401
|
Demystifying the Differences Between Tumor-Initiating Cells and Cancer Stem Cells in Colon Cancer. CURRENT COLORECTAL CANCER REPORTS 2018. [DOI: 10.1007/s11888-018-0421-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
402
|
Hata M, Hayakawa Y, Koike K. Gastric Stem Cell and Cellular Origin of Cancer. Biomedicines 2018; 6:biomedicines6040100. [PMID: 30384487 PMCID: PMC6315982 DOI: 10.3390/biomedicines6040100] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 10/28/2018] [Accepted: 10/28/2018] [Indexed: 12/16/2022] Open
Abstract
Several stem cell markers within the gastrointestinal epithelium have been identified in mice. One of the best characterized is Lgr5 (leucine-rich repeat-containing G-protein coupled receptor 5) and evidence suggests that Lgr5+ cells in the gut are the origin of gastrointestinal cancers. Reserve or facultative stem or progenitor cells with the ability to convert to Lgr5+ cells following injury have also been identified. Unlike the intestine, where Lgr5+ cells at the crypt base act as active stem cells, the stomach may contain unique stem cell populations, since gastric Lgr5+ cells seem to behave as a reserve rather than active stem cells, both in the corpus and in the antral glands. Gastrointestinal stem cells are supported by a specific microenvironment, the stem cell niche, which also promotes tumorigenesis. This review focuses on stem cell markers in the gut and their supporting niche factors. It also discusses the molecular mechanisms that regulate stem cell function and tumorigenesis.
Collapse
Affiliation(s)
- Masahiro Hata
- Department of Gastroenterology, Graduate School of Medicine, the University of Tokyo, Tokyo 1138655, Japan.
| | - Yoku Hayakawa
- Department of Gastroenterology, Graduate School of Medicine, the University of Tokyo, Tokyo 1138655, Japan.
| | - Kazuhiko Koike
- Department of Gastroenterology, Graduate School of Medicine, the University of Tokyo, Tokyo 1138655, Japan.
| |
Collapse
|
403
|
Al Bakir I, Curtius K, Graham TA. From Colitis to Cancer: An Evolutionary Trajectory That Merges Maths and Biology. Front Immunol 2018; 9:2368. [PMID: 30386335 PMCID: PMC6198656 DOI: 10.3389/fimmu.2018.02368] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 09/24/2018] [Indexed: 12/25/2022] Open
Abstract
Patients with inflammatory bowel disease have an increased risk of developing colorectal cancer, and this risk is related to disease duration, extent, and cumulative inflammation burden. Carcinogenesis follows the principles of Darwinian evolution, whereby somatic cells acquire genomic alterations that provide them with a survival and/or growth advantage. Colitis represents a unique situation whereby routine surveillance endoscopy provides a serendipitous opportunity to observe somatic evolution over space and time in vivo in a human organ. Moreover, somatic evolution in colitis is evolution in the ‘fast lane': the repeated rounds of inflammation and mucosal healing that are characteristic of the disease accelerate the evolutionary process and likely provide a strong selective pressure for inflammation-adapted phenotypic traits. In this review, we discuss the evolutionary dynamics of pre-neoplastic clones in colitis with a focus on how measuring their evolutionary trajectories could deliver a powerful way to predict future cancer occurrence. Measurements of somatic evolution require an interdisciplinary approach that combines quantitative measurement of the genotype, phenotype and the microenvironment of somatic cells–paying particular attention to spatial heterogeneity across the colon–together with mathematical modeling to interpret these data within an evolutionary framework. Here we take a practical approach in discussing how and why the different “evolutionary ingredients” can and should be measured, together with our viewpoint on subsequent translation into clinical practice. We highlight the open questions in the evolution of colitis-associated cancer as a stimulus for future work.
Collapse
Affiliation(s)
- Ibrahim Al Bakir
- Evolution and Cancer Laboratory, Centre for Tumour Biology, Barts Cancer Institute, London, United Kingdom.,Inflammatory Bowel Disease Unit, St Mark's Hospital, Harrow, United Kingdom
| | - Kit Curtius
- Evolution and Cancer Laboratory, Centre for Tumour Biology, Barts Cancer Institute, London, United Kingdom
| | - Trevor A Graham
- Evolution and Cancer Laboratory, Centre for Tumour Biology, Barts Cancer Institute, London, United Kingdom
| |
Collapse
|
404
|
Abstract
Radiation enteritis is an old but emerging question induced by the application of radiation. However, no effective drugs for radiation enteritis in clinic. In this study, we found that thymoquinone (TQ) could mitigate intestinal damages induced by irradiation. After exposure to irradiation, TQ-treated improved the irradiated mice survival rate, ameliorated intestinal injury and increased the numbers of intestinal crypts. Furthermore, Lgr5+ ISCs and their daughter cells, including Vil1+ enterocytes, Ki67+ cells and lysozyme+ Paneth cells, were all significantly increased with TQ treatment. In addition, P53, γH2AX, caspase8, caspase9 and caspase3 expression were all reduced by TQ. Our data showed that TQ modulated DNA damages and decreased the apoptosis in the small intestine. TQ might be used for radiation enteritis treatment.
Collapse
|
405
|
Biehs B, Dijkgraaf GJP, Piskol R, Alicke B, Boumahdi S, Peale F, Gould SE, de Sauvage FJ. A cell identity switch allows residual BCC to survive Hedgehog pathway inhibition. Nature 2018; 562:429-433. [PMID: 30297801 DOI: 10.1038/s41586-018-0596-y] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 08/22/2018] [Indexed: 12/23/2022]
Abstract
Despite the efficacy of Hedgehog pathway inhibitors in the treatment of basal cell carcinoma (BCC)1, residual disease persists in some patients and may contribute to relapse when treatment is discontinued2. Here, to study the effect of the Smoothened inhibitor vismodegib on tumour clearance, we have used a Ptch1-Trp53 mouse model of BCC3 and found that mice treated with vismodegib harbour quiescent residual tumours that regrow upon cessation of treatment. Profiling experiments revealed that residual BCCs initiate a transcriptional program that closely resembles that of stem cells of the interfollicular epidermis and isthmus, whereas untreated BCCs are more similar to the hair follicle bulge. This cell identity switch was enabled by a mostly permissive chromatin state accompanied by rapid Wnt pathway activation and reprogramming of super enhancers to drive activation of key transcription factors involved in cellular identity. Accordingly, treatment of BCC with both vismodegib and a Wnt pathway inhibitor reduced the residual tumour burden and enhanced differentiation. Our study identifies a resistance mechanism in which tumour cells evade treatment by adopting an alternative identity that does not rely on the original oncogenic driver for survival.
Collapse
Affiliation(s)
- Brian Biehs
- Department of Molecular Oncology, Genentech, San Francisco, CA, USA
| | | | - Robert Piskol
- Department of Bioinformatics and Computational Biology, Genentech, San Francisco, CA, USA
| | - Bruno Alicke
- Department of Translational Oncology, Genentech, San Francisco, CA, USA
| | | | - Franklin Peale
- Department of Research Pathology, Genentech, San Francisco, CA, USA
| | - Stephen E Gould
- Department of Translational Oncology, Genentech, San Francisco, CA, USA
| | | |
Collapse
|
406
|
A slow-cycling LGR5 tumour population mediates basal cell carcinoma relapse after therapy. Nature 2018; 562:434-438. [PMID: 30297799 PMCID: PMC6295195 DOI: 10.1038/s41586-018-0603-3] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 08/16/2018] [Indexed: 01/28/2023]
Abstract
Basal cell carcinoma (BCC) is the most frequent cancer in humans and results from constitutive activation of the Hedgehog pathway1. Several Smoothened inhibitors (Smoi) are used to treat Hedgehog-mediated malignancies, including BCC and medulloblastoma2. Vismodegib, a Smoi, leads to BCC shrinkage in the majority of the BCC patients3, but the mechanism by which it mediates BCC regression is currently unknown. Here, we used two different genetically engineered mouse models4 to investigate the mechanisms by which Smoi mediates tumor regression. We found that vismodegib mediates BCCs regression by inhibiting hair follicle-like fate and promoting the differentiation of tumour cells (TCs). However, a small population of TCs persists and is responsible for tumour relapse following treatment discontinuation, mimicking the situation found in humans5. In both mouse and human BCC, this persisting slow-cycling tumour population expresses Lgr5 and is characterised by active Wnt signalling. Lgr5 lineage ablation or Wnt signalling inhibition together with vismodegib leads to BCC eradication. Our study reveals that vismodegib induces tumour regression by promoting tumour differentiation, and demonstrates that the synergy between Wnt and Smoothened inhibitors constitutes a clinically relevant strategy to overcome tumour relapse in BCC.
Collapse
|
407
|
Liu Y, Wang Y, Chakroff J, Johnson J, Farrell A, Besner GE. Production of Tissue-Engineered Small Intestine in Rats with Different Ages of Cell Donors. Tissue Eng Part A 2018; 25:878-886. [PMID: 30284958 DOI: 10.1089/ten.tea.2018.0226] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
IMPACT STATEMENT This study compared side-by-side the impact of donor age on the production of tissue-engineered small intestine (TESI). Each age represents a specific period of life: E18 for fetuses, 5-day-old pups for neonates, 21-day-old rats for weanlings, and 6-week-old rats for adults. The TESI produced was compared macroscopically and microscopically. The mechanism(s) contributing to the differences observed was explored by detecting proliferating cells in the TESI and by analyzing intestinal stem cell gene expression in donor cells. These data may provide valuable information for future application of TESI clinically.
Collapse
Affiliation(s)
- Yanchun Liu
- 1 The Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | - Yijie Wang
- 1 The Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | | | | | - Aidan Farrell
- 1 The Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | - Gail E Besner
- 1 The Research Institute at Nationwide Children's Hospital, Columbus, Ohio.,3 Department of Pediatric Surgery at Nationwide Children's Hospital, Columbus, Ohio
| |
Collapse
|
408
|
Sei Y, Feng J, Samsel L, White A, Zhao X, Yun S, Citrin D, McCoy JP, Sundaresan S, Hayes MM, Merchant JL, Leiter A, Wank SA. Mature enteroendocrine cells contribute to basal and pathological stem cell dynamics in the small intestine. Am J Physiol Gastrointest Liver Physiol 2018; 315:G495-G510. [PMID: 29848020 PMCID: PMC6230697 DOI: 10.1152/ajpgi.00036.2018] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Lgr5-expressing intestinal stem cells (ISCs) maintain continuous and rapid generation of the intestinal epithelium. Here, we present evidence that dedifferentiation of committed enteroendocrine cells (EECs) contributes to maintenance of the epithelium under both basal conditions and in response to injury. Lineage-tracing studies identified a subset of EECs that reside at +4 position for more than 2 wk, most of which were BrdU-label-retaining cells. Under basal conditions, cells derived from these EECs grow from the bottom of the crypt to generate intestinal epithelium according to neutral drift kinetics that is consistent with dedifferentiation of mature EECs to ISCs. The lineage tracing of EECs demonstrated reserve stem cell properties in response to radiation-induced injury with the generation of reparative EEC-derived epithelial patches. Finally, the enterochromaffin (EC) cell was the predominant EEC type participating in these stem cell dynamics. These results provide novel insights into the +4 reserve ISC hypothesis, stem cell dynamics of the intestinal epithelium, and in the development of EC-derived small intestinal tumors. NEW & NOTEWORTHY The current manuscript demonstrating that a subset of mature enteroendocrine cells (EECs), predominantly enterochromaffin cells, dedifferentiates to fully functional intestinal stem cells (ISCs) is novel, timely, and important. These cells dedifferentiate to ISCs not only in response to injury but also under basal homeostatic conditions. These novel findings provide a mechanism in which a specified cell can dedifferentiate and contribute to normal tissue plasticity as well as the development of EEC-derived intestinal tumors under pathologic conditions.
Collapse
Affiliation(s)
- Yoshitatsu Sei
- 1Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Jianying Feng
- 1Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Leigh Samsel
- 2Flow Cytometry Core Facility, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Ayla White
- 3Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Xilin Zhao
- 1Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Sajung Yun
- 1Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Deborah Citrin
- 3Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - J. Philip McCoy
- 2Flow Cytometry Core Facility, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Sinju Sundaresan
- 4Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, Michigan
| | - Michael M. Hayes
- 4Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, Michigan
| | - Juanita L. Merchant
- 5Department of Molecular and Integrative Physiology, University of Michigan Medical Center, Ann Arbor, Michigan
| | - Andrew Leiter
- 6Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Stephen A. Wank
- 1Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
409
|
Eriguchi Y, Nakamura K, Yokoi Y, Sugimoto R, Takahashi S, Hashimoto D, Teshima T, Ayabe T, Selsted ME, Ouellette AJ. Essential role of IFN-γ in T cell-associated intestinal inflammation. JCI Insight 2018; 3:121886. [PMID: 30232288 DOI: 10.1172/jci.insight.121886] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 08/14/2018] [Indexed: 12/11/2022] Open
Abstract
Paneth cells contribute to small intestinal homeostasis by secreting antimicrobial peptides and constituting the intestinal stem cell (ISC) niche. Certain T cell-mediated enteropathies are characterized by extensive Paneth cell depletion coincident with mucosal destruction and dysbiosis. In this study, mechanisms of intestinal crypt injury have been investigated by characterizing responses of mouse intestinal organoids (enteroids) in coculture with mouse T lymphocytes. Activated T cells induced enteroid damage, reduced Paneth cell and Lgr5+ ISC mRNA levels, and induced Paneth cell death through a caspase-3/7-dependent mechanism. IFN-γ mediated these effects, because IFN-γ receptor-null enteroids were unaffected by activated T cells. In mice, administration of IFN-γ induced enteropathy with crypt hyperplasia, villus shortening, Paneth cell depletion, and modified ISC marker expression. IFN-γ exacerbated radiation enteritis, which was ameliorated by treatment with a selective JAK1/2 inhibitor. Thus, IFN-γ induced Paneth cell death and impaired regeneration of small intestinal epithelium in vivo, suggesting that IFN-γ may be a useful target for treating defective mucosal regeneration in enteric inflammation.
Collapse
Affiliation(s)
- Yoshihiro Eriguchi
- Department of Pathology and Laboratory Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Kiminori Nakamura
- Department of Cell Biological Science, Graduate School of Life Science, Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| | - Yuki Yokoi
- Department of Cell Biological Science, Graduate School of Life Science, Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| | - Rina Sugimoto
- Department of Cell Biological Science, Graduate School of Life Science, Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| | - Shuichiro Takahashi
- Department of Hematology, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Daigo Hashimoto
- Department of Hematology, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Takanori Teshima
- Department of Hematology, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Tokiyoshi Ayabe
- Department of Cell Biological Science, Graduate School of Life Science, Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| | - Michael E Selsted
- Department of Pathology and Laboratory Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - André J Ouellette
- Department of Pathology and Laboratory Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
410
|
van Lidth de Jeude JF, Spaan CN, Meijer BJ, Smit WL, Soeratram TTD, Wielenga MCB, Westendorp BF, Lee AS, Meisner S, Vermeulen JLM, Wildenberg ME, van den Brink GR, Muncan V, Heijmans J. Heterozygosity of Chaperone Grp78 Reduces Intestinal Stem Cell Regeneration Potential and Protects against Adenoma Formation. Cancer Res 2018; 78:6098-6106. [PMID: 30232220 DOI: 10.1158/0008-5472.can-17-3600] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 05/17/2018] [Accepted: 09/05/2018] [Indexed: 02/05/2023]
Abstract
Deletion of endoplasmic reticulum resident chaperone Grp78 results in activation of the unfolded protein response and causes rapid depletion of the entire intestinal epithelium. Whether modest reduction of Grp78 may affect stem cell fate without compromising intestinal integrity remains unknown. Here, we employ a model of epithelial-specific, heterozygous Grp78 deletion by use of VillinCreERT2-Rosa26ZsGreen/LacZ-Grp78+/fl mice and organoids. We examine models of irradiation and tumorigenesis, both in vitro and in vivo Although we observed no phenotypic changes in Grp78 heterozygous mice, Grp78 heterozygous organoid growth was markedly reduced. Irradiation of Grp78 heterozygous mice resulted in less frequent regeneration of crypts compared with nonrecombined (wild-type) mice, exposing reduced capacity for self-renewal upon genotoxic insult. We crossed mice to Apc-mutant animals for adenoma studies and found that adenomagenesis in Apc heterozygous-Grp78 heterozygous mice was reduced compared with Apc heterozygous controls (1.43 vs. 3.33; P < 0.01). In conclusion, epithelium-specific Grp78 heterozygosity compromises epithelial fitness under conditions requiring expansive growth such as adenomagenesis or regeneration after γ-irradiation. These results suggest that Grp78 may be a therapeutic target in prevention of intestinal neoplasms without affecting normal tissue.Significance: Heterozygous disruption of chaperone protein Grp78 reduces tissue regeneration and expansive growth and protects from tumor formation without affecting intestinal homeostasis. Cancer Res; 78(21); 6098-106. ©2018 AACR.
Collapse
Affiliation(s)
- Jooske F van Lidth de Jeude
- Department of Gastroenterology and Hepatology, Tytgat Institute for Liver and Intestinal Research, University of Amsterdam, Amsterdam, the Netherlands
| | - Claudia N Spaan
- Department of Gastroenterology and Hepatology, Tytgat Institute for Liver and Intestinal Research, University of Amsterdam, Amsterdam, the Netherlands
| | - Bartolomeus J Meijer
- Department of Gastroenterology and Hepatology, Tytgat Institute for Liver and Intestinal Research, University of Amsterdam, Amsterdam, the Netherlands
| | - Wouter L Smit
- Department of Gastroenterology and Hepatology, Tytgat Institute for Liver and Intestinal Research, University of Amsterdam, Amsterdam, the Netherlands
| | - Tanya T D Soeratram
- Department of Gastroenterology and Hepatology, Tytgat Institute for Liver and Intestinal Research, University of Amsterdam, Amsterdam, the Netherlands
| | - Mattheus C B Wielenga
- Department of Gastroenterology and Hepatology, Tytgat Institute for Liver and Intestinal Research, University of Amsterdam, Amsterdam, the Netherlands
| | - B Florien Westendorp
- Department of Gastroenterology and Hepatology, Tytgat Institute for Liver and Intestinal Research, University of Amsterdam, Amsterdam, the Netherlands
| | - Amy S Lee
- Department of Biochemistry and Molecular Medicine, USC/Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, Los Angeles, California
| | - Sander Meisner
- Department of Gastroenterology and Hepatology, Tytgat Institute for Liver and Intestinal Research, University of Amsterdam, Amsterdam, the Netherlands
| | - Jacqueline L M Vermeulen
- Department of Gastroenterology and Hepatology, Tytgat Institute for Liver and Intestinal Research, University of Amsterdam, Amsterdam, the Netherlands
| | - Manon E Wildenberg
- Department of Gastroenterology and Hepatology, Tytgat Institute for Liver and Intestinal Research, University of Amsterdam, Amsterdam, the Netherlands
| | - Gijs R van den Brink
- Department of Gastroenterology and Hepatology, Tytgat Institute for Liver and Intestinal Research, University of Amsterdam, Amsterdam, the Netherlands
| | - Vanesa Muncan
- Department of Gastroenterology and Hepatology, Tytgat Institute for Liver and Intestinal Research, University of Amsterdam, Amsterdam, the Netherlands
| | - Jarom Heijmans
- Department of Gastroenterology and Hepatology, Tytgat Institute for Liver and Intestinal Research, University of Amsterdam, Amsterdam, the Netherlands. .,Department of Internal Medicine, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
411
|
Agudo J, Park ES, Rose SA, Alibo E, Sweeney R, Dhainaut M, Kobayashi KS, Sachidanandam R, Baccarini A, Merad M, Brown BD. Quiescent Tissue Stem Cells Evade Immune Surveillance. Immunity 2018; 48:271-285.e5. [PMID: 29466757 DOI: 10.1016/j.immuni.2018.02.001] [Citation(s) in RCA: 181] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Revised: 12/05/2017] [Accepted: 01/31/2018] [Indexed: 12/17/2022]
Abstract
Stem cells are critical for the maintenance of many tissues, but whether their integrity is maintained in the face of immunity is unclear. Here we found that cycling epithelial stem cells, including Lgr5+ intestinal stem cells, as well as ovary and mammary stem cells, were eliminated by activated T cells, but quiescent stem cells in the hair follicle and muscle were resistant to T cell killing. Immune evasion was an intrinsic property of the quiescent stem cells resulting from systemic downregulation of the antigen presentation machinery, including MHC class I and TAP proteins, and is mediated by the transactivator NLRC5. This process was reversed upon stem cell entry into the cell cycle. These studies identify a link between stem cell quiescence, antigen presentation, and immune evasion. As cancer-initiating cells can derive from stem cells, these findings may help explain how the earliest cancer cells evade immune surveillance.
Collapse
Affiliation(s)
- Judith Agudo
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Eun Sook Park
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Samuel A Rose
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Eziwoma Alibo
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Robert Sweeney
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Maxime Dhainaut
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Koichi S Kobayashi
- Hokkaido University Faculty of Medicine, Sapporo, Hokkaido 060-8638, Japan
| | - Ravi Sachidanandam
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Alessia Baccarini
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Miriam Merad
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Brian D Brown
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
412
|
Spit M, Koo BK, Maurice MM. Tales from the crypt: intestinal niche signals in tissue renewal, plasticity and cancer. Open Biol 2018; 8:rsob.180120. [PMID: 30209039 PMCID: PMC6170508 DOI: 10.1098/rsob.180120] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 08/17/2018] [Indexed: 02/06/2023] Open
Abstract
Rapidly renewing tissues such as the intestinal epithelium critically depend on the activity of small-sized stem cell populations that continuously generate new progeny to replace lost and damaged cells. The complex and tightly regulated process of intestinal homeostasis is governed by a variety of signalling pathways that balance cell proliferation and differentiation. Accumulating evidence suggests that stem cell control and daughter cell fate determination is largely dictated by the microenvironment. Here, we review recent developments in the understanding of intestinal stem cell dynamics, focusing on the roles, mechanisms and interconnectivity of prime signalling pathways that regulate stem cell behaviour in intestinal homeostasis. Furthermore, we discuss how mutational activation of these signalling pathways endows colorectal cancer cells with niche-independent growth advantages during carcinogenesis.
Collapse
Affiliation(s)
- Maureen Spit
- Cell Biology, Center for Molecular Medicine, UMC Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Bon-Kyoung Koo
- IMBA - Institute of Molecular Biotechnology, Dr Bohr-Gasse 3, 1030 Vienna, Austria
| | - Madelon M Maurice
- Cell Biology, Center for Molecular Medicine, UMC Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands .,Oncode Institute, The Netherlands
| |
Collapse
|
413
|
Tomic G, Morrissey E, Kozar S, Ben-Moshe S, Hoyle A, Azzarelli R, Kemp R, Chilamakuri CSR, Itzkovitz S, Philpott A, Winton DJ. Phospho-regulation of ATOH1 Is Required for Plasticity of Secretory Progenitors and Tissue Regeneration. Cell Stem Cell 2018; 23:436-443.e7. [PMID: 30100168 PMCID: PMC6138952 DOI: 10.1016/j.stem.2018.07.002] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 05/25/2018] [Accepted: 07/06/2018] [Indexed: 01/07/2023]
Abstract
The intestinal epithelium is largely maintained by self-renewing stem cells but with apparently committed progenitors also contributing, particularly following tissue damage. However, the mechanism of, and requirement for, progenitor plasticity in mediating pathological response remain unknown. Here we show that phosphorylation of the transcription factor Atoh1 is required for both the contribution of secretory progenitors to the stem cell pool and for a robust regenerative response. As confirmed by lineage tracing, Atoh1+ cells (Atoh1(WT)CreERT2 mice) give rise to multilineage intestinal clones both in the steady state and after tissue damage. In a phosphomutant Atoh1(9S/T-A)CreERT2 line, preventing phosphorylation of ATOH1 protein acts to promote secretory differentiation and inhibit the contribution of progenitors to self-renewal. Following chemical colitis, Atoh1+ cells of Atoh1(9S/T-A)CreERT2 mice have reduced clonogenicity that affects overall regeneration. Progenitor plasticity maintains robust self-renewal in the intestinal epithelium, and the balance between stem and progenitor fate is directly coordinated by ATOH1 multisite phosphorylation.
Collapse
Affiliation(s)
- Goran Tomic
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, UK
| | - Edward Morrissey
- Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - Sarah Kozar
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, UK
| | - Shani Ben-Moshe
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Alice Hoyle
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, UK
| | - Roberta Azzarelli
- Department of Oncology, Hutchison/Medical Research Council (MRC) Research Centre, University of Cambridge, Cambridge CB2 0XZ, UK; Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 1QR, UK
| | - Richard Kemp
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, UK
| | | | - Shalev Itzkovitz
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Anna Philpott
- Department of Oncology, Hutchison/Medical Research Council (MRC) Research Centre, University of Cambridge, Cambridge CB2 0XZ, UK; Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 1QR, UK.
| | - Douglas J Winton
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, UK.
| |
Collapse
|
414
|
Lin B, Srikanth P, Castle AC, Nigwekar S, Malhotra R, Galloway JL, Sykes DB, Rajagopal J. Modulating Cell Fate as a Therapeutic Strategy. Cell Stem Cell 2018; 23:329-341. [PMID: 29910150 PMCID: PMC6128730 DOI: 10.1016/j.stem.2018.05.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In injured tissues, regeneration is often associated with cell fate plasticity, in that cells deviate from their normal lineage paths. It is becoming increasingly clear that this plasticity often creates alternative strategies to restore damaged or lost cells. Alternatively, cell fate plasticity is also part and parcel of pathologic tissue transformations that accompany disease. In this Perspective, we summarize a few illustrative examples of physiologic and aberrant cellular plasticity. Then, we speculate on how one could enhance endogenous plasticity to promote regeneration and reverse pathologic plasticity, perhaps inspiring interest in a new class of therapies targeting cell fate modulation.
Collapse
Affiliation(s)
- Brian Lin
- Center for Regenerative Medicine, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Priya Srikanth
- Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Pathways Program, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Alison C Castle
- Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Pathways Program, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Sagar Nigwekar
- Pathways Program, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Division of Nephrology, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Rajeev Malhotra
- Pathways Program, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Division of Cardiology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Jenna L Galloway
- Center for Regenerative Medicine, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Department of Orthopaedic Surgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - David B Sykes
- Center for Regenerative Medicine, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Jayaraj Rajagopal
- Center for Regenerative Medicine, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Pathways Program, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Pediatric Pulmonary Medicine, Massachusetts General Hospital for Children, Boston, MA 02114, USA.
| |
Collapse
|
415
|
Santos AJM, Lo YH, Mah AT, Kuo CJ. The Intestinal Stem Cell Niche: Homeostasis and Adaptations. Trends Cell Biol 2018; 28:1062-1078. [PMID: 30195922 DOI: 10.1016/j.tcb.2018.08.001] [Citation(s) in RCA: 185] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 08/02/2018] [Accepted: 08/07/2018] [Indexed: 12/20/2022]
Abstract
The intestinal epithelium is a rapidly renewing cellular compartment. This constant regeneration is a hallmark of intestinal homeostasis and requires a tightly regulated balance between intestinal stem cell (ISC) proliferation and differentiation. Since intestinal epithelial cells directly contact pathogenic environmental factors that continuously challenge their integrity, ISCs must also actively divide to facilitate regeneration and repair. Understanding niche adaptations that maintain ISC activity during homeostatic renewal and injury-induced intestinal regeneration is therefore a major and ongoing focus for stem cell biology. Here, we review recent concepts and propose an active interconversion of the ISC niche between homeostasis and injury-adaptive states that is superimposed upon an equally dynamic equilibrium between active and reserve ISC populations.
Collapse
Affiliation(s)
- António J M Santos
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Yuan-Hung Lo
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Amanda T Mah
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Calvin J Kuo
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
416
|
Weichselbaum L, Klein OD. The intestinal epithelial response to damage. SCIENCE CHINA-LIFE SCIENCES 2018; 61:1205-1211. [PMID: 30194677 DOI: 10.1007/s11427-018-9331-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 06/01/2018] [Indexed: 12/27/2022]
Abstract
The constant renewal of the intestinal epithelium is fueled by intestinal stem cells (ISCs) lying at the base of crypts, and these ISCs continuously give rise to transit-amplifying progenitor cells during homeostasis. Upon injury and loss of ISCs, the epithelium has the ability to regenerate by the dedifferentiation of progenitor cells that then regain stemness and repopulate the pool of ISCs. Epithelial cells receive cues from immune cells, mesenchymal cells and the microbiome to maintain homeostasis. This review focuses on the response of the epithelium to damage and the interplay between the different intestinal compartments.
Collapse
Affiliation(s)
- Laura Weichselbaum
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, CA, 94143, USA.,Institute for Medical Immunology, Université Libre de Bruxelles, Gosselies, 6041, Belgium.,Laboratory of Experimental Gastroenterology, Université libre de Bruxelles, Brussels, 1070, Belgium
| | - Ophir D Klein
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, CA, 94143, USA. .,Department of Pediatrics and Institute for Human Genetics, University of California, San Francisco, CA, 94143, USA.
| |
Collapse
|
417
|
Intrinsic Xenobiotic Resistance of the Intestinal Stem Cell Niche. Dev Cell 2018; 46:681-695.e5. [DOI: 10.1016/j.devcel.2018.07.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 05/12/2018] [Accepted: 07/24/2018] [Indexed: 02/07/2023]
|
418
|
Burclaff J, Mills JC. Plasticity of differentiated cells in wound repair and tumorigenesis, part II: skin and intestine. Dis Model Mech 2018; 11:11/9/dmm035071. [PMID: 30171151 PMCID: PMC6177008 DOI: 10.1242/dmm.035071] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Recent studies have identified and begun to characterize the roles of regenerative cellular plasticity in many organs. In Part I of our two-part Review, we discussed how cells reprogram following injury to the stomach and pancreas. We introduced the concept of a conserved cellular program, much like those governing division and death, which may allow mature cells to become regenerative. This program, paligenosis, is likely necessary to help organs repair the numerous injuries they face over the lifetime of an organism; however, we also postulated that rounds of paligenosis and redifferentiation may allow long-lived cells to accumulate and store oncogenic mutations, and could thereby contribute to tumorigenesis. We have termed the model wherein differentiated cells can store mutations and then unmask them upon cell cycle re-entry the ‘cyclical hit’ model of tumorigenesis. In the present Review (Part II), we discuss these concepts, and cell plasticity as a whole, in the skin and intestine. Although differentiation and repair are arguably more thoroughly studied in skin and intestine than in stomach and pancreas, it is less clear how mature skin and intestinal cells contribute to tumorigenesis. Moreover, we conclude our Review by discussing plasticity in all four organs, and look for conserved mechanisms and concepts that might help advance our knowledge of tumor formation and advance the development of therapies for treating or preventing cancers that might be shared across multiple organs. Summary: This final installment of a two-part Review discusses how cycles of dedifferentiation and redifferentiation can promote tumorigenesis in the skin and intestine, showing how plasticity in these continuously renewing tissues might contribute to tumorigenesis.
Collapse
Affiliation(s)
- Joseph Burclaff
- Division of Gastroenterology, Departments of Medicine, Pathology & Immunology, and Developmental Biology, Washington University, St Louis, MO 63110, USA
| | - Jason C Mills
- Division of Gastroenterology, Departments of Medicine, Pathology & Immunology, and Developmental Biology, Washington University, St Louis, MO 63110, USA
| |
Collapse
|
419
|
Högström J, Heino S, Kallio P, Lähde M, Leppänen VM, Balboa D, Wiener Z, Alitalo K. Transcription Factor PROX1 Suppresses Notch Pathway Activation via the Nucleosome Remodeling and Deacetylase Complex in Colorectal Cancer Stem-like Cells. Cancer Res 2018; 78:5820-5832. [PMID: 30154153 DOI: 10.1158/0008-5472.can-18-0451] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 06/25/2018] [Accepted: 08/20/2018] [Indexed: 11/16/2022]
Abstract
The homeobox transcription factor PROX1 is induced by high Wnt/β-catenin activity in intestinal adenomas and colorectal cancer, where it promotes tumor progression. Here we report that in LGR5+ colorectal cancer cells, PROX1 suppresses the Notch pathway, which is essential for cell fate in intestinal stem cells. Pharmacologic inhibition of Notch in ex vivo 3D organoid cultures from transgenic mouse intestinal adenoma models increased Prox1 expression and the number of PROX1-positive cells. Notch inhibition led to increased proliferation of the PROX1-positive colorectal cancer cells, but did not affect their ability to give rise to PROX1-negative secretory cells. Conversely, PROX1 deletion increased Notch target gene expression and NOTCH1 promoter activity, indicating reciprocal regulation between PROX1 and the Notch pathway in colorectal cancer. PROX1 interacted with the nucleosome remodeling and deacetylase (NuRD) complex to suppress the Notch pathway. Thus, our data suggests that PROX1 and Notch suppress each other and that PROX1-mediated suppression of Notch mediates its stem cell function in colorectal cancer.Significance: These findings address the role of the PROX1 homeobox factor as a downstream effector of Wnt/β-catenin singling in colorectal cancer stem cells and show that PROX1 inhibits the Notch pathway and helps to enforce the stem cell phenotype and inhibit differentiation. Cancer Res; 78(20); 5820-32. ©2018 AACR.
Collapse
Affiliation(s)
- Jenny Högström
- Translational Cancer Biology Research Program, University of Helsinki, Helsinki, Finland
| | - Sarika Heino
- Translational Cancer Biology Research Program, University of Helsinki, Helsinki, Finland
| | - Pauliina Kallio
- Translational Cancer Biology Research Program, University of Helsinki, Helsinki, Finland
| | - Marianne Lähde
- Translational Cancer Biology Research Program, University of Helsinki, Helsinki, Finland
| | - Veli-Matti Leppänen
- Translational Cancer Biology Research Program, University of Helsinki, Helsinki, Finland
| | - Diego Balboa
- Molecular Neurology Program and Biomedicum Stem Cell Center, University of Helsinki, Helsinki, Finland
| | - Zoltán Wiener
- Translational Cancer Biology Research Program, University of Helsinki, Helsinki, Finland
| | - Kari Alitalo
- Translational Cancer Biology Research Program, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
420
|
Abstract
Dietary composition and calorie intake are major determinants of health and disease. Calorie restriction promotes metabolic changes that favor tissue regeneration and is arguably the most successful and best-conserved antiaging intervention. Obesity, in contrast, impairs tissue homeostasis and is a major risk factor for the development of diseases including cancer. Stem cells, the central mediators of tissue regeneration, integrate dietary and energy cues via nutrient-sensing pathways to maintain growth or respond to stress. We discuss emerging data on the effects of diet and nutrient-sensing pathways on intestinal stem cells, as well as their potential application in the development of regenerative and therapeutic interventions.
Collapse
Affiliation(s)
- Salvador Alonso
- Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
- Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Ömer H. Yilmaz
- Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| |
Collapse
|
421
|
da Silva-Diz V, Lorenzo-Sanz L, Bernat-Peguera A, Lopez-Cerda M, Muñoz P. Cancer cell plasticity: Impact on tumor progression and therapy response. Semin Cancer Biol 2018; 53:48-58. [PMID: 30130663 DOI: 10.1016/j.semcancer.2018.08.009] [Citation(s) in RCA: 140] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 08/12/2018] [Accepted: 08/17/2018] [Indexed: 02/06/2023]
Abstract
Most tumors exhibit intra-tumor heterogeneity, which is associated with disease progression and an impaired response to therapy. Cancer cell plasticity has been proposed as being an important mechanism that, along with genetic and epigenetic alterations, promotes cancer cell diversity and contributes to intra-tumor heterogeneity. Plasticity endows cancer cells with the capacity to shift dynamically between a differentiated state, with limited tumorigenic potential, and an undifferentiated or cancer stem-like cell (CSC) state, which is responsible for long-term tumor growth. In addition, it confers the ability to transit into distinct CSC states with different competence to invade, disseminate and seed metastasis. Cancer cell plasticity has been linked to the epithelial-to-mesenchymal transition program and relies not only on cell-autonomous mechanisms, but also on signals provided by the tumor microenvironment and/or induced in response to therapy. We provide an overview of the dynamic transition for cancer cell states, the mechanisms governing cell plasticity and their impact on tumor progression, metastasis and therapy response. Understanding the mechanisms involved in cancer cell plasticity will provide insights for establishing new therapeutic interventions.
Collapse
Affiliation(s)
| | - Laura Lorenzo-Sanz
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Adrià Bernat-Peguera
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Marta Lopez-Cerda
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Purificación Muñoz
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain.
| |
Collapse
|
422
|
Abstract
A wide variety of organs are in a dynamic state, continuously undergoing renewal as a result of constant growth and differentiation. Stem cells are required during these dynamic events for continuous tissue maintenance within the organs. In a steady state of production and loss of cells within these tissues, new cells are constantly formed by differentiation from stem cells. Today, organoids derived from either adult stem cells or pluripotent stem cells can be grown to resemble various organs. As they are similar to their original organs, organoids hold great promise for use in medical research and the development of new treatments. Furthermore, they have already been utilized in the clinic, enabling personalized medicine for inflammatory bowel disease. In this review, I provide an update on current organoid technology and summarize the application of organoids in basic research, disease modeling, drug development, personalized treatment, and regenerative medicine.
Collapse
Affiliation(s)
- Toshio Takahashi
- Suntory Foundation for Life Sciences, Bioorganic Research Institute, Kyoto 619-0284, Japan;
| |
Collapse
|
423
|
Strubberg AM, Veronese Paniagua DA, Zhao T, Dublin L, Pritchard T, Bayguinov PO, Fitzpatrick JAJ, Madison BB. The Zinc Finger Transcription Factor PLAGL2 Enhances Stem Cell Fate and Activates Expression of ASCL2 in Intestinal Epithelial Cells. Stem Cell Reports 2018; 11:410-424. [PMID: 30017821 PMCID: PMC6092695 DOI: 10.1016/j.stemcr.2018.06.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 06/11/2018] [Accepted: 06/12/2018] [Indexed: 01/02/2023] Open
Abstract
Intestinal epithelial stem cell (IESC) fate is promoted by two major transcriptional regulators, the TCF4/β-catenin complex and ASCL2, which drive expression of IESC-specific factors, including Lgr5, Ephb2, and Rnf43. Canonical Wnt signaling via TCF4/β-catenin directly transactivates Ascl2, which in turn auto-regulates its own expression. Conversely, Let-7 microRNAs antagonize the IESC lineage by repressing specific mRNA targets. Here, we identify the zinc finger transcription factor PLAGL2 as a Let-7 target that regulates IESC fate. PLAGL2 drives an IESC expression signature, activates Wnt gene expression, and enhances a TCF/LEF reporter in intestinal organoids. In parallel, via cell-autonomous mechanisms, PLAGL2 is required for lineage clonal expansion and directly enhances expression of ASCL2. PLAGL2 also supports enteroid growth and survival in the context of Wnt ligand depletion. PLAGL2 expression is strongly associated with an IESC signature in colorectal cancer and may be responsible for contributing to the aberrant activation of an immature phenotype.
Collapse
Affiliation(s)
- Ashlee M Strubberg
- Department of Medicine, Division of Gastroenterology, Washington University School of Medicine, 660 S. Euclid Avenue, Campus Box 8124, CSRB NT 923, Saint Louis, MO 63110, USA
| | - Daniel A Veronese Paniagua
- Department of Medicine, Division of Gastroenterology, Washington University School of Medicine, 660 S. Euclid Avenue, Campus Box 8124, CSRB NT 923, Saint Louis, MO 63110, USA
| | - Tingting Zhao
- Department of Breast Surgery, First Hospital of China Medical University, Shenyang 110001, China
| | - Leeran Dublin
- Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Thomas Pritchard
- Department of Medicine, Division of Gastroenterology, Washington University School of Medicine, 660 S. Euclid Avenue, Campus Box 8124, CSRB NT 923, Saint Louis, MO 63110, USA
| | - Peter O Bayguinov
- Washington University Center for Cellular Imaging, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - James A J Fitzpatrick
- Washington University Center for Cellular Imaging, Washington University School of Medicine, Saint Louis, MO 63110, USA; Departments of Cell Biology & Physiology and Neuroscience, Washington University School of Medicine, Saint Louis, MO 63110, USA; Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO 63105, USA
| | - Blair B Madison
- Department of Medicine, Division of Gastroenterology, Washington University School of Medicine, 660 S. Euclid Avenue, Campus Box 8124, CSRB NT 923, Saint Louis, MO 63110, USA.
| |
Collapse
|
424
|
Mertz DR, Ahmed T, Takayama S. Engineering cell heterogeneity into organs-on-a-chip. LAB ON A CHIP 2018; 18:2378-2395. [PMID: 30040104 PMCID: PMC6081245 DOI: 10.1039/c8lc00413g] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Organ-on-a-chip development is an application that will benefit from advances in cell heterogeneity characterization because these culture models are intended to mimic in vivo microenvironments, which are complex and dynamic. Due in no small part to advances in microfluidic single cell analysis methods, cell-to-cell variability is an increasingly understood feature of physiological tissues, with cell types from as common as 1 out of every 2 cells to as rare as 1 out of every 100 000 cells having important roles in the biochemical and biological makeup of tissues and organs. Variability between neighboring cells can be transient or maintained, and ordered or stochastic. This review covers three areas of well-studied cell heterogeneity that are informative for organ-on-a-chip development efforts: tumors, the lung, and the intestine. Then we look at how recent single cell analysis strategies have enabled better understanding of heterogeneity within in vitro and in vivo tissues. Finally, we provide a few work-arounds for adapting current on-chip culture methods to better mimic physiological cell heterogeneity including accounting for crucial rare cell types and events.
Collapse
Affiliation(s)
- David R Mertz
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Tech College of Engineering and Emory School of Medicine, USA.
| | | | | |
Collapse
|
425
|
Chatterji P, Hamilton KE, Liang S, Andres SF, Wijeratne HRS, Mizuno R, Simon LA, Hicks PD, Foley SW, Pitarresi JR, Klein-Szanto AJ, Mah AT, Van Landeghem L, Gregory BD, Lengner CJ, Madison BB, Shah P, Rustgi AK. The LIN28B-IMP1 post-transcriptional regulon has opposing effects on oncogenic signaling in the intestine. Genes Dev 2018; 32:1020-1034. [PMID: 30068703 PMCID: PMC6075153 DOI: 10.1101/gad.314369.118] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 06/04/2018] [Indexed: 12/15/2022]
Abstract
RNA-binding proteins (RBPs) are expressed broadly during both development and malignant transformation, yet their mechanistic roles in epithelial homeostasis or as drivers of tumor initiation and progression are incompletely understood. Here we describe a novel interplay between RBPs LIN28B and IMP1 in intestinal epithelial cells. Ribosome profiling and RNA sequencing identified IMP1 as a principle node for gene expression regulation downstream from LIN28B In vitro and in vivo data demonstrate that epithelial IMP1 loss increases expression of WNT target genes and enhances LIN28B-mediated intestinal tumorigenesis, which was reversed when we overexpressed IMP1 independently in vivo. Furthermore, IMP1 loss in wild-type or LIN28B-overexpressing mice enhances the regenerative response to irradiation. Together, our data provide new evidence for the opposing effects of the LIN28B-IMP1 axis on post-transcriptional regulation of canonical WNT signaling, with implications in intestinal homeostasis, regeneration and tumorigenesis.
Collapse
Affiliation(s)
- Priya Chatterji
- Department of Medicine, Division of Gastroenterology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19014, USA
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19014, USA
| | - Kathryn E Hamilton
- Department of Medicine, Division of Gastroenterology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19014, USA
- Department of Pediatrics, Division of Gastroenterology, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19014, USA
| | - Shun Liang
- Department of Genetics, Rutgers University, New Brunswick, New Jersey 08901, USA
| | - Sarah F Andres
- Department of Medicine, Division of Gastroenterology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19014, USA
| | - H R Sagara Wijeratne
- Department of Genetics, Rutgers University, New Brunswick, New Jersey 08901, USA
| | - Rei Mizuno
- Department of Medicine, Division of Gastroenterology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19014, USA
| | - Lauren A Simon
- Department of Medicine, Division of Gastroenterology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19014, USA
- Department of Pediatrics, Division of Gastroenterology, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19014, USA
| | - Philip D Hicks
- Department of Medicine, Division of Gastroenterology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19014, USA
| | - Shawn W Foley
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19014, USA
| | - Jason R Pitarresi
- Department of Medicine, Division of Gastroenterology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19014, USA
| | - Andres J Klein-Szanto
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
| | - Amanda T Mah
- Department of Medicine, Hematology Division, Stanford University, Stanford, California 94305, USA
| | - Laurianne Van Landeghem
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina 27607, USA
| | - Brian D Gregory
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19014, USA
| | - Christopher J Lengner
- Department of Biomedical Sciences, School of Veterinary Medicine, Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Blair B Madison
- Department of Medicine, Division of Gastroenterology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Premal Shah
- Department of Genetics, Rutgers University, New Brunswick, New Jersey 08901, USA
- Human Genetics Institute of New Jersey, Piscataway, New Jersey 08854 USA
| | - Anil K Rustgi
- Department of Medicine, Division of Gastroenterology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19014, USA
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19014, USA
- Abramson Cancer Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19014, USA
| |
Collapse
|
426
|
Chacón-Martínez CA, Koester J, Wickström SA. Signaling in the stem cell niche: regulating cell fate, function and plasticity. Development 2018; 145:145/15/dev165399. [PMID: 30068689 DOI: 10.1242/dev.165399] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Stem cells have the ability to self-renew and differentiate along multiple lineages, driving tissue homeostasis and regeneration. Paradigms of unidirectional, hierarchical differentiation trajectories observed in embryonic and hematopoietic stem cells have traditionally been applied to tissue-resident stem cells. However, accumulating evidence implicates stemness as a bidirectional, dynamic state that is largely governed by the niche, which facilitates plasticity and adaptability to changing conditions. In this Review, we discuss mechanisms of cell fate regulation through niche-derived cues, with a particular focus on epithelial stem cells of the mammalian skin, intestine and lung. We discuss a spectrum of niche-derived biochemical, mechanical and architectural inputs that define stem cell states during morphogenesis, homeostasis and regeneration, and highlight how these diverse inputs influence stem cell plasticity.
Collapse
Affiliation(s)
- Carlos Andrés Chacón-Martínez
- Paul Gerson Unna Group 'Skin Homeostasis and Ageing', Max Planck Institute for Biology of Ageing, D-50931 Cologne, Germany
| | - Janis Koester
- Paul Gerson Unna Group 'Skin Homeostasis and Ageing', Max Planck Institute for Biology of Ageing, D-50931 Cologne, Germany
| | - Sara A Wickström
- Paul Gerson Unna Group 'Skin Homeostasis and Ageing', Max Planck Institute for Biology of Ageing, D-50931 Cologne, Germany .,Helsinki Institute of Life Science, Biomedicum Helsinki, University of Helsinki, FI-00014 Helsinki, Finland.,Wihuri Research Institute, Biomedicum Helsinki, University of Helsinki, FI-00014 Helsinki, Finland
| |
Collapse
|
427
|
Kuo B, Szabó E, Lee SC, Balogh A, Norman D, Inoue A, Ono Y, Aoki J, Tigyi G. The LPA 2 receptor agonist Radioprotectin-1 spares Lgr5-positive intestinal stem cells from radiation injury in murine enteroids. Cell Signal 2018; 51:23-33. [PMID: 30063964 DOI: 10.1016/j.cellsig.2018.07.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 07/22/2018] [Accepted: 07/24/2018] [Indexed: 01/07/2023]
Abstract
Rapidly proliferating cells are highly sensitive to ionizing radiation and can undergo apoptosis if the oxidative and genotoxic injury exceed the defensive and regenerative capacity of the cell. Our earlier work has established the antiapoptotic action of the growth factor-like lipid mediator lysophosphatidic acid (LPA). Activation of the LPA2 GPCR has been hypothesized to elicit antiapoptotic and regenerative actions of LPA. Based on this hypothesis we developed a novel nonlipid agonist of LPA2, which we designated Radioprotectin-1 (RP-1). We tested RP-1 at the six murine LPA GPCR subtypes using the transforming growth factor alpha shedding assay and found that it had a 25 nM EC50 that is similar to that of LPA18:1 at 32 nM. RP-1 effectively reduced apoptosis induced by γ-irradiation and the radiomimetic drug Adriamycin only in cells that expressed LPA2 either endogenously or after transfection. RP-1 reduced γ-H2AX levels in irradiated mouse embryonic fibroblasts transduced with the human LPA2 GPCR but was ineffective in vector transduced MEF control cells and significantly increased clonogenic survival after γ-irradiation. γ-Irradiation induced the expression of lpar2 transcripts that was further enhanced by RP-1 exposure within 30 min after irradiation. RP-1 decreased the mortality of C57BL/6 mice in models of the hematopoietic and gastrointestinal acute radiation syndromes. Using Lgr5-EGFP-CreER;Tdtomatoflox transgenic mice, we found that RP-1 increased the survival and growth of intestinal enteroids via the enhanced survival of Lgr5+ intestinal stem cells. Taken together, our results suggest that the LPA2-specific agonist RP-1 exerts its radioprotective and radiomitigative action through specific activation of the upregulated LPA2 GPCR in Lgr5+ stem cells.
Collapse
Affiliation(s)
- Bryan Kuo
- Research Division, VA Medical Center, 1030 Jefferson Avenue, Memphis, TN 38104, United States; Department of Physiology, University of Tennessee Health Science Center Memphis, 3N Dunlap Street, Memphis, TN 38163, United States
| | - Erzsébet Szabó
- Department of Physiology, University of Tennessee Health Science Center Memphis, 3N Dunlap Street, Memphis, TN 38163, United States
| | - Sue Chin Lee
- Department of Physiology, University of Tennessee Health Science Center Memphis, 3N Dunlap Street, Memphis, TN 38163, United States
| | - Andrea Balogh
- Department of Physiology, University of Tennessee Health Science Center Memphis, 3N Dunlap Street, Memphis, TN 38163, United States
| | - Derek Norman
- Research Division, VA Medical Center, 1030 Jefferson Avenue, Memphis, TN 38104, United States; Department of Physiology, University of Tennessee Health Science Center Memphis, 3N Dunlap Street, Memphis, TN 38163, United States
| | - Asuka Inoue
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Yuki Ono
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Junken Aoki
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Gábor Tigyi
- Research Division, VA Medical Center, 1030 Jefferson Avenue, Memphis, TN 38104, United States; Department of Physiology, University of Tennessee Health Science Center Memphis, 3N Dunlap Street, Memphis, TN 38163, United States.
| |
Collapse
|
428
|
Andersson-Rolf A, Zilbauer M, Koo BK, Clevers H. Stem Cells in Repair of Gastrointestinal Epithelia. Physiology (Bethesda) 2018; 32:278-289. [PMID: 28615312 DOI: 10.1152/physiol.00005.2017] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 03/22/2017] [Accepted: 04/13/2017] [Indexed: 12/15/2022] Open
Abstract
Among the endodermal tissues of adult mammals, the gastrointestinal (GI) epithelium exhibits the highest turnover rate. As the ingested food moves along the GI tract, gastric acid, digestive enzymes, and gut resident microbes aid digestion as well as nutrient and mineral absorption. Due to the harsh luminal environment, replenishment of new epithelial cells is essential to maintain organ structure and function during routine turnover and injury repair. Tissue-specific adult stem cells in the GI tract serve as a continuous source for this immense regenerative activity. Tissue homeostasis is achieved by a delicate balance between gain and loss of cells. In homeostasis, temporal tissue damage is rapidly restored by well-balanced tissue regeneration, whereas prolonged imbalance may result in diverse pathologies of homeostasis and injury repair. Starting with a summary of the current knowledge of GI tract homeostasis, we continue with providing models of acute injury and chronic diseases. Finally, we will discuss how primary organoid cultures allow new insights into the mechanisms of homeostasis, injury repair, and disease, and how this novel 3D culture system has the potential to translate into the clinic.
Collapse
Affiliation(s)
- Amanda Andersson-Rolf
- Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom.,Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Matthias Zilbauer
- Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom.,Department of Paediatrics, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom.,Department of Paediatric Gastroenterology, Hepatology and Nutrition, Cambridge University Hospitals, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Bon-Kyoung Koo
- Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom.,Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Hans Clevers
- Hubrecht Institute for Developmental Biology and Stem Cell Research, Royal Netherlands Academy of Arts and Sciences (KNAW), Utrecht, The Netherlands; and.,University Medical Centre Utrecht, Utrecht, The Netherlands
| |
Collapse
|
429
|
Chen S, Xia Y, Zhu G, Yan J, Tan C, Deng B, Deng J, Yin Y, Ren W. Glutamine supplementation improves intestinal cell proliferation and stem cell differentiation in weanling mice. Food Nutr Res 2018; 62:1439. [PMID: 30083086 PMCID: PMC6060183 DOI: 10.29219/fnr.v62.1439] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 06/22/2018] [Accepted: 06/25/2018] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Intestinal stem cells can be differentiated into absorptive enterocytes and secretory cells, including Paneth cells, goblet cells, and enteroendocrine cells. Glutamine is a primary metabolic fuel of small intestinal enterocytes and is essential for the viability and growth of intestinal cells. OBJECTIVE Whether glutamine supplementation affects the differentiation of intestinal stem cells is unknown. DESIGN Three-week-old ICR (Institute of Cancer Research) male mice were divided randomly into two groups: 1) mice receiving a basal diet and normal drinking water and 2) mice receiving a basal diet and drinking water supplemented with glutamine. After 2 weeks, the mice were sacrificed to collect the ileum for analysis. RESULTS The study found that glutamine supplementation in weanling mice decreases the crypt depth in the ileum, leading to higher ratio of villus to crypt in the ileum, but promotes cell proliferation of intestinal cells and mRNA expression of Lgr5 (leucine-rich repeat-containing g-protein coupled receptor5) in the ileum. Glutamine has no effect on the number of Paneth cells and goblet cells, and the expression of markers for absorptive enterocytes, Paneth cells, goblet cells, and enteroendocrine cells. CONCLUSION These findings reveal the beneficial effects of dietary glutamine supplementation to improve intestinal morphology in weanling mammals.
Collapse
Affiliation(s)
- Siyuan Chen
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yaoyao Xia
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Guoqiang Zhu
- Jiangsu Co-Innovation Center for Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Jiameng Yan
- Laboratory of Animal Nutrition and Health and Key Laboratory of Agro-Ecology, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Chengquan Tan
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Baichuan Deng
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Jinping Deng
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yulong Yin
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China
- Laboratory of Animal Nutrition and Health and Key Laboratory of Agro-Ecology, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Wenkai Ren
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China
- Jiangsu Co-Innovation Center for Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| |
Collapse
|
430
|
Intestinal crypts recover rapidly from focal damage with coordinated motion of stem cells that is impaired by aging. Sci Rep 2018; 8:10989. [PMID: 30030455 PMCID: PMC6054609 DOI: 10.1038/s41598-018-29230-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 07/03/2018] [Indexed: 12/16/2022] Open
Abstract
Despite the continuous renewal and turnover of the small intestinal epithelium, the intestinal crypt maintains a 'soccer ball-like', alternating pattern of stem and Paneth cells at the base of the crypt. To study the robustness of the alternating pattern, we used intravital two-photon microscopy in mice with fluorescently-labeled Lgr5+ intestinal stem cells and precisely perturbed the mosaic pattern with femtosecond laser ablation. Ablation of one to three cells initiated rapid motion of crypt cells that restored the alternation in the pattern within about two hours with only the rearrangement of pre-existing cells, without any cell division. Crypt cells then performed a coordinated dilation of the crypt lumen, which resulted in peristalsis-like motion that forced damaged cells out of the crypt. Crypt cell motion was reduced with inhibition of the ROCK pathway and attenuated with old age, and both resulted in incomplete pattern recovery. This suggests that in addition to proliferation and self-renewal, motility of stem cells is critical for maintaining homeostasis. Reduction of this newly-identified behavior of stem cells could contribute to disease and age-related changes.
Collapse
|
431
|
Chen X, Song P, Fan P, He T, Jacobs D, Levesque CL, Johnston LJ, Ji L, Ma N, Chen Y, Zhang J, Zhao J, Ma X. Moderate Dietary Protein Restriction Optimized Gut Microbiota and Mucosal Barrier in Growing Pig Model. Front Cell Infect Microbiol 2018; 8:246. [PMID: 30073151 PMCID: PMC6058046 DOI: 10.3389/fcimb.2018.00246] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 06/26/2018] [Indexed: 12/20/2022] Open
Abstract
Appropriate protein concentration is essential for animal at certain stage. This study evaluated the effects of different percentages of dietary protein restriction on intestinal health of growing pigs. Eighteen barrows were randomly assigned to a normal (18%), low (15%), and extremely low (12%) dietary protein concentration group for 30 days. Intestinal morphology and permeability, bacterial communities, expressions, and distributions of intestinal tight junction proteins, expressions of biomarkers of intestinal stem cells (ISCs) and chymous bacterial metabolites in ileum and colon were detected. The richness and diversity of bacterial community analysis with Chao and Shannon index were highest in the ileum of the 15% crude protein (CP) group. Ileal abundances of Streptococcaceae and Enterobacteriaceae decreased respectively, while beneficial Lactobacillaceae, Clostridiaceae_1, Actinomycetaceae, and Micrococcaceae increased their proportions with a protein reduction of 3 percentage points. Colonic abundances of Ruminococcaceae, Christensenellaceae, Clostridiaceae_1, Spirochaetaceae, and Bacterodales_S24-7_group declined respectively, while proportions of Lachnospiraceae, Prevotellaceae, and Veillonellaceae increased with dietary protein reduction. Concentrations of most bacterial metabolites decreased with decreasing dietary protein concentration. Ileal barrier function reflected by expressions of tight junction proteins (occludin, zo-3, claudin-3, and claudin-7) did not show significant decrease in the 15% CP group while sharply reduced in the 12% CP group compared to that in the 18% CP group. And in the 15% CP group, ileal distribution of claudin-3 mainly located in the cell membrane with complete morphological structure. In low-protein treatments, developments of intestinal villi and crypts were insufficient. The intestinal permeability reflected by serous lipopolysaccharide (LPS) kept stable in the 15% CP group while increased significantly in the 12% CP group. The expression of ISCs marked by Lgr5 slightly increased in ileum of the 15% CP group. Colonic expressions of tight junction proteins declined in extremely low protein levels. In conclusion, moderate protein restriction (15% CP) can optimize the ileal microbiota structure via strengthening beneficial microbial populations and suppressing harmful bacterial growth and altering the function of ileal tight junction proteins as well as epithelial cell proliferation.
Collapse
Affiliation(s)
- Xiyue Chen
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Peixia Song
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Peixin Fan
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Ting He
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Devin Jacobs
- Department of Animal Sciences, South Dakota State University, Brookings, SD, United States
| | - Crystal L Levesque
- Department of Animal Sciences, South Dakota State University, Brookings, SD, United States
| | - Lee J Johnston
- Swine Nutrition and Production, West Central Research and Outreach Center, University of Minnesota, Morris, MN, United States
| | - Linbao Ji
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Ning Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yiqiang Chen
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jie Zhang
- Department of Animal Husbandry and Veterinary, Beijing Vocational College of Agriculture, Beijing, China
| | - Jinshan Zhao
- Key Laboratory of Animal Nutrition, College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Xi Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China.,Key Laboratory of Animal Nutrition, College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China.,Department of Internal Medicine, Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
432
|
Shimotohno A, Heidstra R, Blilou I, Scheres B. Root stem cell niche organizer specification by molecular convergence of PLETHORA and SCARECROW transcription factor modules. Genes Dev 2018; 32:1085-1100. [PMID: 30018102 PMCID: PMC6075145 DOI: 10.1101/gad.314096.118] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 05/31/2018] [Indexed: 12/17/2022]
Abstract
Here, Shimotohno et al. investigated how upstream factors that regulate WUS and WOX genes converge to position organizer cells during embryogenesis, initiation of new lateral organs, and regeneration after tissue damage in Arabodopsis. Here, they show that PLT and SCR genes genetically and physically interact with plant-specific teosinte-branched cycloidea PCNA (TCP) transcription factors to specify the stem cell niche during embryogenesis and maintain organizer cells post-embryonically. Continuous formation of somatic tissues in plants requires functional stem cell niches where undifferentiated cells are maintained. In Arabidopsis thaliana, PLETHORA (PLT) and SCARECROW (SCR) genes are outputs of apical–basal and radial patterning systems, and both are required for root stem cell specification and maintenance. The WUSCHEL-RELATED HOMEOBOX 5 (WOX5) gene is specifically expressed in and required for functions of a small group of root stem cell organizer cells, also called the quiescent center (QC). PLT and SCR are required for QC function, and their expression overlaps in the QC; however, how they specify the organizer has remained unknown. We show that PLT and SCR genetically and physically interact with plant-specific teosinte-branched cycloidea PCNA (TCP) transcription factors to specify the stem cell niche during embryogenesis and maintain organizer cells post-embryonically. PLT–TCP–SCR complexes converge on PLT-binding sites in the WOX5 promoter to induce expression.
Collapse
Affiliation(s)
- Akie Shimotohno
- Department of Biology, Utrecht University, Utrecht 3584 CH, The Netherlands.,Department of Biological Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Renze Heidstra
- Department of Biology, Utrecht University, Utrecht 3584 CH, The Netherlands.,Department of Plant Sciences, Wageningen University and Research, Wageningen 6708PB, The Netherlands
| | - Ikram Blilou
- Department of Biology, Utrecht University, Utrecht 3584 CH, The Netherlands.,Department of Plant Sciences, Wageningen University and Research, Wageningen 6708PB, The Netherlands
| | - Ben Scheres
- Department of Biology, Utrecht University, Utrecht 3584 CH, The Netherlands.,Department of Plant Sciences, Wageningen University and Research, Wageningen 6708PB, The Netherlands
| |
Collapse
|
433
|
Suh HN, Kim MJ, Jung YS, Lien EM, Jun S, Park JI. Quiescence Exit of Tert + Stem Cells by Wnt/β-Catenin Is Indispensable for Intestinal Regeneration. Cell Rep 2018; 21:2571-2584. [PMID: 29186692 DOI: 10.1016/j.celrep.2017.10.118] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 10/03/2017] [Accepted: 10/29/2017] [Indexed: 01/08/2023] Open
Abstract
Fine control of stem cell maintenance and activation is crucial for tissue homeostasis and regeneration. However, the mechanism of quiescence exit of Tert+ intestinal stem cells (ISCs) remains unknown. Employing a Tert knockin (TertTCE/+) mouse model, we found that Tert+ cells are long-term label-retaining self-renewing cells, which are partially distinguished from the previously identified +4 ISCs. Tert+ cells become mitotic upon irradiation (IR) injury. Conditional ablation of Tert+ cells impairs IR-induced intestinal regeneration but not intestinal homeostasis. Upon IR injury, Wnt signaling is specifically activated in Tert+ cells via the ROS-HIFs-transactivated Wnt2b signaling axis. Importantly, conditional knockout of β-catenin/Ctnnb1 in Tert+ cells undermines IR-induced quiescence exit of Tert+ cells, which subsequently impedes intestinal regeneration. Our results that Wnt-signaling-induced activation of Tert+ ISCs is indispensable for intestinal regeneration unveil the underlying mechanism for how Tert+ stem cells undergo quiescence exit upon tissue injury.
Collapse
Affiliation(s)
- Han Na Suh
- Department of Experimental Radiation Oncology, Division of Radiation Oncology, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Moon Jong Kim
- Department of Experimental Radiation Oncology, Division of Radiation Oncology, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Youn-Sang Jung
- Department of Experimental Radiation Oncology, Division of Radiation Oncology, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Esther M Lien
- Department of Experimental Radiation Oncology, Division of Radiation Oncology, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sohee Jun
- Department of Experimental Radiation Oncology, Division of Radiation Oncology, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jae-Il Park
- Department of Experimental Radiation Oncology, Division of Radiation Oncology, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA; Graduate School of Biomedical Sciences, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA; Program in Genes and Development, The University of Texas MD, Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
434
|
Yu S, Tong K, Zhao Y, Balasubramanian I, Yap GS, Ferraris RP, Bonder EM, Verzi MP, Gao N. Paneth Cell Multipotency Induced by Notch Activation following Injury. Cell Stem Cell 2018; 23:46-59.e5. [PMID: 29887318 PMCID: PMC6035085 DOI: 10.1016/j.stem.2018.05.002] [Citation(s) in RCA: 207] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Revised: 01/08/2018] [Accepted: 05/04/2018] [Indexed: 02/08/2023]
Abstract
Paneth cells are post-mitotic intestinal epithelial cells supporting the stem cell niche and mucosal immunity. Paneth cell pathologies are observed in various gastrointestinal diseases, but their plasticity and response to genomic and environmental challenges remain unclear. Using a knockin allele engineered at the mouse Lyz1 locus, we performed detailed Paneth cell-lineage tracing. Irradiation induced a subset of Paneth cells to proliferate and differentiate into villus epithelial cells. RNA sequencing (RNA-seq) revealed that Paneth cells sorted from irradiated mice acquired a stem cell-like transcriptome; when cultured in vitro, these individual Paneth cells formed organoids. Irradiation activated Notch signaling, and forced expression of Notch intracellular domain (NICD) in Paneth cells, but not Wnt/β-catenin pathway activation, induced their dedifferentiation. This study documents Paneth cell plasticity, particularly their ability to participate in epithelial replenishment following stem cell loss, adding to a growing body of knowledge detailing the molecular pathways controlling injury-induced regeneration.
Collapse
Affiliation(s)
- Shiyan Yu
- Department of Biological Sciences, Rutgers University, Newark, NJ 07102, USA
| | - Kevin Tong
- Department of Genetics, Rutgers University, Piscataway, NJ 08854, USA
| | - Yanlin Zhao
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ 07101, USA
| | | | - George S Yap
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ 07101, USA
| | - Ronaldo P Ferraris
- Department of Pharmacology, Physiology and Neuroscience, Rutgers New Jersey Medical School, Newark, NJ 07101, USA
| | - Edward M Bonder
- Department of Biological Sciences, Rutgers University, Newark, NJ 07102, USA
| | - Michael P Verzi
- Department of Genetics, Rutgers University, Piscataway, NJ 08854, USA; Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA
| | - Nan Gao
- Department of Biological Sciences, Rutgers University, Newark, NJ 07102, USA; Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA.
| |
Collapse
|
435
|
Nusse YM, Savage AK, Marangoni P, Rosendahl-Huber AKM, Landman TA, de Sauvage FJ, Locksley RM, Klein OD. Parasitic helminths induce fetal-like reversion in the intestinal stem cell niche. Nature 2018. [PMID: 29950724 DOI: 10.1038/s41586‐018‐0257‐1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Epithelial surfaces form critical barriers to the outside world and are continuously renewed by adult stem cells1. Whereas dynamics of epithelial stem cells during homeostasis are increasingly well understood, how stem cells are redirected from a tissue-maintenance program to initiate repair after injury remains unclear. Here we examined infection by Heligmosomoides polygyrus, a co-evolved pathosymbiont of mice, to assess the epithelial response to disruption of the mucosal barrier. H. polygyrus disrupts tissue integrity by penetrating the duodenal mucosa, where it develops while surrounded by a multicellular granulomatous infiltrate2. Crypts overlying larvae-associated granulomas did not express intestinal stem cell markers, including Lgr53, in spite of continued epithelial proliferation. Granuloma-associated Lgr5- crypt epithelium activated an interferon-gamma (IFN-γ)-dependent transcriptional program, highlighted by Sca-1 expression, and IFN-γ-producing immune cells were found in granulomas. A similar epithelial response accompanied systemic activation of immune cells, intestinal irradiation, or ablation of Lgr5+ intestinal stem cells. When cultured in vitro, granuloma-associated crypt cells formed spheroids similar to those formed by fetal epithelium, and a sub-population of H. polygyrus-induced cells activated a fetal-like transcriptional program, demonstrating that adult intestinal tissues can repurpose aspects of fetal development. Therefore, re-initiation of the developmental program represents a fundamental mechanism by which the intestinal crypt can remodel itself to sustain function after injury.
Collapse
Affiliation(s)
- Ysbrand M Nusse
- Biomedical Sciences Graduate Program, University of California, San Francisco, CA, USA.,Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, CA, USA
| | - Adam K Savage
- Howard Hughes Medical Institute and Departments of Medicine and Microbiology & Immunology, University of California, San Francisco, CA, USA
| | - Pauline Marangoni
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, CA, USA
| | - Axel K M Rosendahl-Huber
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, CA, USA
| | - Tyler A Landman
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, CA, USA
| | | | - Richard M Locksley
- Howard Hughes Medical Institute and Departments of Medicine and Microbiology & Immunology, University of California, San Francisco, CA, USA.
| | - Ophir D Klein
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, CA, USA. .,Department of Pediatrics and Institute for Human Genetics, University of California, San Francisco, CA, USA.
| |
Collapse
|
436
|
Parasitic helminths induce fetal-like reversion in the intestinal stem cell niche. Nature 2018; 559:109-113. [PMID: 29950724 PMCID: PMC6042247 DOI: 10.1038/s41586-018-0257-1] [Citation(s) in RCA: 227] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 05/09/2018] [Indexed: 12/18/2022]
Abstract
Epithelial surfaces form critical barriers to the outside world and are continuously renewed by adult stem cells1. Whereas epithelial stem cell dynamics during homeostasis are increasingly well understood, how stem cells are redirected from a tissue-maintenance program to initiate repair after injury remains unclear. Here, we examined infection by Heligmosomoides polygyrus (Hp), a co-evolved pathosymbiont of mice, to assess the epithelial response to disruption of the mucosal barrier. Hp disrupts tissue integrity by penetrating the duodenal mucosa, where it develops while surrounded by a multicellular granulomatous infiltrate2. Unexpectedly, intestinal stem cell (ISC) markers, including Lgr53, were lost in crypts overlying larvae-associated granulomas, despite continued epithelial proliferation. Granuloma-associated Lgr5− crypt epithelia activated an interferon-gamma (IFNγ)-dependent transcriptional program, highlighted by Sca-1 expression, and IFNγ-producing immune cells were found in granulomas. A similar epithelial response accompanied systemic activation of immune cells, intestinal irradiation, or ablation of Lgr5+ ISCs. Granuloma-associated crypt cells generated fetal-like spheroids in culture, and a sub-population of Hp-induced cells activated a fetal-like transcriptional program, demonstrating that adult intestinal tissues can repurpose aspects of fetal development. Thus, re-initiation of the developmental program represents a fundamental mechanism by which the intestinal crypt can remodel to sustain function after injury.
Collapse
|
437
|
Lindeboom RG, van Voorthuijsen L, Oost KC, Rodríguez-Colman MJ, Luna-Velez MV, Furlan C, Baraille F, Jansen PW, Ribeiro A, Burgering BM, Snippert HJ, Vermeulen M. Integrative multi-omics analysis of intestinal organoid differentiation. Mol Syst Biol 2018; 14:e8227. [PMID: 29945941 PMCID: PMC6018986 DOI: 10.15252/msb.20188227] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 06/01/2018] [Accepted: 06/05/2018] [Indexed: 12/18/2022] Open
Abstract
Intestinal organoids accurately recapitulate epithelial homeostasis in vivo, thereby representing a powerful in vitro system to investigate lineage specification and cellular differentiation. Here, we applied a multi-omics framework on stem cell-enriched and stem cell-depleted mouse intestinal organoids to obtain a holistic view of the molecular mechanisms that drive differential gene expression during adult intestinal stem cell differentiation. Our data revealed a global rewiring of the transcriptome and proteome between intestinal stem cells and enterocytes, with the majority of dynamic protein expression being transcription-driven. Integrating absolute mRNA and protein copy numbers revealed post-transcriptional regulation of gene expression. Probing the epigenetic landscape identified a large number of cell-type-specific regulatory elements, which revealed Hnf4g as a major driver of enterocyte differentiation. In summary, by applying an integrative systems biology approach, we uncovered multiple layers of gene expression regulation, which contribute to lineage specification and plasticity of the mouse small intestinal epithelium.
Collapse
Affiliation(s)
- Rik Gh Lindeboom
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Lisa van Voorthuijsen
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Koen C Oost
- Molecular Cancer Research, Center for Molecular Medicine, Oncode Institute, University Medical Center Utrecht, University Utrecht, Utrecht, The Netherlands
| | - Maria J Rodríguez-Colman
- Molecular Cancer Research, Center for Molecular Medicine, Oncode Institute, University Medical Center Utrecht, University Utrecht, Utrecht, The Netherlands
| | - Maria V Luna-Velez
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Cristina Furlan
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Floriane Baraille
- Centre de Recherche des Cordeliers, INSERM, IHU ICAN, Sorbonne Université Université Paris Descartes, Paris, France
| | - Pascal Wtc Jansen
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Agnès Ribeiro
- Centre de Recherche des Cordeliers, INSERM, IHU ICAN, Sorbonne Université Université Paris Descartes, Paris, France
| | - Boudewijn Mt Burgering
- Molecular Cancer Research, Center for Molecular Medicine, Oncode Institute, University Medical Center Utrecht, University Utrecht, Utrecht, The Netherlands
| | - Hugo J Snippert
- Molecular Cancer Research, Center for Molecular Medicine, Oncode Institute, University Medical Center Utrecht, University Utrecht, Utrecht, The Netherlands
| | - Michiel Vermeulen
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University Nijmegen, Nijmegen, The Netherlands
| |
Collapse
|
438
|
McKinley KL, Stuurman N, Royer LA, Schartner C, Castillo-Azofeifa D, Delling M, Klein OD, Vale RD. Cellular aspect ratio and cell division mechanics underlie the patterning of cell progeny in diverse mammalian epithelia. eLife 2018; 7:36739. [PMID: 29897330 PMCID: PMC6023609 DOI: 10.7554/elife.36739] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Accepted: 06/08/2018] [Indexed: 01/08/2023] Open
Abstract
Cell division is essential to expand, shape, and replenish epithelia. In the adult small intestine, cells from a common progenitor intermix with other lineages, whereas cell progeny in many other epithelia form contiguous patches. The mechanisms that generate these distinct patterns of progeny are poorly understood. Using light sheet and confocal imaging of intestinal organoids, we show that lineages intersperse during cytokinesis, when elongated interphase cells insert between apically displaced daughters. Reducing the cellular aspect ratio to minimize the height difference between interphase and mitotic cells disrupts interspersion, producing contiguous patches. Cellular aspect ratio is similarly a key parameter for division-coupled interspersion in the early mouse embryo, suggesting that this physical mechanism for patterning progeny may pertain to many mammalian epithelia. Our results reveal that the process of cytokinesis in elongated mammalian epithelia allows lineages to intermix and that cellular aspect ratio is a critical modulator of the progeny pattern.
Collapse
Affiliation(s)
- Kara L McKinley
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, United States.,Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, United States
| | - Nico Stuurman
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, United States.,Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, United States
| | - Loic A Royer
- Chan Zuckerberg Biohub, San Francisco, United States
| | - Christoph Schartner
- Department of Physiology, University of California, San Francisco, San Francisco, United States
| | - David Castillo-Azofeifa
- Department of Orofacial Sciences, University of California, San Francisco, San Francisco, United States.,Program in Craniofacial Biology, University of California, San Francisco, San Francisco, United States
| | - Markus Delling
- Department of Physiology, University of California, San Francisco, San Francisco, United States
| | - Ophir D Klein
- Department of Orofacial Sciences, University of California, San Francisco, San Francisco, United States.,Program in Craniofacial Biology, University of California, San Francisco, San Francisco, United States.,Department of Pediatrics, University of California, San Francisco, San Francisco, United States.,Institute for Human Genetics, University of California, San Francisco, San Francisco, United States
| | - Ronald D Vale
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, United States.,Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, United States
| |
Collapse
|
439
|
Abstract
PURPOSE OF REVIEW The purpose of this review is to briefly summarize the notable structures and pathways in intestinal epithelial growth before presenting the current main areas of active research in intestinal regeneration. As a rapidly advancing field, a number of breakthroughs have recently been made related to the culture of intestinal stem cells (ISCs) and to the engineering of intestinal tissue. RECENT FINDINGS ISCs can be derived from fibroblasts and can be cultured in hydrogels under xenogeneic-free conditions. Intestinal organoids can be cultured with neural crest cells to form small intestinal tissues with neuromuscular networks. Endoluminal devices can be placed inside the native intestine to exert mechanical force to induce novel tissue growth. SUMMARY A number of recent advances in the field of intestinal regeneration are encouraging and suggest that novel therapies for a wide range of intestinal disorders may be developed in the near future. There are still a number of obstacles before such stem cell therapies can be safely used in humans.
Collapse
|
440
|
Targeting LGR5 in Colorectal Cancer: therapeutic gold or too plastic? Br J Cancer 2018; 118:1410-1418. [PMID: 29844449 PMCID: PMC5988707 DOI: 10.1038/s41416-018-0118-6] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 04/02/2018] [Accepted: 04/05/2018] [Indexed: 12/14/2022] Open
Abstract
Leucine-rich repeat-containing G-protein coupled receptor (LGR5 or GPR49) potentiates canonical Wnt/β-catenin signalling and is a marker of normal stem cells in several tissues, including the intestine. Consistent with stem cell potential, single isolated LGR5+ cells from the gut generate self-organising crypt/villus structures in vitro termed organoids or 'mini-guts', which accurately model the parent tissue. The well characterised deregulation of Wnt/β-catenin signalling that occurs during the adenoma-carcinoma sequence in colorectal cancer (CRC) renders LGR5 an interesting therapeutic target. Furthermore, recent studies demonstrating that CRC tumours contain LGR5+ subsets and retain a degree of normal tissue architecture has heightened translational interest. Such reports fuel hope that specific subpopulations or molecules within a tumour may be therapeutically targeted to prevent relapse and induce long-term remissions. Despite these observations, many studies within this field have produced conflicting and confusing results with no clear consensus on the therapeutic value of LGR5. This review will recap the various oncogenic and tumour suppressive roles that have been described for the LGR5 molecule in CRC. It will further highlight recent studies indicating the plasticity or redundancy of LGR5+ cells in intestinal cancer progression and assess the overall merit of therapeutically targeting LGR5 in CRC.
Collapse
|
441
|
Kim MJ, Xia B, Suh HN, Lee SH, Jun S, Lien EM, Zhang J, Chen K, Park JI. PAF-Myc-Controlled Cell Stemness Is Required for Intestinal Regeneration and Tumorigenesis. Dev Cell 2018. [PMID: 29533773 DOI: 10.1016/j.devcel.2018.02.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The underlying mechanisms of how self-renewing cells are controlled in regenerating tissues and cancer remain ambiguous. PCNA-associated factor (PAF) modulates DNA repair via PCNA. Also, PAF hyperactivates Wnt/β-catenin signaling independently of PCNA interaction. We found that PAF is expressed in intestinal stem and progenitor cells (ISCs and IPCs) and markedly upregulated during intestinal regeneration and tumorigenesis. Whereas PAF is dispensable for intestinal homeostasis, upon radiation injury, genetic ablation of PAF impairs intestinal regeneration along with the severe loss of ISCs and Myc expression. Mechanistically, PAF conditionally occupies and transactivates the c-Myc promoter, which induces the expansion of ISCs/IPCs during intestinal regeneration. In mouse models, PAF knockout inhibits Apc inactivation-driven intestinal tumorigenesis with reduced tumor cell stemness and suppressed Wnt/β-catenin signaling activity, supported by transcriptome profiling. Collectively, our results unveil that the PAF-Myc signaling axis is indispensable for intestinal regeneration and tumorigenesis by positively regulating self-renewing cells.
Collapse
Affiliation(s)
- Moon Jong Kim
- Department of Experimental Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Bo Xia
- Center for Cardiovascular Regeneration, Houston Methodist Hospital Research Institute, Houston, TX, USA; Department of Cardiothoracic Surgery, Weill Cornell Medical College, Cornell University, New York, NY, USA
| | - Han Na Suh
- Department of Experimental Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sung Ho Lee
- Department of Experimental Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sohee Jun
- Department of Experimental Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Esther M Lien
- Department of Experimental Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jie Zhang
- Department of Experimental Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Kaifu Chen
- Center for Cardiovascular Regeneration, Houston Methodist Hospital Research Institute, Houston, TX, USA; Department of Cardiothoracic Surgery, Weill Cornell Medical College, Cornell University, New York, NY, USA
| | - Jae-Il Park
- Department of Experimental Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Graduate School of Biomedical Sciences, University of Texas MD Anderson Cancer Center and Health Science Center, Houston, TX 77030, USA; Program in Genetics and Epigenetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
442
|
Waldum HL, Öberg K, Sørdal ØF, Sandvik AK, Gustafsson BI, Mjønes P, Fossmark R. Not only stem cells, but also mature cells, particularly neuroendocrine cells, may develop into tumours: time for a paradigm shift. Therap Adv Gastroenterol 2018; 11:1756284818775054. [PMID: 29872453 PMCID: PMC5974566 DOI: 10.1177/1756284818775054] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 04/03/2018] [Indexed: 02/04/2023] Open
Abstract
Stem cells are considered the origin of neoplasms in general, and malignant tumours in particular, and the stage at which the stem cells stop their differentiation determines the degree of malignancy. However, there is increasing evidence supporting an alternative paradigm. Tumours may develop by dedifferentiation from mature cells able to proliferate. Studies of gastric carcinogenesis demonstrate that mature neuroendocrine (NE) cells upon long-term overstimulation may develop through stages of hyperplasia, dysplasia, and rather benign tumours, into highly malignant carcinomas. Dedifferentiation of cells may change the histological appearance and impede the identification of the cellular origin, as seen with gastric carcinomas, which in many cases are dedifferentiated neuroendocrine tumours. Finding the cell of origin is important to identify risk factors for cancer, prevent tumour development, and tailor treatment. In the present review, we focus not only on gastric tumours, but also evaluate the role of neuroendocrine cells in tumourigenesis in two other foregut-derived organs, the lungs and the pancreas, as well as in the midgut-derived small intestine.
Collapse
Affiliation(s)
- Helge L. Waldum
- Department of Cancer Research and Molecular Medicine, Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, N-7491, Norway Department of Gastroenterology and Hepatology, St. Olav’s University Hospital, Trondheim, Norway
| | - Kjell Öberg
- Department of Endocrine Oncology Uppsala University and University Hospital, Uppsala, Sweden
| | - Øystein F. Sørdal
- Department of Gastroenterology and Hepatology, St. Olav’s University Hospital, Trondheim, Norway
| | - Arne K. Sandvik
- Department of Cancer Research and Molecular Medicine, Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Gastroenterology and Hepatology, St. Olav’s University Hospital, Trondheim, Norway
| | - Bjørn I. Gustafsson
- Department of Cancer Research and Molecular Medicine, Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Gastroenterology and Hepatology, St. Olav’s University Hospital, Trondheim, Norway
| | - Patricia Mjønes
- epartment of Cancer Research and Molecular Medicine, Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Pathology, St. Olav’s University Hospital, Trondheim, Norway
| | - Reidar Fossmark
- Department of Cancer Research and Molecular Medicine, Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Gastroenterology and Hepatology, St. Olav’s University Hospital, Trondheim, Norway
| |
Collapse
|
443
|
Cameron BD, Sekhar KR, Ofori M, Freeman ML. The Role of Nrf2 in the Response to Normal Tissue Radiation Injury. Radiat Res 2018; 190:99-106. [PMID: 29799319 DOI: 10.1667/rr15059.1] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The transcription factor Nrf2 is an important modulator of antioxidant and drug metabolism, carbohydrate and lipid metabolism, as well as heme and iron metabolism. Regulation of Nrf2 expression occurs transcriptionally and post-transcriptionally. Post-transcriptional regulation entails ubiquitination followed by proteasome-dependent degradation. Additionally, Nrf2-mediated gene expression is subject to negative regulation by ATF3, Bach1 and cMyc. Nrf2-mediated gene expression is an important regulator of a cell's response to radiation. Although a majority of studies have shown that Nrf2 deficient cells are radiosensitized and Nrf2 over expression confers radioresistance, Nrf2's role in mediating the radiation response of crypt cells is controversial. The Nrf2 activator CDDO attenuates radiation-mediated crypt injury, whereas intestinal crypts in Nrf2 null mice are radiation resistant. Further investigation is needed in order to define the relationship between Nrf2 and radiation sensitivity in Lgr5+ and Bmi1+ cells that regulate regeneration of crypt stem cells. In hematopoietic compartments Nrf2 promotes the survival of irradiated osteoblasts that support long-term hematopoietic stem cell (LT-HSC) niches. Loss of Nrf2 in LT-HSCs increases stem cell intrinsic radiosensitivity, with the consequence of lowering the LD5030. An Nrf2 deficiency drives LT-HSCs from a quiescent to a proliferative state. This results in hematopoietic exhaustion and reduced engraftment after myoablative irradiation. The question of whether induction of Nrf2 in LT-HSC enhances hematopoietic reconstitution after bone marrow transplantation is not yet resolved. Irradiation of the lung induces pulmonary pneumonitis and fibrosis. Loss of Nrf2 promotes TGF-β/Smad signaling that induces ATF3 suppression of Nrf2-mediated target gene expression. This, in turn, results in elevated reactive oxygen species (ROS) and isolevuglandin adduction of protein that impairs collagen degradation, and may contribute to radiation-induced chronic cell injury. Loss of Nrf2 impairs ΔNp63 stem/progenitor cell mobilization after irradiation, while promoting alveolar type 2 cell epithelial-mesenchymal transitions into myofibroblasts. These studies identify Nrf2 as an important factor in the radiation response of normal tissue.
Collapse
Affiliation(s)
- Brent D Cameron
- Department of Radiation Oncology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - Konjeti R Sekhar
- Department of Radiation Oncology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - Maxwell Ofori
- Department of Radiation Oncology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - Michael L Freeman
- Department of Radiation Oncology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| |
Collapse
|
444
|
Mouse Intestinal Krt15+ Crypt Cells Are Radio-Resistant and Tumor Initiating. Stem Cell Reports 2018; 10:1947-1958. [PMID: 29805107 PMCID: PMC5993649 DOI: 10.1016/j.stemcr.2018.04.022] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 04/23/2018] [Accepted: 04/24/2018] [Indexed: 12/17/2022] Open
Abstract
Two principal stem cell pools orchestrate the rapid cell turnover in the intestinal epithelium. Rapidly cycling Lgr5+ stem cells are intercalated between the Paneth cells at the crypt base (CBCs) and injury-resistant reserve stem cells reside above the crypt base. The intermediate filament Keratin 15 (Krt15) marks either stem cells or long-lived progenitor cells that contribute to tissue repair in the hair follicle or the esophageal epithelium. Herein, we demonstrate that Krt15 labels long-lived and multipotent cells in the small intestinal crypt by lineage tracing. Krt15+ crypt cells display self-renewal potential in vivo and in 3D organoid cultures. Krt15+ crypt cells are resistant to high-dose radiation and contribute to epithelial regeneration following injury. Notably, loss of the tumor suppressor Apc in Krt15+ cells leads to adenoma and adenocarcinoma formation. These results indicate that Krt15 marks long-lived, multipotent, and injury-resistant crypt cells that may function as a cell of origin in intestinal cancer. Krt15 marks multipotent and self-renewing crypt cells in the mouse small intestine Krt15+ crypt cells are radio-resistant and contribute to regeneration following injury Apc loss in Krt15+ cells leads to intestinal adenoma and adenocarcinoma formation Krt15+ cells may function as a cell of origin in intestinal cancer
Collapse
|
445
|
Athiyyah AF, Darma A, Ranuh R, Riawan W, Endaryanto A, Rantam FA, Surono IS, Sudarmo SM. Lactobacillus plantarum IS-10506 activates intestinal stem cells in a rodent model. Benef Microbes 2018; 9:755-760. [PMID: 29726283 DOI: 10.3920/bm2017.0118] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
This study investigated the probiotic effect of Lactobacillus plantarum IS-10506 in activating and regenerating leucine-rich repeat-containing G-protein-coupled receptor (Lgr)5- and B lymphoma Moloney murine leukaemia virus insertion region (Bmi)1-expressing intestinal stem cells in rodents following Escherichia coli serotype 055:B5 lipopolysaccharide (LPS) exposure. Male Sprague-Dawley rats (n=64) were randomised into control (KN), LPS (KL), probiotic + LPS (KL-Pr), and sequential probiotic + LPS + probiotic (KPR-7L) groups. Microencapsulated L. plantarum IS-10506 (2.86×1010 cfu/day) was administered via a gastric tube once daily for up to 7 days, and LPS (250 ng/kg body weight) was administered via a gastric tube on the first day of the experiment to all but the KN group. On day 3, 4, 6, and 7, four rats per group were sacrificed, and Lgr5, Bmi1, extracellular signal-regulated kinase (ERK), and β-catenin expression in the ileum was assessed by immunohistochemistry. LPS treatment reduced Lgr5 (P≤0.05) and Bmi1 (P=0.000) levels in intestinal epithelial cells, whereas probiotic treatment increased levels of Lgr5 (KPR-7L, P=0.008) and Bmi1 (KL-Pr, P=0.008; and KPR-7L, P=0.000). Lgr5 expression was upregulated in the KL-Pr group on day 3, 4, 6, and 7 (P=0.056). Additionally, ERK levels were elevated in Bmi1- and Lgr5-expressing cells in rats treated with probiotics (KL-Pr and KPR-7L), whereas β-catenin levels were increased in Lgr5-expressing cells from KPR-7L rats and in Bmi1-expressing cells from KL-Pr and KPR-7L rats on day 3 and 4. These results demonstrated that the probiotic L. plantarum IS-10506 activated intestinal stem cells to counter inflammation and might be useful for maintaining intestinal health, especially when used as a prophylactic agent.
Collapse
Affiliation(s)
- A F Athiyyah
- 1 Department of Child Health Dr. Soetomo Hospital Faculty of Medicine Airlangga University, Jl. Prof. Dr. Moestopo No. 6-8, Surabaya, Indonesia
| | - A Darma
- 1 Department of Child Health Dr. Soetomo Hospital Faculty of Medicine Airlangga University, Jl. Prof. Dr. Moestopo No. 6-8, Surabaya, Indonesia
| | - R Ranuh
- 1 Department of Child Health Dr. Soetomo Hospital Faculty of Medicine Airlangga University, Jl. Prof. Dr. Moestopo No. 6-8, Surabaya, Indonesia
| | - W Riawan
- 2 Laboratory of Biochemistry and Biomolecular Brawijaya University, Jl. Veteran, Malang, Indonesia
| | - A Endaryanto
- 1 Department of Child Health Dr. Soetomo Hospital Faculty of Medicine Airlangga University, Jl. Prof. Dr. Moestopo No. 6-8, Surabaya, Indonesia
| | - F A Rantam
- 3 Stem Cell Laboratory Institute of Tropical Disease, Jl. Mulyorejo, Surabaya, Indonesia
| | - I S Surono
- 4 Food Technology Department, Faculty of Engineering, Bina Nusantara University, Jakarta 11480, Indonesia
| | - S M Sudarmo
- 1 Department of Child Health Dr. Soetomo Hospital Faculty of Medicine Airlangga University, Jl. Prof. Dr. Moestopo No. 6-8, Surabaya, Indonesia
| |
Collapse
|
446
|
Kinoshita H, Hayakawa Y, Niu Z, Konishi M, Hata M, Tsuboi M, Hayata Y, Hikiba Y, Ihara S, Nakagawa H, Hirata Y, Wang TC, Koike K. Mature gastric chief cells are not required for the development of metaplasia. Am J Physiol Gastrointest Liver Physiol 2018; 314:G583-G596. [PMID: 29345968 PMCID: PMC6732738 DOI: 10.1152/ajpgi.00351.2017] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
During human gastric carcinogenesis, intestinal metaplasia is frequently seen in the atrophic stomach. In mice, a distinct type of metaplasia known as spasmolytic polypeptide-expressing metaplasia (SPEM) is found in several inflammatory and genetically engineered models. Given the diversity of long- and short-term models of mouse SPEM, it remains unclear whether all models have a shared or distinct molecular mechanism. The origin of SPEM in mice is presently under debate. It is postulated that stem or progenitor cells acquire genetic alterations that then supply metaplastic cell clones, whereas the possibility of transdifferentiation or dedifferentiation from mature gastric chief cells has also been suggested. In this study, we report that loss of chief cells was sufficient to induce short-term regenerative SPEM-like lesions that originated from chief cell precursors in the gastric neck region. Furthermore, Lgr5+ mature chief cells failed to contribute to both short- and long-term metaplasia, whereas isthmus stem and progenitor cells efficiently contributed to long-term metaplasia. Interestingly, multiple administrations of high-dose pulsed tamoxifen induced expansion of Lgr5 expression and Lgr5-CreERT recombination within the isthmus progenitors apart from basal chief cells. Thus we conclude that short-term SPEM represents a regenerative process arising from neck progenitors following chief cell loss, whereas true long-term SPEM originates from isthmus progenitors. Mature gastric chief cells may be dispensable for SPEM development. NEW & NOTEWORTHY Recently, dedifferentiation ability in gastric chief cells during metaplasia development has been proposed. Our findings reveal that lesions that were thought to be acute metaplasia in fact represent normal regeneration supplied from neck lineage and that isthmus stem/progenitors are more responsible for sustained metaplastic changes. Cellular plasticity in gastric chief cells may be more limited than recently highlighted.
Collapse
Affiliation(s)
- Hiroto Kinoshita
- 1Department of Gastroenterology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Yoku Hayakawa
- 1Department of Gastroenterology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Zhengchuan Niu
- 2Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, New York, New York,4Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Mitsuru Konishi
- 1Department of Gastroenterology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Masahiro Hata
- 1Department of Gastroenterology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Mayo Tsuboi
- 1Department of Gastroenterology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Yuki Hayata
- 1Department of Gastroenterology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Yohko Hikiba
- 3Division of Gastroenterology, Institute for Adult Diseases, Asahi Life Foundation, Tokyo, Japan
| | - Sozaburo Ihara
- 3Division of Gastroenterology, Institute for Adult Diseases, Asahi Life Foundation, Tokyo, Japan
| | - Hayato Nakagawa
- 1Department of Gastroenterology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Yoshihiro Hirata
- 1Department of Gastroenterology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Timothy C. Wang
- 2Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, New York, New York
| | - Kazuhiko Koike
- 1Department of Gastroenterology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| |
Collapse
|
447
|
Leung C, Tan SH, Barker N. Recent Advances in Lgr5 + Stem Cell Research. Trends Cell Biol 2018; 28:380-391. [DOI: 10.1016/j.tcb.2018.01.010] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 01/26/2018] [Accepted: 01/30/2018] [Indexed: 12/14/2022]
|
448
|
Stamp C, Zupanic A, Sachdeva A, Stoll EA, Shanley DP, Mathers JC, Kirkwood TBL, Heer R, Simons BD, Turnbull DM, Greaves LC. Predominant Asymmetrical Stem Cell Fate Outcome Limits the Rate of Niche Succession in Human Colonic Crypts. EBioMedicine 2018; 31:166-173. [PMID: 29748033 PMCID: PMC6013780 DOI: 10.1016/j.ebiom.2018.04.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 03/20/2018] [Accepted: 04/19/2018] [Indexed: 01/10/2023] Open
Abstract
Stem cell (SC) dynamics within the human colorectal crypt SC niche remain poorly understood, with previous studies proposing divergent hypotheses on the predominant mode of SC self-renewal and the rate of SC replacement. Here we use age-related mitochondrial oxidative phosphorylation (OXPHOS) defects to trace clonal lineages within human colorectal crypts across the adult life-course. By resolving the frequency and size distribution of OXPHOS-deficient clones, quantitative analysis shows that, in common with mouse, long-term maintenance of the colonic epithelial crypt relies on stochastic SC loss and replacement mediated by competition for limited niche access. We find that the colonic crypt is maintained by ~5 effective SCs. However, with a SC loss/replacement rate estimated to be slower than once per year, our results indicate that the vast majority of individual SC divisions result in asymmetric fate outcome. These findings provide a quantitative platform to detect and study deviations from human colorectal crypt SC niche homeostasis during the process of colorectal carcinogenesis.
Collapse
Affiliation(s)
- Craig Stamp
- LLHW Centre for Ageing and Vitality, Newcastle University Institute for Ageing, The Medical School, Newcastle upon Tyne NE2 4HH, UK; Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Anze Zupanic
- Swiss Federal Institute of Aquatic Science and Technology, Department of Environmental Toxicology, Dübendorf, Switzerland
| | - Ashwin Sachdeva
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne NE2 4AD, UK
| | - Elizabeth A Stoll
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Daryl P Shanley
- Institute of Cell and Molecular Biosciences, Newcastle University Institute for Ageing, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne NE4 5PL, UK
| | - John C Mathers
- LLHW Centre for Ageing and Vitality, Newcastle University Institute for Ageing, The Medical School, Newcastle upon Tyne NE2 4HH, UK; Human Nutrition Research Centre, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne NE4 5PL, UK
| | - Thomas B L Kirkwood
- Institute of Cell and Molecular Biosciences, Newcastle University Institute for Ageing, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne NE4 5PL, UK
| | - Rakesh Heer
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne NE2 4AD, UK
| | - Benjamin D Simons
- Cavendish Laboratory, Department of Physics, University of Cambridge, J.J. Thomson Avenue, Cambridge CB3 0HE, UK; Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK; Wellcome Trust/Medical Research Council SC Institute, Cambridge CB2 1QR, UK
| | - Doug M Turnbull
- LLHW Centre for Ageing and Vitality, Newcastle University Institute for Ageing, The Medical School, Newcastle upon Tyne NE2 4HH, UK; Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Laura C Greaves
- LLHW Centre for Ageing and Vitality, Newcastle University Institute for Ageing, The Medical School, Newcastle upon Tyne NE2 4HH, UK; Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.
| |
Collapse
|
449
|
Ge Y, Fuchs E. Stretching the limits: from homeostasis to stem cell plasticity in wound healing and cancer. Nat Rev Genet 2018; 19:311-325. [PMID: 29479084 PMCID: PMC6301069 DOI: 10.1038/nrg.2018.9] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Stem cells (SCs) govern tissue homeostasis and wound repair. They reside within niches, the special microenvironments within tissues that control SC lineage outputs. Upon injury or stress, new signals emanating from damaged tissue can divert nearby cells into adopting behaviours that are not part of their homeostatic repertoire. This behaviour, known as SC plasticity, typically resolves as wounds heal. However, in cancer, it can endure. Recent studies have yielded insights into the orchestrators of maintenance and lineage commitment for SCs belonging to three mammalian tissues: the haematopoietic system, the skin epithelium and the intestinal epithelium. We delineate the multifactorial determinants and general principles underlying the remarkable facets of SC plasticity, which lend promise for regenerative medicine and cancer therapeutics.
Collapse
Affiliation(s)
- Yejing Ge
- Robin Chemers Neustein Laboratory of Mammalian Cell Biology Development, Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| | - Elaine Fuchs
- Robin Chemers Neustein Laboratory of Mammalian Cell Biology Development, Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| |
Collapse
|
450
|
Nile AH, de Sousa E Melo F, Mukund S, Piskol R, Hansen S, Zhou L, Zhang Y, Fu Y, Gogol EB, Kömüves LG, Modrusan Z, Angers S, Franke Y, Koth C, Fairbrother WJ, Wang W, de Sauvage FJ, Hannoush RN. A selective peptide inhibitor of Frizzled 7 receptors disrupts intestinal stem cells. Nat Chem Biol 2018; 14:582-590. [PMID: 29632413 DOI: 10.1038/s41589-018-0035-2] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 02/21/2018] [Indexed: 02/06/2023]
Abstract
Regeneration of the adult intestinal epithelium is mediated by a pool of cycling stem cells, which are located at the base of the crypt, that express leucine-rich-repeat-containing G-protein-coupled receptor 5 (LGR5). The Frizzled (FZD) 7 receptor (FZD7) is enriched in LGR5+ intestinal stem cells and plays a critical role in their self-renewal. Yet, drug discovery approaches and structural bases for targeting specific FZD isoforms remain poorly defined. FZD proteins interact with Wnt signaling proteins via, in part, a lipid-binding groove on the extracellular cysteine-rich domain (CRD) of the FZD receptor. Here we report the identification of a potent peptide that selectively binds to the FZD7 CRD at a previously uncharacterized site and alters the conformation of the CRD and the architecture of its lipid-binding groove. Treatment with the FZD7-binding peptide impaired Wnt signaling in cultured cells and stem cell function in intestinal organoids. Together, our data illustrate that targeting the lipid-binding groove holds promise as an approach for achieving isoform-selective FZD receptor inhibition.
Collapse
Affiliation(s)
- Aaron H Nile
- Department of Early Discovery Biochemistry, Genentech, South San Francisco, CA, USA
| | | | - Susmith Mukund
- Department of Structural Biology, Genentech, South San Francisco, CA, USA
| | - Robert Piskol
- Department of Bioinformatics and Computational Biology, Genentech, South San Francisco, CA, USA
| | - Simon Hansen
- Department of Early Discovery Biochemistry, Genentech, South San Francisco, CA, USA
| | - Lijuan Zhou
- Department of Early Discovery Biochemistry, Genentech, South San Francisco, CA, USA
| | - Yingnan Zhang
- Department of Early Discovery Biochemistry, Genentech, South San Francisco, CA, USA
| | - Yue Fu
- Department of Early Discovery Biochemistry, Genentech, South San Francisco, CA, USA
| | - Emily B Gogol
- Department of Early Discovery Biochemistry, Genentech, South San Francisco, CA, USA
| | - László G Kömüves
- Department of Pathology, Genentech, South San Francisco, CA, USA
| | - Zora Modrusan
- Department of Molecular Biology, Genentech, South San Francisco, CA, USA
| | - Stephane Angers
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Yvonne Franke
- Department of Biomolecular Resources, Genentech, South San Francisco, CA, USA
| | - Christopher Koth
- Department of Structural Biology, Genentech, South San Francisco, CA, USA
| | - Wayne J Fairbrother
- Department of Early Discovery Biochemistry, Genentech, South San Francisco, CA, USA
| | - Weiru Wang
- Department of Structural Biology, Genentech, South San Francisco, CA, USA
| | | | - Rami N Hannoush
- Department of Early Discovery Biochemistry, Genentech, South San Francisco, CA, USA.
| |
Collapse
|