4051
|
Mercer TR, Dinger ME, Mariani J, Kosik KS, Mehler MF, Mattick JS. Noncoding RNAs in Long-Term Memory Formation. Neuroscientist 2007; 14:434-45. [DOI: 10.1177/1073858408319187] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Current research exploring the molecular basis of memory focuses mainly on proteins despite recent genomic studies reporting the abundant transcription of non-protein-coding RNA (ncRNA). Although ncRNAs are involved in a diverse range of biological processes, they are particularly prevalent within the nervous system, where they contribute towards the complexity and function of the mammalian brain. In this review, we apply recent advances in ncRNA biology to predict a critical role for ncRNAs in the molecular mechanisms underlying memory formation and maintenance. We describe the role of ncRNAs in regulating the translation, stability, and editing of mRNA populations in response to synaptic activity during memory formation and the role of ncRNAs in the epigenetic and transcriptional programs that underlie long-term memory storage. We also consider ncRNAs acting as an additional avenue of communication between neurons by their intercellular trafficking. Taken together, the emerging evidence suggests a central role for ncRNAs in memory formation and provokes novel research directions in this field. NEUROSCIENTIST 14(5):434—445, 2008. DOI: 10.1177/1073858408319187
Collapse
Affiliation(s)
- Tim R. Mercer
- Institute for Molecular Biosciences, University of Queensland,
Brisbane, Australia
| | - Marcel E. Dinger
- Institute for Molecular Biosciences, University of Queensland,
Brisbane, Australia
| | - Jean Mariani
- Université Pierre et Marie Curie-Paris 6, UMR 7102-Neurobiologie
des Processus Adaptatifs (NPA): CNRS, Paris, France
| | - Kenneth S. Kosik
- Neuroscience Research Institute, University of California
at Santa Barbara, Santa Barbara, California
| | - Mark F. Mehler
- Institute for Brain Disorders and Neural Regeneration,
Departments of Neurology, Neuroscience and Psychiatry and Behavioral Sciences,
Einstein Cancer Center and Rose F. Kennedy Center for Research in Mental Retardation
and Developmental Disabilities, Albert Einstein College of Medicine, Bronx,
New York
| | - John S. Mattick
- Institute for Molecular Biosciences, University of Queensland,
Brisbane, Australia,
| |
Collapse
|
4052
|
Kerjan G, Gleeson JG. A missed exit: Reelin sets in motion Dab1 polyubiquitination to put the break on neuronal migration. Genes Dev 2007; 21:2850-4. [DOI: 10.1101/gad.1622907] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
4053
|
Gosso FM, de Geus EJC, Polderman TJC, Boomsma DI, Posthuma D, Heutink P. Exploring the functional role of the CHRM2 gene in human cognition: results from a dense genotyping and brain expression study. BMC MEDICAL GENETICS 2007; 8:66. [PMID: 17996044 PMCID: PMC2198911 DOI: 10.1186/1471-2350-8-66] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2007] [Accepted: 11/08/2007] [Indexed: 02/02/2023]
Abstract
BACKGROUND The CHRM2 gene, located on the long arm of chromosome 7 (7q31-35), is involved in neuronal excitability, synaptic plasticity and feedback regulation of acetylcholine release, and has been implicated in higher cognitive processing. The aim of this study is the identification of functional (non)coding variants underlying cognitive phenotypic variation. METHODS We previously reported an association between polymorphisms in the 5'UTR regions of the CHRM2 gene and intelligence.. However, no functional variants within this area have currently been identified. In order to identify the relevant functional variant(s), we conducted a denser coverage of SNPs, using two independent Dutch cohorts, consisting of a children's sample (N = 371 ss; mean age 12.4) and an adult sample (N= 391 ss; mean age 37.6). For all individuals standardized intelligence measures were available. Subsequently, we investigated genotype-dependent CHRM2 gene expression levels in the brain, to explore putative enhancer/inhibition activity exerted by variants within the muscarinic acetylcholinergic receptor. RESULTS Using a test of within-family association two of the previously reported variants - rs2061174, and rs324650 - were again strongly associated with intelligence (P < 0.01). A new SNP (rs2350780) showed a trend towards significance. SNP rs324650, is located within a short interspersed repeat (SINE). Although the function of short interspersed repeats remains contentious, recent research revealed potential functionality of SINE repeats in a gene-regulatory context. Gene-expression levels in post-mortem brain material, however were not dependent on rs324650 genotype. CONCLUSION Using a denser coverage of SNPs in the CHRM2 gene, we confirmed the 5'UTR regions to be most interesting in the context of intelligence, and ruled out other regions of this gene. Although no correlation between genomic variants and gene expression was found, it would be interesting to examine allele-specific effects on CHRM2 transcripts expression in much more detail, for example in relation to transcripts specific halve-life and their relation to LTP and memory.
Collapse
Affiliation(s)
- Florencia M Gosso
- Dept of Biological Psychology, Vrije Universiteit, Amsterdam, The Netherlands.
| | | | | | | | | | | |
Collapse
|
4054
|
Huang L, Min JN, Masters S, Mivechi NF, Moskophidis D. Insights into function and regulation of small heat shock protein 25 (HSPB1) in a mouse model with targeted gene disruption. Genesis 2007; 45:487-501. [PMID: 17661394 DOI: 10.1002/dvg.20319] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The mammalian small heat shock protein (sHSPs) family is comprised of 10 members and includes HSPB1, which is proposed to play an essential role in cellular physiology, acting as a molecular chaperone to regulate diverse cellular processes. Whilst differential roles for sHSPs are suggested for specific tissues, the relative contribution of individual sHSP family members in cellular and organ physiology remains unclear. To address the function of HSPB1 in vivo and determine its tissue-specific expression during development and in the adult, we generated knock-in mice where the coding sequence of hspb1 is replaced by a lacZ reporter gene. Hspb1 expression marks myogenic differentiation with specific expression first confined to developing cardiac muscles and the vascular system, and later in skeletal muscles with specific expression at advanced stages of myoblast differentiation. In the adult, hspb1 expression was observed in other tissues, such as stratified squamous epithelium of skin, oronasal cavity, tongue, esophagus, and uterine cervix but its expression was most prominent in the musculature. Interestingly, in cardiac muscle hsbp1 expression was down-regulated during the neonatal period and maintained to a relatively low steady-level throughout adulthood. Despite this widespread expression, hspb1-/- mice were viable and fertile with no apparent morphological abnormalities in tissues under physiological conditions. However, at the cellular level and under stress conditions (heat challenge), HSPB1 act synergistically with the stress-induced HSPA1 (HSP70) in thermotolerance development, protecting cells from apoptosis. Our data thus indicate a nonessential role for HSPB1 in embryonic development and for maintenance of tissues under physiological conditions, but also shows that it plays an important role by acting synergistically with other HSPs during stress conditions to exert cytoprotection and anti-apoptotic effects.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents, Phytogenic/pharmacology
- Apoptosis
- Blastocyst
- Blotting, Southern
- Blotting, Western
- Bone Marrow/metabolism
- Crosses, Genetic
- Embryo, Mammalian/cytology
- Embryo, Mammalian/drug effects
- Embryo, Mammalian/radiation effects
- Etoposide/pharmacology
- Female
- Fever
- Gene Expression Regulation, Developmental
- Gene Targeting
- Heat-Shock Proteins/genetics
- Heat-Shock Proteins/physiology
- Integrases/metabolism
- Lac Operon/physiology
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Molecular Chaperones
- Muscle, Skeletal/cytology
- Muscle, Skeletal/metabolism
- Neoplasm Proteins/genetics
- Neoplasm Proteins/physiology
- Radiation, Ionizing
- beta-Galactosidase
Collapse
Affiliation(s)
- Lei Huang
- Center for Molecular Chaperones/Radiobiology and Cancer Virology, Medical College of Georgia, 1410 Laney Walker Blvd, CN3143, Augusta, GA 30912, USA
| | | | | | | | | |
Collapse
|
4055
|
Lee EF, Boline J, Toga AW. A high-resolution anatomical framework of the neonatal mouse brain for managing gene expression data. Front Neuroinform 2007; 1:6. [PMID: 18974801 PMCID: PMC2525996 DOI: 10.3389/neuro.11.006.2007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2007] [Accepted: 10/12/2007] [Indexed: 11/14/2022] Open
Abstract
This study aims to provide a high-resolution atlas and use it as an anatomical framework to localize the gene expression data for mouse brain on postnatal day 0 (P0). A color Nissl-stained volume with a resolution of 13.3 x 50 x 13.3 mu(3) was constructed and co-registered to a standard anatomical space defined by an averaged geometry of C57BL/6J P0 mouse brains. A 145 anatomical structures were delineated based on the histological images. Anatomical relationships of delineated structures were established based on the hierarchical relations defined in the atlas of adult mouse brain (MacKenzie-Graham et al., 2004) so the P0 atlas can be related to the database associated with the adult atlas. The co-registered multimodal atlas as well as the original anatomical delineations is available for download at http://www.loni.ucla.edu/Atlases/. The region-specific anatomical framework based on the neonatal atlas allows for the analysis of gene activity within a high-resolution anatomical space at an early developmental stage. We demonstrated the potential application of this framework by incorporating gene expression data generated using in situ hybridization to the atlas space. By normalizing the gene expression patterns revealed by different images, experimental results from separate studies can be compared and summarized in an anatomical context. Co-displaying multiple registered datasets in the atlas space allows for 3D reconstruction of the co-expression patterns of the different genes in the atlas space, hence providing better insight into the relationship between the differentiated distribution pattern of gene products and specific anatomical systems.
Collapse
Affiliation(s)
- Erh-Fang Lee
- Department of Neurology, UCLA School of MedicineUSA
| | - Jyl Boline
- Department of Neurology, UCLA School of MedicineUSA
| | | |
Collapse
|
4056
|
Hjornevik T, Leergaard TB, Darine D, Moldestad O, Dale AM, Willoch F, Bjaalie JG. Three-dimensional atlas system for mouse and rat brain imaging data. Front Neuroinform 2007; 1:4. [PMID: 18974799 PMCID: PMC2525992 DOI: 10.3389/neuro.11.004.2007] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2007] [Accepted: 10/09/2007] [Indexed: 11/13/2022] Open
Abstract
Tomographic neuroimaging techniques allow visualization of functionally and structurally specific signals in the mouse and rat brain. The interpretation of the image data relies on accurate determination of anatomical location, which is frequently obstructed by the lack of structural information in the data sets. Positron emission tomography (PET) generally yields images with low spatial resolution and little structural contrast, and many experimental magnetic resonance imaging (MRI) paradigms give specific signal enhancements but often limited anatomical information. Side-by-side comparison of image data with conventional atlas diagram is hampered by the 2-D format of the atlases, and by the lack of an analytical environment for accumulation of data and integrative analyses. We here present a method for reconstructing 3-D atlases from digital 2-D atlas diagrams, and exemplify 3-D atlas-based analysis of PET and MRI data. The reconstruction procedure is based on two seminal mouse and brain atlases, but is applicable to any stereotaxic atlas. Currently, 30 mouse brain structures and 60 rat brain structures have been reconstructed. To exploit the 3-D atlas models, we have developed a multi-platform atlas tool (available via The Rodent Workbench, http://rbwb.org) which allows combined visualization of experimental image data within the 3-D atlas space together with 3-D viewing and user-defined slicing of selected atlas structures. The tool presented facilitates assignment of location and comparative analysis of signal location in tomographic images with low structural contrast.
Collapse
Affiliation(s)
- Trine Hjornevik
- Centre for Molecular Biology and Neuroscience & Institute of Basic Medical Sciences, University of OsloNorway
| | - Trygve B. Leergaard
- Centre for Molecular Biology and Neuroscience & Institute of Basic Medical Sciences, University of OsloNorway
| | - Dmitri Darine
- Centre for Molecular Biology and Neuroscience & Institute of Basic Medical Sciences, University of OsloNorway
| | - Olve Moldestad
- Centre for Molecular Biology and Neuroscience & Institute of Basic Medical Sciences, University of OsloNorway
| | - Anders M. Dale
- Departments of Neurosciences and Radiology, University of California, San DiegoUSA
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical SchoolUSA
| | - Frode Willoch
- Centre for Molecular Biology and Neuroscience & Institute of Basic Medical Sciences, University of OsloNorway
- Department of Radiology, Aker University HospitalNorway
| | - Jan G. Bjaalie
- Centre for Molecular Biology and Neuroscience & Institute of Basic Medical Sciences, University of OsloNorway
| |
Collapse
|
4057
|
Menuz K, Stroud RM, Nicoll RA, Hays FA. TARP Auxiliary Subunits Switch AMPA Receptor Antagonists into Partial Agonists. Science 2007; 318:815-7. [DOI: 10.1126/science.1146317] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
4058
|
Wang S, Zhang J, Zhao A, Hipkens S, Magnuson MA, Gu G. Loss of Myt1 function partially compromises endocrine islet cell differentiation and pancreatic physiological function in the mouse. Mech Dev 2007; 124:898-910. [PMID: 17928203 PMCID: PMC2141686 DOI: 10.1016/j.mod.2007.08.004] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2007] [Revised: 08/22/2007] [Accepted: 08/25/2007] [Indexed: 10/22/2022]
Abstract
Myelin transcription factor 1 (Myt1) is one of the three vertebrate C2HC-type zinc finger transcription factors that include Myt1 (Nzf1), Myt1L (Png1), and Myt3 (Nzf3, St18). All three paralogs are widely expressed in developing neuronal cells. Yet their function for mammalian development has not been investigated directly. Here we report that only Myt1 is expressed in the embryonic pancreas, in both endocrine progenitors and differentiated islet cells. Myt1(-/-) animals die postnatally, likely due to confounding effects in multiple tissues. The endocrine tissues in the embryonic Myt1(-/-) pancreas contained abnormal islet cells that expressed multiple hormones; although hormone levels were normal. We also created pancreas-specific Myt1 knockout mice. These mutant animals had no obvious physical defects from their wild-type littermates. Male mutant animals had reduced glucose-clearing abilities and abnormal multi-hormone-expressing cells present in their endocrine islets. In addition, they also had reduced Glut2 expression, and attenuated glucose-induced insulin secretion in the adult islets. Surprisingly, the expression of the Myt1 paralogs, Myt1l and Myt3, was induced in the embryonic Myt1(-/-) pancreas. The consequences of Myt1 inactivation in the developing pancreas could be masked by activation of its paralogs, Myt1l and Myt3. These findings suggest Myt1 is involved in proper endocrine differentiation and function.
Collapse
Affiliation(s)
- Sui Wang
- Program in Developmental Biology, Department of Cell and Developmental Biology, Vanderbilt University Medical Center, 465 21st Avenue South, Room 4128, Nashville, TN 37232, USA
| | | | | | | | | | | |
Collapse
|
4059
|
Reduced sodium current in Purkinje neurons from Nav1.1 mutant mice: implications for ataxia in severe myoclonic epilepsy in infancy. J Neurosci 2007; 27:11065-74. [PMID: 17928448 DOI: 10.1523/jneurosci.2162-07.2007] [Citation(s) in RCA: 208] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Loss-of-function mutations of Na(V)1.1 channels cause severe myoclonic epilepsy in infancy (SMEI), which is accompanied by severe ataxia that contributes substantially to functional impairment and premature deaths. Mutant mice lacking Na(V)1.1 channels provide a genetic model for SMEI, exhibiting severe seizures and premature death on postnatal day 15. Behavioral assessment indicated severe motor deficits in mutant mice, including irregularity of stride length during locomotion, impaired motor reflexes in grasping, and mild tremor in limbs when immobile, consistent with cerebellar dysfunction. Immunohistochemical studies showed that Na(V)1.1 and Na(V)1.6 channels are the primary sodium channel isoforms expressed in cerebellar Purkinje neurons. The amplitudes of whole-cell peak, persistent, and resurgent sodium currents in Purkinje neurons were reduced by 58-69%, without detectable changes in the kinetics or voltage dependence of channel activation or inactivation. Nonlinear loss of sodium current in Purkinje neurons from heterozygous and homozygous mutant animals suggested partial compensatory upregulation of Na(V)1.6 channel activity. Current-clamp recordings revealed that the firing rates of Purkinje neurons from mutant mice were substantially reduced, with no effect on threshold for action potential generation. Our results show that Na(V)1.1 channels play a crucial role in the excitability of cerebellar Purkinje neurons, with major contributions to peak, persistent, and resurgent forms of sodium current and to sustained action potential firing. Loss of these channels in Purkinje neurons of mutant mice and SMEI patients may be sufficient to cause their ataxia and related functional deficits.
Collapse
|
4060
|
Single and combined silencing of ERK1 and ERK2 reveals their positive contribution to growth signaling depending on their expression levels. Mol Cell Biol 2007; 28:511-27. [PMID: 17967895 DOI: 10.1128/mcb.00800-07] [Citation(s) in RCA: 158] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The proteins ERK1 and ERK2 are highly similar, are ubiquitously expressed, and share activators and substrates; however, erk2 gene invalidation is lethal in mice, while erk1 inactivation is not. We ablated ERK1 and/or ERK2 by RNA interference and explored their relative roles in cell proliferation and immediate-early gene (IEG) expression. Reducing expression of either ERK1 or ERK2 lowered IEG induction by serum; however, silencing of only ERK2 slowed down cell proliferation. When both isoforms were silenced simultaneously, compensating activation of the residual pool of ERK1/2 masked a more deleterious effect on cell proliferation. It was only when ERK2 activation was clamped at a limiting level that we demonstrated the positive contribution of ERK1 to cell proliferation. We then established that ERK isoforms are activated indiscriminately and that their expression ratio correlated exactly with their activation ratio. Furthermore, we determined for the first time that ERK1 and ERK2 kinase activities are indistinguishable in vitro and that erk gene dosage is essential for survival of mice. We propose that the expression levels of ERK1 and ERK2 drive their apparent biological differences. Indeed, ERK1 is dispensable in some vertebrates, since it is absent from chicken and frog genomes despite being present in all mammals and fishes sequenced so far.
Collapse
|
4061
|
Fabes J, Anderson P, Brennan C, Bolsover S. Regeneration-enhancing effects of EphA4 blocking peptide following corticospinal tract injury in adult rat spinal cord. Eur J Neurosci 2007; 26:2496-505. [DOI: 10.1111/j.1460-9568.2007.05859.x] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
4062
|
Lee HJ, Rao JS, Chang L, Rapoport SI, Bazinet RP. Chronic N-methyl-D-aspartate administration increases the turnover of arachidonic acid within brain phospholipids of the unanesthetized rat. J Lipid Res 2007; 49:162-8. [PMID: 17957090 DOI: 10.1194/jlr.m700406-jlr200] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Whereas antibipolar drug administration to rats reduces brain arachidonic acid turnover, excessive N-methyl-d-aspartate (NMDA) signaling is thought to contribute to bipolar disorder symptoms and may increase arachidonic acid turnover in rat brain phospholipids. To determine whether chronic NMDA would increase brain arachidonic acid turnover, rats were daily administered NMDA (25 mg/kg, ip) or vehicle for 21 days. In unanesthetized rats, on day 21, [1-(14)C]arachidonic acid was infused intravenously and arterial blood plasma was sampled until the animal was euthanized at 5 min and its microwaved brain was subjected to chemical and radiotracer analysis. Using equations from our in vivo fatty acid model, we found that compared with controls, chronic NMDA increased the net rate of incorporation of plasma unesterified arachidonic acid into brain phospholipids (25-34%) as well as the turnover of arachidonic acid within brain phospholipids (35-58%). These changes were absent at 3 h after a single NMDA injection. The changes, opposite to those after chronic administration of antimanic drugs to rats, suggest that excessive NMDA signaling via arachidonic acid may be a model of upregulated arachidonic acid turnover in brain phospholipids.
Collapse
Affiliation(s)
- Ho-Joo Lee
- Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | |
Collapse
|
4063
|
Lockstone HE, Harris LW, Swatton JE, Wayland MT, Holland AJ, Bahn S. Gene expression profiling in the adult Down syndrome brain. Genomics 2007; 90:647-60. [PMID: 17950572 DOI: 10.1016/j.ygeno.2007.08.005] [Citation(s) in RCA: 177] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2007] [Revised: 08/15/2007] [Accepted: 08/16/2007] [Indexed: 11/15/2022]
Abstract
The mechanisms by which trisomy 21 leads to the characteristic Down syndrome (DS) phenotype are unclear. We used whole genome microarrays to characterize for the first time the transcriptome of human adult brain tissue (dorsolateral prefrontal cortex) from seven DS subjects and eight controls. These data were coanalyzed with a publicly available dataset from fetal DS tissue and functional profiling was performed to identify the biological processes central to DS and those that may be related to late onset pathologies, particularly Alzheimer disease neuropathology. A total of 685 probe sets were differentially expressed between adult DS and control brains at a stringent significance threshold (adjusted p value (q) < 0.005), 70% of these being up-regulated in DS. Over 25% of genes on chromosome 21 were differentially expressed in comparison to a median of 4.4% for all chromosomes. The unique profile of up-regulation on chromosome 21, consistent with primary dosage effects, was accompanied by widespread transcriptional disruption. The critical Alzheimer disease gene, APP, located on chromosome 21, was not found to be up-regulated in adult brain by microarray or QPCR analysis. However, numerous other genes functionally linked to APP processing were dysregulated. Functional profiling of genes dysregulated in both fetal and adult datasets identified categories including development (notably Notch signaling and Dlx family genes), lipid transport, and cellular proliferation. In the adult brain these processes were concomitant with cytoskeletal regulation and vesicle trafficking categories, and increased immune response and oxidative stress response, which are likely linked to the development of Alzheimer pathology in individuals with DS.
Collapse
Affiliation(s)
- H E Lockstone
- Institute of Biotechnology, University of Cambridge, Cambridge, UK
| | | | | | | | | | | |
Collapse
|
4064
|
Franken P, Thomason R, Heller HC, O'Hara BF. A non-circadian role for clock-genes in sleep homeostasis: a strain comparison. BMC Neurosci 2007; 8:87. [PMID: 17945005 PMCID: PMC2140062 DOI: 10.1186/1471-2202-8-87] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2007] [Accepted: 10/18/2007] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND We have previously reported that the expression of circadian clock-genes increases in the cerebral cortex after sleep deprivation (SD) and that the sleep rebound following SD is attenuated in mice deficient for one or more clock-genes. We hypothesized that besides generating circadian rhythms, clock-genes also play a role in the homeostatic regulation of sleep. Here we follow the time course of the forebrain changes in the expression of the clock-genes period (per)-1, per2, and of the clock-controlled gene albumin D-binding protein (dbp) during a 6 h SD and subsequent recovery sleep in three inbred strains of mice for which the homeostatic sleep rebound following SD differs. We reasoned that if clock genes are functionally implicated in sleep homeostasis then the SD-induced changes in gene expression should vary according to the genotypic differences in the sleep rebound. RESULTS In all three strains per expression was increased when animals were kept awake but the rate of increase during the SD as well as the relative increase in per after 6 h SD were highest in the strain for which the sleep rebound was smallest; i.e., DBA/2J (D2). Moreover, whereas in the other two strains per1 and per2 reverted to control levels with recovery sleep, per2 expression specifically, remained elevated in D2 mice. dbp expression increased during the light period both during baseline and during SD although levels were reduced during the latter condition compared to baseline. In contrast to per2, dbp expression reverted to control levels with recovery sleep in D2 only, whereas in the two other strains expression remained decreased. CONCLUSION These findings support and extend our previous findings that clock genes in the forebrain are implicated in the homeostatic regulation of sleep and suggest that sustained, high levels of per2 expression may negatively impact recovery sleep.
Collapse
Affiliation(s)
- Paul Franken
- Department of Biological Sciences, Stanford University, Stanford, CA, USA.
| | | | | | | |
Collapse
|
4065
|
Hotta K, Mitsuhara K, Takahashi H, Inaba K, Oka K, Gojobori T, Ikeo K. A web-based interactive developmental table for the ascidian Ciona intestinalis, including 3D real-image embryo reconstructions: I. From fertilized egg to hatching larva. Dev Dyn 2007; 236:1790-805. [PMID: 17557317 DOI: 10.1002/dvdy.21188] [Citation(s) in RCA: 192] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The ascidian chordate Ciona intestinalis is an established model organism frequently exploited to examine cellular development and a rapidly emerging model organism with a strong potential for developmental systems biology studies. However, there is no standardized developmental table for this organism. In this study, we made the standard web-based image resource called FABA: Four-dimensional Ascidian Body Atlas including ascidian's three-dimensional (3D) and cross-sectional images through the developmental time course. These images were reconstructed from more than 3,000 high-resolution real images collected by confocal laser scanning microscopy (CLSM) at newly defined 26 distinct developmental stages (stages 1-26) from fertilized egg to hatching larva, which were grouped into six periods named the zygote, cleavage, gastrula, neurula, tailbud, and larva periods. Our data set will be helpful in standardizing developmental stages for morphology comparison as well as for providing the guideline for several functional studies of a body plan in chordate.
Collapse
Affiliation(s)
- Kohji Hotta
- Department of Bioscience and Informatics, Faculty of Science and Technology, Keio University, Yokohama, Japan.
| | | | | | | | | | | | | |
Collapse
|
4066
|
Moore EB, Poliakov AV, Lincoln P, Brinkley JF. MindSeer: a portable and extensible tool for visualization of structural and functional neuroimaging data. BMC Bioinformatics 2007; 8:389. [PMID: 17937818 PMCID: PMC2099449 DOI: 10.1186/1471-2105-8-389] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2007] [Accepted: 10/15/2007] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Three-dimensional (3-D) visualization of multimodality neuroimaging data provides a powerful technique for viewing the relationship between structure and function. A number of applications are available that include some aspect of 3-D visualization, including both free and commercial products. These applications range from highly specific programs for a single modality, to general purpose toolkits that include many image processing functions in addition to visualization. However, few if any of these combine both stand-alone and remote multi-modality visualization in an open source, portable and extensible tool that is easy to install and use, yet can be included as a component of a larger information system. RESULTS We have developed a new open source multimodality 3-D visualization application, called MindSeer, that has these features: integrated and interactive 3-D volume and surface visualization, Java and Java3D for true cross-platform portability, one-click installation and startup, integrated data management to help organize large studies, extensibility through plugins, transparent remote visualization, and the ability to be integrated into larger information management systems. We describe the design and implementation of the system, as well as several case studies that demonstrate its utility. These case studies are available as tutorials or demos on the associated website: http://sig.biostr.washington.edu/projects/MindSeer. CONCLUSION MindSeer provides a powerful visualization tool for multimodality neuroimaging data. Its architecture and unique features also allow it to be extended into other visualization domains within biomedicine.
Collapse
Affiliation(s)
- Eider B Moore
- Structural Informatics Group, Departments of Biological Structure and Medical Education and Biomedical Informatics, University of Washington, Seattle, USA
| | - Andrew V Poliakov
- Structural Informatics Group, Departments of Biological Structure and Medical Education and Biomedical Informatics, University of Washington, Seattle, USA
| | - Peter Lincoln
- Department of Computer Science and Engineering, University of Washington, Seattle, USA
| | - James F Brinkley
- Structural Informatics Group, Departments of Biological Structure and Medical Education and Biomedical Informatics, University of Washington, Seattle, USA
- Department of Computer Science and Engineering, University of Washington, Seattle, USA
| |
Collapse
|
4067
|
McKay BE, Placzek AN, Dani JA. Regulation of synaptic transmission and plasticity by neuronal nicotinic acetylcholine receptors. Biochem Pharmacol 2007; 74:1120-33. [PMID: 17689497 PMCID: PMC2047292 DOI: 10.1016/j.bcp.2007.07.001] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2007] [Revised: 06/29/2007] [Accepted: 07/02/2007] [Indexed: 11/30/2022]
Abstract
Nicotinic acetylcholine receptors (nAChRs) are widely expressed throughout the central nervous system and participate in a variety of physiological functions. Recent advances have revealed roles of nAChRs in the regulation of synaptic transmission and synaptic plasticity, particularly in the hippocampus and midbrain dopamine centers. In general, activation of nAChRs causes membrane depolarization and directly and indirectly increases the intracellular calcium concentration. Thus, when nAChRs are expressed on presynaptic membranes their activation generally increases the probability of neurotransmitter release. When expressed on postsynaptic membranes, nAChR-initiated calcium signals and depolarization activate intracellular signaling mechanisms and gene transcription. Together, the presynaptic and postsynaptic effects of nAChRs generate and facilitate the induction of long-term changes in synaptic transmission. The direction of hippocampal nAChR-mediated synaptic plasticity - either potentiation or depression - depends on the timing of nAChR activation relative to coincident presynaptic and postsynaptic electrical activity, and also depends on the location of cholinergic stimulation within the local network. Therapeutic activation of nAChRs may prove efficacious in the treatment of neuropathologies where synaptic transmission is compromised, as in Alzheimer's or Parkinson's disease.
Collapse
Affiliation(s)
- Bruce E McKay
- Department of Neuroscience, Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | |
Collapse
|
4068
|
Newrzella D, Pahlavan PS, Krüger C, Boehm C, Sorgenfrei O, Schröck H, Eisenhardt G, Bischoff N, Vogt G, Wafzig O, Rossner M, Maurer MH, Hiemisch H, Bach A, Kuschinsky W, Schneider A. The functional genome of CA1 and CA3 neurons under native conditions and in response to ischemia. BMC Genomics 2007; 8:370. [PMID: 17937787 PMCID: PMC2194787 DOI: 10.1186/1471-2164-8-370] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2007] [Accepted: 10/15/2007] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The different physiological repertoire of CA3 and CA1 neurons in the hippocampus, as well as their differing behaviour after noxious stimuli are ultimately based upon differences in the expressed genome. We have compared CA3 and CA1 gene expression in the uninjured brain, and after cerebral ischemia using laser microdissection (LMD), RNA amplification, and array hybridization. RESULTS Profiling in CA1 vs. CA3 under normoxic conditions detected more than 1000 differentially expressed genes that belong to different, physiologically relevant gene ontology groups in both cell types. The comparison of each region under normoxic and ischemic conditions revealed more than 5000 ischemia-regulated genes for each individual cell type. Surprisingly, there was a high co-regulation in both regions. In the ischemic state, only about 100 genes were found to be differentially expressed in CA3 and CA1. The majority of these genes were also different in the native state. A minority of interesting genes (e.g. inhibinbetaA) displayed divergent expression preference under native and ischemic conditions with partially opposing directions of regulation in both cell types. CONCLUSION The differences found in two morphologically very similar cell types situated next to each other in the CNS are large providing a rational basis for physiological differences. Unexpectedly, the genomic response to ischemia is highly similar in these two neuron types, leading to a substantial attenuation of functional genomic differences in these two cell types. Also, the majority of changes that exist in the ischemic state are not generated de novo by the ischemic stimulus, but are preexistant from the genomic repertoire in the native situation. This unexpected influence of a strong noxious stimulus on cell-specific gene expression differences can be explained by the activation of a cell-type independent conserved gene-expression program. Our data generate both novel insights into the relation of the quiescent and stimulus-induced transcriptome in different cells, and provide a large dataset to the research community, both for mapping purposes, as well as for physiological and pathophysiological research.
Collapse
Affiliation(s)
- Dieter Newrzella
- Sygnis Bioscience, Im Neuenheimer Feld 515, 69120 Heidelberg, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4069
|
Lobo MK, Cui Y, Ostlund SB, Balleine BW, Yang XW. Genetic control of instrumental conditioning by striatopallidal neuron-specific S1P receptor Gpr6. Nat Neurosci 2007; 10:1395-7. [PMID: 17934457 DOI: 10.1038/nn1987] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2007] [Accepted: 08/30/2007] [Indexed: 11/09/2022]
Abstract
Instrumental conditioning allows animals to learn about the consequences of their own actions, but the underpinning molecular mechanisms remain elusive. Here we show that the sphingosine-1-phosphate (S1P) receptor Gpr6 is selectively expressed in the striatopallidal neurons in the striatum. Gpr6-deficient mice showed reduced striatal cyclic AMP production in vitro and selective alterations in instrumental conditioning in vivo. Thus, Gpr6 is the first striatopallidal neuron-specific genetic regulator of instrumental conditioning in a mammal.
Collapse
Affiliation(s)
- Mary Kay Lobo
- Center for Neurobehavioral Genetics, Jane and Terry Semel Institute for Neuroscience & Human Behavior, University of California at Los Angeles, 695 Charles Young Drive South, Los Angeles, California 90095, USA
| | | | | | | | | |
Collapse
|
4070
|
The mouse mutants recoil wobbler and nmf373 represent a series of Grm1 mutations. Mamm Genome 2007; 18:749-56. [PMID: 17934773 DOI: 10.1007/s00335-007-9064-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2007] [Accepted: 08/13/2007] [Indexed: 10/22/2022]
Abstract
The identification of novel mutant alleles is important for understanding critical functional domains of a protein and establishing genotype:phenotype correlations. The recoil wobbler (rcw) allelic series of spontaneous ataxic mutants and the ENU-induced mutant nmf373 genetically mapped to a shared region of chromosome 10. Their mutant phenotypes are strikingly similar; all have an ataxic phenotype that is recessive, early-onset, and is not associated with neurodegeneration. In this study we used complementation tests to show that these series of mutants are allelic to a knockout mutant of Grm1. Subsequently, a duplication of exon 4 and three missense mutations were identified in Grm1: I160T, E292D, and G337E. All mutations occurred within the ligand-binding region and changed conserved amino acids. In the rcw mutant, the Grm1 gene is expressed and the protein product is properly localized to the molecular layer of the cerebellar cortex. Grm1 is responsible for the generation of inositol 1,4,5-trisphosphate (IP(3)). The inositol second messenger system is the central mechanism for calcium release from intracellular stores in cerebellar Purkinje cells. Several of the genes involved in this pathway are mutated in mouse ataxic disorders. The novel rcw mutants represent a resource that will have utility for further studies of inositol second-messenger-system defects in neurogenetic disorders.
Collapse
|
4071
|
Chen CT, Ma DWL, Kim JH, Mount HTJ, Bazinet RP. The low density lipoprotein receptor is not necessary for maintaining mouse brain polyunsaturated fatty acid concentrations. J Lipid Res 2007; 49:147-52. [PMID: 17932396 DOI: 10.1194/jlr.m700386-jlr200] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The brain cannot synthesize n-6 or n-3 PUFAs de novo and requires their transport from the blood. Two models of brain fatty acid uptake have been proposed. One requires the passive diffusion of unesterified fatty acids through endothelial cells of the blood-brain barrier, and the other requires the uptake of lipoproteins via a lipoprotein receptor on the luminal membrane of endothelial cells. This study tested whether the low density lipoprotein receptor (LDLr) is necessary for maintaining brain PUFA concentrations. Because the cortex has a low basal expression of LDLr and the anterior brain stem has a relatively high expression, we analyzed these regions separately. LDLr knockout (LDLr(-/-)) and wild-type mice consumed an AIN-93G diet ad libitum until 7 weeks of age. After microwaving, the cortex and anterior brain stem (pons and medulla) were isolated for phospholipid fatty acid analyses. There were no differences in phosphatidylserine, phosphatidylinositol, ethanolamine, or choline glycerophospholipid esterified PUFA or saturated or monounsaturated fatty acid concentrations in the cortex or brain stem between LDLr(-/-) and wild-type mice. These findings demonstrate that the LDLr is not necessary for maintaining brain PUFA concentrations and suggest that other mechanisms to transport PUFAs into the brain must exist.
Collapse
Affiliation(s)
- Chuck T Chen
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|
4072
|
Glassmann A, Molly S, Surchev L, Nazwar TA, Holst M, Hartmann W, Baader SL, Oberdick J, Pietsch T, Schilling K. Developmental expression and differentiation-related neuron-specific splicing of metastasis suppressor 1 (Mtss1) in normal and transformed cerebellar cells. BMC DEVELOPMENTAL BIOLOGY 2007; 7:111. [PMID: 17925019 PMCID: PMC2194783 DOI: 10.1186/1471-213x-7-111] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2007] [Accepted: 10/09/2007] [Indexed: 02/02/2023]
Abstract
Background Mtss1 encodes an actin-binding protein, dysregulated in a variety of tumors, that interacts with sonic hedgehog/Gli signaling in epidermal cells. Given the prime importance of this pathway for cerebellar development and tumorigenesis, we assessed expression of Mtss1 in the developing murine cerebellum and human medulloblastoma specimens. Results During development, Mtss1 is transiently expressed in granule cells, from the time point they cease to proliferate to their synaptic integration. It is also expressed by granule cell precursor-derived medulloblastomas. In the adult CNS, Mtss1 is found exclusively in cerebellar Purkinje cells. Neuronal differentiation is accompanied by a switch in Mtss1 splicing. Whereas immature granule cells express a Mtss1 variant observed also in peripheral tissues and comprising exon 12, this exon is replaced by a CNS-specific exon, 12a, in more mature granule cells and in adult Purkinje cells. Bioinformatic analysis of Mtss1 suggests that differential exon usage may affect interaction with Fyn and Src, two tyrosine kinases previously recognized as critical for cerebellar cell migration and histogenesis. Further, this approach led to the identification of two evolutionary conserved nuclear localization sequences. These overlap with the actin filament binding site of Mtss1, and one also harbors a potential PKA and PKC phosphorylation site. Conclusion Both the pattern of expression and splicing of Mtss1 is developmentally regulated in the murine cerebellum. These findings are discussed with a view on the potential role of Mtss1 for cytoskeletal dynamics in developing and mature cerebellar neurons.
Collapse
Affiliation(s)
- Alexander Glassmann
- Anatomisches Institut, Anatomie & Zellbiologie, University of Bonn, Bonn, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
4073
|
Moore CI, Cao R. The hemo-neural hypothesis: on the role of blood flow in information processing. J Neurophysiol 2007; 99:2035-47. [PMID: 17913979 PMCID: PMC3655718 DOI: 10.1152/jn.01366.2006] [Citation(s) in RCA: 171] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Brain vasculature is a complex and interconnected network under tight regulatory control that exists in intimate communication with neurons and glia. Typically, hemodynamics are considered to exclusively serve as a metabolic support system. In contrast to this canonical view, we propose that hemodynamics also play a role in information processing through modulation of neural activity. Functional hyperemia, the basis of the functional MRI (fMRI) BOLD signal, is a localized influx of blood correlated with neural activity levels. Functional hyperemia is considered by many to be excessive from a metabolic standpoint, but may be appropriate if interpreted as having an activity-dependent neuro-modulatory function. Hemodynamics may impact neural activity through direct and indirect mechanisms. Direct mechanisms include delivery of diffusible blood-borne messengers and mechanical and thermal modulation of neural activity. Indirect mechanisms are proposed to act through hemodynamic modulation of astrocytes, which can in turn regulate neural activity. These hemo-neural mechanisms should alter the information processing capacity of active local neural networks. Here, we focus on analysis of neocortical sensory processing. We predict that hemodynamics alter the gain of local cortical circuits, modulating the detection and discrimination of sensory stimuli. This novel view of information processing-that includes hemodynamics as an active and significant participant-has implications for understanding neural representation and the construction of accurate brain models. There are also potential medical benefits of an improved understanding of the role of hemodynamics in neural processing, as it directly bears on interpretation of and potential treatment for stroke, dementia, and epilepsy.
Collapse
Affiliation(s)
- Christopher I Moore
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA.
| | | |
Collapse
|
4074
|
Björling E, Lindskog C, Oksvold P, Linné J, Kampf C, Hober S, Uhlén M, Pontén F. A web-based tool for in silico biomarker discovery based on tissue-specific protein profiles in normal and cancer tissues. Mol Cell Proteomics 2007; 7:825-44. [PMID: 17913849 DOI: 10.1074/mcp.m700411-mcp200] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Here we report the development of a publicly available Web-based analysis tool for exploring proteins expressed in a tissue- or cancer-specific manner. The search queries are based on the human tissue profiles in normal and cancer cells in the Human Protein Atlas portal and rely on the individual annotation performed by pathologists of images representing immunohistochemically stained tissue sections. Approximately 1.8 million images representing more than 3000 antibodies directed toward human proteins were used in the study. The search tool allows for the systematic exploration of the protein atlas to discover potential protein biomarkers. Such biomarkers include tissue-specific markers, cell type-specific markers, tumor type-specific markers, markers of malignancy, and prognostic or predictive markers of cancers. Here we show examples of database queries to generate sets of candidate biomarker proteins for several of these different categories. Expression profiles of candidate proteins can then subsequently be validated by examination of the underlying high resolution images. The present study shows examples of search strategies revealing several potential protein biomarkers, including proteins specifically expressed in normal cells and in cancer cells from specified tumor types. The lists of candidate proteins can be used as a starting point for further validation in larger patient cohorts using both immunological approaches and technologies utilizing more classical proteomics tools.
Collapse
Affiliation(s)
- Erik Björling
- School of Biotechnology, AlbaNova University Center, Royal Institute of Technology (KTH), SE-10691 Stockholm, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
4075
|
Abstract
The application of genomic technologies to the study of mRNA processing is increasingly conducted in metazoan organisms in order to understand the complex events that occur during and after transcription. Large-scale systems analyses of mRNA-protein interactions and mRNA dynamics have revealed specificity in mRNA transcription, splicing, transport, translation, and turnover, and have begun to make connections between the different layers of mRNA processing. Here, we review global studies of post-transcriptional processes and discuss the challenges facing our understanding of mRNA regulation in metazoan organisms. In parallel, we examine genome-scale investigations that have expanded our knowledge of RNA-binding proteins and the networks of mRNAs that they regulate.
Collapse
Affiliation(s)
- Adrienne E McKee
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
4076
|
Chizhikov VV, Davenport J, Zhang Q, Shih EK, Cabello OA, Fuchs JL, Yoder BK, Millen KJ. Cilia proteins control cerebellar morphogenesis by promoting expansion of the granule progenitor pool. J Neurosci 2007; 27:9780-9. [PMID: 17804638 PMCID: PMC6672978 DOI: 10.1523/jneurosci.5586-06.2007] [Citation(s) in RCA: 164] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Although human congenital cerebellar malformations are common, their molecular and developmental basis is still poorly understood. Recently, cilia-related gene deficiencies have been implicated in several congenital disorders that exhibit cerebellar abnormalities such as Joubert syndrome, Meckel-Gruber syndrome, Bardet-Biedl syndrome, and Orofaciodigital syndrome. The association of cilia gene mutations with these syndromes suggests that cilia may be important for cerebellar development, but the nature of cilia involvement has not been elucidated. To assess the importance of cilia-related proteins during cerebellar development, we studied the effects of CNS-specific inactivation of two mouse genes whose protein products are critical for cilia formation and maintenance, IFT88, (also known as polaris or Tg737), which encodes intraflagellar transport 88 homolog, and Kif3a, which encodes kinesin family member 3a. We showed that loss of either of these genes caused severe cerebellar hypoplasia and foliation abnormalities, primarily attributable to a failure of expansion of the neonatal granule cell progenitor population. In addition, granule cell progenitor proliferation was sensitive to partial loss of IFT function in a hypomorphic mutant of IFT88 (IFT88(orpk)), an effect that was modified by genetic background. IFT88 and Kif3a were not required for the specification and differentiation of most other cerebellar cell types, including Purkinje cells. Together, our observations constitute the first demonstration that cilia proteins are essential for normal cerebellar development and suggest that granule cell proliferation defects may be central to the cerebellar pathology in human cilia-related disorders.
Collapse
Affiliation(s)
| | - James Davenport
- Department of Cell Biology, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Qihong Zhang
- Department of Pediatrics, Division of Medical Genetics, University of Iowa, Iowa City, Iowa 52242
| | - Evelyn Kim Shih
- Committee on Neurobiology, University of Chicago, Chicago, Illinois 60637
| | - Olga A. Cabello
- Department of Biochemistry and Molecular Biology, J. H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee 37614, and
| | - Jannon L. Fuchs
- Department of Biological Sciences, University of North Texas, Denton, Texas 76203
| | - Bradley K. Yoder
- Department of Cell Biology, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | | |
Collapse
|
4077
|
Amr S, Heisey C, Zhang M, Xia XJ, Shows KH, Ajlouni K, Pandya A, Satin LS, El-Shanti H, Shiang R. A homozygous mutation in a novel zinc-finger protein, ERIS, is responsible for Wolfram syndrome 2. Am J Hum Genet 2007; 81:673-83. [PMID: 17846994 PMCID: PMC2227919 DOI: 10.1086/520961] [Citation(s) in RCA: 203] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2007] [Accepted: 06/07/2007] [Indexed: 11/03/2022] Open
Abstract
A single missense mutation was identified in a novel, highly conserved zinc-finger gene, ZCD2, in three consanguineous families of Jordanian descent with Wolfram syndrome (WFS). It had been shown that these families did not have mutations in the WFS1 gene (WFS1) but were mapped to the WFS2 locus at 4q22-25. A G-->C transversion at nucleotide 109 predicts an amino acid change from glutamic acid to glutamine (E37Q). Although the amino acid is conserved and the mutation is nonsynonymous, the pathogenesis for the disorder is because the mutation also causes aberrant splicing. The mutation was found to disrupt messenger RNA splicing by eliminating exon 2, and it results in the introduction of a premature stop codon. Mutations in WFS1 have also been found to cause low-frequency nonsyndromic hearing loss, progressive hearing loss, and isolated optic atrophy associated with hearing loss. Screening of 377 probands with hearing loss did not identify mutations in the WFS2 gene. The WFS1-encoded protein, Wolframin, is known to localize to the endoplasmic reticulum and plays a role in calcium homeostasis. The ZCD2-encoded protein, ERIS (endoplasmic reticulum intermembrane small protein), is also shown to localize to the endoplasmic reticulum but does not interact directly with Wolframin. Lymphoblastoid cells from affected individuals show a significantly greater rise in intracellular calcium when stimulated with thapsigargin, compared with controls, although no difference was observed in resting concentrations of intracellular calcium.
Collapse
Affiliation(s)
- Sami Amr
- Department of Human Genetics, Virginia Commonwealth University, Richmond, VA, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
4078
|
Smith SJ. Circuit reconstruction tools today. Curr Opin Neurobiol 2007; 17:601-8. [PMID: 18082394 PMCID: PMC2693015 DOI: 10.1016/j.conb.2007.11.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2007] [Revised: 10/17/2007] [Accepted: 11/03/2007] [Indexed: 11/22/2022]
Abstract
To understand how a brain processes information, we must understand the structure of its neural circuits-especially circuit interconnection topologies and the cell and synapse molecular architectures that determine circuit-signaling dynamics. Our information on these key aspects of neural circuit structure has remained incomplete and fragmentary, however, because of limitations of the best available imaging methods. Now, new transgenic tool mice and new image acquisition tools appear poised to permit very significant advances in our abilities to reconstruct circuit connection topologies and molecular architectures.
Collapse
Affiliation(s)
- Stephen J Smith
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, United States.
| |
Collapse
|
4079
|
Systematic Gene Expression Mapping Clusters Nuclear Receptors According to Their Function in the Brain. Cell 2007; 131:405-18. [DOI: 10.1016/j.cell.2007.09.012] [Citation(s) in RCA: 137] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2007] [Revised: 07/03/2007] [Accepted: 09/07/2007] [Indexed: 11/19/2022]
|
4080
|
Lugtenberg D, Veltman JA, van Bokhoven H. High-resolution genomic microarrays for X-linked mental retardation. Genet Med 2007; 9:560-5. [PMID: 17873643 DOI: 10.1097/gim.0b013e318149e647] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Developments in genomic microarray technology have revolutionized the study of human genomic copy number variation. This has significantly affected many areas in human genetics, including the field of X-linked mental retardation (XLMR). Chromosome X-specific bacterial artificial chromosomes microarrays have been developed to specifically test this chromosome with a resolution of approximately 100 kilobases. Application of these microarrays in X-linked mental retardation studies has resulted in the identification of novel X-linked mental retardation genes, copy number variation at known X-linked mental retardation genes, and copy number variations harboring as yet unidentified X-linked mental retardation genes. Further enhancements in genomic microarray analysis will soon allow the reliable analysis of all copy number variations throughout this chromosome at the kilobase or single exon resolution. In this review, we describe the developments in this field and specifically highlight the impact of these microarray studies in the field of X-linked mental retardation.
Collapse
Affiliation(s)
- Dorien Lugtenberg
- Department of Human Genetics, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | | | | |
Collapse
|
4081
|
Post LJG, Roos M, Marshall MS, van Driel R, Breit TM. A semantic web approach applied to integrative bioinformatics experimentation: a biological use case with genomics data. Bioinformatics 2007; 23:3080-7. [PMID: 17881406 DOI: 10.1093/bioinformatics/btm461] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
MOTIVATION The numerous public data resources make integrative bioinformatics experimentation increasingly important in life sciences research. However, it is severely hampered by the way the data and information are made available. The semantic web approach enhances data exchange and integration by providing standardized formats such as RDF, RDF Schema (RDFS) and OWL, to achieve a formalized computational environment. Our semantic web-enabled data integration (SWEDI) approach aims to formalize biological domains by capturing the knowledge in semantic models using ontologies as controlled vocabularies. The strategy is to build a collection of relatively small but specific knowledge and data models, which together form a 'personal semantic framework'. This can be linked to external large, general knowledge and data models. In this way, the involved scientists are familiar with the concepts and associated relationships in their models and can create semantic queries using their own terms. We studied the applicability of our SWEDI approach in the context of a biological use case by integrating genomics data sets for histone modification and transcription factor binding sites. RESULTS We constructed four OWL knowledge models, two RDFS data models, transformed and mapped relevant data to the data models, linked the data models to knowledge models using linkage statements, and ran semantic queries. Our biological use case demonstrates the relevance of these kinds of integrative bioinformatics experiments. Our findings show high startup costs for the SWEDI approach, but straightforward extension with similar data.
Collapse
Affiliation(s)
- Lennart J G Post
- Integrative Bioinformatics Unit and Nuclear Organization Group, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 SM, Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
4082
|
Dolan J, Walshe K, Alsbury S, Hokamp K, O'Keeffe S, Okafuji T, Miller SFC, Tear G, Mitchell KJ. The extracellular leucine-rich repeat superfamily; a comparative survey and analysis of evolutionary relationships and expression patterns. BMC Genomics 2007; 8:320. [PMID: 17868438 PMCID: PMC2235866 DOI: 10.1186/1471-2164-8-320] [Citation(s) in RCA: 144] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2007] [Accepted: 09/14/2007] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Leucine-rich repeats (LRRs) are highly versatile and evolvable protein-ligand interaction motifs found in a large number of proteins with diverse functions, including innate immunity and nervous system development. Here we catalogue all of the extracellular LRR (eLRR) proteins in worms, flies, mice and humans. We use convergent evidence from several transmembrane-prediction and motif-detection programs, including a customised algorithm, LRRscan, to identify eLRR proteins, and a hierarchical clustering method based on TribeMCL to establish their evolutionary relationships. RESULTS This yields a total of 369 proteins (29 in worm, 66 in fly, 135 in mouse and 139 in human), many of them of unknown function. We group eLRR proteins into several classes: those with only LRRs, those that cluster with Toll-like receptors (Tlrs), those with immunoglobulin or fibronectin-type 3 (FN3) domains and those with some other domain. These groups show differential patterns of expansion and diversification across species. Our analyses reveal several clusters of novel genes, including two Elfn genes, encoding transmembrane proteins with eLRRs and an FN3 domain, and six genes encoding transmembrane proteins with eLRRs only (the Elron cluster). Many of these are expressed in discrete patterns in the developing mouse brain, notably in the thalamus and cortex. We have also identified a number of novel fly eLRR proteins with discrete expression in the embryonic nervous system. CONCLUSION This study provides the necessary foundation for a systematic analysis of the functions of this class of genes, which are likely to include prominently innate immunity, inflammation and neural development, especially the specification of neuronal connectivity.
Collapse
Affiliation(s)
- Jackie Dolan
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | - Karen Walshe
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | - Samantha Alsbury
- MRC Centre for Developmental Neurobiology, New Hunts House, Guys Campus, King's College London SE1 1UL, UK
| | - Karsten Hokamp
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | - Sean O'Keeffe
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | - Tatsuya Okafuji
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | - Suzanne FC Miller
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | - Guy Tear
- MRC Centre for Developmental Neurobiology, New Hunts House, Guys Campus, King's College London SE1 1UL, UK
| | - Kevin J Mitchell
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
4083
|
Jospin M, Watanabe S, Joshi D, Young S, Hamming K, Thacker C, Snutch TP, Jorgensen EM, Schuske K. UNC-80 and the NCA ion channels contribute to endocytosis defects in synaptojanin mutants. Curr Biol 2007; 17:1595-600. [PMID: 17825559 DOI: 10.1016/j.cub.2007.08.036] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2007] [Revised: 08/02/2007] [Accepted: 08/07/2007] [Indexed: 11/20/2022]
Abstract
Synaptojanin is a lipid phosphatase required to degrade phosphatidylinositol 4,5 bisphosphate (PIP(2)) at cell membranes during synaptic vesicle recycling. Synaptojanin mutants in C. elegans are severely uncoordinated and are depleted of synaptic vesicles, possibly because of accumulation of PIP(2). To identify proteins that act downstream of PIP(2) during endocytosis, we screened for suppressors of synaptojanin mutants in the nematode C. elegans. A class of uncoordinated mutants called "fainters" partially suppress the locomotory, vesicle depletion, and electrophysiological defects in synaptojanin mutants. These suppressor loci include the genes for the NCA ion channels, which are homologs of the vertebrate cation leak channel NALCN, and a novel gene called unc-80. We demonstrate that unc-80 encodes a novel, but highly conserved, neuronal protein required for the proper localization of the NCA-1 and NCA-2 ion channel subunits. These data suggest that activation of the NCA ion channel in synaptojanin mutants leads to defects in recycling of synaptic vesicles.
Collapse
Affiliation(s)
- Maelle Jospin
- Department of Biology, University of Utah, 257 South 1400 East, Salt Lake City, UT 84112-0840, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
4084
|
Pryce CR. Postnatal ontogeny of expression of the corticosteroid receptor genes in mammalian brains: inter-species and intra-species differences. ACTA ACUST UNITED AC 2007; 57:596-605. [PMID: 17916381 DOI: 10.1016/j.brainresrev.2007.08.005] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2007] [Revised: 08/03/2007] [Accepted: 08/03/2007] [Indexed: 11/20/2022]
Abstract
Corticosteroids are important mediators of homeostasis and stress, and exert their effects via two transcription-factor receptors, mineralocorticoid receptor (MR) and glucocorticoid receptor (GR). Both receptors are expressed in the brain in a region-specific manner, and regulate neuroendocrine and behavioral functions. Stress during early development has been demonstrated to lead to long-term alterations in MR and GR levels and in the phenotypes that they mediate. To date, however, nearly all of this evidence has been obtained in rats, and there is actually no clear basis for extrapolation to other species. The current comparative review presents data, as available, on the following aspects of GR and MR gene expression in mouse and rat (Rodentia), tree shrew (Scandentia), common marmoset, squirrel monkey, rhesus macaque and human (Primates): (1) species-typical adult expression of MR mRNA and GR mRNA in hypothalamus, amygdala, hippocampus and neocortex; (2) species-typical neonate, infant, juvenile/adolescent and adult expression of MR mRNA and GR mRNA in hippocampus. (1) and (2) allow for identification of inter-species consistencies and differences in the relative levels of MR and GR expression across brain regions and ontogenetic stages. In addition, data are presented on (3) within-species inter-individual variation in MR and GR expression and causes thereof, including polymorphism and early life stress. Integrating the evidence in (1)-(3), it is noted that, should the expression levels of MR and GR at the time of early-life stress determine the latter's effects on the formers' long-term expression levels and functioning, then the long-term effects of early life stress on corticosteroid receptor expression and function will be species-, brain-region- and receptor-type-specific.
Collapse
Affiliation(s)
- Christopher R Pryce
- Neuroscience/Psychiatry, Novartis Institutes for Biomedical Research, Novartis Pharma AG, Basel, Switzerland.
| |
Collapse
|
4085
|
Hishimoto A, Liu QR, Drgon T, Pletnikova O, Walther D, Zhu XG, Troncoso JC, Uhl GR. Neurexin 3 polymorphisms are associated with alcohol dependence and altered expression of specific isoforms. Hum Mol Genet 2007; 16:2880-91. [PMID: 17804423 DOI: 10.1093/hmg/ddm247] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Neurexins are cell adhesion molecules that help to specify and stabilize synapses and provide receptors for neuroligins, neurexophilins, dystroglycans and alpha-latrotoxins. We previously reported significant allele frequency differences for single nucleotide polymorphisms (SNPs) in the neurexin 3 (NRXN3) gene in each of two comparisons between individuals who were dependent on illegal substances and controls. We now report work clarifying details of NRXN3's gene structure and variants and documenting association of NRXN3 SNPs with alcohol dependence. We localize this association signal with the vicinity of the NRXN3 splicing site 5 (SS#5). A splicing site SNP, rs8019381, that is located 23 bp from the SS#5 exon 23 donor site displays association with P = 0.0007 (odds ratio = 2.46). Including or excluding exon 23 at SS#5 produces soluble or transmembrane NRXN3 isoforms. We thus examined expression of these NRXN3 isoforms in postmortem human cerebral cortical brain samples from individuals with varying rs8019381 genotypes. Two of the splice variants that encode transmembrane NRXN3 isoforms were expressed at significantly lower levels in individuals with the addiction-associated rs8019381 'T' allele than in CC homozygotes. Taken together with recent reports of NRXN3 association with nicotine dependence and linkage with opiate dependence, these data support roles for NRXN3 haplotypes that alter expression of specific NRXN3 isoforms in genetic vulnerabilities to dependence on a variety of addictive substances.
Collapse
Affiliation(s)
- Akitoyo Hishimoto
- Molecular Neurobiology Branch, NIDA-IRP, NIH, DHSS, Baltimore, MD 21224, USA
| | | | | | | | | | | | | | | |
Collapse
|
4086
|
Saxe JP, Wu H, Kelly TK, Phelps ME, Sun YE, Kornblum HI, Huang J. A phenotypic small-molecule screen identifies an orphan ligand-receptor pair that regulates neural stem cell differentiation. CHEMISTRY & BIOLOGY 2007; 14:1019-30. [PMID: 17884634 PMCID: PMC2758915 DOI: 10.1016/j.chembiol.2007.07.016] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/06/2007] [Revised: 07/18/2007] [Accepted: 07/27/2007] [Indexed: 01/20/2023]
Abstract
High-throughput identification of small molecules that selectively modulate molecular, cellular, or systems-level properties of the mammalian brain is a significant challenge. Here we report the chemical genetic identification of the orphan ligand phosphoserine (P-Ser) as an enhancer of neurogenesis. P-Ser inhibits neural stem cell/progenitor proliferation and self-renewal, enhances neurogenic fate commitment, and improves neuronal survival. We further demonstrate that the effects of P-Ser are mediated by the group III metabotropic glutamate receptor 4 (mGluR4). siRNA-mediated knockdown of mGluR4 abolished the effects of P-Ser and increased neurosphere proliferation, at least in part through upregulation of mTOR pathway activity. We also found that P-Ser increases neurogenesis in human embryonic stem cell-derived neural progenitors. This work highlights the tremendous potential of developing effective small-molecule drugs for use in regenerative medicine or transplantation therapy.
Collapse
Affiliation(s)
- Jonathan P. Saxe
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA 90095
| | - Hao Wu
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA 90095
| | - Theresa K. Kelly
- The Interdepartmental Graduate Program in the Neurosciences, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA 90095
| | - Michael E. Phelps
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA 90095
| | - Yi E. Sun
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA 90095
- Department of Psychiatry, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA 90095
- The Semel Institute for Neuroscience, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA 90095
| | - Harley I. Kornblum
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA 90095
- Department of Psychiatry, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA 90095
- Department of Pediatrics, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA 90095
- The Semel Institute for Neuroscience, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA 90095
| | - Jing Huang
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA 90095
| |
Collapse
|
4087
|
Yang Y, Mahaffey CL, Bérubé N, Maddatu TP, Cox GA, Frankel WN. Complex seizure disorder caused by Brunol4 deficiency in mice. PLoS Genet 2007; 3:e124. [PMID: 17677002 PMCID: PMC1934399 DOI: 10.1371/journal.pgen.0030124] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2007] [Accepted: 06/11/2007] [Indexed: 11/18/2022] Open
Abstract
Idiopathic epilepsy is a common human disorder with a strong genetic component, usually exhibiting complex inheritance. We describe a new mouse mutation in C57BL/6J mice, called frequent-flyer (Ff), in which disruption of the gene encoding RNA-binding protein Bruno-like 4 (Brunol4) leads to limbic and severe tonic–clonic seizures in heterozygous mutants beginning in their third month. Younger heterozygous adults have a reduced seizure threshold. Although homozygotes do not survive well on the C57BL/6J background, on mixed backgrounds homozygotes and some heterozygotes also display spike-wave discharges, the electroencephalographic manifestation of absence epilepsy. Brunol4 is widely expressed in the brain with enrichment in the hippocampus. Gene expression profiling and subsequent analysis revealed the down-regulation of at least four RNA molecules encoding proteins known to be involved in neuroexcitability, particularly in mutant hippocampus. Genetic and phenotypic assessment suggests that Brunol4 deficiency in mice results in a complex seizure phenotype, likely due to the coordinate dysregulation of several molecules, providing a unique new animal model of epilepsy that mimics the complex genetic architecture of common disease. Epilepsy is a very common brain disorder characterized by recurrent seizures, resulting from abnormal nerve cell activity in the brain. Some cases of epilepsy are caused by brain trauma, such as stroke, infection, tumor, or head injury. Others—so called “idiopathic”—do not have a clear cause. Many idiopathic epilepsies run in families, but the inheritance patterns and complex seizure types suggest that they are not due to a single defective gene but instead are caused by multiple gene defects that are inherited simultaneously in a patient. This complex inheritance makes it difficult to pinpoint the underlying defects. Here, we describe a new mutant mouse, called “frequent-flyer,” which has several different types of seizures. Although these seizures are caused by a mutation in a single gene, because this gene regulates the expression of many other genes, which, in turn, cause abnormal nerve cell activity, frequent-flyer mice provide a unique animal model of epilepsy—mimicking the complex genetic architecture of common disease.
Collapse
Affiliation(s)
- Yan Yang
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | | | - Nathalie Bérubé
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Terry P Maddatu
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Gregory A Cox
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Wayne N Frankel
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
4088
|
Wu C, Daniels RW, DiAntonio A. DFsn collaborates with Highwire to down-regulate the Wallenda/DLK kinase and restrain synaptic terminal growth. Neural Dev 2007; 2:16. [PMID: 17697379 PMCID: PMC2031890 DOI: 10.1186/1749-8104-2-16] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2007] [Accepted: 08/15/2007] [Indexed: 05/16/2023] Open
Abstract
BACKGROUND The growth of new synapses shapes the initial formation and subsequent rearrangement of neural circuitry. Genetic studies have demonstrated that the ubiquitin ligase Highwire restrains synaptic terminal growth by down-regulating the MAP kinase kinase kinase Wallenda/dual leucine zipper kinase (DLK). To investigate the mechanism of Highwire action, we have identified DFsn as a binding partner of Highwire and characterized the roles of DFsn in synapse development, synaptic transmission, and the regulation of Wallenda/DLK kinase abundance. RESULTS We identified DFsn as an F-box protein that binds to the RING-domain ubiquitin ligase Highwire and that can localize to the Drosophila neuromuscular junction. Loss-of-function mutants for DFsn have a phenotype that is very similar to highwire mutants - there is a dramatic overgrowth of synaptic termini, with a large increase in the number of synaptic boutons and branches. In addition, synaptic transmission is impaired in DFsn mutants. Genetic interactions between DFsn and highwire mutants indicate that DFsn and Highwire collaborate to restrain synaptic terminal growth. Finally, DFsn regulates the levels of the Wallenda/DLK kinase, and wallenda is necessary for DFsn-dependent synaptic terminal overgrowth. CONCLUSION The F-box protein DFsn binds the ubiquitin ligase Highwire and is required to down-regulate the levels of the Wallenda/DLK kinase and restrain synaptic terminal growth. We propose that DFsn and Highwire participate in an evolutionarily conserved ubiquitin ligase complex whose substrates regulate the structure and function of synapses.
Collapse
Affiliation(s)
- Chunlai Wu
- Department of Molecular Biology and Pharmacology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Richard W Daniels
- Department of Molecular Biology and Pharmacology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Aaron DiAntonio
- Department of Molecular Biology and Pharmacology, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
4089
|
Abstract
In an era exploding with genome-scale data, a major challenge for developmental biologists is how to extract significant clues from these publicly available data to benefit our studies of individual genes, and how to use them to improve our understanding of development at a systems level. Several studies have successfully demonstrated new approaches to classic developmental questions by computationally integrating various genome-wide data sets. Such computational approaches have shown great potential for facilitating research: instead of testing 20,000 genes, researchers might test 200 to the same effect. We discuss the nature and state of this art as it applies to developmental research.
Collapse
Affiliation(s)
- Weiwei Zhong
- HHMI and Division of Biology, Caltech, 1200 E California Blvd, Pasadena, CA 91125, USA
| | | |
Collapse
|
4090
|
Zhang F, Aravanis AM, Adamantidis A, de Lecea L, Deisseroth K. Circuit-breakers: optical technologies for probing neural signals and systems. Nat Rev Neurosci 2007; 8:577-81. [PMID: 17643087 DOI: 10.1038/nrn2192] [Citation(s) in RCA: 438] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Neuropsychiatric disorders, which arise from a combination of genetic, epigenetic and environmental influences, epitomize the challenges faced in understanding the mammalian brain. Elucidation and treatment of these diseases will benefit from understanding how specific brain cell types are interconnected and signal in neural circuits. Newly developed neuroengineering tools based on two microbial opsins, channelrhodopsin-2 (ChR2) and halorhodopsin (NpHR), enable the investigation of neural circuit function with cell-type-specific, temporally accurate and reversible neuromodulation. These tools could lead to the development of precise neuromodulation technologies for animal models of disease and clinical neuropsychiatry.
Collapse
Affiliation(s)
- Feng Zhang
- Department of Bioengineering, W083 Clark Center, 318 Campus Drive West, Stanford University, California, USA
| | | | | | | | | |
Collapse
|
4091
|
Hochheiser H, Yanowitz J. If I only had a brain: exploring mouse brain images in the Allen Brain Atlas. Biol Cell 2007; 99:403-9. [PMID: 17567264 DOI: 10.1042/bc20070031] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The combination of a powerful well-designed user interface with detailed high-quality data sets can create new possibilities for data exploration and analysis. The Allen Brain Atlas (http://www.brain-map.org) provides a collection of tools for examining a set of images that detail gene expression in the mouse brain. Powerful web-based viewers for individual images and parallel examination of related images interact with an external application for three-dimensional views. The underlying dataset, generated via high-throughput analysis of expression patterns of more than 21,000 genes in adult mouse brains, provides three-dimensional views of gene expression patterns displayed in the context of an anatomical ontology. Facilities for filtering views, saving views of interest, annotating images and sharing views via email support the ongoing process of analysis and provide a model for the future of integrated tools for analysing large image data sets.
Collapse
Affiliation(s)
- Harry Hochheiser
- Department of Computer and Information Sciences, Towson University, Towson, MD 21252, USA.
| | | |
Collapse
|
4092
|
Negrete OA, Chu D, Aguilar HC, Lee B. Single amino acid changes in the Nipah and Hendra virus attachment glycoproteins distinguish ephrinB2 from ephrinB3 usage. J Virol 2007; 81:10804-14. [PMID: 17652392 PMCID: PMC2045465 DOI: 10.1128/jvi.00999-07] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The henipaviruses, Nipah virus (NiV) and Hendra virus (HeV), are lethal emerging paramyxoviruses. EphrinB2 and ephrinB3 have been identified as receptors for henipavirus entry. NiV and HeV share similar cellular tropisms and likely use an identical receptor set, although a quantitative comparison of receptor usage by NiV and HeV has not been reported. Here we show that (i) soluble NiV attachment protein G (sNiV-G) bound to cell surface-expressed ephrinB3 with a 30-fold higher affinity than that of sHeV-G, (ii) NiV envelope pseudotyped reporter virus (NiVpp) entered ephrinB3-expressing cells much more efficiently than did HeV pseudotyped particles (HeVpp), and (iii) NiVpp but not HeVpp entry was inhibited efficiently by soluble ephrinB3. These data underscore the finding that NiV uses ephrinB3 more efficiently than does HeV. Henipavirus G chimeric protein analysis implicated residue 507 in the G ectodomain in efficient ephrinB3 usage. Curiously, alternative versions of published HeV-G sequences show variations at residue 507 that can clearly affect ephrinB3 but not ephrinB2 usage. We further defined surrounding mutations (W504A and E505A) that diminished ephrinB3-dependent binding and viral entry without compromising ephrinB2 receptor usage and another mutation (E533Q) that abrogated both ephrinB2 and -B3 usage. Our results suggest that ephrinB2 and -B3 binding determinants on henipavirus G are distinct and dissociable. Global expression analysis showed that ephrinB3, but not ephrinB2, is expressed in the brain stem. Thus, ephrinB3-mediated viral entry and pathology may underlie the severe brain stem neuronal dysfunction seen in fatal Nipah viral encephalitis. Characterizing the determinants of ephrinB2 versus -B3 usage will further our understanding of henipavirus pathogenesis.
Collapse
Affiliation(s)
- Oscar A Negrete
- Department of Microbiology, Immunology and Molecular Genetics, UCLA AIDS Institute, 609 Charles Young Dr., 3825 Molecular Science Building, Los Angeles, CA 90095, USA
| | | | | | | |
Collapse
|
4093
|
Molyneaux BJ, Arlotta P, Menezes JRL, Macklis JD. Neuronal subtype specification in the cerebral cortex. Nat Rev Neurosci 2007; 8:427-37. [PMID: 17514196 DOI: 10.1038/nrn2151] [Citation(s) in RCA: 1217] [Impact Index Per Article: 67.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In recent years, tremendous progress has been made in understanding the mechanisms underlying the specification of projection neurons within the mammalian neocortex. New experimental approaches have made it possible to identify progenitors and study the lineage relationships of different neocortical projection neurons. An expanding set of genes with layer and neuronal subtype specificity have been identified within the neocortex, and their function during projection neuron development is starting to be elucidated. Here, we assess recent data regarding the nature of neocortical progenitors, review the roles of individual genes in projection neuron specification and discuss the implications for progenitor plasticity.
Collapse
Affiliation(s)
- Bradley J Molyneaux
- MGH-HMS Center for Nervous System Repair, Department of Neurosurgery, Program in Neuroscience, Harvard Medical School, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | | | | | | |
Collapse
|
4094
|
An analysis of expression patterns of genes encoding proteins with catalytic activities. BMC Genomics 2007; 8:232. [PMID: 17626619 PMCID: PMC1976134 DOI: 10.1186/1471-2164-8-232] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2006] [Accepted: 07/12/2007] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND In situ hybridization (ISH) is a powerful method for visualizing gene expression patterns at the organismal level with cellular resolution. When automated, it is capable of determining the expression of a large number of genes. RESULTS The expression patterns of 662 genes that encode enzymes were determined by ISH in the mid-gestation mouse embryo, a stage that models the complexity of the adult organism. Forty-five percent of transcripts encoding metabolic enzymes (n = 297) showed a regional expression pattern. A similar percentage was found for the 190 kinases that were also analyzed. Many mRNAs encoding glycolytic and TCA cycle enzymes exhibited a characteristic expression pattern. The annotated expression patterns were deposited on the Genepaint database and are retrievable by user-defined queries including gene name and sites of expression. CONCLUSION The 662 expression patterns discussed here comprised gene products with activities associated with catalysis. Preliminary analysis of these data revealed that a significant number of genes encoding housekeeping functions such as biosynthesis and catabolism were expressed regionally, so they could be used as tissue-specific gene markers. We found no difference in tissue specificity between mRNAs encoding housekeeping functions and those encoding components of signal transduction pathways, as exemplified by the kinases.
Collapse
|
4095
|
Peng H, Long F, Zhou J, Leung G, Eisen MB, Myers EW. Automatic image analysis for gene expression patterns of fly embryos. BMC Cell Biol 2007; 8 Suppl 1:S7. [PMID: 17634097 PMCID: PMC1924512 DOI: 10.1186/1471-2121-8-s1-s7] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Staining the mRNA of a gene via in situ hybridization (ISH) during the development of a D. melanogaster embryo delivers the detailed spatio-temporal pattern of expression of the gene. Many biological problems such as the detection of co-expressed genes, co-regulated genes, and transcription factor binding motifs rely heavily on the analyses of these image patterns. The increasing availability of ISH image data motivates the development of automated computational approaches to the analysis of gene expression patterns. RESULTS We have developed algorithms and associated software that extracts a feature representation of a gene expression pattern from an ISH image, that clusters genes sharing the same spatio-temporal pattern of expression, that suggests transcription factor binding (TFB) site motifs for genes that appear to be co-regulated (based on the clustering), and that automatically identifies the anatomical regions that express a gene given a training set of annotations. In fact, we developed three different feature representations, based on Gaussian Mixture Models (GMM), Principal Component Analysis (PCA), and wavelet functions, each having different merits with respect to the tasks above. For clustering image patterns, we developed a minimum spanning tree method (MSTCUT), and for proposing TFB sites we used standard motif finders on clustered/co-expressed genes with the added twist of requiring conservation across the genomes of 8 related fly species. Lastly, we trained a suite of binary-classifiers, one for each anatomical annotation term in a controlled vocabulary or ontology that operate on the wavelet feature representation. We report the results of applying these methods to the Berkeley Drosophila Genome Project (BDGP) gene expression database. CONCLUSION Our automatic image analysis methods recapitulate known co-regulated genes and give correct developmental-stage classifications with 99+% accuracy, despite variations in morphology, orientation, and focal plane suggesting that these techniques form a set of useful tools for the large-scale computational analysis of fly embryonic gene expression patterns.
Collapse
Affiliation(s)
- Hanchuan Peng
- Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Fuhui Long
- Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Jie Zhou
- Department of Computer Science, Northern Illinois University, DeKalb, IL 60115, USA
| | - Garmay Leung
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Michael B Eisen
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
- Genomics Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Eugene W Myers
- Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| |
Collapse
|
4096
|
Ng L, Lau C, Young R, Pathak S, Kuan L, Sodt A, Sutram M, Lee CK, Dang C, Hawrylycz M. NeuroBlast: a 3D spatial homology search tool for gene expression. BMC Neurosci 2007. [PMCID: PMC4450510 DOI: 10.1186/1471-2202-8-s2-p11] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
4097
|
Chang PY, Taylor PE, Jackson MB. Voltage imaging reveals the CA1 region at the CA2 border as a focus for epileptiform discharges and long-term potentiation in hippocampal slices. J Neurophysiol 2007; 98:1309-22. [PMID: 17615129 DOI: 10.1152/jn.00532.2007] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Voltage-sensitive-dye imaging was used to study the initiation and propagation of epileptiform activity in transverse hippocampal slices. A portion of the slices tested generated epileptiform discharges in response to electrical shocks under normal physiological conditions. The fraction of slices showing epileptiform responses increased from 44 to 86% when bathing [K+] increased from 3.2 to 4 mM. Regardless of stimulation site in the dentate gyrus and hippocampus, discharges generally initiated in the CA3 region. After onset, discharges abruptly appeared in the CA1 region, right at the CA2 border. This spread from the CA3 region to the CA1 region was saltatory, occurring before detectable activity in the intervening CA2 and CA3 regions. Discharges did eventually propagate smoothly through the intervening CA3 region into the CA2 region, but on a slower timescale. The surge in the CA1 region did not spread back into the CA2 region, but spread through the CA1 region toward the subiculum. Tetanic stimulation, theta bursts, and GABA(A) receptor antagonists failed to alter this characteristic pattern, but did reduce the latency of discharge onset. The part of the CA1 region at the CA2 border, where epileptic responses emerged with relatively short latency, also expressed stronger long-term potentiation (LTP) than the rest of the CA1 region. The CA2 region, where discharges had long latencies and low amplitudes, expressed weaker LTP. Thus the CA1 region at the CA2 border has unique properties, which make this part of the hippocampus an important locus for both epileptiform activity and plasticity.
Collapse
Affiliation(s)
- Payne Y Chang
- Department of Physiology and Biophysics Program, University of Wisconsin Medical School, 1300 University Ave., SMI 127, Madison, WI 53706, USA
| | | | | |
Collapse
|
4098
|
Schuske K, Palfreyman MT, Watanabe S, Jorgensen EM. UNC-46 is required for trafficking of the vesicular GABA transporter. Nat Neurosci 2007; 10:846-53. [PMID: 17558401 DOI: 10.1038/nn1920] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2007] [Accepted: 05/09/2007] [Indexed: 12/11/2022]
Abstract
Mutations in unc-46 in Caenorhabditis elegans cause defects in all behaviors that are mediated by GABA. Here we show that UNC-46 is a sorting factor that localizes the vesicular GABA transporter to synaptic vesicles. The UNC-46 protein is related to the LAMP (lysosomal associated membrane protein) family of proteins and is localized at synapses. In unc-46 mutants, the vesicular transporter is not found specifically in synaptic vesicles but rather is diffusely spread along the axon. Mislocalization of the transporter severely reduces the frequency of miniature currents, but the remaining currents are normal in amplitude. Because the number of synaptic vesicles is not depleted, it is likely that only a fraction of vesicles harbor the transporter in unc-46 mutants. Our data indicate that the transporter and UNC-46 have mutual roles in sorting. The vesicular GABA transporter recruits UNC-46 to synaptic vesicle precursors in the cell body, and UNC-46 sorts the transporter at the cell body and during endocytosis at the synapse.
Collapse
Affiliation(s)
- Kim Schuske
- Howard Hughes Medical Institute and the Department of Biology, University of Utah, 257 South 1400 East, Salt Lake City, Utah 84112-0840, USA
| | | | | | | |
Collapse
|
4099
|
Hadano S, Kunita R, Otomo A, Suzuki-Utsunomiya K, Ikeda JE. Molecular and cellular function of ALS2/alsin: Implication of membrane dynamics in neuronal development and degeneration. Neurochem Int 2007; 51:74-84. [PMID: 17566607 DOI: 10.1016/j.neuint.2007.04.010] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2007] [Revised: 04/18/2007] [Accepted: 04/19/2007] [Indexed: 12/11/2022]
Abstract
ALS2 is a causative gene for a juvenile autosomal recessive form of motor neuron diseases (MNDs), including amyotrophic lateral sclerosis 2 (ALS2), juvenile primary lateral sclerosis, and infantile-onset ascending hereditary spastic paralysis. These disorders are characterized by ascending degeneration of the upper motor neurons with or without lower motor neuron involvement. Thus far, a total of 12 independent ALS2 mutations, which include a small deletion, non-sense mutation, or missense mutation spreading widely across the entire coding sequence, are reported. They are predicted to result in either premature termination of translation or substitution of an evolutionarily conserved amino acid. Thus, a loss of functions in the ALS2-coded protein accounts for motor dysfunction and/or degeneration in the ALS2-linked MNDs. The ALS2 gene encodes a novel 184kDa protein of 1657 amino acids, ALS2 or alsin, comprising three predicted guanine nucleotide exchange factor (GEF) domains: the N-terminal RCC1-like domain, the central Dbl homology and pleckstrin homology (DH/PH) domains, and the C-terminal vacuolar protein sorting 9 (VPS9) domain. In addition, eight consecutive membrane occupation and recognition nexus (MORN) motifs are noted in the region between DH/PH and VPS9 domains. ALS2 activates Rab5 small GTPase and involves in endosome/membrane trafficking and fusions in the cells, and also promotes neurite outgrowth in neuronal cultures. Further, a neuroprotective role for ALS2 against cytotoxicity; i.e., the mutant Cu/Zn-superoxide dismutase 1 (SOD1)-mediated toxicity, oxidative stress, and excitotoxicity, has recently been implied. This review outlines current understandings of the molecular and cellular functions of ALS2 and its related proteins on safeguarding the integrity of motor neurons, and sheds light on the molecular pathogenesis of MNDs as well as other conditions of neurodegenerative diseases.
Collapse
Affiliation(s)
- Shinji Hadano
- Department of Molecular Life Sciences, Tokai University School of Medicine, Isehara, Kanagawa 259-1193, Japan
| | | | | | | | | |
Collapse
|
4100
|
Wulff P, Goetz T, Leppä E, Linden AM, Renzi M, Swinny JD, Vekovischeva OY, Sieghart W, Somogyi P, Korpi ER, Farrant M, Wisden W. From synapse to behavior: rapid modulation of defined neuronal types with engineered GABAA receptors. Nat Neurosci 2007; 10:923-9. [PMID: 17572671 PMCID: PMC2092503 DOI: 10.1038/nn1927] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2007] [Accepted: 05/22/2007] [Indexed: 11/09/2022]
Abstract
In mammals, identifying the contribution of specific neurons or networks to behavior is a key challenge. Here we describe an approach that facilitates this process by enabling the rapid modulation of synaptic inhibition in defined cell populations. Binding of zolpidem, a systemically active allosteric modulator that enhances the function of the GABAA receptor, requires a phenylalanine residue (Phe77) in the gamma2 subunit. Mice in which this residue is changed to isoleucine are insensitive to zolpidem. By Cre recombinase-induced swapping of the gamma2 subunit (that is, exchanging Ile77 for Phe77), zolpidem sensitivity can be restored to GABAA receptors in chosen cell types. We demonstrate the power of this method in the cerebellum, where zolpidem rapidly induces significant motor deficits when Purkinje cells are made uniquely sensitive to its action. This combined molecular and pharmacological technique has demonstrable advantages over targeted cell ablation and will be invaluable for investigating many neuronal circuits.
Collapse
Affiliation(s)
- Peer Wulff
- Department of Clinical Neurobiology, University of Heidelberg, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|