurance exercise training.
Collapse
Affiliation(s)
- William W Winder
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, UT 84602, USA.
| | | | | |
Collapse
|
375
|
Erkens T, Van Poucke M, Vandesompele J, Goossens K, Van Zeveren A, Peelman LJ. Development of a new set of reference genes for normalization of real-time RT-PCR data of porcine backfat and longissimus dorsi muscle, and evaluation with PPARGC1A. BMC Biotechnol 2006; 6:41. [PMID: 17026777 PMCID: PMC1609116 DOI: 10.1186/1472-6750-6-41] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2006] [Accepted: 10/09/2006] [Indexed: 11/13/2022] Open
Abstract
Background An essential part of using real-time RT-PCR is that expression results have to be normalized before any conclusions can be drawn. This can be done by using one or multiple, validated reference genes, depending on the desired accuracy of the results. In the pig however, very little information is available on the expression stability of reference genes. The aim of this study was therefore to develop a new set of reference genes which can be used for normalization of mRNA expression data of genes expressed in porcine backfat and longissimus dorsi muscle, both representing an economically important part of a pig's carcass. Because of its multiple functions in fat metabolism and muscle fibre type composition, peroxisome proliferative activated receptor γ coactivator 1α (PPARGC1A) is a very interesting candidate gene for meat quality, and was an ideal gene to evaluate our developed set of reference genes for normalization of mRNA expression data of both tissue types. Results The mRNA expression stability of 10 reference genes was determined. The expression of RPL13A and SDHA appeared to be highly unstable. After normalization to the geometric mean of the three most stably expressed reference genes (ACTB, TBP and TOP2B), the results not only showed that the mRNA expression of PPARGC1A was significantly higher in each of the longissimus dorsi muscle samples than in backfat (P < 0.05), but also that the expression was significantly higher in the most cranial of the three muscle samples (P < 0.05). Conclusion This study provides a new set of reference genes (ACTB, TBP and TOP2B) suitable for normalization of real-time RT-PCR data of backfat and longissimus dorsi muscle in the pig. The obtained PPARGC1A expression results, after application of this set of reference genes, are a first step in unravelling the PPARGC1A expression pattern in the pig and provide a basis for possible selection towards improved meat quality while maintaining a lean carcass.
Collapse
Affiliation(s)
- Tim Erkens
- Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Heidestraat 19, 9820 Merelbeke, Belgium
| | - Mario Van Poucke
- Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Heidestraat 19, 9820 Merelbeke, Belgium
| | - Jo Vandesompele
- Centre for Medical Genetics, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium
| | - Karen Goossens
- Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Heidestraat 19, 9820 Merelbeke, Belgium
| | - Alex Van Zeveren
- Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Heidestraat 19, 9820 Merelbeke, Belgium
| | - Luc J Peelman
- Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Heidestraat 19, 9820 Merelbeke, Belgium
| |
Collapse
|
376
|
Sun L, Yang Z, Jin F, Zhu XQ, Qu YC, Shi XH, Wang L. The Gly482Ser variant of the PPARGC1 gene is associated with Type 2 diabetes mellitus in northern Chinese, especially men. Diabet Med 2006; 23:1085-92. [PMID: 16978372 DOI: 10.1111/j.1464-5491.2006.01949.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
AIMS To investigate the prevalence of the Gly482Ser polymorphism of the PPARGC1 gene in a northern Chinese population and to clarify the susceptibility of individuals with the Gly482Ser polymorphism to insulin resistance and related diseases. METHODS We studied the association of the Gly482Ser polymorphism identified in the PPARGC1 gene with Type 2 diabetes mellitus (T2DM) in 390 unrelated patients with T2DM and 525 control subjects with normal glucose tolerance. Clinical parameters and measures of insulin resistance were recorded. Genotypes were determined by the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method, which was further confirmed by direct sequencing in 20 randomly selected cases. RESULTS The Gly482Ser polymorphism was common in the northern Chinese population. Univariate analysis indicated no statistically significant differences in allele frequencies or genotype frequencies of the Gly482Ser polymorphism in diabetic and control subjects (minor 482Ser allele frequency 44.4 vs. 41.4%, P = 0.169). However, logistic regression analysis demonstrated a positive 1.645-fold higher risk of the Ser/Ser genotype for T2DM (P = 0.039, 95% CI = 1.026-2.632). After stratification by gender, the risk of Type 2 diabetes in men was increased 1.852-fold (95% CI = 1.125-3.049) in those with the Ser/X genotype compared with those with the Gly/Gly genotype (P = 0.015). No associations were observed between the Gly482Ser polymorphism and parameters of insulin resistance, obesity and hypertension. CONCLUSION The Gly482Ser variant of the PPARGC1 gene might contribute to susceptibility to T2DM in northern Chinese subjects. The Ser/X genotype of the Gly482Ser polymorphism in the PPARGC1 gene appears to be a risk factor for T2DM in northern Chinese men.
Collapse
Affiliation(s)
- L Sun
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | | | | | | | | | | | | |
Collapse
|
377
|
Mortensen OH, Frandsen L, Schjerling P, Nishimura E, Grunnet N. PGC-1alpha and PGC-1beta have both similar and distinct effects on myofiber switching toward an oxidative phenotype. Am J Physiol Endocrinol Metab 2006; 291:E807-16. [PMID: 16720625 DOI: 10.1152/ajpendo.00591.2005] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Peroxisome proliferator-activated receptor-gamma coactivator-1alpha and -1beta (PGC-1alpha and PGC-1beta) were overexpressed by adenovirus-mediated gene transfer in cultures of primary rat skeletal muscle cells derived from neonatal myoblasts. Effects on muscle fiber type transition and metabolism were studied from days 5 to 22 of culture. PGC-1alpha and PGC-1beta overexpression caused a three- to fourfold increase in mRNA level, a doubling of enzymatic activity of citrate synthase, a slight increase in short-chain acyl-CoA dehydrogenase mRNA, a doubling of the mRNA level, and a 30-50% increase in enzymatic activity of glyceraldehyde-3-phosphate dehydrogenase. Lactate dehydrogenase or creatine kinase activity was unchanged. PGC-1alpha enhanced glycogen buildup twofold at 5 or 25 mM glucose, whereas PGC-1beta caused a decrease. Both PGC-1alpha and PGC-1beta overexpression caused a faster maturation of myotubes, as seen by mRNA downregulation of the immature embryonal and perinatal myosin heavy-chain (MHC) isoforms. PGC-1alpha or PGC-1beta overexpression enhanced mRNA of the slow oxidative-associated MHC isoform MHCIb and downregulated mRNA levels of the fast glycolytic-associated MHC isoforms MHCIIX and MHCIIB. Only PGC-1beta overexpression caused an increase in mRNA of the intermediary fast oxidative-associated MHC isoform MHCIIA. PGC-1alpha or PGC-1beta overexpression upregulated GLUT4 mRNA and downregulated myocyte enhancer factor 2C transcription factor mRNA; only PGC-1alpha overexpression caused an increase in the mRNA expression of TRB3, a negative regulator of insulin signaling. These results show that both PGC-1alpha and PGC-1beta are involved in the regulation of skeletal muscle fiber transition and metabolism and that they have both overlapping and differing effects.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Blotting, Northern
- Cells, Cultured
- Energy Metabolism/physiology
- Glucose Transporter Type 4/biosynthesis
- Glucose Transporter Type 4/genetics
- Glycogen/metabolism
- MEF2 Transcription Factors
- Muscle Contraction/physiology
- Muscle Fibers, Skeletal/enzymology
- Muscle Fibers, Skeletal/metabolism
- Muscle, Skeletal/enzymology
- Muscle, Skeletal/metabolism
- Myogenic Regulatory Factors/biosynthesis
- Myogenic Regulatory Factors/genetics
- Myosin Heavy Chains/genetics
- Myosin Heavy Chains/metabolism
- Oxidation-Reduction
- Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha
- Protein Kinases/biosynthesis
- Protein Kinases/genetics
- Protein Serine-Threonine Kinases/antagonists & inhibitors
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- RNA-Binding Proteins/biosynthesis
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/metabolism
- Rats
- Rats, Wistar
- Reverse Transcriptase Polymerase Chain Reaction
- Transcription Factors/biosynthesis
- Transcription Factors/genetics
- Transcription Factors/metabolism
Collapse
Affiliation(s)
- Ole Hartvig Mortensen
- Department of Medical Biochemistry and Genetics, University of Copenhagen, Blegdamsvej 3, Bldg. 6.5, DK-2200 N, Denmark
| | | | | | | | | |
Collapse
|
378
|
Coll T, Jové M, Rodríguez-Calvo R, Eyre E, Palomer X, Sánchez RM, Merlos M, Laguna JC, Vázquez-Carrera M. Palmitate-mediated downregulation of peroxisome proliferator-activated receptor-gamma coactivator 1alpha in skeletal muscle cells involves MEK1/2 and nuclear factor-kappaB activation. Diabetes 2006; 55:2779-87. [PMID: 17003343 DOI: 10.2337/db05-1494] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The mechanisms by which elevated levels of free fatty acids cause insulin resistance are not well understood. Previous studies have reported that insulin-resistant states are characterized by a reduction in the expression of peroxisome proliferator-activated receptor-gamma coactivator (PGC)-1, a transcriptional activator that promotes oxidative capacity in skeletal muscle cells. However, little is known about the factors responsible for reduced PGC-1 expression. The expression of PGC-1 mRNA levels was assessed in C2C12 skeletal muscle cells exposed to palmitate either in the presence or in the absence of several inhibitors to study the biochemical pathways involved. We report that exposure of C2C12 skeletal muscle cells to 0.75 mmol/l palmitate, but not oleate, reduced PGC-1alpha mRNA levels (66%; P < 0.001), whereas PGC-1beta expression was not affected. Palmitate led to mitogen-activated protein kinase (MAPK)-extracellular signal-related kinase (ERK) 1/2 (MEK1/2) activation. In addition, pharmacological inhibition of this pathway by coincubation of the palmitate-exposed cells with the MEK1/2 inhibitors PD98059 and U0126 prevented the downregulation of PGC-1alpha. Furthermore, nuclear factor-kappaB (NF-kappaB) activation was also involved in palmitate-mediated PGC-1alpha downregulation, since the NF-kappaB inhibitor parthenolide prevented a decrease in PGC-1alpha expression. These findings indicate that palmitate reduces PGC-1alpha expression in skeletal muscle cells through a mechanism involving MAPK-ERK and NF-kappaB activation.
Collapse
Affiliation(s)
- Teresa Coll
- Pharmacology Unit, Department of Pharmacology and Therapeutic Chemistry, University of Barcelona, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
379
|
Silveira LR, Pilegaard H, Kusuhara K, Curi R, Hellsten Y. The contraction induced increase in gene expression of peroxisome proliferator-activated receptor (PPAR)-γ coactivator 1α (PGC-1α), mitochondrial uncoupling protein 3 (UCP3) and hexokinase II (HKII) in primary rat skeletal muscle cells is dependent on reactive oxygen species. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1763:969-76. [PMID: 16916551 DOI: 10.1016/j.bbamcr.2006.06.010] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2006] [Revised: 06/15/2006] [Accepted: 06/15/2006] [Indexed: 01/31/2023]
Abstract
We evaluated the role of reactive oxygen species (ROS) for the contraction induced increase in expression of PGC-1alpha, HKII and UCP3 mRNA. Rat skeletal muscle cells were subjected to acute or repeated electrostimulation in the presence and absence of antioxidants. Contraction of muscle cells lead to an increased H2O2 formation, as measured by oxidation of H2HFF. Acute contraction of the muscle cells lead to a transient increase in PGC-1alpha and UCP3 mRNA by 172 and 65%, respectively (p<0.05), whereas this increase was absent in the presence of antioxidants. Repeated contraction sessions induced a sustained elevation in PGC-1alpha and UCP3 mRNA and a transient increase in HKII (p<0.05) and this effect was not present with treatment of cells with either an antioxidant cocktail or with GPX+GSH. Incubation of cells for 10 days with ROS produced by xanthine oxidase/xanthine increased the level of PGC-1alpha, HKII and UCP3 mRNA by 175, 58 and 115%, respectively (p<0.05). A 10-day incubation of cells with antioxidants was found to have no effect on the basal mRNA content (p>0.05). The present data demonstrate that contraction of skeletal muscle cells leads to an enhanced formation of ROS and an elevation in PGC-1alpha, UCP3 and HKII mRNA content which is abolished in the presence of antioxidants, suggesting that ROS are of importance for the contraction induced increase in expression of these genes in skeletal muscle.
Collapse
Affiliation(s)
- Leonardo R Silveira
- Institute of Biomedical Sciences, Department of Physiology and Biophysics, University of Sao Paulo, Sao Paulo, SP, Brazil
| | | | | | | | | |
Collapse
|
380
|
Rodríguez-Calvo R, Jové M, Coll T, Camins A, Sánchez RM, Alegret M, Merlos M, Pallàs M, Laguna JC, Vázquez-Carrera M. PGC-1beta down-regulation is associated with reduced ERRalpha activity and MCAD expression in skeletal muscle of senescence-accelerated mice. J Gerontol A Biol Sci Med Sci 2006; 61:773-80. [PMID: 16912093 DOI: 10.1093/gerona/61.8.773] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Mitochondrial dysfunction is involved in the development of aging. Here, we examined the effect of aging on the skeletal muscle expression of two isoforms of the transcriptional peroxisome proliferator-activated receptor gamma (PPARgamma) coactivator-1 (PGC-1) in an experimental murine model of accelerated aging, the senescence-accelerated mouse (SAM). The senescence-accelerated prone mice (SAM-P8) showed no changes in PGC-1alpha, but a decrease in PGC-1beta expression (52% reduction, p <.001) was observed compared to the senescence-accelerated resistant mice (SAM-R1). In agreement with the proposed role of PGC-1beta as an estrogen-related receptor (ERR) protein ligand, the expression of the ERRalpha target gene medium-chain acyl-coenzyme A dehydrogenase was strongly suppressed (85%, p <.001) in SAM-P8. The decrease in the expression of medium-chain acyl-coenzyme A dehydrogenase was consistent with the reduction in ERRalpha DNA-binding activity of SAM-P8. These findings indicate that the age-mediated decrease in PGC-1beta expression in SAM-P8 skeletal muscle affects the expression of genes involved in mitochondrial fatty acid oxidation.
Collapse
|
381
|
Soyal S, Krempler F, Oberkofler H, Patsch W. PGC-1alpha: a potent transcriptional cofactor involved in the pathogenesis of type 2 diabetes. Diabetologia 2006; 49:1477-88. [PMID: 16752166 DOI: 10.1007/s00125-006-0268-6] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2005] [Accepted: 02/03/2006] [Indexed: 12/24/2022]
Abstract
Data derived from several recent studies implicate peroxisome proliferator-activated receptor-gamma coactivator-1alpha (PGC-1alpha) in the pathogenesis of type 2 diabetes. Lacking DNA binding activity itself, PGC-1alpha is a potent, versatile regulator of gene expression that co-ordinates the activation and repression of transcription via protein-protein interactions with specific, as well as more general, factors contained within the basal transcriptional machinery. PGC-1alpha is suggested to play a pivotal role in the control of genetic pathways that result in homeostatic glucose utilisation in liver and muscle, beta cell insulin secretion and mitochondrial biogenesis. This review focuses on the role of PGC-1alpha in glucose metabolism and considers how PGC-1alpha links cellular glucose metabolism, insulin sensitivity and mitochondrial function, and why defects in PGC-1alpha expression and regulation may contribute to the pathophysiology of type 2 diabetes in humans.
Collapse
Affiliation(s)
- S Soyal
- Department of Internal Medicine, Krankenhaus Hallein, 5400, Hallein, Austria
| | | | | | | |
Collapse
|
382
|
Leipold H, Knoefler M, Gruber C, Huber A, Haslinger P, Worda C. Peroxisome proliferator-activated receptor gamma coactivator-1alpha gene variations are not associated with gestational diabetes mellitus. ACTA ACUST UNITED AC 2006; 13:104-7. [PMID: 16443502 DOI: 10.1016/j.jsgi.2005.12.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2005] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Epidemiologic, pathophysiologic, and genetic data suggest a close link between gestational diabetes mellitus (GDM) and type 2 diabetes. Previous studies yielded controversial results on the impact of peroxisome proliferator-activated receptor gamma coactivator-1alpha (PGC-1) gene variations on the development of type 2 diabetes mellitus. Therefore, we examined two common single nucleotide polymorphisms (SNP) of this gene in women with GDM. METHODS We assessed a total of 875 women by oral glucose tolerance testing (OGTT). Two hundred women of this population, 100 patients with an abnormal OGTT and 100 normal controls, were randomly selected. DNA samples isolated from the blood of the control and study groups were analyzed with respect to the SNP Gly482Ser and Thr394Thr of the PGC-1 gene using polymerase chain reaction (PCR) amplification and restriction analysis. Furthermore, a potential interaction between the Gly482Ser and the Thr394Thr variant on the risk of GDM was investigated. RESULTS Women with GDM were significantly older (32.2 +/-5.5 years vs 29.7 +/- 6.1 years; P = .005), had higher body mass indices (BMI; 28.0 +/- 7.1 kg/m2 vs 25.0 +/- 5.7 kg/m2; P = .002) and displayed higher hemoglobin A1c (HbA1c) values (5.6 +/- 0.9 vs 4.9 +/- 0.5; P <.001). There was no significant difference between the allele distribution of the two polymorphisms in women with and without GDM. No significant associations between the two polymorphisms and BMI or OGTT values were observed. When the different haplotype combinations of the two loci were analyzed for the risk of GDM, no significant association could be found. CONCLUSION Based on our data, the Gly482Ser and the Thr394Thr polymorphisms of the PGC-1 gene are not associated with the development of GDM.
Collapse
Affiliation(s)
- Heinz Leipold
- Department of Obstetrics and Gynecology, University of Vienna Medical School, Vienna General Hospital, Vienna, Austria
| | | | | | | | | | | |
Collapse
|
383
|
Soriano FX, Liesa M, Bach D, Chan DC, Palacín M, Zorzano A. Evidence for a mitochondrial regulatory pathway defined by peroxisome proliferator-activated receptor-gamma coactivator-1 alpha, estrogen-related receptor-alpha, and mitofusin 2. Diabetes 2006; 55:1783-91. [PMID: 16731843 DOI: 10.2337/db05-0509] [Citation(s) in RCA: 285] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Mitofusin 2 (Mfn2) is a mitochondrial membrane protein that participates in mitochondrial fusion and regulates mitochondrial metabolism in mammalian cells. Here, we show that Mfn2 gene expression is induced in skeletal muscle and brown adipose tissue by conditions associated with enhanced energy expenditure, such as cold exposure or beta(3)-adrenergic agonist treatment. In keeping with the role of peroxisome proliferator-activated receptor-gamma coactivator (PGC)-1 alpha on energy expenditure, we demonstrate a stimulatory effect of PGC-1 alpha on Mfn2 mRNA and protein expression in muscle cells. PGC-1 alpha also stimulated the activity of the Mfn2 promoter, which required the integrity of estrogen-related receptor-alpha (ERR alpha)-binding elements located at -413/-398. ERR alpha also activated the transcriptional activity of the Mfn2 promoter, and the effects were synergic with those of PGC-1 alpha. Mfn2 loss of function reduced the stimulatory effect of PGC-1 alpha on mitochondrial membrane potential. Exposure to cold substantially increased Mfn2 gene expression in skeletal muscle from heterozygous Mfn2 knock-out mice, which occurred in the presence of higher levels of PGC-1 alpha mRNA compared with control mice. Our results indicate the existence of a regulatory pathway involving PGC-1 alpha, ERR alpha, and Mfn2. Alterations in this regulatory pathway may participate in the pathophysiology of insulin-resistant conditions and type 2 diabetes.
Collapse
MESH Headings
- Adipose Tissue, Brown/drug effects
- Adipose Tissue, Brown/metabolism
- Animals
- Blotting, Western
- Cells, Cultured
- Chromatin Immunoprecipitation
- Cold Temperature
- Dioxoles/pharmacology
- Electrophoretic Mobility Shift Assay
- Estrogen Receptor alpha/genetics
- Estrogen Receptor alpha/metabolism
- GTP Phosphohydrolases
- Gene Expression/drug effects
- HeLa Cells
- Heat-Shock Proteins/genetics
- Heat-Shock Proteins/metabolism
- Humans
- Male
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Mice
- Mitochondria, Muscle/metabolism
- Mitochondrial Proteins/genetics
- Mitochondrial Proteins/metabolism
- Muscle, Skeletal/cytology
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/metabolism
- Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha
- Protein Binding
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rats
- Rats, Wistar
- Signal Transduction/drug effects
- Signal Transduction/genetics
- Signal Transduction/physiology
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Transfection
Collapse
Affiliation(s)
- Francesc X Soriano
- Institute for Research in Biomedicine (IRB), Scientífic Park of Barcelona, Departament of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, Barelona, Spain
| | | | | | | | | | | |
Collapse
|
384
|
Jørgensen SB, Richter EA, Wojtaszewski JFP. Role of AMPK in skeletal muscle metabolic regulation and adaptation in relation to exercise. J Physiol 2006; 574:17-31. [PMID: 16690705 PMCID: PMC1817795 DOI: 10.1113/jphysiol.2006.109942] [Citation(s) in RCA: 172] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The 5'-AMP-activated protein kinase (AMPK) is a potent regulator of skeletal muscle metabolism and gene expression. AMPK is activated both in response to in vivo exercise and ex vivo contraction. AMPK is therefore believed to be an important signalling molecule in regulating muscle metabolism during exercise as well as in adaptation of skeletal muscle to exercise training. The first part of this review is focused on different mechanisms regulating AMPK activity during muscle work such as alterations in nucleotide concentrations, availability of energy substrates and upstream AMPK kinases. We furthermore discuss the possible role of AMPK as a master switch in skeletal muscle metabolism with the main focus on AMPK in metabolic regulation during muscle work. Finally, AMPK has a well established role in regulating expression of genes encoding various enzymes in muscle, and this issue is discussed in relation to adaptation of skeletal muscle to exercise training.
Collapse
Affiliation(s)
- Sebastian B Jørgensen
- Department of Human Physiology, Copenhagen Muscle Research Centre, Inst. of Exercise and Sport Sciences, 13-Universitetsparken, University of Copenhagen, DK-2100 Copenhagen, Denmark.
| | | | | |
Collapse
|
385
|
Sriwijitkamol A, Ivy JL, Christ-Roberts C, DeFronzo RA, Mandarino LJ, Musi N. LKB1-AMPK signaling in muscle from obese insulin-resistant Zucker rats and effects of training. Am J Physiol Endocrinol Metab 2006; 290:E925-32. [PMID: 16352671 DOI: 10.1152/ajpendo.00429.2005] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
AMPK is a key regulator of fat and carbohydrate metabolism. It has been postulated that defects in AMPK signaling could be responsible for some of the metabolic abnormalities of type 2 diabetes. In this study, we examined whether insulin-resistant obese Zucker rats have abnormalities in the AMPK pathway. We compared AMPK and ACC phosphorylation and the protein content of the upstream AMPK kinase LKB1 and the AMPK-regulated transcriptional coactivator PPARgamma coactivator-1 (PGC-1) in gastrocnemius of sedentary obese Zucker rats and sedentary lean Zucker rats. We also examined whether 7 wk of exercise training on a treadmill reversed abnormalities in the AMPK pathway in obese Zucker rats. In the obese rats, AMPK phosphorylation was reduced by 45% compared with lean rats. Protein expression of the AMPK kinase LKB1 was also reduced in the muscle from obese rats by 43%. In obese rats, phosphorylation of ACC and protein expression of PGC-1alpha, two AMPK-regulated proteins, tended to be reduced by 50 (P = 0.07) and 35% (P = 0.1), respectively. There were no differences in AMPKalpha1, -alpha2, -beta1, -beta2, and -gamma3 protein content between lean and obese rats. Training caused a 1.5-fold increase in AMPKalpha1 protein content in the obese rats, although there was no effect of training on AMPK phosphorylation and the other AMPK isoforms. Furthermore, training also significantly increased LKB1 and PGC-1alpha protein content 2.8- and 2.5-fold, respectively, in the obese rats. LKB1 protein strongly correlated with hexokinase II activity (r = 0.75, P = 0.001), citrate synthase activity (r = 0.54, P = 0.02), and PGC-1alpha protein content (r = 0.81, P < 0.001). In summary, obese insulin-resistant rodents have abnormalities in the LKB1-AMPK-PGC-1 pathway in muscle, and these abnormalities can be restored by training.
Collapse
|
386
|
Andersen G, Wegner L, Yanagisawa K, Rose CS, Lin J, Glümer C, Drivsholm T, Borch-Johnsen K, Jørgensen T, Hansen T, Spiegelman BM, Pedersen O. Evidence of an association between genetic variation of the coactivator PGC-1beta and obesity. J Med Genet 2006; 42:402-7. [PMID: 15863669 PMCID: PMC1736055 DOI: 10.1136/jmg.2004.026278] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND Peroxisome proliferator activated receptor-gamma coactivator-1beta (PGC-1beta) is a recently identified homologue of the tissue specific coactivator PGC-1alpha, a coactivator of transcription factors such as the peroxisome proliferators activated receptors and nuclear respiratory factors. PGC-1alpha is involved in adipogenesis, mitochondrial biogenesis, fatty acid beta oxidation, and hepatic gluconeogenesis. METHODS We studied variation in the coding region of human PPARGC1B in Danish whites and related these variations to the prevalence of obesity and type 2 diabetes in population based samples. RESULTS Twenty nucleotide variants were identified. In a study of 525 glucose tolerant subjects, the Ala203Pro and Val279Ile variants were in almost complete linkage disequilibrium (R2 = 0.958). In a case-control study of obesity involving a total of 7790 subjects, the 203Pro allele was significantly less frequent among obese participants (p = 0.004; minor allele frequencies: normal weight subjects 8.1% (95% confidence interval: 7.5 to 8.8), overweight subjects 7.6% (7.0 to 8.3), obese subjects 6.5% (5.6 to 7.3)). In a case-control study involving 1433 patients with type 2 diabetes and 4935 glucose tolerant control subjects, none of the examined variants were associated with type 2 diabetes. CONCLUSIONS Variation of PGC-1beta may contribute to the pathogenesis of obesity, with a widespread Ala203 allele being a risk factor for the development of this common disorder.
Collapse
Affiliation(s)
- G Andersen
- Steno Diabetes Center, Niels Steensens Vej 2, NSH2.16, DK-2820 Gentofte, Copenhagen, Denmark.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
387
|
Shen H, McElhinny AS, Cao Y, Gao P, Liu J, Bronson R, Griffin JD, Wu L. The Notch coactivator, MAML1, functions as a novel coactivator for MEF2C-mediated transcription and is required for normal myogenesis. Genes Dev 2006; 20:675-88. [PMID: 16510869 PMCID: PMC1413284 DOI: 10.1101/gad.1383706] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The MAML (mastermind-like) proteins are a family of three co-transcriptional regulators that are essential for Notch signaling, a pathway critical for cell fate determination. Though the functions of MAML proteins in normal development remain unresolved, their distinct tissue distributions and differential activities in cooperating with various Notch receptors suggest that they have unique roles. Here we show that mice with a targeted disruption of the Maml1 gene have severe muscular dystrophy. In vitro, Maml1-null embryonic fibroblasts failed to undergo MyoD-induced myogenic differentiation, further suggesting that Maml1 is required for muscle development. Interestingly, overexpression of MAML1 in C2C12 cells dramatically enhanced myotube formation and increased the expression of muscle-specific genes, while RNA interference (RNAi)-mediated MAML1 knockdown abrogated differentiation. Moreover, we determined that MAML1 interacts with MEF2C (myocyte enhancer factor 2C), functioning as its potent co-transcriptional regulator. Surprisingly, however, MAML1's promyogenic effects were completely blocked upon activation of Notch signaling, which was associated with recruitment of MAML1 away from MEF2C to the Notch transcriptional complex. Our study thus reveals novel and nonredundant functions for MAML1: It acts as a coactivator for MEF2C transcription and is essential for proper muscle development. Mechanistically, MAML1 appears to mediate cross-talk between Notch and MEF2 to influence myogenic differentiation.
Collapse
Affiliation(s)
- Huangxuan Shen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
388
|
Finck BN. Effects of PPARalpha on cardiac glucose metabolism: a transcriptional equivalent of the glucose-fatty acid cycle? Expert Rev Cardiovasc Ther 2006; 4:161-71. [PMID: 16509812 DOI: 10.1586/14779072.4.2.161] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Cardiovascular disease is exceptionally prevalent in patients with diabetes mellitus and is the most common cause of death. With the emerging pandemic of obesity and resulting metabolic abnormalities, the occurrence of cardiovascular disease is almost nearly certain to increase at a remarkable rate in the near future. Currently, several ligands for the peroxisome proliferator-activated receptor (PPAR) family of nuclear receptors are prescribed as lipid-lowering and insulin-sensitizing drugs. The PPARs are ligand-activated transcription factors that influence the expression of the entire program of fatty acid utilization enzymes. It is believed that these compounds remedy glucose homeostasis and cardiovascular disease by lowering circulating lipid levels, improving the profile of secreted adipokines, as well as via their anti-inflammatory properties. Conversely, overexpression of the PPARalpha isoform in the muscle or heart of mice drives diminished glucose transporter gene expression and glucose uptake into those insulin target tissues. Although the effects of overexpressing PPARalpha in a specific tissue obviously differ from activating PPARalpha in a systemic manner, studies such as this may influence the development of the next generation of PPAR ligands.
Collapse
Affiliation(s)
- Brian N Finck
- Department of Medicine, Washington University School of Medicine, Center for Human Nutrition and Center for Cardiovascular Research, St. Louis, MO 63110, USA.
| |
Collapse
|
389
|
Barroso I, Luan J, Sandhu MS, Franks PW, Crowley V, Schafer AJ, O'Rahilly S, Wareham NJ. Meta-analysis of the Gly482Ser variant in PPARGC1A in type 2 diabetes and related phenotypes. Diabetologia 2006; 49:501-5. [PMID: 16435105 DOI: 10.1007/s00125-005-0130-2] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2005] [Accepted: 11/04/2005] [Indexed: 02/07/2023]
Abstract
AIMS/HYPOTHESIS Peroxisome proliferator-activated receptor-gamma co-activator-1alpha (PPARGC1A) is a transcriptional co-activator with a central role in energy expenditure and glucose metabolism. Several studies have suggested that the common PPARGC1A polymorphism Gly482Ser may be associated with risk of type 2 diabetes, with conflicting results. To clarify the role of Gly482Ser in type 2 diabetes and related human metabolic phenotypes we genotyped this polymorphism in a case-control study and performed a meta-analysis of relevant published data. MATERIALS AND METHODS Gly482Ser was genotyped in a type 2 diabetes case-control study (N=1,096) using MassArray technology. A literature search revealed publications that examined Gly482Ser for association with type 2 diabetes and related metabolic phenotypes. Meta-analysis of the current study and relevant published data was undertaken. RESULTS In the pooled meta-analysis, including data from this study and seven published reports (3,718 cases, 4,818 controls), there was evidence of between-study heterogeneity (p<0.1). In the fixed-effects meta-analysis, the pooled odds ratio for risk of type 2 diabetes per Ser482 allele was 1.07 (95% CI 1.00-1.15, p=0.044). Elimination of one of the studies from the meta-analysis gave a summary odds ratio of 1.11 (95% CI 1.04-1.20, p=0.004), with no between-study heterogeneity (p=0.475). For quantitative metabolic traits in normoglycaemic subjects, we also found significant between-study heterogeneity. However, no significant association was observed between Gly482Ser and BMI, fasting glucose or fasting insulin. CONCLUSIONS/INTERPRETATION This meta-analysis of data from the current and published studies supports a modest role for the Gly482Ser PPARGC1A variant in type 2 diabetes risk.
Collapse
Affiliation(s)
- I Barroso
- The Wellcome Trust Sanger Institute, Metabolic Disease Group, The Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK.
| | | | | | | | | | | | | | | |
Collapse
|
390
|
Finck BN, Kelly DP. PGC-1 coactivators: inducible regulators of energy metabolism in health and disease. J Clin Invest 2006; 116:615-22. [PMID: 16511594 PMCID: PMC1386111 DOI: 10.1172/jci27794] [Citation(s) in RCA: 1112] [Impact Index Per Article: 58.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Members of the PPARgamma coactivator-1 (PGC-1) family of transcriptional coactivators serve as inducible coregulators of nuclear receptors in the control of cellular energy metabolic pathways. This Review focuses on the biologic and physiologic functions of the PGC-1 coactivators, with particular emphasis on striated muscle, liver, and other organ systems relevant to common diseases such as diabetes and heart failure.
Collapse
Affiliation(s)
- Brian N Finck
- Center for Cardiovascular Research, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | |
Collapse
|
391
|
Jacobs K, Rohrer G, Van Poucke M, Piumi F, Yerle M, Barthenschlager H, Mattheeuws M, Van Zeveren A, Peelman LJ. Porcine PPARGC1A (peroxisome proliferative activated receptor gamma coactivator 1A): coding sequence, genomic organization, polymorphisms and mapping. Cytogenet Genome Res 2006; 112:106-13. [PMID: 16276098 DOI: 10.1159/000087521] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2004] [Accepted: 02/25/2005] [Indexed: 01/12/2023] Open
Abstract
We report here the characterisation of porcine PPARGC1A. Primers based on human PPARGC1A were used to isolate two porcine BAC clones. Porcine coding sequences of PPARGC1A were sequenced together with the splice site regions and the 5' and 3' regions. Using direct sequencing nine SNPs were found. Allele frequencies were determined in unrelated animals of five different pig breeds. In the MARC Meishan-White Composite resource population, the polymorphism in exon 9 was significantly associated with leaf fat weight. PPARGC1A has been mapped by FISH to SSC8p21. A (CA)n microsatellite (SGU0001) has been localised near marker SWR1101 on chromosome 8 by RH mapping and at the same position as marker KS195 (32.5 cM) by linkage mapping. The AseI (nt857, Asn/Asn489) polymorphism in exon 8 was used to perform linkage analysis in the Hohenheim pedigrees and located the gene in the same genomic region. Transcription of the gene was detected in adipose, muscle, kidney, liver, brain, heart and adrenal gland tissues, which is in agreement with the function of PPARGC1A in adaptive thermogenesis.
Collapse
Affiliation(s)
- K Jacobs
- Department of Animal Nutrition, Genetics, Breeding and Ethology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
392
|
Koulmann N, Bigard AX. Interaction between signalling pathways involved in skeletal muscle responses to endurance exercise. Pflugers Arch 2006; 452:125-39. [PMID: 16437222 DOI: 10.1007/s00424-005-0030-9] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2005] [Revised: 10/23/2005] [Accepted: 11/24/2005] [Indexed: 12/29/2022]
Abstract
The purpose of this review is to summarise the latest literature on the signalling pathways involved in transcriptional modulations of genes that encode contractile and metabolic proteins in response to endurance exercise. A special attention has been paid to the cooperation between signalling pathways and coordinated expression of protein families that establish myofibre phenotype. Calcium acts as a second messenger in skeletal muscle during exercise, conveying neuromuscular activity into changes in the transcription of specific genes. Three main calcium-triggered regulatory pathways acting through calcineurin, Ca(2+)-calmodulin-dependent protein kinases (CaMK) and Ca(2+)-dependent protein kinase C, transduce alterations in cytosolic calcium concentration to target genes. Calcineurin signalling, the most important of these Ca(2+)-dependent pathways, stimulates the activation of many slow-fibre gene expression, including genes encoding proteins involved in contractile process, Ca(2+) uptake and energy metabolism. It involves the interaction between multiple transcription factors and the collaboration of other Ca(2+)-dependent CaMKs. Although members of mitogen-activated protein kinase (MAPK) pathways are activated during exercise, their integration into other signalling pathways remains largely unknown. The peroxisome proliferator-activated receptor gamma (PPARgamma) coactivator-1alpha (PGC-1alpha) constitutes a pivotal factor of the circuitry which coordinates mitochondrial biogenesis and which couples to the expression of contractile and metabolic genes with prolonged exercise.
Collapse
Affiliation(s)
- Nathalie Koulmann
- Département des Facteurs Humains, Centre de Recherches du Service de Santé des Armées, BP 87 38 702 La Tronche cedex, France
| | | |
Collapse
|
393
|
Park HB, Jacobsson L, Wahlberg P, Siegel PB, Andersson L. QTL analysis of body composition and metabolic traits in an intercross between chicken lines divergently selected for growth. Physiol Genomics 2006; 25:216-23. [PMID: 16390876 DOI: 10.1152/physiolgenomics.00113.2005] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The high- and low-growth lines of chickens have been developed from a single founder population by divergent selection for body weight at 56 days of age for more than 40 generations. The two lines show a ninefold difference in body weight at selection age and several interesting correlated selection responses such as altered body composition and metabolic differences. We have generated a reciprocal intercross comprising >800 F2 birds. In a previous study, we reported the detection of 13 quantitative trait loci (QTLs) affecting growth. Here we report QTLs for body composition (fat deposition, muscle development), weight of internal organs, and metabolic traits (plasma concentrations of glucose, insulin, cholesterol, glucagon, triglycerides, and IGF-I). Most of the QTLs with convincing statistical support mapped in the vicinity of growth QTLs. One of the most interesting observations was that the type of reciprocal cross had highly significant effects on body weight at hatch and on plasma concentrations of glucose, cholesterol, insulin, and IGF-I, but it had no significant effect on body weight at 56 days of age. The reciprocal cross explained between 15 and 35% of the phenotypic variance for weight at hatch and for plasma concentrations of glucose and insulin. The observed pattern indicated that these effects were caused by maternal effects or by genetic differences in mitochondrial DNA.
Collapse
Affiliation(s)
- Hee-Bok Park
- Department of Medical Biochemistry and Microbiology, Uppsala University, Biomedical Center, Uppsala, Sweden
| | | | | | | | | |
Collapse
|
394
|
Westerbacka J, Cornér A, Kannisto K, Kolak M, Makkonen J, Korsheninnikova E, Nyman T, Hamsten A, Fisher RM, Yki-Järvinen H. Acute in vivo effects of insulin on gene expression in adipose tissue in insulin-resistant and insulin-sensitive subjects. Diabetologia 2006; 49:132-40. [PMID: 16362280 DOI: 10.1007/s00125-005-0075-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2005] [Accepted: 09/01/2005] [Indexed: 11/28/2022]
Abstract
AIMS/HYPOTHESIS We determined the response of selected genes to in vivo insulin in adipose tissue in 21 non-diabetic women. MATERIALS AND METHODS The women were divided into insulin-sensitive and -resistant groups based on their median whole-body insulin sensitivity (8.7+/-0.4 vs 4.2+/-0.3 mg kg(-1) min(-1) for insulin-sensitive vs -resistant group). Subcutaneous adipose tissue biopsies were obtained before and after 3 and 6 h of i.v. maintained euglycaemic hyperinsulinaemia. Adipose tissue mRNA concentrations of facilitated glucose transporter, member 1 (SLC2A1, previously known as GLUT1), facilitated glucose transporter, member 4 (SLC2A4, previously known as GLUT4), peroxisome proliferator-activated receptor gamma ( PPARG), peroxisome proliferator-activated receptor gamma co-activator 1alpha (PPARGC1A), 11beta-hydroxysteroid dehydrogenase-1 (HSD11B1), TNF, adiponectin (ADIPOQ), IL6 and the macrophage marker CD68 were measured using real-time PCR. RESULTS Basal expression of 'insulin-sensitivity genes' SLC2A4 and ADIPOQ was lower while that of 'insulin-resistance genes', HSD11B1 and IL6 was significantly higher in the insulin-resistant than in the insulin-sensitive group. Insulin significantly increased expression of 'insulin-sensitivity genes' SLC2A4, PPARG, PPARGC1A and ADIPOQ in the insulin-sensitive group, while only expression of PPARG and PPARGC1A was increased in the insulin-resistant group. The expression of 'insulin-resistance genes' HSD11B1 and IL6 was increased by insulin in the insulin-resistant group, but insulin failed to increase HSD11B1 expression in the insulin-sensitive group. At 6 h, expression of HSD11B1, TNF and IL6 was significantly higher in the insulin-resistant than in the insulin-sensitive group. IL6 expression increased significantly more in response to insulin in the insulin-resistant than in the insulin-sensitive group. CD68 was overexpressed in the insulin-resistant as compared with the insulin-sensitive group at both 0 and 6 h. CONCLUSIONS/INTERPRETATION These data suggest that genes adversely affecting insulin sensitivity hyperrespond to insulin, while genes enhancing insulin sensitivity hyporespond to insulin in insulin-resistant human adipose tissue in vivo.
Collapse
Affiliation(s)
- J Westerbacka
- Department of Medicine, Division of Diabetes, University of Helsinki, P.O. Box 340, FIN-00029 HUCH, Helsinki, Finland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
395
|
Taylor EB, Lamb JD, Hurst RW, Chesser DG, Ellingson WJ, Greenwood LJ, Porter BB, Herway ST, Winder WW. Endurance training increases skeletal muscle LKB1 and PGC-1alpha protein abundance: effects of time and intensity. Am J Physiol Endocrinol Metab 2005; 289:E960-8. [PMID: 16014350 DOI: 10.1152/ajpendo.00237.2005] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recent research suggests that LKB1 is the major AMP-activated protein kinase kinase (AMPKK). Peroxisome-proliferator-activated receptor-gamma coactivator-1alpha (PGC-1alpha) is a master coordinator of mitochondrial biogenesis. Previously we reported that skeletal muscle LKB1 protein increases with endurance training. The purpose of this study was to determine whether training-induced increases in skeletal muscle LKB1 and PGC-1alpha protein exhibit a time course and intensity-dependent response similar to that of citrate synthase. Male Sprague-Dawley rats completed endurance- and interval-training protocols. For endurance training, rats trained for 4, 11, 25, or 53 days. Interval-training rats trained identically to endurance-trained rats, except that after 25 days interval training was combined with endurance training. Time course data were collected from endurance-trained red quadriceps (RQ) after each time point. Interval training data were collected from soleus, RQ, and white quadriceps (WQ) muscle after 53 days only. Mouse protein 25 (MO25) and PGC-1alpha protein increased significantly after 4 days. Increased citrate synthase activity, increased LKB1 protein, and decreased AMPKK activity were found after 11 days. Maximal increases occurred after 4 days for hexokinase II, 25 days for MO25, and 53 days for citrate synthase, LKB1, and PGC-1alpha. In WQ, but not RQ or soleus, interval training had an additive effect to endurance training and induced significant increases in all proteins measured. These results demonstrate that LKB1 and PGC-1alpha protein abundances increase with endurance and interval training similarly to citrate synthase. The increase in LKB1 and PGC-1alpha with endurance and interval training may function to maintain the training-induced increases in mitochondrial mass.
Collapse
Affiliation(s)
- Eric B Taylor
- Department of Physiology and Developmental Biology, 545 WIDB, Brigham Young University, Provo, UT 84602, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
396
|
Wende AR, Huss JM, Schaeffer PJ, Giguère V, Kelly DP. PGC-1alpha coactivates PDK4 gene expression via the orphan nuclear receptor ERRalpha: a mechanism for transcriptional control of muscle glucose metabolism. Mol Cell Biol 2005; 25:10684-94. [PMID: 16314495 PMCID: PMC1316952 DOI: 10.1128/mcb.25.24.10684-10694.2005] [Citation(s) in RCA: 283] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2005] [Revised: 07/07/2005] [Accepted: 09/21/2005] [Indexed: 11/20/2022] Open
Abstract
The transcriptional coactivator PGC-1alpha is a key regulator of energy metabolism, yet little is known about its role in control of substrate selection. We found that physiological stimuli known to induce PGC-1alpha expression in skeletal muscle coordinately upregulate the expression of pyruvate dehydrogenase kinase 4 (PDK4), a negative regulator of glucose oxidation. Forced expression of PGC-1alpha in C(2)C(12) myotubes induced PDK4 mRNA and protein expression. PGC-1alpha-mediated activation of PDK4 expression was shown to occur at the transcriptional level and was mapped to a putative nuclear receptor binding site. Gel shift assays demonstrated that the PGC-1alpha-responsive element bound the estrogen-related receptor alpha (ERRalpha), a recently identified component of the PGC-1alpha signaling pathway. In addition, PGC-1alpha was shown to activate ERRalpha expression. Chromatin immunoprecipitation assays confirmed that PGC-1alpha and ERRalpha occupied the mPDK4 promoter in C(2)C(12) myotubes. Additionally, transfection studies using ERRalpha-null primary fibroblasts demonstrated that ERRalpha is required for PGC-1alpha-mediated activation of the mPDK4 promoter. As predicted by the effects of PGC-1alpha on PDK4 gene transcription, overexpression of PGC-1alpha in C(2)C(12) myotubes decreased glucose oxidation rates. These results identify the PDK4 gene as a new PGC-1alpha/ERRalpha target and suggest a mechanism whereby PGC-1alpha exerts reciprocal inhibitory influences on glucose catabolism while increasing alternate mitochondrial oxidative pathways in skeletal muscle.
Collapse
Affiliation(s)
- Adam R Wende
- Center for Cardiovascular Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | |
Collapse
|
397
|
Chabi B, Adhihetty PJ, Ljubicic V, Hood DA. How is Mitochondrial Biogenesis Affected in Mitochondrial Disease? Med Sci Sports Exerc 2005; 37:2102-10. [PMID: 16331136 DOI: 10.1249/01.mss.0000177426.68149.83] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Mitochondrial biogenesis occurs when the tissue energy demand is chronically increased to stress the ATP producing capacity of the preexisting mitochondria. In muscle, endurance training is a metabolic stress that is capable of inducing mitochondrial biogenesis, the consequence of which is improved performance during exercise. Expansion of the mitochondrial volume requires the coordinated response of the nuclear and mitochondrial genomes. During acute exercise, the initial signaling events are the perturbations in ATP turnover and calcium (Ca) concentrations caused by the contractile process. These alterations activate signal transduction pathways which target transcription factors involved in gene expression. Nuclear gene products are then posttranslationally imported into mitochondria. One of these, Tfam, is important for the regulation of mitochondrial DNA (mtDNA) gene expression. In muscle, a broad range of mitochondrial-specific diseases due to mutations in nuclear DNA or mtDNA exist, termed mitochondrial myopathies. These mutations result in dysfunctional mitochondrial assembly which ultimately leads to reduced ATP production. Mitochondrial myopathy patients exhibit a variety of compensatory responses which attempt to reconcile this energy deficiency, but the extent and the type of compensatory adaptations are disease-specific. Understanding the role of exercise in mediating these compensatory responses leading to mitochondrial biogenesis could help us in prescribing exercise designed to improve mitochondrial function in patients with mitochondrial myopathies. In addition, numerous other diseases (e.g., neurological disorders, cancer, diabetes, and cardiomyopathies), as well as the aging process, have etiologies or consequences attributed, in part, to mitochondrial dysfunction. Thus, insight gained by investigating the steps involved in exercise-induced mitochondrial biogenesis may help us to understand the underlying basis of these other disease states.
Collapse
Affiliation(s)
- Beatrice Chabi
- Department of Biology, York University, Toronto, Ontario, CANADA
| | | | | | | |
Collapse
|
398
|
Fujimura T, Sakuma H, Konishi S, Oe T, Hosogai N, Kimura C, Aramori I, Mutoh S. FK614, a novel peroxisome proliferator-activated receptor gamma modulator, induces differential transactivation through a unique ligand-specific interaction with transcriptional coactivators. J Pharmacol Sci 2005; 99:342-52. [PMID: 16314690 DOI: 10.1254/jphs.fp0050578] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Peroxisome proliferator-activated receptor gamma (PPARgamma) is a ligand-dependent transcriptional factor implicated in regulating adipogenesis, glucose homeostasis, and in mediating the action of the insulin sensitizing anti-diabetic thiazolidinedione (TZD) compounds. [3-(2,4-Dichlorobenzyl)-2-methyl-N-(pentylsulfonyl)-3-H-benzimidazole-5-carboxamide] (FK614) is a structurally novel PPARgamma agonist that demonstrates potent anti-diabetic activity in vivo. Herein, we describe that FK614 is a selective PPARgamma ligand with specific transactivation properties that are dependent upon the context of coactivators. FK614 dissociates the corepressors NCoR (nuclear receptor corepressor) and SMRT (silencing mediator of retinoid and thyroid hormone receptors) from PPARgamma as effectively as rosiglitazone and pioglitazone, but can also differentially induce a ligand specific interaction of PPARgamma with coactivators. The amount of CBP (CREB-binding protein) and SRC-1 (steroid receptor coactivator-1) recruited by FK614 was less than that induced by rosiglitazone and pioglitazone, but FK614 caused similar PGC-1alpha (PPARgamma coactivator-1alpha) recruitment as these compounds. As a consequence of these ligand-specific differences in the strength of ligand-type specific interactions of PPARgamma and coactivators, FK614 functions as a partial or full agonist for transcriptional activation depending upon the amount of specific coactivators in cells following overexpression. In conclusion, FK614 is a novel, non-TZD type, and selective PPARgamma modulator whose pharmacological properties are distinct from rosiglitazone and pioglitazone.
Collapse
Affiliation(s)
- Takao Fujimura
- Pharmacology Research Laboratories, Astellas Pharma Inc, Japan
| | | | | | | | | | | | | | | |
Collapse
|
399
|
McCarty MF. cGMP may have trophic effects on beta cell function comparable to those of cAMP, implying a role for high-dose biotin in prevention/treatment of diabetes. Med Hypotheses 2005; 66:323-8. [PMID: 16309850 DOI: 10.1016/j.mehy.2004.04.031] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2004] [Accepted: 04/28/2004] [Indexed: 01/24/2023]
Abstract
Incretin hormones have trophic effects on beta cell function that can aid prevention and treatment of diabetes. cAMP is the primary mediator of these effects, and has been shown to potentiate glucose-stimulated insulin secretion, promote proper beta cells differentiation by increasing expression of the crucial transcription factor PDX-1, and prevent beta cell apoptosis. cGMP's role in beta cell function has received far less scrutiny, but there is emerging evidence that it may have a trophic impact on beta cell function analogous to that of cAMP. An increase in plasma glucose boosts beta cell production of cGMP, which acts as a feed-forward mediator to enhance glucose-stimulated insulin secretion. cGMP also has an anti-apoptotic effect in beta cells, and there is now indirect evidence that it promotes expression of PDX-1. Supraphysiological concentrations of biotin can directly activate guanylate cyclase, and there is limited evidence that high intakes of this vitamin can be therapeutically beneficial in diabetics and in rodent models of diabetes. Beneficial effects of cGMP on muscle insulin sensitivity and on control of hepatic glucose output may contribute to biotin's utility in diabetes. The fact that nitric oxide/cGMP exert a range of favorable effects on vascular health should further encourage exploration of biotin's preventive and therapeutic potential. If an appropriate high-dose biotin regimen could achieve a modest systemic increase in guanylate cyclase activity, without entailing unacceptable side effects or risks, such a regimen might have considerable potential for promoting vascular health and preventing or managing diabetes.
Collapse
Affiliation(s)
- Mark F McCarty
- NutriGuard Research, 1051 Hermes Avenue, Encinitas, CA 92024, USA.
| |
Collapse
|
400
|
Benton CR, Han XX, Febbraio M, Graham TE, Bonen A. Inverse relationship between PGC-1alpha protein expression and triacylglycerol accumulation in rodent skeletal muscle. J Appl Physiol (1985) 2005; 100:377-83. [PMID: 16223979 DOI: 10.1152/japplphysiol.00781.2005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
PGC-1alpha is a key regulator of tissue metabolism, including skeletal muscle. Because it has been shown that PGC-1alpha alters the capacity for lipid metabolism, it is possible that PGC-1alpha expression is regulated by the intramuscular lipid milieu. Therefore, we have examined the relationship between PGC-1alpha protein expression and the intramuscular fatty acid accumulation in hindlimb muscles of animals in which the capacity for fatty acid accumulation in muscle is increased (Zucker obese rat) or reduced [FAT/CD36 null (KO) mice]. Rates of palmitate incorporation into triacylglycerols were determined in perfused red (RG) and white gastrocnemius (WG) muscles of lean and obese Zucker rats and in perfused RG and WG muscles of FAT/CD36 KO and wild-type (WT) mice. In obese Zucker rats, the rate of palmitate incorporation into triacylglycerol depots in RG and WG muscles were 28 and 24% greater than in lean rats (P < 0.05). In FAT/CD36 KO mice, the rates of palmitate incorporation into triacylglycerol depots were lower in RG (-50%) and WG muscle (-24%) compared with the respective muscles in WT mice (P < 0.05). In the obese animals, PGC-1alpha protein content was reduced in both RG (-13%) and WG muscles (-15%) (P < 0.05). In FAT/CD36 KO mice, PGC-1alpha protein content was upregulated in both RG (+32%, P < 0.05) and WG muscles (+50%, P < 0.05). In conclusion, from studies in these two animal models, it appears that PGC-1alpha protein expression is inversely related to components of intramuscular lipid metabolism, because 1) PGC-1alpha protein expression is downregulated when triacylglycerol synthesis rates, an index of intramuscular lipid metabolism, are increased, and 2) PGC-1alpha protein expression is upregulated when triacylglycerol synthesis rates are reduced. Therefore, we speculate that the intramuscular lipid sensing may be involved in regulating the protein expression of PGC-1alpha in skeletal muscle.
Collapse
Affiliation(s)
- Carley R Benton
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada
| | | | | | | | | |
Collapse
|