351
|
Yao J, Wang H, Chen M, Yang M. Recent advances in graphene-based nanomaterials: properties, toxicity and applications in chemistry, biology and medicine. Mikrochim Acta 2019; 186:395. [PMID: 31154528 DOI: 10.1007/s00604-019-3458-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 04/27/2019] [Indexed: 12/12/2022]
Abstract
This review (with 239 refs.) summarizes the progress that has been made in applications of graphene-based nanomaterials (such as plain graphene, graphene oxides, doped graphene oxides, graphene quantums dots) in biosensing, imaging, drug delivery and diagnosis. Following an introduction into the field, a first large section covers the toxicity of graphene and its derivatives (with subsections on bacterial toxicity and tissue toxicity). The use of graphene-based nanomaterials in sensors is reviewed next, with subsections on electrochemical, FET-based, fluorescent, chemiluminescent and colorimetric sensors and probes. The large field of imaging is treated next, with subchapters on optical, PET-based, and magnetic resonance based methods. A concluding section summarizes the current status, addresses current challenges, and gives an outlook on potential future trends. Graphical Abstract Schematic presentation of the potential applications of graphene-based materials in life science and biomedicine, emphatically reflected in some vital areas such as DNA analysis, biological monitoring, drug delivery, in vitro labelling, in vivo imaging, tumor target, etc.
Collapse
Affiliation(s)
- Jun Yao
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, People's Republic of China. .,State Key Laboratory of Oil & Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, 610500, People's Republic of China.
| | - Heng Wang
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, People's Republic of China
| | - Min Chen
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, People's Republic of China
| | - Mei Yang
- Key Laboratory of Green Catalysis of Higher Education Institutes of Sichuan, College of Chemistry and Environmental Engineering, Sichuan University of Science and Engineering, Zigong, 643000, People's Republic of China.
| |
Collapse
|
352
|
Yang Q, Wang M, Sun Y, Peng S, Ding Y, Cao Y. Pre-incubated with BSA-complexed free fatty acids alters ER stress/autophagic gene expression by carboxylated multi-walled carbon nanotube exposure in THP-1 macrophages. CHINESE CHEM LETT 2019; 30:1224-1228. [DOI: 10.1016/j.cclet.2019.03.042] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
353
|
Implantable multireservoir device with stimulus-responsive membrane for on-demand and pulsatile delivery of growth hormone. Proc Natl Acad Sci U S A 2019; 116:11664-11672. [PMID: 31123147 DOI: 10.1073/pnas.1906931116] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Implantable devices for on-demand and pulsatile drug delivery have attracted considerable attention; however, many devices in clinical use are embedded with the electronic units and battery inside, hence making them large and heavy for implantation. Therefore, we propose an implantable device with multiple drug reservoirs capped with a stimulus-responsive membrane (SRM) for on-demand and pulsatile drug delivery. The SRM is made of thermosensitive POSS(MEO2MA-co-OEGMA) and photothermal nanoparticles of reduced graphene oxide (rGO), and each of the drug reservoirs is filled with the same amount of human growth hormone (hGH). Therefore, with noninvasive near-infrared (NIR) irradiation from the outside skin, the rGO nanoparticles generate heat to rupture the SRM in the implanted device, which can open a single selected drug reservoir to release hGH. Therefore, the device herein is shown to release hGH reproducibly only at the times of NIR irradiation without drug leakage during no irradiation. When implanted in rats with growth hormone deficiency and irradiated with an NIR light from the outside skin, the device exhibits profiles of hGH and IGF1 plasma concentrations, as well as body weight change, similar to those in animals treated with conventional s.c. hGH injections.
Collapse
|
354
|
Lin TX, Lai PX, Mao JY, Chu HW, Unnikrishnan B, Anand A, Huang CC. Supramolecular Aptamers on Graphene Oxide for Efficient Inhibition of Thrombin Activity. Front Chem 2019; 7:280. [PMID: 31157200 PMCID: PMC6532589 DOI: 10.3389/fchem.2019.00280] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 04/05/2019] [Indexed: 01/08/2023] Open
Abstract
Graphene oxide (GO), a two-dimensional material with a high aspect ratio and polar functional groups, can physically adsorb single-strand DNA through different types of interactions, such as hydrogen bonding and π-π stacking, making it an attractive nanocarrier for nucleic acids. In this work, we demonstrate a strategy to target exosites I and II of thrombin simultaneously by using programmed hybrid-aptamers for enhanced anticoagulation efficiency and stability. The targeting ligand is denoted as Supra-TBA15/29 (supramolecular TBA15/29), containing TBA15 (a 15-base nucleotide, targeting exosite I of thrombin) and TBA29 (a 29-base nucleotide, targeting exosite II of thrombin), and it is designed to allow consecutive hybridization of TBA15 and TBA29 to form a network of TBAs (i.e., supra-TBA15/29). The programmed hybrid-aptamers (Supra-TBA15/29) were self-assembled on GO to further boost anticoagulation activity by inhibiting thrombin activity, and thus suppress the thrombin-induced fibrin formation from fibrinogen. The Supra-TBA15/29-GO composite was formed mainly through multivalent interaction between poly(adenine) from Supra-TBA15/29 and GO. We controlled the assembly of Supra-TBA15/29 on GO by regulating the preparation temperature and the concentration ratio of Supra-TBA15/29 to GO to optimize the distance between TBA15 and TBA29 units, aptamer density, and aptamer orientation on the GO surfaces. The dose-dependent thrombin clotting time (TCT) delay caused by Supra-TBA15/29-GO was >10 times longer than that of common anticoagulant drugs including heparin, argatroban, hirudin, and warfarin. Supra-TBA15/29-GO exhibits high biocompatibility, which has been proved by in vitro cytotoxicity and hemolysis assays. In addition, the thromboelastography of whole-blood coagulation and rat-tail bleeding assays indicate the anticoagulation ability of Supra-TBA15/29-GO is superior to the most widely used anticoagulant (heparin). Our highly biocompatible Supra-TBA15/29-GO with strong multivalent interaction with thrombin [dissociation constant (K d) = 1.9 × 10-11 M] shows great potential as an effective direct thrombin inhibitor for the treatment of hemostatic disorders.
Collapse
Affiliation(s)
- Ting-Xuan Lin
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan
| | - Pei-Xin Lai
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan
| | - Ju-Yi Mao
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan.,Doctoral Degree Program in Marine Biotechnology, National Taiwan Ocean University, Keelung, Taiwan.,Doctoral Degree Program in Marine Biotechnology, Academia Sinica, Taipei, Taiwan
| | - Han-Wei Chu
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan
| | - Binesh Unnikrishnan
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan
| | - Anisha Anand
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan
| | - Chih-Ching Huang
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan.,Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, Taiwan.,School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
355
|
Zhang Y, Chen S, An J, Fu H, Wu X, Pang C, Gao H. Construction of an Antibacterial Membrane Based on Dopamine and Polyethylenimine Cross-Linked Graphene Oxide. ACS Biomater Sci Eng 2019; 5:2732-2739. [PMID: 33405605 DOI: 10.1021/acsbiomaterials.9b00061] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Yongxin Zhang
- School of Chemistry and Chemical Engineering, Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin University of Technology, No. 391, West Binshui Road, Tianjin 300384, P. R. China
| | - Shuai Chen
- School of Chemistry and Chemical Engineering, Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin University of Technology, No. 391, West Binshui Road, Tianjin 300384, P. R. China
| | - Jinxia An
- School of Chemistry and Chemical Engineering, Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin University of Technology, No. 391, West Binshui Road, Tianjin 300384, P. R. China
| | - Hao Fu
- School of Chemistry and Chemical Engineering, Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin University of Technology, No. 391, West Binshui Road, Tianjin 300384, P. R. China
| | - Xinshi Wu
- School of Chemistry and Chemical Engineering, Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin University of Technology, No. 391, West Binshui Road, Tianjin 300384, P. R. China
| | - Chengcai Pang
- School of Chemistry and Chemical Engineering, Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin University of Technology, No. 391, West Binshui Road, Tianjin 300384, P. R. China
| | - Hui Gao
- School of Chemistry and Chemical Engineering, Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin University of Technology, No. 391, West Binshui Road, Tianjin 300384, P. R. China
| |
Collapse
|
356
|
Wang Q, Li C, Wang Y, Que X. Phytotoxicity of Graphene Family Nanomaterials and Its Mechanisms: A Review. Front Chem 2019; 7:292. [PMID: 31119125 PMCID: PMC6506787 DOI: 10.3389/fchem.2019.00292] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 04/10/2019] [Indexed: 01/01/2023] Open
Abstract
Graphene family nanomaterials (GFNs) have experienced significant development in recent years and have been used in many fields. Despite the benefits, they bring to society and the economy, their potential for posing environmental and health risks should also be considered. The increasing release of GFNs into the ecosystem is one of the key environmental problems that humanity is facing. Although most of these nanoparticles are present at low concentrations, many of them raise considerable toxicological concerns, particularly regarding their accumulation in plants and the consequent toxicity introduced at the bottom of the food chain. Here, we review the recent progress in the study of toxicity caused by GFNs to plants, as well as its influencing factors. The phytotoxicity of GFNs is mainly manifested as a delay in seed germination and a severe loss of morphology of the plant seedling. The potential mechanisms of phytotoxicity were summarized. Key mechanisms include physical effects (shading effect, mechanical injury, and physical blockage) and physiological and biochemical effects (enhancement of reactive oxygen species (ROS), generation and inhibition of antioxidant enzyme activities, metabolic disturbances, and inhibition of photosynthesis by reducing the biosynthesis of chlorophyll). In the future, it is necessary to establish a widely accepted phytotoxicity evaluation system for safe manufacture and use of GFNs.
Collapse
Affiliation(s)
- Qinghai Wang
- Beijing Research and Development Center for Grass and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Cui Li
- Beijing Research and Development Center for Grass and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Yu Wang
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Xiaoe Que
- Institute of Desertification Studies, Chinese Academy of Forestry, Beijing, China
| |
Collapse
|
357
|
Gaware SA, Rokade KA, Bala P, Kale SN. Microneedles of chitosan‐porous carbon nanocomposites: Stimuli (pH and electric field)‐initiated drug delivery and toxicological studies. J Biomed Mater Res A 2019; 107:1582-1596. [DOI: 10.1002/jbm.a.36672] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 02/14/2019] [Accepted: 02/21/2019] [Indexed: 12/31/2022]
Affiliation(s)
- Shankar A. Gaware
- Department of Applied PhysicsDefence Institute of Advanced Technology Pune Maharashtra, 411025 India
| | - Kasturi A. Rokade
- Department of Applied PhysicsDefence Institute of Advanced Technology Pune Maharashtra, 411025 India
- Department of Bioscience and TechnologyDefence Institute of Advanced Technology Pune Maharashtra, 411025 India
| | - Preetam Bala
- Department of Applied PhysicsDefence Institute of Advanced Technology Pune Maharashtra, 411025 India
| | - Sangeeta N. Kale
- Department of Applied PhysicsDefence Institute of Advanced Technology Pune Maharashtra, 411025 India
| |
Collapse
|
358
|
Thermal Reduction of Graphene Oxide Mitigates Its In Vivo Genotoxicity Toward Xenopus laevis Tadpoles. NANOMATERIALS 2019; 9:nano9040584. [PMID: 30970633 PMCID: PMC6523888 DOI: 10.3390/nano9040584] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 03/28/2019] [Accepted: 04/08/2019] [Indexed: 12/12/2022]
Abstract
The worldwide increase of graphene family materials raises the question of the potential consequences resulting from their release in the environment and future consequences on ecosystem health, especially in the aquatic environment in which they are likely to accumulate. Thus, there is a need to evaluate the biological and ecological risk but also to find innovative solutions leading to the production of safer materials. This work focuses on the evaluation of functional group-safety relationships regarding to graphene oxide (GO) in vivo genotoxic potential toward X. laevis tadpoles. For this purpose, thermal treatments in H2 atmosphere were applied to produce reduced graphene oxide (rGOs) with different surface group compositions. Analysis performed indicated that GO induced disturbances in erythrocyte cell cycle leading to accumulation of cells in G0/G1 phase. Significant genotoxicity due to oxidative stress was observed in larvae exposed to low GO concentration (0.1 mg·L−1). Reduction of GO at 200 °C and 1000 °C produced a material that was no longer genotoxic at low concentrations. X-ray photoelectron spectroscopy (XPS) analysis indicated that epoxide groups may constitute a good candidate to explain the genotoxic potential of the most oxidized form of the material. Thermal reduction of GO may constitute an appropriate “safer-by-design” strategy for the development of a safer material for environment.
Collapse
|
359
|
Radziuk D, Mikhnavets L, Vorokhta M, Matolín V, Tabulina L, Labunov V. Sonochemical Formation of Copper/Iron‐Modified Graphene Oxide Nanocomposites for Ketorolac Delivery. Chemistry 2019; 25:6233-6245. [DOI: 10.1002/chem.201900662] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Indexed: 01/05/2023]
Affiliation(s)
- Darya Radziuk
- Laboratory of Integrated Micro- and NanosystemsBelarusian State University of Informatics and Radioelectronics P. Brovki Str. 6 220013 Minsk Republic of Belarus
| | - Lubov Mikhnavets
- Laboratory of Integrated Micro- and NanosystemsBelarusian State University of Informatics and Radioelectronics P. Brovki Str. 6 220013 Minsk Republic of Belarus
| | - Mykhailo Vorokhta
- Department of Surface and Plasma ScienceCharles University of Prague V Holešovičkách 2 18000 Prague 8 Czech Republic
| | - Vladimír Matolín
- Department of Surface and Plasma ScienceCharles University of Prague V Holešovičkách 2 18000 Prague 8 Czech Republic
| | - Ludmila Tabulina
- Laboratory of Integrated Micro- and NanosystemsBelarusian State University of Informatics and Radioelectronics P. Brovki Str. 6 220013 Minsk Republic of Belarus
| | - Vladimir Labunov
- Laboratory of Integrated Micro- and NanosystemsBelarusian State University of Informatics and Radioelectronics P. Brovki Str. 6 220013 Minsk Republic of Belarus
| |
Collapse
|
360
|
Zhao X, Chang S, Long J, Li J, Li X, Cao Y. The toxicity of multi-walled carbon nanotubes (MWCNTs) to human endothelial cells: The influence of diameters of MWCNTs. Food Chem Toxicol 2019; 126:169-177. [PMID: 30802478 DOI: 10.1016/j.fct.2019.02.026] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 02/15/2019] [Accepted: 02/18/2019] [Indexed: 11/26/2022]
Abstract
The biological applications of multi-walled carbon nanotubes (MWCNTs) may lead to their exposure to human blood vessels, but the influence of their physicochemical properties on toxicity to endothelial cells is incompletely known. Here, human umbilical vein endothelial cells (HUVECs) were exposed to three commercially available MWCNTs, namely XFM4, XFM22, and XFM34 (diameters XFM4 < XFM22 < XFM34), to understand the possible role of their diameter on toxicity. Based on the same mass concentration, XFM4 induced significantly higher level of cytotoxicity than the other two MWCNTs, and HUVECs internalized more XFM4. Cytokine release, monocyte adhesion, and intracellular reactive oxygen species levels were significantly induced only after XFM4 treatment. The exposure to XFM4 significantly reduced the expression of autophagic genes autophagy-related 7 (ATG7), autophagy-related 12 (ATG12), and beclin 1 (BECN1) and increased the expression of endoplasmic reticulum (ER) stress genes DNA damage inducible transcript 3 (DDIT3) and X-box binding protein 1 spliced (XBP-1s). Moreover, the modulation of autophagy-ER stress by chemicals resulted in a significant increase in the cytotoxicity of XFM4 but had minimal impact on the cytotoxicity of XFM34. These data indicate that the diameter of MWCNTs may influence their toxicity to HUVECs, probably through autophagy dysfunction and ER stress.
Collapse
Affiliation(s)
- Xuqi Zhao
- College of Animal Science, Key Laboratory of Tarim Animal Husbandry Science and Technology of Xinjiang Production and Construction Corps, Tarim University, Xinjiang, People's Republic of China; Key Laboratory of Environment-Friendly Chemistry and Application of Ministry of Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China
| | - Shiwei Chang
- College of Animal Science, Key Laboratory of Tarim Animal Husbandry Science and Technology of Xinjiang Production and Construction Corps, Tarim University, Xinjiang, People's Republic of China; Key Laboratory of Environment-Friendly Chemistry and Application of Ministry of Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China
| | - Jimin Long
- Key Laboratory of Environment-Friendly Chemistry and Application of Ministry of Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China
| | - Juan Li
- Key Laboratory of Environment-Friendly Chemistry and Application of Ministry of Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China
| | - Xianqiang Li
- College of Animal Science, Key Laboratory of Tarim Animal Husbandry Science and Technology of Xinjiang Production and Construction Corps, Tarim University, Xinjiang, People's Republic of China.
| | - Yi Cao
- College of Animal Science, Key Laboratory of Tarim Animal Husbandry Science and Technology of Xinjiang Production and Construction Corps, Tarim University, Xinjiang, People's Republic of China; Key Laboratory of Environment-Friendly Chemistry and Application of Ministry of Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China.
| |
Collapse
|
361
|
Khan B, Adeleye AS, Burgess RM, Smolowitz R, Russo SM, Ho KT. A 72-h exposure study with eastern oysters (Crassostrea virginica) and the nanomaterial graphene oxide. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2019; 38:820-830. [PMID: 30667076 PMCID: PMC6580423 DOI: 10.1002/etc.4367] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 10/10/2018] [Accepted: 01/16/2019] [Indexed: 05/07/2023]
Abstract
Graphene is a 2-dimensional nanomaterial with unique mechanical, thermal, electrical, and optical properties. With increasing applications of graphene-family nanomaterials (GFNs) in electronics, biomedicine, and surface coatings, concern for their impacts on aquatic ecosystems is rising. Current information on the toxicity of GFNs, including graphene oxide, is scarce. Filter-feeding bivalves, such as eastern oysters, are good models for nanomaterial exposure studies. We present results from a 72-h static renewal oyster study using 1 and 10 mg/L graphene oxide, which, to our knowledge, is the first report on in vivo effects of graphene oxide exposures in marine bivalves. Water samples were analyzed for graphene oxide concentration and size assessments. Gill and digestive gland tissues were evaluated for lipid peroxidation and glutathione-S-transferase (GST) activity. In addition, gill sections were fixed for histopathological analyses. Elevated lipid peroxidation was noted in oysters exposed to 10 mg/L graphene oxide. No significant changes in GST activity were observed, but reduced total protein levels were found in digestive gland tissues of exposed oysters at both concentrations. Loss of mucous cells, hemocytic infiltration, and vacuolation were observed in gills of exposed oysters. The results indicate that short-term graphene oxide exposures can induce oxidative stress and epithelial inflammation and adversely affect overall oyster health. Further investigations regarding the fate and sublethal effects of graphene oxide are critical to understanding the risks associated with a rapidly growing graphene consumer market. Environ Toxicol Chem 2019;38:820-830. Published 2019 Wiley Periodicals Inc. on behalf of SETAC. This article is a US government work and, as such, is in the public domain in the United States of America.
Collapse
Affiliation(s)
- Bushra Khan
- National Research Council Postdoctoral Research Associate, US Environmental Protection Agency, Atlantic Ecology Division, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Narragansett, Rhode Island, USA
- corresponding author: Bushra Khan,
| | - Adeyemi S. Adeleye
- National Research Council Postdoctoral Research Associate, US Environmental Protection Agency, Atlantic Ecology Division, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Narragansett, Rhode Island, USA
| | - Robert M. Burgess
- US Environmental Protection Agency, Atlantic Ecology Division, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Narragansett, Rhode Island, USA
| | | | - Stephen M. Russo
- Oak Ridge Associated Universities Student Services Contractor, US Environmental Protection Agency, Atlantic Ecology Division, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Narragansett, Rhode Island, USA
| | - Kay T. Ho
- US Environmental Protection Agency, Atlantic Ecology Division, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Narragansett, Rhode Island, USA
| |
Collapse
|
362
|
Maiti D, Tong X, Mou X, Yang K. Carbon-Based Nanomaterials for Biomedical Applications: A Recent Study. Front Pharmacol 2019; 9:1401. [PMID: 30914959 PMCID: PMC6421398 DOI: 10.3389/fphar.2018.01401] [Citation(s) in RCA: 281] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 11/15/2018] [Indexed: 01/08/2023] Open
Abstract
The study of carbon-based nanomaterials (CBNs) for biomedical applications has attracted great attention due to their unique chemical and physical properties including thermal, mechanical, electrical, optical and structural diversity. With the help of these intrinsic properties, CBNs, including carbon nanotubes (CNT), graphene oxide (GO), and graphene quantum dots (GQDs), have been extensively investigated in biomedical applications. This review summarizes the most recent studies in developing of CBNs for various biomedical applications including bio-sensing, drug delivery and cancer therapy.
Collapse
Affiliation(s)
- Debabrata Maiti
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Xiangmin Tong
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People’s Hospital, Hangzhou, China
| | - Xiaozhou Mou
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People’s Hospital, Hangzhou, China
| | - Kai Yang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| |
Collapse
|
363
|
Graphene Oxide-Based Targeting of Extracellular Cathepsin D and Cathepsin L As A Novel Anti-Metastatic Enzyme Cancer Therapy. Cancers (Basel) 2019; 11:cancers11030319. [PMID: 30845739 PMCID: PMC6468385 DOI: 10.3390/cancers11030319] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 02/26/2019] [Accepted: 02/27/2019] [Indexed: 12/21/2022] Open
Abstract
Overexpression and secretion of the enzymes cathepsin D (CathD) and cathepsin L (CathL) is associated with metastasis in several human cancers. As a superfamily, extracellularly, these proteins may act within the tumor microenvironment to drive cancer progression, proliferation, invasion and metastasis. Therefore, it is important to discover novel therapeutic treatment strategies to target CathD and CathL and potentially impede metastasis. Graphene oxide (GO) could form the basis of such a strategy by acting as an adsorbent for pro-metastatic enzymes. Here, we have conducted research into the potential of targeted anti-metastatic therapy using GO to adsorb these pro-tumorigenic enzymes. Binding of CathD/L to GO revealed that CathD/L were adsorbed onto the surface of GO through its cationic and hydrophilic residues. This work could provide a roadmap for the rational integration of CathD/L-targeting agents into clinical settings.
Collapse
|
364
|
Kalman J, Merino C, Fernández-Cruz ML, Navas JM. Usefulness of fish cell lines for the initial characterization of toxicity and cellular fate of graphene-related materials (carbon nanofibers and graphene oxide). CHEMOSPHERE 2019; 218:347-358. [PMID: 30476766 DOI: 10.1016/j.chemosphere.2018.11.130] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 11/12/2018] [Accepted: 11/19/2018] [Indexed: 06/09/2023]
Abstract
Graphene-related materials (GRMs) are one of the most attractive materials from an application perspective, consequently their release into aquatic environments is highly likely. In the present work, the potential of fish hepatocytes (topminnow fish hepatoma cell line, PLHC-1) and macrophages (carp leukocyte cell line, CLC) to study the toxicity and intracellular fate of helical-ribbon carbon nanofibers (CNFs) and graphene oxide (GO) used in a variety of intermediate industrial products was evaluated, allowing a first ranking of GRMs according to their cytotoxicity. Cells were exposed to a concentration range of 0-200 μg ml-1 of GRMs for 24 and 72 h and cell viability was assessed by measuring mitochondrial activity (AlamarBlue assay), plasma membrane integrity (5-carboxyfluorescein diacetate-acetoxymethyl ester assay) and lysosomal function (neutral red uptake assay). Results showed that both the cell type and the choice of endpoint determined the toxicity of GRMs. In both cell lines, CNFs appeared to have higher toxicity than GO and the highest degree of graphitization in fibers was associated with lower toxicity. Transmission electron microscopy revealed that CNFs were taken up into membrane-bound compartments of PLHC-1 cells in a size-independent manner, whereas in CLC, longer CNFs were encountered free in the cytoplasm and only the shorter CNFs were localized in membrane-surrounded vesicles. GO sheets were present within vesicles as well as free in the cytoplasm of both cell types. These findings contribute to the understanding of the toxicity and behaviour of these GRMs in living systems, therefore aiding in designing safer materials for the environment.
Collapse
Affiliation(s)
- Judit Kalman
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Ctra. de la Coruña, Km 7.5, 28040 Madrid, Spain.
| | - César Merino
- Grupo Antolin Ingeniería, SA, Ctra. Madrid-Irún, Km 244.7, E09007 Burgos, Spain
| | - María L Fernández-Cruz
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Ctra. de la Coruña, Km 7.5, 28040 Madrid, Spain
| | - José M Navas
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Ctra. de la Coruña, Km 7.5, 28040 Madrid, Spain
| |
Collapse
|
365
|
Palmieri V, Perini G, De Spirito M, Papi M. Graphene oxide touches blood: in vivo interactions of bio-coronated 2D materials. NANOSCALE HORIZONS 2019; 4:273-290. [PMID: 32254085 DOI: 10.1039/c8nh00318a] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Graphene oxide is the hot topic in biomedical and pharmaceutical research of the current decade. However, its complex interactions with human blood components complicate the transition from the promising in vitro results to clinical settings. Even though graphene oxide is made with the same atoms as our organs, tissues and cells, its bi-dimensional nature causes unique interactions with blood proteins and biological membranes and can lead to severe effects like thrombogenicity and immune cell activation. In this review, we will describe the journey of graphene oxide after injection into the bloodstream, from the initial interactions with plasma proteins to the formation of the "biomolecular corona", and biodistribution. We will consider the link between the chemical properties of graphene oxide (and its functionalized/reduced derivatives), protein binding and in vivo response. We will also summarize data on biodistribution and toxicity in view of the current knowledge of the influence of the biomolecular corona on these processes. Our aim is to shed light on the unsolved problems regarding the graphene oxide corona to build the groundwork for the future development of drug delivery technology.
Collapse
Affiliation(s)
- V Palmieri
- Fondazione Policlinico A. Gemelli IRCSS-Università Cattolica Sacro Cuore, Largo Francesco Vito 1, 00168, Roma, Italy.
| | | | | | | |
Collapse
|
366
|
Reina G, Ruiz A, Murera D, Nishina Y, Bianco A. "Ultramixing": A Simple and Effective Method To Obtain Controlled and Stable Dispersions of Graphene Oxide in Cell Culture Media. ACS APPLIED MATERIALS & INTERFACES 2019; 11:7695-7702. [PMID: 30693754 DOI: 10.1021/acsami.8b18304] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The last decade has seen an increase in the application of graphene oxide (GO) in the biomedical field. GO has been successfully exploited for its ability to deliver many kinds of drugs into target cells. However, GO toxicity assessment is still controversial. Several studies have demonstrated that GO protein coating is crucial to alleviate the material's toxicity. Besides, coronation leads to the formation of big agglomerates, reducing the cellular uptake of the material and thus its therapeutic efficiency. In this work, we propose a simple and efficient method based on rapid (ultra-turrax, UT) mixing to control protein corona formation. Using the UT protocol, we were able to reduce GO agglomeration in the presence of proteins and obtain stable GO dispersions in cell culture media. By labelling GO with luminescent nanoparticles (quantum dots), we studied the GO internalization kinetic and efficiency. Comparing the "classic" and UT protocols, we found that the latter allows faster and more efficient internalization both in macrophages and HeLa cells without affecting cell viability. We believe that the use of UT protocol will be interesting and suitable for the preparation of next-generation GO-based drug-delivery platforms.
Collapse
Affiliation(s)
- Giacomo Reina
- University of Strasbourg, CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572 , 67000 Strasbourg , France
| | - Amalia Ruiz
- University of Strasbourg, CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572 , 67000 Strasbourg , France
| | - Diane Murera
- University of Strasbourg, CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572 , 67000 Strasbourg , France
| | | | - Alberto Bianco
- University of Strasbourg, CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572 , 67000 Strasbourg , France
| |
Collapse
|
367
|
Rosli NF, Fojtů M, Fisher AC, Pumera M. Graphene Oxide Nanoplatelets Potentiate Anticancer Effect of Cisplatin in Human Lung Cancer Cells. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:3176-3182. [PMID: 30741550 DOI: 10.1021/acs.langmuir.8b03086] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Graphene oxide (GO) has been widely explored by many in drug delivery strategies and toxicity assays. The toxicity of graphene oxide depends on the size of the sheets. Smaller sheets show lower toxicity, a quality which is essential for utilization in biomedical applications. However, despite vast research on GO, anticancer properties and drug carrier capabilities of graphene oxide nanoplatelets have yet to be fully explored. Herein, we have uniquely prepared graphene oxide nanoplatelets (GONPs) from well-defined stacked graphite nanofibers (SGNF) with a base of 50 × 50 nm2 for toxicity and drug potentiation studies when coadministered with the chemotherapeutic drug cisplatin (CP) in human lung cancer cells, A549 cells. Results obtained from our studies have found that not only were GONPs able to act as drug carriers, but they can also significantly potentiate anticancer effect of CP in A549 cells.
Collapse
Affiliation(s)
- Nur Farhanah Rosli
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , 637371 Singapore
| | - Michaela Fojtů
- Department of Physiology, Faculty of Medicine , Masaryk University , Kamenice 5 , CZ-2500 Brno , Czech Republic
- Center for Advanced Functional Nanorobots, Department of Inorganic Chemistry , University of Chemistry and Technology Prague , Technická 5 , 166 28 Prague 6 , Czech Republic
| | - Adrian C Fisher
- Department of Chemical Engineering and Biotechnology , University of Cambridge , New Museums Site, Pembroke Street , Cambridge CB2 3RA , United Kingdom
| | - Martin Pumera
- Center for Advanced Functional Nanorobots, Department of Inorganic Chemistry , University of Chemistry and Technology Prague , Technická 5 , 166 28 Prague 6 , Czech Republic
- Future Energy and Innovation Laboratory, Central European Institute of Technology , Brno University of Technology , Purkyňova 656/123 , Brno , CZ-616 00 , Czech Republic
| |
Collapse
|
368
|
Pastrana HF, Cartagena-Rivera AX, Raman A, Ávila A. Evaluation of the elastic Young's modulus and cytotoxicity variations in fibroblasts exposed to carbon-based nanomaterials. J Nanobiotechnology 2019; 17:32. [PMID: 30797235 PMCID: PMC6387485 DOI: 10.1186/s12951-019-0460-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 01/22/2019] [Indexed: 12/30/2022] Open
Abstract
Background The conventional approaches to assess the potential cytotoxic effects of nanomaterials (NMs) mainly rely on in vitro biochemical assays. These assays are strongly dependent on the properties of the nanomaterials, for example; specific surface area (SSA), size, surface defects, and surface charge, and the host response. The NMs properties can also interfere with the reagents of the biochemical and optical assays leading to skewed interpretations and ambiguous results related to the NMs toxicity. Here, we proposed a structured approach for cytotoxicity assessment complemented with cells’ mechanical responses represented as the variations of elastic Young’s modulus in conjunction with conventional biochemical tests. Monitoring the mechanical properties responses at various times allowed understanding the effects of NMs to the filamentous actin cytoskeleton. The elastic Young’s modulus was estimated from the force volume maps using an atomic force microscope (AFM). Results Our results show a significant decrease on Young’s modulus, ~ 20%, in cells exposed to low concentrations of graphene flakes (GF), ~ 10% decrease for cells exposed to low concentrations of multiwalled carbon nanotubes (MWCNTs) than the control cells. These considerable changes were directly correlated to the disruption of the cytoskeleton actin fibers. The length of the actin fibers in cells exposed to GF was 50% shorter than the fibers of the cells exposed to MWCNT. Applying both conventional biochemical approach and cells mechanics, we were able to detect differences in the actin networks induced by MWCNT inside the cells and GF outside the cell’s membrane. These results contrast with the conventional live/dead assay where we obtained viabilities greater than 80% after 24 h; while the elasticity dramatically decreased suggesting a fast-metabolic stress generation. Conclusions We confirmed the production of radical oxygen species (ROS) on cells exposed to CBNs, which is related to the disruption of the cytoskeleton. Altogether, the changes in mechanical properties and the length of F-actin fibers confirmed that disruption of the F-actin cytoskeleton is a major consequence of cellular toxicity. We evidenced the importance of not just nanomaterials properties but also the effect of the location to assess the cytotoxic effects of nanomaterials. Electronic supplementary material The online version of this article (10.1186/s12951-019-0460-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Homero F Pastrana
- Departamento de Ingeniería Eléctrica y Electrónica, Universidad de Los Andes, Bogotá D.C., Colombia.,Centro de Microelectrónica, Universidad de los Andes (CMUA), Bogotá D.C, Colombia.,Birck Nanotechnology Center, Purdue University, West Lafayette, IN, USA
| | - Alexander X Cartagena-Rivera
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA.,Birck Nanotechnology Center, Purdue University, West Lafayette, IN, USA.,Section on Auditory Mechanics, National Institute on Deafness and Other Communication Disorders (NIDCD), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Arvind Raman
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA
| | - Alba Ávila
- Departamento de Ingeniería Eléctrica y Electrónica, Universidad de Los Andes, Bogotá D.C., Colombia. .,Centro de Microelectrónica, Universidad de los Andes (CMUA), Bogotá D.C, Colombia.
| |
Collapse
|
369
|
Li Z, Zhang Y, Ma J, Meng Q, Fan J. Modeling Interactions between Liposomes and Hydrophobic Nanosheets. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1804992. [PMID: 30589212 DOI: 10.1002/smll.201804992] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Indexed: 05/09/2023]
Abstract
2D nanomaterials could cause structural disruption and cytotoxic effects to cells, which greatly challenges their promising biomedical applications including biosensing, bioimaging, and drug delivery. Here, the physical and mechanical interaction between lipid liposomes and hydrophobic nanosheets is studied utilizing coarse-grained (CG) molecular dynamics (MD) simulations. The simulations reveal a variety of characteristic interaction morphologies that depend on the size and the orientation of nanosheets. Dynamic and thermodynamic analyses on the morphologic evolution provide insights into molecular motions such as "nanosheet rotation," "lipid extraction," "lipid flip-flop," and "lipid spreading." Driven by these molecular motions, hydrophobic nanosheets cause morphologic changes of liposomes. The lipid bilayer structure can be corrugated, and the overall liposome sphere can be split or collapsed by large nanosheets. In addition, nanosheets embedded into lipid bilayers greatly weaken the fluidity of lipids, and this effect can be cumulatively enhanced as nanosheets continuously intrude. These results could facilitate molecular-level understanding on the cytotoxicity of nanomaterials, and help future nanotoxicology studies associating computational modeling with experiments.
Collapse
Affiliation(s)
- Zhen Li
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, China
| | - Yonghui Zhang
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, China
| | - Jiale Ma
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, China
| | - Qiangqiang Meng
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, China
| | - Jun Fan
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, China
- City University of Hong Kong, Shenzhen Research Institute, Shenzhen, 518057, China
- Center for Advanced Nuclear Safety and Sustainable Development, City University of Hong Kong, Hong Kong, China
| |
Collapse
|
370
|
From nanoengineering to nanomedicine: A facile route to enhance biocompatibility of graphene as a potential nano-carrier for targeted drug delivery using natural deep eutectic solvents. Chem Eng Sci 2019. [DOI: 10.1016/j.ces.2018.11.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
371
|
Yang H, Wu X, Ma Q, Yilihamu A, Yang S, Zhang Q, Feng S, Yang ST. Fungal transformation of graphene by white rot fungus Phanerochaete chrysosporium. CHEMOSPHERE 2019; 216:9-18. [PMID: 30359921 DOI: 10.1016/j.chemosphere.2018.10.115] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 10/11/2018] [Accepted: 10/16/2018] [Indexed: 06/08/2023]
Abstract
The wide applications of graphene materials require the thorough investigation on their biosafety and environmental risks. Transformation of graphene materials is a fundamental issue in their environmental risk evaluations. The enzymatic degradation of graphene is widely reported using peroxidases, but the information on the fungal transformation of graphene is still unavailable. Herein, we incubated reduced graphene oxide (RGO) in the white rot fungus Phanerochaete chrysosporium culture system for 4 weeks and investigated the transformation of RGO by multiple techniques. P. chrysosporium efficiently added oxygen to RGO and decreased the its carbon contents accordingly. The ID/IG ratios of RGO showed statistically increases upon the transformation by P. chrysosporium according to Raman spectroscopy, suggesting the increase of defects on carbon skeleton. The negatively charged oxygen containing groups exfoliated the graphene sheets as indicated by the larger layer distance according to the X-ray diffraction spectra and the increased roughness under scanning electron microscopy. The transformation was more obvious in the RGO separated from the fungal balls than the precipitates in the culture medium. The mechanism of transformation was attributed to the enzymatic degradation by P. chrysosporium. The environmental implication of the fungal transformation of graphene materials and the potential of using fungi to reduce the environmental risks of graphene materials are discussed.
Collapse
Affiliation(s)
- Hua Yang
- College of Chemistry and Environment Protection Engineering, Southwest Minzu University, Chengdu, 610041, PR China
| | - Xian Wu
- College of Chemistry and Environment Protection Engineering, Southwest Minzu University, Chengdu, 610041, PR China
| | - Qiang Ma
- College of Chemistry and Environment Protection Engineering, Southwest Minzu University, Chengdu, 610041, PR China
| | - Ailimire Yilihamu
- College of Chemistry and Environment Protection Engineering, Southwest Minzu University, Chengdu, 610041, PR China
| | - Shengnan Yang
- College of Chemistry and Environment Protection Engineering, Southwest Minzu University, Chengdu, 610041, PR China
| | - Qiangqiang Zhang
- College of Chemistry and Environment Protection Engineering, Southwest Minzu University, Chengdu, 610041, PR China
| | - Shicheng Feng
- College of Chemistry and Environment Protection Engineering, Southwest Minzu University, Chengdu, 610041, PR China
| | - Sheng-Tao Yang
- College of Chemistry and Environment Protection Engineering, Southwest Minzu University, Chengdu, 610041, PR China.
| |
Collapse
|
372
|
O'Mahony C, Haq EU, Sillien C, Tofail SAM. Rheological Issues in Carbon-Based Inks for Additive Manufacturing. MICROMACHINES 2019; 10:E99. [PMID: 30700026 PMCID: PMC6412792 DOI: 10.3390/mi10020099] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 01/25/2019] [Accepted: 01/27/2019] [Indexed: 12/25/2022]
Abstract
As the industry and commercial market move towards the optimization of printing and additive manufacturing, it becomes important to understand how to obtain the most from the materials while maintaining the ability to print complex geometries effectively. Combining such a manufacturing method with advanced carbon materials, such as Graphene, Carbon Nanotubes, and Carbon fibers, with their mechanical and conductive properties, delivers a cutting-edge combination of low-cost conductive products. Through the process of printing the effectiveness of these properties decreases. Thorough optimization is required to determine the idealized ink functional and flow properties to ensure maximum printability and functionalities offered by carbon nanoforms. The optimization of these properties then is limited by the printability. By determining the physical properties of printability and flow properties of the inks, calculated compromises can be made for the ink design. In this review we have discussed the connection between the rheology of carbon-based inks and the methodologies for maintaining the maximum pristine carbon material properties.
Collapse
Affiliation(s)
- Charlie O'Mahony
- Department of Physics, and Bernal Institute, University of Limerick, National Technological Park, V94 T9PX Limerick, Ireland.
| | - Ehtsham Ul Haq
- Department of Physics, and Bernal Institute, University of Limerick, National Technological Park, V94 T9PX Limerick, Ireland.
| | - Christophe Sillien
- Department of Physics, and Bernal Institute, University of Limerick, National Technological Park, V94 T9PX Limerick, Ireland.
| | - Syed A M Tofail
- Department of Physics, and Bernal Institute, University of Limerick, National Technological Park, V94 T9PX Limerick, Ireland.
| |
Collapse
|
373
|
Lin YH, Zhuang SX, Wang YL, Lin S, Hong ZW, Liu Y, Xu L, Li FP, Xu BH, Chen MH, He SW, Liao BQ, Fu XP, Jiang ZQ, Wang HL. The effects of graphene quantum dots on the maturation of mouse oocytes and development of offspring. J Cell Physiol 2019; 234:13820-13831. [PMID: 30644094 DOI: 10.1002/jcp.28062] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 12/17/2018] [Indexed: 01/22/2023]
Abstract
Recently, graphene nanomaterials have attracted tremendous attention and have been utilized in various fields because of their excellent mechanical, thermal, chemical, optical properties, and good biocompatibility, especially in biomedical aspects. However, there is a concern that the unique characteristics of nanomaterials may have undesirable effects. Therefore, in this study, we sought to systematically investigate the effects of graphene quantum dots (GQDs) on the maturation of mouse oocytes and development of the offspring via in vitro and in vivo studies. In vitro, we found that the first polar body extrusion rate in the high dosage exposure groups (1.0-1.5 mg/ml) 2 decreased significantly and the failure of spindle migration and actin cap formation after GQDs exposure was observed. The underlying mechanisms might be associated with reactive oxygen species accumulation and DNA damage. Moreover, transmission electron microscope studies showed that GQDs may have been internalized into oocytes, tending to accumulate in the nucleus and severely affecting mitochondrial morphology, which included swollen and vacuolated mitochondria accompanied by cristae alteration with a lower amount of dense mitochondrial matrix. In vivo, when pregnant mice were exposed to GQDs at 8.5 days of gestation (GD, 8.5), we found that high dosage of GQD exposure (30 mg/kg) significantly affected mean fetal length; however, all the second generation of female mice grew up normal, attained sexual maturity, and gave birth to a healthy offspring after mating with a healthy male mouse. The results presented in this study are important for the future investigation of GQDs for the biomedical applications.
Collapse
Affiliation(s)
- Yan-Hong Lin
- Department of Gynaecology and Obstetrics, The Graduate School of Fujian Medical University, Fujian Medical University, Fuzhou, Fujian, China.,Organ Transplantation Institute, Medical College, Xiamen University, Xiamen, Fujian, China.,Fujian Key Laboratory of Organ and Tissue Regeneration, Xiamen University, Xiamen, Fujian, China.,Department of Gynaecology, The Affiliated Hospital of Putian University, Putian University, Putian, Fujian, China
| | - Shu-Xin Zhuang
- Key Laboratory of Functional Materials and Applications of Fujian Province, School of Materials Science and Engineering, Xiamen University of Technology, Xiamen, Fujian, China
| | - Ya-Long Wang
- Organ Transplantation Institute, Medical College, Xiamen University, Xiamen, Fujian, China.,Fujian Key Laboratory of Organ and Tissue Regeneration, Xiamen University, Xiamen, Fujian, China
| | - Sheng Lin
- Organ Transplantation Institute, Medical College, Xiamen University, Xiamen, Fujian, China.,Fujian Key Laboratory of Organ and Tissue Regeneration, Xiamen University, Xiamen, Fujian, China
| | - Zi-Wei Hong
- Organ Transplantation Institute, Medical College, Xiamen University, Xiamen, Fujian, China.,Fujian Key Laboratory of Organ and Tissue Regeneration, Xiamen University, Xiamen, Fujian, China
| | - Yu Liu
- Organ Transplantation Institute, Medical College, Xiamen University, Xiamen, Fujian, China.,Fujian Key Laboratory of Organ and Tissue Regeneration, Xiamen University, Xiamen, Fujian, China
| | - Lin Xu
- Organ Transplantation Institute, Medical College, Xiamen University, Xiamen, Fujian, China.,Fujian Key Laboratory of Organ and Tissue Regeneration, Xiamen University, Xiamen, Fujian, China
| | - Fei-Ping Li
- Organ Transplantation Institute, Medical College, Xiamen University, Xiamen, Fujian, China.,Fujian Key Laboratory of Organ and Tissue Regeneration, Xiamen University, Xiamen, Fujian, China
| | - Bai-Hui Xu
- Organ Transplantation Institute, Medical College, Xiamen University, Xiamen, Fujian, China.,Fujian Key Laboratory of Organ and Tissue Regeneration, Xiamen University, Xiamen, Fujian, China
| | - Ming-Huang Chen
- Organ Transplantation Institute, Medical College, Xiamen University, Xiamen, Fujian, China.,Fujian Key Laboratory of Organ and Tissue Regeneration, Xiamen University, Xiamen, Fujian, China
| | - Shu-Wen He
- Organ Transplantation Institute, Medical College, Xiamen University, Xiamen, Fujian, China.,Fujian Key Laboratory of Organ and Tissue Regeneration, Xiamen University, Xiamen, Fujian, China
| | - Bao-Qiong Liao
- Organ Transplantation Institute, Medical College, Xiamen University, Xiamen, Fujian, China.,Fujian Key Laboratory of Organ and Tissue Regeneration, Xiamen University, Xiamen, Fujian, China
| | - Xian-Pei Fu
- Organ Transplantation Institute, Medical College, Xiamen University, Xiamen, Fujian, China.,Fujian Key Laboratory of Organ and Tissue Regeneration, Xiamen University, Xiamen, Fujian, China
| | - Zhong-Qing Jiang
- Department of Obstetrics and Gynaecology, Affiliated Fuzhou First Hospital of Fujian Medical University, Fujian Medical University, Fuzhou, Fujian, China
| | - Hai-Long Wang
- Organ Transplantation Institute, Medical College, Xiamen University, Xiamen, Fujian, China.,Fujian Key Laboratory of Organ and Tissue Regeneration, Xiamen University, Xiamen, Fujian, China
| |
Collapse
|
374
|
Gurunathan S, Kang MH, Jeyaraj M, Kim JH. Differential Immunomodulatory Effect of Graphene Oxide and Vanillin-Functionalized Graphene Oxide Nanoparticles in Human Acute Monocytic Leukemia Cell Line (THP-1). Int J Mol Sci 2019; 20:E247. [PMID: 30634552 PMCID: PMC6359521 DOI: 10.3390/ijms20020247] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 12/22/2018] [Accepted: 12/24/2018] [Indexed: 12/11/2022] Open
Abstract
Graphene and its derivatives are emerging as attractive materials for biomedical applications, including antibacterial, gene delivery, contrast imaging, and anticancer therapy applications. It is of fundamental importance to study the cytotoxicity and biocompatibility of these materials as well as how they interact with the immune system. The present study was conducted to assess the immunotoxicity of graphene oxide (GO) and vanillin-functionalized GO (V-rGO) on THP-1 cells, a human acute monocytic leukemia cell line. The synthesized GO and V-rGO were characterized by using various analytical techniques. Various concentrations of GO and V-rGO showed toxic effects on THP-1 cells such as the loss of cell viability and proliferation in a dose-dependent manner. Cytotoxicity was further demonstrated as an increased level of lactate dehydrogenase (LDH), loss of mitochondrial membrane potential (MMP), decreased level of ATP content, and cell death. Increased levels of reactive oxygen species (ROS) and lipid peroxidation caused redox imbalance in THP-1 cells, leading to increased levels of malondialdehyde (MDA) and decreased levels of anti-oxidants such as glutathione (GSH), glutathione peroxidase (GPX), super oxide dismutase (SOD), and catalase (CAT). Increased generation of ROS and reduced MMP with simultaneous increases in the expression of pro-apoptotic genes and downregulation of anti-apoptotic genes suggest that the mitochondria-mediated pathway is involved in GO and V-rGO-induced apoptosis. Apoptosis was induced consistently with the significant DNA damage caused by increased levels of 8-oxo-dG and upregulation of various key DNA-regulating genes in THP-1 cells, indicating that GO and V-rGO induce cell death through oxidative stress. As a result of these events, GO and V-rGO stimulated the secretion of various cytokines and chemokines, indicating that the graphene materials induced potent inflammatory responses to THP-1 cells. The harshness of V-rGO in all assays tested occurred because of better charge transfer, various carbon to oxygen ratios, and chemical compositions in the rGO. Overall, these findings suggest that it is essential to better understand the parameters governing GO and functionalized GO in immunotoxicity and inflammation. Rational design of safe GO-based formulations for various applications, including nanomedicine, may result in the development of risk management methods for people exposed to graphene and graphene family materials, as these nanoparticles can be used as delivery agents in various biomedical applications.
Collapse
Affiliation(s)
- Sangiliyandi Gurunathan
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Korea.
| | - Min-Hee Kang
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Korea.
| | - Muniyandi Jeyaraj
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Korea.
| | - Jin-Hoi Kim
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Korea.
| |
Collapse
|
375
|
Mohammadinejad R, Moosavi MA, Tavakol S, Vardar DÖ, Hosseini A, Rahmati M, Dini L, Hussain S, Mandegary A, Klionsky DJ. Necrotic, apoptotic and autophagic cell fates triggered by nanoparticles. Autophagy 2019; 15:4-33. [PMID: 30160607 PMCID: PMC6287681 DOI: 10.1080/15548627.2018.1509171] [Citation(s) in RCA: 271] [Impact Index Per Article: 45.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 07/19/2018] [Accepted: 08/03/2018] [Indexed: 12/15/2022] Open
Abstract
Nanomaterials have gained a rapid increase in use in a variety of applications that pertain to many aspects of human life. The majority of these innovations are centered on medical applications and a range of industrial and environmental uses ranging from electronics to environmental remediation. Despite the advantages of NPs, the knowledge of their toxicological behavior and their interactions with the cellular machinery that determines cell fate is extremely limited. This review is an attempt to summarize and increase our understanding of the mechanistic basis of nanomaterial interactions with the cellular machinery that governs cell fate and activity. We review the mechanisms of NP-induced necrosis, apoptosis and autophagy and potential implications of these pathways in nanomaterial-induced outcomes. Abbreviations: Ag, silver; CdTe, cadmium telluride; CNTs, carbon nanotubes; EC, endothelial cell; GFP, green fluorescent protein; GO, graphene oxide; GSH, glutathione; HUVECs, human umbilical vein endothelial cells; NP, nanoparticle; PEI, polyethylenimine; PVP, polyvinylpyrrolidone; QD, quantum dot; ROS, reactive oxygen species; SiO2, silicon dioxide; SPIONs, superparamagnetic iron oxide nanoparticles; SWCNT, single-walled carbon nanotubes; TiO2, titanium dioxide; USPION, ultra-small super paramagnetic iron oxide; ZnO, zinc oxide.
Collapse
Affiliation(s)
- Reza Mohammadinejad
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Amin Moosavi
- Department of Molecular Medicine, Institute of Medical Biotechnology, National Institute for Genetic Engineering and Biotechnology, Tehran, Iran
| | - Shima Tavakol
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Deniz Özkan Vardar
- Sungurlu Vocational High School, Health Programs, Hitit University, Corum, Turkey
| | - Asieh Hosseini
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Marveh Rahmati
- Cancer Biology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Salik Hussain
- Department of Physiology, Pharmacology and Neuroscience, West Virginia University, School of Medicine, Morgantown, WV, USA
| | - Ali Mandegary
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | | |
Collapse
|
376
|
|
377
|
Glogic E, Adán-Más A, Sonnemann G, Montemor MDF, Guerlou-Demourgues L, Young SB. Life cycle assessment of emerging Ni–Co hydroxide charge storage electrodes: impact of graphene oxide and synthesis route. RSC Adv 2019; 9:18853-18862. [PMID: 35516854 PMCID: PMC9065049 DOI: 10.1039/c9ra02720c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 05/18/2019] [Indexed: 11/21/2022] Open
Abstract
An addition of reduced graphene oxide to nickel–cobalt hydroxide electrodes results in net reduction of cumulative energy demand due to improved electrochemical properties.
Collapse
Affiliation(s)
- Edis Glogic
- University of Waterloo
- Faculty of Environment
- Waterloo
- Canada
- University of Bordeaux
| | - Alberto Adán-Más
- University of Bordeaux
- CNRS
- Bordeaux INP
- ICMCB UMR 5026
- 33600 Pessac
| | | | | | | | | |
Collapse
|
378
|
Ban DK, Somu P, Paul S. Graphene Oxide Quantum Dot Alters Amyloidogenicity of Hen Egg White Lysozyme via Modulation of Protein Surface Character. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:15283-15292. [PMID: 30468385 DOI: 10.1021/acs.langmuir.8b02674] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A series of neurodegenerative disorders are caused by intracellular or extracellular amyloid deposition, including Alzheimer's disease, Parkinson's disease, Prion disease, and so on. To prevent the progress of such amyloid-mediated disorders, various agents have been tested including nanoparticles. Among different nanomaterials, graphene oxide shows unique electrochemical properties, which have potential applications in various biomedical fields. In our present investigation, we explored the effect of graphene oxide quantum dots (GOQDs) in amyloid β-fibrillation of hen egg white lysozyme (HEWL) under various conditions. Electron microscopy imaging showed that administration of GOQD inhibited HEWL amyloid β-fibrillation via producing thin and small fragments of fibrils. ζ-Potential measurement and 8-anilino-1-naphthalenesulfonic fluorescence study of lysozyme amyloid demonstrated a significant drop in surface hydrophobicity and an increase of surface charge of protein molecules. The reduced hydrophobic interaction and enhanced surface charge inhibit the hydrophobic assembly and colloidal stability of the protein. Circular dichroism and thioflavin-T fluorescence demonstrated that GOQD also interfered at the secondary structure level and prevented amyloid β-sheet formation and assembly of a protein by reducing the amount of amyloid β-sheet formation. Further, cellular toxicity analysis with HaCaT and 3T3 cells showed reduced toxicity of amyloid samples prepared with GOQD. Therefore, GOQD might be used to be a potential amyloid-preventive agent in various neurodegenerative diseases.
Collapse
Affiliation(s)
- Deependra Kumar Ban
- Department of Biotechnology & Medical Engineering , National Institute of Technology , Rourkela , Orissa 769008 , India
| | - Prathap Somu
- Department of Biotechnology & Medical Engineering , National Institute of Technology , Rourkela , Orissa 769008 , India
| | - Subhankar Paul
- Department of Biotechnology & Medical Engineering , National Institute of Technology , Rourkela , Orissa 769008 , India
| |
Collapse
|
379
|
Viseu T, Lopes CM, Fernandes E, Oliveira MECDR, Lúcio M. A Systematic Review and Critical Analysis of the Role of Graphene-Based Nanomaterialsin Cancer Theranostics. Pharmaceutics 2018; 10:E282. [PMID: 30558378 PMCID: PMC6321636 DOI: 10.3390/pharmaceutics10040282] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 12/08/2018] [Accepted: 12/13/2018] [Indexed: 12/18/2022] Open
Abstract
Many graphene-based materials (GBNs) applied to therapy and diagnostics (theranostics) in cancer have been developed. Most of them are hybrid combinations of graphene with other components (e.g, drugs or other bioactives, polymers, and nanoparticles) aiming toward a synergic theranostic effect. However, the role of graphene in each of these hybrids is sometimes not clear enough and the synergic graphene effect is not proven. The objective of this review is to elaborate on the role of GBNs in the studies evaluated and to compare the nanoformulations in terms of some of their characteristics, such as therapeutic outcomes and toxicity, which are essential features for their potential use as bionanosystems. A systematic review was carried out using the following databases: PubMed, Scopus, and ISI Web of Science (2013⁻2018). Additional studies were identified manually by consulting the references list of relevant reviews. Only English papers presenting at least one strategy for cancer therapy and one strategy for cancer diagnostics, and that clearly show the role of graphene in theranostics, were included. Data extraction and quality assessment was made by reviewer pairings. Fifty-five studies met the inclusion criteria, but they were too heterogeneous to combine in statistical meta-analysis. Critical analysis and discussion of the selected papers are presented.
Collapse
Affiliation(s)
- Teresa Viseu
- CF-UM-UP-Centre of Physics of Universities of Minho and Porto, Departament of Physics of University of Minho, Escola de Ciências, Campus de Gualtar, 4710-057 Braga, Portugal.
| | - Carla M Lopes
- FP-ENAS/CEBIMED-Fernando Pessoa Energy, Environment and Health Research Unit/Biomedical Research Centre, Faculty of Health Sciences, Fernando Pessoa University, 4249-004 Porto, Portugal.
| | - Eduarda Fernandes
- CF-UM-UP-Centre of Physics of Universities of Minho and Porto, Departament of Physics of University of Minho, Escola de Ciências, Campus de Gualtar, 4710-057 Braga, Portugal.
| | - Maria Elisabete C D Real Oliveira
- CF-UM-UP-Centre of Physics of Universities of Minho and Porto, Departament of Physics of University of Minho, Escola de Ciências, Campus de Gualtar, 4710-057 Braga, Portugal.
| | - Marlene Lúcio
- CF-UM-UP-Centre of Physics of Universities of Minho and Porto, Departament of Physics of University of Minho, Escola de Ciências, Campus de Gualtar, 4710-057 Braga, Portugal.
| |
Collapse
|
380
|
Szczepaniak J, Strojny B, Chwalibog ES, Jaworski S, Jagiello J, Winkowska M, Szmidt M, Wierzbicki M, Sosnowska M, Balaban J, Winnicka A, Lipinska L, Pilaszewicz OW, Grodzik M. Effects of Reduced Graphene Oxides on Apoptosis and Cell Cycle of Glioblastoma Multiforme. Int J Mol Sci 2018; 19:ijms19123939. [PMID: 30544611 PMCID: PMC6320889 DOI: 10.3390/ijms19123939] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 12/02/2018] [Accepted: 12/02/2018] [Indexed: 02/06/2023] Open
Abstract
Graphene (GN) and its derivatives (rGOs) show anticancer properties in glioblastoma multiforme (GBM) cells in vitro and in tumors in vivo. We compared the anti-tumor effects of rGOs with different oxygen contents with those of GN, and determined the characteristics of rGOs useful in anti-glioblastoma therapy using the U87 glioblastoma line. GN/ExF, rGO/Term, rGO/ATS, and rGO/TUD were structurally analysed via transmission electron microscopy, Raman spectroscopy, FTIR, and AFM. Zeta potential, oxygen content, and electrical resistance were determined. We analyzed the viability, metabolic activity, apoptosis, mitochondrial membrane potential, and cell cycle. Caspase- and mitochondrial-dependent apoptotic pathways were investigated by analyzing gene expression. rGO/TUD induced the greatest decrease in the metabolic activity of U87 cells. rGO/Term induced the highest level of apoptosis compared with that induced by GN/ExF. rGO/ATS induced a greater decrease in mitochondrial membrane potential than GN/ExF. No significant changes were observed in the cytometric study of the cell cycle. The effectiveness of these graphene derivatives was related to the presence of oxygen-containing functional groups and electron clouds. Their cytotoxicity mechanism may involve electron clouds, which are smaller in rGOs, decreasing their cytotoxic effect. Overall, cytotoxic activity involved depolarization of the mitochondrial membrane potential and the induction of apoptosis in U87 glioblastoma cells.
Collapse
Affiliation(s)
- Jaroslaw Szczepaniak
- Department of Animal Nutrition and Biotechnology, Faculty of Animal Sciences, Warsaw University of Life Sciences, 02-787 Warsaw, Poland.
| | - Barbara Strojny
- Department of Animal Nutrition and Biotechnology, Faculty of Animal Sciences, Warsaw University of Life Sciences, 02-787 Warsaw, Poland.
| | - Ewa Sawosz Chwalibog
- Department of Animal Nutrition and Biotechnology, Faculty of Animal Sciences, Warsaw University of Life Sciences, 02-787 Warsaw, Poland.
| | - Slawomir Jaworski
- Department of Animal Nutrition and Biotechnology, Faculty of Animal Sciences, Warsaw University of Life Sciences, 02-787 Warsaw, Poland.
| | - Joanna Jagiello
- Department of Chemical Synthesis and Flake Graphene, Institute of Electronic Materials Technology, 01-919 Warsaw, Poland.
| | - Magdalena Winkowska
- Department of Chemical Synthesis and Flake Graphene, Institute of Electronic Materials Technology, 01-919 Warsaw, Poland.
| | - Maciej Szmidt
- Department of Morphologic Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, 02-787 Warsaw, Poland.
| | - Mateusz Wierzbicki
- Department of Animal Nutrition and Biotechnology, Faculty of Animal Sciences, Warsaw University of Life Sciences, 02-787 Warsaw, Poland.
| | - Malwina Sosnowska
- Department of Animal Nutrition and Biotechnology, Faculty of Animal Sciences, Warsaw University of Life Sciences, 02-787 Warsaw, Poland.
| | - Jasmina Balaban
- Department of Animal Nutrition and Biotechnology, Faculty of Animal Sciences, Warsaw University of Life Sciences, 02-787 Warsaw, Poland.
| | - Anna Winnicka
- Department of Pathology and Veterinary Diagnostics, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, 02-787 Warsaw, Poland.
| | - Ludwika Lipinska
- Department of Chemical Synthesis and Flake Graphene, Institute of Electronic Materials Technology, 01-919 Warsaw, Poland.
| | - Olga Witkowska Pilaszewicz
- Department of Pathology and Veterinary Diagnostics, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, 02-787 Warsaw, Poland.
| | - Marta Grodzik
- Department of Animal Nutrition and Biotechnology, Faculty of Animal Sciences, Warsaw University of Life Sciences, 02-787 Warsaw, Poland.
| |
Collapse
|
381
|
Fadeel B, Bussy C, Merino S, Vázquez E, Flahaut E, Mouchet F, Evariste L, Gauthier L, Koivisto AJ, Vogel U, Martín C, Delogu LG, Buerki-Thurnherr T, Wick P, Beloin-Saint-Pierre D, Hischier R, Pelin M, Candotto Carniel F, Tretiach M, Cesca F, Benfenati F, Scaini D, Ballerini L, Kostarelos K, Prato M, Bianco A. Safety Assessment of Graphene-Based Materials: Focus on Human Health and the Environment. ACS NANO 2018; 12:10582-10620. [PMID: 30387986 DOI: 10.1021/acsnano.8b04758] [Citation(s) in RCA: 338] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Graphene and its derivatives are heralded as "miracle" materials with manifold applications in different sectors of society from electronics to energy storage to medicine. The increasing exploitation of graphene-based materials (GBMs) necessitates a comprehensive evaluation of the potential impact of these materials on human health and the environment. Here, we discuss synthesis and characterization of GBMs as well as human and environmental hazard assessment of GBMs using in vitro and in vivo model systems with the aim to understand the properties that underlie the biological effects of these materials; not all GBMs are alike, and it is essential that we disentangle the structure-activity relationships for this class of materials.
Collapse
Affiliation(s)
- Bengt Fadeel
- Nanosafety & Nanomedicine Laboratory, Institute of Environmental Medicine , Karolinska Institutet , 17777 Stockholm , Sweden
| | - Cyrill Bussy
- Nanomedicine Laboratory, Faculty of Biology, Medicine & Health , University of Manchester , Manchester M13 9PL , United Kingdom
| | - Sonia Merino
- Faculty of Chemical Science and Technology , University of Castilla-La Mancha , 13071 Ciudad Real , Spain
| | - Ester Vázquez
- Faculty of Chemical Science and Technology , University of Castilla-La Mancha , 13071 Ciudad Real , Spain
| | | | | | | | - Laury Gauthier
- CNRS, Université Paul Sabatier , 31062 Toulouse , France
| | - Antti J Koivisto
- National Research Centre for the Working Environment , 2100 Copenhagen , Denmark
| | - Ulla Vogel
- National Research Centre for the Working Environment , 2100 Copenhagen , Denmark
| | - Cristina Martín
- University of Strasbourg, CNRS , Immunology, Immunopathology and Therapeutic Chemistry , 67000 Strasbourg , France
| | - Lucia G Delogu
- Department of Chemistry and Pharmacy University of Sassari , Sassari 7100 , Italy
- Istituto di Ricerca Pediatrica , Fondazione Città della Speranza , 35129 Padova , Italy
| | - Tina Buerki-Thurnherr
- Swiss Federal Laboratories for Materials Science and Technology (EMPA) , 9014 St. Gallen , Switzerland
| | - Peter Wick
- Swiss Federal Laboratories for Materials Science and Technology (EMPA) , 9014 St. Gallen , Switzerland
| | | | - Roland Hischier
- Swiss Federal Laboratories for Materials Science and Technology (EMPA) , 9014 St. Gallen , Switzerland
| | - Marco Pelin
- Department of Life Sciences , University of Trieste , 34127 Trieste , Italy
| | | | - Mauro Tretiach
- Department of Life Sciences , University of Trieste , 34127 Trieste , Italy
| | - Fabrizia Cesca
- Center for Synaptic Neuroscience and Technology , Istituto Italiano di Tecnologia , 16132 Genova , Italy
| | - Fabio Benfenati
- Center for Synaptic Neuroscience and Technology , Istituto Italiano di Tecnologia , 16132 Genova , Italy
| | - Denis Scaini
- Scuola Internazionale Superiore di Studi Avanzati (SISSA) , 34136 Trieste , Italy
| | - Laura Ballerini
- Scuola Internazionale Superiore di Studi Avanzati (SISSA) , 34136 Trieste , Italy
| | - Kostas Kostarelos
- Nanomedicine Laboratory, Faculty of Biology, Medicine & Health , University of Manchester , Manchester M13 9PL , United Kingdom
| | - Maurizio Prato
- Department of Chemical and Pharmaceutical Sciences , University of Trieste , 34127 Trieste , Italy
- Carbon Nanobiotechnology Laboratory , CIC BiomaGUNE , 20009 San Sebastian , Spain
- Basque Foundation for Science, Ikerbasque , 48013 Bilbao , Spain
| | - Alberto Bianco
- University of Strasbourg, CNRS , Immunology, Immunopathology and Therapeutic Chemistry , 67000 Strasbourg , France
| |
Collapse
|
382
|
Qin H, Wang J, Wang T, Gao X, Wan Q, Pei X. Preparation and Characterization of Chitosan/β-Glycerophosphate Thermal-Sensitive Hydrogel Reinforced by Graphene Oxide. Front Chem 2018; 6:565. [PMID: 30555817 PMCID: PMC6282227 DOI: 10.3389/fchem.2018.00565] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 10/31/2018] [Indexed: 02/05/2023] Open
Abstract
Thermal-sensitive hydrogel based on chitosan (CS) and β-glycerophosphate (GP) has shown good biocompatibility and biodegradability. But the application of such hydrogel is limited due to its poor mechanical property. Recently, graphene oxide(GO) is widely used as a reinforcement agent to prepare nanocomposites with different polymers for improving the properties of the materials. In this study, CS/GP-based hydrogels with different weight ratio of GO/CS (0.5, 1, 2%) were fabricated. The gelation time of the hydrogels at body temperature was evaluated by tube inverting method. The gelation process during heating was monitored by rheological measurement. The morphology, porosities, chemical structure, swelling properties of the lyophilized hydrogels were investigated by scanning electron microscopy, liquid displacement method, Fourier transform infrared spectroscopy and gravimetric method. Mechanical property of the hydrogels was analyzed by rheological measurement and unconfined compression test. MC3T3-E1 mouse pre-osteoblast cell line was used to assess the biological properties of the hydrogels. The results obtained from those assessments revealed that the addition of GO into CS/GP improved the properties of the prepared hydrogels without changing the high porous and interconnected microstructure and swelling ability of the hydrogels. The gelation time at body temperature was significantly reduced by nearly 20% with the addition of small amount of GO (0.5% weight ratio of CS). The mechanical properties of the hydrogels containing GO were improved significantly over that of CS/GP. The storage (G′)/loss (G″) moduli of the hydrogels with GO were 1.12 to 1.69 times that of CS/GP at the gelling temperature. The Young's modulus of 0.5%GO/CS/GP hydrogel is 1.76 times that of CS/GP. Moreover, the 0.5%GO/CS/GP hydrogel revealed remarkable biological affinity such as cellular attachment, viability and proliferation. All of these results suggest that 0.5%GO/CS/GP hydrogel has great potential for practical application in biomedical field.
Collapse
Affiliation(s)
- Han Qin
- State Key Laboratory of Oral Diseases, Department of Prosthodontics, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jian Wang
- State Key Laboratory of Oral Diseases, Department of Prosthodontics, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Tong Wang
- State Key Laboratory of Oral Diseases, Department of Prosthodontics, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiaomeng Gao
- State Key Laboratory of Oral Diseases, Department of Prosthodontics, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qianbing Wan
- State Key Laboratory of Oral Diseases, Department of Prosthodontics, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xibo Pei
- State Key Laboratory of Oral Diseases, Department of Prosthodontics, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
383
|
Huaux F. Emerging Role of Immunosuppression in Diseases Induced by Micro- and Nano-Particles: Time to Revisit the Exclusive Inflammatory Scenario. Front Immunol 2018; 9:2364. [PMID: 30510551 PMCID: PMC6252316 DOI: 10.3389/fimmu.2018.02364] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 09/24/2018] [Indexed: 12/21/2022] Open
Abstract
Fibrosis, cancer, and autoimmunity developing upon particle exposure have been exclusively linked with uncontrolled inflammatory processes. The critical role of inflammation is now challenged by several contradictory observations indicating that the emergence of these chronic disorders may result from non-inflammatory events. A growing number of studies reveals that micro- and nano-particles can cause exaggerated and persistent immunosuppression characterized by the release of potent anti-inflammatory cytokines (IL-10 and TGF-β), and the recruitment of major regulatory immune cells (M2 macrophages, T and B regs, and MDSC). This persistent immunosuppressive environment is initially established to limit early inflammation but contributes later to fibrosis, cancer, and infection. Immunosuppression promotes fibroblast proliferation and matrix element synthesis and subverts innate and adaptive immune surveillance against tumor cells and microorganisms. This review details the contribution of immunosuppressive cells and their derived immunoregulatory mediators and delineates the mutual role of inflammatory vs. immunosuppressive mechanisms in the pathogenesis of chronic diseases induced by particles. The consideration of these new results explains how particle-related diseases can develop independently of chronic inflammation, enriches current bioassays predicting particle toxicity and suggests new clinical strategies for treating patients affected by particle-associated diseases.
Collapse
Affiliation(s)
- François Huaux
- Louvain Centre for Toxicology and Applied Pharmacology, Institut de Recherche Experimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
384
|
Tadyszak K, Wychowaniec JK, Litowczenko J. Biomedical Applications of Graphene-Based Structures. NANOMATERIALS (BASEL, SWITZERLAND) 2018; 8:E944. [PMID: 30453490 PMCID: PMC6267346 DOI: 10.3390/nano8110944] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 10/24/2018] [Accepted: 11/12/2018] [Indexed: 12/23/2022]
Abstract
Graphene and graphene oxide (GO) structures and their reduced forms, e.g., GO paper and partially or fully reduced three-dimensional (3D) aerogels, are at the forefront of materials design for extensive biomedical applications that allow for the proliferation and differentiation/maturation of cells, drug delivery, and anticancer therapies. Various viability tests that have been conducted in vitro on human cells and in vivo on mice reveal very promising results, which make graphene-based materials suitable for real-life applications. In this review, we will give an overview of the latest studies that utilize graphene-based structures and their composites in biological applications and show how the biomimetic behavior of these materials can be a step forward in bridging the gap between nature and synthetically designed graphene-based nanomaterials.
Collapse
Affiliation(s)
- Krzysztof Tadyszak
- NanoBioMedical Centre, Adam Mickiewicz University, ul. Umultowska 85, PL61614 Poznań, Poland.
| | - Jacek K Wychowaniec
- NanoBioMedical Centre, Adam Mickiewicz University, ul. Umultowska 85, PL61614 Poznań, Poland.
- School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Jagoda Litowczenko
- NanoBioMedical Centre, Adam Mickiewicz University, ul. Umultowska 85, PL61614 Poznań, Poland.
- Department of Molecular Virology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, PL61614 Poznań, Poland.
| |
Collapse
|
385
|
Yao R, Wang B, Wang G. [Research progress of graphene and its derivatives in repair of peripheral nerve defect]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2018; 32:1483-1487. [PMID: 30417629 DOI: 10.7507/1002-1892.201804096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Objective To review the research progress of graphene and its derivatives in repair of peripheral nerve defect. Methods The related literature of graphene and its derivatives in repair of peripheral nerve defect in recent years was extensively reviewed. Results It is confirmed by in vitro and in vivo experiments that graphene and its derivatives can promote cell adhesion, proliferation, differentiation and neurite growth effectively. They have good electrical conductivity, excellent mechanical properties, larger specific surface area, and other advantages when compared with traditional materials. The three-dimensional scaffold can improve the effect of nerve repair. Conclusion The metabolic pathways and long-term reaction of graphene and its derivatives in the body are unclear. How to regulate their biodegradation and explain the electric coupling reaction mechanism between cells and materials also need to be further explored.
Collapse
Affiliation(s)
- Ruzhan Yao
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| | - Bingwu Wang
- Department of Spinal Surgery, Weifang People's Hospital, Weifang Shandong, 261000, P.R.China
| | - Guanglin Wang
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu Sichuan, 610041,
| |
Collapse
|
386
|
Liao C, Li Y, Tjong SC. Graphene Nanomaterials: Synthesis, Biocompatibility, and Cytotoxicity. Int J Mol Sci 2018; 19:E3564. [PMID: 30424535 PMCID: PMC6274822 DOI: 10.3390/ijms19113564] [Citation(s) in RCA: 252] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 11/08/2018] [Accepted: 11/08/2018] [Indexed: 12/12/2022] Open
Abstract
Graphene, graphene oxide, and reduced graphene oxide have been widely considered as promising candidates for industrial and biomedical applications due to their exceptionally high mechanical stiffness and strength, excellent electrical conductivity, high optical transparency, and good biocompatibility. In this article, we reviewed several techniques that are available for the synthesis of graphene-based nanomaterials, and discussed the biocompatibility and toxicity of such nanomaterials upon exposure to mammalian cells under in vitro and in vivo conditions. Various synthesis strategies have been developed for their fabrication, generating graphene nanomaterials with different chemical and physical properties. As such, their interactions with cells and organs are altered accordingly. Conflicting results relating biocompatibility and cytotoxicity induced by graphene nanomaterials have been reported in the literature. In particular, graphene nanomaterials that are used for in vitro cell culture and in vivo animal models may contain toxic chemical residuals, thereby interfering graphene-cell interactions and complicating interpretation of experimental results. Synthesized techniques, such as liquid phase exfoliation and wet chemical oxidation, often required toxic organic solvents, surfactants, strong acids, and oxidants for exfoliating graphite flakes. Those organic molecules and inorganic impurities that are retained in final graphene products can interact with biological cells and tissues, inducing toxicity or causing cell death eventually. The residual contaminants can cause a higher risk of graphene-induced toxicity in biological cells. This adverse effect may be partly responsible for the discrepancies between various studies in the literature.
Collapse
Affiliation(s)
- Chengzhu Liao
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Yuchao Li
- Department of Materials Science and Engineering, Liaocheng University, Liaocheng 252000, China.
| | - Sie Chin Tjong
- Department of Physics, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China.
| |
Collapse
|
387
|
Adamson SXF, Wang R, Wu W, Cooper B, Shannahan J. Metabolomic insights of macrophage responses to graphene nanoplatelets: Role of scavenger receptor CD36. PLoS One 2018; 13:e0207042. [PMID: 30403754 PMCID: PMC6221354 DOI: 10.1371/journal.pone.0207042] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 10/23/2018] [Indexed: 12/12/2022] Open
Abstract
Graphene nanoplatelets (GNPs) are novel two-dimensional engineered nanomaterials consisting of planar stacks of graphene. Although human exposures are increasing, our knowledge is lacking regarding immune-specific responses to GNPs and mechanisms of interactions. Our current study utilizes a metabolite profiling approach to evaluate macrophage responses to GNPs. Furthermore, we assessed the role of the scavenger receptor CD36 in mediating these GNP-induced responses. GNPs were purchased with dimensions of 2 μm × 2 μm × 12 nm. Macrophages were exposed to GNPs at different concentrations of 0, 25, 50, or 100 μg/ml for 1, 3, or 6 h. Following exposure, no cytotoxicity was observed, while GNPs readily associated with macrophages in a concentration-dependent manner. After the 1h-pretreatment of either a CD36 competitive ligand sulfo-N-succinimidyl oleate (SSO) or a CD36 specific antibody, the cellular association of GNPs by macrophages was significantly reduced. GNP exposure was determined to alter mitochondrial membrane potential while the pretreatment with a CD36 antibody inhibited these changes. In a separate exposure, macrophages were exposed to GNPs at concentrations of 0, 50, or 100 μg/mL for 1 or 3h or 100 μM SSO (a CD36 specific ligand) for 1h and collected for metabolite profiling. Principal component analysis of identified compounds determined differential grouping based on exposure conditions. The number of compounds changed following exposure was determined to be both concentration- and time-dependent. Identified metabolites were determined to relate to several metabolism pathways such as glutathione metabolism, Pantothenate and CoA biosynthesis, Sphingolipid metabolism, Purine metabolism, arachidonic acid metabolism and others. Lastly, a number of metabolites were found in common between cells exposed to the CD36 receptor ligand, SSO, and GNPs suggesting both CD36-dependent and independent responses to GNP exposure. Together our data demonstrates GNP-macrophage interactions, the role of CD36 in the cellular response, and metabolic pathways disrupted due to exposure.
Collapse
Affiliation(s)
| | - Ruoxing Wang
- School of Industrial Engineering, Purdue University, West Lafayette, IN, United States of America
| | - Wenzhuo Wu
- School of Industrial Engineering, Purdue University, West Lafayette, IN, United States of America
| | - Bruce Cooper
- Metabolite Profiling Facility in Bindley Biosciences Center, Discovery Park, Purdue University, West Lafayette, IN, United States of America
| | - Jonathan Shannahan
- School of Health Sciences, Purdue University, West Lafayette, IN, United States of America
- * E-mail:
| |
Collapse
|
388
|
Zhang Z, Klausen LH, Chen M, Dong M. Electroactive Scaffolds for Neurogenesis and Myogenesis: Graphene-Based Nanomaterials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1801983. [PMID: 30264534 DOI: 10.1002/smll.201801983] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 07/28/2018] [Indexed: 05/24/2023]
Abstract
One of the major issues in tissue engineering is constructing a functional scaffold to support cell growth and also provide proper synergistic guidance cues. Graphene-based nanomaterials have emerged as biocompatible and electroactive scaffolds for neurogenesis and myogenesis, due to their excellent tunable chemical, physical, and mechanical properties. This review first assesses the recent investigations focusing on the fabrication and applications of graphene-based nanomaterials for neurogenesis and myogenesis, in the form of either 2D films, 3D scaffolds, or composite architectures. Besides, because of their outstanding electrical properties, graphene family materials are particularly suitable for designing electroactive scaffolds that could provide proper electrical stimulation (i.e., electrical or photo stimuli) to promote the regeneration of excitable neurons and muscle cells. Therefore, the effects and mechanism of electrical and/or photo stimulations on neurogenesis and myogenesis are followed. Furthermore, studies on their biocompatibilities and toxicities especially to neural and muscle cells are evaluated. Finally, the future challenges and perspectives in facilitating the development of clinical translation of graphene-family nanomaterials in treating neurodegenerative and muscle diseases are discussed.
Collapse
Affiliation(s)
- Zhongyang Zhang
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, DK-8000, Aarhus C, Denmark
| | | | - Menglin Chen
- Department of Engineering, Aarhus University, DK-8000, Aarhus C, Denmark
| | - Mingdong Dong
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, DK-8000, Aarhus C, Denmark
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA
| |
Collapse
|
389
|
Feng X, Chen L, Guo W, Zhang Y, Lai X, Shao L, Li Y. Graphene oxide induces p62/SQSTM-dependent apoptosis through the impairment of autophagic flux and lysosomal dysfunction in PC12 cells. Acta Biomater 2018; 81:278-292. [PMID: 30273743 DOI: 10.1016/j.actbio.2018.09.057] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 09/19/2018] [Accepted: 09/27/2018] [Indexed: 12/14/2022]
Abstract
Graphene oxide (GO), as a two-dimensional carbon nanosheet, has been extensively studied for potential biomedical applications due to its notable properties. Although a growing number of studies have investigated the adverse effects of GO nanosheets, the available toxicity data concerning GO's effect on the neuronal cells remain highly limited. In this work, we systematically investigated the toxic responses of commercially available GO on a rat pheochromocytoma-derived PC12 cell line, which was an ideal in vitro model to study the neurotoxicity of GO. GO exerted a significant toxic effect on PC12 cells in a dose- and time-dependent manner. GO treatments under doses of 40, 50, and 60 μg/mL triggered an autophagic response and the blockade of autophagic flux via disrupting lysosome degradation capability. Caspase 9-mediated apoptosis was also observed in GO-treated cells. Moreover, GO-induced apoptosis was relevant to the aberrant accumulation of autophagy substrate p62/SQSTM. Inhibitionofthe accumulation of autophagic substrate alleviated GO-caused apoptotic cell death. Our findings raise a concern for the putative biomedical applications of GO in the form of diagnostic and therapeutic tools, where its systematic biocompatibility should be thoroughly explored. STATEMENT OF SIGNIFICANCE: Graphene oxide (GO) has attracted considerable interests in biomedical fields, which also resulted in numerous safety risks to human bodies. It is urgently required to establish a paradigm for accurately evaluating their adverse effects in biological systems. This study thoroughly explored the neurotoxicity of GO in PC12 cells. We found GO triggered an increased autophagic response and the impairment of autophagic flux, which was functionally involved in cell apoptosis. Inhibitionofexcessive accumulation of autophagic cargo attenuated apoptotic cell death. Our findings highlight deep considerations on the regulation mechanism of autophagy-lysosomes-apotosis-axis, which will contribute to a better understanding of the neurotoxicity of graphene-family nanomaterials, and provide a new insight in the treatment of cancer cells at nanoscale levels.
Collapse
|
390
|
Chang S, Zhao X, Li S, Liao T, Long J, Yu Z, Cao Y. Cytotoxicity, cytokine release and ER stress-autophagy gene expression in endothelial cells and alveolar-endothelial co-culture exposed to pristine and carboxylated multi-walled carbon nanotubes. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 161:569-577. [PMID: 29929133 DOI: 10.1016/j.ecoenv.2018.06.025] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 05/11/2018] [Accepted: 06/09/2018] [Indexed: 06/08/2023]
Abstract
Recently we found that direct exposure of human umbilical vein endothelial cells (HUVECs) to multi-walled carbon nanotubes (MWCNTs) might induce toxicological responses through the modulation of ER stress gene expression, but whether this signal could be transferred from other cells to endothelial cells (ECs) is unknown. This study investigated the toxicity of pristine and carboxylated MWCNTs to HUVECs and alveolar-endothelial co-culture, the later of which could mimic the possible signaling communications between ECs and MWCNT exposed alveolar cells. The results showed that direct contact with high levels of MWCNTs induced cytotoxicity and modulated expression of genes associated with ER stress (HSPA5, DDIT3 and XBP-1s) and autophagy (BECN1 and ATG12) both in A549-THP-1 macrophages cultured in the upper chambers as well as HUVECs. However, most of these responses were minimal or negligible in HUVECs cultured in the lower chambers. Moreover, significantly increased cytokine release (interleukin-6 and soluble vascular cell adhesion molecule-1) was only observed in MWCNT exposed HUVECs (p < 0.01) but not HUVECs cultured in the lower chambers (p > 0.05). The minimal or even absent response was likely due to relatively low translocation of MWCNTs from upper chambers to lower chambers, whereas A549-macrophages cultured in the upper chambers internalized large amount MWCNTs. The results indicated that ER stress-autophagy signaling might not be able to transfer from alveolar cells to endothelial cells unless sufficient MWCNTs are translocated.
Collapse
Affiliation(s)
- Shiwei Chang
- Key Laboratory of Environment-Friendly Chemistry and Application of Ministry of Education, Lab of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan 411105, PR China; Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, PR China
| | - Xuqi Zhao
- Key Laboratory of Environment-Friendly Chemistry and Application of Ministry of Education, Lab of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan 411105, PR China; Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, PR China
| | - Siyu Li
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, PR China
| | - Tuqiang Liao
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, PR China
| | - Jimin Long
- Key Laboratory of Environment-Friendly Chemistry and Application of Ministry of Education, Lab of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan 411105, PR China
| | - Zhiqiang Yu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, PR China.
| | - Yi Cao
- Key Laboratory of Environment-Friendly Chemistry and Application of Ministry of Education, Lab of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan 411105, PR China.
| |
Collapse
|
391
|
Assali A, Akhavan O, Mottaghitalab F, Adeli M, Dinarvand R, Razzazan S, Arefian E, Soleimani M, Atyabi F. Cationic graphene oxide nanoplatform mediates miR-101 delivery to promote apoptosis by regulating autophagy and stress. Int J Nanomedicine 2018; 13:5865-5886. [PMID: 30319254 PMCID: PMC6171513 DOI: 10.2147/ijn.s162647] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Introduction MicroRNA-101 (miR-101) is an intense cancer suppressor with special algorithm to target a wide range of pathways and genes which indicates the ability to regulate apoptosis, cellular stress, metastasis, autophagy, and tumor growth. Silencing of some genes such as Stathmin1 with miR-101 can be interpreted as apoptotic accelerator and autophagy suppressor. It is hypothesized that hybrid microRNA (miRNA) delivery structures based on cationized graphene oxide (GO) could take superiority of targeting and photothermal therapy to suppress the cancer cells. Materials and methods In this study, GO nanoplatforms were covalently decorated with polyethylene glycol (PEG) and poly-l-arginine (P-l-Arg) that reduced the surface of GO and increased the near infrared absorption ~7.5-fold higher than nonreduced GO. Results The prepared nanoplatform [GO-PEG-(P-l-Arg)] showed higher miRNA payload and greater internalization and facilitated endosomal scape into the cytoplasm in comparison with GO-PEG. Furthermore, applying P-l-Arg, as a targeting agent, greatly improved the selective transfection of nanoplatform in cancer cells (MCF7, MDA-MB-231) in comparison with immortalized breast cells and fibroblast primary cells. Treating cancer cells with GO-PEG-(P-l-Arg)/miR-101 and incorporating near infrared laser irradiation induced 68% apoptosis and suppressed Stathmin1 protein. Conclusion The obtained results indicated that GO-PEG-(P-l-Arg) would be a suitable targeted delivery system of miR-101 transfection that could downregulate autophagy and conduct thermal stress to activate apoptotic cascades when combined with photothermal therapy.
Collapse
Affiliation(s)
- Akram Assali
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran,
| | - Omid Akhavan
- Department of Physics, Sharif University of Technology, Tehran, Iran
| | - Fatemeh Mottaghitalab
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran,
| | - Mohsen Adeli
- Department of Biology, Chemistry, Pharmacy, Institute of Chemistry and Biochemistry, Freie University Berlin, Berlin, Germany
| | - Rassoul Dinarvand
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran,
| | - Shayan Razzazan
- Department of Electrical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Ehsan Arefian
- Molecular Virology Lab, Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Masoud Soleimani
- Hematology Department, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Fatemeh Atyabi
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran,
| |
Collapse
|
392
|
Zou W, Zhou Q, Zhang X, Mu L, Hu X. Characterization of the effects of trace concentrations of graphene oxide on zebrafish larvae through proteomic and standard methods. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 159:221-231. [PMID: 29753824 DOI: 10.1016/j.ecoenv.2018.05.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 05/01/2018] [Accepted: 05/03/2018] [Indexed: 06/08/2023]
Abstract
The effects of graphene oxide (GO) carbon nanomaterials on ecosystems have been well characterized, but the toxicity of GO at predicted environmental concentrations to living organisms at the protein level remain largely unknown. In the present work, the adverse effects and mechanisms of GO at predicted environmental concentrations were evaluated by integrating proteomics and standard analyses for the first time. The abundances of 243 proteins, including proteins involved in endocytosis (e.g., cltcb, arf6, capzb and dnm1a), oxidative stress (e.g., gpx4b, sod2, and prdx1), cytoskeleton assembly (e.g., krt8, krt94, lmna and vim), mitochondrial function (e.g., ndufa10, ndufa8, cox5aa, and cox6b1), Ca2+ handling (e.g., atp1b2a, atp1b1a, atp6v0a1b and ncx4a) and cardiac function (e.g., tpm4a, tpm2, tnni2a.1 and tnnt3b), were found to be notably altered in response to exposure 100 μg/L GO. The results revealed that GO caused malformation and mortality, likely through the downregulation of proteins related to actin filaments and formation of the cytoskeleton, and induced oxidative stress and mitochondrial disorders by altering the levels of antioxidant enzymes and proteins associated with the mitochondrial membrane respiratory chain. Exposure to GO also increased the heart rate of zebrafish larvae and induced pericardial edema, likely by changing the expression of proteins related to Ca2+ balance and cardiac function. This study provides new proteomic-level insights into GO toxicity against aquatic organisms, which will greatly benefit our understanding of the bio-safety of GO and its toxicity at predicted environmental concentrations.
Collapse
Affiliation(s)
- Wei Zou
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Qixing Zhou
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Xingli Zhang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Li Mu
- Tianjin Key Laboratory of Agro-environment and Safe-product, Key Laboratory for Environmental Factors Control of Agro-product Quality Safety (Ministry of Agriculture), Institute of Agro-environmental Protection, Ministry of Agriculture, Tianjin 300191, China.
| | - Xiangang Hu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China.
| |
Collapse
|
393
|
Cheng SJ, Chiu HY, Kumar PV, Hsieh KY, Yang JW, Lin YR, Shen YC, Chen GY. Simultaneous drug delivery and cellular imaging using graphene oxide. Biomater Sci 2018; 6:813-819. [PMID: 29417098 DOI: 10.1039/c7bm01192j] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Graphene oxide (GO), a derivative of graphene, and its related nanomaterials have attracted much attention in recent years due to the excellent biocompatibility and large surface area of GO with abundant oxygen functional groups, which further enable it to serve as a nano-bio interface. Herein, we demonstrate the induction of blue fluorescence in GO suspensions via a mild thermal annealing procedure. Additionally, this procedure preserves the oxygen functional groups on the graphene plane which enables the conjugation of cancer drugs without obvious cytotoxicity. Consequently, we demonstrate the capability of GO to simultaneously play the dual-role of a: (i) cellular imaging agent and (ii) drug delivery agent in CT26 cancer cells without the need for additional fluorescent protein labeling. Our method offers a simple, controllable strategy to tune and enhance the fluorescence property of GO, which shows potential for biomedical applications and fundamental studies.
Collapse
Affiliation(s)
- Sheng-Jen Cheng
- Institute of Biomedical Engineering, College of Electrical and Computer Engineering, National Chiao Tung University, Hsinchu, Taiwan 30010.
| | | | | | | | | | | | | | | |
Collapse
|
394
|
Xiao CQ, Lai L, Zhang L, Wang SY, Yuan S, Xu ZQ, Liu Y. Spectroscopic and Isothermal Titration Calorimetry Studies of Binding Interactions Between Carbon Nanodots and Serum Albumins. J SOLUTION CHEM 2018. [DOI: 10.1007/s10953-018-0792-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
395
|
Rodd AL, Castilho CJ, Chaparro CEF, Rangel-Mendez JR, Hurt RH, Kane AB. Impact of emerging, high-production-volume graphene-based materials on the bioavailability of benzo(a)pyrene to brine shrimp and fish liver cells. ENVIRONMENTAL SCIENCE. NANO 2018; 5:2144-2161. [PMID: 31565225 PMCID: PMC6764784 DOI: 10.1039/c8en00352a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
With increasing commercialization of high volume, two-dimensional carbon nanomaterials comes a greater likelihood of environmental release. In aquatic environments, black carbon binds contaminants like aromatic hydrocarbons, leading to changes in their uptake, bioavailability, and toxicity. Engineered carbon nanomaterials can also adsorb pollutants onto their carbon surfaces, and nanomaterial physicochemical properties can influence this contaminant interaction. We used 2D graphene nanoplatelets and isometric carbon black nanoparticles to evaluate the influence of particle morphology and surface properties on adsorption and bioavailability of benzo(a)pyrene, a model aromatic hydrocarbon, to brine shrimp (Artemia franciscana) and a fish liver cell line (PLHC-1). Acellular adsorption studies show that while high surface area carbon black (P90) was most effective at a given concentration, 2D graphene nanoplatelets (G550) adsorbed more benzo(a)pyrene than carbon black with comparable surface area (M120). In both biological models, co-exposure to nanomaterials lead to reduced bioavailability, with G550 graphene nanoplatelets cause a greater reduction in bioavailability or response than the M120 carbon black nanoparticles. However, on a mass basis the high surface area P90 carbon black was most effective. The trends in bioavailability and adsorption were consistent across all biological and acellular studies, demonstrating the biological relevance of these results in different models of aquatic organisms. While adsorption is limited by surface area, 2D graphene nanoplatelets adsorb more benzo(a)pyrene than carbon black nanoparticles of similar surface area and charge, demonstrating that both surface area and shape play important roles in the adsorption and bioavailability of benzo(a)pyrene to carbon nanomaterials.
Collapse
Affiliation(s)
- April L Rodd
- Department of Pathology & Laboratory Medicine, Brown University, Providence, RI, 02912
| | | | - Carlos EF Chaparro
- Division of Environmental Science, Instituto Potosino de Investigación Científica y Tecnológica, San Luis Potosí, 78216, Mexico
| | - J Rene Rangel-Mendez
- Division of Environmental Science, Instituto Potosino de Investigación Científica y Tecnológica, San Luis Potosí, 78216, Mexico
| | - Robert H Hurt
- School of Engineering, Brown University, Providence, RI, 02912
| | - Agnes B Kane
- Department of Pathology & Laboratory Medicine, Brown University, Providence, RI, 02912
| |
Collapse
|
396
|
Arya BD, Mittal S, Joshi P, Pandey AK, Ramirez-Vick JE, Singh SP. Graphene oxide–chloroquine nanoconjugate induce necroptotic death in A549 cancer cells through autophagy modulation. Nanomedicine (Lond) 2018; 13:2261-2282. [DOI: 10.2217/nnm-2018-0086] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Aim: Chloroquine (Chl) has shown its potential in cancer therapy and graphene oxide (GO) exhibited excellent tumor-targeting ability, biocompatibility and low toxicity. We have endeavored to conjugate Chl to GO sheets and investigated the nonproliferation action on A549 cell lines along with cell signaling pathways. Materials & methods: Cellular toxicity, autophagic flux modulation and cell death mechanism induced by GO–Chl have been investigated on A549 cell lines. Results & conclusion: GO–Chl induces accumulation of autophagosomes (monodansylcadaverine staining, green fluorescence protein-tagged LC3 plasmid and transmission electron microscopy observations) in A549 cells through the blockade of autophagic flux that serves as scaffold for necrosome assembling and activates necroptotic cell death. GO–Chl nanoconjugate could be used as an effective cancer therapeutic agent, by targeting the autophagy necroptosis axis.
Collapse
Affiliation(s)
- Braham D Arya
- CSIR-National Physical Laboratory, Dr K. S. Krishnan Marg, New Delhi 110012, India
- Academy of Scientific & Innovative Research (AcSIR), Sector 19, Ghaziabad, UP 201002, India
| | - Sandeep Mittal
- Academy of Scientific & Innovative Research (AcSIR), Sector 19, Ghaziabad, UP 201002, India
- CSIR-Indian Institute of Toxicology Research (CSIR-IITR), 31, Mahatma Gandhi Marg, Lucknow 226001, India
| | - Prachi Joshi
- CSIR-National Physical Laboratory, Dr K. S. Krishnan Marg, New Delhi 110012, India
| | - Alok K Pandey
- Academy of Scientific & Innovative Research (AcSIR), Sector 19, Ghaziabad, UP 201002, India
- CSIR-Indian Institute of Toxicology Research (CSIR-IITR), 31, Mahatma Gandhi Marg, Lucknow 226001, India
| | - Jaime E Ramirez-Vick
- Department of Biomedical, Industrial & Human Factors Engineering, Wright State University, Dayton, OH 45435, USA
| | - Surinder P Singh
- CSIR-National Physical Laboratory, Dr K. S. Krishnan Marg, New Delhi 110012, India
- Academy of Scientific & Innovative Research (AcSIR), Sector 19, Ghaziabad, UP 201002, India
| |
Collapse
|
397
|
Spinazzè A, Cattaneo A, Borghi F, Del Buono L, Campagnolo D, Rovelli S, Cavallo DM. Exposure to airborne particles associated with the handling of graphene nanoplatelets. LA MEDICINA DEL LAVORO 2018; 109:285-296. [PMID: 30168501 PMCID: PMC7682168 DOI: 10.23749/mdl.v109i4.7069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 06/04/2018] [Indexed: 12/27/2022]
Abstract
Background: It is recognized that engineering control measures are needed to reduce occupational exposure to engineered nanomaterials (NMs): of these, fume hoods are among the most widespread collective protection equipment used while handling NMs in occupational settings. It is known that in some circumstances, handling NMs in fume hoods can result in a significant release of NMs. Objective: To assess the effectiveness of fume hoods in reducing exposure while handling graphene nanoplatelets and to define the conditions that result in a lower dispersion of particles and thus less operator exposure. Methods: An experimental protocol was established to monitor the variations of airborne particle concentrations while handling graphene in fume hoods (transferring and pouring). The measurement locations were at the laboratory, inside the hood and at operator’s breathing zone. Handling tasks were performed under different operating conditions: the variable factors included hood face velocity and sash height. Results: Results of this study indicate that the handling of graphene nanoplatelets may pose a potential risk of contamination of the work environment and hence exposure of the involved operators, if adequate control measures are not taken. In fact, when inadequate or not sufficiently cautionary operational conditions were utilized, non-negligible increases in airborne graphene particle concentrations during the nanomaterial manipulation phases were observed. Conclusions: Some operating conditions (e.g., face velocity, sash height) can be adjusted to avoid relevant personal exposure conditions and contamination of the work environment by NMs, thus ensuring safer conditions.
Collapse
Affiliation(s)
- Andrea Spinazzè
- Dipartimento di Scienza e Alta Tecnologia, Università degli Studi dell'Insubria.
| | | | | | | | | | | | | |
Collapse
|
398
|
Spinazzè A, Cattaneo A, Borghi F, Del Buono L, Campagnolo D, Rovelli S, Cavallo DM. Probabilistic approach for the risk assessment of nanomaterials: A case study for graphene nanoplatelets. Int J Hyg Environ Health 2018; 222:76-83. [PMID: 30150162 DOI: 10.1016/j.ijheh.2018.08.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 06/06/2018] [Accepted: 08/15/2018] [Indexed: 11/18/2022]
Abstract
An experimental probabilistic approach for health risk assessment was applied for graphene nanoplatelets (GNPs). The hazard assessment indicated a low level of toxicity for the GNPs. The benchmark dose method, based on sub-chronic and chronic inhalation exposure studies, was used to quantify a guidance value (BMCh) for occupational inhalation exposure to GNPs, expressed as a lognormal distribution with a geometric mean ± geometric standard deviation of 0.212 ± 7.79 mg/m3 and 9.37 × 104 ± 7.6 particle/cm3. Exposure scenarios (ES) were defined based on the scientific literature for large-scale production (ES1) and manufacturing (ES2) of GNPs; a third ES, concerning in-lab handling of GNPs (ES3) was based on results of experiments performed for this study. A probability distribution function was then assumed for each ES. The risk magnitude was calculated using a risk characterization ratio (RCR), defined as the ratio of the exposure distributions and the BMCh distribution. All three ES resulted in RCR distributions ≥1 (i.e. risk present); however, none of the ES had a statistically significant level of risk at a 95% confidence interval. A sensitivity analysis indicated that ∼75% of the variation in the RCR distributions was due to uncertainties in the BMCh calculation.
Collapse
Affiliation(s)
- Andrea Spinazzè
- Dipartimento di Scienza e Alta Tecnologia, Università degli Studi dell'Insubria, Via Valleggio 11 - 22100, Como (CO), Italy.
| | - Andrea Cattaneo
- Dipartimento di Scienza e Alta Tecnologia, Università degli Studi dell'Insubria, Via Valleggio 11 - 22100, Como (CO), Italy
| | - Francesca Borghi
- Dipartimento di Scienza e Alta Tecnologia, Università degli Studi dell'Insubria, Via Valleggio 11 - 22100, Como (CO), Italy
| | - Luca Del Buono
- Dipartimento di Scienza e Alta Tecnologia, Università degli Studi dell'Insubria, Via Valleggio 11 - 22100, Como (CO), Italy
| | - Davide Campagnolo
- Dipartimento di Scienza e Alta Tecnologia, Università degli Studi dell'Insubria, Via Valleggio 11 - 22100, Como (CO), Italy
| | - Sabrina Rovelli
- Dipartimento di Scienza e Alta Tecnologia, Università degli Studi dell'Insubria, Via Valleggio 11 - 22100, Como (CO), Italy
| | - Domenico M Cavallo
- Dipartimento di Scienza e Alta Tecnologia, Università degli Studi dell'Insubria, Via Valleggio 11 - 22100, Como (CO), Italy
| |
Collapse
|
399
|
Wu Y, Wang F, Wang S, Ma J, Xu M, Gao M, Liu R, Chen W, Liu S. Reduction of graphene oxide alters its cyto-compatibility towards primary and immortalized macrophages. NANOSCALE 2018; 10:14637-14650. [PMID: 30028471 DOI: 10.1039/c8nr02798f] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Graphene oxide (GO) and its derivatives (e.g., reduced graphene oxide, RGO) have shown great promise in biomedicine. Although many studies have been conducted to understand the relative cyto-compatibility between GO and RGO materials, the results are inconclusive and controversial. In this study, we compared the biocompatibility aspects (e.g. cytotoxicity, pro-inflammatory effects and impairment of cellular morphology) between parental and reduced GOs towards macrophages using primary bone marrow-derived macrophages (BMDMs) and J774A.1 cell line. Two RGOs (RGO1 and RGO2) with differential reduction levels relative to the parental GO were prepared. Intriguingly, besides loss of oxygen-containing functional groups, significant morphological alteration of GO occurred, from the sheet-like structure to a polygonal curled shape for RGO, without significant aggregation in biological medium. Cytotoxicity assessment unveiled that the RGOs were more toxic than pristine GO to both types of cells. It was surprising to find for the first time (to our knowledge) that GO and RGOs elicited different effects on the morphological changes of BMDMs, as reflected by elongated protrusions from GO treatment and shortened protrusions from the RGOs. Furthermore, RGOs induced greater pro-inflammatory responses than GO, especially in BMDMs. Compromised cyto-compatibility of RGOs was attributable (at least partially) to their greater oxidative stress in macrophages. Mechanistically, these differences in bio-reactivities between GO and RGO should be boiled down to (at least in part) the synergistic effects from the variation of oxygen-containing functional groups and the distinct morphology in between. This study unearthed the crucial contribution of reduction-mediated detrimental cellular effects between GO and RGO towards macrophages.
Collapse
Affiliation(s)
- Yakun Wu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
400
|
Rahmani Z, Sahraei R, Ghaemy M. Preparation of spherical porous hydrogel beads based on ion-crosslinked gum tragacanth and graphene oxide: Study of drug delivery behavior. Carbohydr Polym 2018; 194:34-42. [DOI: 10.1016/j.carbpol.2018.04.022] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 03/10/2018] [Accepted: 04/03/2018] [Indexed: 12/19/2022]
|