401
|
Xia CH, Liu H, Cheung D, Wang M, Cheng C, Du X, Chang B, Beutler B, Gong X. A model for familial exudative vitreoretinopathy caused by LPR5 mutations. Hum Mol Genet 2008; 17:1605-12. [PMID: 18263894 DOI: 10.1093/hmg/ddn047] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We have identified a mouse recessive mutation that leads to attenuated and hyperpermeable retinal vessels, recapitulating some pathological features of familial exudative vitreoretinopathy (FEVR) in human patients. DNA sequencing reveals a single nucleotide insertion in the gene encoding the low-density lipoprotein receptor-related protein 5 (LRP5), causing a frame shift and resulting in the replacement of the C-terminal 39 amino acid residues by 20 new amino acids. This change eliminates the last three PPP(S/T)P repeats in the LRP5 cytoplasmic domain that are important for mediating Wnt/beta-catenin signaling. Thus, mutant LRP5 protein is probably unable to mediate its downstream signaling. Immunostaining and three-dimensional reconstructions of retinal vasculature confirm attenuated retinal vessels. Ultrastructural data further reveal that some capillaries lack lumen structure in the mutant retina. We have also verified that LRP5 null mice develop similar alterations in the retinal vasculature. This study provides direct evidence that LRP5 is essential for the development of retinal vasculature, and suggests a novel role played by LRP5 in capillary maturation. LRP5 mutant mice can be a useful model to explore the clinical manifestations of FEVR.
Collapse
Affiliation(s)
- Chun-Hong Xia
- School of Optometry and Vision Science Program, University of California, Berkeley, Berkeley, CA 94720-2020, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
402
|
Takacs CM, Baird JR, Hughes EG, Kent SS, Benchabane H, Paik R, Ahmed Y. Dual positive and negative regulation of wingless signaling by adenomatous polyposis coli. Science 2008; 319:333-6. [PMID: 18202290 DOI: 10.1126/science.1151232] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The evolutionarily conserved Wnt/Wingless signal transduction pathway directs cell proliferation, cell fate, and cell death during development in metazoans and is inappropriately activated in several types of cancer. The majority of colorectal carcinomas contain truncating mutations in the adenomatous polyposis coli (APC) tumor suppressor, a negative regulator of Wnt/Wingless signaling. Here, we demonstrate that Drosophila Apc homologs also have an activating role in both physiological and ectopic Wingless signaling. The Apc amino terminus is important for its activating function, whereas the beta-catenin binding sites are dispensable. Apc likely promotes Wingless transduction through down-regulation of Axin, a negative regulator of Wingless signaling. Given the evolutionary conservation of APC in Wnt signal transduction, an activating role may also be present in vertebrates with relevance to development and cancer.
Collapse
Affiliation(s)
- Carter M Takacs
- Department of Genetics and the Norris Cotton Cancer Center, Dartmouth Medical School, Hanover, NH 03755, USA
| | | | | | | | | | | | | |
Collapse
|
403
|
Li J, Wang CY. TBL1-TBLR1 and beta-catenin recruit each other to Wnt target-gene promoter for transcription activation and oncogenesis. Nat Cell Biol 2008; 10:160-9. [PMID: 18193033 DOI: 10.1038/ncb1684] [Citation(s) in RCA: 159] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2007] [Accepted: 12/18/2007] [Indexed: 12/15/2022]
Abstract
Aberrant Wnt signalling promotes oncogenesis by increasing the nuclear accumulation of beta-catenin to activate downstream target genes. However, the mechanism of beta-catenin recruitment to the Wnt target-gene promoter, a critical step for removing the co-repressor complex, is largely unknown. Here, we report that transducin beta-like protein 1 (TBL1) and its highly related family member TBLR1 were required for Wnt-beta-catenin-mediated transcription. Wnt signalling induced the interaction between beta-catenin and TBL1-TBLR1, as well as their binding to Wnt target genes. Importantly, the recruitment of TBL1-TBLR1 and beta-catenin to Wnt target-gene promoters was mutually dependent on each other. Furthermore, the depletion of TBL1-TBLR1 significantly inhibited Wnt-beta-catenin-induced gene expression and oncogenic growth in vitro and in vivo. Our results unravel two new components required for nuclear beta-catenin function, and have important implications in developing new strategies for inhibiting Wnt-beta-catenin-mediated tumorigenesis.
Collapse
Affiliation(s)
- Jiong Li
- Laboratory of Molecular Signalling, Division of Oral Biology and Medicine, UCLA School of Dentistry, Los Angeles, CA 90095, USA
| | | |
Collapse
|
404
|
Liang H, Coles AH, Zhu Z, Zayas J, Jurecic R, Kang J, Jones SN. Noncanonical Wnt signaling promotes apoptosis in thymocyte development. J Exp Med 2007; 204:3077-84. [PMID: 18070933 PMCID: PMC2150967 DOI: 10.1084/jem.20062692] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2006] [Accepted: 11/08/2007] [Indexed: 11/19/2022] Open
Abstract
The Wnt-beta-catenin signaling pathway has been shown to govern T cell development by regulating the growth and survival of progenitor T cells and immature thymocytes. We explore the role of noncanonical, Wnt-Ca(2+) signaling in fetal T cell development by analyzing mice deficient for Wnt5a. Our findings reveal that Wnt5a produced in the thymic stromal epithelium does not alter the development of progenitor thymocytes, but regulates the survival of alphabeta lineage thymocytes. Loss of Wnt5a down-regulates Bax expression, promotes Bcl-2 expression, and inhibits apoptosis of CD4(+)CD8(+) thymocytes, whereas exogenous Wnt5a increases apoptosis of fetal thymocytes in culture. Furthermore, Wnt5a overexpression increases apoptosis in T cells in vitro and increases protein kinase C (PKC) and calmodulin-dependent kinase II (CamKII) activity while inhibiting beta-catenin expression and activity. Conversely, Wnt5a deficiency results in the inhibition of PKC activation, decreased CamKII activity, and elevation of beta-catenin amounts in thymocytes. These results indicate that Wnt5a induction of the noncanonical Wnt-Ca(2+) pathway alters canonical Wnt signaling and is critical for normal T cell development.
Collapse
Affiliation(s)
- Huiling Liang
- Department of Cell Biology, University of Massachusetts Medical School, Worcester, MA 01545, USA
| | | | | | | | | | | | | |
Collapse
|
405
|
Puca A, Russo G, Romano G, Giordano A. Chaotic dynamic stabilities and instabilities of hematopoietic stem cell growth plasticity. J Cell Physiol 2007; 213:672-8. [PMID: 17657722 DOI: 10.1002/jcp.21181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The hematopoietic system consists of: (1) a network of stem and progenitor cells of varying degrees of maturity interacting with other cells that possess supportive and regulatory capacities and (2) vascular stem cell niches with supporting stem cells in their self-renewal, proliferation, differentiation, and mobilization to the circulation. Recent data suggest that selective expression of organ-specific chemokines promotes the mobilization of bone-marrow-derived pluripotent cells, a process that is essential for tissue vascularization and organ regeneration. Despite intensive investigation, the pathways by which mechanical signals are converted to biochemical responses are not completely understood. Recent studies have suggested that chromatin shifts and cell cycle effects stem cell gene expression, and thus results in changes of its surface receptor expression at different points of the cell cycle machinery, therefore changing cell cycle transit. This review will attempt to discuss new approaches to determine the regulation of stem cell growth and differentiation by underlying the significance of the chaotic dynamics of transcriptional networks within a cell, with a combination of chemokines and cytokines in the environment, and mechanical forces, such as: stretch, strain and laminar flow, all involving both cooperation and competition.
Collapse
Affiliation(s)
- Andrew Puca
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology College of Science and Technology, Temple University Philadelphia, Pennsylvania 19122, USA
| | | | | | | |
Collapse
|
406
|
Abstract
A 'traditional' Wnt meeting, the first of which occurred over two decades ago as a meeting of the laboratories of Harold Varmus and Roel Nusse, was held at the University of California, San Diego, in June 2007. Organized by Karl Willert, Anthony Wynshaw-Boris and Katherine Jones, the meeting was attended by nearly 400 scientists interested in ;all things Wnt', including Wnt signal transduction mechanisms, and Wnt signaling in evolutionary and developmental biology, stem cell biology, regeneration and disease. Themes that dominated the meeting included the need for precise control over each step of the signal transduction mechanism and developing therapeutics for diseases caused by altered Wnt-signaling.
Collapse
Affiliation(s)
- Sergei Y Sokol
- Department of Molecular, Cell and Developmental Biology, Box 1020, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10029, USA.
| | | |
Collapse
|
407
|
Bennett CN, Ouyang H, Ma YL, Zeng Q, Gerin I, Sousa KM, Lane TF, Krishnan V, Hankenson KD, MacDougald OA. Wnt10b increases postnatal bone formation by enhancing osteoblast differentiation. J Bone Miner Res 2007; 22:1924-32. [PMID: 17708715 DOI: 10.1359/jbmr.070810] [Citation(s) in RCA: 224] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
UNLABELLED Overexpression of Wnt10b from the osteocalcin promoter in transgenic mice increases postnatal bone mass. Increases in osteoblast perimeter, mineralizing surface, and bone formation rate without detectable changes in pre-osteoblast proliferation, osteoblast apoptosis, or osteoclast number and activity suggest that, in this animal model, Wnt10b primarily increases bone mass by stimulating osteoblastogenesis. INTRODUCTION Wnt signaling regulates many aspects of development including postnatal accrual of bone. Potential mechanisms for how Wnt signaling increases bone mass include regulation of osteoblast and/or osteoclast number and activity. To help differentiate between these possibilities, we studied mice in which Wnt10b is expressed specifically in osteoblast lineage cells or in mice devoid of Wnt10b. MATERIALS AND METHODS Transgenic mice, in which mouse Wnt10b is expressed from the human osteocalcin promoter (Oc-Wnt10b), were generated in C57BL/6 mice. Transgene expression was evaluated by RNase protection assay. Quantitative assessment of bone variables was done by radiography, muCT, and static and dynamic histomorphometry. Mechanisms of bone homeostasis were evaluated with assays for BrdU, TUNEL, and TRACP5b activity, as well as serum levels of C-terminal telopeptide of type I collagen (CTX). The endogenous role of Wnt10b in bone was assessed by dynamic histomorphometry in Wnt10b(-/-) mice. RESULTS Oc-Wnt10b mice have increased mandibular bone and impaired eruption of incisors during postnatal development. Analyses of femoral distal metaphyses show significantly higher BMD, bone volume fraction, and trabecular number. Increased bone formation is caused by increases in number of osteoblasts per bone surface, rate of mineral apposition, and percent mineralizing surface. Although number of osteoclasts per bone surface is not altered, Oc-Wnt10b mice have increased total osteoclast activity because of higher bone mass. In Wnt10b(-/-) mice, changes in mineralizing variables and osteoblast perimeter in femoral distal metaphyses were not observed; however, bone formation rate is reduced because of decreased total bone volume and trabecular number. CONCLUSIONS High bone mass in Oc-Wnt10b mice is primarily caused by increased osteoblastogenesis, with a minor contribution from elevated mineralizing activity of osteoblasts.
Collapse
Affiliation(s)
- Christina N Bennett
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
408
|
Abstract
The Dickkopf (Dkk) family is composed of four main members (Dkk1-4), which typically regulate Wnt/beta-catenin signaling. An exception is Dkk3, which does not affect Wnt/beta-catenin signaling and whose function is poorly characterized. Here, we describe the Xenopus dkk3 homolog and characterize its expression and function during embryogenesis. Dkk3 is maternally expressed and zygotically in the cement gland, head mesenchyme, and heart. We show that depletion of Dkk3 in Xenopus embryos by Morpholino antisense oligonucleotides induces axial defects as a result of Spemann organizer and mesoderm inhibition. Dkk3 depletion leads to down-regulation of Activin/Nodal signaling by reducing levels of Smad4 protein. Dkk3 overexpression can rescue phenotypic effects resulting from overexpression of the Smad4 ubiquitin ligase Ectodermin. Furthermore, depletion of Dkk3 up-regulates FGF signaling, while Dkk3 overexpression reduces it. These results indicate that Dkk3 modulates FGF and Activin/Nodal signaling to regulate mesoderm induction during early Xenopus development.
Collapse
Affiliation(s)
- Sonia Pinho
- Division of Molecular Embryology, Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 581, 69120 Heidelberg, Germany
| | | |
Collapse
|
409
|
Björklund P, Åkerström G, Westin G. An LRP5 receptor with internal deletion in hyperparathyroid tumors with implications for deregulated WNT/beta-catenin signaling. PLoS Med 2007; 4:e328. [PMID: 18044981 PMCID: PMC2082644 DOI: 10.1371/journal.pmed.0040328] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2007] [Accepted: 10/03/2007] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Hyperparathyroidism (HPT) is a common endocrine disorder with incompletely understood etiology, characterized by enlarged hyperactive parathyroid glands and increased serum concentrations of parathyroid hormone and ionized calcium. We have recently reported activation of the Wnt signaling pathway by accumulation of beta-catenin in all analyzed parathyroid tumors from patients with primary HPT (pHPT) and in hyperplastic parathyroid glands from patients with uremia secondary to HPT (sHPT). Mechanisms that may account for this activation have not been identified, except for a few cases of beta-catenin (CTNNB1) stabilizing mutation in pHPT tumors. METHODS AND FINDINGS Reverse transcription PCR and Western blot analysis showed expression of an aberrantly spliced internally truncated WNT coreceptor low-density lipoprotein receptor-related protein 5 (LRP5) in 32 out of 37 pHPT tumors (86%) and 20 out of 20 sHPT tumors (100%). Stabilizing mutation of CTNNB1 and expression of the internally truncated LRP5 receptor was mutually exclusive. Expression of the truncated LRP5 receptor was required to maintain the nonphosphorylated active beta-catenin level, transcription activity of beta-catenin, MYC expression, parathyroid cell growth in vitro, and parathyroid tumor growth in a xenograft severe combined immunodeficiency (SCID) mouse model. WNT3 ligand and the internally truncated LRP5 receptor strongly activated transcription, and the internally truncated LRP5 receptor was insensitive to inhibition by DKK1. CONCLUSIONS The internally truncated LRP5 receptor is strongly implicated in deregulated activation of the WNT/beta-catenin signaling pathway in hyperparathyroid tumors, and presents a potential target for therapeutic intervention.
Collapse
Affiliation(s)
- Peyman Björklund
- Department of Surgical Sciences, Uppsala University, Endocrine Unit, Uppsala University Hospital, Uppsala, Sweden
| | - Göran Åkerström
- Department of Surgical Sciences, Uppsala University, Endocrine Unit, Uppsala University Hospital, Uppsala, Sweden
| | - Gunnar Westin
- Department of Surgical Sciences, Uppsala University, Endocrine Unit, Uppsala University Hospital, Uppsala, Sweden
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
410
|
Kumar S, Chaudhary K, Foster JM, Novelli JF, Zhang Y, Wang S, Spiro D, Ghedin E, Carlow CKS. Mining predicted essential genes of Brugia malayi for nematode drug targets. PLoS One 2007; 2:e1189. [PMID: 18000556 PMCID: PMC2063515 DOI: 10.1371/journal.pone.0001189] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2007] [Accepted: 10/25/2007] [Indexed: 12/02/2022] Open
Abstract
We report results from the first genome-wide application of a rational drug target selection methodology to a metazoan pathogen genome, the completed draft sequence of Brugia malayi, a parasitic nematode responsible for human lymphatic filariasis. More than 1.5 billion people worldwide are at risk of contracting lymphatic filariasis and onchocerciasis, a related filarial disease. Drug treatments for filariasis have not changed significantly in over 20 years, and with the risk of resistance rising, there is an urgent need for the development of new anti-filarial drug therapies. The recent publication of the draft genomic sequence for B. malayi enables a genome-wide search for new drug targets. However, there is no functional genomics data in B. malayi to guide the selection of potential drug targets. To circumvent this problem, we have utilized the free-living model nematode Caenorhabditis elegans as a surrogate for B. malayi. Sequence comparisons between the two genomes allow us to map C. elegans orthologs to B. malayi genes. Using these orthology mappings and by incorporating the extensive genomic and functional genomic data, including genome-wide RNAi screens, that already exist for C. elegans, we identify potentially essential genes in B. malayi. Further incorporation of human host genome sequence data and a custom algorithm for prioritization enables us to collect and rank nearly 600 drug target candidates. Previously identified potential drug targets cluster near the top of our prioritized list, lending credibility to our methodology. Over-represented Gene Ontology terms, predicted InterPro domains, and RNAi phenotypes of C. elegans orthologs associated with the potential target pool are identified. By virtue of the selection procedure, the potential B. malayi drug targets highlight components of key processes in nematode biology such as central metabolism, molting and regulation of gene expression.
Collapse
Affiliation(s)
- Sanjay Kumar
- Division of Parasitology, New England Biolabs, Inc., Ipswich, Massachusetts, United States of America
| | - Kshitiz Chaudhary
- Division of Parasitology, New England Biolabs, Inc., Ipswich, Massachusetts, United States of America
| | - Jeremy M. Foster
- Division of Parasitology, New England Biolabs, Inc., Ipswich, Massachusetts, United States of America
| | - Jacopo F. Novelli
- Division of Parasitology, New England Biolabs, Inc., Ipswich, Massachusetts, United States of America
| | - Yinhua Zhang
- Division of Parasitology, New England Biolabs, Inc., Ipswich, Massachusetts, United States of America
| | - Shiliang Wang
- The Institute for Genomic Research, Rockville, Maryland, United States of America
| | - David Spiro
- The Institute for Genomic Research, Rockville, Maryland, United States of America
| | - Elodie Ghedin
- The Institute for Genomic Research, Rockville, Maryland, United States of America
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Clotilde K. S. Carlow
- Division of Parasitology, New England Biolabs, Inc., Ipswich, Massachusetts, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
411
|
Yokoyama N, Yin D, Malbon CC. Abundance, complexation, and trafficking of Wnt/beta-catenin signaling elements in response to Wnt3a. J Mol Signal 2007; 2:11. [PMID: 17961224 PMCID: PMC2211465 DOI: 10.1186/1750-2187-2-11] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2007] [Accepted: 10/25/2007] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Wnt3a regulates a canonical signaling pathway in early development that controls the nuclear accumulation of beta-catenin and its activation of Lef/Tcf-sensitive transcription of developmentally important genes. RESULTS Using totipotent mouse F9 teratocarcinoma cells expressing Frizzled-1 and biochemical analyses, we detail the influence of Wnt3a stimulation on the expression, complexation, and subcellular trafficking of key signaling elements of the canonical pathway, i.e., Dishevelled-2, Axin, glycogen synthase kinase-3beta, and beta-catenin. Cellular content of beta-catenin and Axin, and phospho-glycogen synthase kinase-3beta, but not Dishevelled-2, increases in response to Wnt3a. Subcellular localization of Axin in the absence of Wnt3a is symmetric, found evenly distributed among plasma membrane-, cytosol-, and nuclear-enriched fractions. Dishevelled-2, in contrast, is found predominately in the cytosol, whereas beta-catenin is localized to the plasma membrane-enriched fraction. Wnt3a stimulates trafficking of Dishevelled-2, Axin, and glycogen synthase kinase-3beta initially to the plasma membrane, later to the nucleus. Bioluminescence resonance energy transfer measurements reveal that complexes of Axin with Dishevelled-2, with glycogen synthase kinase-3beta, and with beta-catenin are demonstrable and they remain relatively stable in response to Wnt3a stimulation, although trafficking has occurred. Mammalian Dishevelled-1 and Dishevelled-2 display similar patterns of trafficking in response to Wnt3a, whereas that of Dishevelled-3 differs from the other two. CONCLUSION This study provides a detailed biochemical analysis of signaling elements key to Wnt3a regulation of the canonical pathway. We quantify, for the first time, the Wnt-dependent regulation of cellular abundance and intracellular trafficking of these signaling molecules. In contrast, we observe little effect of Wnt3a stimulation on the level of protein-protein interactions among these constituents of Axin-based complexes themselves.
Collapse
Affiliation(s)
- Noriko Yokoyama
- Department of Pharmacology, Health Sciences Center, State University of New York at Stony Brook, Stony Brook, NY 11794-8651, USA.
| | | | | |
Collapse
|
412
|
Michaelidis TM, Lie DC. Wnt signaling and neural stem cells: caught in the Wnt web. Cell Tissue Res 2007; 331:193-210. [PMID: 17828608 DOI: 10.1007/s00441-007-0476-5] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2007] [Accepted: 07/13/2007] [Indexed: 12/22/2022]
Abstract
Wnt proteins have now been identified as major physiological regulators of multiple aspects of stem cell biology, from self-renewal and pluripotency to precursor cell competence and terminal differentiation. Neural stem cells are the cellular building blocks of the developing nervous system and provide the basis for continued neurogenesis in the adult mammalian central nervous system. Here, we outline the most recent advances in the field about the critical factors and regulatory networks involved in Wnt signaling and discuss recent findings on how this increasingly intricate pathway contributes to the shaping of the developing and adult nervous system on the level of the neural stem cell.
Collapse
Affiliation(s)
- Theologos M Michaelidis
- GSF-National Research Center for Environment and Health, Institute of Developmental Genetics, Ingolstädter Landstrasse 1, 85764, Munich-Neuherberg, Germany
| | | |
Collapse
|
413
|
Binnerts ME, Kim KA, Bright JM, Patel SM, Tran K, Zhou M, Leung JM, Liu Y, Lomas WE, Dixon M, Hazell SA, Wagle M, Nie WS, Tomasevic N, Williams J, Zhan X, Levy MD, Funk WD, Abo A. R-Spondin1 regulates Wnt signaling by inhibiting internalization of LRP6. Proc Natl Acad Sci U S A 2007; 104:14700-5. [PMID: 17804805 PMCID: PMC1965484 DOI: 10.1073/pnas.0702305104] [Citation(s) in RCA: 217] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The R-Spondin (RSpo) family of secreted proteins act as potent activators of the Wnt/beta-catenin signaling pathway. We have previously shown that RSpo proteins can induce proliferative effects on the gastrointestinal epithelium in mice. Here we provide a mechanism whereby RSpo1 regulates cellular responsiveness to Wnt ligands by modulating the cell-surface levels of the coreceptor LRP6. We show that RSpo1 activity critically depends on the presence of canonical Wnt ligands and LRP6. Although RSpo1 does not directly activate LRP6, it interferes with DKK1/Kremen-mediated internalization of LRP6 through an interaction with Kremen, resulting in increased LRP6 levels on the cell surface. Our results support a model in which RSpo1 relieves the inhibition DKK1 imposes on the Wnt pathway.
Collapse
Affiliation(s)
- Minke E. Binnerts
- Nuvelo, Inc., 201 Industrial Road, Suite 310, San Carlos, CA 94070-6211
| | - Kyung-Ah Kim
- Nuvelo, Inc., 201 Industrial Road, Suite 310, San Carlos, CA 94070-6211
| | - Jessica M. Bright
- Nuvelo, Inc., 201 Industrial Road, Suite 310, San Carlos, CA 94070-6211
| | - Sejal M. Patel
- Nuvelo, Inc., 201 Industrial Road, Suite 310, San Carlos, CA 94070-6211
| | - Karolyn Tran
- Nuvelo, Inc., 201 Industrial Road, Suite 310, San Carlos, CA 94070-6211
| | - Mei Zhou
- Nuvelo, Inc., 201 Industrial Road, Suite 310, San Carlos, CA 94070-6211
| | - John M. Leung
- Nuvelo, Inc., 201 Industrial Road, Suite 310, San Carlos, CA 94070-6211
| | - Yi Liu
- Nuvelo, Inc., 201 Industrial Road, Suite 310, San Carlos, CA 94070-6211
| | - Woodrow E. Lomas
- Nuvelo, Inc., 201 Industrial Road, Suite 310, San Carlos, CA 94070-6211
| | - Melissa Dixon
- Nuvelo, Inc., 201 Industrial Road, Suite 310, San Carlos, CA 94070-6211
| | - Sophie A. Hazell
- Nuvelo, Inc., 201 Industrial Road, Suite 310, San Carlos, CA 94070-6211
| | - Marie Wagle
- Nuvelo, Inc., 201 Industrial Road, Suite 310, San Carlos, CA 94070-6211
| | - Wen-Sheng Nie
- Nuvelo, Inc., 201 Industrial Road, Suite 310, San Carlos, CA 94070-6211
| | - Nenad Tomasevic
- Nuvelo, Inc., 201 Industrial Road, Suite 310, San Carlos, CA 94070-6211
| | - Jason Williams
- Nuvelo, Inc., 201 Industrial Road, Suite 310, San Carlos, CA 94070-6211
| | - Xiaoming Zhan
- Nuvelo, Inc., 201 Industrial Road, Suite 310, San Carlos, CA 94070-6211
| | - Michael D. Levy
- Nuvelo, Inc., 201 Industrial Road, Suite 310, San Carlos, CA 94070-6211
| | - Walter D. Funk
- Nuvelo, Inc., 201 Industrial Road, Suite 310, San Carlos, CA 94070-6211
| | - Arie Abo
- *To whom correspondence should be addressed. E-mail:
| |
Collapse
|
414
|
Chang J, Sonoyama W, Wang Z, Jin Q, Zhang C, Krebsbach PH, Giannobile W, Shi S, Wang CY. Noncanonical Wnt-4 signaling enhances bone regeneration of mesenchymal stem cells in craniofacial defects through activation of p38 MAPK. J Biol Chem 2007; 282:30938-48. [PMID: 17720811 DOI: 10.1074/jbc.m702391200] [Citation(s) in RCA: 176] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are multipotent cells that can be differentiated into osteoblasts and provide an excellent cell source for bone regeneration and repair. Recently, the canonical Wnt/beta-catenin signaling pathway has been found to play a critical role in skeletal development and osteogenesis, implying that Wnts can be utilized to improve de novo bone formation mediated by MSCs. However, it is unknown whether noncanonical Wnt signaling regulates osteogenic differentiation. Here, we find that Wnt-4 enhanced in vitro osteogenic differentiation of MSCs isolated from human adult craniofacial tissues and promoted bone formation in vivo. Whereas Wnt-4 did not stabilize beta-catenin, it activated p38 MAPK in a novel noncanonical signaling pathway. The activation of p38 was dependent on Axin and was required for the enhancement of MSC differentiation by Wnt-4. Moreover, using two different models of craniofacial bone injury, we found that MSCs genetically engineered to express Wnt-4 enhanced osteogenesis and improved the repair of craniofacial defects in vivo. Taken together, our results reveal that noncanonical Wnt signaling could also play a role in osteogenic differentiation. Wnt-4 may have a potential use in improving bone regeneration and repair of craniofacial defects.
Collapse
Affiliation(s)
- Jia Chang
- Department of Biologic and Materials Sciences, College of Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
415
|
Khan NI, Bradstock KF, Bendall LJ. Activation of Wnt/beta-catenin pathway mediates growth and survival in B-cell progenitor acute lymphoblastic leukaemia. Br J Haematol 2007; 138:338-48. [PMID: 17614820 DOI: 10.1111/j.1365-2141.2007.06667.x] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This study investigated the response of acute lymphoblastic leukaemia (ALL) cells to Wnt proteins. Accumulation of beta-catenin was measured by Western blotting and immunofluorescence microscopy. Reverse transcription polymerase chain reaction (RT-PCR) analysis of B-cell progenitor acute lymphoblastic leukaemia (ALL) cells revealed expression of Wnt genes, including WNT2B in 33%, WNT5A in 42%, WNT10B in 58% and WNT16B in 25% of cases. The Wnt receptors, (Frizzled) FZD7 and FZD8 were also expressed in most cases while FZD3, FZD4 and FZD9 were occasionally detected. Stimulation of ALL cells with Wnt-3a activated canonical Wnt signalling with increased expression and nuclear translocation of beta-catenin. This resulted in a 1.7- to 5.3-fold increase in cell proliferation, which was associated with enhanced cell cycle entry. A significant increase in the survival of ALL cells under conditions of serum deprivation was also observed. Microarray analysis and quantitative RT-PCR revealed that activation of the Wnt/beta-catenin pathway led to altered expression of genes involved in cell cycle regulation and apoptosis in normal and leukaemic B-cell progenitors. Our results demonstrate that Wnt-3a provides proliferative and survival cues in ALL cells. This data suggests that targeting the Wnt signalling pathway may be a useful therapeutic strategy in ALL.
Collapse
Affiliation(s)
- Naveed I Khan
- Westmead Institute for Cancer Research, Westmead Millennium Institute, University of Sydney, Sydney, SW, Australia
| | | | | |
Collapse
|
416
|
Li ZG, Yang J, Vazquez ES, Rose D, Vakar-Lopez F, Mathew P, Lopez A, Logothetis CJ, Lin SH, Navone NM. Low-density lipoprotein receptor-related protein 5 (LRP5) mediates the prostate cancer-induced formation of new bone. Oncogene 2007; 27:596-603. [PMID: 17700537 DOI: 10.1038/sj.onc.1210694] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The tendency of prostate cancer to produce osteoblastic bone metastases suggests that cancer cells and osteoblasts interact in ways that contribute to cancer progression. To identify factors that mediate these interactions, we compared gene expression patterns between two bone-derived prostate cancer cell lines that produce osteoblastic (MDA PCa 2b) or osteolytic lesions (PC-3). Both cell lines expressed Wnt ligands, including WNT7b, a canonical Wnt implicated in osteogenesis. PC-3 cells expressed 50 times more Dickkopf-1 (DKK1), an inhibitor of Wnt pathways, than did MDA PCa 2b cells. Evaluation of the functional role of these factors (in cocultures of prostate cancer cells with primary mouse osteoblasts (PMOs) or in bone organ cultures) showed that MDA PCa 2b cells activated Wnt canonical signaling in PMOs and that DKK1 blocked osteoblast proliferation and new bone formation induced by MDA PCa 2b cells. MDA PCa 2b cells did not induce bone formation in calvaria from mice lacking the Wnt co-receptor Lrp5. In human specimens, WNT7b was not expressed in normal prostate but was expressed in areas of high-grade prostate intraepithelial neoplasia, in three of nine primary prostate tumor specimens and in 16 of 38 samples of bone metastases from prostate cancer. DKK1 was not expressed in normal or cancerous tissue but was expressed in two of three specimens of osteolytic bone metastases (P=0.0119). We conclude that MDA PCa 2b induces new bone formation through Wnt canonical signaling, that LRP5 mediates this effect, and that DKK1 is involved in the balance between bone formation and resorption that determines lesion phenotype.
Collapse
Affiliation(s)
- Z G Li
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77230-1439, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
417
|
Khan Z, Vijayakumar S, de la Torre TV, Rotolo S, Bafico A. Analysis of endogenous LRP6 function reveals a novel feedback mechanism by which Wnt negatively regulates its receptor. Mol Cell Biol 2007; 27:7291-301. [PMID: 17698587 PMCID: PMC2168903 DOI: 10.1128/mcb.00773-07] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The canonical Wnt pathway plays a crucial role in embryonic development, and its deregulation is involved in human diseases. The LRP6 single-span transmembrane coreceptor is essential for transmission of canonical Wnt signaling. However, due to the lack of immunological reagents, our understanding of LRP6 structure and function has relied on studies involving its overexpression, and regulation of the endogenous receptor by the Wnt ligand has remained unexplored. Using a highly sensitive and specific antibody to LRP6, we demonstrate that the endogenous receptor is modified by N-glycosylation and is phosphorylated in response to Wnt stimulation in a sustained yet ligand-dependent manner. Moreover, following triggering by Wnt, endogenous LRP6 is internalized and recycled back to the cellular membrane within hours of the initial stimulus. Finally, we have identified a novel feedback mechanism by which Wnt, acting through beta-catenin, negatively regulates LRP6 at the mRNA level. Together, these findings contribute significantly to our understanding of LRP6 function and uncover a new level of regulation of Wnt signaling. In light of the direct role that the Wnt pathway plays in human bone diseases and malignancies, our findings may support the development of novel therapeutic approaches that target Wnt signaling through LRP6.
Collapse
Affiliation(s)
- Zahid Khan
- Department of Oncological Sciences, The Mount Sinai School of Medicine, Box 1130, One Gustave L. Levy Place, New York, NY 10029, USA
| | | | | | | | | |
Collapse
|
418
|
Tang LY, Deng N, Wang LS, Dai J, Wang ZL, Jiang XS, Li SJ, Li L, Sheng QH, Wu DQ, Li L, Zeng R. Quantitative phosphoproteome profiling of Wnt3a-mediated signaling network: indicating the involvement of ribonucleoside-diphosphate reductase M2 subunit phosphorylation at residue serine 20 in canonical Wnt signal transduction. Mol Cell Proteomics 2007; 6:1952-67. [PMID: 17693683 DOI: 10.1074/mcp.m700120-mcp200] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The complexity of canonical Wnt signaling comes not only from the numerous components but also from multiple post-translational modifications. Protein phosphorylation is one of the most common modifications that propagates signals from extracellular stimuli to downstream effectors. To investigate the global phosphorylation regulation and uncover novel phosphoproteins at the early stages of canonical Wnt signaling, HEK293 cells were metabolically labeled with two stable isotopic forms of lysine and were stimulated for 0, 1, or 30 min with purified Wnt3a. After phosphoprotein enrichment and LC-MS/MS analysis, 1057 proteins were identified in all three time points. In total 287 proteins showed a 1.5-fold or greater change in at least one time point. In addition to many known Wnt signaling transducers, other phosphoproteins were identified and quantitated, implicating their involvement in canonical Wnt signaling. k-Means clustering analysis showed dynamic patterns for the differential phosphoproteins. Profile pattern and interaction network analysis of the differential phosphoproteins implicated the possible roles for those unreported components in Wnt signaling. Moreover 100 unique phosphorylation sites were identified, and 54 of them were quantitated in the three time points. Site-specific phosphopeptide quantitation revealed that Ser-20 phosphorylation on RRM2 increased upon 30-min Wnt3a stimulation. Further studies with mutagenesis, the Wnt reporter gene assay, and RNA interference indicated that RRM2 functioned downstream of beta-catenin as an inhibitor of Wnt signaling and that Ser-20 phosphorylation of RRM2 counteracted its inhibition effect. Our systematic profiling of dynamic phosphorylation changes responding to Wnt3a stimulation not only presented a comprehensive phosphorylation network regulated by canonical Wnt signaling but also found novel molecules and phosphorylation involved in Wnt signaling.
Collapse
Affiliation(s)
- Liu-Ya Tang
- State Key Laboratory of Molecular Biology, Shangai 200031, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
419
|
Haraguchi K, Ohsugi M, Abe Y, Semba K, Akiyama T, Yamamoto T. Ajuba negatively regulates the Wnt signaling pathway by promoting GSK-3beta-mediated phosphorylation of beta-catenin. Oncogene 2007; 27:274-84. [PMID: 17621269 DOI: 10.1038/sj.onc.1210644] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The Wnt signaling pathway is essential for embryonic development and carcinogenesis. Upon Wnt stimulation, beta-catenin is stabilized and associates with T-cell factor or lymphoid enhancing factor, thereby activating transcription of target genes. In the absence of Wnt stimulation, the level of beta-catenin is reduced via glycogen synthase kinase (GSK)-3beta-mediated phosphorylation and subsequent proteasome-dependent degradation. Here, we report the identification of Ajuba as a negative regulator of the Wnt signaling pathway. Ajuba is a member of LIM domain-containing proteins that contribute to cell fate determination and regulate cell proliferation and differentiation. We found that enforced expression of Ajuba destabilized beta-catenin and suppressed target gene expression. Ajuba promoted GSK-3beta-mediated phosphorylation of beta-catenin by reinforcing the association between beta-catenin and GSK-3beta. Furthermore, Wnt stimulation induced both accumulation of beta-catenin and destabilization of Ajuba. Our findings suggest that Ajuba is important for regulation of the Wnt signaling pathway.
Collapse
Affiliation(s)
- K Haraguchi
- Division of Oncology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
420
|
van Leeuwen IMM, Byrne HM, Jensen OE, King JR. Elucidating the interactions between the adhesive and transcriptional functions of -catenin in normal and cancerous cells. J Theor Biol 2007; 247:77-102. [PMID: 17382967 DOI: 10.1016/j.jtbi.2007.01.019] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2006] [Revised: 12/21/2006] [Accepted: 01/22/2007] [Indexed: 02/07/2023]
Abstract
Wnt signalling is involved in a wide range of physiological and pathological processes. The presence of an extracellular Wnt stimulus induces cytoplasmic stabilisation and nuclear translocation of beta-catenin, a protein that also plays an essential role in cadherin-mediated adhesion. Two main hypotheses have been proposed concerning the balance between beta-catenin's adhesive and transcriptional functions: either beta-catenin's fate is determined by competition between its binding partners, or Wnt induces folding of beta-catenin into a conformation allocated preferentially to transcription. The experimental data supporting each hypotheses remain inconclusive. In this paper we present a new mathematical model of the Wnt pathway that incorporates beta-catenin's dual function. We use this model to carry out a series of in silico experiments and compare the behaviour of systems governed by each hypothesis. Our analytical results and model simulations provide further insight into the current understanding of Wnt signalling and, in particular, reveal differences in the response of the two modes of interaction between adhesion and signalling in certain in silico settings. We also exploit our model to investigate the impact of the mutations most commonly observed in human colorectal cancer. Simulations show that the amount of functional APC required to maintain a normal phenotype increases with increasing strength of the Wnt signal, a result which illustrates that the environment can substantially influence both tumour initiation and phenotype.
Collapse
Affiliation(s)
- Ingeborg M M van Leeuwen
- Centre for Mathematical Medicine and Biology, Division of Applied Mathematics, School of Mathematical Sciences, University of Nottingham, Nottingham, NG7 2RD, UK.
| | | | | | | |
Collapse
|
421
|
Guo Y, Zi X, Koontz Z, Kim A, Xie J, Gorlick R, Holcombe RF, Hoang BH. Blocking Wnt/LRP5 signaling by a soluble receptor modulates the epithelial to mesenchymal transition and suppresses met and metalloproteinases in osteosarcoma Saos-2 cells. J Orthop Res 2007; 25:964-71. [PMID: 17318900 DOI: 10.1002/jor.20356] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2006] [Accepted: 11/10/2006] [Indexed: 02/04/2023]
Abstract
We previously reported the Wnt receptor low-density lipoprotein receptor-related protein 5 (LRP5) was frequently expressed in osteosarcoma (OS) tissue and correlated with metastasis and a lower disease-free survival. Subsequent in vitro analysis revealed that dominant-negative, soluble LRP5 (sLRP5) can reduce in vitro cellular invasion. In the current study, we examined the molecular mechanisms of blocking canonical Wnt signaling by sLRP5 in Saos-2 osteosarcoma cells. Transfection of sLRP5 caused a marked up-regulation of E-cadherin in this cell line. This increase in E-cadherin, seen primarily at the cell-cell contact borders, was associated with down-regulation of Slug and Twist, transcriptional repressors which mediate cancer invasion and metastasis. In contrast, N-cadherin, a mesenchymal marker, was reduced by sLRP5. In addition, blocking Wnt signaling by sLRP5 modulated other epithelial and mesenchymal markers (keratin 8 and 18, fibronectin), suggesting a reversal of epithelial-mesenchymal transition (EMT) seen during cancer progression. SLRP5 also reduced the expression of matrix metalloproteinase (MMP) 2 and 14, consistent with a decrease in invasive capacity. SLRP5 transfection decreased both Met expression and hepatocyte growth factor (HGF)-induced cell motility. Taken together, these results support a role for Wnt/LRP5 signaling in invasiveness of a subset of OS cells.
Collapse
Affiliation(s)
- Yi Guo
- Department of Orthopaedic Surgery, University of California, Irvine, 101 The City Drive South, Orange, California 92868, USA
| | | | | | | | | | | | | | | |
Collapse
|
422
|
Bilic J, Huang YL, Davidson G, Zimmermann T, Cruciat CM, Bienz M, Niehrs C. Wnt induces LRP6 signalosomes and promotes dishevelled-dependent LRP6 phosphorylation. Science 2007; 316:1619-22. [PMID: 17569865 DOI: 10.1126/science.1137065] [Citation(s) in RCA: 715] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Multiple signaling pathways, including Wnt signaling, participate in animal development, stem cell biology, and human cancer. Although many components of the Wnt pathway have been identified, unresolved questions remain as to the mechanism by which Wnt binding to its receptors Frizzled and Low-density lipoprotein receptor-related protein 6 (LRP6) triggers downstream signaling events. With live imaging of vertebrate cells, we show that Wnt treatment quickly induces plasma membrane-associated LRP6 aggregates. LRP6 aggregates are phosphorylated and can be detergent-solubilized as ribosome-sized multiprotein complexes. Phospho-LRP6 aggregates contain Wnt-pathway components but no common vesicular traffic markers except caveolin. The scaffold protein Dishevelled (Dvl) is required for LRP6 phosphorylation and aggregation. We propose that Wnts induce coclustering of receptors and Dvl in LRP6-signalosomes, which in turn triggers LRP6 phosphorylation to promote Axin recruitment and beta-catenin stabilization.
Collapse
Affiliation(s)
- Josipa Bilic
- Division of Molecular Embryology, Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
423
|
Mikesch JH, Steffen B, Berdel WE, Serve H, Müller-Tidow C. The emerging role of Wnt signaling in the pathogenesis of acute myeloid leukemia. Leukemia 2007; 21:1638-47. [PMID: 17554387 DOI: 10.1038/sj.leu.2404732] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Wnt signaling plays an important role in stem cell self-renewal and proliferation. Aberrant activation of Wnt signaling and its downstream targets are intimately linked with several types of cancer with colon cancer being the best-studied example. However, recent results also suggest an important role of Wnt signaling in normal as well as leukemic hematopoietic stem cells. Aberrant activation of Wnt signaling and downstream effectors has been demonstrated in acute myeloid leukemia. Here, mutant receptor tyrosine kinases, such as Flt3 and chimeric transcription factors such as promyelocytic leukemia-retinoic acid receptor-alpha and acute myeloid leukemia1-ETO, induce downstream Wnt signaling events. These findings suggest that the Wnt signaling pathway is an important target in several leukemogenic pathways and may provide a novel opportunity for targeting leukemic stem cells.
Collapse
Affiliation(s)
- J-H Mikesch
- Department of Medicine, Hematology and Oncology, University of Muenster, Münster, Germany
| | | | | | | | | |
Collapse
|
424
|
Oosterveen T, Coudreuse DYM, Yang PT, Fraser E, Bergsma J, Dale TC, Korswagen HC. Two functionally distinct Axin-like proteins regulate canonical Wnt signaling in C. elegans. Dev Biol 2007; 308:438-48. [PMID: 17601533 DOI: 10.1016/j.ydbio.2007.05.043] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2007] [Revised: 05/17/2007] [Accepted: 05/31/2007] [Indexed: 02/05/2023]
Abstract
Axin is a central component of the canonical Wnt signaling pathway that interacts with the adenomatous polyposis coli protein APC and the kinase GSK3beta to downregulate the effector beta-catenin. In the nematode Caenorhabditis elegans, canonical Wnt signaling is negatively regulated by the highly divergent Axin ortholog PRY-1. Mutation of pry-1 leads to constitutive activation of BAR-1/beta-catenin-dependent Wnt signaling and results in a range of developmental defects. The pry-1 null phenotype is however not fully penetrant, indicating that additional factors may partially compensate for PRY-1 function. Here, we report the cloning and functional analysis of a second Axin-like protein, which we named AXL-1. We show that despite considerable sequence divergence with PRY-1 and other Axin family members, AXL-1 is a functional Axin ortholog. AXL-1 functions redundantly with PRY-1 in negatively regulating BAR-1/beta-catenin signaling in the developing vulva and the Q neuroblast lineage. In addition, AXL-1 functions independently of PRY-1 in negatively regulating canonical Wnt signaling during excretory cell development. In contrast to vertebrate Axin and the related protein Conductin, AXL-1 and PRY-1 are not functionally equivalent. We conclude that Axin function in C. elegans is divided over two different Axin orthologs that have specific functions in negatively regulating canonical Wnt signaling.
Collapse
Affiliation(s)
- Tony Oosterveen
- Hubrecht Institute, Developmental Biology and Stem Cell Research, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
425
|
Baig-Lewis S, Peterson-Nedry W, Wehrli M. Wingless/Wnt signal transduction requires distinct initiation and amplification steps that both depend on Arrow/LRP. Dev Biol 2007; 306:94-111. [PMID: 17433287 PMCID: PMC1950126 DOI: 10.1016/j.ydbio.2007.03.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2006] [Revised: 03/01/2007] [Accepted: 03/05/2007] [Indexed: 12/13/2022]
Abstract
Members of the Wg/Wnt family provide key intercellular signals during embryonic development and in the maintenance of homeostatic processes, but critical aspects of their signal transduction pathways remain controversial. We have found that canonical Wg signaling in Drosophila involves distinct initiation and amplification steps, both of which require Arrow/LRP. Expressing a chimeric Frizzled2-Arrow protein in flies that lack endogenous Wg or Arrow showed that this construct functions as an activated Wg receptor but is deficient in signal amplification. In contrast, a chimeric Arrow protein containing the dimerization domain of Torso acted as a potent amplifier of Wg signaling but could not initiate Wg signaling on its own. The two chimeric proteins synergized, so that their co-expression largely reconstituted the signaling levels achieved by expressing Wg itself. The amplification function of Arrow/LRP appears to be particularly important for long-range signaling, and may reflect a general mechanism for potentiating signals in the shallow part of a morphogen gradient.
Collapse
Affiliation(s)
- Shahana Baig-Lewis
- Oregon Health and Science University, Department of Cell and Developmental Biology, 3181 SW Sam Jackson Park Road/L215, Portland, OR 97239
| | - Wynne Peterson-Nedry
- Oregon Health and Science University, Department of Cell and Developmental Biology, 3181 SW Sam Jackson Park Road/L215, Portland, OR 97239
| | - Marcel Wehrli
- Oregon Health and Science University, Department of Cell and Developmental Biology, 3181 SW Sam Jackson Park Road/L215, Portland, OR 97239
| |
Collapse
|
426
|
Roberts DM, Slep KC, Peifer M. It takes more than two to tango: Dishevelled polymerization and Wnt signaling. Nat Struct Mol Biol 2007; 14:463-5. [PMID: 17549080 DOI: 10.1038/nsmb0607-463] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
427
|
Ezura Y, Nakajima T, Urano T, Sudo Y, Kajita M, Yoshida H, Suzuki T, Hosoi T, Inoue S, Shiraki M, Emi M. Association of a single-nucleotide variation (A1330V) in the low-density lipoprotein receptor-related protein 5 gene (LRP5) with bone mineral density in adult Japanese women. Bone 2007; 40:997-1005. [PMID: 17306638 DOI: 10.1016/j.bone.2005.06.025] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2004] [Revised: 05/29/2005] [Accepted: 06/13/2005] [Indexed: 01/30/2023]
Abstract
Low-density lipoprotein receptor-related protein 5 (LRP5), a co-receptor of Wnt signaling, is an important regulator of bone development and maintenance. Recently we identified correlation between an intronic single-nucleotide polymorphism (SNP) in the LRP5 gene and vertebral bone mineral density (BMD), indicating that a genetic ground exists at this locus for determination of BMD. In the study reported here, we searched for nucleotide variation(s) that might confer susceptibility to osteoporosis among an extended panel of 387 healthy subjects recruited from the same hospital (Group-A), as well as among 384 subjects from the general population in eastern Japan (Group-B). We basically focused on two potentially functional variations, Q89R (c.266A > G) and A1330V (c.3989C > T), whose functional effects by the amino-acid changes were estimated by the SIFT software program; it predicted the 1330 V allele as deleterious ("intolerant") although the minor allele of Q89R was questionable. By analyzing associations between the variant alleles and the BMD, reproducible association of the minor variant of A1330V to lower adjusted BMD levels was detected; i.e., In Group-A subjects 1330-V significantly associated with the spinal BMD Z-score (P = 0.034), and in Group-B it associated with low radial BMD (P = 0.019). From haplotype and linkage disequilibrium (LD) analysis for 29 SNPs, we detected two separate LD blocks within the entire 137-kb LRP5 locus, basically consistent with a previous report on Caucasians. One of the second block haplotype significantly associated with adjusted BMD (r = 0.15, P = 0.004). Possible combined effect of Q89R and A1330V belonging to different LD blocks was denied by multiple regression analyses. Our results indicate that genetic variations in LRP5 are important factors affecting BMD in adult women and that 1330 V may contribute to osteoporosis susceptibility, at least in Japanese.
Collapse
Affiliation(s)
- Yoichi Ezura
- Department of Molecular Biology, Institute of Gerontology, Nippon Medical School, 1-396, Kosugi-cho, Nakahara-ku, Kawasaki 211-8533, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
428
|
Wei Q, Yokota C, Semenov MV, Doble B, Woodgett J, He X. R-spondin1 is a high affinity ligand for LRP6 and induces LRP6 phosphorylation and beta-catenin signaling. J Biol Chem 2007; 282:15903-11. [PMID: 17400545 DOI: 10.1074/jbc.m701927200] [Citation(s) in RCA: 152] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
R-spondin proteins are newly identified secreted molecules that activate beta-catenin signaling. However, the mechanism of R-spondin action and its relationship with Wnt signaling remain unclear. Here we show that human R-spondin1 (hRspo1) is a high affinity ligand for the Wnt co-receptor LRP6 (K(d) = 1.2 nm). hRspo1 induces glycogen synthase kinase 3-dependent phosphorylation and activation of LRP6. DKK1, an LRP6 antagonist, inhibits hRspo1-induced LRP6 phosphorylation. We further demonstrate that hRspo1 synergizes with Frizzled5 in Xenopus axis induction assays and induces the phosphorylation of Dishevelled, a cytoplasmic component downstream of Frizzled function. Our study reveals interesting similarity and distinction between Wnt and R-spondin signaling.
Collapse
Affiliation(s)
- Qiou Wei
- Program of Neurobiology, Children's Hospital Boston, Department of Neurology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | |
Collapse
|
429
|
Muñoz JP, Huichalaf CH, Orellana D, Maccioni RB. cdk5 modulates beta- and delta-catenin/Pin1 interactions in neuronal cells. J Cell Biochem 2007; 100:738-49. [PMID: 17009320 DOI: 10.1002/jcb.21041] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The cdk5/p35 complex has been implicated in a variety of functions related to brain development, including axonal outgrown and neuronal migration. In this study, by co-immunoprecipitation and pull-down experiments, we have shown that the cdk5/p35 complex associates with and phosphorylates the neuronal delta-catenin. Immunocytochemical studies of delta-catenin and the cdk5-activator p35 in primary cortical neurons indicated that these proteins co-localize in the cell body of neuronal cells. In addition, cdk5 co-localized with beta-catenin in the cell-cell contacts and plasma membrane of undifferentiated and differentiated N2A cells. In this context, we identified Ser(191) and Ser(246) on beta-catenin structure as specific phosphorylation sites for cdk5/p35 complex. Moreover, Pin1, a peptidyl-prolyl isomerase (PPIase) directly bound to both, beta- and delta-catenin, once they have been phosphorylated by the cdk5/p35 complex. Studies indicate that the cdk5/p35 protein kinase system is directly involved in the regulatory mechanisms of neuronal beta- and delta-catenin.
Collapse
Affiliation(s)
- Juan P Muñoz
- Laboratory of Cellular, Molecular Biology and Neurosciences, Faculty of Sciences, Millennium Institute for Advanced Studies in Cell Biology and Biotechnology, Department of Neurological Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | | | | | | |
Collapse
|
430
|
Usui T, Urano T, Shiraki M, Ouchi Y, Inoue S. Association of a single nucleotide polymorphism in Wnt10bgene with bone mineral density. Geriatr Gerontol Int 2007. [DOI: 10.1111/j.1447-0594.2007.00368.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
431
|
Abstract
Low-density lipoprotein receptor-related protein 6 (LRP6) is a member of low-density lipoprotein receptor (LDLR) family which cooperates with Frizzled receptors to transduce the canonical Wnt signal. As a critical component of the canonical Wnt pathway, LRP6 is essential for appropriate brain development, however, the mechanism by which LRP6 facilitates Wnt canonical signaling has not been fully elucidated. Interestingly, LRP6 which lacks its extracellular domain can constitutively activate TCF/LEF and potentiate the Wnt signal. Further, the free cytosolic tail of LRP6 interacts directly with glycogen synthase kinase (GSK3) and inhibits GSK3's activity in the Wnt canonical pathway which results in increased TCF/LEF activation. However, whether these truncated forms of LRP6 are physiologically relevant is unclear. Recent studies have shown that other members of the LDLR family undergo gamma-secretase dependent regulated intramembrane proteolysis (RIP). Using independent experimental approaches, we show that LRP6 also undergoes RIP. The extracellular domain of LRP6 is shed and released into the surrounding milieu and the cytoplasmic tail is cleaved by gamma-secretase-like activity to release the intracellular domain. Furthermore, protein kinase C, Wnt 3a and Dickkopf-1 modulate this process. These findings suggest a novel mechanism for LRP6 in Wnt signaling: induction of ectodomain shedding of LRP6, followed by the gamma-secretase involved proteolytic releasing its intracellular domain (ICD) which then binds to GSK3 inhibiting its activity and thus activates the canonical Wnt signaling pathway.
Collapse
Affiliation(s)
- Kaihong Mi
- Department of Psychiatry, University of Alabama at Birmingham, Birmingham, Alabama 35294-0017, USA
| | | |
Collapse
|
432
|
Turashvili G, Bouchal J, Burkadze G, Kolar Z. Wnt Signaling Pathway in Mammary Gland Development and Carcinogenesis. Pathobiology 2007; 73:213-23. [PMID: 17314492 DOI: 10.1159/000098207] [Citation(s) in RCA: 155] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2006] [Accepted: 10/03/2006] [Indexed: 12/17/2022] Open
Abstract
The signaling pathway mediated by Wingless-type (Wnt) proteins is highly conserved in evolution. This pivotal pathway is known to regulate cell fate decisions, cell proliferation, morphology, migration, apoptosis, differentiation and stem cell self-renewal. It currently includes the canonical or Wnt/beta-catenin pathway in which Wnt proteins bind to 'frizzled' receptors, which leads to downstream activation of gene transcription by beta-catenin. Second, the noncanonical or beta-catenin-independent pathways are now known to be mediated by three possible mechanisms: (1) the Wnt/Ca(2+) pathway, (2) the Wnt/G protein signaling pathway, and (3) the Wnt/PCP or planar cell polarity pathway. Wnt signaling is implicated at several stages of mammary gland growth and differentiation, and possibly in the involution of mammary gland following lactation. Recent evidence suggests the role of Wnt signaling in human breast cancer involves elevated levels of nuclear and/or cytoplasmic beta-catenin using immunohistochemistry, overexpression or downregulation of specific Wnt proteins, overexpression of CKII and sFRP4, downregulation of WIF-1 and sFRP1, as well as amplification of DVL-1. Further research is required to determine how Wnt signaling is involved in the development of different histological types of breast cancer and whether it promotes the viability of cancer stem cells or not.
Collapse
Affiliation(s)
- Gulisa Turashvili
- Laboratory of Molecular Pathology, Institute of Pathology, Palacky University, Olomouc, Czech Republic.
| | | | | | | |
Collapse
|
433
|
Luo W, Peterson A, Garcia BA, Coombs G, Kofahl B, Heinrich R, Shabanowitz J, Hunt DF, Yost HJ, Virshup DM. Protein phosphatase 1 regulates assembly and function of the beta-catenin degradation complex. EMBO J 2007; 26:1511-21. [PMID: 17318175 PMCID: PMC1829374 DOI: 10.1038/sj.emboj.7601607] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2006] [Accepted: 01/23/2007] [Indexed: 01/03/2023] Open
Abstract
The Wnt/beta-catenin signaling pathway is critical in both cellular proliferation and organismal development. However, how the beta-catenin degradation complex is inhibited upon Wnt activation remains unclear. Using a directed RNAi screen we find that protein phosphatase 1 (PP1), a ubiquitous serine/threonine phosphatase, is a novel potent positive physiologic regulator of the Wnt/beta-catenin signaling pathway. PP1 expression synergistically activates, and inhibition of PP1 inhibits, Wnt/beta-catenin signaling in Drosophila and mammalian cells as well as in Xenopus embryos. The data suggest that PP1 controls Wnt signaling through interaction with, and regulated dephosphorylation of, axin. Inhibition of PP1 leads to enhanced phosphorylation of specific sites on axin by casein kinase I. Axin phosphorylation markedly enhances the binding of glycogen synthase kinase 3, leading to a more active beta-catenin destruction complex. Wnt-regulated changes in axin phosphorylation, mediated by PP1, may therefore determine beta-catenin transcriptional activity. Specific inhibition of PP1 in this pathway may offer therapeutic approaches to disorders with increased beta-catenin signaling.
Collapse
Affiliation(s)
- Wen Luo
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT, USA
| | - Annita Peterson
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT, USA
| | - Benjamin A Garcia
- Department of Chemistry, University of Virginia, Charlottesville, VA, USA
| | - Gary Coombs
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT, USA
| | - Bente Kofahl
- Department of Theoretical Biophysics, Institute of Biology, Humboldt University Berlin, Berlin, Germany
| | - Reinhart Heinrich
- Department of Theoretical Biophysics, Institute of Biology, Humboldt University Berlin, Berlin, Germany
| | | | - Donald F Hunt
- Department of Chemistry, University of Virginia, Charlottesville, VA, USA
- Department of Pathology, University of Virginia, Charlottesville, VA, USA
| | - H Joseph Yost
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT, USA
- Department of Pediatrics, University of Utah, Salt Lake City, UT, USA
- Center for Children at the Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - David M Virshup
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT, USA
- Department of Pediatrics, University of Utah, Salt Lake City, UT, USA
- Center for Children at the Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112-5550, USA. Tel.: +1 801 585 3408; Fax: +1 801 587 9415; E-mail:
| |
Collapse
|
434
|
Tu X, Joeng KS, Nakayama KI, Nakayama K, Rajagopal J, Carroll TJ, McMahon AP, Long F. Noncanonical Wnt signaling through G protein-linked PKCdelta activation promotes bone formation. Dev Cell 2007; 12:113-27. [PMID: 17199045 PMCID: PMC1861818 DOI: 10.1016/j.devcel.2006.11.003] [Citation(s) in RCA: 243] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2006] [Revised: 10/12/2006] [Accepted: 11/03/2006] [Indexed: 01/19/2023]
Abstract
Wnt signaling regulates a variety of developmental processes in animals. Although the beta-catenin-dependent (canonical) pathway is known to control cell fate, a similar role for noncanonical Wnt signaling has not been established in mammals. Moreover, the intracellular cascades for noncanonical Wnt signaling remain to be elucidated. Here, we delineate a pathway in which Wnt3a signals through the Galpha(q/11) subunits of G proteins to activate phosphatidylinositol signaling and PKCdelta in the murine ST2 cells. Galpha(q/11)-PKCdelta signaling is required for Wnt3a-induced osteoblastogenesis in these cells, and PKCdelta homozygous mutant mice exhibit a deficit in embryonic bone formation. Furthermore, Wnt7b, expressed by osteogenic cells in vivo, induces osteoblast differentiation in vitro via the PKCdelta-mediated pathway; ablation of Wnt7b in skeletal progenitors results in less bone in the mouse embryo. Together, these results reveal a Wnt-dependent osteogenic mechanism, and they provide a potential target pathway for designing therapeutics to promote bone formation.
Collapse
Affiliation(s)
- Xiaolin Tu
- Department of Medicine, Washington University Medical School, St. Louis, MO 63110, USA
| | - Kyu Sang Joeng
- Department of Medicine, Washington University Medical School, St. Louis, MO 63110, USA
- Division of Biology and Biomedical Sciences, Washington University Medical School, St. Louis, MO 63110, USA
| | - Keiichi I. Nakayama
- Department of Molecular and Cellular Biology, Kyushu University, Fukuoka, Japan
| | - Keiko Nakayama
- Center for Translational and Advanced Animal Research on Human Diseases, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Jayaraj Rajagopal
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA
| | - Thomas J. Carroll
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA
- Department of Internal Medicine, Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Andrew P. McMahon
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA
| | - Fanxin Long
- Department of Medicine, Washington University Medical School, St. Louis, MO 63110, USA
- Division of Biology and Biomedical Sciences, Washington University Medical School, St. Louis, MO 63110, USA
- Department of Molecular Biology and Pharmacology, Washington University Medical School, St. Louis, MO 63110, USA
- Author for correspondence:
| |
Collapse
|
435
|
Abstract
Cell to cell communication is vital throughout the development of multicellular organisms and during adult homeostasis. One way in which communication is achieved is through the secretion of signaling molecules that are received by neighboring responding cells. Wnt ligands comprise a large family of secreted, hydrophobic, glycoproteins that control a variety of developmental and adult processes in all metazoan organisms. By binding to various receptors present on receiving cells, Wnts initiate intracellular signaling cascades resulting in changes in gene transcription. Misregulation of Wnt signaling contributes to cancer and other degenerative disorders; thus, much effort has been made to understand the ways in which the pathway is controlled. Although ample research into the regulatory mechanisms that influence intracellular signaling events has proved fruitful, a great deal still remains to be elucidated regarding the mechanisms that control Wnt protein processing and secretion from cells, transport through the extracellular space, and protein reception on neighboring cells. This review attempts to consolidate the current data regarding these essential processes.
Collapse
Affiliation(s)
- A J Mikels
- Department of Developmental Biology, Stanford University, Stanford, CA, USA
| | | |
Collapse
|
436
|
Kofron M, Birsoy B, Houston D, Tao Q, Wylie C, Heasman J. Wnt11/beta-catenin signaling in both oocytes and early embryos acts through LRP6-mediated regulation of axin. Development 2007; 134:503-13. [PMID: 17202189 DOI: 10.1242/dev.02739] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Current models of canonical Wnt signaling assume that a pathway is active if beta-catenin becomes nuclearly localized and Wnt target genes are transcribed. We show that, in Xenopus, maternal LRP6 is essential in such a pathway, playing a pivotal role in causing expression of the organizer genes siamois and Xnr3, and in establishing the dorsal axis. We provide evidence that LRP6 acts by degrading axin protein during the early cleavage stage of development. In the full-grown oocyte, before maturation, we find that axin levels are also regulated by Wnt11 and LRP6. In the oocyte, Wnt11 and/or LRP6 regulates axin to maintain beta-catenin at a low level, while in the embryo, asymmetrical Wnt11/LRP6 signaling stabilizes beta-catenin and enriches it on the dorsal side. This suggests that canonical Wnt signaling may not exist in simple off or on states, but may also include a third, steady-state, modality.
Collapse
Affiliation(s)
- Matt Kofron
- Division of Developmental Biology, Cincinnati Children's Research Foundation, Cincinnati, OH 45229-3039, USA
| | | | | | | | | | | |
Collapse
|
437
|
Kimelman D, Xu W. beta-catenin destruction complex: insights and questions from a structural perspective. Oncogene 2007; 25:7482-91. [PMID: 17143292 DOI: 10.1038/sj.onc.1210055] [Citation(s) in RCA: 501] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
At the heart of the canonical Wnt signaling pathway is the beta-catenin destruction complex, which functions in the absence of Wnt signaling to keep the cytosolic and nuclear levels of beta-catenin very low by promoting the phosphorylation and ubiquitination of beta-catenin. Structural studies, combined with other experimental approaches, have begun to provide important insights into the mechanism of the destruction complex. We suggest a working model for the destruction complex based on the existing structural and experimental data, and focus on the questions that this model and other studies have raised about the function of the complex in both the normal and Wnt-inhibited states.
Collapse
Affiliation(s)
- D Kimelman
- Department of Biochemistry, University of Washington, Seattle, WA 98195-7350, USA.
| | | |
Collapse
|
438
|
Abstract
Dickkopf (Dkk) genes comprise an evolutionary conserved small gene family of four members (Dkk1-4) and a unique Dkk3-related gene, Dkkl1 (soggy). They encode secreted proteins that typically antagonize Wnt/beta-catenin signaling, by inhibiting the Wnt coreceptors Lrp5 and 6. Additionally, Dkks are high affinity ligands for the transmembrane proteins Kremen1 and 2, which also modulate Wnt signaling. Dkks play an important role in vertebrate development, where they locally inhibit Wnt regulated processes such as antero-posterior axial patterning, limb development, somitogenesis and eye formation. In the adult, Dkks are implicated in bone formation and bone disease, cancer and Alzheimer's disease.
Collapse
Affiliation(s)
- C Niehrs
- Department of Molecular Embryology, German Cancer Research Center, Heidelberg, Germany.
| |
Collapse
|
439
|
Urano T, Shiraki M, Narusawa K, Usui T, Sasaki N, Hosoi T, Ouchi Y, Nakamura T, Inoue S. Q89R polymorphism in the LDL receptor-related protein 5 gene is associated with spinal osteoarthritis in postmenopausal Japanese women. Spine (Phila Pa 1976) 2007; 32:25-9. [PMID: 17202888 DOI: 10.1097/01.brs.0000251003.62212.5b] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN An association study investigating the genetic etiology for spinal osteoarthritis. OBJECTIVE To determine the association of single-nucleotide polymorphism (SNP) causing an amino-acid change (Q89R) in the low-density lipoprotein receptor-related protein 5 (LRP5) coding region with spinal osteoarthritis. SUMMARY OF BACKGROUND DATA Wnt/beta-catenin signaling pathway regulates bone density through a Wnt coreceptor LRP5. This pathway is also involved in cartilage development and homeostasis, suggesting that genetic variation in LRP5 gene may affect the pathogenesis of cartilage-related diseases, such as osteoarthritis. METHODS We evaluated the presence of osteophytes, endplate sclerosis, and narrowing of disc spaces in 357 Japanese postmenopausal women. Missense coding SNP for Q89R of LRP5 gene was determined using TaqMan polymerase chain reaction (PCR) method. RESULTS We found that subjects without the R allele (QQ; n = 321) had a significantly lower osteophyte formation score than did subjects bearing at least one R allele (QR + RR; n = 36) (7.80 vs. 10.89, P = 0.0019 by analysis of covariance). CONCLUSIONS We suggest that a genetic variation at the LRP5 gene locus is associated with spinal osteoarthritis, in line with the involvement of the LRP5 gene in the bone and cartilage metabolism.
Collapse
Affiliation(s)
- Tomohiko Urano
- Department of Geriatric Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
440
|
Parker DS, Blauwkamp T, Cadigan KM. Wnt/β‐catenin‐mediated transcriptional regulation. WNT SIGNALING IN EMBRYONIC DEVELOPMENT 2007. [DOI: 10.1016/s1574-3349(06)17001-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
441
|
Guo J, Cooper LF. Influence of an LRP5 cytoplasmic SNP on Wnt signaling and osteoblastic differentiation. Bone 2007; 40:57-67. [PMID: 16956801 DOI: 10.1016/j.bone.2006.07.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2006] [Revised: 05/08/2006] [Accepted: 07/21/2006] [Indexed: 11/30/2022]
Abstract
The low density lipoprotein receptor-related protein 5 (LRP5) is a key determinant of bone mass, via the Wnt signaling pathway control of osteoblast function. This study examined human LRP5 signaling and the effects of an intracellular domain single nucleotide polymorphism (SNP: p.V1525A) on osteoblast differentiation and mineralization. Constitutively active LRP5 was constructed by deletion of the extracellular domain of LRP5 (LRP5DeltaN). Expression of LRP5DeltaN-V, which carries the allele p.1525V, induced higher beta-catenin/TCF-LEF activity compared to LRP5DeltaN-A, which carries the allele p.1525A. In a yeast two-hybrid assay, LRP5DeltaN-V also demonstrated a stronger interaction with AXIN than LRP5DeltaN-A. Expression of either of the alleles did not change cell proliferation. However, cells expressing LRP5DeltaN-V showed increased alkaline phosphatase activity and bone nodule formation compared to cells transfected with empty vector or LRP5DeltaN-A after osteogenic supplement (OS: beta-glycerophosphate and l-ascorbic acid) treatment. Cells expressing LRP5DeltaN-V revealed significantly increased bone sialoprotein (BSP) expression after 7 days of OS treatment and maintained elevated expression until day 21. Osteocalcin (OCN) mRNA levels were increased after 14-21 days of OS treatment in LRP5DeltaN-V expressing cells. LRP5DeltaN-V expressing cells demonstrated positive interaction with BMP-2 signaling of transcription at the SBE-luc promoter. LRP5 signaling is affected by the cytoplasmic SNP, p.V1525A. mRNA levels of Runx2 and Osterix were not affected by this SNP.
Collapse
Affiliation(s)
- J Guo
- Curriculum in Oral Biology, Bone Biology and Implant Therapy Laboratory, 404 Brauer Hall, CB# 7450 School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7455, USA
| | | |
Collapse
|
442
|
Abstract
Diabetes mellitus (DM) is a significant healthcare concern worldwide that affects more than 165 million individuals leading to cardiovascular disease, nephropathy, retinopathy, and widespread disease of both the peripheral and central nervous systems. The incidence of undiagnosed diabetes, impaired glucose tolerance, and impaired fasting glucose levels raises future concerns in regards to the financial and patient care resources that will be necessary to care for patients with DM. Interestingly, disease of the nervous system can become one of the most debilitating complications and affect sensitive cognitive regions of the brain, such as the hippocampus that modulates memory function, resulting in significant functional impairment and dementia. Oxidative stress forms the foundation for the induction of multiple cellular pathways that can ultimately lead to both the onset and subsequent complications of DM. In particular, novel pathways that involve metabotropic receptor signaling, protein-tyrosine phosphatases, Wnt proteins, Akt, GSK-3beta, and forkhead transcription factors may be responsible for the onset and progression of complications form DM. Further knowledge acquired in understanding the complexity of DM and its ability to impair cellular systems throughout the body will foster new strategies for the treatment of DM and its complications.
Collapse
Affiliation(s)
- Kenneth Maiese
- Department of Neurology, 8C-1 UHC, Wayne State University School of Medicine, 4201 St. Antoine, Detroit, MI 48201, USA.
| | | | | |
Collapse
|
443
|
Urano T, Narusawa K, Shiraki M, Usui T, Sasaki N, Hosoi T, Ouchi Y, Nakamura T, Inoue S. Association of a single nucleotide polymorphism in the WISP1 gene with spinal osteoarthritis in postmenopausal Japanese women. J Bone Miner Metab 2007; 25:253-8. [PMID: 17593496 DOI: 10.1007/s00774-007-0757-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2006] [Accepted: 01/31/2007] [Indexed: 11/28/2022]
Abstract
The Wnt-beta-catenin signaling pathway that regulates bone density is also involved in cartilage development and homeostasis in vivo. Here, we assumed that genetic variation in Wnt-beta-catenin signaling genes can affect the pathogenesis of cartilage related diseases, such as osteoarthritis. Wnt-1-induced secreted protein 1 (WISP1) is a target of the Wnt pathway and directly regulated by beta-catenin. In the present study, we analyzed the association of a single nucleotide polymorphism (SNP) in the WISP1 3'-UTR region with the development of radiographically observable osteoarthritis of the spine. For this purpose, we evaluated the presence of osteophytes, endplate sclerosis, and narrowing of disc spaces in 304 postmenopausal Japanese women. We compared those who carried the G allele (GG or GA, n = 184) with those who did not (AA, n = 120). We found that the subjects without the G allele (AA) were significantly over-represented in the subjects having higher endplate sclerosis score (P = 0.0069; odds ratio, 2.91; 95% confidence interval, 1.34-6.30 by logistic regression analysis). On the other hand, the occurrence of disc narrowing and osteophyte formation did not significantly differ between those with and without at least one G allele. Thus, we suggest that a genetic variation in the WISP1 gene locus is associated with spinal osteoarthritis, in line with the involvement of the Wnt-beta-catenin-regulated gene in bone and cartilage metabolism.
Collapse
Affiliation(s)
- Tomohiko Urano
- Department of Geriatric Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
444
|
May P, Woldt E, Matz RL, Boucher P. The LDL receptor-related protein (LRP) family: an old family of proteins with new physiological functions. Ann Med 2007; 39:219-28. [PMID: 17457719 DOI: 10.1080/07853890701214881] [Citation(s) in RCA: 188] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
The low-density lipoprotein (LDL) receptor is the founding member of a family of seven structurally closely related transmembrane proteins (LRP1, LRP1b, megalin/LRP2, LDL receptor, very low-density lipoprotein receptor, MEGF7/LRP4, LRP8/apolipoprotein E receptor2). These proteins participate in a wide range of physiological processes, including the regulation of lipid metabolism, protection against atherosclerosis, neurodevelopment, and transport of nutrients and vitamins. While currently available data suggest that the role of the LDL receptor is limited to the regulation of cholesterol homeostasis by receptor-mediated endocytosis of lipoprotein particles, there is growing experimental evidence that the other members of the gene family have additional physiological functions as signal transducers. In this review, we focus on the latest discovered functions of two major members of this family, LRP1 and megalin/LRP2, and on the newly elucidated physiological role of a third member of the family, MEGF7/LRP4, which can also function as a modulator of diverse signaling pathways during development.
Collapse
Affiliation(s)
- Petra May
- Universität Freiburg, Medizinische Klinik II/Zentrum für Neurowissenschaften, Freiburg, Germany
| | | | | | | |
Collapse
|
445
|
Abstract
The fruitfly, Drosophila melanogaster, has been of central importance in analysing the mechanics of cellular processes. Classic forward genetic screens in the fly have identified many of the genes that define critical cell signaling pathways, for example. Our understanding of the Wnt pathway, in particular, has benefited from the many advantages that the fly offers as a model system. Here, I review the history of these discoveries and highlight the utility of the fly in dissecting the molecular workings of Wnt signal transduction.
Collapse
Affiliation(s)
- A Bejsovec
- Department of Biology, Duke University, Durham, NC 27708-1000, USA.
| |
Collapse
|
446
|
Semenov MV, He X. LRP5 Mutations Linked to High Bone Mass Diseases Cause Reduced LRP5 Binding and Inhibition by SOST. J Biol Chem 2006; 281:38276-84. [PMID: 17052975 DOI: 10.1074/jbc.m609509200] [Citation(s) in RCA: 171] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The low density lipoprotein (LDL) receptor-related protein 5 (LRP5) is a co-receptor for Wnt proteins and a major regulator in bone homeostasis. Human genetic studies have shown that recessive loss-of-function mutations in LRP5 are linked to osteoporosis, while on the contrary, dominant missense LRP5 mutations are associated with high bone mass (HBM) diseases. All LRP5 HBM mutations are clustered in a single region in the LRP5 extracellular domain and presumably result in elevated Wnt signaling in bone forming cells. Here we show that LRP5 HBM mutant proteins exhibit reduced binding to a secreted bone-specific LRP5 antagonist, SOST, and consequently are more refractory to inhibition by SOST. As loss-of-function mutations in the SOST gene are associated with Sclerosteosis, another disorder of excessive bone growth, our study suggests that the SOST-LRP5 antagonistic interaction plays a central role in bone mass regulation and may represent a nodal point for therapeutic intervention for osteoporosis and other bone diseases.
Collapse
Affiliation(s)
- Mikhail V Semenov
- Neurobiology Program, Children's Hospital Boston, 61 Binmney Street, Boston, MA 02115, USA.
| | | |
Collapse
|
447
|
Pan W, Jia Y, Huang T, Wang J, Tao D, Gan X, Li L. β-catenin relieves I-mfa-mediated suppression of LEF-1 in mammalian cells. J Cell Sci 2006; 119:4850-6. [PMID: 17090604 DOI: 10.1242/jcs.03257] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have previously shown that β-catenin interacts with a transcription suppressor I-mfa and, through this interaction, canonical Wnt signaling could relieve I-mfa-mediated suppression of myogenic regulatory factors (MRFs). In this study, we found that, based on this interaction, I-mfa-mediated suppression of the Wnt transcription factor T-cell factor/lymphoid enhancing factor-1 (TCF/LEF-1) can also be relieved. Our work showed that knocking down endogenous I-mfa expression mimics canonical Wnt treatment by inducing myogenesis and increasing Wnt reporter gene activity, endogenous Wnt target gene expression and expression of MRFs in P19 cells. More importantly, these I-mfa small interfering RNA (siRNA)-induced effects could be blocked by a dominant-negative mutant of LEF-1, confirming the involvement of the TCF/LEF-1 pathway. In addition, we found that β-catenin could compete with I-mfa for binding to LEF-1 and relieve the inhibitory effects of I-mfa in overexpression systems. Furthermore, canonical Wnt was able to reduce the levels of endogenous I-mfa associated with LEF-1, while increasing that of I-mfa associated with β-catenin. All of the evidence supports a conclusion that I-mfa can suppress myogenesis by inhibiting TCF/LEF-1 and that canonical Wnt signaling may relieve the suppression through elevating β-catenin levels, which in turn relieve I-mfa-mediated suppression.
Collapse
Affiliation(s)
- Weijun Pan
- State Key Laboratory of Molecular Biology and Center of Cell Signaling, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | | | | | | | | | | | | |
Collapse
|
448
|
Kikuchi A, Yamamoto H, Kishida S. Multiplicity of the interactions of Wnt proteins and their receptors. Cell Signal 2006; 19:659-71. [PMID: 17188462 DOI: 10.1016/j.cellsig.2006.11.001] [Citation(s) in RCA: 206] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2006] [Accepted: 11/07/2006] [Indexed: 02/07/2023]
Abstract
Wnts are secreted proteins that are essential for a wide array of developmental and physiological processes. They signal across the plasma membranes by interacting with serpentine receptors of the Frizzled (Fz) family and members of the low-density-lipoprotein receptor-related protein (LRP) family. Recent advances in the Wnt signaling field have revealed that Wnt-unrelated proteins activate or suppress Wnt signaling by binding to Fzs or LRP5/6 and that atypical receptor tyrosine kinases mediate Wnt signaling independently of Fz and/or function as a Fz co-receptor. This review highlights recent progress in our understanding of the multiplicity of Wnts and their receptors. We discuss how the interaction between the ligands and receptors activate distinct intracellular signaling pathways. We also discuss how intracellular trafficking of Wnt signaling components can regulate the sensitivity of cells to Wnts.
Collapse
Affiliation(s)
- Akira Kikuchi
- Department of Biochemistry, Graduate School of Biomedical Sciences, Hiroshima University, 1-2-3 Kasumi, Hiroshima, Japan.
| | | | | |
Collapse
|
449
|
Carayol N, Wang CY. IKKα stabilizes cytosolic β-catenin by inhibiting both canonical and non-canonical degradation pathways. Cell Signal 2006; 18:1941-6. [PMID: 16616828 DOI: 10.1016/j.cellsig.2006.02.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2006] [Revised: 02/23/2006] [Accepted: 02/27/2006] [Indexed: 11/24/2022]
Abstract
Beta-catenin is a bi-functional protein. It is not only a major component of the cellular adhesion machinery, but is also a transcription co-activator of the Wnt signaling pathway. The cytosolic levels of the beta-catenin protein, as well as its subcellular localization, are tightly regulated due to its oncogenic potentials. Two independent pathways are found to regulate beta-catenin. The canonical pathway is induced by the Axin/adenomatous polyposis coli (APC)/glycogen synthase kinase-3beta (GSK-3beta) complex which is dependent on GSK-3beta phosphorylation. The non-canonical pathway is mediated by p53-induced Siah-1 which is GSK-3beta phosphorylation-independent. Recently, several studies reported that IkappaB kinase alpha (IKKalpha) could stabilize beta-catenin and stimulate beta-catenin/T cell factor (Tcf)-dependent transcription. Here we report that IKKalpha could inhibit beta-catenin degradation mediated not only by the Axin/APC/GSK-3beta complex, but also by the Siah-1 pathway. Consistently, we found that IKKalpha abolished the inhibition of beta-catenin/Tcf-dependent transcription by Siah-1. Furthermore, we found that IKKalpha interacted with beta-catenin and inhibited beta-catenin ubiquitination. Taken together, our results provide a new insight into IKKalpha-mediated beta-catenin stabilization.
Collapse
Affiliation(s)
- Nathalie Carayol
- Laboratory of Molecular Signaling and Apoptosis, Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, 1011 N. University Avenue, Ann Arbor, MI 48109-1078, USA
| | | |
Collapse
|
450
|
Yamamoto H, Komekado H, Kikuchi A. Caveolin is necessary for Wnt-3a-dependent internalization of LRP6 and accumulation of beta-catenin. Dev Cell 2006; 11:213-23. [PMID: 16890161 DOI: 10.1016/j.devcel.2006.07.003] [Citation(s) in RCA: 248] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2005] [Revised: 06/18/2006] [Accepted: 07/12/2006] [Indexed: 01/12/2023]
Abstract
beta-catenin-mediated Wnt signaling is critical in animal development and tumor progression. The single-span transmembrane Wnt receptor, low-density lipoprotein receptor-related protein 6 (LRP6), interacts with Axin to promote the Wnt-dependent accumulation of beta-catenin. However, the molecular mechanism of receptor internalization and its impact on signaling are unclear. Here, we present evidence that LRP6 is internalized with caveolin and that the components of this endocytic pathway are required not only for Wnt-3a-induced internalization of LRP6 but also for accumulation of beta-catenin. Overall, our data suggest that Wnt-3a triggers the interaction of LRP6 with caveolin and promotes recruitment of Axin to LRP6 phosphorylated by glycogen synthase kinase-3beta and that caveolin thereby inhibits the binding of beta-catenin to Axin. Thus, caveolin plays critical roles in inducing the internalization of LRP6 and activating the Wnt/beta-catenin pathway. We also discuss the idea that distinct endocytic pathways correlate with the specificity of Wnt signaling events.
Collapse
Affiliation(s)
- Hideki Yamamoto
- Department of Biochemistry, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima 734-8551, Japan
| | | | | |
Collapse
|