401
|
Kornau HC. GABAB receptors and synaptic modulation. Cell Tissue Res 2006; 326:517-33. [PMID: 16932937 DOI: 10.1007/s00441-006-0264-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2006] [Accepted: 05/31/2006] [Indexed: 12/18/2022]
Abstract
GABA(B) receptors modulate transmitter release and postsynaptic membrane potential at various types of central synapses. They function as heterodimers of two related seven-transmembrane domain receptor subunits. Trafficking, activation and signalling of GABA(B) receptors are regulated both by allosteric interactions between the subunits and by the binding of additional proteins. Recent studies have shed light on the roles of GABA(B) receptors in plasticity processes at excitatory synapses. This review summarizes our knowledge of the localization, structure and function of GABA(B) receptors in the central nervous system and their use as drug targets for neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Hans-Christian Kornau
- Center for Molecular Neurobiology (ZMNH), University of Hamburg, Falkenried 94, 20251 Hamburg, Germany.
| |
Collapse
|
402
|
van Rijn RM, Chazot PL, Shenton FC, Sansuk K, Bakker RA, Leurs R. Oligomerization of recombinant and endogenously expressed human histamine H(4) receptors. Mol Pharmacol 2006; 70:604-15. [PMID: 16645125 DOI: 10.1124/mol.105.020818] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
In this study, we report the homo- and hetero-oligomerization of the human histamine H(4)R by both biochemical (Western blot and immobilized metal affinity chromatography) and biophysical [bioluminescence resonance energy transfer and time-resolved fluorescence resonance energy transfer (tr-FRET)] techniques. The H(4)R receptor is the most recently discovered member of the histamine family of G-protein-coupled receptors. Using specific polyclonal antibodies raised against the C-terminal tail of the H(4)R, we demonstrate the presence of H(4)R oligomers in human embryonic kidney 293 and COS-7 cells heterologously overexpressing H(4)Rs and putative native H(4)R oligomers in human phytohaemagglutinin blasts endogenously expressing H(4)Rs. Moreover, we show that H(4)R homo-oligomers are formed constitutively, are formed at low receptor densities (300 fmol/mg of protein), and are present at the cell surface, as detected by tr-FRET. The formation of these oligomers is independent of N-glycosylation and is not modulated by H(4)R ligands, covering the full spectrum of agonists, neutral antagonists, and inverse agonists. Although we show H(4)R homo-oligomer formation at physiological expression levels, the detection of H(1)R-H(4)R hetero-oligomers was achieved only at higher H(1)R expression levels and are most likely not physiologically relevant.
Collapse
Affiliation(s)
- Richard M van Rijn
- Leiden/Amsterdam Center for Drug Research, Department of Medicinal Chemistry, Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
403
|
Abstract
Olfactory space has a higher dimensionality than does any other class of sensory stimuli, and the olfactory system receives input from an unusually large number of unique information channels. This suggests that aspects of olfactory processing may differ fundamentally from processing in other sensory modalities. This review summarizes current understanding of early events in olfactory processing. We focus on how odors are encoded by the activity of primary olfactory receptor neurons, how odor codes may be transformed in the olfactory bulb, and what relevance these codes may have for downstream neurons in higher brain centers. Recent findings in synaptic physiology, neural coding, and psychophysics are discussed, with reference to both vertebrate and insect model systems.
Collapse
Affiliation(s)
- Rachel I Wilson
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | |
Collapse
|
404
|
Herrick-Davis K, Weaver BA, Grinde E, Mazurkiewicz JE. Serotonin 5-HT2C receptor homodimer biogenesis in the endoplasmic reticulum: real-time visualization with confocal fluorescence resonance energy transfer. J Biol Chem 2006; 281:27109-16. [PMID: 16857671 DOI: 10.1074/jbc.m604390200] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Dimerization is a common property of G-protein-coupled receptors (GPCR). While the formation of GPCR dimers/oligomers has been reported to play important roles in regulating receptor expression, ligand binding, and second messenger activation, less is known about how and where GPCR dimerization occurs. The present study was performed to identify the precise cellular compartment in which class A GPCR dimer/oligomer biogenesis occurs. We addressed this issue using confocal microscopy and fluorescence resonance energy transfer (FRET) to monitor GPCR proximity within discrete intracellular compartments of intact living cells. Time-lapse confocal imaging was used to follow CFP- and YFP-tagged serotonin 5-HT2C receptors during biosynthesis in the endoplasmic reticulum (ER), trafficking through the Golgi apparatus and subsequent expression on the plasma membrane. Real-time monitoring of FRET between CFP- and YFP-tagged 5-HT2C receptors was performed by acceptor photobleaching within discrete regions of the ER, Golgi, and plasma membrane. The FRET signal was dependent on the ratio of CFP- to YFP-tagged 5-HT2C receptors expressed in each region and was independent of receptor expression level, as predicted for proteins in a non-random, clustered distribution. FRET efficiencies measured in the ER, Golgi, and plasma membrane were similar. These experiments provide direct evidence for homodimerization/oligomerization of class A GPCR in the ER and Golgi of intact living cells, and suggest that dimer/oligomer formation is a naturally occurring step in 5-HT2C receptor maturation and processing.
Collapse
Affiliation(s)
- Katharine Herrick-Davis
- Center for Neuropharmacology and Neuroscience, Albany Medical College, Albany, New York 12208, USA.
| | | | | | | |
Collapse
|
405
|
Redon R, Baujat G, Sanlaville D, Le Merrer M, Vekemans M, Munnich A, Carter NP, Cormier-Daire V, Colleaux L. Interstitial 9q22.3 microdeletion: clinical and molecular characterisation of a newly recognised overgrowth syndrome. Eur J Hum Genet 2006; 14:759-67. [PMID: 16570072 DOI: 10.1038/sj.ejhg.5201613] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
In the course of a systematic whole genome screening of patients with unexplained overgrowth syndrome by microarray-based comparative genomic hybridisation (array-CGH), we have identified two children with nearly identical 6.5 Mb-long de novo interstitial deletions at 9q22.32-q22.33. The clinical phenotype includes macrocephaly, overgrowth and trigonocephaly. In addition, both children present with psychomotor delay, hyperactivity and distinctive facial features. Further analysis with a high-resolution custom microarray covering the whole breakpoint intervals with fosmids mapped the deletion breakpoints within 100-kb intervals: although the deletion boundaries are different for the two patients, nearly the same genes are deleted in both cases. We suggest therefore that microdeletion of 9q22.32-q22.33 is a novel cause of overgrowth and mental retardation. Its association with distinctive facial features should help in recognising this novel phenotype.
Collapse
Affiliation(s)
- Richard Redon
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
406
|
Kong MMC, Fan T, Varghese G, O'dowd BF, George SR. Agonist-induced cell surface trafficking of an intracellularly sequestered D1 dopamine receptor homo-oligomer. Mol Pharmacol 2006; 70:78-89. [PMID: 16597839 DOI: 10.1124/mol.105.021246] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The role of oligomerization in D1 dopamine receptor trafficking to the cell surface was examined using conformationally distinct variants of this receptor. Substitution of the highly conserved aspartic acid (Asp103) in transmembrane domain 3 resulted in a constitutively active receptor, D103A, that did not bind agonists or antagonists but trafficked to the cell surface as oligomers. Coexpression of D103A with the wild-type D1 receptor in human embryonic kidney 293t cells resulted in inhibition of cell surface expression of the D1 receptor because of receptor oligomerization, causing intracellular retention of both proteins. Rescue of the intracellularly retained oligomer could be achieved only by membrane-permeable full and partial agonists, which resulted in cell surface expression of the D1 receptor, whereas cell-permeable antagonists and cell impermeable agonists had no effect. Cell surface fluorescence resonance energy transfer studies of cells coexpressing D103A and D1 revealed no signal before agonist treatment but a robust signal after agonist treatment, indicating that the intact D1/D103A oligomer reached the cell surface only after agonist treatment but not under basal conditions. This suggests that rescue of the retained D1/D103A oligomer to the cell surface was a result of an agonist-induced change in the conformation of D1, permitting cell surface trafficking of the D1/D103A receptor oligomeric complex from the endoplasmic reticulum.
Collapse
Affiliation(s)
- Michael M C Kong
- Department of Pharmacology, University of Toronto; Medical Sciences Building Rm 4358, Toronto, ON, Canada M5S 1A8
| | | | | | | | | |
Collapse
|
407
|
Magnaghi V, Ballabio M, Consoli A, Lambert JJ, Roglio I, Melcangi RC. GABA receptor-mediated effects in the peripheral nervous system: A cross-interaction with neuroactive steroids. J Mol Neurosci 2006; 28:89-102. [PMID: 16632878 DOI: 10.1385/jmn:28:1:89] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2005] [Revised: 11/30/1999] [Accepted: 08/18/2005] [Indexed: 12/18/2022]
Abstract
Gamma-aminobutyric acid (GABA), the major inhibitory neurotransmitter in the adult mammalian central nervous system (CNS), exerts its action via an interaction with specific receptors (e.g., GABAA and GABAB). These receptors are expressed not only in neurons but also on glial cells of the CNS, which might represent a target for the allosteric action of neuroactive steroids. Herein, we have demonstrated first that in the peripheral nervous system (PNS), the sciatic nerve and myelin-producing Schwann cells express both GABAA and GABAB receptors. Specific ligands, muscimol and baclofen, respectively, control Schwann-cell proliferation and expression of some specific myelin proteins (i.e., glycoprotein P0 and peripheral myelin protein 22 [PMP22]). Moreover, the progesterone (P) metabolite allopregnanolone, acting via the GABAA receptor, can influence PMP22 synthesis. In addition, we demonstrate that P, dihydroprogesterone, and allopregnanolone influence the expression of GABAB subunits in Schwann cells. The results suggest, at least in the myelinating cells of the PNS, a cross-interaction within the GABAergic receptor system, via GABAA and GABAB receptors and neuroactive steroids.
Collapse
Affiliation(s)
- Valerio Magnaghi
- Department of Endocrinology and Center of Excellence on Neurodegenerative Diseases, University of Milan, 20133 Milan, Italy.
| | | | | | | | | | | |
Collapse
|
408
|
Pontier SM, Lahaie N, Ginham R, St-Gelais F, Bonin H, Bell DJ, Flynn H, Trudeau LE, McIlhinney J, White JH, Bouvier M. Coordinated action of NSF and PKC regulates GABAB receptor signaling efficacy. EMBO J 2006; 25:2698-709. [PMID: 16724110 PMCID: PMC1500845 DOI: 10.1038/sj.emboj.7601157] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2005] [Accepted: 04/27/2006] [Indexed: 01/27/2023] Open
Abstract
The obligatory heterodimerization of the GABAB receptor (GBR) raises fundamental questions about molecular mechanisms controlling its signaling efficacy. Here, we show that NEM sensitive fusion (NSF) protein interacts directly with the GBR heterodimer both in rat brain synaptosomes and in CHO cells, forming a ternary complex that can be regulated by agonist stimulation. Inhibition of NSF binding with a peptide derived from GBR2 (TAT-Pep-27) did not affect basal signaling activity but almost completely abolished agonist-promoted GBR desensitization in both CHO cells and hippocampal slices. Taken with the role of PKC in the desensitization process, our observation that TAT-Pep-27 prevented both agonist-promoted recruitment of PKC and receptor phosphorylation suggests that NSF is a priming factor required for GBR desensitization. Given that GBR desensitization does not involve receptor internalization, the NSF/PKC coordinated action revealed herein suggests that NSF can regulate GPCR signalling efficacy independently of its role in membrane trafficking. The functional interaction between three bona fide regulators of neurotransmitter release, such as GBR, NSF and PKC, could shed new light on the modulation of presynaptic GBR action.
Collapse
Affiliation(s)
- Stéphanie M Pontier
- Département de Biochimie and Groupe de Recherche Universitaire sur le Médicament, Institut de recherche en immunologie et Cancérologie, Université de Montréal, Montréal, Qc, Canada
| | - Nicolas Lahaie
- Département de Biochimie and Groupe de Recherche Universitaire sur le Médicament, Institut de recherche en immunologie et Cancérologie, Université de Montréal, Montréal, Qc, Canada
| | - Rachel Ginham
- Medical Research Council Anatomical Neuropharmacology Unit, Oxford, UK
| | - Fannie St-Gelais
- Département de Pharmacologie, Faculté de médecine, Université de Montréal, Montréal, Qc, Canada
| | - Hélène Bonin
- Département de Biochimie and Groupe de Recherche Universitaire sur le Médicament, Institut de recherche en immunologie et Cancérologie, Université de Montréal, Montréal, Qc, Canada
| | - David J Bell
- Pathway Discovery, Genomics and Proteomic Sciences, GlaxoSmithKline Medicines Research Centre, Stevenage, UK
| | - Helen Flynn
- Pathway Discovery, Genomics and Proteomic Sciences, GlaxoSmithKline Medicines Research Centre, Stevenage, UK
| | - Louis-Eric Trudeau
- Département de Pharmacologie, Faculté de médecine, Université de Montréal, Montréal, Qc, Canada
| | | | - Julia H White
- Pathway Discovery, Genomics and Proteomic Sciences, GlaxoSmithKline Medicines Research Centre, Stevenage, UK
| | - Michel Bouvier
- Département de Biochimie and Groupe de Recherche Universitaire sur le Médicament, Institut de recherche en immunologie et Cancérologie, Université de Montréal, Montréal, Qc, Canada
| |
Collapse
|
409
|
Langer I, Gaspard N, Robberecht P. Pharmacological properties of Chinese hamster ovary cells coexpressing two vasoactive intestinal peptide receptors (hVPAC1 and hVPAC2). Br J Pharmacol 2006; 148:1051-9. [PMID: 16783404 PMCID: PMC1752023 DOI: 10.1038/sj.bjp.0706816] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1. In the light of recent findings that VPAC1 and VPAC2 receptors form homodimers and heterodimers, we have evaluated the function of these receptors coexpressed in the same cells, using whole-cell and membrane preparations. Cells expressing each receptor alone were used for comparison. 2. The study was performed on Chinese hamster ovary cells stably transfected with both human recombinant receptors and we compared receptor occupancy and adenylate cyclase activation by VIP, Ro 25-1553 - a VPAC2 selective agonist - and [K(15),R(16),L(27)]VIP(1-7)/GRF(8-27) - a VPAC1 selective agonist - on membranes prepared from each cell line and on a mixture of membranes from cells expressing each receptor individually. We also studied receptor internalization induced by the three agonists on intact cells expressing both receptors alone or together by fluorescence-activated cell sorting using monoclonal antibodies and demonstrated by using co-immunoprecipitation that the two receptors did interact.3. The results indicated that coexpression of the receptors did not modify the recognition of ligands, nor the capacity of the agonists to stimulate adenylate cyclase activity and, in intact cells, to induce internalization of the receptors.4. As a consequence, the properties of the selective ligands that were established on cell lines expressing a single population of VIP receptors were valid on cells expressing both receptors. Furthermore, the recently demonstrated VPAC1/VPAC2 receptor heterodimerization did not affect the function of either receptor.
Collapse
Affiliation(s)
- Ingrid Langer
- Department of Biological Chemistry and Nutrition, School of Medicine, Université Libre de Bruxelles, 808 Route de Lennik, CP 611, Brussels B-1070, Belgium.
| | | | | |
Collapse
|
410
|
Luján R, Shigemoto R. Localization of metabotropic GABA receptor subunits GABAB1 and GABAB2 relative to synaptic sites in the rat developing cerebellum. Eur J Neurosci 2006; 23:1479-90. [PMID: 16553611 DOI: 10.1111/j.1460-9568.2006.04669.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The highest densities of the two metabotropic GABA subunits, GABAB1 and GABAB2, have been reported as occurring around the glutamatergic synapses between Purkinje cell spines and parallel fibre varicosities. In order to determine how this distribution is achieved during development, we investigated the expression pattern and the cellular and subcellular localization of the GABAB1 and GABAB2 subunits in the rat cerebellum during postnatal development. At the light microscopic level, immunoreactivity for the GABAB1 and GABAB2 subunits was very prominent in the developing molecular layer, especially in Purkinje cells. Using double immunofluorescence, we demonstrated that GABAB1 was transiently expressed in glial cells. At the electron microscopic level, immunoreactivity for GABAB receptors was always detected both pre- and postsynaptically. Presynaptically, GABAB1 and GABAB2 were localized in the extrasynaptic membrane of parallel fibres at all ages, and only rarely in GABAergic axons. Postsynaptically, GABAB receptors were localized to the extrasynaptic and perisynaptic plasma membrane of Purkinje cell dendrites and spines throughout development. Quantitative analysis and three-dimensional reconstructions further revealed a progressive developmental movement of the GABAB1 subunit on the surface of Purkinje cells from dendritic shafts to its final destination, the dendritic spines. Together, these results indicate that GABAB receptors undergo dynamic regulation during cerebellar development in association with the establishment and maturation of glutamatergic synapses to Purkinje cells.
Collapse
Affiliation(s)
- R Luján
- Departamento de Ciencias Médicas, Facultad de Medicina, Centro Regional de Investigaciones Biomédicas, Universidad Castilla-La Mancha, Campus Biosanitario, C/Almansa 14, 02006 Albacete, Spain.
| | | |
Collapse
|
411
|
Sliwowska JH, Billings HJ, Goodman RL, Lehman MN. Immunocytochemical colocalization of GABA-B receptor subunits in gonadotropin-releasing hormone neurons of the sheep. Neuroscience 2006; 141:311-9. [PMID: 16713120 DOI: 10.1016/j.neuroscience.2006.03.039] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2005] [Revised: 03/07/2006] [Accepted: 03/18/2006] [Indexed: 11/28/2022]
Abstract
GABA has been shown to play an important role in the control of gonadotropin-releasing hormone (GnRH) and luteinizing hormone secretion in many mammals. In sheep, seasonal differences in the ability of GABA-B receptor antagonists to alter pulsatile luteinizing hormone secretion have led to the hypothesis that this receptor subtype mediates the increased inhibitory effects of estradiol on GnRH and luteinizing hormone pulse frequency seen during the non-breeding season (anestrus). The aim of the present study was to use multiple-label immunocytochemistry to determine if ovine GnRH neurons contain the GABA-B receptor subunits R1 and/or R2, and to determine whether there are seasonal differences in the colocalization of these subunits in GnRH neurons. A majority of GnRH cells in the preoptic area, anterior hypothalamic area, and medial basal hypothalamus of both breeding season and anestrous ewes contained either GABA-B R1 or R2 subunits; a subset of GnRH neurons in breeding season (42%) and anestrous ewes (60%) contained both subunits. In contrast to colocalization within cell bodies, GnRH fibers in the median eminence did not colocalize GABA-B receptor subunits. Although the percentage of GnRH neurons expressing GABA-B receptor subunits tended to be higher in anestrus than in the breeding season, there were no significant seasonal differences in R1 and R2 subunit colocalization in GnRH cell bodies. Thus, while GABA may act directly on GnRH cell bodies via GABA-B receptors in the sheep, any role that GABA-B receptors may play in seasonal reproductive changes is likely mediated by other neurons afferent to GnRH cells.
Collapse
Affiliation(s)
- J H Sliwowska
- Department of Cell Biology, Neurobiology and Anatomy, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0521, USA
| | | | | | | |
Collapse
|
412
|
Han Y, Qin J, Bu DF, Chang XZ, Yang ZX. Successive alterations of hippocampal gamma-aminobutyric acid B receptor subunits in a rat model of febrile seizure. Life Sci 2006; 78:2944-52. [PMID: 16380138 DOI: 10.1016/j.lfs.2005.11.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2005] [Revised: 10/16/2005] [Accepted: 11/17/2005] [Indexed: 11/22/2022]
Abstract
Febrile seizure (FS) is a frequently encountered seizure type in childhood. Changes of brain function following FS have clinical importance. The recently identified gamma-aminobutyric acid B receptor (GABA(B)R) is a metabotropic receptor of GABA. In this study, we used a rat model of recurrent FS to investigate the changes of GABA(B)R1a and GABA(B)R2 subunits in hippocampus after recurrent FS by using Western blot, quantitative RT-PCR, double immunofluorescence, in situ hybridization and immunoprecipitation/Western blot. After treatment of hyperthermia and the presence of induced seizures once every 2 days for 10 times, GABA(B)R1a and GABA(B)R2 subunits in hippocampus were decreased after 24 h of the last treatment. The decrease of GABA(B)R1a lasted for 15 days but that of GABA(B)R2 persisted for more than 30 days. The binding of GABA(B)R1a to GABA(B)R2 in hippocampus was also decreased significantly after 24 h of the last treatment and lasted for more than 30 days. In situ hybridization showed that GABA(B)R1a mRNA was significantly decreased in dentate gyrus, and GABA(B)R2 mRNA was considerably reduced in CA3 region. In H10 and FS1 groups in which hyperthermia treatment was the same but no (H10 group) or only one seizure (FS(1) group) was induced, the decrease of GABA(B)R1a and GABA(B)R2 subunits and the reduced binding capability between GABA(B)R1a and GABA(B)R2 subunits were also detected but with less severity, and the time recovering from these abnormalities was shorter. We conclude that GABA(B)R1a and GABA(B)R2 subunits and the binding of the 2 subunits decrease in hippocampus for a relatively long period of time after recurrent FS in immature rats. These changes may result in long-lasting imbalance of excitation/inhibition function in hippocampus, and are derived from the consequences of recurrent febrile seizures.
Collapse
Affiliation(s)
- Ying Han
- Department of Pediatrics, Peking University First Hospital, No. 1, Xi'anmen Dajie, Beijing, 100034, PR China
| | | | | | | | | |
Collapse
|
413
|
Villalba RM, Raju DV, Hall RA, Smith Y. GABA(B) receptors in the centromedian/parafascicular thalamic nuclear complex: an ultrastructural analysis of GABA(B)R1 and GABA(B)R2 in the monkey thalamus. J Comp Neurol 2006; 496:269-87. [PMID: 16538684 DOI: 10.1002/cne.20950] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Strong gamma-aminobutyric acid type B (GABA(B)) receptor binding has been shown throughout the thalamus, but the distribution of the two GABA(B) receptor subunits, GABA(B) receptor subunit 1 (GABA(B)R1) and GABA(B) receptor subunit 2 (GABA(B)R2), remains poorly characterized. In primates, the caudal intralaminar nuclei, centromedian and parafascicular (CM/PF), are an integral part of basal ganglia circuits and a main source of inputs to the striatum. In this study, we analyzed the subcellular and subsynaptic distribution of GABA(B) receptor subunits by using light and electron microscopic immunocytochemical techniques. Quantitative immunoperoxidase and immunogold analysis showed that both subunits display a similar pattern of distribution in CM/PF, being expressed largely at extrasynaptic and perisynaptic sites in neuronal cell bodies, dendrites, and axon-like processes and less abundantly in axon terminals. Postsynaptic GABA(B)R1 labeling was found mostly on the plasma membrane (70-80%), whereas GABA(B)R2 was more evenly distributed between the plasma membrane and intracellular compartments of CM/PF neurons. A few axon terminals forming symmetric and asymmetric synapses were also labeled for GABA(B)R1 and GABA(B)R2, but the bulk of presynaptic labeling was expressed in small axon-like processes. About 20% of presynaptic vesicle-containing dendrites of local circuit neurons displayed GABA(B)R1/R2 immunoreactivity. Vesicular glutamate transporters (vGluT1)-containing terminals forming asymmetric synapses expressed GABA(B)R1 and/or displayed postsynaptic GABA(B)R1 at the edges of their asymmetric specialization. Overall, these findings provide evidence for multiple sites where GABA(B) receptors could modulate GABAergic and glutamatergic transmission in the primate CM/PF complex.
Collapse
Affiliation(s)
- Rosa M Villalba
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia 30322, USA.
| | | | | | | |
Collapse
|
414
|
Millan MJ. Multi-target strategies for the improved treatment of depressive states: Conceptual foundations and neuronal substrates, drug discovery and therapeutic application. Pharmacol Ther 2006; 110:135-370. [PMID: 16522330 DOI: 10.1016/j.pharmthera.2005.11.006] [Citation(s) in RCA: 397] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2005] [Accepted: 11/28/2005] [Indexed: 12/20/2022]
Abstract
Major depression is a debilitating and recurrent disorder with a substantial lifetime risk and a high social cost. Depressed patients generally display co-morbid symptoms, and depression frequently accompanies other serious disorders. Currently available drugs display limited efficacy and a pronounced delay to onset of action, and all provoke distressing side effects. Cloning of the human genome has fuelled expectations that symptomatic treatment may soon become more rapid and effective, and that depressive states may ultimately be "prevented" or "cured". In pursuing these objectives, in particular for genome-derived, non-monoaminergic targets, "specificity" of drug actions is often emphasized. That is, priority is afforded to agents that interact exclusively with a single site hypothesized as critically involved in the pathogenesis and/or control of depression. Certain highly selective drugs may prove effective, and they remain indispensable in the experimental (and clinical) evaluation of the significance of novel mechanisms. However, by analogy to other multifactorial disorders, "multi-target" agents may be better adapted to the improved treatment of depressive states. Support for this contention is garnered from a broad palette of observations, ranging from mechanisms of action of adjunctive drug combinations and electroconvulsive therapy to "network theory" analysis of the etiology and management of depressive states. The review also outlines opportunities to be exploited, and challenges to be addressed, in the discovery and characterization of drugs recognizing multiple targets. Finally, a diversity of multi-target strategies is proposed for the more efficacious and rapid control of core and co-morbid symptoms of depression, together with improved tolerance relative to currently available agents.
Collapse
Affiliation(s)
- Mark J Millan
- Institut de Recherches Servier, Centre de Recherches de Croissy, Psychopharmacology Department, 125, Chemin de Ronde, 78290-Croissy/Seine, France.
| |
Collapse
|
415
|
Liang JH, Chen F, Krstew E, Cowen MS, Carroll FY, Crawford D, Beart PM, Lawrence AJ. The GABAB receptor allosteric modulator CGP7930, like baclofen, reduces operant self-administration of ethanol in alcohol-preferring rats. Neuropharmacology 2006; 50:632-9. [PMID: 16406445 DOI: 10.1016/j.neuropharm.2005.11.011] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2005] [Revised: 10/30/2005] [Accepted: 11/21/2005] [Indexed: 10/25/2022]
Abstract
GABA systems have been implicated as targets for ethanol at the cellular, molecular and behavioural level. The present study was designed to further examine the potential of the GABA(B) receptor as a target for regulating operant alcohol responding. Given that the prototypic agonist, baclofen, reduces the self-administration of alcohol, we hypothesized that the GABA(B) receptor allosteric modulator, CGP7930, might have similar actions but a reduced side-effect profile. In this context, inbred alcohol-preferring (iP) rats were trained to respond for 10% v/v ethanol in a fixed ratio paradigm; all drug testing was performed under an FR3 schedule. Both baclofen and CGP7930 independently reduced voluntary responding for 10% ethanol in a dose-related manner. Neither drug impacted upon responding for water. A combination of subthreshold doses of baclofen and CGP7930 was also able to reduce operant responding for ethanol, suggesting that CGP7930 is indeed acting to facilitate GABA(B) receptor-mediated signalling in this paradigm. These data demonstrate the potential of positive allosteric modulators of metabotropic GABA(B) receptors to regulate alcohol responding.
Collapse
Affiliation(s)
- Jian-Hui Liang
- Department of Neuropharmacology, National Institute of Drug Dependence, University of Peking, Beijing, P.R. China
| | | | | | | | | | | | | | | |
Collapse
|
416
|
Merten N, Beck-Sickinger AG. Molecular ligand-receptor interaction of the NPY/PP peptide family. EXS 2006:35-62. [PMID: 16382996 DOI: 10.1007/3-7643-7417-9_3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Nicole Merten
- Institute of Biochemistry, Brüderstr. 34, 04103 Leipzig, Germany
| | | |
Collapse
|
417
|
Overton MC, Chinault SL, Blumer KJ. Oligomerization of G-protein-coupled receptors: lessons from the yeast Saccharomyces cerevisiae. EUKARYOTIC CELL 2006; 4:1963-70. [PMID: 16339714 PMCID: PMC1317502 DOI: 10.1128/ec.4.12.1963-1970.2005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Mark C Overton
- Department of Cell Biology and Physiology, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110-1010, USA
| | | | | |
Collapse
|
418
|
Potes CS, Neto FL, Castro-Lopes JM. Administration of baclofen, a γ-aminobutyric acid type B agonist in the thalamic ventrobasal complex, attenuates allodynia in monoarthritic rats subjected to the ankle-bend test. J Neurosci Res 2006; 83:515-23. [PMID: 16400658 DOI: 10.1002/jnr.20737] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
gamma-Aminobutyric acid type B (GABAB) receptors are involved in the modulation of neuronal activity in response to chronic noxious input. However, the effect of their activation in chronic inflammatory pain in relay thalamic nuclei such as the ventrobasal complex (VB) is not known. In this study, experimental groups of 2, 4, and 14 days monoarthritic (MA) rats were injected with saline (controls) or baclofen (0.875 microg), a specific GABAB receptor agonist, in the VB contralateral to the inflamed joint, and the ankle-bend test was performed. Ankle-bend scores in control animals were near the maximum and were rather constant throughout the entire experimental period, indicating severe nociception. The same was observed in 2 days MA rats injected with baclofen. In the 4 days MA group, the response to baclofen injection was inconsistent among different animals, whereas, in 14 days MA rats, baclofen caused clear antinociceptive effects. Additionally, a 0.5 microg dose of baclofen was tested in 14 days MA rats, but no effect was observed, whereas a 1.25 mug dose produced visible side effects. Baclofen injections that did not target the VB but reached neighboring nuclei were ineffective in reducing nociception. Data demonstrate that the activation of the GABAB receptors by baclofen in the VB of MA rats leads to a decrease of nociception. Moreover, the response depends on the time course of the disease, suggesting the occurrence of different excitatory states of thalamic VB neurons. In conclusion, GABAB receptors in the VB play an important role in chronic inflammatory pain processing.
Collapse
Affiliation(s)
- Catarina Soares Potes
- Institute of Histology and Embryology, Faculty of Medicine and IBMC, University of Porto, Porto, Portugal
| | | | | |
Collapse
|
419
|
Noeske T, Gutcaits A, Parsons C, Weil T. Allosteric Modulation of Family 3 GPCRs. ACTA ACUST UNITED AC 2006. [DOI: 10.1002/qsar.200510139] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
420
|
Dorfman VB, Vega MC, Coirini H. Age-related changes of the GABA-B receptor in the lumbar spinal cord of male rats and penile erection. Life Sci 2006; 78:1529-34. [PMID: 16472824 DOI: 10.1016/j.lfs.2005.06.045] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2004] [Accepted: 06/17/2005] [Indexed: 10/25/2022]
Abstract
Dorsal horn neurons of lumbosacral spinal cord innervate penile vasculature and regulate penile erection. GABAergic system is involved in the regulation of male sexual behavior. Because aging is frequently accompanied by a progressive decline in erectile function, the aim of this work was to examine age-related changes of the GABA-B receptor in the lumbar spinal cord. Sprague-Dawley rats of 10 and 21 days old, 3, 9 and 20 months old were used. GABA-B receptors were evaluated by quantitative autoradiography using [3H]-Baclofen as ligand with or without GABA (10 microM) to determine the non-specific binding. Ten days after birth a homogeneous neuroanatomical distribution pattern was found in the gray matter, however at 20-day-old adult distribution emerged becoming heterogeneous with the highest binding values at layers II-III and X. In dorsal layers a significant decrease was observed in 9-month-old rats while layer X showed an earlier decrease (21-day-old). GABA-B receptor affinity showed significant age-dependent and regional increase. The GABA-B receptor decrease in aged rats seems not to be related to this receptor inhibitory function in penile erection. Moreover the changes found in GABA-B receptor binding anatomical distribution may indicate its role in the morphological development of the lumbar spinal cord rather than in the decline of the erectile function.
Collapse
Affiliation(s)
- Verónica B Dorfman
- Laboratorio de Neurobiología, Instituto de Biología y Medicina Experimental, V. de Obligado 2490 (C1428ADN) Ciudad Autónoma de Buenos Aires, Argentina
| | | | | |
Collapse
|
421
|
Elsner A, Tarnow P, Schaefer M, Ambrugger P, Krude H, Grüters A, Biebermann H. MC4R oligomerizes independently of extracellular cysteine residues. Peptides 2006; 27:372-9. [PMID: 16289450 DOI: 10.1016/j.peptides.2005.02.027] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2004] [Accepted: 02/21/2005] [Indexed: 01/21/2023]
Abstract
The melanocortin 4 receptor (MC4R) plays an essential role in weight regulation. Recently we could show that the MC4R is able to form receptor dimers. In the present study we investigated the role of extracellular cysteine residues and the structure of the third extracellular loop for receptor dimerization. None of the four extracellular cysteine residues nor the structure of the third extracellular loop play a role for MC4R-MC4R interaction as all investigated mutants display the same dimerization pattern as the wild-type receptor. Therefore for MC4R dimerization structures of the transmembrane-spanning helices are more likely to be involved.
Collapse
Affiliation(s)
- Andrea Elsner
- Otto Heubner Centrum für Kinderheilkunde und Jugendmedizin, Pädiatrische Endokrinologie, Campus Virchow-Klinikum, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
422
|
Nickolls SA, Maki RA. Dimerization of the melanocortin 4 receptor: a study using bioluminescence resonance energy transfer. Peptides 2006; 27:380-7. [PMID: 16406142 DOI: 10.1016/j.peptides.2004.12.037] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2004] [Accepted: 12/22/2004] [Indexed: 02/08/2023]
Abstract
The melanocortin 4 receptor is important in the regulation of satiety. In this study we have investigated the propensity of the MC4 receptor to homodimerize. MC4 receptors with either a modified green fluorescent protein (GFP(2)) or Renilla luciferase (RLuc) at their C-terminus were constructed. These receptors showed equivalent binding and functional properties to the wild-type MC4 receptor. Bioluminescence resonance energy transfer readings indicated that the MC4 receptor exists as a constitutive homodimer, which was not regulated by peptide interaction. The efficiency of MC4 receptor to form homodimers was greatly enhanced compared to its ability to heterodimerize with the kappa opioid receptor.
Collapse
Affiliation(s)
- Sarah A Nickolls
- Neurocrine Biosciences Inc., 12970 El Camino Real, San Diego, CA 92130, USA.
| | | |
Collapse
|
423
|
Gavioli EC, Calo' G. Antidepressant- and anxiolytic-like effects of nociceptin/orphanin FQ receptor ligands. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2006; 372:319-30. [PMID: 16491387 DOI: 10.1007/s00210-006-0035-8] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2005] [Accepted: 01/09/2006] [Indexed: 01/31/2023]
Abstract
Many studies point toward the nociceptin/orphanin FQ (N/OFQ) and the N/OFQ peptide receptor (NOP) as targets for the development of innovative drugs for treating affective disorders. It has been reported that the activation of NOP receptors produces anxiolytic-like effects in rodents in a large series of behavioral assays, i.e., elevated plus maze, light-dark aversion, operant conflict, fear-potentiated startle, pup ultrasonic vocalizations, and hole board tests. In contrast, the blockade of N/OFQ signaling obtained with NOP-selective antagonists promotes antidepressant-like effects in the forced swimming and tail suspension tests. In these assays, N/OFQ is inactive per se, but reverses the antidepressant-like effects of NOP antagonists. NOP receptor knockout mice show an antidepressant-like phenotype, and NOP antagonists are inactive in these animals. Thus, the activation of the NOP receptor seems to evoke anxiolytic-like effects while its blockade antidepressant-like effects. This appears to be a rather unique behavioral profile since the activation or the blockade of a given neuropeptide receptor produces, in most of the cases, both antidepressant- and anxiolytic-like effects. This particular behavioral profile, the possible mechanisms of action, and the therapeutic potential of NOP receptor ligands for the treatment of depression and anxiety disorders are discussed in this review article.
Collapse
Affiliation(s)
- Elaine C Gavioli
- Department of Experimental and Clinical Medicine, Section of Pharmacology and Neuroscience Center, University of Ferrara, Via Fossato di Mortara 19, 44100 Ferrara, Italy.
| | | |
Collapse
|
424
|
Weiner JL, Valenzuela CF. Ethanol modulation of GABAergic transmission: the view from the slice. Pharmacol Ther 2006; 111:533-54. [PMID: 16427127 DOI: 10.1016/j.pharmthera.2005.11.002] [Citation(s) in RCA: 169] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2005] [Accepted: 11/16/2005] [Indexed: 10/25/2022]
Abstract
For almost three decades now, the GABAergic synapse has been the focus of intense study for its putative role in mediating many of the behavioral consequences associated with acute and chronic ethanol exposure. Although it was initially thought that ethanol interacted solely with the postsynaptic GABAA receptors that mediate the majority of fast synaptic inhibition in the mammalian central nervous system (CNS), a number of recent studies have identified novel pre- and postsynaptic mechanisms that may contribute to the acute and long-term effects of ethanol on GABAergic synaptic inhibition. These mechanisms appear to differ in a brain region specific manner and may also be influenced by a variety of endogenous neuromodulatory factors. This article provides a focused review of recent evidence, primarily from in vitro brain slice electrophysiological studies, that offers new insight into the mechanisms through which acute and chronic ethanol exposures modulate the activity of GABAergic synapses. The implications of these new mechanistic insights to our understanding of the behavioral and cognitive effects of ethanol are also discussed.
Collapse
Affiliation(s)
- J L Weiner
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157-1083, USA.
| | | |
Collapse
|
425
|
Hague C, Lee SE, Chen Z, Prinster SC, Hall RA, Minneman KP. Heterodimers of alpha1B- and alpha1D-adrenergic receptors form a single functional entity. Mol Pharmacol 2006; 69:45-55. [PMID: 16195468 DOI: 10.1124/mol.105.014985] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Heterologous expression of alpha(1D)-adrenergic receptors (alpha(1D)-ARs) in most cell types results in intracellular retention and little or no functionality. We showed previously that heterodimerization with alpha(1B)-ARs promotes surface localization of alpha(1D)-ARs. Here, we report that the alpha(1B)-/alpha(1D)-AR interaction has significant effects on the pharmacology and signaling of the receptors, in addition to the effects on trafficking described previously. Upon coexpression of alpha(1B)-ARs and epitope-tagged alpha(1D)-ARs in both human embryonic kidney 293 and DDT(1)MF-2 cells, alpha(1D)-AR binding sites were not detectable with the alpha(1D)-AR selective antagonist 8-[2-(4-(2-methoxyphenyl)piperazin-1-yl)ethyl]-8-azaspiro[4,5]decane-7,9-dione (BMY 7378), despite the ability to detect alpha(1D)-AR protein using confocal microscopy, immunoprecipitation, and a luminometer cell-surface assay. However, the alpha(1B)-AR-selective mutant F18A conotoxin showed a striking biphasic inhibition in alpha(1B)/alpha(1D)-AR-expressing cells, revealing that alpha(1D)-ARs were expressed but did not bind BMY 7378 with high affinity. Studies of norepinephrine-stimulated inositol phosphate formation showed that maximal responses were greatest in alpha(1B)/alpha(1D)-AR-coexpressing cells. Stable coexpression of an uncoupled mutant alpha(1B)-AR (Delta12) with alpha(1D)-ARs resulted in increased responses to norepinephrine. However, Schild plots for inhibition of norepinephrine-stimulated inositol phosphate formation showed a single low-affinity site for BMY 7378. Thus, our findings suggest that alpha(1B)/alpha(1D)-AR heterodimers form a single functional entity with enhanced functional activity relative to either subtype alone and a novel pharmacological profile. These data may help to explain why alpha(1D)-ARs are often pharmacologically undetectable in native tissues when they are coexpressed with alpha(1B)-ARs.
Collapse
Affiliation(s)
- Chris Hague
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | | | | | |
Collapse
|
426
|
Abstract
A great deal of effort has been expended in attempting to define the role of GABA in mediating the transmission and perception of pain. Pursuit of this question has been stimulated by the fact that GABAergic neurons are widely distributed throughout the central nervous system, including regions of the spinal cord dorsal horn known to be important for transmitting pain impulses to the brain. In addition, GABA neurons and receptors are found in supraspinal sites known to coordinate the perception and response to painful stimuli and this neurotransmitter system has been shown to regulate control of sensory information processing in the spinal cord. The discovery that GABA receptor agonists display antinociceptive properties in a variety of animal models of pain has provided an impetus for developing such agents for this purpose. It has been shown that GABA receptor agonists, as well as inhibitors of GABA uptake or metabolism, are clinically effective in treating this symptom. However, even with an enhanced understanding of the relationship between GABAergic transmission and pain, it has proven difficult to exploit these findings in designing novel analgesics that can be employed for the routine management of pain. Work in this area has revealed a host of reasons why GABAergic drugs have, to date, been of limited utility in the management of pain. Chief among these are the side effects associated with such agents, in particular sedation. These limitations are likely due to the simultaneous activation of GABA receptors throughout the neuraxis, most of which are not involved in the transmission or perception of pain. This makes it difficult to fully exploit the antinociceptive properties of GABAergic drugs before untoward effects intervene. The discovery of molecularly and pharmacologically distinct GABAA receptors may open the way to developing subtype selective agents that target those receptors most intimately involved in the transmission and perception of pain. The more limited repertoire of GABAB receptor subunits makes it more difficult to develop subtype selective agents for this site. Nonetheless, a GABAB agonist, CGP 35024, has been identified that induces antinociceptive responses at doses well below those that cause sedation (Patel et al., 2001). It has also been reported that, unlike baclofen, tolerance to antinociceptive responses is not observed with CGP 44532, a more potent GABAB receptor agonist (Enna et al., 1998). While the reasons for these differences in responses to members of the same class remain unknown, these findings suggest it may be possible to design a GABAB agonist with a superior clinical profile than existing agents. Besides the challenges associated with identifying subtype selective GABAA and GABAB receptor agonists, the development of GABA analgesics has been hindered by the fact that the responsiveness of these receptor systems appear to vary with the type and duration of pain being treated and the mode of drug administration. Further studies are necessary to more precisely define the types of pain most amenable to treatment with GABAergic drugs. Inasmuch as the antinociceptive responses to these agents in laboratory animals are mediated, at least in part, through activation or inhibition of other neurotransmitter and neuromodulator systems, it is conceivable that GABA agonists will be most efficacious as analgesics when administered in combination with other agents. The results of anatomical, biochemical, molecular, and pharmacological studies support the notion that generalized activation of GABA receptor systems dampens the response to painful stimuli. The data leave little doubt that, under certain circumstances, stimulation of neuroanatomically discreet GABA receptor sites could be of benefit in the management of pain. Continued research in this area is warranted given the limited choices, and clinical difficulties, associated with conventional analgesics.
Collapse
Affiliation(s)
- S J Enna
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | | |
Collapse
|
427
|
McCarson KE, Duric V, Reisman SA, Winter M, Enna SJ. GABA(B) receptor function and subunit expression in the rat spinal cord as indicators of stress and the antinociceptive response to antidepressants. Brain Res 2005; 1068:109-17. [PMID: 16368079 DOI: 10.1016/j.brainres.2005.11.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2005] [Revised: 11/02/2005] [Accepted: 11/06/2005] [Indexed: 02/05/2023]
Abstract
Experiments were undertaken to examine whether once daily i.p. administration of either of two antidepressants used for the treatment of neuropathic pain, amitriptyline (10 mg/kg) and fluoxetine (5 mg/kg), to rats for 7 days modifies GABA(B) receptor function and subunit expression in the lumbar spinal cord. The results indicate that, as previously reported for desipramine, both amitriptyline and fluoxetine increase the pain threshold to a thermal stimulus, the expression of GABA(B(1)) subunits, and baclofen-stimulated [35S]GTPgammaS binding, a measure of GABA(B) receptor function. The effects of antidepressant administration on GABA(B(1b)) and GABA(B(2)) subunit expression in spinal cord are more variable than for GABA(B(1a)). It was also discovered that repeated daily exposure to a thermal stimulus or immobilization stress increases GABA(B(1a)) expression in the lumbar spinal cord, with no commensurate change in thermal pain threshold or GABA(B) receptor sensitivity. These results support a relationship between GABA(B) receptors and the action of antidepressants. The findings demonstrate that drug-induced increases in GABA(B) receptor function can occur independently of any change in GABA(B) receptor subunit expression and are consistent with the notion that GABA(B) receptor subunits have multiple functions, only one of which is dimerization to form GABA(B) receptors. The data also suggest that GABA(B) subunit gene expression may serve as a preclinical marker of antidepressant efficacy and of drug- or stress-induced modifications in central nervous system activity.
Collapse
Affiliation(s)
- Kenneth E McCarson
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| | | | | | | | | |
Collapse
|
428
|
New DC, An H, Ip NY, Wong YH. GABAB heterodimeric receptors promote Ca2+ influx via store-operated channels in rat cortical neurons and transfected Chinese hamster ovary cells. Neuroscience 2005; 137:1347-58. [PMID: 16343781 DOI: 10.1016/j.neuroscience.2005.10.033] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2005] [Revised: 10/03/2005] [Accepted: 10/18/2005] [Indexed: 10/25/2022]
Abstract
The GABAB receptors are generally considered to be classical Gi-coupled receptors that lack the ability to mobilize intracellular Ca2+ without the aid of promiscuous G proteins. Here, we report the ability of GABAB receptors to promote calcium influx into primary cultures of rat cortical neurons and transfected Chinese hamster ovary cells. Chinese hamster ovary cells were transfected with GABAB1(a) or GABAB1(b) subunits along with GABAB2 subunits. In experiments using the fluorometric imaging plate reader platform, GABA and selective agonists promoted increases in intracellular Ca2+ levels in transfected Chinese hamster ovary cells and cortical neurons with the expected order of potency. These effects were fully antagonized by selective GABAB receptor antagonists. To investigate the intracellular pathways responsible for mediating these effects we employed several pharmacological inhibitors. Pertussis toxin abolished GABAB mediated Ca2+ increases, as did the phospholipase Cbeta inhibitor U73122. Inhibitor 2-aminethoxydiphenyl borane acts as an antagonist at inositol 1,4,5-trisphosphate receptors and at store-operated channels. In all cell types, 2-aminethoxydiphenyl borane prevented Ca2+ mobilization. The selective store-operated channel inhibitor 1-[2-(4-methoxyphenyl)-2-[3-(4-methoxyphenyl)propoxy]ethyl-1H-imidazole hydrochloride prevented increases in intracellular Ca2+ levels as did performing the assays in Ca2+ free buffers. In conclusion, GABAB receptors expressed in Chinese hamster ovary cells and endogenously expressed in rat cortical neurons promote Ca2+ entry into the cell via the activation of store-operated channels, using a mechanism that is dependent on Gi/o heterotrimeric proteins and phospholipase Cbeta. These findings suggest that the neuronal effects mediated by GABAB receptors may, in part, rely on the receptor's ability to promote Ca2+ influx.
Collapse
Affiliation(s)
- D C New
- Department of Biochemistry, the Molecular Neuroscience Center, and the Biotechnology Research Institute, Hong Kong University of Science and Technology, Clearwater Bay, Hong Kong, China
| | | | | | | |
Collapse
|
429
|
McCarson KE, Ralya A, Reisman SA, Enna SJ. Amitriptyline prevents thermal hyperalgesia and modifications in rat spinal cord GABAB receptor expression and function in an animal model of neuropathic pain. Biochem Pharmacol 2005; 71:196-202. [PMID: 16293232 DOI: 10.1016/j.bcp.2005.10.026] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2005] [Revised: 10/10/2005] [Accepted: 10/13/2005] [Indexed: 11/18/2022]
Abstract
Using an animal model of neuropathic pain, behavioral and biochemical experiments were performed to assess the effects of this condition on pain threshold and GABA(B) receptor sensitivity and subunit gene expression in the rat lumbar spinal cord. The results indicate that partial sciatic nerve ligation decreases thermal and mechanical pain withdrawal latencies, and increases baclofen-stimulated [35S]GTPgammaS binding and GABA(B) receptor subunit gene expression in the rat lumbar spinal cord, suggesting that neuropathic pain may be due, in part, to a deficiency in GABAergic transmission. The experiments also demonstrate that daily administration (10 mg/kg, i.p.) of amitriptyline, a tricyclic antidepressant used for the treatment of neuropathic pain, for 1 week after surgery prevents the decline in thermal pain threshold, the increase in GABA(B2) gene expression, and development of increased GABA(B) receptor function in spinal cord resulting from nerve damage. These findings indicate that the efficacy of amitriptyline as a treatment for neuropathic pain may be related to an ability to maintain spinal cord GABA(B) receptor activity.
Collapse
Affiliation(s)
- Kenneth E McCarson
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Boulevard, Mail Stop 1018, Kansas City, KS 66160, USA
| | | | | | | |
Collapse
|
430
|
Ren L, Jin L, Zhang B, Jia Y, Wu L, Shen Y. Lack of GABABR1 gene variation (G1465A) in a Chinese population with temporal lobe epilepsy. Seizure 2005; 14:611-3. [PMID: 16278087 DOI: 10.1016/j.seizure.2005.09.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2004] [Revised: 09/20/2005] [Accepted: 09/28/2005] [Indexed: 10/25/2022] Open
Abstract
GABA(B) receptor1 (GABA(B)R1) gene is one of the susceptibility genes for temporal lobe epilepsy (TLE). Recently, it is reported that the GABA(B)R1 polymorphism (G1465A) conferred a highly increased susceptibility to TLE. We performed a case-control study to confirm the findings. The study included a total of 112 nonlesional TLE patients and 124 controls of Chinese ancestry. Our study did not show any polymorphism in this locus, and suggested this polymorphism may not be a strong susceptibility factor for TLE among Chinese population.
Collapse
Affiliation(s)
- Liankun Ren
- Department of Neurology, Peking Union Medical College Hospital, Beijing, PR China
| | | | | | | | | | | |
Collapse
|
431
|
Duvernay MT, Filipeanu CM, Wu G. The regulatory mechanisms of export trafficking of G protein-coupled receptors. Cell Signal 2005; 17:1457-65. [PMID: 16014327 DOI: 10.1016/j.cellsig.2005.05.020] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2005] [Revised: 05/10/2005] [Accepted: 05/17/2005] [Indexed: 10/25/2022]
Abstract
G protein-coupled receptors (GPCRs) are a superfamily of cell-surface receptors that regulate a variety of cell functions by responding to a myriad of ligands. The magnitude of the response elicited by a ligand is dictated by the level of receptor available at the plasma membrane. GPCR expression levels at the cell surface are a balance of three highly regulated, dynamic intracellular trafficking processes, namely export, internalization and degradation. This review will cover recent advances in understanding the mechanism underlying GPCR export trafficking by focusing on specific motifs required for ER export and the role of the Ras-like Rab1 GTPase and glycosylation in regulating ER-Golgi-cell-surface transport. The manifestation of diseases due to the disruption of GPCR export is also discussed.
Collapse
Affiliation(s)
- Matthew T Duvernay
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, 1901 Perdido St, New Orleans, LA 70112, United States
| | | | | |
Collapse
|
432
|
Herrick-Davis K, Grinde E, Harrigan TJ, Mazurkiewicz JE. Inhibition of Serotonin 5-Hydroxytryptamine2C Receptor Function through Heterodimerization. J Biol Chem 2005; 280:40144-51. [PMID: 16195233 DOI: 10.1074/jbc.m507396200] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Although dimerization appears to be a common property of G-protein-coupled receptors (GPCRs), it remains unclear whether a GPCR dimer binds one or two molecules of ligand and whether ligand binding results in activation of one or two G-proteins when measured using functional assays in intact living cells. Previously, we demonstrated that serotonin 5-hydroxytryptamine2C (5-HT2C) receptors form homodimers (Herrick-Davis, K., Grinde, E., and Mazurkiewicz, J. (2004) Biochemistry 43, 13963-13971). In the present study, an inactive 5-HT(2C) receptor was created and coexpressed with wild-type 5-HT2C receptors to determine whether dimerization regulates receptor function and to determine the ligand/dimer/G-protein stoichiometry in living cells. Mutagenesis of Ser138 to Arg (S138R) produced a 5-HT2C receptor incapable of binding ligand or stimulating inositol phosphate (IP) signaling. Confocal fluorescence imaging revealed plasma membrane expression of yellow fluorescent protein-tagged S138R receptors. Expression of wild-type 5-HT2C receptors in an S138R-expressing stable cell line had no effect on ligand binding to wild-type 5-HT2C receptors, but inhibited basal and 5-HT-stimulated IP signaling as well as constitutive and 5-HT-stimulated endocytosis of wild-type 5-HT2C receptors. M1 muscarinic receptor activation of IP production was normal in the S138R-expressing cells. Heterodimerization of S138R with wild-type 5-HT2C receptors was visualized in living cells using confocal fluorescence resonance energy transfer (FRET). FRET was dependent on the donor/acceptor ratio and independent of the receptor expression level. Therefore, inactive 5-HT2C receptors inhibit wild-type 5-HT2C receptor function by forming nonfunctional heterodimers expressed on the plasma membrane. These results are consistent with a model in which one GPCR dimer binds two molecules of ligand and one G-protein and indicate that dimerization is essential for 5-HT receptor function.
Collapse
Affiliation(s)
- Katharine Herrick-Davis
- Center for Neuropharmacology and Neuroscience, Albany Medical College, Albany, New York 12208, USA.
| | | | | | | |
Collapse
|
433
|
Zheng M, Zhu W, Han Q, Xiao RP. Emerging concepts and therapeutic implications of β-adrenergic receptor subtype signaling. Pharmacol Ther 2005; 108:257-68. [PMID: 15979723 DOI: 10.1016/j.pharmthera.2005.04.006] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2005] [Accepted: 04/20/2005] [Indexed: 12/31/2022]
Abstract
The stimulation of beta-adrenergic receptor (betaAR) plays a pivotal role in regulating myocardial function and morphology in the normal and failing heart. Three genetically and pharmacologically distinct betaAR subtypes, beta1AR, beta2AR, and beta3AR, are identified in various types of cells. While both beta1AR and beta2AR, the predominant betaAR subtypes expressed in the heart of many mammalian species including human, are coupled to the Gs-adenylyl cyclase-cAMP-PKA pathway, beta2AR dually activates pertussis toxin-sensitive Gi proteins. During acute stimulation, beta2AR-Gi coupling partially inhibits the Gs-mediated positive contractile and relaxant effects via a Gi-Gbetagamma-phosphoinositide 3-kinase (PI3K)-dependent mechanism in adult rodent cardiomyocytes. More importantly, persistent beta1AR stimulation evokes a multitude of cardiac toxic effects, including myocyte apoptosis and hypertrophy, via a calmodulin-dependent protein kinase II (CaMKII)-, rather than cAMP-PKA-, dependent mechanism in rodent heart in vivo and cultured cardiomyocytes. In contrast, persistent beta2AR activation protects myocardium by a cell survival pathway involving Gi, PI3K, and Akt. In this review, we attempt to highlight the distinct functionalities and signaling mechanisms of these betaAR subtypes and discuss how these subtype-specific properties of betaARs might affect the pathogenesis of congestive heart failure (CHF) and the therapeutic effectiveness of certain beta-blockers in the treatment of congestive heart failure.
Collapse
Affiliation(s)
- Ming Zheng
- Institute of Cardiovascular Sciences, Peking University, Beijing 100083, People's Republic of China
| | | | | | | |
Collapse
|
434
|
Han Y, Qin J, Chang X, Yang Z, Bu D, Du J. Modulating effect of hydrogen sulfide on gamma-aminobutyric acid B receptor in recurrent febrile seizures in rats. Neurosci Res 2005; 53:216-9. [PMID: 16122826 DOI: 10.1016/j.neures.2005.07.002] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2005] [Revised: 06/08/2005] [Accepted: 07/05/2005] [Indexed: 10/25/2022]
Abstract
Hydrogen sulfide (H2S) is recognized as a new neuromodulator in regulating various brain functions. Some of our recent studies showed that H2S alleviates the hippocampal damage induced by recurrent febrile seizures (FS). In the present study, we used a rat model of recurrent FS and found that sodium sulfhydrate (NaHS, a donor of H2S) down-regulated the expression of c-fos and increased the expression of gamma-aminobutyric acid B receptor subunits 1 (GABA(B)R1) and 2 (GABA(B)R2). Hydroxylamine (an inhibitor of cystathionine b-synthase) up-regulated the expression of c-fos and down-regulated the expression of GABA(B)R2, but did not change the expression of GABA(B)R1. These results suggest that H2S plays a regulatory role through modulating GABA(B)R function in the pathogenesis of recurrent FS.
Collapse
Affiliation(s)
- Ying Han
- Department of Pediatrics, Peking University First Hospital, No. 1 Xi-An Men Street, Beijing 100034, PR China
| | | | | | | | | | | |
Collapse
|
435
|
Thuault SJ, Brown JT, Calver AR, Collingridge GL, Randall A, Davies CH. Mechanisms contributing to the exacerbated epileptiform activity in hippocampal slices expressing a C-terminal truncated GABA(B2) receptor subunit. Epilepsy Res 2005; 65:41-51. [PMID: 15979855 DOI: 10.1016/j.eplepsyres.2005.04.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2004] [Revised: 04/10/2005] [Accepted: 04/17/2005] [Indexed: 10/25/2022]
Abstract
GABAergic synaptic transmission plays an important role in the patterning of epileptiform activity. We have previously shown that global loss of GABA(B) receptor function due to transgenic deletion of the GABA(B1) receptor subunit exacerbates epileptiform activity induced by pharmacological manipulations in hippocampal slices. Here we show that a similar hyperexcitable phenotype is observed in hippocampal slices prepared from a transgenic mouse expressing a GABA(B2) receptor subunit lacking its C terminal tail (the DeltaGB2-Ct mouse); a molecular manipulation that also produces complete loss of GABA(B) receptor function. Thus, epileptiform bursts that are sensitive to NMDA receptor antagonists (induced by either the GABA(A) receptor antagonist bicuculline (10muM) or removal of extracellular Mg(2+)) were significantly longer in duration in DeltaGB2-Ct slices relative to WT slices. We now extend these observations to demonstrate that a stimulus train induced bursting (STIB) protocol also evokes significantly longer bicuculline sensitive bursts of activity in DeltaGB2-Ct slices compared to WT. Furthermore, synchronous GABA(A) receptor-mediated potentials recorded in the presence of the potassium channel blocker 4-aminopyridine (4-AP, 100muM) and the ionotropic glutamate receptor antagonists NBQX (20muM) and D-AP5 (50muM) were significantly prolonged in duration in DeltaGB2-Ct versus WT slices. These data suggest that the loss of GABA(B) receptor function in DeltaGB2-Ct hippocampal slices promotes depolarising GABA(A) receptor-mediated events, which in turn, leads to the generation of ictal-like events, which may contribute to the epilepsy phenotype observed in vivo.
Collapse
Affiliation(s)
- Sébastien J Thuault
- Neurology and GI CEDD, GlaxoSmithKline, New Frontiers Science Park, Third Avenue, Harlow, Essex CM19 5AW, UK.
| | | | | | | | | | | |
Collapse
|
436
|
Thummer RP, Campbell MP, Dean MK, Frusher MJ, Scott PD, Reynolds CA. Entropy and oligomerization in GPCRs. J Mol Neurosci 2005; 26:113-22. [PMID: 16012184 DOI: 10.1385/jmn:26:2-3:113] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Evolutionary trace (ET) and entropy are two related methods for analyzing a multiple sequence alignment to determine functionally important residues in proteins. In this article, these methods have been enhanced with a view to reinvestigate the issue ofGPCR dimerization and oligomerization. In particular, cluster analysis has replaced the subjective visual analysis element of the original ET method. Previous applications of the ET method predicted two dimerization interfaces on the external transmembrane lipid-facing region of GPCRs; these were discussed in terms of dimerization and linear oligomers. Removing the subjective element of the ET method gives rise to the prediction of functionally important residues on the external face of each transmembrane helix for a large number of class A GPCRs. These results are consistent with a growing body of experimental information that, taken over many receptor subtypes, has implicated each transmembrane helix in dimeric interactions. In this application, entropy gave superior results to those obtained from the ET method in that its use gives rise to higher z-scores and fewer instances of z-scores below 3.
Collapse
Affiliation(s)
- Rajkumar P Thummer
- Department of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK
| | | | | | | | | | | |
Collapse
|
437
|
Lacey CJ, Boyes J, Gerlach O, Chen L, Magill PJ, Bolam JP. GABA(B) receptors at glutamatergic synapses in the rat striatum. Neuroscience 2005; 136:1083-95. [PMID: 16226840 DOI: 10.1016/j.neuroscience.2005.07.013] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2005] [Revised: 06/06/2005] [Accepted: 07/01/2005] [Indexed: 12/12/2022]
Abstract
Although multiple effects of GABA(B) receptor activation on synaptic transmission in the striatum have been described, the precise locations of the receptors mediating these effects have not been determined. To address this issue, we carried out pre-embedding immunogold electron microscopy in the rat using antibodies against the GABA(B) receptor subunits, GABA(B1) and GABA(B2). In addition, to investigate the relationship between GABA(B) receptors and glutamatergic striatal afferents, we used antibodies against the vesicular glutamate transporters, vesicular glutamate transporter 1 and vesicular glutamate transporter 2, as markers for glutamatergic terminals. Immunolabeling for GABA(B1) and GABA(B2) was widely and similarly distributed in the striatum, with immunogold particles localized at both presynaptic and postsynaptic sites. The most commonly labeled structures were dendritic shafts and spines, as well as terminals forming asymmetric and symmetric synapses. In postsynaptic structures, the majority of labeling associated with the plasma membrane was localized at extrasynaptic sites, although immunogold particles were also found at the postsynaptic specialization of some symmetric, putative GABAergic synapses. Labeling in axon terminals was located within, or at the edge of, the presynaptic active zone, as well as at extrasynaptic sites. Double labeling for GABA(B) receptor subunits and vesicular glutamate transporters revealed that labeling for both GABA(B1) and GABA(B2) was localized on glutamatergic axon terminals that expressed either vesicular glutamate transporter 1 or vesicular glutamate transporter 2. The patterns of innervation of striatal neurons by the vesicular glutamate transporter 1- and vesicular glutamate transporter 2-positive terminals suggest that they are selective markers of corticostriatal and thalamostriatal afferents, respectively. These results thus provide evidence that presynaptic GABA(B) heteroreceptors are in a position to modulate the two major excitatory inputs to striatal spiny projection neurons arising in the cortex and thalamus. In addition, presynaptic GABA(B) autoreceptors are present on the terminals of spiny projection neurons and/or striatal GABAergic interneurons. Furthermore, the data indicate that GABA may also affect the excitability of striatal neurons via postsynaptic GABA(B) receptors.
Collapse
Affiliation(s)
- C J Lacey
- Medical Research Council Anatomical Neuropharmacology Unit, Department of Pharmacology, University of Oxford, Oxford OX1 3TH, UK
| | | | | | | | | | | |
Collapse
|
438
|
Sylantyev SO, Lee CM, Shyu BC. A parametric assessment of GABA antagonist effects on paired-pulse facilitation in the rat anterior cingulate cortex. Neurosci Res 2005; 52:362-70. [PMID: 15936838 DOI: 10.1016/j.neures.2005.04.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2005] [Revised: 04/21/2005] [Accepted: 04/28/2005] [Indexed: 12/17/2022]
Abstract
Paired-pulse facilitation (PPF) is a form of short-term plasticity that can be used qualitatively to characterize the synaptic effects of neuroactive compounds. As we have shown previously, CNQX has a marked effect on PPF which can be measured quantitatively. The aim of the present study was to examine quantitatively possible differences in the effects of the post- and pre-synaptic GABA antagonists on PPF in vitro. Experiments were performed on slices taken from the coronal anterior cingulate cortex (ACC) of Sprague-Dawley rats. The stimuli consisted of a pair of biphasic pulses with an inter-pulse interval of 40ms. Evoked extracellular field potentials in layers 2/3 of the ACC were recorded. Quantitative assessment of PPF was achieved by calculating two parameters, the PPFmax (theoretical maximal PPF) and the Stmax (stimulus intensity that produces the PPFmax). Picrotoxin treatment produced increases in both the PPFmax and Stmax, by increasing the stimulus producing the half-maximal effect. In contrast, CGP-55845 treatment produced an increase in only the PPFmax, which was due to an alteration in the asymptotic values of the response amplitudes. Our findings show that the effect of different GABA receptor antagonists on short-term synaptic facilitation in the ACC may be assessed and specified quantitatively.
Collapse
|
439
|
Kaneda K, Kita H. Synaptically released GABA activates both pre- and postsynaptic GABA(B) receptors in the rat globus pallidus. J Neurophysiol 2005; 94:1104-14. [PMID: 16061489 DOI: 10.1152/jn.00255.2005] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The globus pallidus (GP) contains abundant GABAergic synapses and GABA(B) receptors. To investigate whether synaptically released GABA can activate pre- and postsynaptic GABA(B) receptors in the GP, physiological recordings were performed using rat brain slice preparations. Cell-attached recordings from GABA(A) antagonist-treated preparations revealed that repetitive local stimulation induced a GABA(B) antagonist-sensitive pause in spontaneous firings of GP neurons. Whole cell recordings revealed that the repetitive stimulation evoked fast excitatory postsynaptic potentials followed by a slow inhibitory postsynaptic potential (IPSP) in GP neurons. The slow IPSP was insensitive to a GABA(A) receptor antagonist, increased in amplitude with the application of ionotropic glutamate receptor antagonists, and was suppressed by the GABA(B) antagonist CGP55845. The reversal potential of the slow IPSP was close to the potassium equilibrium potential. These results suggest that synaptically released GABA activated postsynaptic GABA(B) receptors and induced the pause and the slow IPSP. On the other hand, in the neurons that were treated to block postsynaptic GABA(B) responses, CGP55845 increased the amplitudes of repetitive local stimulation-induced GABA(A)-mediated inhibitory postsynaptic currents (IPSCs) but not the ionotropic glutamate-mediated excitatory postsynaptic currents. Moreover, the GABA(B) receptor specific agonist baclofen reduced the frequency of miniature IPSCs without altering their amplitude distributions. These results suggest that synaptically released GABA also activated presynaptic GABA(B) autoreceptors, resulting in decreased GABA release in the GP. Together, we infer that both pre- and postsynaptic GABA(B) receptors may play crucial roles in the control of GP neuronal activity.
Collapse
Affiliation(s)
- Katsuyuki Kaneda
- Department of Anatomy and Neurobiology, College of Medicine, University of Tennessee, Memphis, TN 38163, USA
| | | |
Collapse
|
440
|
Pan YX, Xu J, Bolan E, Moskowitz HS, Xu M, Pasternak GW. Identification of four novel exon 5 splice variants of the mouse mu-opioid receptor gene: functional consequences of C-terminal splicing. Mol Pharmacol 2005; 68:866-75. [PMID: 15939800 DOI: 10.1124/mol.105.011858] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The rat mu-opioid receptor clone in which novel exon 5 was found in the place of exon 4 (MOR-1B) was one of the first MOR-1 variants described. We now have identified the mouse homolog of the rat MOR-1B as well as four additional variants derived from splicing from exon 3 into different sites within exon 5. The sequences of all of the variants were identical except for the intracellular tip of the C terminus encoded by exon 5, where each variant predicted a unique amino acid sequence ranging from 2 to 39 amino acids. All of the mMOR-1B variants were selective for mu-opioids in receptor-binding assays, as anticipated, because they all have identical binding pockets defined by the transmembrane domains. However, the relative potency and efficacy of mu-agonists to each other varied from variant to variant in guanosine 5'-O-(3-[35S]thio)triphosphate-binding studies, as shown by morphine-6beta-glucuronide, which was the most efficacious agent against mouse MOR-1B1 (mMOR-1B1) and the least efficacious agent against mMOR-1B2. mMOR-1B4 was quite unusual. Although mMOR-1B4 was mu-selective in receptor-binding studies and antagonists labeled mMOR-1B4 well, the binding affinities of most of the mu-agonists were far lower than those seen with mMOR-1, suggesting that the 39 amino acids at the C terminus of mMOR-1B4 influences the conformation of the receptor and its ligand recognition site itself either directly or through its interactions with other proteins. In conclusion, alterations in the amino acid sequence of the C terminus do not alter the mu-specificity of the receptor but they can influence the binding characteristics, efficacy, and potency of mu-opioids.
Collapse
Affiliation(s)
- Ying-Xian Pan
- Laboratory of Molecular Neuropharmacology, Memorial Sloan-Kettering Cancer Center, 1275 York Ave, New York, NY 10021, USA.
| | | | | | | | | | | |
Collapse
|
441
|
Prinster SC, Hague C, Hall RA. Heterodimerization of g protein-coupled receptors: specificity and functional significance. Pharmacol Rev 2005; 57:289-98. [PMID: 16109836 DOI: 10.1124/pr.57.3.1] [Citation(s) in RCA: 290] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
G protein-coupled receptors (GPCRs) are cell surface receptors that mediate physiological responses to a diverse array of stimuli. GPCRs have traditionally been thought to act as monomers, but recent evidence suggests that GPCRs may form dimers (or higher-order oligomers) as part of their normal trafficking and function. In fact, certain GPCRs seem to have a strict requirement for heterodimerization to attain proper surface expression and functional activity. Even those GPCRs that do not absolutely require heterodimerization may still specifically associate with other GPCR subtypes, sometimes resulting in dramatic effects on receptor pharmacology, signaling, and/or internalization. Understanding the specificity and functional significance of GPCR heterodimerization is of tremendous clinical importance since GPCRs are the molecular targets for numerous therapeutic drugs.
Collapse
Affiliation(s)
- Steven C Prinster
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | |
Collapse
|
442
|
Deriu D, Gassmann M, Firbank S, Ristig D, Lampert C, Mosbacher J, Froestl W, Kaupmann K, Bettler B, Grütter M. Determination of the minimal functional ligand-binding domain of the GABAB1b receptor. Biochem J 2005; 386:423-31. [PMID: 15482257 PMCID: PMC1134860 DOI: 10.1042/bj20040804] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In the mammalian central nervous system, slow inhibitory neurotransmission is largely mediated by metabotropic GABA(B) receptors (where GABA stands for gamma-aminobutyric acid), which belong to the G-protein-coupled receptor gene family. Functional GABA(B) receptors are assembled from two subunits GABA(B1) (GABA(B) receptor subtype 1) and GABA(B2). For the GABA(B1) subunit, which binds the neurotransmitter GABA, two variants GABA(B1a) (GABA(B) receptor subtype 1 variant a) and GABA(B1b) have been identified. They differ at the very N-terminus of their large glycosylated ECD (extracellular domain). To simplify the structural characterization, we designed truncated GABA(B1) receptors to identify the minimal functional domain which still binds a competitive radioligand and leads to a functional, GABA-responding receptor when co-expressed with GABA(B2). We show that it is necessary to include all the portion of the ECD encoded by exon 6 to exon 14. Furthermore, we studied mutant GABA(B1b) receptors, in which single or all potential N-glycosylation sites are removed. The absence of oligosaccharides does not impair receptor function, suggesting that the unglycosylated ECD of GABA(B1) can be used for further functional or structural investigations.
Collapse
Affiliation(s)
- Daniela Deriu
- *Institute of Biochemistry, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Martin Gassmann
- †Department of Clinical-Biological Sciences, University of Basel, Pharmazentrum, Klingelbergstrasse 50-70, CH-4056 Basel, Switzerland
| | - Susan Firbank
- *Institute of Biochemistry, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Dorothee Ristig
- ‡Novartis, Institute of Biomedical Research Basel, CH-4002 Basel, Switzerland
| | - Christina Lampert
- ‡Novartis, Institute of Biomedical Research Basel, CH-4002 Basel, Switzerland
| | - Johannes Mosbacher
- ‡Novartis, Institute of Biomedical Research Basel, CH-4002 Basel, Switzerland
| | - Wolfgang Froestl
- ‡Novartis, Institute of Biomedical Research Basel, CH-4002 Basel, Switzerland
| | - Klemens Kaupmann
- ‡Novartis, Institute of Biomedical Research Basel, CH-4002 Basel, Switzerland
| | - Bernhard Bettler
- †Department of Clinical-Biological Sciences, University of Basel, Pharmazentrum, Klingelbergstrasse 50-70, CH-4056 Basel, Switzerland
| | - Markus G. Grütter
- *Institute of Biochemistry, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
- To whom correspondence should be addressed (email )
| |
Collapse
|
443
|
Burger RM, Pfeiffer JD, Westrum LE, Bernard A, Rubel EW. Expression of GABA(B) receptor in the avian auditory brainstem: ontogeny, afferent deprivation, and ultrastructure. J Comp Neurol 2005; 489:11-22. [PMID: 15977167 DOI: 10.1002/cne.20607] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Nucleus magnocellularis (NM), nucleus angularis (NA), and nucleus laminaris (NL), second- and third-order auditory neurons in the avian brainstem, receive GABAergic input primarily from the superior olivary nucleus (SON). Previous studies have demonstrated that both GABA(A) and GABA(B) receptors (GABA(B)Rs) influence physiological properties of NM neurons. We characterized the distribution of GABA(B)R expression in these nuclei during development and after deafferentation of the excitatory auditory nerve (nVIII) inputs. We used a polyclonal antibody raised against rat GABA(B)Rs in the auditory brainstem during developmental periods that are thought to precede and include synaptogenesis of GABAergic inputs. As early as embryonic day (E)14, dense labeling is observed in NA, NM, NL, and SON. At earlier ages immunoreactivity is present in somas as diffuse staining with few puncta. By E21, when the structure and function of the auditory nuclei are known to be mature, GABA(B) immunoreactivity is characterized by dense punctate labeling in NM, NL, and a subset of NA neurons, but label is sparse in the SON. Removal of the cochlea and nVIII neurons in posthatch chicks resulted in only a small decrease in immunoreactivity after survival times of 14 or 28 days, suggesting that a major proportion of GABA(B)Rs may be expressed postsynaptically or on GABAergic terminals. We confirmed this interpretation with immunogold TEM, where expression at postsynaptic membrane sites is clearly observed. The characterization of GABA(B)R distribution enriches our understanding of the full complement of inhibitory influences on central auditory processing in this well-studied neuronal circuit.
Collapse
Affiliation(s)
- R Michael Burger
- Virginia Merrill Bloedel Hearing Research Center and Department of Otolaryngology-Head and Neck Surgery, University of Washington, Seattle, Washington 98195, USA
| | | | | | | | | |
Collapse
|
444
|
Abstract
A wide range of approaches has been applied to examine the quaternary structure of G protein-coupled receptors, the basis of such protein-protein interactions and how such interactions might modulate the pharmacology and function of these receptors. These include co-immunoprecipitation, various adaptations of resonance energy transfer techniques, functional complementation studies and the analysis of ligand-binding data. Each of the available techniques has limitations that restrict interpretation of the data. However, taken together, they provide a coherent body of evidence indicating that many, if not all, G protein-coupled receptors exist and function as dimer/oligomers. Herein we assess the widely applied techniques and discuss the relative benefits and limitations of these approaches.
Collapse
Affiliation(s)
- Graeme Milligan
- Molecular Pharmacology Group, Division of Biochemistry and Molecular Biology, Institute of Biomedical and Life Sciences, University of Glasgow, UK
| | | |
Collapse
|
445
|
Jones TL, Sweitzer SM, Peters MC, Wilson SP, Yeomans DC. GABAB receptors on central terminals of C-afferents mediate intersegmental Adelta-afferent evoked hypoalgesia. Eur J Pain 2005; 9:233-42. [PMID: 15862472 DOI: 10.1016/j.ejpain.2004.06.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2004] [Accepted: 06/29/2004] [Indexed: 10/26/2022]
Abstract
The current study tested the hypothesis that repetitive activation of sciatic Adelta-afferents evokes a saphenous C-afferent hypoalgesia mediated by pre-synaptic GABA(B) receptors. Tonic activation of sciatic Adelta-afferents was produced by cutaneous application of dimethyl sulfoxide (DMSO) followed by repetitive thermal activation of Adelta-afferents on the dorsolateral hind paw. The tonic activation of sciatic Adelta-afferents produced hypoalgesia in saphenous C-afferents. Intrathecal administration of the GABA(B) receptor antagonist, saclofen, attenuated saphenous hypoalgesia demonstrating at least partial mediation by central GABA(B) receptors. To determine if this central GABA(B) receptor activation occurs at pre-synaptic primary afferent terminals or postsynaptic spinal cord neurons, the dorsal hind paws of mice were infected with a recombinant herpes simplex virus type 1 (HSV-1) designed to selectively knock down expression of the GABA(B1a) receptor subunit (PAGB1a) in primary afferents or a control virus encoding the E. coli lacZ gene (PZ). Four weeks after infection, GABA(B) receptor immunoreactivity in the superficial dorsal horns ipsilateral to PAGB1a application was reduced and hypoalgesia in saphenous C-afferents was attenuated when compared to PZ-infected mice. These findings indicate an intersegmental, sciatic Adelta-afferent-evoked hypoalgesic effect on saphenous C-afferent responses that is mediated by pre-synaptic GABA(B) receptors on the terminals of those C-afferents.
Collapse
Affiliation(s)
- Toni L Jones
- Anesthesia Department, Stanford University School of Medicine, CA 94305, USA
| | | | | | | | | |
Collapse
|
446
|
Maudsley S, Martin B, Luttrell LM. The origins of diversity and specificity in g protein-coupled receptor signaling. J Pharmacol Exp Ther 2005; 314:485-94. [PMID: 15805429 PMCID: PMC2656918 DOI: 10.1124/jpet.105.083121] [Citation(s) in RCA: 152] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The modulation of transmembrane signaling by G protein-coupled receptors (GPCRs) constitutes the single most important therapeutic target in medicine. Drugs acting on GPCRs have traditionally been classified as agonists, partial agonists, or antagonists based on a two-state model of receptor function embodied in the ternary complex model. Over the past decade, however, many lines of investigation have shown that GPCR signaling exhibits greater diversity and "texture" than previously appreciated. Signal diversity arises from numerous factors, among which are the ability of receptors to adopt multiple "active" states with different effector-coupling profiles; the formation of receptor dimers that exhibit unique pharmacology, signaling, and trafficking; the dissociation of receptor "activation" from desensitization and internalization; and the discovery that non-G protein effectors mediate some aspects of GPCR signaling. At the same time, clustering of GPCRs with their downstream effectors in membrane microdomains and interactions between receptors and a plethora of multidomain scaffolding proteins and accessory/chaperone molecules confer signal preorganization, efficiency, and specificity. In this context, the concept of agonist-selective trafficking of receptor signaling, which recognizes that a bound ligand may select between a menu of active receptor conformations and induce only a subset of the possible response profile, presents the opportunity to develop drugs that change the quality as well as the quantity of efficacy. As a more comprehensive understanding of the complexity of GPCR signaling is developed, the rational design of ligands possessing increased specific efficacy and attenuated side effects may become the standard mode of drug development.
Collapse
Affiliation(s)
- Stuart Maudsley
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Gerontology Research Center, 5600 Nathan Shock Drive, Johns Hopkins Medical Center, Baltimore, MD, USA.
| | | | | |
Collapse
|
447
|
Pfleger KDG, Eidne KA. Monitoring the formation of dynamic G-protein-coupled receptor-protein complexes in living cells. Biochem J 2005; 385:625-37. [PMID: 15504107 PMCID: PMC1134737 DOI: 10.1042/bj20041361] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
GPCRs (G-protein-coupled receptors) play an extremely important role in transducing extracellular signals across the cell membrane with high specificity and sensitivity. They are central to many of the body's endocrine and neurotransmitter pathways, and are consequently a major drug target. It is now clear that GPCRs interact with a range of proteins, including other GPCRs. Identifying and elucidating the function of such interactions will significantly enhance our understanding of cellular function, with the promise of new and improved pharmaceuticals. Biophysical techniques involving resonance energy transfer, namely FRET (fluorescence resonance energy transfer) and BRET (bioluminescence resonance energy transfer), now enable us to monitor the formation of dynamic GPCR-protein complexes in living cells, in real time. Their use has firmly established the concept of GPCR oligomerization, as well as demonstrating GPCR interactions with GPCR kinases, beta-arrestins, adenylate cyclase and a subunit of an inwardly rectifying K+ channel. The present review examines recent technological advances and experimental applications of FRET and BRET, discussing particularly how they have been adapted to extract an ever-increasing amount of information about the nature, specificity, stoichiometry, kinetics and agonist-dependency of GPCR-protein interactions.
Collapse
Affiliation(s)
- Kevin D G Pfleger
- Molecular Endocrinology Research Group/7TM Receptor Laboratory, Western Australian Institute for Medical Research, The University of Western Australia, Sir Charles Gairdner Hospital, Nedlands, Perth, WA 6009.
| | | |
Collapse
|
448
|
Vassias I, Lecolle S, Vidal PP, de Waele C. Modulation of GABA receptor subunits in rat facial motoneurons after axotomy. ACTA ACUST UNITED AC 2005; 135:260-75. [PMID: 15857688 DOI: 10.1016/j.molbrainres.2004.12.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2004] [Revised: 12/17/2004] [Accepted: 12/20/2004] [Indexed: 10/25/2022]
Abstract
Facial nerve axotomy is a good model for studying neuronal plasticity and regeneration in the peripheral nervous system. In the present study, we investigated the effect of axotomy on the different subunits of GABA(A) and GABA(B) receptors of facial motoneurons. The facial nerve trunk was unilaterally sectioned and operated rats were sacrificed at 1, 3, 8, 30, and 60 days later. mRNAs coding for alpha1, beta2, and gamma2 of GABA(A) receptors and for GABA(1B) and GABA(B2) receptors were down-regulated by axotomy. This decrease began as soon as 1 or 3 days after axotomy, and the minimum was 8 days post-lesion; the mRNA levels remained lower than normal at day post-lesion 60. The abundance of mRNAs coding for the three other alpha2, beta1, and beta3 facial subunits of GABA(A) receptors and for the pre-synaptic GABA(B1A) subunit remained unchanged during the period 1-8 days post-lesion. Immunohistochemistry using specific antibodies against alpha1, gamma2 subunits of GABA(A) and against GABA(B2) subunits confirmed this down-regulation. Colchicine treatment and blockade of action potential by tetrodotoxin significantly decreased GABA(A)alpha1 immunoreactivity in the axotomized facial nucleus after 7 days. Finally, muscle destruction by cardiotoxin or facial palsy induced by botulinum toxin failed to change GABA(A)alpha1 subunit expression. Our data demonstrate that axotomy strongly reduced the amounts of alpha1, beta2, and gamma2 subunits of GABA(A) receptors and B(1B) and B(2) subunits of GABA(B) receptors in the axotomized facial motoneurons. The loss of GABA(A)alpha1 subunit was most probably induced by both the loss of trophic factors transported from the periphery and a positive injury signal. It also seems to be dependent on activity disruption.
Collapse
Affiliation(s)
- Isabelle Vassias
- UMR 7060 (CNRS-Paris 5), Centre Universitaire des Saints-Pères, 45 rue des Saints-Pères, 75270 Paris Cedex 06, France
| | | | | | | |
Collapse
|
449
|
Berthouze M, Ayoub M, Russo O, Rivail L, Sicsic S, Fischmeister R, Berque-Bestel I, Jockers R, Lezoualc'h F. Constitutive dimerization of human serotonin 5-HT4 receptors in living cells. FEBS Lett 2005; 579:2973-80. [PMID: 15896782 DOI: 10.1016/j.febslet.2005.04.040] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2004] [Revised: 03/30/2005] [Accepted: 04/06/2005] [Indexed: 11/20/2022]
Abstract
Serotonin 5-HT4 receptor isoforms are G protein-coupled receptors (GPCRs) with distinct pharmacological properties and may represent a valuable target for the treatment of many human disorders. Here, we have explored the process of dimerization of human 5-HT4 receptor (h5-HT4R) by means of co-immunoprecipitation and bioluminescence resonance energy transfer (BRET). Constitutive h5-HT4(d)R dimer was observed in living cells and membrane preparation of CHO and HEK293 cells. 5-HT4R ligands did not influence the constitutive energy transfer of the h5-HT4(d)R splice variant in intact cells and isolated plasma membranes. In addition, we found that h5-HT4(d)R and h5-HT4(g)R which structurally differ in the length of their C-terminal tails were able to form constitutive heterodimers independently of their activation state. Finally, we found that coexpression of h5-HT4R and beta2-adrenergic receptor (beta2AR) led to their heterodimerization. Given the large number of h5-HT4R isoforms which are coexpressed in a same tissue, our results points out the complexity by which this 5-HTR sub-type mediates its biological effects.
Collapse
Affiliation(s)
- Magali Berthouze
- Laboratoire de Cardiologie Cellulaire et Moléculaire, INSERM U-446, Châtenay-Malabry, France
| | | | | | | | | | | | | | | | | |
Collapse
|
450
|
Kleppner SR, Tobin AJ. GABA signalling: therapeutic targets for epilepsy, Parkinson's disease and Huntington's disease. Expert Opin Ther Targets 2005; 5:219-39. [PMID: 15992178 DOI: 10.1517/14728222.5.2.219] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Temporal lobe epilepsy (TLE), Parkinson's disease (PD) and Huntington's disease (HD) are neurodegenerative disorders that involve disruptions in gamma-amino butyric acid (GABA) signalling. GABA is the major inhibitory neurotransmitter in the central nervous system (CNS). TLE seizures reflect excess excitation, which may result from local inhibitory circuit dysfunction. PD devastates the input to striatal GABAergic neurones and HD destroys striatal GABAergic neurones. Controlling GABA delivery to specific brain areas should benefit each of these diseases. The molecules responsible for GABA release and signalling are ideal targets for new therapies. In this paper, we discuss the role of GABA in the circuitry affected by each of these diseases and suggest potential sites for intervention. GABA is unique among neurotransmitters because it can be synthesised by either of two related enzymes. Intracellular GABA is found throughout the cytosol and in synaptic vesicles. GABA can be released either through exocytosis, or via the plasma membrane transporter. The synthesising enzyme probably determines the intracellular location and hence the mechanism for GABA release. Directing GABA synthesis, degradation, transport or receptors can control GABA signalling. We propose that new drugs and devices aimed at GABA synthesis, release and binding will offer novel and highly effective treatments for neurodegenerative diseases.
Collapse
Affiliation(s)
- S R Kleppner
- Department of Physiological Science, Brain Research Institute, University of California, Los Angeles, CA 90095-1761, USA.
| | | |
Collapse
|