351
|
Krishnaveni MS, Eickelberg O. TGF-β receptors: Assembly, signalling, and disease relevance. ACTA ACUST UNITED AC 2006. [DOI: 10.1002/sita.200600096] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
352
|
Hartung A, Sieber C, Knaus P. Yin and Yang in BMP signaling: Impact on the pathology of diseases and potential for tissue regeneration. ACTA ACUST UNITED AC 2006. [DOI: 10.1002/sita.200600098] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
353
|
Huber K. The sympathoadrenal cell lineage: specification, diversification, and new perspectives. Dev Biol 2006; 298:335-43. [PMID: 16928368 DOI: 10.1016/j.ydbio.2006.07.010] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2006] [Revised: 07/08/2006] [Accepted: 07/11/2006] [Indexed: 11/17/2022]
Abstract
During the past years considerable progress has been made in understanding the generation of cell diversity in the neural crest (NC). Sympathoadrenal (SA) cells constitute a major lineage among NC derivatives; they give rise to sympathetic neurons, neuroendocrine chromaffin cells, and the intermediate small intensely fluorescent (SIF) cells. The classic perception of how this diversification is achieved implies that (i) there is a common progenitor cell for sympathetic neurons and chromaffin cells, (ii) NC cells are instructed to a SA cell fate by signals derived from the wall of the dorsal aorta, especially bone morphogenetic proteins (BMP), and (iii) the local environments of secondary sympathetic ganglia and adrenal gland, respectively, are crucial for inducing differentiation of SA cells into sympathetic neurons and adrenal chromaffin cells. However, recent studies have suggested that the adrenal cortex is dispensable for the acquisition of a chromaffin cell fate. This review summarizes the current understanding of the development of SA cells. It covers the specification of SA cells from multipotent NC crest cells, the role of transcription factors during their development, the classic model of their subsequent diversification as well as alternative views for explaining the generation of endocrine versus neuronal SA derivatives.
Collapse
Affiliation(s)
- Katrin Huber
- Department of Neuroanatomy and Interdisciplinary Center for Neurosciences, University of Heidelberg, INF 307, D-69120 Heidelberg, Germany.
| |
Collapse
|
354
|
Abstract
Vertebrate mesoderm induction is one of the classical problems in developmental biology. Various developmental biology approaches, particularly in Xenopus and zebrafish, have identified many of the key factors that are involved in this process and have provided major insights into how these factors interact as part of a signalling and transcription-factor network. These data are beginning to be refined by high-throughput approaches such as microarray assays. Future challenges include understanding how the prospective mesodermal cells integrate the various signals they receive and how they resolve this information to regulate their morphogenetic behaviours and cell-fate decisions.
Collapse
Affiliation(s)
- David Kimelman
- Department of Biochemistry, Box 357350, University of Washington, Seattle, Washington 98195-7350, USA.
| |
Collapse
|
355
|
Abstract
Skeletal homeostasis is determined by systemic hormones and local factors. Bone morphogenetic proteins (BMPs) are unique because they induce the commitment of mesenchymal cells toward cells of the osteoblastic lineage and also enhance the differentiated function of the osteoblast. BMP activities in bone are mediated through binding to specific cell surface receptors and through interactions with other growth factors. BMPs are required for skeletal development and maintenance of adult bone homeostasis, and play a role in fracture healing. BMPs signal by activating the mothers against decapentaplegic (Smad) and mitogen activated protein kinase (MAPK) pathways, and their actions are tempered by intracellular and extracellular proteins. The BMP antagonists block BMP signal transduction at multiple levels including pseudoreceptor, inhibitory intracellular binding proteins, and factors that induce BMP ubiquitination. A large number of extracellular proteins that bind BMPs and prevent their binding to signaling receptors have emerged. The extracellular antagonists are differentially expressed in cartilage and bone tissue and exhibit BMP antagonistic as well as additional activities. Both intracellular and extracellular antagonists are regulated by BMPs, indicating the existence of local feedback mechanisms to modulate BMP cellular activities.
Collapse
Affiliation(s)
- Elisabetta Gazzerro
- Unit of Muscular and Neurodegenerative Disorders, Gaslini Institute, Genoa, Italy.
| | | |
Collapse
|
356
|
Ovchinnikov DA, Selever J, Wang Y, Chen YT, Mishina Y, Martin JF, Behringer RR. BMP receptor type IA in limb bud mesenchyme regulates distal outgrowth and patterning. Dev Biol 2006; 295:103-15. [PMID: 16630606 DOI: 10.1016/j.ydbio.2006.03.013] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2005] [Revised: 02/12/2006] [Accepted: 03/13/2006] [Indexed: 10/24/2022]
Abstract
The mesenchyme of the developing vertebrate limb responds to inductive signals, giving rise to skeletal elements that define limb shape and size. Several signals emanate from the limb ectoderm and in particular from the specialized epithelium of the apical ectodermal ridge (AER), including three members of the bone morphogenetic protein (BMP) family of signaling molecules, BMP2, BMP4 and BMP7. Using the Cre/loxP system in mice, we rendered limb bud mesenchyme insensitive to BMP signals through the type I receptor, BMPR-IA. Conditional mutants had shortened limbs and almost complete agenesis of the autopod because of reduced cell proliferation. Reduced expression of downstream BMP signaling targets, Msx1, Msx2 and gremlin in the distal mesenchyme (progress zone) correlated with decreased levels of cyclin D1 and Wnt5a. Ectopic anterior activation of sonic hedgehog (SHH) signaling and Hox expression revealed alterations in anterior-posterior (AP) patterning. Abnormal localization of Lmx1b-expressing cells in the ventral mesenchyme, along with histological alterations and an abnormal melanization pattern of the limb, indicate altered dorsal-ventral (DV) boundaries. These findings suggest that signaling through BMPR-IA in limb mesenchyme is essential for distal outgrowth and also influences AP and DV patterning.
Collapse
Affiliation(s)
- Dmitry A Ovchinnikov
- Department of Molecular Genetics, University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
| | | | | | | | | | | | | |
Collapse
|
357
|
Eblaghie MC, Reedy M, Oliver T, Mishina Y, Hogan BLM. Evidence that autocrine signaling through Bmpr1a regulates the proliferation, survival and morphogenetic behavior of distal lung epithelial cells. Dev Biol 2006; 291:67-82. [PMID: 16414041 DOI: 10.1016/j.ydbio.2005.12.006] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2005] [Revised: 11/22/2005] [Accepted: 12/01/2005] [Indexed: 12/26/2022]
Abstract
Lung development requires reciprocal epithelial/mesenchymal interactions, mediated by signaling factors such as Bmps made in both cell populations. To address the role of Bmp signaling in the epithelium, we have exploited the fact that Bmp receptor type Ia (Alk3) is expressed in the epithelium during branching morphogenesis. Deletion of Bmpr1a in the epithelium with an Sftpc-cre transgene leads to dramatic defects in lung development. There is reduced epithelial proliferation, extensive apoptosis, changes in cell morphology and extrusion of cells into the lumen. By E18.5, there are fewer Type II cells than normal, and the lung contains large fluid-filled spaces. If cell death is prevented by making embryos homozygous null for the proapoptotic gene, Bax, the epithelial cells that are rescued can apparently differentiate, but normal morphogenesis is not restored. To determine whether Bmps made by the epithelium can function in an autocrine manner, mesenchyme-free endoderm was cultured in Matrigel with Fgfs. Under these conditions, the mutant epithelium fails to undergo secondary budding. Abnormal development was also seen when Bmp4 was specifically deleted in the epithelium using the Sftpc-cre transgene. Our results support a model in which Bmp signaling primarily regulates the proliferation, survival and morphogenetic behavior of distal lung epithelial cells.
Collapse
Affiliation(s)
- Maxwell C Eblaghie
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | |
Collapse
|
358
|
Kumamoto H, Ooya K. Expression of bone morphogenetic proteins and their associated molecules in ameloblastomas and adenomatoid odontogenic tumors. Oral Dis 2006; 12:163-70. [PMID: 16476038 DOI: 10.1111/j.1601-0825.2005.01177.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE To further clarify the roles of regulators of embryonic development, bone morphogenetic protein (BMPs) and their associated molecules, in oncogenesis and cytodifferentiation of odontogenic tumors, the expression of these regulator molecules were analyzed in epithelial odontogenic tumors as well as in tooth germs. MATERIALS AND METHODS Tooth germs, ameloblastomas, adenomatoid odontogenic tumors, and malignant ameloblastomas were examined by RT-PCR and immunohistochemistry for detection of BMP-2, -4, -7, BMP receptors I and II (BMPR-I, BMPR-II), core-binding factor alpha1 (CBFA1), and osterix. RESULTS mRNA expression of BMPs, BMPRs, CBFA1, and osterix was detected in all odontogenic tissues. Immunohistochemical reactivity for BMPs, BMPRs, and CBFA1 was detected in both epithelial and mesenchymal cells of tooth germs and epithelial odontogenic tumors. BMPs and BMPRs were evidently expressed in odontogenic epithelial cells in tooth germs and epithelial odontogenic tumors. Acanthomatous ameloblastomas showed increased BMP-7 reactivity in keratinizing cells. Nuclear CBFA1 expression was detected scatteredly in odontogenic epithelial cells in normal and neoplastic odontogenic tissues, as well as in some mesenchymal cells in tooth germs and in some stromal cells in epithelial odontogenic tumors. Ameloblastic carcinomas showed low reactivity for BMPs, BMPRs, and CBFA1. CONCLUSION BMPs and their associated molecules might play a role in cytodifferentiation of normal and neoplastic odontogenic epithelium via epithelial-mesenchymal interactions.
Collapse
Affiliation(s)
- H Kumamoto
- Division of Oral Pathology, Department of Oral Medicine and Surgery, Tohoku University Graduate School of Dentistry, Sendai, Japan.
| | | |
Collapse
|
359
|
Fritz DT, Jiang S, Xu J, Rogers MB. A polymorphism in a conserved posttranscriptional regulatory motif alters bone morphogenetic protein 2 (BMP2) RNA:protein interactions. Mol Endocrinol 2006; 20:1574-86. [PMID: 16497730 DOI: 10.1210/me.2005-0469] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The bone morphogenetic protein (BMP)2 gene has been genetically linked to osteoporosis and osteoarthritis. We have shown that the 3'-untranslated regions (UTR) of BMP2 genes from mammals to fishes are extraordinarily conserved. This indicates that the BMP2 3'-UTR is under stringent selective pressure. We present evidence that the conserved region is a strong posttranscriptional regulator of BMP2 expression. Polymorphisms in cis-regulatory elements have been proven to influence susceptibility to a growing number of diseases. A common single nucleotide polymorphism (SNP) disrupts a putative posttranscriptional regulatory motif, an AU-rich element, within the BMP2 3'-UTR. The affinity of specific proteins for the rs15705 SNP sequence differs from their affinity for the normal human sequence. More importantly, the in vitro decay rate of RNAs with the SNP is higher than that of RNAs with the normal sequence. Such changes in mRNA:protein interactions may influence the posttranscriptional mechanisms that control BMP2 gene expression. The consequent alterations in BMP2 protein levels may influence the development or physiology of bone or other BMP2-influenced tissues.
Collapse
Affiliation(s)
- David T Fritz
- Biochemistry and Molecular Biology, University of Medicine and Dentistry of New Jersey-New Jersey Medical School, Newark, New Jersey 07101-1709, USA
| | | | | | | |
Collapse
|
360
|
Prothmann C, Armstrong NJ, Roth S, Rupp RAW. Vertebrate rel proteins exhibit dorsal-like activities in earlyDrosophila embryogenesis. Dev Dyn 2006; 235:949-57. [PMID: 16493693 DOI: 10.1002/dvdy.20713] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In Drosophila, the Toll/Dorsal pathway triggers the nuclear entry of the Rel protein Dorsal, which controls dorsoventral patterning in early embryogenesis and plays an important role in innate immunity of the adult fly. In vertebrates, the homologous Toll/IL-1 receptor signaling pathway directs the nuclear localization of Rel/NF-kappaB complexes, which activate genes involved in proliferation, apoptosis, and immune response. Recently, first evidence has been reported for the activity of vertebrate Rel proteins and a Toll-like signaling pathway in the dorsoventral patterning process of Xenopus laevis embryos. Given the evolutionary divergence of the fly and frog model organisms, these findings raise the question, to what extent the effector functions of this pathway have been conserved? Here, we report the ability of two Xenopus Rel proteins to partially substitute for several, but not all, functions of the Dorsal protein in Drosophila embryos. Our results suggest the interaction between Rel proteins and their cytoplasmic inhibitors as an important interface of evolutionary adaptation.
Collapse
Affiliation(s)
- Christian Prothmann
- Adolf-Butenandt-Institut, Ludwif-Maximilians-Universität München, Schillerstrasse 44, D-80336 Munich, Germany
| | | | | | | |
Collapse
|
361
|
Wang J, Sridurongrit S, Dudas M, Thomas P, Nagy A, Schneider MD, Epstein JA, Kaartinen V. Atrioventricular cushion transformation is mediated by ALK2 in the developing mouse heart. Dev Biol 2005; 286:299-310. [PMID: 16140292 PMCID: PMC1361261 DOI: 10.1016/j.ydbio.2005.07.035] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2005] [Revised: 07/29/2005] [Accepted: 07/31/2005] [Indexed: 01/01/2023]
Abstract
Developmental abnormalities in endocardial cushions frequently contribute to congenital heart malformations including septal and valvular defects. While compelling evidence has been presented to demonstrate that members of the TGF-beta superfamily are capable of inducing endothelial-to-mesenchymal transdifferentiation in the atrioventricular canal, and thus play a key role in formation of endocardial cushions, the detailed signaling mechanisms of this important developmental process, especially in vivo, are still poorly known. Several type I receptors (ALKs) for members of the TGF-beta superfamily are expressed in the myocardium and endocardium of the developing heart, including the atrioventricular canal. However, analysis of their functional role during mammalian development has been significantly complicated by the fact that deletion of the type I receptors in mouse embryos often leads to early embryonal lethality. Here, we used the Cre/loxP system for endothelial-specific deletion of the type I receptor Alk2 in mouse embryos. The endothelial-specific Alk2 mutant mice display defects in atrioventricular septa and valves, which result from a failure of endocardial cells to appropriately transdifferentiate into the mesenchyme in the AV canal. Endocardial cells deficient in Alk2 demonstrate decreased expression of Msx1 and Snail, and reduced phosphorylation of BMP and TGF-beta Smads. Moreover, we show that endocardial cells lacking Alk2 fail to delaminate from AV canal explants. Collectively, these results indicate that the BMP type I receptor ALK2 in endothelial cells plays a critical non-redundant role in early phases of endocardial cushion formation during cardiac morphogenesis.
Collapse
Affiliation(s)
- Jikui Wang
- Developmental Biology, The Saban Research Institute of Children’s Hospital Los Angeles, CA 90027, USA
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Somyoth Sridurongrit
- Developmental Biology, The Saban Research Institute of Children’s Hospital Los Angeles, CA 90027, USA
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Marek Dudas
- Developmental Biology, The Saban Research Institute of Children’s Hospital Los Angeles, CA 90027, USA
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Penny Thomas
- Cardiovascular Research Programs, The Saban Research Instititute of Children’s Hospital Los Angeles, CA 90027, USA
- Department of Cardiothoracic Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Andre Nagy
- Developmental Biology, The Saban Research Institute of Children’s Hospital Los Angeles, CA 90027, USA
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Michael D. Schneider
- Center for Cardiovascular Development, Department of Medicine, Molecular and Cellular Biology, and Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jonathan A. Epstein
- Cardiovascular Division, Department of Medicine and the Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Vesa Kaartinen
- Developmental Biology, The Saban Research Institute of Children’s Hospital Los Angeles, CA 90027, USA
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- * Corresponding author. Department of Pathology, Mail stop #35 Children’s Hospital Los Angeles, 4650 Sunset Blvd., Los Angeles, CA 90027, USA. Fax: +1 323 671 3613. E-mail address: (V. Kaartinen)
| |
Collapse
|
362
|
Tompers DM, Foreman RK, Wang Q, Kumanova M, Labosky PA. Foxd3 is required in the trophoblast progenitor cell lineage of the mouse embryo. Dev Biol 2005; 285:126-37. [PMID: 16039639 DOI: 10.1016/j.ydbio.2005.06.008] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2005] [Revised: 06/07/2005] [Accepted: 06/07/2005] [Indexed: 11/25/2022]
Abstract
The murine blastocyst contains two nonoverlapping pools of progenitor cells: the embryonic component contributes to the fetus and generates embryonic stem cells in vitro, whereas the extraembryonic pool contributes to the placenta and generates trophoblast stem cells in vitro. The transcriptional repressor Foxd3 is required for maintenance of the epiblast and the in vitro establishment of embryonic stem cell lines. Here, we demonstrate that Foxd3 is also required in the trophoblast lineage. Trophoblast progenitors in Foxd3-/- embryos do not self-renew and are not multipotent, but instead give rise to an excess of trophoblast giant cells. Injection of Foxd3-/- blastocysts with wild type ES cells fails to rescue Foxd3-/- placentas and such chimeras die around 10 days of embryogenesis. These results indicate an essential role for Foxd3 in two nonoverlapping progenitor cell populations that require different secreted factors to maintain their multipotent properties in vitro and give rise to divergent tissues in vivo. Moreover, this provides support for the hypothesis that there are conserved molecular mechanisms for maintaining the self-renewing properties of diverse progenitor cell types.
Collapse
Affiliation(s)
- Dennie M Tompers
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104-6058, USA
| | | | | | | | | |
Collapse
|
363
|
Cao X, Chen D. The BMP signaling and in vivo bone formation. Gene 2005; 357:1-8. [PMID: 16125875 PMCID: PMC2667963 DOI: 10.1016/j.gene.2005.06.017] [Citation(s) in RCA: 230] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2005] [Revised: 05/17/2005] [Accepted: 06/16/2005] [Indexed: 11/18/2022]
Abstract
Bone morphogenetic proteins (BMPs) are multi-functional growth factors that belong to the transforming growth factor beta (TGFbeta) superfamily. The roles of BMPs in embryonic development and cellular functions in postnatal and adult animals have been extensively studied in recent years. Signal transduction studies have revealed that Smads 1, 5 and 8 are the immediate downstream molecules of BMP receptors and play a central role in BMP signal transduction. Studies from transgenic and knockout mice and from animals and humans with naturally occurring mutations in BMPs and their signaling molecules have shown that BMP signaling plays critical roles in bone and cartilage development and postnatal bone formation. BMP activities are regulated at different molecular levels. Tissue-specific knockout of a specific BMP ligand, a subtype of BMP receptors or a specific signaling molecule is required to further determine the specific role of a BMP ligand, receptor or signaling molecule in a particular tissue.
Collapse
Affiliation(s)
- Xu Cao
- The Xingjiang Technical Institute of Physics and Chemistry, CAS, Urumqi 830011, China
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Di Chen
- Department of Orthopaedics, University of Rochester, School of Medicine, Rochester, NY 14642, United States
- Corresponding author. Tel.: +1 585 273 5631., E-mail address: (D. Chen)
| |
Collapse
|
364
|
Raida M, Clement JH, Leek RD, Ameri K, Bicknell R, Niederwieser D, Harris AL. Bone morphogenetic protein 2 (BMP-2) and induction of tumor angiogenesis. J Cancer Res Clin Oncol 2005; 131:741-50. [PMID: 16136355 DOI: 10.1007/s00432-005-0024-1] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2005] [Accepted: 07/04/2005] [Indexed: 01/25/2023]
Abstract
PURPOSE Bone morphogenetic proteins (BMPs) are members of the transforming growth factor-beta family and play an important role in the regulation of embryonic vasculogenesis but their role in postnatal angiogenesis remains to be clarified. In this study we investigated a possible role of BMP-2 in the promotion of tumor angiogenesis. METHODS We studied the effect of BMP-2 on human dermal microvascular endothelial cells (HDMECs) and examined a possible angiogenic activity of BMP-2 with the mouse sponge assay. The effect of BMP-2 overexpression on tumor vascularization was also analyzed in xenografts of human BMP-2 transfected MCF-7 breast cancer cells (MCF-7/BMP2) in mice. RESULTS BMP receptor activation selectively induced the phosphorylation of p38 mitogen-activated protein kinase (MAPK) in contrast to the ERK1/2 MAP kinases. In keeping with this finding, BMP-2 had no significant effect on endothelial cell proliferation but promoted HDMEC tube formation in the matrigel assay. The transcription factor inhibitor of differentiation 1 (Id1), which is known to play an important role in neovascularization of tumors, was confirmed as a BMP target in HDMECs. Immunohistochemical analysis of sponge sections revealed that BMP-2 induced vascularization and showed an additive enhancement of angiogenesis with VEGF. In the murine breast cancer xenograft model, human MCF-7 cells with stable overexpression of BMP-2 developed vascularized tumors while empty vector control MCF-7 cells failed to form tumors. CONCLUSIONS We conclude that activation of the BMP pathway by BMP-2 can promote vascularization and might be involved in tumor angiogenesis possibly by stimulating the Id1 and p38 MAPK pathway.
Collapse
Affiliation(s)
- Martin Raida
- Department of Hematology/Oncology, University of Leipzig, 04103, Leipzig, Germany.
| | | | | | | | | | | | | |
Collapse
|
365
|
Hilliard SA, Yu L, Gu S, Zhang Z, Chen YP. Regional regulation of palatal growth and patterning along the anterior-posterior axis in mice. J Anat 2005; 207:655-67. [PMID: 16313398 PMCID: PMC1571556 DOI: 10.1111/j.1469-7580.2005.00474.x] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2005] [Indexed: 11/28/2022] Open
Abstract
Cleft palate is a congenital disorder arising from a failure in the multistep process of palate development. In its mildest form the cleft affects only the posterior soft palate. In more severe cases the cleft includes the soft (posterior) and hard (anterior) palate. In mice a number of genes show differential expression along the anterior-posterior axis of the palate. Mesenchymal heterogeneity is established early, as evident from Bmp4-mediated induction of Msx1 and cell proliferation exclusively in the anterior and Fgf8-specific induction of Pax9 in the posterior palate alone. In addition, the anterior palatal epithelium has the unique ability to induce Shox2 expression in the anterior mesenchyme in vivo and the posterior mesenchyme in vitro. Therefore, the induction and competence potentials of the epithelium and mesenchyme in the anterior are clearly distinct from those in the posterior. Defective growth in the anterior palate of Msx1-/- and Fgf10-/- mice leads to a complete cleft palate and supports the anterior-to-posterior direction of palatal closure. By contrast, the Shox2-/- mice exhibit incomplete clefts in the anterior presumptive hard palate with an intact posterior palate. This phenotype cannot be explained by the prevailing model of palatal closure. The ability of the posterior palate to fuse independent of the anterior palate in Shox2-/- mice underscores the intrinsic differences along the anterior-posterior axis of the palate. We must hitherto consider the heterogeneity of gene expression and function in the palate to understand better the aetiology and pathogenesis of non-syndromic cleft palate and the mechanics of normal palatogenesis.
Collapse
Affiliation(s)
- Sylvia A Hilliard
- Division of Developmental Biology, Department of Cell and Molecular Biology, and Center for Bioenvironmental Research, Tulane University, New Orleans 70118, USA
| | | | | | | | | |
Collapse
|
366
|
Park C, Lugus JJ, Choi K. Stepwise commitment from embryonic stem to hematopoietic and endothelial cells. Curr Top Dev Biol 2005; 66:1-36. [PMID: 15797450 DOI: 10.1016/s0070-2153(05)66001-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
There is great excitement in generating different types of somatic cells from in vitro differentiated embryonic stem (ES) cells, because they can potentially be utilized for therapies for human diseases for which there are currently no effective treatments. Successful generation and application of ES-derived somatic cells requires better understanding of molecular mechanisms that regulate self-renewal and lineage commitment. Accordingly, many studies are aimed toward understanding mechanisms for maintaining the stem cell state and pathways leading to lineage specification. In this chapter we discuss recent studies that examine molecules that are critical for ES cell self-renewal, as well as hematopoietic and endothelial cell lineage differentiation from ES cells.
Collapse
Affiliation(s)
- Changwon Park
- Developmental Biology Program, Washington University School of Medicine, Department of Pathology and Immunology, St. Louis, Missouri 63110, USA
| | | | | |
Collapse
|
367
|
Oxburgh L, Dudley AT, Godin RE, Koonce CH, Islam A, Anderson DC, Bikoff EK, Robertson EJ. BMP4 substitutes for loss of BMP7 during kidney development. Dev Biol 2005; 286:637-46. [PMID: 16154126 DOI: 10.1016/j.ydbio.2005.08.024] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2005] [Revised: 07/29/2005] [Accepted: 08/11/2005] [Indexed: 01/04/2023]
Abstract
Functional inactivation of divergent bone morphogenetic proteins (BMPs) causes discrete disturbances during mouse development. BMP4-deficient embryos display mesodermal patterning defects at early post-implantation stages, whereas loss of BMP7 selectively disrupts kidney and eye morphogenesis. Whether these distinct phenotypes simply reflect differences in expression domains, or alternatively intrinsic differences in the signaling properties of these ligands remains unknown. To address this issue, we created embryos exclusively expressing BMP4 under control of the BMP7 locus. Surprisingly, this novel knock-in allele efficiently rescues kidney development. These results demonstrate unequivocally that these structurally divergent BMP family members, sharing only minimal sequence similarity can function interchangeably to activate all the essential signaling pathways for growth and morphogenesis of the kidney. Thus, we conclude that partially overlapping expression patterns of BMPs serve to modulate strength of BMP signaling rather than create discrete fields of ligands with intrinsically different signaling properties.
Collapse
Affiliation(s)
- Leif Oxburgh
- Wellcome Trust Center for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, UK
| | | | | | | | | | | | | | | |
Collapse
|
368
|
Abstract
Embryonic stem (ES) cells have the potential to develop into all cell types of the adult body. This capability provides the basis for considering the ES cell system as a novel and unlimited source of cells for replacement therapies for the treatment of a wide range of diseases. Before the cell-based therapy potential of ES cells can be realized, a better understanding of the pathways regulating lineage-specific differentiation is required. Current studies suggest that the bone morphogenic protein, transforming growth factor-beta, Wnt, and fibroblast growth factor pathways that are required for gastrulation and germ layer induction in the embryo are also essential for differentiation of ES cells in culture. The current understanding of how these factors influence germ layer induction in both the embryo and in the ES cell differentiation system is addressed in this review.
Collapse
Affiliation(s)
- Paul Gadue
- Department of Gene and Cell Medicine, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | | | |
Collapse
|
369
|
Abstract
Derived from the inner cell mass of blastocysts, embryonic stem cells (ESCs) retain the pluripotent features of early embryonic epiblast cells. In vitro, ESCs undergo spontaneous differentiation into a multitude of tissues, and thus are a powerful tool for the study of early developmental processes and a promising resource for cell-based therapies. We have pursued the derivation of functional, multipotent and engraftable hematopoietic stem cells (HSCs) from ESCs in order to investigate the genetic pathways specifying blood formation, as well as to lay the foundation for hematopoietic cell replacement therapies based on engineered ESCs. Theoretically, the generation of HSCs from patient-specific ESCs derived by nuclear transfer could provide for autologous hematopoietic therapies for the treatment of malignant and genetic bone marrow disorders. Although significant progress has been made in achieving hematopoietic differentiation from both murine and human ESCs, we have only a primitive understanding of the underlying mechanisms that specify hematopoietic cell fate, and a very limited capacity to direct the differentiation of the definitive HSC that would be suitable for clinical engraftment studies. Here we will review the progress to date and the significant problems that remain, and outline a strategy to achieve the directed differentiation of HSCs under conditions that might be appropriate for clinical scale-up and disease applications.
Collapse
Affiliation(s)
- Claudia Lengerke
- Department of Hematology and Oncology, University Medical Center II, Tuebingen, Germany
| | | |
Collapse
|
370
|
Furuta Y, Behringer RR. Recent innovations in tissue-specific gene modifications in the mouse. ACTA ACUST UNITED AC 2005; 75:43-57. [PMID: 15838923 DOI: 10.1002/bdrc.20036] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Annotating the functions of individual genes in in vivo contexts has become the primary task of mouse genetics in the post-genome era. In addition to conventional approaches using transgenic technologies and gene targeting, the recent development of conditional gene modification techniques has opened novel opportunities for elucidating gene function at the level of the whole mouse to individual tissues or cell types. Tissue-specific gene modifications in the mouse have been made possible using site-specific DNA recombinases and conditional alleles. Recent innovations in this basic technology have facilitated new types of experiments, revealing novel insights into mammalian embryology. In this review, we focus on these recent innovations and new technical issues that impact the success of these conditional gene modification approaches.
Collapse
Affiliation(s)
- Yasuhide Furuta
- Department of Biochemistry and Molecular Biology, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | |
Collapse
|
371
|
Gaussin V, Morley GE, Cox L, Zwijsen A, Vance KM, Emile L, Tian Y, Liu J, Hong C, Myers D, Conway SJ, Depre C, Mishina Y, Behringer RR, Hanks MC, Schneider MD, Huylebroeck D, Fishman GI, Burch JBE, Vatner SF. Alk3/Bmpr1a receptor is required for development of the atrioventricular canal into valves and annulus fibrosus. Circ Res 2005; 97:219-26. [PMID: 16037571 PMCID: PMC2950023 DOI: 10.1161/01.res.0000177862.85474.63] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Endocardial cushions are precursors of mature atrioventricular (AV) valves. Their formation is induced by signaling molecules originating from the AV myocardium, including bone morphogenetic proteins (BMPs). Here, we hypothesized that BMP signaling plays an important role in the AV myocardium during the maturation of AV valves from the cushions. To test our hypothesis, we used a unique Cre/lox system to target the deletion of a floxed Alk3 allele, the type IA receptor for BMPs, to cardiac myocytes of the AV canal (AVC). Lineage analysis indicated that cardiac myocytes of the AVC contributed to the tricuspid mural and posterior leaflets, the mitral septal leaflet, and the atrial border of the annulus fibrosus. When Alk3 was deleted in these cells, defects were seen in the same leaflets, ie, the tricuspid mural leaflet and mitral septal leaflet were longer, the tricuspid posterior leaflet was displaced and adherent to the ventricular wall, and the annulus fibrosus was disrupted resulting in ventricular preexcitation. The defects seen in mice with AVC-targeted deletion of Alk3 provide strong support for a role of Alk3 in human congenital heart diseases, such as Ebstein's anomaly. In conclusion, our mouse model demonstrated critical roles for Alk3 signaling in the AV myocardium during the development of AV valves and the annulus fibrosus.
Collapse
Affiliation(s)
- Vinciane Gaussin
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, University of Medicine and Dentistry of New Jersey, New Jersey Medical School, 185 S Orange Ave, MSB Room G-609, Newark, NJ 07103, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
372
|
Drummond AE. TGFβ signalling in the development of ovarian function. Cell Tissue Res 2005; 322:107-15. [PMID: 15983782 DOI: 10.1007/s00441-005-1153-1] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2005] [Accepted: 04/20/2005] [Indexed: 11/29/2022]
Abstract
Ovarian development begins back in the embryo with the formation of primordial germ cells and their subsequent migration and colonisation of the genital ridges. Once the ovary has been defined structurally, the primordial germ cells transform into oocytes and become housed in structures called follicles (in this case, primordial follicles), a procedure that, in most mammals, occurs either shortly before or during the first few days after birth. The growth and differentiation of follicles from the primordial population is termed folliculogenesis. Primordial follicles give rise to primary follicles that transform into preantral follicles, then antral follicles (secondary follicles) and, finally (preovulatory) Graafian follicles (tertiary follicles) in a co-ordinated series of transitions regulated by hormones and local intraovarian factors. Members of the transforming growth factor-beta (TGFbeta) superfamily have been shown to play important roles in this developmental process starting with the specification of primordial germ cells by the bone morphogenetic proteins through to the recruitment of primordial follicles by anti-Mullerian hormone and, potentially, growth and differentiation factor-9 (GDF9) and, finally, their transformation into preantral and antral follicles in response to activin and TGF-beta. Developmental and mutant mouse models have been used to show the importance of this family of growth factors in establishing the first wave of folliculogenesis.
Collapse
Affiliation(s)
- Ann E Drummond
- Prince Henry's Institute of Medical Research, P.O. Box 5152, Clayton, Victoria 3168, Australia.
| |
Collapse
|
373
|
Abstract
Bone morphogenetic proteins (BMPs) play pleiotropic roles during embryonic development as well as throughout life. Recent genetic approaches especially using the mouse gene knockout system revealed that BMP signaling is greatly involved in early embryonic patterning, which is a dynamic event to establish three-dimensional polarities. The purpose of this review is to describe the diverse function of BMPs through different receptor signaling systems during embryonic patterning including gastrulation and establishment of the left-right asymmetry.
Collapse
Affiliation(s)
- Satoshi Kishigami
- Molecular Developmental Biology Section, Laboratory of Reproductive and Developmental Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA.
| | | |
Collapse
|
374
|
Tsumaki N, Yoshikawa H. The role of bone morphogenetic proteins in endochondral bone formation. Cytokine Growth Factor Rev 2005; 16:279-85. [PMID: 15869898 DOI: 10.1016/j.cytogfr.2005.04.001] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Bone morphogenetic proteins (BMPs) were originally identified as proteins capable of inducing endochondral bone formation when implanted at extraskeletal sites. BMPs have diverse biological activities during early embryogenesis and various aspects of organogenesis. BMPs bind to BMP receptors on the cell surface, and these signals are transduced intracellularly by Smad proteins. BMP signal pathways can be inhibited by both extra- and intracellular mechanisms. As for skeletal development, genetic studies suggest that BMPs are skeletal mesoderm inducers. Recent studies of tissue-specific activation and inactivation of BMP signals have revealed that BMP signals control proliferation and differentiation of chondrocytes, differentiation of osteoblasts and bone quality. These findings may contribute not only to understanding of bone biology and pathology, but also to improvement of the clinical efficacy of BMPs.
Collapse
Affiliation(s)
- Noriyuki Tsumaki
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | | |
Collapse
|
375
|
Simic P, Vukicevic S. Bone morphogenetic proteins in development and homeostasis of kidney. Cytokine Growth Factor Rev 2005; 16:299-308. [PMID: 15923134 DOI: 10.1016/j.cytogfr.2005.02.010] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2004] [Accepted: 02/17/2005] [Indexed: 01/01/2023]
Abstract
Bone morphogenetic proteins play a key role in kidney development and postnatal function. The kidney has been identified as a major site of bone morphogenetic protein (BMP)-7 synthesis during embryonic and postnatal development, which mediates differentiation and maintenance of metanephric mesenchyme. Targeted disruption of BMP-7 gene expression in mice resulted in dysgenic kidneys with hydroureters, causing uremia within 24h after birth. Several experimental animal models of acute and chronic renal injury have all unequivocally shown beneficial effect of BMP-7 in ameliorating the severity of damage by preventing inflammation and fibrosis. Apart from the beneficial effect on kidney disease itself, BMP-7 improves important complications of chronic renal impairment such as renal osteodystrophy and vascular calcification.
Collapse
Affiliation(s)
- Petra Simic
- Laboratory for Mineralized Tissues, Department of Anatomy, School of Medicine, University of Zagreb, Salata 11, 10 000 Zagreb, Croatia
| | | |
Collapse
|
376
|
Lories RJU, Luyten FP. Bone Morphogenetic Protein signaling in joint homeostasis and disease. Cytokine Growth Factor Rev 2005; 16:287-98. [PMID: 15993360 DOI: 10.1016/j.cytogfr.2005.02.009] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2004] [Accepted: 02/16/2005] [Indexed: 10/25/2022]
Abstract
Despite advances in therapies that target inflammation and tissue destruction in chronic arthritis, stimulation of tissue repair and restoration of joint function, the ultimate goal of treatment, is far from achieved. We introduce a new paradigm that may help to improve our understanding and management of chronic arthritis. The presence or absence of tissue responses distinguishes destructive arthritis, steady-state arthritis and remodeling arthritis. Increasing evidence suggests that reactivation of embryonic molecular pathways is an important mechanism to stimulate postnatal tissue repair. Bone Morphogenetic Proteins (BMPs) have critical roles in skeletal development and joint morphogenesis, but also in postnatal joint homeostasis and joint tissue remodeling. Therefore, modulation of BMP signaling may be an attractive therapeutic target in chronic arthritis to restore homeostasis and function of synovial joints.
Collapse
Affiliation(s)
- Rik J U Lories
- Laboratory for Skeletal Development and Joint Disorders, Department of Rheumatology, University Hospitals Leuven, Katholieke Universiteit Leuven, Herestraat 49, B-3000 Leuven, Belgium.
| | | |
Collapse
|
377
|
Li JYH, Lao Z, Joyner AL. New regulatory interactions and cellular responses in the isthmic organizer region revealed by altering Gbx2 expression. Development 2005; 132:1971-81. [PMID: 15790971 DOI: 10.1242/dev.01727] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The mouse homeobox gene Gbx2 is first expressed throughout the posterior region of the embryo during gastrulation, and becomes restricted to rhombomeres 1-3 (r1-3) by embryonic day 8.5 (E8.5). Previous studies have shown that r1-3 do not develop in Gbx2 mutants and that there is an early caudal expansion of the midbrain gene Otx2 to the anterior border of r4. Furthermore, expression of Wnt1 and Fgf8, two crucial components of the isthmic organizer, is no longer segregated to adjacent domains in Gbx2 mutants. In this study, we extend the phenotypic analysis of Gbx2 mutants by showing that Gbx2 is not only required for development of r1-3, but also for normal gene expression in r4-6. To determine whether Gbx2 can alter hindbrain development, we generated Hoxb1-Gbx2 (HG) transgenic mice in which Gbx2 is ectopically expressed in r4. We show that Gbx2 is not sufficient to induce r1-3 development in r4. To test whether an Otx2/Gbx2 interface can induce r1-3 development, we introduced the HG transgene onto a Gbx2-null mutant background and recreated a new Otx2/Gbx2 border in the anterior hindbrain. Development of r3, but not r1 and r2, is rescued in Gbx2–/–; HG embryos. In addition, the normal spatial relationship of Wnt1 and Fgf8 is established at the new Otx2/Gbx2 border, demonstrating that an interaction between Otx2 and Gbx2 is sufficient to produce the normal pattern of Wnt1 and Fgf8 expression. However, the expression domains of Fgf8 and Spry1, a downstream target of Fgf8, are greatly reduced in mid/hindbrain junction area of Gbx2–/–; HG embryos and the posterior midbrain is truncated because of abnormal cell death. Interestingly, we show that increased cell death and a partial loss of the midbrain are associated with increased expression of Fgf8 and Spry1 in Gbx2conditional mutants that lack Gbx2 in r1 after E9.0. These results together suggest that cell survival in the posterior midbrain is positively or negatively regulated by Fgf8, depending on Fgf8 expression level. Our studies provide new insights into the regulatory interactions that maintain isthmic organizer gene expression and the consequences of altered levels of organizer gene expression on cell survival.
Collapse
Affiliation(s)
- James Y H Li
- Howard Hughes Medical Institute and Developmental Genetics Program, Skirball Institute of Biomolecular Medicine, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA.
| | | | | |
Collapse
|
378
|
Yoon BS, Ovchinnikov DA, Yoshii I, Mishina Y, Behringer RR, Lyons KM. Bmpr1a and Bmpr1b have overlapping functions and are essential for chondrogenesis in vivo. Proc Natl Acad Sci U S A 2005; 102:5062-7. [PMID: 15781876 PMCID: PMC555995 DOI: 10.1073/pnas.0500031102] [Citation(s) in RCA: 328] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2005] [Indexed: 11/18/2022] Open
Abstract
Previous studies have demonstrated the ability of bone morphogenetic proteins (BMPs) to promote chondrogenic differentiation in vitro. However, the in vivo role of BMP signaling during chondrogenesis has been unclear. We report here that BMP signaling is essential for multiple aspects of early chondrogenesis. Whereas mice deficient in type 1 receptors Bmpr1a or Bmpr1b in cartilage are able to form intact cartilaginous elements, double mutants develop a severe generalized chondrodysplasia. The majority of skeletal elements that form through endochondral ossification are absent, and the ones that form are rudimentary. The few cartilage condensations that form in double mutants are delayed in the prechondrocytic state and never form an organized growth plate. The reduced size of mutant condensations results from increased apoptosis and decreased proliferation. Moreover, the expression of cartilage-specific extracellular matrix proteins is severely reduced in mutant elements. We demonstrate that this defect in chondrocytic differentiation can be attributed to lack of Sox9, L-Sox5, and Sox6 expression in precartilaginous condensations in double mutants. In summary, our study demonstrates that BMPR1A and BMPR1B are functionally redundant during early chondrogenesis and that BMP signaling is required for chondrocyte proliferation, survival, and differentiation in vivo.
Collapse
Affiliation(s)
- Byeong S Yoon
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, CA 90095, USA
| | | | | | | | | | | |
Collapse
|
379
|
Liu W, Sun X, Braut A, Mishina Y, Behringer RR, Mina M, Martin JF. Distinct functions for Bmp signaling in lip and palate fusion in mice. Development 2005; 132:1453-61. [PMID: 15716346 DOI: 10.1242/dev.01676] [Citation(s) in RCA: 225] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Previous work suggested that cleft lip with or without cleft palate (CL/P)is genetically distinct from isolated cleft secondary palate (CP). Mutations in the Bmp target gene Msx1 in families with both forms of orofacial clefting has implicated Bmp signaling in both pathways. To dissect the function of Bmp signaling in orofacial clefting, we conditionally inactivated the type 1 Bmp receptor Bmpr1a in the facial primordia, using the Nestin cre transgenic line. Nestin cre; Bmpr1amutants had completely penetrant, bilateral CL/P with arrested tooth formation. The cleft secondary palate of Nestin cre; Bmpr1amutant embryos was associated with diminished cell proliferation in maxillary process mesenchyme and defective anterior posterior patterning. By contrast,we observed elevated apoptosis in the fusing region of the Nestin cre; Bmpr1a mutant medial nasal process. Moreover, conditional inactivation of the Bmp4 gene using the Nestin cretransgenic line resulted in isolated cleft lip. Our data uncover a Bmp4-Bmpr1a genetic pathway that functions in lip fusion, and reveal that Bmp signaling has distinct roles in lip and palate fusion.
Collapse
Affiliation(s)
- Wei Liu
- Alkek Institute of Biosciences and Technology, Texas A&M System Health Science Center, 2121 Holcombe Boulevard, Houston, TX 77030, USA
| | | | | | | | | | | | | |
Collapse
|
380
|
Sgaier SK, Millet S, Villanueva MP, Berenshteyn F, Song C, Joyner AL. Morphogenetic and cellular movements that shape the mouse cerebellum; insights from genetic fate mapping. Neuron 2005; 45:27-40. [PMID: 15629700 DOI: 10.1016/j.neuron.2004.12.021] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2004] [Revised: 11/08/2004] [Accepted: 11/17/2004] [Indexed: 11/19/2022]
Abstract
We used the cerebellum as a model to study the morphogenetic and cellular processes underlying the formation of elaborate brain structures from a simple neural tube, using an inducible genetic fate mapping approach in mouse. We demonstrate how a 90 degrees rotation between embryonic days 9 and 12 converts the rostral-caudal axis of dorsal rhombomere 1 into the medial-lateral axis of the wing-like bilateral cerebellar primordium. With the appropriate use of promoters, we marked specific medial-lateral domains of the cerebellar primordium and derived a positional fate map of the murine cerebellum. We show that the adult medial cerebellum is produced by expansion, rather than fusion, of the thin medial primordium. Furthermore, ventricular-derived cells maintain their original medial-lateral coordinates into the adult, whereas rhombic lip-derived granule cells undergo lateral to medial posterior transverse migrations during foliation. Thus, we show that progressive changes in the axes of the cerebellum underlie its genesis.
Collapse
Affiliation(s)
- Sema K Sgaier
- Howard Hughes Medical Institute and Developmental Genetics Program, Skirball Institute of Biomolecular Medicine, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA
| | | | | | | | | | | |
Collapse
|
381
|
Murali D, Yoshikawa S, Corrigan RR, Plas DJ, Crair MC, Oliver G, Lyons KM, Mishina Y, Furuta Y. Distinct developmental programs require different levels of Bmp signaling during mouse retinal development. Development 2005; 132:913-23. [PMID: 15673568 DOI: 10.1242/dev.01673] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The Bmp family of secreted signaling molecules is implicated in multiple aspects of embryonic development. However, the cell-type-specific requirements for this signaling pathway are often obscure in the context of complex embryonic tissue interactions. To define the cell-autonomous requirements for Bmp signaling, we have used a Cre-loxP strategy to delete Bmp receptor function specifically within the developing mouse retina. Disruption of a Bmp type I receptor gene, Bmpr1a, leads to no detectable eye abnormality. Further reduction of Bmp receptor activity by removing one functional copy of another Bmp type I receptor gene, Bmpr1b, in the retina-specific Bmpr1a mutant background, results in abnormal retinal dorsoventral patterning. Double mutants completely lacking both of these genes exhibit severe eye defects characterized by reduced growth of embryonic retina and failure of retinal neurogenesis. These studies provide direct genetic evidence that Bmpr1a and Bmpr1b play redundant roles during retinal development, and that different threshold levels of Bmp signaling regulate distinct developmental programs such as patterning, growth and differentiation of the retina.
Collapse
Affiliation(s)
- Deepa Murali
- Department of Biochemistry and Molecular Biology, University of Texas, M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
382
|
Pan L, Yang Z, Feng L, Gan L. Functional equivalence of Brn3 POU-domain transcription factors in mouse retinal neurogenesis. Development 2005; 132:703-12. [PMID: 15647317 DOI: 10.1242/dev.01646] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
POU-domain transcription factors play essential roles in cell proliferation and differentiation. Previous studies have shown that targeted deletion of each of the three POU-domain Brn3 factors in mice leads to the developmental failure and apoptosis of a unique set of sensory neurons in retina, dorsal root ganglia, trigeminal ganglia and inner ear. The specific defects associated with the removal of each Brn3 gene closely reflect their characteristic spatiotemporal expression patterns. Nevertheless, it remains elusive whether Brn3 factors are functionally equivalent and act through a common molecular mechanism to regulate the development and survival of these sensory neurons. By knocking-in Brn3a (Brn3aki)into the Brn3b locus, we showed here that Brn3akiwas expressed in a spatiotemporal manner identical to that of endogenous Brn3b. In addition, Brn3aki functionally restored the normal development and survival of retinal ganglion cells (RGCs) in the absence of Brn3b and fully reinstated the early developmental expression profiles of Brn3b downstream target genes in retina. These results indicate that Brn3 factors are functionally equal and that their unique roles in neurogenesis are determined by the distinctive Brn3 spatiotemporal expression patterns.
Collapse
Affiliation(s)
- Ling Pan
- Center for Aging and Developmental Biology, University of Rochester, Rochester, NY 14642, USA
| | | | | | | |
Collapse
|
383
|
Ng ES, Azzola L, Sourris K, Robb L, Stanley EG, Elefanty AG. The primitive streak gene Mixl1 is required for efficient haematopoiesis and BMP4-induced ventral mesoderm patterning in differentiating ES cells. Development 2005; 132:873-84. [PMID: 15673572 DOI: 10.1242/dev.01657] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The homeobox gene Mixl1 is expressed in the primitive streak of the gastrulating embryo, and marks cells destined to form mesoderm and endoderm. The role of Mixl1 in development of haematopoietic mesoderm was investigated by analysing the differentiation of ES cells in which GFP was targeted to one (Mixl1(GFP/w)) or both (Mixl1(GFP/GFP)) alleles of the Mixl1 locus. In either case, GFP was transiently expressed, with over 80% of cells in day 4 embryoid bodies (EBs) being GFP(+). Up to 45% of Mixl1(GFP/w) day 4 EB cells co-expressed GFP and the haemangioblast marker FLK1, and this doubly-positive population was enriched for blast colony forming cells (BL-CFCs). Mixl1-null ES cells, however, displayed a haematopoietic defect characterised by reduced and delayed Flk1 expression and a decrease in the frequency of haematopoietic CFCs. These data indicated that Mixl1 was required for efficient differentiation of cells from the primitive streak stage to blood. Differentiation of ES cells under serum-free conditions demonstrated that induction of Mixl1- and Flk1-expressing haematopoietic mesoderm required medium supplemented with BMP4 or activin A. In conclusion, this study has revealed an important role for Mixl1 in haematopoietic development and demonstrates the utility of the Mixl1(GFP/w) ES cells for evaluating growth factors influencing mesendodermal differentiation.
Collapse
Affiliation(s)
- Elizabeth S Ng
- Monash Immunology and Stem Cell Laboratories, Monash University, Clayton, VIC 3800, Australia
| | | | | | | | | | | |
Collapse
|
384
|
Baffi MO, Slattery E, Sohn P, Moses HL, Chytil A, Serra R. Conditional deletion of the TGF-beta type II receptor in Col2a expressing cells results in defects in the axial skeleton without alterations in chondrocyte differentiation or embryonic development of long bones. Dev Biol 2005; 276:124-42. [PMID: 15531369 DOI: 10.1016/j.ydbio.2004.08.027] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2004] [Revised: 06/01/2004] [Accepted: 08/03/2004] [Indexed: 11/16/2022]
Abstract
Members of the TGF-beta superfamily are secreted signaling proteins that regulate many aspects of development including growth and differentiation in skeletal tissue. There are three isoforms of TGF-beta that act through the same heteromeric receptor complex. To address the question of the role of TGF-beta signaling in skeletal development, we generated mice with a conditional deletion of the TGF-beta type II receptor gene (Tgfbr2) specifically in Col2a expressing cells using the Cre/lox recombinase system. Alizarin red-/Alcian blue-stained skeletons were prepared from embryos at 17.5, 15.5, and 13.5 days of gestation. Col2acre+/-;TgfbrloxP/loxP and Col2acre-/-;Tgfbr2+/loxP skeletons were compared. Multiple defects were observed in the base of the skull and in the vertebrae. Specifically, the size and spacing of the vertebrae were altered, and defects were detected in the closure of the neural arches. In addition, alterations in transverse processes, costal joints, and zygapophyses were detected. While the vertebral bodies were only moderately affected, the intervertebral discs (IVDs) were either missing or incomplete. Alterations in the vertebrae could be detected as early as E13.5 days. Surprisingly, alterations in length and mineralization of long bones were not detected at E17.5 days. In addition, the expression patterns of markers for chondrocyte differentiation were not altered in vertebrae or long bones suggesting that loss of responsiveness to TGF-beta in chondrocytes does not affect embryonic endochondral bone formation. In contrast, mice that survived postnatally demonstrated alterations in the length of specific bones. Skeletons from Col2acre+/-;Tgfbr2loxP/loxP mice were compared to those from mice null for the TGF-beta2 ligand. The differences observed between these models allow distinctions to be made between the roles of the various isoforms of TGF-beta and the signaling in specific cell types. The data provide information regarding mechanisms of skeletal development and suggest that TGF-beta signaling is a critical component.
Collapse
Affiliation(s)
- Michael O Baffi
- Department of Cell Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | | | | | | | | |
Collapse
|
385
|
Snyder A, Fraser ST, Baron MH. Bone morphogenetic proteins in vertebrate hematopoietic development. J Cell Biochem 2005; 93:224-32. [PMID: 15368350 DOI: 10.1002/jcb.20191] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
During embryonic development, the hematopoietic system is the first to generate terminally differentiated, functional cell types. The urgent necessity for the early formation of blood and blood vessels during embryogenesis means that the induction, expansion, and maturation of these systems must be rapidly and precisely controlled. Bone morphogenic proteins (BMPs) have been implicated in hematopoietic development in the vertebrate embryo and stimulate the proliferation and/or differentiation of human cord blood hematopoietic stem cells (HSC) and embryonic stem cells in vitro. Here we review the mechanisms of action and potential roles of these soluble signaling molecules in vertebrate hematopoiesis.
Collapse
Affiliation(s)
- Alexandra Snyder
- Department of Medicine, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | |
Collapse
|
386
|
Dudas M, Kaartinen V. Tgf-beta superfamily and mouse craniofacial development: interplay of morphogenetic proteins and receptor signaling controls normal formation of the face. Curr Top Dev Biol 2005; 66:65-133. [PMID: 15797452 DOI: 10.1016/s0070-2153(05)66003-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Marek Dudas
- Developmental Biology Program at the Saban Research Institute of Children's Hospital Los Angeles, Los Angeles, California 90027, USA
| | | |
Collapse
|
387
|
Lim Y, Cho G, Minarcik J, Golden J. Altered BMP signaling disrupts chick diencephalic development. Mech Dev 2004; 122:603-20. [PMID: 15804571 DOI: 10.1016/j.mod.2004.12.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2004] [Revised: 08/02/2004] [Accepted: 08/13/2004] [Indexed: 12/23/2022]
Abstract
The diencephalon is the caudal part of the forebrain and is organized into easily identifiable clusters of neurons called nuclei. Neurons in different nuclei project to discrete brain regions. Thus precise organization of the nuclei during forebrain development is necessary to build accurate neural circuits. How diencephalic development is regulated is poorly understood. BMP signaling participates in central nervous system patterning and development at many levels along the neural axis. Based on their expression we hypothesized BMPs play a role in diencephalic development. To test this hypothesis, we electroporated constitutively active and dominant negative forms of type I BMP receptors (Bmpr1a and Bmpr1b) into the embryonic chick forebrain. Ectopic induction of BMP signaling through constitutively active forms of the type I BMP receptors perturbs the normal gene expression patterns in the diencephalon and increases apoptotic cell death. These defects lead to disorganization of the diencephalic nuclei, suggesting BMP signaling is sufficient to modify diencephalic development. Loss-of-function studies, using dominant negative forms of Bmpr1a and Bmpr1b, indicate type I BMP receptors are necessary for normal eye and craniofacial development. However, they do not appear to be required for normal diencephalic development. In summary, our data indicate that while not necessary, BMP signaling via Bmpr1a and Bmpr1b, is sufficient to modify nuclear organization in the chick diencephalon.
Collapse
Affiliation(s)
- Youngshin Lim
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | | |
Collapse
|
388
|
Abstract
Bone morphogenetic proteins (BMPs), their antagonists, and BMP receptors are involved in controlling a large number of biological functions including cell proliferation, differentiation, cell fate decision, and apoptosis in many different types of cells and tissues during embryonic development and postnatal life. BMPs exert their biological effects via using BMP-Smad and BMP-MAPK intracellular pathways. The magnitude and specificity of BMP signaling are regulated by a large number of modulators operating on several levels (extracellular, cytoplasmic, nuclear). In developing and postnatal skin, BMPs, their receptors, and BMP antagonists show stringent spatio-temporal expressions patterns to achieve proper regulation of cell proliferation and differentiation in the epidermis and in the hair follicle. Genetic studies assert an essential role for BMP signaling in the control of cell differentiation and apoptosis in developing epidermis, as well as in the regulation of key steps of hair follicle development (initiation, cell fate decision, cell lineage differentiation). In postnatal hair follicles, BMP signaling plays an important role in controlling the initiation of the growth phase and is also involved in the regulation of apoptosis-driven hair follicle involution. However, additional efforts are required to fully understand the mechanisms and targets involved in the realization of BMP effects on distinct cell population in the skin and hair follicle. Progress in this area of research will hopefully lead to the development of new therapeutic approaches for using BMPs and BMP antagonists in the treatment of skin and hair growth disorders.
Collapse
Affiliation(s)
- Vladimir A Botchkarev
- Department of Dermatology, Boston University School of Medicine, 609 Albany Steeet, Boston, MA 02118, USA.
| | | |
Collapse
|
389
|
Hu J, Chen YX, Wang D, Qi X, Li TG, Hao J, Mishina Y, Garbers DL, Zhao GQ. Developmental expression and function of Bmp4 in spermatogenesis and in maintaining epididymal integrity. Dev Biol 2004; 276:158-71. [PMID: 15531371 DOI: 10.1016/j.ydbio.2004.08.034] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2004] [Revised: 08/10/2004] [Accepted: 08/23/2004] [Indexed: 01/14/2023]
Abstract
Bone morphogenetic proteins (BMPs) play essential roles in many aspects of developmental biology. We have previously shown that Bmp7, Bmp8a, and Bmp8b of the 60A class of Bmp genes have additive effects in spermatogenesis and in maintaining the epididymal integrity of the caput and caudal regions. Here we report that Bmp4 of the Dpp class has a unique expression pattern in the developing testis and epididymis. Bmp4 heterozygous males on a largely C57BL/6 background show compromised fertility due to degeneration of germ cells, reduced sperm counts, and decreased sperm motility. More interestingly, some of these males show extensive degeneration of the epididymal epithelium in the corpus region, rather than in the caput and cauda regions as for Bmp7 and Bmp8 mutants. Thus, these genetic data reveal a region-specific requirement of different classes of BMPs for epididymal epithelium to survive and have significant implications on male reproductive health and perhaps birth control.
Collapse
Affiliation(s)
- Jie Hu
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9051, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
390
|
Wine-Lee L, Ahn KJ, Richardson RD, Mishina Y, Lyons KM, Crenshaw EB. Signaling through BMP type 1 receptors is required for development of interneuron cell types in the dorsal spinal cord. Development 2004; 131:5393-403. [PMID: 15469980 DOI: 10.1242/dev.01379] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
During spinal cord development, distinct classes of interneurons arise at stereotypical locations along the dorsoventral axis. In this paper, we demonstrate that signaling through bone morphogenetic protein (BMP) type 1 receptors is required for the formation of two populations of commissural neurons, DI1 and DI2, that arise within the dorsal neural tube. We have generated a double knockout of both BMP type 1 receptors, Bmpr1a and Bmpr1b, in the neural tube. These double knockout mice demonstrate a complete loss of D1 progenitor cells, as evidenced by loss of Math1expression, and the subsequent failure to form differentiated DI1 interneurons. Furthermore, the DI2 interneuron population is profoundly reduced. The loss of these populations of cells results in a dorsal shift of the dorsal cell populations, DI3 and DI4. Other dorsal interneuron populations, DI5 and DI6, and ventral neurons appear unaffected by the loss of BMP signaling. The Bmpr double knockout animals demonstrate a reduction in the expression of Wnt and Id family members, suggesting that BMP signaling regulates expression of these factors in spinal cord development. These results provide genetic evidence that BMP signaling is crucial for the development of dorsal neuronal cell types.
Collapse
Affiliation(s)
- Lara Wine-Lee
- Mammalian Neurogenetics Group, Center for Childhood Communication, 712 Abramsom Research Center, The Children's Hospital of Philadelphia, 34th and Civic Center Boulevard, Philadelphia, PA 19104, USA
| | | | | | | | | | | |
Collapse
|
391
|
Rountree RB, Schoor M, Chen H, Marks ME, Harley V, Mishina Y, Kingsley DM. BMP receptor signaling is required for postnatal maintenance of articular cartilage. PLoS Biol 2004; 2:e355. [PMID: 15492776 PMCID: PMC523229 DOI: 10.1371/journal.pbio.0020355] [Citation(s) in RCA: 215] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2004] [Accepted: 08/19/2004] [Indexed: 11/19/2022] Open
Abstract
Articular cartilage plays an essential role in health and mobility, but is frequently damaged or lost in millions of people that develop arthritis. The molecular mechanisms that create and maintain this thin layer of cartilage that covers the surface of bones in joint regions are poorly understood, in part because tools to manipulate gene expression specifically in this tissue have not been available. Here we use regulatory information from the mouse Gdf5 gene (a bone morphogenetic protein [BMP] family member) to develop new mouse lines that can be used to either activate or inactivate genes specifically in developing joints. Expression of Cre recombinase from Gdf5 bacterial artificial chromosome clones leads to specific activation or inactivation of floxed target genes in developing joints, including early joint interzones, adult articular cartilage, and the joint capsule. We have used this system to test the role of BMP receptor signaling in joint development. Mice with null mutations in Bmpr1a are known to die early in embryogenesis with multiple defects. However, combining a floxed Bmpr1a allele with the Gdf5-Cre driver bypasses this embryonic lethality, and leads to birth and postnatal development of mice missing the Bmpr1a gene in articular regions. Most joints in the body form normally in the absence of Bmpr1a receptor function. However, articular cartilage within the joints gradually wears away in receptor-deficient mice after birth in a process resembling human osteoarthritis. Gdf5-Cre mice provide a general system that can be used to test the role of genes in articular regions. BMP receptor signaling is required not only for early development and creation of multiple tissues, but also for ongoing maintenance of articular cartilage after birth. Genetic variation in the strength of BMP receptor signaling may be an important risk factor in human osteoarthritis, and treatments that mimic or augment BMP receptor signaling should be investigated as a possible therapeutic strategy for maintaining the health of joint linings.
Collapse
MESH Headings
- Alleles
- Animals
- Apoptosis
- Bone Morphogenetic Protein Receptors/metabolism
- Bone Morphogenetic Protein Receptors, Type I/genetics
- Bone Morphogenetic Proteins/genetics
- Cartilage/metabolism
- Cartilage/pathology
- Cartilage, Articular/embryology
- Cartilage, Articular/growth & development
- Cartilage, Articular/metabolism
- Cell Proliferation
- Chromosomes, Artificial, Bacterial/metabolism
- Gene Expression Regulation, Developmental
- Genetic Variation
- Growth Differentiation Factor 5
- Inflammation
- Integrases/metabolism
- Joints/embryology
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Molecular Sequence Data
- Mutation
- Osteoarthritis/metabolism
- Phenotype
- Recombination, Genetic
- Risk Factors
- Signal Transduction
- Synovial Membrane/embryology
- Time Factors
Collapse
Affiliation(s)
- Ryan B Rountree
- 1Department of Developmental Biology and Howard Hughes Medical Institute, Stanford University School of MedicineStanford, CaliforniaUnited States of America
| | - Michael Schoor
- 1Department of Developmental Biology and Howard Hughes Medical Institute, Stanford University School of MedicineStanford, CaliforniaUnited States of America
| | - Hao Chen
- 1Department of Developmental Biology and Howard Hughes Medical Institute, Stanford University School of MedicineStanford, CaliforniaUnited States of America
| | - Melissa E Marks
- 1Department of Developmental Biology and Howard Hughes Medical Institute, Stanford University School of MedicineStanford, CaliforniaUnited States of America
| | - Vincent Harley
- 2Prince Henry's Institute of Medical Research, Monash Medical CentreClayton, VictoriaAustralia
| | - Yuji Mishina
- 3National Institute of Environmental Health Sciences, National Institutes of HealthResearch Triangle Park, North CarolinaUnited States of America
| | - David M Kingsley
- 1Department of Developmental Biology and Howard Hughes Medical Institute, Stanford University School of MedicineStanford, CaliforniaUnited States of America
| |
Collapse
|
392
|
Pangas SA, Matzuk MM. Genetic models for transforming growth factor beta superfamily signaling in ovarian follicle development. Mol Cell Endocrinol 2004; 225:83-91. [PMID: 15451572 DOI: 10.1016/j.mce.2004.02.017] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The transforming growth factor beta (TGFbeta) superfamily has wide-ranging and profound effects on many aspects of cellular growth and development. Many TGFbeta-related ligands, receptors, and intracellular signaling proteins are expressed in the ovary and are critical for normal follicle development. Our laboratory and others have analyzed the in vivo function of the TGFbeta superfamily signal transduction pathways by using gene knockout and knockin approaches. Two TGFbeta superfamily ligands, growth differentiation factor 9 (GDF9) and bone morphogenetic protein 15 (BMP15), are expressed in developing oocytes. Based on in vivo data using knockout models, GDF9 is critical at both the primary and preovulatory stages of follicle development, and physiologically interacts with BMP15 during the latter stages of folliculogenesis. A knockin model of activin betaB expressed from the activin betaA locus, revealed that activin betaB can act as a hypomorphic protein and rescue some but not all of activin betaAs functions. Questions of functional redundancy of signaling components and multiple receptor utilization by different ligands still need to be addressed for these pathways. Answers will likely come from using existing single null mouse models to generate combinatorial ligand and receptor null mice. These new models may reveal the in vivo genetic interactions of TGFbeta superfamily ligands, receptors, binding proteins, and downstream signaling pathways.
Collapse
Affiliation(s)
- Stephanie A Pangas
- Department of Pathology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | |
Collapse
|
393
|
Dudas M, Sridurongrit S, Nagy A, Okazaki K, Kaartinen V. Craniofacial defects in mice lacking BMP type I receptor Alk2 in neural crest cells. Mech Dev 2004; 121:173-82. [PMID: 15037318 DOI: 10.1016/j.mod.2003.12.003] [Citation(s) in RCA: 178] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2003] [Revised: 12/17/2003] [Accepted: 12/17/2003] [Indexed: 11/21/2022]
Abstract
Neural crest cells (NCCs) are pluripotent migratory cells that contribute to the development of various craniofacial structures. Many signaling molecules have been implicated in the formation, migration and differentiation of NCCs including bone morphogenetic proteins (BMPs). BMPs signal through a receptor complex composed of type I and type II receptors. Type I receptors (Alk2, Alk3 and Alk6) are the primary determinants of signaling specificity and therefore understanding their function is important in revealing the developmental roles of molecular pathways regulated by BMPs. Here we used a Cre/loxP system for neural crest specific deletion of Alk2. Our results show that mice lacking Alk2 in the neural crest display multiple craniofacial defects including cleft palate and a hypotrophic mandible. Based on the present results we conclude that signaling via Alk2 receptors is non-redundant and regulates normal development of a restricted set of structures derived from the cranial neural crest.
Collapse
Affiliation(s)
- Marek Dudas
- Developmental Biology Program, Departments of Pathology and Surgery, Keck School of Medicine, University of Southern California, 4650 Sunset Blvd, Los Angeles, CA 90027, USA
| | | | | | | | | |
Collapse
|
394
|
He XC, Zhang J, Tong WG, Tawfik O, Ross J, Scoville DH, Tian Q, Zeng X, He X, Wiedemann LM, Mishina Y, Li L. BMP signaling inhibits intestinal stem cell self-renewal through suppression of Wnt-beta-catenin signaling. Nat Genet 2004; 36:1117-21. [PMID: 15378062 DOI: 10.1038/ng1430] [Citation(s) in RCA: 808] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2004] [Accepted: 08/24/2004] [Indexed: 12/11/2022]
Abstract
In humans, mutations in BMPR1A, SMAD4 and PTEN are responsible for juvenile polyposis syndrome, juvenile intestinal polyposis and Cowden disease, respectively. The development of polyposis is a common feature of these diseases, suggesting that there is an association between BMP and PTEN pathways. The mechanistic link between BMP and PTEN pathways and the related etiology of juvenile polyposis is unresolved. Here we show that conditional inactivation of Bmpr1a in mice disturbs homeostasis of intestinal epithelial regeneration with an expansion of the stem and progenitor cell populations, eventually leading to intestinal polyposis resembling human juvenile polyposis syndrome. We show that BMP signaling suppresses Wnt signaling to ensure a balanced control of stem cell self-renewal. Mechanistically, PTEN, through phosphatidylinosital-3 kinase-Akt, mediates the convergence of the BMP and Wnt pathways on control of beta-catenin. Thus, BMP signaling may control the duplication of intestinal stem cells, thereby preventing crypt fission and the subsequent increase in crypt number.
Collapse
Affiliation(s)
- Xi C He
- Stowers Institute for Medical Research, 1000 E 50th Street, Kansas City, Missouri 64110, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
395
|
Fritz DT, Liu D, Xu J, Jiang S, Rogers MB. Conservation of Bmp2 post-transcriptional regulatory mechanisms. J Biol Chem 2004; 279:48950-8. [PMID: 15358784 DOI: 10.1074/jbc.m409620200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bone morphogenetic protein (BMP) orthologs from diverse species like flies and humans are functionally interchangeable and play key roles in fundamental processes such as dorso-ventral axis formation in metazoans. Because both transcriptional and post-transcriptional mechanisms play central roles in modulating developmental protein levels, we have analyzed the 3'-untranslated region (3'UTR) of the Bmp 2 gene. This 3'UTR is unusually long and is alternatively polyadenylated. Mouse, human, and dog mRNAs are 83-87% identical within this region. A 265-nucleotide sequence, conserved between mammals, birds, frogs, and fish, is present in Bmp2 but not Bmp4. The ability of AmphiBMP2/4, a chordate ortholog to Bmp2 and Bmp4, to align with this sequence suggests that its function may have been lost in Bmp4. Activation of reporter genes by the conserved region acts by a post-transcriptional mechanism. Mouse, human, chick, and zebrafish Bmp2 synthetic RNAs decay rapidly in extracts from cells not expressing Bmp2. In contrast, these RNAs are relatively stable in extracts from Bmp2-expressing cells. Thus, Bmp2 RNA half-lives in vitro correlate with natural Bmp2 mRNA levels. The fact that non-murine RNAs interact appropriately with the mouse decay machinery suggests that the function of these cis-regulatory regions has been conserved for 450 million years since the fish and tetrapod lineages diverged. Overall, our results suggest that the Bmp2 3'UTR contains essential regulatory elements that act post-transcriptionally.
Collapse
Affiliation(s)
- David T Fritz
- Department of Biochemistry and Molecular Biology, University of Medicine and Dentistry of New Jersey (UMDNJ)-NJ Medical School, Newark, New Jersey 07101, USA
| | | | | | | | | |
Collapse
|
396
|
de Sousa Lopes SMC, Roelen BAJ, Monteiro RM, Emmens R, Lin HY, Li E, Lawson KA, Mummery CL. BMP signaling mediated by ALK2 in the visceral endoderm is necessary for the generation of primordial germ cells in the mouse embryo. Genes Dev 2004; 18:1838-49. [PMID: 15289457 PMCID: PMC517404 DOI: 10.1101/gad.294004] [Citation(s) in RCA: 153] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Deletion of various bone morphogenetic proteins (BMPs) and their downstream Smads in mice have clearly shown that BMP signaling is essential for the formation of primordial germ cells (PGCs). However, the molecular mechanism through which this takes place is still unclear. Here, we demonstrate that BMP4 produced in the extraembryonic ectoderm signals through ALK2, a type I BMP receptor, in the visceral endoderm (VE) to induce formation of PGCs from the epiblast. Firstly, embryonic day 5.5-6.0 (E5.5-E6.0) embryos cultured on fibronectin formed PGCs in the presence of VE, but not in its absence. Secondly, Alk2-deficient embryos completely lacked PGCs and the heterozygotes had reduced numbers, resembling Bmp4-deficient phenotypes. Thirdly, expression of constitutively active ALK2 in the VE, but not in the epiblast, was sufficient to rescue the PGC phenotype in Bmp4-deficient embryos. In addition, we show that the requirement for the VE at E5.5-E6.0 can be replaced by culturing embryos stripped of VE on STO cells, indicating that STO cells provide or transduce signals necessary for PGC formation that are normally transmitted by the VE. We propose a model in which direct signaling to proximal epiblast is supplemented by an obligatory indirect BMP-dependent signal via the VE.
Collapse
Affiliation(s)
- Susana M Chuva de Sousa Lopes
- Hubrecht Laboratory, Netherlands Institute for Developmental Biology, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
397
|
Davis S, Miura S, Hill C, Mishina Y, Klingensmith J. BMP receptor IA is required in the mammalian embryo for endodermal morphogenesis and ectodermal patterning. Dev Biol 2004; 270:47-63. [PMID: 15136140 DOI: 10.1016/j.ydbio.2004.01.048] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2003] [Revised: 01/20/2004] [Accepted: 01/27/2004] [Indexed: 10/26/2022]
Abstract
BMPRIA is a receptor for bone morphogenetic proteins with high affinity for BMP2 and BMP4. Mouse embryos lacking Bmpr1a fail to gastrulate, complicating studies on the requirements for BMP signaling in germ layer development. Recent work shows that BMP4 produced in extraembryonic tissues initiates gastrulation. Here we use a conditional allele of Bmpr1a to remove BMPRIA only in the epiblast, which gives rise to all embryonic tissues. Resulting embryos are mosaics composed primarily of cells homozygous null for Bmpr1a, interspersed with heterozygous cells. Although mesoderm and endoderm do not form in Bmpr1a null embryos, these tissues are present in the mosaics and are populated with mutant cells. Thus, BMPRIA signaling in the epiblast does not restrict cells to or from any of the germ layers. Cells lacking Bmpr1a also contribute to surface ectoderm; however, from the hindbrain forward, little surface ectoderm forms and the forebrain is enlarged and convoluted. Prechordal plate, early definitive endoderm, and anterior visceral endoderm appear to be expanded, likely due to defective morphogenesis. These data suggest that the enlarged forebrain is caused in part by increased exposure of the ectoderm to signaling sources that promote anterior neural fate. Our results reveal critical roles for BMP signaling in endodermal morphogenesis and ectodermal patterning.
Collapse
Affiliation(s)
- Shannon Davis
- Department of Cell Biology, Duke University Medical Center, Durham NC 27710, USA
| | | | | | | | | |
Collapse
|
398
|
Sugi Y, Yamamura H, Okagawa H, Markwald RR. Bone morphogenetic protein-2 can mediate myocardial regulation of atrioventricular cushion mesenchymal cell formation in mice. Dev Biol 2004; 269:505-18. [PMID: 15110716 DOI: 10.1016/j.ydbio.2004.01.045] [Citation(s) in RCA: 139] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2003] [Revised: 11/21/2003] [Accepted: 01/07/2004] [Indexed: 10/26/2022]
Abstract
Transformation of endocardial endothelial cells into invasive mesenchyme is a critical antecedent of cardiac cushion tissue formation. The message for bone morphogenetic protein (BMP)-2 is known to be expressed in myocardial cells in a manner consistent with the segmental pattern of cushion formation [Development 109(1990) 833]. In the present work, we localized BMP-2 protein in atrioventricular (AV) myocardium in mice at embryonic day (ED) 8.5 (12 somite stage) before the onset of AV mesenchymal cell formation at ED 9.5. BMP-2 protein expression was absent from ventricular myocardium throughout the stages examined. After cellularization of the AV cushion at ED 10.5, myocardial BMP-2 protein expression was diminished in AV myocardium, whereas cushion mesenchymal cells started expressing BMP protein. Expression of BMP-2 in cushion mesenchyme persisted during later stages of development, ED 13.5-16, during valuvulogenesis. Intense expression of BMP-2 persisted in the valve tissue in adult mice. Based on the expression pattern, we performed a series of experiments to test the hypothesis that BMP-2 mediates myocardial regulation of cardiac cushion tissue formation in mice. When BMP-2 protein was added to the 16-18 somite stage (ED 9.25) AV endocardial endothelium in culture, cushion mesenchymal cells were formed in the absence of AV myocardium, which invaded into collagen gels and expressed the mesenchymal marker, smooth muscle (SM) alpha-actin; whereas the endothelial marker, PECAM-1, was lost from the invaded cells. In contrast, when noggin, a specific antagonist to BMPs, was applied together with BMP-2 to the culture medium, AV endothelial cells remained as an epithelial monolayer with little expression of SM alpha-actin, and expression of PECAM-1 was retained in the endocardial cells. When noggin was added to AV endothelial cells cocultured with associated myocardium, it blocked endothelial transformation to mesenchyme. AV endothelium treated with BMP-2 expressed elevated levels of TGFbeta-2 in the absence of myocardium, as observed in the endothelium cocultured with myocardium. BMP-2-supported elevation of TGFbeta-2 expression in endocardial cells was abolished by noggin treatment. These data indicated that BMP signaling is required in and BMP-2 is sufficient for myocardial segmental regulation of AV endocardial cushion mesenchymal cell formation in mice.
Collapse
Affiliation(s)
- Yukiko Sugi
- Department of Cell Biology and Anatomy, Medical University of South Carolina, Charleston, SC 29425, USA.
| | | | | | | |
Collapse
|
399
|
Park C, Afrikanova I, Chung YS, Zhang WJ, Arentson E, Fong Gh GH, Rosendahl A, Choi K. A hierarchical order of factors in the generation of FLK1- and SCL-expressing hematopoietic and endothelial progenitors from embryonic stem cells. Development 2004; 131:2749-62. [PMID: 15148304 DOI: 10.1242/dev.01130] [Citation(s) in RCA: 175] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The receptor tyrosine kinase FLK1 and the transcription factor SCL play crucial roles in the establishment of hematopoietic and endothelial cell lineages in mice. We have previously used an in vitro differentiation model of embryonic stem (ES) cells and demonstrated that hematopoietic and endothelial cells develop via sequentially generated FLK1+ and SCL+cells. To gain a better understanding of cellular and molecular events leading to hematopoietic specification, we examined factors necessary for FLK1+ and SCL+ cell induction in serum-free conditions. We demonstrate that bone morphogenetic protein (BMP) 4 was required for the generation of FLK1+ and SCL+ cells, and that vascular endothelial growth factor (VEGF) was necessary for the expansion and differentiation of SCL-expressing hematopoietic progenitors. Consistently, Flk1-deficient ES cells responded to BMP4 and generated TER119+ and CD31+ cells, but they failed to expand in response to VEGF. The Smad1/5 and map kinase pathways were activated by BMP4 and VEGF, respectively. The overexpression of SMAD6 in ES cells resulted in a reduction of FLK1+ cells. In addition, a MAP kinase kinase 1 specific inhibitor blocked the expansion of SCL+ cells in response to VEGF. Finally, VEGF mediated expansion of hematopoietic and endothelial cell progenitors was inhibited by TGFβ1, but was augmented by activin A. Our studies suggest that hematopoietic and endothelial commitment from the mesoderm occurs via BMP4-mediated signals and that expansion and/or differentiation of such progenitors is achieved by an interplay of VEGF,TGFβ1 and activin A signaling.
Collapse
Affiliation(s)
- Changwon Park
- Department of Pathology and Immunology, 660 South Euclid Avenue, Campus Box 8118, St Louis, MO 63110, USA
| | | | | | | | | | | | | | | |
Collapse
|
400
|
Guha U, Gomes WA, Samanta J, Gupta M, Rice FL, Kessler JA. Target-derived BMP signaling limits sensory neuron number and the extent of peripheral innervation in vivo. Development 2004; 131:1175-86. [PMID: 14973275 DOI: 10.1242/dev.01013] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The role of target-derived BMP signaling in development of sensory ganglia and the sensory innervation of the skin was examined in transgenic animals that overexpress either the BMP inhibitor noggin or BMP4 under the control of a keratin 14 (K14) promoter. Overexpression of noggin resulted in a significant increase in the number of neurons in the trigeminal and dorsal root ganglia. Conversely, overexpression of BMP4 resulted in a significant decrease in the number of dorsal root ganglion neurons. There was no significant change in proliferation of trigeminal ganglion neurons in the noggin transgenic animals, and neuron numbers did not undergo the normal developmental decrease between E12.5 and the adult, suggesting that programmed cell death was decreased in these animals. The increase in neuron numbers in the K14-noggin animals was followed by an extraordinary increase in the density of innervation in the skin and a marked change in the pattern of innervation by different types of fibers. Conversely, the density of innervation of the skin was decreased in the BMP4 overexpressing animals. Further Merkel cells and their innervation were increased in the K14-noggin mice and decreased in the K14-BMP4 mice. The changes in neuron numbers and the density of innervation were not accompanied by a change in the levels of neurotrophins in the skin. These findings indicate that the normal developmental decrease in neuron numbers in sensory ganglia depends upon BMP signaling, and that BMPs may limit both the final neuron number in sensory ganglia as well as the extent of innervation of targets. Coupled with prior observations, this suggests that BMP signaling may regulate the acquisition of dependence of neurons on neurotrophins for survival, as well as their dependence on target-derived neurotrophins for determining the density of innervation of the target.
Collapse
MESH Headings
- Animals
- Base Sequence
- Bone Morphogenetic Protein 4
- Bone Morphogenetic Proteins/genetics
- Bone Morphogenetic Proteins/metabolism
- Bone Morphogenetic Proteins/pharmacology
- Carrier Proteins
- Cell Count
- DNA, Complementary/genetics
- Ganglia, Spinal/embryology
- Ganglia, Spinal/growth & development
- Ganglia, Spinal/metabolism
- Gene Expression Regulation, Developmental
- In Situ Hybridization
- Keratin-14
- Keratins/genetics
- Mice
- Mice, Transgenic
- Nerve Growth Factor/pharmacology
- Neurons, Afferent/cytology
- Neurons, Afferent/drug effects
- Neurons, Afferent/metabolism
- Peripheral Nerves/embryology
- Peripheral Nerves/growth & development
- Peripheral Nerves/metabolism
- Promoter Regions, Genetic
- Proteins/genetics
- Proteins/metabolism
- Signal Transduction
- Skin/innervation
- Trigeminal Ganglion/embryology
- Trigeminal Ganglion/growth & development
- Trigeminal Ganglion/metabolism
Collapse
Affiliation(s)
- Udayan Guha
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | | | | | |
Collapse
|