401
|
Popp FC, Eggenhofer E, Renner P, Slowik P, Lang SA, Kaspar H, Geissler EK, Piso P, Schlitt HJ, Dahlke MH. Mesenchymal stem cells can induce long-term acceptance of solid organ allografts in synergy with low-dose mycophenolate. Transpl Immunol 2008; 20:55-60. [PMID: 18762258 DOI: 10.1016/j.trim.2008.08.004] [Citation(s) in RCA: 155] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2008] [Revised: 07/27/2008] [Accepted: 08/01/2008] [Indexed: 12/29/2022]
Abstract
The induction of tolerance towards allogeneic solid organ grafts is one of the major goals in transplantation medicine. Mesenchymal stem cells (MSC) inhibit the immune response in vitro, and thus are promising candidate cells to promote acceptance of transplanted organs in vivo. Such novel approaches of tolerance induction are needed since, to date, graft acceptance can only be maintained through life-long treatment with unspecific immunosuppressants that are associated with toxic injury, opportunistic infections and malignancies. We demonstrate that donor-derived MSC induce long-term allograft acceptance in a rat heart transplantation model, when concurrently applied with a short course of low-dose mycophenolate. This tolerogenic effect of MSC is at least partially mediated by the expression of indoleamine 2,3-dioxygenase (IDO), demonstrated by the fact that blocking of IDO with 1-methyl tryptophan (1-MT) abrogates graft acceptance. Moreover we hypothesize that MSC interact with dendritic cells (DC) in vivo, because allogeneic MSC are rejected in the long-term but DC acquire a tolerogenic phenotype after applying MSC. In summary, we demonstrate that MSC constitute a promising tool for induction of non-responsiveness in solid organ transplantation that warrants further investigation in clinical trials.
Collapse
Affiliation(s)
- F C Popp
- Department of Surgery, University of Regensburg, Franz-Josef-Strauss Allee, 11 93053 Regensburg, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
402
|
Lin YC, Chen CL, Nakano T, Goto S, Kao YH, Hsu LW, Lai CY, Jawan B, Cheng YF, Tateno C, Yoshizato K. Immunological role of indoleamine 2,3-dioxygenase in rat liver allograft rejection and tolerance. J Gastroenterol Hepatol 2008; 23:e243-50. [PMID: 17645734 DOI: 10.1111/j.1440-1746.2007.05036.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
BACKGROUND AND AIM Indoleamine 2,3-dioxygenase (IDO) is expressed in the placenta and plays an essential role in maternal tolerance. Recent data showed that giving IDO inhibitor blocked liver allograft tolerance. However, the immunological role of IDO in rat liver allograft models has not been characterized. In the present study, the time-course of IDO expression and the localization of IDO were analyzed to address the role of IDO in the induction of tolerance. METHODS Rat orthotopic liver transplantations (OLT) were performed and IDO gene expression of OLT livers was analyzed. Immunohistochemistry was used to evaluate the localization of IDO-expressed cells in the liver. RESULTS The IDO gene was detected in the allogeneic liver graft at the acute phase but the signal could not be detected when these OLT rats were treated with cyclosporinee A. The time-course of IDO gene expression in liver grafts of the spontaneous tolerant OLT model revealed that the IDO mRNA was expressed in both the rejection phase and the induction phase of tolerance, but the signal was gradually lowered during the maintenance phase of tolerance. Immunohistochemistry confirmed that the IDO protein was detected in antigen-presenting cells but not in hepatocytes. CONCLUSION Our results demonstrated that IDO is induced in antigen-presenting cells of rat liver allografts under drug-free status, suggesting that indirect or direct recognition of donor antigen and further T-cell activation may be inhibited. IDO may act as a local immunosuppressive molecule to protect transplanted cells, tissues and organs from immune attack.
Collapse
MESH Headings
- Animals
- Antigen-Presenting Cells/enzymology
- Antigen-Presenting Cells/immunology
- Blotting, Western
- Cells, Cultured
- Cyclosporine/pharmacology
- Disease Models, Animal
- Gene Expression Regulation, Enzymologic
- Graft Rejection/enzymology
- Graft Rejection/genetics
- Graft Rejection/immunology
- Graft Rejection/prevention & control
- Immune Tolerance/drug effects
- Immunohistochemistry
- Immunosuppressive Agents/pharmacology
- Indoleamine-Pyrrole 2,3,-Dioxygenase/genetics
- Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism
- Liver/drug effects
- Liver/enzymology
- Liver/immunology
- Liver/surgery
- Liver Transplantation
- Male
- RNA, Messenger/metabolism
- Rats
- Rats, Inbred Lew
- T-Lymphocytes/immunology
- Time Factors
- Transplantation, Homologous
Collapse
Affiliation(s)
- Yu-Chun Lin
- Department of Biological Science, Developmental Biology Laboratory, Graduate School of Science, Hiroshima University, Hiroshima, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
403
|
Immunosuppression routed via the kynurenine pathway: a biochemical and pathophysiologic approach. Adv Clin Chem 2008; 45:155-97. [PMID: 18429497 DOI: 10.1016/s0065-2423(07)00007-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In the past years, it has been shown that kynurenines pathway is a regulator of both the innate and the adaptive immune responses. Particularly, the initial enzyme of this pathway, indoleamine 2,3-dioxygenase (IDO), is implicated in maintaining tolerance during pregnancy, and also can be expressed in tumors to avoid the immune attack. In this chapter, we will describe how the kynurenine pathway affects the immune system with important implications both in physiology and in pathology. The incorrect activation or blockade suppressive properties of the kynurenine pathway are also implicated in a number of other diseases such as AIDS or autoimmune diseases.
Collapse
|
404
|
Blois SM, Barrientos G, Garcia MG, Orsal AS, Tometten M, Cordo-Russo RI, Klapp BF, Santoni A, Fernández N, Terness P, Arck PC. Interaction between dendritic cells and natural killer cells during pregnancy in mice. J Mol Med (Berl) 2008; 86:837-52. [PMID: 18506412 DOI: 10.1007/s00109-008-0342-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2007] [Revised: 01/14/2008] [Accepted: 02/13/2008] [Indexed: 10/22/2022]
Abstract
A complex regulation of innate and adaptive immune responses at the maternal fetal interface promotes tolerance of trophoblast cells carrying paternally derived antigens. Such regulatory functions involve uterine dendritic cells (uDC) and natural killer (uNK) cells. The existence of a NK and DC "cross talk" has been revealed in various experimental settings; its biological significance ranging from cooperative stimulation to cell lysis. Little is known about the presence or role of NK and DC cross talk at the maternal fetal interface. The present study shows that mouse NK and DC interactions are subject to modulation by trophoblast cells in vitro. This interaction promotes a tolerogenic microenvironment characterized by downregulation of the expression of activation markers on uNK cells and uDC and dominance of Th2 cytokines. NK and DC interactions would also influence uterine cell proliferation and this process would be strongly modulated by trophoblast-derived signals. Indeed; while low proliferation rates were observed upon regular coculture allowing direct contact between uterine cells and trophoblasts, incubation in a transwell culture system markedly increased uterine cell proliferation suggesting that soluble factors are key mediators in the molecular "dialog" between the mother and the conceptus during the establishment of mouse pregnancy. Our data further reveal that the regulatory functions of trophoblast cells associated with tolerance induction are impaired in high abortion murine matings. Interestingly, we observed that secretion of interleukin-12p70 by uDC is dramatically abrogated in the presence of uNK cells. Taken together, our results provide the first evidence that a delicate balance of interactions involving NK cells, DC, and trophoblasts at the mouse maternal fetal interface supports a successful pregnancy outcome.
Collapse
Affiliation(s)
- Sandra M Blois
- University Medicine of Berlin, Forschungshaus, Raum 2.0547, Augustenburger Platz 1, 13353, Berlin, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
405
|
Schäfer R, Northoff H. Characteristics of Mesenchymal Stem Cells - New Stars in Regenerative Medicine or Unrecognized Old Fellows in Autologous Regeneration? ACTA ACUST UNITED AC 2008; 35:154-159. [PMID: 21547113 DOI: 10.1159/000135634] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2007] [Accepted: 02/02/2008] [Indexed: 12/13/2022]
Abstract
SUMMARY: For years mesenchymal stem cells (MSC) have been in the focus of research in the emerging field of regenerative medicine. Due to the heterogeneity of cells with MSC-like properties their comprehensive characterization is necessary. In the following, issues of nomenclature, basic characterization, sources, sternness, and therapeutic potential of MSC are discussed, highlighting some aspects in the rapidly expanding field of MSC research.
Collapse
Affiliation(s)
- Richard Schäfer
- Institute of Clinical and Experimental Transfusion Medicine, University Hospital Tübingen, Germany
| | | |
Collapse
|
406
|
Gravekamp C, Kim SH, Castro F. Cancer vaccination: manipulation of immune responses at old age. Mech Ageing Dev 2008; 130:67-75. [PMID: 18561984 DOI: 10.1016/j.mad.2008.05.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2008] [Revised: 04/18/2008] [Accepted: 05/02/2008] [Indexed: 01/07/2023]
Abstract
The incidence of cancer has increased over the last decade, mainly due to an increase in the elderly population. Vaccine therapy for cancer is less toxic than chemotherapy or radiation and could be, therefore, especially effective in older, more frail cancer patients. However, it has been shown that older individuals do not respond to vaccine therapy as well as younger adults. This has been attributed to T-cell unresponsiveness, a phenomenon also observed in cancer patients per se. This review summarizes the current knowledge of impaired T-cell responses in cancer patients and the elderly, and the results of cancer vaccination in preclinical models at young and old age. Finally, various approaches how to manipulate immune responses against cancer by vaccination at older age will be proposed.
Collapse
Affiliation(s)
- Claudia Gravekamp
- California Pacific Medical Center Research Institute, San Francisco, CA 94107, USA.
| | | | | |
Collapse
|
407
|
Santegoets SJAM, Gibbs S, Kroeze K, van de Ven R, Scheper RJ, Borrebaeck CA, de Gruijl TD, Lindstedt M. Transcriptional profiling of human skin-resident Langerhans cells and CD1a+ dermal dendritic cells: differential activation states suggest distinct functions. J Leukoc Biol 2008; 84:143-51. [PMID: 18436579 DOI: 10.1189/jlb.1107750] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
In human skin, two main populations of dendritic cells (DC) can be discriminated: dermal DC (DDC) and epidermal Langerhans cells (LC). Although extensively studied, most of the knowledge about DDC and LC phenotype and function is obtained from studying DDC and LC cultured in vitro or DDC and LC migrated from skin explants. These studies have left the exact relationship between steady-state human LC and DDC unclear: in particular, whether CD1a+ DDC represent migrated LC or whether they constitute a separate subset. To gain further insight in the kinship between skin-resident CD1a+ DDC and LC, we analyzed CD1a+ DDC and LC, isolated from steady-state skin samples, by high-density microarray analysis. Results show that the CD1a+ DDC specifically express markers associated with DDC phenotype, such as the macrophage mannose receptor, DC-specific ICAM-grabbing nonintegrin, the scavenger receptor CD36, coagulation factor XIIIa, and chemokine receptor CCR5, whereas LC specifically express Langerin, membrane ATPase (CD39), and CCR6, all hallmarks of the LC lineage. In addition, under steady-state conditions, both DC subsets display a strikingly different activation status, indicative of distinct functional properties. CD1a+ DDC exhibit a more activated, proinflammatory, migratory, and T cell-stimulatory profile, as compared with LC, whereas LC mainly express molecules involved in cell adhesion and DC retention in the epidermis. In conclusion, transcriptional profiling is consistent with the notion that CD1a+ DDC and LC represent two distinct DC subsets but also that under steady-state conditions, CD1a+ DDC and epidermal LC represent opposites of the DC activation spectrum.
Collapse
|
408
|
Nishizawa H, Hasegawa K, Suzuki M, Achiwa Y, Kato T, Saito K, Kurahashi H, Udagawa Y. Mouse model for allogeneic immune reaction against fetus recapitulates human pre-eclampsia. J Obstet Gynaecol Res 2008; 34:1-6. [PMID: 18226121 DOI: 10.1111/j.1447-0756.2007.00679.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIM We have previously demonstrated that mRNA expression and enzyme activity levels of placental indoleamine 2,3-dioxygenase (IDO), which degrades L-tryptophan and blocks the proliferation of T cells, are significantly low in patients with severe pre-eclampsia. From this observation, we hypothesized that induction of maternal allogeneic immune reaction by reduced IDO activity is one of the causes of pre-eclampsia. METHODS To examine this hypothesis, we administered an IDO inhibitor to pregnant female mice carrying allogeneic concepti. Since administration of an IDO inhibitor to pregnant mice starting at E4.5 is already reported to cause allogeneic fetal rejection, we modified the regimen and started the administration at E6.5 when the fetus and placenta have already been established. RESULTS Pregnant mice treated with an IDO inhibitor developed high blood pressure and proteinuria in addition to local circulation impairment in the placenta, which is analogous to the lesions that are characteristic of human pre-eclampsia. In contrast, pregnant mice carrying syngeneic concepti did not manifest such symptoms. CONCLUSIONS Our findings reveal a pivotal role for IDO activity in the etiology of pre-eclampsia. These data also lend support to the current hypothesis that pre-eclampsia is one of the possible manifestations of a maternal immunological reaction against an allogeneic fetus.
Collapse
Affiliation(s)
- Haruki Nishizawa
- Department of Obstetrics and Gynecology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
409
|
Fu H, Larkin DF, George AJ. Immune modulation in corneal transplantation. Transplant Rev (Orlando) 2008; 22:105-15. [DOI: 10.1016/j.trre.2007.12.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
410
|
Zeng DB, Lu SC. Function of indoleamine 2, 3-dioxygenase in viral infection. Shijie Huaren Xiaohua Zazhi 2008; 16:879-884. [DOI: 10.11569/wcjd.v16.i8.879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The enzyme indoleamine 2, 3-dioxygenase (IDO), which catalyzes the first and rate-limiting step in the kynurenine pathway of tryptophan degradation, plays a key role in the antiviral immune. IDO mediates IFN-γ antivirus and serves immunoregulatory and tolerogenic functions. In this review, we introduce the studies on the antiviral immune of IDO in viral infection.
Collapse
|
411
|
Wee JL, Christiansen D, Li Y, Boyle W, Sandrin MS. Suppression of cytotoxic and proliferative xenogeneic T‐cell responses by transgenic expression of indoleamine 2,3‐dioxygenase. Immunol Cell Biol 2008; 86:460-5. [DOI: 10.1038/icb.2008.8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Janet Lye‐Keng Wee
- Faculty of Veterinary Science, Veterinary Preclinical Centre, The University of MelbourneParkvilleAustralia
| | - Dale Christiansen
- Department of Surgery, Austin Health/Northern Health Heidelberg, University of MelbourneVictoriaAustralia
| | - Yu‐Qin Li
- Department of Surgery, Austin Health/Northern Health Heidelberg, University of MelbourneVictoriaAustralia
| | - William Boyle
- Department of Surgery, Austin Health/Northern Health Heidelberg, University of MelbourneVictoriaAustralia
| | - Mauro S Sandrin
- Department of Surgery, Austin Health/Northern Health Heidelberg, University of MelbourneVictoriaAustralia
| |
Collapse
|
412
|
Abstract
L-kynurenine is an intermediate in the pathway of the metabolism of L-tryptophan to nicotinic acid. L-kynurenine is formed in the mammalian brain (40%) and is taken up from the periphery (60%), indicating that it can be transported across the BBB. It was discovered some 30 years ago that compounds in the kynurenine family have neuroactive properties. L-kynurenine, the central agent of this pathway, can be converted into two other important compounds: the neuroprotective kynurenic acid and the neurotoxic quinolinic acid. Kynurenines have been shown to be involved in many diverse physiological and pathological processes. There are a number of neurodegenerative disorders whose pathogenesis has been demonstrated to involve multiple imbalances of the kynurenine pathway metabolism. This review summarizes the main steps of the kynurenine pathway under normal conditions, discusses the metabolic disturbances and changes in this pathway in certain neurodegenerative disorders, and finally introduces the therapeutic possibilities with kynurenines.
Collapse
Affiliation(s)
- Hermina Robotka
- University of Szeged, Department of Physiology, Anatomy & Neuroscience, POB 533, and,Department of Neurology, POB 427, H-6701 Szeged, Hungary
| | - József Toldi
- University of Szeged, Department of Physiology, Anatomy & Neuroscience, POB 533, H-6701 Szeged, Hungary
| | - László Vécsei
- University of Szeged, Department of Neurology, POB 427, H-6701 Szeged, Hungary
| |
Collapse
|
413
|
Ehser S, Chuang JJ, Kleist C, Sandra-Petrescu F, Iancu M, Wang D, Opelz G, Terness P. Suppressive dendritic cells as a tool for controlling allograft rejection in organ transplantation: Promises and difficulties. Hum Immunol 2008; 69:165-73. [DOI: 10.1016/j.humimm.2008.01.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2007] [Revised: 01/23/2008] [Accepted: 01/23/2008] [Indexed: 12/20/2022]
|
414
|
Abstract
Established tumors develop ways to elude destruction by the host immune system. Recent work has revealed that tumors can take advantage of the generation of metabolic dysregulation to inhibit immune responses. Effector T-cell functions are particularly sensitive to nutrient availability in the tumor microenvironment. In this review, we highlight experimental data supporting the importance of glucose, oxygen, tryptophan, and arginine for optimal T-cell function, and the mechanisms by which these nutrients may become depleted in the tumor microenvironment. These observations provide a conceptual framework for modulating metabolic features of the T cell-tumor interaction, toward the end of promoting more effective immune-mediated tumor destruction in vivo.
Collapse
Affiliation(s)
- Candace M Cham
- Department of Pathology, Department of Medicine, and the Ben May Institute, University of Chicago, Chicago, IL 60637, USA
| | | |
Collapse
|
415
|
Abstract
Inflammatory cell infiltration of tumors contributes either positively or negatively to tumor invasion, growth, metastasis, and patient outcomes, creating a Dr. Jekyll or Mr. Hyde conundrum when examining mechanisms of action. This is due to tumor heterogeneity and the diversity of the inflammatory cell phenotypes that infiltrate primary and metastatic lesions. Tumor infiltration by macrophages is generally associated with neoangiogenesis and negative outcomes, whereas dendritic cell (DC) infiltration is typically associated with a positive clinical outcome in association with their ability to present tumor antigens (Ags) and induce Ag-specific T cell responses. Myeloid-derived suppressor cells (MDSCs) also infiltrate tumors, inhibiting immune responses and facilitating tumor growth and metastasis. In contrast, T cell infiltration of tumors provides a positive prognostic surrogate, although subset analyses suggest that not all infiltrating T cells predict a positive outcome. In general, infiltration by CD8(+) T cells predicts a positive outcome, while CD4(+) cells predict a negative outcome. Therefore, the analysis of cellular phenotypes and potentially spatial distribution of infiltrating cells are critical for an accurate assessment of outcome. Similarly, cellular infiltration of metastatic foci is also a critical parameter for inducing therapeutic responses, as well as establishing tumor dormancy. Current strategies for cellular, gene, and molecular therapies are focused on the manipulation of infiltrating cellular populations. Within this review, we discuss the role of tumor infiltrating, myeloid-monocytic cells, and T lymphocytes, as well as their potential for tumor control, immunosuppression, and facilitation of metastasis.
Collapse
Affiliation(s)
- James E Talmadge
- Laboratory of Transplantation Immunology, Department of Pathology and Microbiology, University of Nebraska Medical Center, 987660 Nebraska Medical Center, Omaha, NE 68198-7660, USA.
| | | | | |
Collapse
|
416
|
von Rango U. Fetal tolerance in human pregnancy—A crucial balance between acceptance and limitation of trophoblast invasion. Immunol Lett 2008; 115:21-32. [DOI: 10.1016/j.imlet.2007.09.014] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2007] [Revised: 09/27/2007] [Accepted: 09/30/2007] [Indexed: 12/26/2022]
|
417
|
Hill M, Tanguy-Royer S, Royer P, Chauveau C, Asghar K, Tesson L, Lavainne F, Rémy S, Brion R, Hubert FX, Heslan M, Rimbert M, Berthelot L, Moffett JR, Josien R, Grégoire M, Anegon I. IDO expands human CD4+CD25high regulatory T cells by promoting maturation of LPS-treated dendritic cells. Eur J Immunol 2007; 37:3054-62. [PMID: 17948274 DOI: 10.1002/eji.200636704] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We have previously shown that human monocyte-derived dendritic cells (DC) express indoleamine 2,3-dioxygenase (IDO), as well as several other enzymes of the kynurenine pathway at the mRNA level upon maturation. The tolerogenic mechanisms of this pathway remain unclear. Here we show that LPS-treated DC metabolize tryptophan as far as quinolinate. We found that IDO contributes to LPS and TNF-alpha + poly(I:C)-induced DC maturation since IDO inhibition using two different inhibitors impairs DC maturation. IDO knock-down using short-hairpin RNA also led to diminished LPS-induced maturation. In line with these results, the tryptophan-derived catabolites 3-hydroxyanthranilic acid and 3-hydroxykynurenine increased maturation of LPS-treated DC. Concerning the molecular mechanisms of this effect, IDO acts as an intermediate pathway in LPS-induced production of reactive oxygen species and NF-kappaB activation, two processes that lead to DC maturation. Finally, we show that mature DC expand CD4(+)CD25(high) regulatory T cells in an IDO-dependent manner. In conclusion, we show that IDO constitutes an intermediate pathway in DC maturation leading to expansion of CD4(+)CD25(high) regulatory T cells.
Collapse
|
418
|
Hara T, Ogasawara N, Akimoto H, Takikawa O, Hiramatsu R, Kawabe T, Isobe KI, Nagase F. High-affinity uptake of kynurenine and nitric oxide-mediated inhibition of indoleamine 2,3-dioxygenase in bone marrow-derived myeloid dendritic cells. Immunol Lett 2007; 116:95-102. [PMID: 18179826 DOI: 10.1016/j.imlet.2007.11.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2007] [Revised: 11/14/2007] [Accepted: 11/27/2007] [Indexed: 11/26/2022]
Abstract
Indoleamine 2,3-dioxygenase (IDO)-initiated tryptophan metabolism along the kynurenine (Kyn) pathway in some dendritic cells (DC) such as plasmacytoid DC (pDC) regulates T-cell responses. It is unclear whether bone marrow-derived myeloid DC (BMDC) express functional IDO. The IDO expression was examined in CD11c(+)CD11b(+) BMDC differentiated from mouse bone marrow cells using GM-CSF. CpG oligodeoxynucleotides (CpG) induced the expression of IDO protein with the production of nitric oxide (NO) in BMDC in cultures for 24h. In the enzyme assay using cellular extracts of BMDC, the IDO activity of BMDC stimulated with CpG was enhanced by the addition of a NO synthase (NOS) inhibitor, suggesting that IDO activity was suppressed by NO production. On the other hand, the concentration of Kyn in the culture supernatant of BMDC was not increased by stimulation with CpG. Exogenously added Kyn was taken up by BMDC independently of CpG stimulation and NO production, and the uptake of Kyn was inhibited by a transport system L-specific inhibitor or high concentrations of tryptophan. The uptake of tryptophan by BMDC was markedly lower than that of Kyn. In conclusion, IDO activity in BMDC is down-regulated by NO production, whereas BMDC strongly take up exogenous Kyn.
Collapse
Affiliation(s)
- Toshiaki Hara
- Department of Medical Technology, Nagoya University School of Health Sciences, 1-20 Daikominami-1-chome, Higashi-ku, Nagoya, Aichi, 461-8673, Japan
| | | | | | | | | | | | | | | |
Collapse
|
419
|
Lizée G, Cantu MA, Hwu P. Less yin, more yang: confronting the barriers to cancer immunotherapy. Clin Cancer Res 2007; 13:5250-5. [PMID: 17875752 DOI: 10.1158/1078-0432.ccr-07-1722] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Clinical trials involving T cell-based immunotherapy for the treatment of human cancer have shown limited degrees of success. In cancer vaccine trials conducted at multiple centers worldwide, immunization has often resulted in the robust elicitation of T cells that specifically recognize antigens expressed on the surface of tumor cells. However, to date, objective clinical responses resulting from these approaches have remained relatively rare. By contrast, adoptive transfer of laboratory-expanded T cells into patients has had more success, producing impressive clinical regressions in a subset of advanced metastatic melanoma patients. The failure of activated T cells to consistently induce clinical responses in many other patients has pushed us toward a deeper understanding of natural immunoregulatory mechanisms that are directly responsible for diminishing tumor-specific T-cell activation, migration, and effector function in vivo. Such immunosuppressive factors likely evolved to prevent autoimmunity, but are frequently co-opted by tumors to evade tumor-specific immune responses. With this knowledge, it now becomes imperative to develop specific clinical interventions capable of eliminating tumor-specific immunosuppression, with the goal of shifting the balance to favor effector T-cell function and tumor cell killing.
Collapse
Affiliation(s)
- Gregory Lizée
- Department of Melanoma Medical Oncology, M. D. Anderson Cancer Center, Houston, Texas 77030, USA.
| | | | | |
Collapse
|
420
|
Williams CA, Harry RA, McLeod JD. Apoptotic cells induce dendritic cell-mediated suppression via interferon-gamma-induced IDO. Immunology 2007; 124:89-101. [PMID: 18067553 DOI: 10.1111/j.1365-2567.2007.02743.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Dendritic cells (DC) are sensitive to their local environment and are affected by proximal cell death. This study investigated the modulatory effect of cell death on DC function. Monocyte-derived DC exposed to apoptotic Jurkat or primary T cells failed to induce phenotypic maturation of the DC and were unable to support CD4+ allogeneic T-cell proliferation compared with DC exposed to lipopolysaccharide (LPS) or necrotic cells. Apoptotic cells coincubated with LPS- or necrotic cell-induced mature DC significantly suppressed CD80, CD86 and CD83 and attenuated LPS-induced CD4+ T-cell proliferation. Reduced levels of interleukin-12 (IL-12), IL-10, IL-6, tumour necrosis factor-alpha and interferon-gamma (IFN-gamma) were found to be concomitant with the suppressive activity of apoptotic cells upon DC. Furthermore, intracellular staining confirmed IFN-gamma expression by DC in association with apoptotic environments. The specific generation of IFN-gamma by DC within apoptotic environments is suggestive of an anti-inflammatory role by the induction of indoleamine 2,3-dioxygenase (IDO). Both neutralization of IFN-gamma and IDO blockade demonstrated a role for IFN-gamma and IDO in the suppression of CD4+ T cells. Moreover, we demonstrate that IDO expression within the DC was found to be IFN-gamma-dependent. Blocking transforming growth factor-beta (TGF-beta) also produced a partial release in T-cell proliferation. Our study strongly suggests that apoptosis-induced DC suppression is not an immunological null event and two prime mediators underpinning these functional effects are IFN-gamma-induced IDO and TGF-beta.
Collapse
Affiliation(s)
- Charlotte A Williams
- Centre for Research in Biomedicine, Faculty of Applied Sciences, University of the West of England, Bristol BS16 1QY, United Kingdom
| | | | | |
Collapse
|
421
|
3-Hydroxyanthranilic acid inhibits PDK1 activation and suppresses experimental asthma by inducing T cell apoptosis. Proc Natl Acad Sci U S A 2007; 104:18619-24. [PMID: 18003900 DOI: 10.1073/pnas.0709261104] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
3-Hydroxyanthranilic acid (HAA), a compound generated during tryptophan metabolism initiated by indoleamine 2,3-dioxygenase, is known to induce T cell death, but its molecular target is not known. Here we report that HAA inhibits NF-kappaB activation upon T cell antigen receptor engagement by specifically targeting PDK1. Inhibition of NF-kappaB by HAA leads to dysfunction and cell death of activated Th2 cells, which in turn suppresses experimental asthma. Inhibition of NF-kappaB and induction of apoptosis is specific to CD4 T cells because HAA does not inhibit NF-kappaB activation or induce cell death upon Toll-like receptor 4 stimulation in dendritic cells. Thus, HAA is a natural inhibitor that restrains T cell expansion and activation.
Collapse
|
422
|
Puccetti P, Grohmann U. IDO and regulatory T cells: a role for reverse signalling and non-canonical NF-kappaB activation. Nat Rev Immunol 2007; 7:817-23. [PMID: 17767193 DOI: 10.1038/nri2163] [Citation(s) in RCA: 368] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The immunoregulatory enzyme indoleamine 2,3-dioxygenase (IDO) suppresses T-cell responses and promotes immune tolerance in mammalian pregnancy, tumour resistance, chronic infection, autoimmunity and allergic inflammation. 'Reverse signalling' and 'non-canonical activation' of the transcription factor nuclear factor-kappaB (NF-kappaB) characterize the peculiar events that occur in dendritic cells when T-cell-engaged ligands work as signalling receptors and culminate in the induction of IDO expression by dendritic cells in an inhibitor of NF-kappaB (IkappaB) kinase-alpha (IKKalpha)-dependent manner. In this Opinion article, we propose that IDO acts as a bridge between dendritic cells and CD4+ regulatory T cells, and that regulatory T cells use reverse signalling and non-canonical NF-kappaB activation for effector function and self-propagation. This mechanism may also underlie the protective function of glucocorticoids in pathological conditions.
Collapse
Affiliation(s)
- Paolo Puccetti
- Paolo Puccetti and Ursula Grohmann are at the Department of Experimental Medicine, Section of Pharmacology, University of Perugia, Perugia 06126, Italy.
| | | |
Collapse
|
423
|
Derks RA, Jankowska-Gan E, Xu Q, Burlingham WJ. Dendritic cell type determines the mechanism of bystander suppression by adaptive T regulatory cells specific for the minor antigen HA-1. THE JOURNAL OF IMMUNOLOGY 2007; 179:3443-51. [PMID: 17785778 DOI: 10.4049/jimmunol.179.6.3443] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
One hallmark of acquired tolerance is bystander suppression, a process whereby Ag-specific (adaptive) T regulatory cells (TR) inhibit the T effector cell response both to specific Ag and to a colocalized third-party Ag. Using peripheral blood T cells from recipients of HLA-identical kidney transplants as responders in the trans vivo-delayed type hypersensitivity assay, we found that dendritic cells (DC), but not monocyte APCs, could mediate bystander suppression of EBV-specific recall response. When HA-1(H) peptide was added to mixtures of plasmacytoid DC (pDC) and T cells, bystander suppression of the response to a colocalized recall Ag occurred primarily via indolamine-2,3-dioxygenase (IDO) production. Similarly, addition of HA-1(H) peptide to cocultures of T cells and pDC, but not myeloid DC (mDC), induced IDO activity in vitro. When mDC presented HA-1(H) peptide to Ag-specific CD8+ TR, cytokine release (TGF-beta, IL-10, or both) was the primary mode of bystander suppression. Bystander suppression via mDC was reversed not only by Ab to TGF-beta and its receptor on T cells, but also by Ab to thrombospondin-1. EBV addition did not induce IDO or thrombospondin-1 in T-DC cocultures, suggesting that these DC products are not induced by T effector cells, but only by TR cells. These results shed light upon the mechanism of bystander suppression by donor Ag-specific TR in patients with organ transplant tolerance and underscores the distinct and critical roles of mDC and pDCs in this phenomenon.
Collapse
MESH Headings
- Adaptation, Physiological/immunology
- Animals
- Antigens, Viral/immunology
- Bystander Effect/immunology
- Cells, Cultured
- Coculture Techniques
- Cross-Priming/immunology
- Dendritic Cells/classification
- Dendritic Cells/cytology
- Dendritic Cells/immunology
- Enzyme Activation/immunology
- Epitopes, T-Lymphocyte/immunology
- Herpesvirus 4, Human/immunology
- Humans
- Hypersensitivity, Delayed/immunology
- Hypersensitivity, Delayed/prevention & control
- Immune Tolerance
- Indoleamine-Pyrrole 2,3,-Dioxygenase/biosynthesis
- Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism
- Indoleamine-Pyrrole 2,3,-Dioxygenase/physiology
- Kidney Transplantation/immunology
- Mice
- Mice, SCID
- Minor Histocompatibility Antigens/immunology
- Minor Histocompatibility Antigens/metabolism
- Oligopeptides/immunology
- Oligopeptides/metabolism
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
Collapse
Affiliation(s)
- Richard A Derks
- Department of Surgery, University of Wisconsin, Madison, WI 53792, USA
| | | | | | | |
Collapse
|
424
|
Fujigaki H, Saito K. Inhibition of increased indoleamine 2,3-dioxygenase activity exacerbates neuronal cell death in various CNS disorders. ACTA ACUST UNITED AC 2007. [DOI: 10.1016/j.ics.2007.07.050] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
425
|
Jalili RB, Rayat GR, Rajotte RV, Ghahary A. Suppression of islet allogeneic immune response by indoleamine 2,3 dioxygenase-expressing fibroblasts. J Cell Physiol 2007; 213:137-43. [PMID: 17477384 DOI: 10.1002/jcp.21100] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Success of transplantation of pancreatic islets which is a promising way for restoring efficient insulin regulation in type 1 diabetes depends on lifelong use of immunosuppressive drugs. To eliminate the use of systemic immunosuppressive drugs for islet transplantation, we examined the potential use of a local immunosuppressive factor, indoleamine 2,3-dioxygenase (IDO). Thus, the aim of this study was to determine whether local expression of IDO in bystander syngeneic fibroblasts could prevent islet allogeneic immune response in vitro. C57BL/6 (B6) mouse fibroblasts were induced to express IDO by either IFN-gamma treatment or transduction with an adenoviral vector and were co-cultured with B6 mouse lymphocytes and BALB/c mouse pancreatic islets in the presence or absence of an IDO inhibitor. Proliferation of lymphocytes were then assessed using [(3)H]-thymidine incorporation assay. IDO-expression by co-cultured syngeneic fibroblasts resulted in a five-fold decrease in lymphocyte proliferation rate upon stimulation of lymphocytes by allogeneic mouse pancreatic islets (21.9% +/- 5.3 and 22.1% +/- 4.9 in the preparations with IFN-gamma treated and genetically modified IDO-expressing fibroblasts, respectively vs. 100% in control groups, P < 0.01). Allogeneic response was restored when IDO inhibitor was added to the culture indicating that suppression was due to IDO. In conclusion, this study shows that local expression of IDO by syngeneic bystander fibroblasts can suppress in vitro proliferation of lymphocytes in response to stimulation with allogeneic pancreatic islets. This local immunosuppressive function of IDO may be employed for development of a novel alternative strategy for preventing allogeneic islet graft rejection.
Collapse
MESH Headings
- Animals
- Fibroblasts/drug effects
- Fibroblasts/enzymology
- Fibroblasts/immunology
- Green Fluorescent Proteins/genetics
- In Vitro Techniques
- Indoleamine-Pyrrole 2,3,-Dioxygenase/antagonists & inhibitors
- Indoleamine-Pyrrole 2,3,-Dioxygenase/genetics
- Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism
- Interferon-gamma/pharmacology
- Islets of Langerhans/enzymology
- Islets of Langerhans/immunology
- Islets of Langerhans Transplantation/immunology
- Isoantigens
- Lymphocyte Activation
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Recombinant Proteins/genetics
Collapse
Affiliation(s)
- Reza B Jalili
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada V6H 3Z6
| | | | | | | |
Collapse
|
426
|
Li J, Meinhardt A, Roehrich ME, Golshayan D, Dudler J, Pagnotta M, Trucco M, Vassalli G. Indoleamine 2,3-dioxygenase gene transfer prolongs cardiac allograft survival. Am J Physiol Heart Circ Physiol 2007; 293:H3415-23. [PMID: 17933973 DOI: 10.1152/ajpheart.00532.2007] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Cells that express indoleamine 2,3-dioxygenase (IDO), the rate-limiting enzyme in the catabolism of tryptophan, suppress T cell responses and promote immunological tolerance. However, their role in solid organ transplantation is incompletely understood. We analyzed T cell responses to allogeneic dendritic cells (DCs) genetically modified to express the gene encoding IDO in vitro and IDO gene transfer into the donor heart in a cardiac transplant model in vivo. Bone marrow-derived DCs transduced with the gene encoding IDO produced active IDO protein. This was associated with decreased stimulation of allogeneic T cell proliferation in the mixed leukocyte reaction in vitro. In a cardiac transplant model, adenovirus-mediated IDO gene transfer into the donor heart resulted in transgene expression predominantly in cardiomyocytes. Fischer-344 rat donor hearts transduced with the gene encoding IDO survived for longer periods of time when placed in Lewis rat recipients compared with control vector or vehicle alone [median survival times of 17 (range: 12-22) days vs. 10 (range: 8-14) and 9 (range: 8-13) days, respectively, P < 0.0001]. IDO gene transfer combined with low-dose cyclosporin A (CsA) was more effective than CsA alone (P < 0.05). Numbers of monocytes/macrophages, CD4(+) cells, and CD8alpha(+) cells infiltrating the graft as well as intragraft cytokine transcript levels for IFN-gamma, IL-1, TNF-alpha, regulated upon secretion, normal T cell expressed, and secreted/chemokine (C-C motif) ligand 5 were decreased after IDO gene transfer (P < 0.05). In conclusion, DCs genetically engineered to overexpress IDO modulate T cell alloresponses in vitro. IDO gene transfer into the donor heart attenuates acute cardiac allograft rejection. Regulation of tryptophan catabolism by means of IDO overexpression may be a useful approach in heart transplantation.
Collapse
Affiliation(s)
- Jianping Li
- Centre Hospitalier Universitaire Vaudois, BH10, Lausanne 1011, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
427
|
Selmani Z, Naji A, Zidi I, Favier B, Gaiffe E, Obert L, Borg C, Saas P, Tiberghien P, Rouas-Freiss N, Carosella ED, Deschaseaux F. Human leukocyte antigen-G5 secretion by human mesenchymal stem cells is required to suppress T lymphocyte and natural killer function and to induce CD4+CD25highFOXP3+ regulatory T cells. Stem Cells 2007; 26:212-22. [PMID: 17932417 DOI: 10.1634/stemcells.2007-0554] [Citation(s) in RCA: 771] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Adult bone marrow-derived mesenchymal stem cells (MSCs) are multipotent cells that are the subject of intense investigation in regenerative medicine. In addition, MSCs possess immunomodulatory properties with therapeutic potential to prevent graft-versus-host disease (GvHD) in allogeneic hematopoietic cell transplantation. Indeed, MSCs can inhibit natural killer (NK) function, modulate dendritic cell maturation, and suppress allogeneic T-cell response. Here, we report that the nonclassic human leukocyte antigen (HLA) class I molecule HLA-G is responsible for the immunomodulatory properties of MSCs. Our data show that MSCs secrete the soluble isoform HLA-G5 and that such secretion is interleukin-10-dependent. Moreover, cell contact between MSCs and allostimulated T cells is required to obtain a full HLA-G5 secretion and, as consequence, a full immunomodulation from MSCs. Blocking experiments using neutralizing anti-HLA-G antibody demonstrate that HLA-G5 contributes first to the suppression of allogeneic T-cell proliferation and then to the expansion of CD4(+)CD25(high)FOXP3(+) regulatory T cells. Furthermore, we demonstrate that in addition to their action on the adaptive immune system, MSCs, through HLA-G5, affect innate immunity by inhibiting both NK cell-mediated cytolysis and interferon-gamma secretion. Our results provide evidence that HLA-G5 secreted by MSCs is critical to the suppressive functions of MSCs and should contribute to improving clinical therapeutic trials that use MSCs to prevent GvHD.
Collapse
Affiliation(s)
- Zohair Selmani
- Institut National de la Santé et de la Recherche Médicale U645, IFR 133, Universite de Franche-Comte, Etablissement Français du Sang Bourgogne-Franche-Comte, Besançon, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
428
|
Cuffy MC, Silverio AM, Qin L, Wang Y, Eid R, Brandacher G, Lakkis FG, Fuchs D, Pober JS, Tellides G. Induction of Indoleamine 2,3-Dioxygenase in Vascular Smooth Muscle Cells by Interferon-γ Contributes to Medial Immunoprivilege. THE JOURNAL OF IMMUNOLOGY 2007; 179:5246-54. [PMID: 17911610 DOI: 10.4049/jimmunol.179.8.5246] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Atherosclerosis and graft arteriosclerosis are characterized by leukocytic infiltration of the vessel wall that spares the media. The mechanism(s) for medial immunoprivilege is unknown. In a chimeric humanized mouse model of allograft rejection, medial immunoprivilege was associated with expression of IDO by vascular smooth muscle cells (VSMCs) of rejecting human coronary artery grafts. Inhibition of IDO by 1-methyl-tryptophan (1-MT) increased medial infiltration by allogeneic T cells and increased VSMC loss. IFN-gamma-induced IDO expression and activity in cultured human VSMCs was considerably greater than in endothelial cells (ECs) or T cells. IFN-gamma-treated VSMCs, but not untreated VSMCs nor ECs with or without IFN-gamma pretreatment, inhibited memory Th cell alloresponses across a semipermeable membrane in vitro. This effect was reversed by 1-MT treatment or tryptophan supplementation and replicated by the absence of tryptophan, but not by addition of tryptophan metabolites. However, IFN-gamma-treated VSMCs did not activate allogeneic memory Th cells, even after addition of 1-MT or tryptophan. Our work extends the concept of medial immunoprivilege to include immune regulation, establishes the compartmentalization of immune responses within the vessel wall due to distinct microenvironments, and demonstrates a duality of stimulatory EC signals versus inhibitory VSMC signals to artery-infiltrating T cells that may contribute to the chronicity of arteriosclerotic diseases.
Collapse
MESH Headings
- Animals
- Cell Movement/drug effects
- Cell Movement/immunology
- Cells, Cultured
- Coculture Techniques
- Coronary Vessels/enzymology
- Coronary Vessels/immunology
- Coronary Vessels/transplantation
- Endothelium, Vascular/cytology
- Endothelium, Vascular/enzymology
- Endothelium, Vascular/immunology
- Enzyme Induction/immunology
- Female
- Growth Inhibitors/antagonists & inhibitors
- Growth Inhibitors/biosynthesis
- Growth Inhibitors/physiology
- Humans
- Indoleamine-Pyrrole 2,3,-Dioxygenase/antagonists & inhibitors
- Indoleamine-Pyrrole 2,3,-Dioxygenase/biosynthesis
- Indoleamine-Pyrrole 2,3,-Dioxygenase/physiology
- Interferon-gamma/physiology
- Lymphocyte Activation/immunology
- Mice
- Mice, SCID
- Muscle, Smooth, Vascular/enzymology
- Muscle, Smooth, Vascular/immunology
- Muscle, Smooth, Vascular/pathology
- T-Lymphocyte Subsets/drug effects
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/pathology
- T-Lymphocytes, Helper-Inducer/immunology
- Tryptophan/analogs & derivatives
- Tryptophan/pharmacology
- Tunica Media/enzymology
- Tunica Media/immunology
- Tunica Media/pathology
Collapse
Affiliation(s)
- Madison C Cuffy
- Interdepartmental Program in Vascular Biology and Transplantation, Department of Surgery, Yale University School of Medicine, New Haven, CT 06510, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
429
|
Ou X, Cai S, Liu P, Zeng J, He Y, Wu X, Du J. Enhancement of dendritic cell-tumor fusion vaccine potency by indoleamine-pyrrole 2,3-dioxygenase inhibitor, 1-MT. J Cancer Res Clin Oncol 2007; 134:525-33. [PMID: 17909857 DOI: 10.1007/s00432-007-0315-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2007] [Accepted: 09/10/2007] [Indexed: 12/29/2022]
Abstract
PURPOSE Dendritic cell (DC)-based cancer vaccines are currently being evaluated as novel anti-tumor vaccination strategies, but in some cases, they are demonstrated to have poor clinical efficacies than anticipated. A potential reason is immune tolerance due to the immunosuppressive enzyme, indoleamine-pyrrole 2,3-dioxygenase (IDO). The aim of this study was to determine whether blocking the activity of IDO might improve the anti-tumor efficacy of DC/Lewis lung carcinoma (LLC) fusion vaccine applied to the mouse LLC model. METHODS To prepare the DC/LLC fusion vaccine, DCs were fused with LLC using polyethylene glycol (PEG) as described. The IDO expression in the DC/LLC fusion vaccine and in the vaccinated mice was detected by western blot (WB) and/or immunohistochemical (IHC) analysis. This fusion vaccine, as a single agent or in combination with 1-methyl-tryptophan (1-MT, an IDO inhibitor), was administered to LLC mice. The anti-tumor efficacy in different treatment was determined by regular observation of tumor development and the level of splenic cytotoxic T lymphocyte (CTL) response, which was examined by lactate dehydrogenase (LDH) release. RESULTS In the LLC mice, we observed that IDO-positive cells were extensively accumulated in tumor draining lymph nodes (TDLNs). Furthermore, WB and IHC analysis results showed that vaccination with fusion DC/LLC cells alone caused significant up-regulation of IDO in spleens. 1-MT enhanced the anti-tumor efficacy elicited by DC/LLC fusion vaccine via delaying the tumor development and inducing stronger splenic CTL responses. CONCLUSIONS Our results indicate an IDO-mediated immunosuppressive mechanism might be involved in weakening the anti-tumor efficacy elicited by DC/LLC fusion vaccine, and specific inhibition of IDO activity might be required for development of cancer vaccines.
Collapse
MESH Headings
- Animals
- Blotting, Western
- Cancer Vaccines/immunology
- Carcinoma, Lewis Lung/immunology
- Carcinoma, Lewis Lung/therapy
- Dendritic Cells/immunology
- Enzyme Inhibitors/pharmacology
- Fluorescent Antibody Technique
- Immune Tolerance/physiology
- Immunohistochemistry
- Indoleamine-Pyrrole 2,3,-Dioxygenase/antagonists & inhibitors
- Indoleamine-Pyrrole 2,3,-Dioxygenase/drug effects
- Leukocytes, Mononuclear/enzymology
- Lymph Nodes/enzymology
- Male
- Mice
- Mice, Inbred C57BL
- T-Lymphocytes, Cytotoxic/immunology
- Tryptophan/analogs & derivatives
- Tryptophan/pharmacology
Collapse
Affiliation(s)
- Xueling Ou
- Center of Microbiology, Biochemistry, and Pharmacology, School of Pharmaceutical Science, Sun Yat-Sen University, 74 Zhongshan Road, Guangzhou 510080, China
| | | | | | | | | | | | | |
Collapse
|
430
|
Fan K, Wang H, Wei H, Zhou Q, Kou G, Hou S, Qian W, Dai J, Li B, Zhang Y, Zhu T, Guo Y. Blockade of LIGHT/HVEM and B7/CD28 Signaling Facilitates Long-Term Islet Graft Survival With Development of Allospecific Tolerance. Transplantation 2007; 84:746-54. [PMID: 17893608 DOI: 10.1097/01.tp.0000280545.14489.df] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Previous studies have shown that blockade of LIGHT, a T-cell costimulatory molecule belonging to the tumor necrosis factor (TNF) superfamily, by soluble lymphotoxin beta receptor-Ig (LTbetaR-Ig) inhibited the development of graft-versus-host disease. The cardiac allografts were significantly prolonged in LIGHT deficient mice. No data are yet available regarding the role of the LIGHT/HVEM pathway in more stringent fully allogeneic models such as skin and islet transplantation models. METHODS Streptozotocin-induced chemical diabetic BALB/C mice underwent transplantation with allogeneic C57BL/6 islets and were treated with LTbetaR-Ig, CTLA4-Ig or a combination of both in the early peritransplant period. RESULTS Administration of CTLA4-Ig or LTbeta R-Ig alone only increased graft survival to 55 days and 27 days respectively, whereas simultaneous blockade of both pathways significantly prolonged the islet allograft survival for more than 100 days. Long-term survivors were retransplanted with donor-specific (C57BL/6) islets and the grafted islets remained functional for more than 100 days. All of islet allografts were protected against rejection when the mixtures of 1x10(6) CD4+ T cells from tolerant mice and islet allografts were cotransplanted under the renal capsule of the naïve BALB/c recipients. CONCLUSIONS These data indicate that: 1) a synergistic effect for prolonged graft survival can be obtained by simultaneously blocking LIGHT and CD28 signaling in the stringent model of islet allotransplantation; 2) development of donor-specific immunological tolerance is associated with the presence of regulatory T-cell activity; and 3) local cotransplantation of the allografts with the regulatory T cells can effectively prevent allograft rejection and induce donor-specific tolerance in lymphocytes-sufficient recipients.
Collapse
Affiliation(s)
- Kexing Fan
- International Joint Cancer Institute, The Second Military Medical University, Shanghai, PR China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
431
|
Feunou P, Vanwetswinkel S, Gaudray F, Goldman M, Matthys P, Braun MY. Foxp3+CD25+ T regulatory cells stimulate IFN-gamma-independent CD152-mediated activation of tryptophan catabolism that provides dendritic cells with immune regulatory activity in mice unresponsive to staphylococcal enterotoxin B. THE JOURNAL OF IMMUNOLOGY 2007; 179:910-7. [PMID: 17617582 DOI: 10.4049/jimmunol.179.2.910] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Mice made unresponsive by repeated injection of staphylococcal enterotoxin B (SEB) contained SEB-specific CD25(+)CD4(+)TCRBV8(+) T cells that were able to transfer their state of unresponsiveness to primary-stimulated T cells. About one-half of these cells stably up-regulated the expression of CD152. We undertook the present study to determine whether CD152(high) cells seen in this system were T regulatory cells responsible for suppression or whether they represented SEB-activated CD4(+) T effector cells. Our results show that, among SEB-specific TCRBV8(+) T cells isolated from unresponsive mice, all CD152(high)CD25(+)CD4(+) T cells expressed Foxp3, the NF required for differentiation and function of natural T regulatory cells. Moreover, suppression by CD25(+)CD4(+)TCRBV8(+) T cells was fully inhibited by anti-CD152 Abs. Following stimulation by soluble CD152-Ig, dendritic cells (DC) isolated from unresponsive mice strongly increased the expression and the function of indoleamine-2,3-dioxygenase (IDO), the enzyme responsible for the catabolism of tryptophan. This capacity to activate IDO was independent of IFN-gamma production by DC because CD152-Ig stimulation of DC isolated from SEB-treated IFN-gamma-deficient animals activated IDO expression and function. Finally, adding 1-methyl-tryptophan, an inhibitor of tryptophan catabolism, increased substantially the capacity of DC from unresponsive animals to stimulate primary T cell response toward SEB. Thus, we conclude that IFN-gamma-independent CD152-mediated activation of tryptophan catabolism by Foxp3(+)CD25(+) T regulatory cells provides DC with immune regulatory activity in mice unresponsive to SEB.
Collapse
Affiliation(s)
- Pascal Feunou
- Institute for Medical Immunology, Université Libre de Bruxelles, Gosselies, Belgium
| | | | | | | | | | | |
Collapse
|
432
|
Popov A, Schultze JL. IDO-expressing regulatory dendritic cells in cancer and chronic infection. J Mol Med (Berl) 2007; 86:145-60. [PMID: 17876564 DOI: 10.1007/s00109-007-0262-6] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2007] [Revised: 08/19/2007] [Accepted: 08/23/2007] [Indexed: 01/06/2023]
Abstract
Immune evasion and T cell tolerance induction have been associated both with malignant disease and chronic infection. In recent years, increasing evidence has been accumulated that antigen-presenting cells such as dendritic cells (DC) play a major role in immune regulation. They are not only involved in the induction of immunity but also can inhibit immune responses. Interesting parallels for major molecular mechanisms involved in turning DC from stimulatory to regulatory cells have been uncovered between malignant disease and chronic infection. Apparently, not only inhibitory cytokines such as IL-10 seem to play a role, but also metabolic mechanisms dysregulating tryptophan metabolism, thereby, leading to inhibition of T cells and pathogens. We focus here on recent findings establishing the tryptophan catabolizing enzyme indoleamine-pyrrole 2,3 dioxygenase (IDO) as a central feature of DC with regulatory function both in cancer and chronic infection. Induction of enzymatically active IDO can be triggered by various soluble and membrane-bound factors, and in general, require interferon (IFN) signaling. In addition, based on the most recently established link between tumor necrosis factor alpha (TNFalpha), prostaglandin E2 and IDO, a new model of regulation of IDO in context of cancer and infection is proposed. In light of the increasing use of anti-TNFalpha drugs, these findings are also of great interest to the clinician scientist.
Collapse
Affiliation(s)
- Alexey Popov
- Molecular Tumor Biology and Tumor Immunology, Clinic I for Internal Medicine, Cologne, Germany
| | | |
Collapse
|
433
|
Terness P, Kallikourdis M, Betz AG, Rabinovich GA, Saito S, Clark DA. Tolerance signaling molecules and pregnancy: IDO, galectins, and the renaissance of regulatory T cells. Am J Reprod Immunol 2007; 58:238-54. [PMID: 17681041 DOI: 10.1111/j.1600-0897.2007.00510.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
PROBLEM Is the concept of maternal tolerance preventing rejection of the semi-allogeneic 'fetal allograft' still valid? METHOD OF STUDY Compilation of expert reviews of literature and recent advances in research on indoleamine-2,3 dioxygenase (IDO), regulatory T cells and galectin-1. RESULTS AND CONCLUSION A role for IDO in pregnancy success remains speculative, but solid data exist to support a role for Treg cells, and for galectin-1 in induction and action of Treg cells. Just as several signals may need to be simultaneously present to induce Th1 cytokine-triggered abortions, more than 1 signal may need to be simultaneously present to prevent rejection and ensure success. Both complement and coagulation pathways appear necessary for embryo execution.
Collapse
Affiliation(s)
- Peter Terness
- Institute of Immunology, University of Heidelberg, Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
434
|
Mohib K, Guan Q, Diao H, Du C, Jevnikar AM. Proapoptotic activity of indoleamine 2,3-dioxygenase expressed in renal tubular epithelial cells. Am J Physiol Renal Physiol 2007; 293:F801-12. [PMID: 17609291 DOI: 10.1152/ajprenal.00044.2007] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Exposure of renal tubular epithelial cells (TEC) to IFN-γ/TNF-α leads to Fas/FasL-mediated self-injury, which contributes to allograft rejection. Indoleamine 2,3-dioxygenase (IDO) converts tryptophan to N-formyl-kynurenine and contributes to immune privilege in tissues by increasing Fas-mediated T cell apoptosis. However, renal expression of IDO and its role in promoting Fas-mediated TEC death have not been examined. IDO expression was analyzed by RT-PCR and Western blot. Apoptosis was measured by fluorescence-activated cell sorting analysis and terminal deoxytransferase-mediated dUTP nick end labeling. We demonstrated that functional IDO is expressed in TEC and is increased by IFN-γ/TNF-α exposure. Increased IDO activity promoted TEC apoptosis, whereas inhibition of IDO by its specific inhibitor 1-methyl-d-tryptophan attenuated IFN-γ/TNF-α-mediated TEC apoptosis and augmented TEC survival. Transgenic expression of IDO resulted in increased TEC apoptosis in the absence of proinflammatory cytokine exposure, supporting a central role for IDO in TEC injury. Inhibition of IDO-mediated TEC death by a caspase-8-specific inhibitor (Z-IETD-FMK), as well as the absence of an IDO effect in Fas-deficient and FasL-deficient TEC, supports a Fas/FasL-dependent, caspase-8-mediated mechanism for IDO-enhanced TEC death. These data suggest that renal IDO expression may be deleterious during renal inflammation, because it enhances TEC self-injury through Fas/FasL interactions. Thus attenuation of IDO may represent a novel strategy to promote kidney function following ischemia and renal allograft rejection.
Collapse
Affiliation(s)
- Kanishka Mohib
- Department of Medicine and Microbiology, The University of Western Ontario, London, Ontario, Canada
| | | | | | | | | |
Collapse
|
435
|
Nishizawa H, Hasegawa K, Suzuki M, Kamoshida S, Kato T, Saito K, Tsutsumi Y, Kurahashi H, Udagawa Y. The etiological role of allogeneic fetal rejection in pre-eclampsia. Am J Reprod Immunol 2007; 58:11-20. [PMID: 17565543 DOI: 10.1111/j.1600-0897.2007.00484.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
PROBLEM It has been demonstrated that allogeneic fetal rejection in normal pregnancy is prevented by placental indoleamine 2,3-dioxygenase (IDO). Further, an immunological etiology has been implicated in pre-eclampsia. METHOD OF STUDY We examined the differences in placental IDO activity between normal and pre-eclamptic pregnancies. RESULTS IDO mRNA expression and enzyme activity levels in the placenta were low in patients with severe pre-eclampsia. The enzyme activity also inversely correlates with the blood pressure of the patients. In the placentas from severe pre-eclampsia, IDO immunoreactivity was low, whereas regional T-cell infiltration was observed reciprocally proportional to the IDO activity. CONCLUSION Our findings implicate a potential role for IDO activity and a maternal immunological reaction against an allogeneic fetus in the etiology of pre-eclampsia.
Collapse
Affiliation(s)
- Haruki Nishizawa
- Department of Obstetrics and Gynecology, Fujita Health University, School of Medicine, Toyoake, Aichi, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
436
|
Krause P, Singer E, Darley PI, Klebensberger J, Groettrup M, Legler DF. Prostaglandin E2is a key factor for monocyte-derived dendritic cell maturation: enhanced T cell stimulatory capacity despite IDO. J Leukoc Biol 2007; 82:1106-14. [PMID: 17698915 DOI: 10.1189/jlb.0905519] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The exclusive ability of dendritic cells (DCs) to stimulate primary and secondary immune responses favors the use of antigen-loaded human monocyte-derived DCs (MoDCs) in vaccinations against tumors. Previous studies demonstrated that PGE(2) is fundamental during MoDC maturation to facilitate migration toward lymph node-derived chemokines. A recent study challenged the use of PGE(2), as PGE(2) induced IDO in mature MoDCs. In MoDCs compatible for clinical use, we now demonstrate that PGE(2) is responsible for IDO induction if matured by soluble CD40 ligand, LPS, or cytokines. In contrast, IDO expression in MoDCs matured by TLR3 triggering occurs independently of PGE(2). It is surprising that despite active IDO protein, MoDCs matured with PGE(2) display a greater potential to stimulate naïve CD4(+) and CD8(+) T cell proliferation, which is not increased further by IDO inhibition. Moreover, we found elevated levels of tryptophanyl-tRNA-synthetase (TTS) in T cells cultured with PGE(2)-matured MoDCs. Our data demonstrate that PGE(2) induces IDO in MoDCs but that T cell-stimulating capacities of PGE(2)-matured MoDCs overcome IDO activity, probably through TTS induction. As PGE(2) is critical for DC migration and enhances the capability of MoDCs to induce T cell proliferation, we highly recommend supplementing DC maturation stimuli with PGE(2) for use in clinical trials.
Collapse
Affiliation(s)
- Petra Krause
- Biotechnology Institute Thurgau (BITg), University of Konstanz, Unterseestrasse 47, CH-8280, Kreuzlingen, Switzerland
| | | | | | | | | | | |
Collapse
|
437
|
Fan Z, Huang XL, Kalinski P, Young S, Rinaldo CR. Dendritic cell function during chronic hepatitis C virus and human immunodeficiency virus type 1 infection. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2007; 14:1127-37. [PMID: 17634507 PMCID: PMC2043301 DOI: 10.1128/cvi.00141-07] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Hepatitis C virus (HCV) infection can persist despite HCV-specific T-cell immunity and can have a more aggressive course in persons coinfected with human immunodeficiency virus type 1 (HIV-1). Defects in antigen-presenting, myeloid dendritic cells (DCs) could underlie this T-cell dysfunction. Here we show that monocyte-derived DCs from persons with chronic HCV infection, with or without HIV-1 coinfection, being treated with combination antiretroviral therapy produced lower levels of interleukin 12 (IL-12) p70 in response to CD40 ligand (CD40L), whereas the expression of DC surface activation and costimulatory molecules was unimpaired. The deficiency in IL-12 production could be overcome by addition of gamma interferon (IFN-gamma) with CD40L, resulting in very high, comparable levels of IL-12 production by DCs from HCV- and HIV-1-infected subjects. Smaller amounts of IL-12 p70 were produced by DCs treated with the immune modulators tumor necrosis factor alpha and IL-1beta, with or without IFN-gamma, and the amounts did not differ among the uninfected and infected subjects. Blocking of IL-10 with an anti-IL-10 monoclonal antibody in the CD40L-stimulated DC cultures from HCV-infected persons increased the level of IL-12 p70 production. The ability of DCs from HCV-infected persons to stimulate allogeneic CD4+ T cells or induce IL-2, IL-5, or IL-10 in a mixed lymphocyte reaction was not impaired. Thus, myeloid DCs derived from persons with chronic HCV infection or with both HCV and HIV-1 infections have defects in IL-12 p70 production related to IL-10 activity that can be overcome by treatment of the DCs with CD40L and IFN-gamma. DCs from these infected subjects have a normal capacity to stimulate CD4+ T cells. The functional effectiveness of DCs derived from HCV-infected individuals provides a rationale for the DC-based immunotherapy of chronic HCV infection.
Collapse
Affiliation(s)
- Zheng Fan
- Graduate School of Public Health and School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | | | | | | | | |
Collapse
|
438
|
Zamanakou M, Germenis AE, Karanikas V. Tumor immune escape mediated by indoleamine 2,3-dioxygenase. Immunol Lett 2007; 111:69-75. [PMID: 17644189 DOI: 10.1016/j.imlet.2007.06.001] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2007] [Revised: 05/18/2007] [Accepted: 06/03/2007] [Indexed: 12/28/2022]
Abstract
Amongst the numerous mediators contributing towards the escape of tumors from the host's immune response against them, the enzyme indoleamine 2,3-dioxygenase (IDO) has recently attracted special attention. By catabolizing tryptophan to N-formyl-kynurenine, IDO starves T cells from this important amino acid rendering them incapable of mounting appropriate immune responses. Originally, IDO has been associated to peripheral tolerance and maternal tolerance towards the fetus. The recent identification of IDO-expressing tumor cells has implicated this molecule as a key mediator of the tumor immune escape. Mounting evidence indicates that, within the tumor microenvironment, not only tumor cells but also other infiltrating cells such as dendritic cells, monocytes and others can be sources of IDO. IDO-induced tryptophan depletion from the tumor microenvironment could be the result of either elevated levels of the enzyme or augmented tryptophan consumption by both tumor cells and antigen presenting cells of the host. Beyond the tryptophan depletion, accumulation of its metabolites into the tumor environment seems to also propagate the suppression of anti-tumor immune responses. Finally, evidence emerges indicating that IDO possibly promotes tumor immune escape by inducing an immunoregulatory or an anergic T cell phenotype at a systemic level. In this context, anti-IDO therapeutic approaches are already under investigation, considering 1-methyl-tryptophan, its analogues as well as newly identified chemicals and natural extracts.
Collapse
Affiliation(s)
- Maria Zamanakou
- Cancer Immunology Unit, Department of Immunology and Histocompatibility, School of Medicine, University of Thessaly, Larissa, Greece
| | | | | |
Collapse
|
439
|
von Rango U, Krusche CA, Beier HM, Classen-Linke I. Indoleamine-dioxygenase is expressed in human decidua at the time maternal tolerance is established. J Reprod Immunol 2007; 74:34-45. [PMID: 17321596 DOI: 10.1016/j.jri.2006.11.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2006] [Revised: 11/15/2006] [Accepted: 11/22/2006] [Indexed: 11/25/2022]
Abstract
The semi-allogeneic fetus has to be tolerated by the maternal immune system. In mice, it has been shown that inhibiting indoleamine-dioxygenase (IDO) leads to fetal rejection, suggesting a central significance for IDO in establishing maternal tolerance. Consequently, we have analyzed IDO expression in human endometrium and decidua to determine whether it may be of significance in human reproduction. Endometrial (n=60) and decidual (n=68; first and second trimester) tissue samples and isolated cells were analyzed for IDO mRNA and protein expression by real-time PCR, Western blot and immunohistochemistry. IDO expression in the decidua of proven fertile women (n=34) was compared to women presenting with their first pregnancy (n=22) and women with a history of miscarriages (n=12). Expression of IDO was localized in glandular epithelial cells and scattered stromal leukocytes. Expression started at the mid-luteal phase in the menstrual cycle and was high until the second trimester of pregnancy. However, glandular expression of IDO decreased during the second trimester, whereas expression in villous trophoblast started at this time. There were no significant differences in decidual IDO expression between proven fertile women and women presenting with their first pregnancy or women with a history of miscarriages. From the expression pattern we conclude that IDO may play a central role in human pregnancies for the establishment of maternal tolerance of fetal antigens. Thereby, IDO expression may be needed in each pregnancy independently from prior pregnancies, and a history of miscarriage may not reflect a general deficiency in IDO expression.
Collapse
Affiliation(s)
- U von Rango
- Department of Anatomy and Reproductive Biology, RWTH University Aachen, Germany.
| | | | | | | |
Collapse
|
440
|
Tas SW, Vervoordeldonk MJ, Hajji N, Schuitemaker JHN, van der Sluijs KF, May MJ, Ghosh S, Kapsenberg ML, Tak PP, de Jong EC. Noncanonical NF-kappaB signaling in dendritic cells is required for indoleamine 2,3-dioxygenase (IDO) induction and immune regulation. Blood 2007; 110:1540-9. [PMID: 17483297 DOI: 10.1182/blood-2006-11-056010] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Ligation of CD40 on dendritic cells (DCs) induces early production of inflammatory mediators via canonical NF-kappaB signaling, as well as late expression of the anti-inflammatory enzyme indoleamine 2,3-dioxygenase (IDO) via unknown signal transduction. By selective blocking of either the canonical NF-kappaB pathway using the NEMO-binding domain peptide or the noncanonical NF-kappaB pathway by small interfering RNA, we demonstrate that IDO expression requires noncanonical NF-kappaB signaling. Also, noncanonical NF-kappaB signaling down-regulates proinflammatory cytokine production in DCs. In addition, selective activation of the noncanonical NF-kappaB pathway results in noninflammatory DCs that suppress T-cell activation and promote the development of T cells with regulatory properties. These findings reveal an important role of the noncanonical NF-kappaB pathway in the regulation of immunity.
Collapse
Affiliation(s)
- Sander W Tas
- Division of Clinical Immunology and Rheumatology, Academic Medical Center (AMC)/University of Amsterdam, Amsterdam, the Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
441
|
Lee HJ, Jeong YI, Lee TH, Jung ID, Lee JS, Lee CM, Kim JI, Joo H, Lee JD, Park YM. Rosmarinic acid inhibits indoleamine 2,3-dioxygenase expression in murine dendritic cells. Biochem Pharmacol 2007; 73:1412-21. [PMID: 17229401 DOI: 10.1016/j.bcp.2006.12.018] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2006] [Revised: 12/11/2006] [Accepted: 12/14/2006] [Indexed: 10/23/2022]
Abstract
Indoleamine 2,3-dioxygenase (IDO), a key enzyme that catalyses the initial and rate-limiting step in the degradation of the tryptophan, is simultaneously expressed in murine dendritic cells and macrophages stimulated with interferon-gamma (IFN-gamma). In the present study, we investigated whether rosmarinic acid (RA), which is suggested to exhibit anti-oxidant and anti-cyclooxygenase properties, could suppress the functional expression of IDO in murine bone marrow-derived dendritic cells (BMDCs) stimulated with IFN-gamma. Treatment with RA reduced intracellular expression of IDO both in IFN-gamma-activated BMDCs in vitro and in CD11c(+)CD8alpha(+) DCs in vivo tumor-bearing mice model. Consequently, we obtained evidence that RA suppresses the functional activity of IDO and blocks the IDO-dependent T cell suppression. In IFN-gamma-mediated induction of IDO transcription, activation of the signal transducer and activator of transcription 1 (STAT1) is important to be express IDO in IFN-gamma-stimulated BMDCs. In this study, we demonstrated that the RA could also suppress IFN-gamma-induced STAT1 activation. These novel findings provide a new insight into that RA as a pharmacological and transcriptional inhibitor of IDO is worthy of clinical application as well as further investigation for IDO regulation.
Collapse
Affiliation(s)
- Hwa Jung Lee
- Department of Microbiology and Immunology, National Research Laboratory of Dendritic Cell Differentiation & Regulation, Medical Research Institute, College of Medicine, Pusan National University, Ami-dong 1-10, Seo-Gu, Pusan 602-739, South Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
442
|
English K, Barry FP, Field-Corbett CP, Mahon BP. IFN-gamma and TNF-alpha differentially regulate immunomodulation by murine mesenchymal stem cells. Immunol Lett 2007; 110:91-100. [PMID: 17507101 DOI: 10.1016/j.imlet.2007.04.001] [Citation(s) in RCA: 336] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2007] [Revised: 04/03/2007] [Accepted: 04/04/2007] [Indexed: 02/08/2023]
Abstract
Murine mesenchymal stem cells (MSC) have the ability to inhibit allogeneic immune responses. Two different mechanisms, either cell contact-dependent or independent, have been proposed to account for this immunosuppression. The focus of this study was to elucidate the involvement of soluble suppressive factors secreted by murine MSC in an inflammatory setting, and their role in MSC immunomodulation. In a non-inflammatory environment, bone marrow derived murine MSC constitutively expressed low levels of COX-2, PGE-2, TGF-beta1 and HGF, but not IL-10, PD-1, PD-L1 or PD-L2. These MSC were able to significantly reduce alloantigen driven proliferation in mixed lymphocyte reactions as well as mitogen driven proliferation. The pro-inflammatory cytokines IFN-gamma and TNF-alpha did not ablate MSC mediated immunosuppression. MSC expression of PGE-2, IDO and PD-L1 was differentially regulated by these cytokines. COX-2 and PGE-2 expression by MSC were upregulated by both IFN-gamma and TNF-alpha, and using a biochemical inhibitor this was shown to have an essential, non-redundant role in modulating alloantigen-driven proliferation. However, the surface expression of PD-L1 was induced by IFN-gamma but not TNF-alpha and similarly functional IDO expression was only induced by IFN-gamma stimulation. Blocking studies using neutralising antibodies and biochemical antagonists revealed that while PD-L1 induction was not essential, IDO expression was a prerequisite for IFN-gamma mediated MSC immunomodulation. These data demonstrate that murine MSC expression of immunomodulatory factors dramatically changes in a pro-inflammatory environment and that IFN-gamma in particular has an important role in regulating MSC immunomodulatory factor expression.
Collapse
Affiliation(s)
- Karen English
- Mucosal Immunology Laboratory, Institute of Immunology, National University of Ireland Maynooth, Maynooth, Co. Kildare, Ireland
| | | | | | | |
Collapse
|
443
|
Grohmann U, Volpi C, Fallarino F, Bozza S, Bianchi R, Vacca C, Orabona C, Belladonna ML, Ayroldi E, Nocentini G, Boon L, Bistoni F, Fioretti MC, Romani L, Riccardi C, Puccetti P. Reverse signaling through GITR ligand enables dexamethasone to activate IDO in allergy. Nat Med 2007; 13:579-86. [PMID: 17417651 DOI: 10.1038/nm1563] [Citation(s) in RCA: 251] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2006] [Accepted: 02/18/2007] [Indexed: 01/18/2023]
Abstract
Glucocorticoid-induced tumor necrosis factor receptor (GITR) on T cells and its natural ligand, GITRL, on accessory cells contribute to the control of immune homeostasis. Here we show that reverse signaling through GITRL after engagement by soluble GITR initiates the immunoregulatory pathway of tryptophan catabolism in mouse plasmacytoid dendritic cells, by means of noncanonical NF-kappaB-dependent induction of indoleamine 2,3-dioxygenase (IDO). The synthetic glucocorticoid dexamethasone administered in vivo activated IDO through the symmetric induction of GITR in CD4(+) T cells and GITRL in plasmacytoid dendritic cells. The drug exerted IDO-dependent protection in a model of allergic airway inflammation. Modulation of tryptophan catabolism via the GITR-GITRL coreceptor system might represent an effective therapeutic target in immune regulation. Induction of IDO could be an important mechanism underlying the anti-inflammatory action of corticosteroids.
Collapse
Affiliation(s)
- Ursula Grohmann
- Department of Experimental Medicine and Biochemical Sciences, University of Perugia, 06126 Perugia, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
444
|
Lei ZM, Yang M, Li X, Takikawa O, Rao CV. Upregulation of Placental Indoleamine 2,3-Dioxygenase by Human Chorionic Gonadotropin. Biol Reprod 2007; 76:639-44. [PMID: 17182891 DOI: 10.1095/biolreprod.106.056960] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
We tested the hypothesis that hCG can upregulate human trophoblast indoleamine 2, 3-dioxygenase (INDO), which catalyzes the breakdown of tryptophan in villous circulation. The results revealed that it can. Treatment of human trophoblasts with hCG resulted in a time and dose dependent increase in INDO mRNA and protein levels and its enzyme activity. The hCG effect was hormone specific and required the dimer conformation of hCG. The hCG effect required its receptors and was mediated by a cAMP dependent, but protein kinase A independent, mitogen-activated protein kinase 3/1 (MAPK3/1) signaling mechanism. In summary, the present data demonstrate a novel hCG effect on human placental INDO, which probably plays a key role at maternal fetal interface in preventing fetal rejection.
Collapse
Affiliation(s)
- Z M Lei
- Division of Research, Department of Obstetrics, Gynecology and Women's Health, University of Louisville, Health Sciences Center, Louisville, Kentucky 40292, USA
| | | | | | | | | |
Collapse
|
445
|
Jung ID, Lee CM, Jeong YI, Lee JS, Park WS, Han J, Park YM. Differential regulation of indoleamine 2,3-dioxygenase by lipopolysaccharide and interferon gamma in murine bone marrow derived dendritic cells. FEBS Lett 2007; 581:1449-56. [PMID: 17367785 DOI: 10.1016/j.febslet.2007.02.073] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2006] [Revised: 02/26/2007] [Accepted: 02/27/2007] [Indexed: 11/17/2022]
Abstract
Indoleamine 2,3-dioxygenase (IDO) is a rate-limiting enzyme in the L-tryptophan-kynurenine pathway, which converts an essential amino acid, L-tryptophan, to N-formylkynurenine. The expression of IDO increases when inflammation is induced by wounding, infection or tumor growth. Although recent studies have suggested that IDO expression is up-regulated by IFN-gamma in various cell types and that the induction of IDO can also be mediated through an IFN-gamma-independent mechanism, these mechanisms still remain unknown. In this study, we investigated whether lipopolysaccharide (LPS) induces the expression of IDO through an IFN-gamma-mediated signaling pathway or not. IFN-gamma-induced expression of IDO expression was inhibited only by JAK inhibitor I. However, LPS-induced expression of IDO was inhibited by LY294002 and SP600125 but not by JAK inhibitor I, SB203580, or U0126. These findings clearly indicate that LPS can induce the IDO expression via an IFN-gamma-independent mechanism and PI3 kinase and JNK in the LPS-induced pathway leading to IDO expression.
Collapse
Affiliation(s)
- In Duk Jung
- Department of Microbiology and Immunology and National Research Laboratory of Dendritic, Cell Differentiation and Regulation, Medical Research Institute, Pusan National University, College of Medicine, Ami-dong 1-10, Seo-gu, Busan 602-739, South Korea
| | | | | | | | | | | | | |
Collapse
|
446
|
Jeong YI, Jung ID, Lee JS, Lee CM, Lee JD, Park YM. (–)-Epigallocatechin gallate suppresses indoleamine 2,3-dioxygenase expression in murine dendritic cells: Evidences for the COX-2 and STAT1 as potential targets. Biochem Biophys Res Commun 2007; 354:1004-9. [PMID: 17270146 DOI: 10.1016/j.bbrc.2007.01.076] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2006] [Accepted: 01/17/2007] [Indexed: 11/16/2022]
Abstract
(-)-Epigallocatechin gallate (EGCG), a major form of tea catechin, is suggested to exhibit antioxidant and anticyclooxygenase properties. Indoleamine 2,3-dioxygenase (IDO), as a key enzyme in T cell suppression and induction of immune tolerance to tumor, is expressed in various cell types. In the present study, we investigated whether EGCG could suppress the expression of IDO in murine bone marrow-derived dendritic cells (BMDCs) stimulated with IFN-gamma. We obtained evidence that EGCG suppresses the expression and activity of IDO and significantly recovers the IDO-dependent T cell suppression. To determine whether these inhibitory effect of EGCG is associated with the alteration of the signal transducer and activator of transcription 1 (STAT1) and interferon regulatory factor 1 (IRF-1) as well as COX-2 expression, BMDCs were pretreated with various concentrations of EGCG. We found that EGCG inhibited the activation and binding of STAT1 to the IRF-1 promoter in response to IFN-gamma. Furthermore, EGCG inhibited the expression of COX-2 and the production of PGE(2). Based on our results, this study may account that EGCG could inhibit IDO expression by down-regulation of STAT1 activation and COX-2 expression in IFN-gamma-stimulated murine DCs.
Collapse
Affiliation(s)
- Young-Il Jeong
- Department of Microbiology, Pusan National University College of Natural Science, Busan, Republic of Korea
| | | | | | | | | | | |
Collapse
|
447
|
Kim SI, Jeong YI, Jung ID, Lee JS, Lee CM, Yoon MS, Seong EY, Kim JI, Lee JD, Park YM. p-Coumaric acid inhibits indoleamine 2, 3-dioxygenase expression in murine dendritic cells. Int Immunopharmacol 2007; 7:805-15. [PMID: 17466914 DOI: 10.1016/j.intimp.2007.01.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2006] [Revised: 01/29/2007] [Accepted: 01/29/2007] [Indexed: 12/21/2022]
Abstract
Indoleamine 2, 3-dioxygenase (IDO), a key enzyme that catalyses the initial and rate-limiting step in the degradation of the tryptophan, is simultaneously expressed in murine dendritic cells and macrophages stimulated with interferon-gamma (IFN-gamma). In the present study, we investigated whether p-Coumaric acid (CA), which is suggested to exhibit antioxidant properties, could suppress the functional expression of IDO in murine bone marrow-derived dendritic cells (BMDCs) stimulated with IFN-gamma. Treatment with CA reduced intracellular expression of IDO mRNA and protein levels in IFN-gamma-activated murine BMDCs in vitro and in CD11c(+)CD8alpha(+) DCs of tumor-draining lymph node (TDLN) of tumor-bearing mice in vivo. Consequently, we obtained evidence that CA suppresses the functional activity of IDO, which catalyses oxidative catabolism of tryptophan, and significantly recovers the IDO-dependent T cell suppression. Activation of the signal transducer and activator of transcription 1 (STAT1) is important to be express IDO in IFN-gamma-stimulated murine BMDCs. To determine whether these inhibitory effects of CA are associated with the alteration of the signal transducer and activator of transcription 1 (STAT1) and IFN-gamma-inducible, dsRNA-activated serine/threonine protein kinase (PKR), BMDCs were pretreated with various concentrations of CA. We found that CA inhibited the activation of STAT1 in response to IFN-gamma. Based on our results, this study may account that CA could inhibit IDO expression by down-regulation of STAT1 activation in IFN-gamma-stimulated murine DCs.
Collapse
MESH Headings
- Animals
- Cell Proliferation/drug effects
- Cells, Cultured
- Coumaric Acids/pharmacology
- Dendritic Cells/drug effects
- Dendritic Cells/immunology
- Immunologic Factors/pharmacology
- Indoleamine-Pyrrole 2,3,-Dioxygenase/antagonists & inhibitors
- Indoleamine-Pyrrole 2,3,-Dioxygenase/genetics
- Indoleamine-Pyrrole 2,3,-Dioxygenase/immunology
- Interferon-gamma/pharmacology
- Lymph Nodes/cytology
- Lymph Nodes/immunology
- Male
- Melanoma, Experimental/immunology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Transgenic
- Ovalbumin/immunology
- Propionates
- RNA, Messenger/biosynthesis
- Receptors, Antigen, T-Cell/genetics
- STAT1 Transcription Factor/immunology
- T-Lymphocytes/drug effects
- T-Lymphocytes/immunology
Collapse
Affiliation(s)
- Sang Il Kim
- Department of Obstetrics and Gynecology, College of Medicine, Pusan National University, Ami-Dong 1-10, Seo-Gu, Busan, South Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
448
|
Weinlich G, Murr C, Richardsen L, Winkler C, Fuchs D. Decreased serum tryptophan concentration predicts poor prognosis in malignant melanoma patients. Dermatology 2007; 214:8-14. [PMID: 17191041 DOI: 10.1159/000096906] [Citation(s) in RCA: 138] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2006] [Accepted: 07/04/2006] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Indoleamine (2,3)-dioxygenase (IDO) catalyses the initial, rate-limiting step in the degradation of the essential amino acid tryptophan. Via tryptophan deprivation, IDO activity suppresses T cell proliferation and differentiation and is thought to be a fundamental immune escape mechanism for tumor cells. OBJECTIVE AND METHODS To investigate the potential role of tryptophan degradation as a prognostic marker, serum tryptophan and kynurenine concentrations and the kynurenine-to-tryptophan ratio (kyn/trp) in 87 patients with malignant melanoma were compared to the course of the disease and to concentrations of the immune activation marker neopterin. RESULTS Compared to 49 healthy volunteers, the melanoma patients presented with lower tryptophan levels due to accelerated degradation. This was especially true for the subgroups of patients with distant metastases (p = 0.01), though not in patients with lymph node metastases or in patients who had not yet progressed. There existed a positive correlation between kyn/trp and neopterin concentrations (r(s) = 0.587, p <0.001). In patients who died due to dissemination of the tumor, median tryptophan concentrations were significantly decreased (p = 0.006) and kyn/trp (p = 0.03) and neopterin concentrations (p = 0.002) were higher compared to survivors. In addition, lower tryptophan concentrations as well as higher kyn/trp and neopterin concentrations predicted a shorter survival. CONCLUSION Decreased serum tryptophan concentrations and elevated serum neopterin levels can be used as predictive markers for the future course in melanoma patients. Moreover, our data support previous speculations that a higher degree of IDO expression could play a crucial role for tumor progression.
Collapse
Affiliation(s)
- Georg Weinlich
- Clinical Department of Dermatology and Venerology, Innsbruck Medical University, Innsbruck, Austria.
| | | | | | | | | |
Collapse
|
449
|
Hou DY, Muller AJ, Sharma MD, DuHadaway J, Banerjee T, Johnson M, Mellor AL, Prendergast GC, Munn DH. Inhibition of indoleamine 2,3-dioxygenase in dendritic cells by stereoisomers of 1-methyl-tryptophan correlates with antitumor responses. Cancer Res 2007; 67:792-801. [PMID: 17234791 DOI: 10.1158/0008-5472.can-06-2925] [Citation(s) in RCA: 460] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Indoleamine 2,3-dioxygenase (IDO) is an immunosuppressive enzyme that contributes to tolerance in a number of biological settings. In cancer, IDO activity may help promote acquired tolerance to tumor antigens. The IDO inhibitor 1-methyl-tryptophan is being developed for clinical trials. However, 1-methyl-tryptophan exists in two stereoisomers with potentially different biological properties, and it has been unclear which isomer might be preferable for initial development. In this study, we provide evidence that the D and L stereoisomers exhibit important cell type-specific variations in activity. The L isomer was the more potent inhibitor of IDO activity using the purified enzyme and in HeLa cell-based assays. However, the D isomer was significantly more effective in reversing the suppression of T cells created by IDO-expressing dendritic cells, using both human monocyte-derived dendritic cells and murine dendritic cells isolated directly from tumor-draining lymph nodes. In vivo, the d isomer was more efficacious as an anticancer agent in chemo-immunotherapy regimens using cyclophosphamide, paclitaxel, or gemcitabine, when tested in mouse models of transplantable melanoma and transplantable and autochthonous breast cancer. The D isomer of 1-methyl-tryptophan specifically targeted the IDO gene because the antitumor effect of D-1-methyl-tryptophan was completely lost in mice with a disruption of the IDO gene (IDO-knockout mice). Taken together, our findings support the suitability of D-1-methyl-tryptophan for human trials aiming to assess the utility of IDO inhibition to block host-mediated immunosuppression and enhance antitumor immunity in the setting of combined chemo-immunotherapy regimens.
Collapse
Affiliation(s)
- De-Yan Hou
- Immunotherapy Center and Departments of Pediatrics, Medicine, and Biostatistics, Medical College of Georgia, Augusta, Georgia
| | | | | | | | | | | | | | | | | |
Collapse
|
450
|
Zheng X, Koropatnick J, Li M, Zhang X, Ling F, Ren X, Hao X, Sun H, Vladau C, Franek JA, Feng B, Urquhart BL, Zhong R, Freeman DJ, Garcia B, Min WP. Reinstalling antitumor immunity by inhibiting tumor-derived immunosuppressive molecule IDO through RNA interference. THE JOURNAL OF IMMUNOLOGY 2007; 177:5639-46. [PMID: 17015752 DOI: 10.4049/jimmunol.177.8.5639] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Tumor-derived immune suppression is a major impediment to successful immune/gene cancer therapy. In the present study, we describe a novel strategy to disrupt tumor-derived immune suppression by silencing a tolerogenic molecule of tumor origin, IDO, using small interfering RNA (siRNA). Silencing of IDO in B16F10 cells in vitro using IDO-siRNA prevented catabolism of tryptophan and inhibited apoptosis of T cells. IDO-siRNA treatment of B16F10 cells in vitro inhibited subsequent growth, tumor formation, and the size of tumor formed, by those cells when transplanted into host mice. In vivo treatment of B16F10 tumor-bearing mice successfully postponed tumor formation time and significantly decreased tumor size. Furthermore, in vivo IDO-siRNA treatment resulted in recovery of T cells responses and enhancement of tumor-specific killing. Thus, silencing IDO may break tumor-derived immune suppression. These data indicate that RNA interference has potential to enhance cancer therapy by reinstalling anticancer immunity.
Collapse
MESH Headings
- Animals
- Apoptosis/drug effects
- Cell Line, Tumor
- Genetic Therapy/methods
- Immune Tolerance
- Indoleamine-Pyrrole 2,3,-Dioxygenase/drug effects
- Indoleamine-Pyrrole 2,3,-Dioxygenase/immunology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Neoplasms/drug therapy
- Neoplasms/enzymology
- Neoplasms/immunology
- Neoplasms, Experimental/drug therapy
- RNA Interference
- RNA, Small Interfering/pharmacology
- RNA, Small Interfering/therapeutic use
- T-Lymphocytes/cytology
- T-Lymphocytes/drug effects
- T-Lymphocytes/immunology
- Tryptophan/metabolism
- Tumor Burden/drug effects
Collapse
Affiliation(s)
- Xiufen Zheng
- Department of Surgery, Pathology, Oncology, Microbiology, and Immunology, London Health Science Centre, London, Ontario, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|