1
|
Díaz DE, Russman Block SR, Becker HC, Phan KL, Monk CS, Fitzgerald KD. Neural Substrates of Emotion Processing and Cognitive Control Over Emotion in Youth Anxiety: An RDoC-Informed Study Across the Clinical to Nonclinical Continuum of Severity. J Am Acad Child Adolesc Psychiatry 2025; 64:488-498. [PMID: 39059719 PMCID: PMC11757806 DOI: 10.1016/j.jaac.2024.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 06/19/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024]
Abstract
OBJECTIVE Clinically anxious youth are hypervigilant to emotional stimuli and display difficulty shifting attention from emotional to nonemotional stimuli, suggesting impairments in cognitive control over emotion. However, it is unknown whether the neural substrates of such biases vary across the clinical-to-nonclinical range of anxiety or by age. METHOD Youth aged 7 to 17 years with clinical anxiety (n = 119) or without an anxiety diagnosis (n = 41) matched emotional faces or matched shapes flanked by emotional face distractors during magnetic resonance imaging, probing emotion processing and cognitive control over emotion, respectively. Building from the National Institute of Mental Health Research Domain Criteria (RDoC) framework, clinically anxious youth were sampled across diagnostic categories, and non-clinically affected youth were sampled across minimal-to-subclinical severity. RESULTS Across both conditions, anxiety severity was associated with hyperactivation in the right inferior parietal lobe, a substrate of hypervigilance. Brain-anxiety associations were also differentiated by attentional state; anxiety severity was associated with greater left ventrolateral prefrontal cortex activation during emotion processing (face matching) and greater activation in the left posterior superior temporal sulcus and temporoparietal junction (and slower responses) during cognitive control over emotion (shape matching). Age also moderated associations between anxiety and cognitive control over emotion, such that anxiety was associated with greater right thalamus and bilateral posterior cingulate cortex activation for children at younger and mean ages, but not for older youth. CONCLUSION Aberrant function in brain regions implicated in stimulus-driven attention to emotional distractors may contribute to anxiety in youth. Results support the potential utility of attention modulation interventions for anxiety that are tailored to developmental stage. PLAIN LANGUAGE SUMMARY Preferential attention to threat, an adaptive mechanism for detecting danger, is exaggerated in clinically anxious youth. This study included 150 youth aged 7 to 17 years spanning the clinical-nonclinical range of anxiety to examine the effects of anxiety and age on markers of emotion processing and cognitive control over emotion while undergoing MRI scanning. The authors found that more severe anxiety was associated with greater activation in the left ventrolateral prefrontal cortex, a region supporting cognitive control over emotion, which may prevent anxiety-related slowing of response times. Conversely, when participants were prompted to ignore emotional faces, anxiety severity was associated with slower performance and greater activation of the ventral attention network, suggesting greater stimulus-driven attention to emotional distractors. Age moderated associations between anxiety and brain activity during cognitive control over emotion, supporting the potential utility of tailoring interventions for anxiety. CLINICAL TRIAL REGISTRATION INFORMATION Dimensional Brain Behavior Predictors of CBT Outcomes in Pediatric Anxiety; https://clinicaltrials.gov; NCT02810171.
Collapse
Affiliation(s)
- Dana E Díaz
- Columbia University Irving Medical Center, New York, New York.
| | | | | | | | | | - Kate D Fitzgerald
- Columbia University Irving Medical Center, New York, New York; New York State Psychiatric Institute, New York, New York
| |
Collapse
|
2
|
Díaz DE, Becker HC, Fitzgerald KD. Neural Markers of Treatment Response in Pediatric Anxiety and PTSD. Curr Top Behav Neurosci 2024. [PMID: 39673034 DOI: 10.1007/7854_2024_547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2024]
Abstract
Pediatric anxiety disorders and post-traumatic stress disorder (PTSD) are associated with elevated threat sensitivity and impaired emotion regulation, accompanied by dysfunction in the neural circuits involved in these processes. Despite established treatments like cognitive behavioral therapy (CBT) and selective serotonin reuptake inhibitors, many children do not achieve remission, underscoring the importance of understanding the neurobiological underpinnings of these disorders. This review synthesizes current research on the neural predictors of treatment response and the neurofunctional changes associated with treatment in pediatric anxiety and PTSD during threat and reward processing. Several key findings emerged. First, enhanced threat/safety discrimination in the amygdala predicted better outcomes of pediatric anxiety and PTSD treatments. Second, differences in pretreatment activation within the lateral prefrontal and dorsal anterior cingulate cortices predicted treatment response, likely reflecting baseline executive control differences. Third, post-CBT decreases in activation in default mode, visuo-attentional, and sensorimotor areas may support treatment-related increases in task engagement. Finally, functional connectivity between the amygdala and other limbic, prefrontal, and default mode network nodes predicts treatment response in anxiety and PTSD, highlighting its potential as a biomarker for therapeutic efficacy. Understanding these neurofunctional markers could lead to more targeted interventions, optimizing treatment planning and potentially leading to the development of "pretreatment" strategies to enhance the efficacy of existing treatments. This review highlights the necessity for future research to establish more direct links between neuroimaging findings and clinical outcomes to facilitate the translation of these findings into clinical practice.
Collapse
Affiliation(s)
- Dana E Díaz
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Hannah C Becker
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
| | - Kate D Fitzgerald
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA.
- New York State Psychiatric Institute, New York, NY, USA.
| |
Collapse
|
3
|
Doucet GE, Kruse JA, Keefe A, Rice DL, Coutant AT, Pulliam H, Smith OV, Calhoun VD, Stephen JM, Wang YP, White SF, Picci G, Taylor BK, Wilson TW. Anxiety symptoms are differentially associated with facial expression processing in boys and girls. Soc Cogn Affect Neurosci 2024; 19:nsae085. [PMID: 39587034 PMCID: PMC11631531 DOI: 10.1093/scan/nsae085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/15/2024] [Accepted: 11/25/2024] [Indexed: 11/27/2024] Open
Abstract
Facial expressions convey important social information and can initiate behavioral change through the processing and understanding of emotions. However, while this ability is known to evolve throughout development, it remains unclear whether this ability differs between girls and boys or how other variables such as level of anxiety can modulate it. Furthermore, understanding the underlying neural mechanisms of facial expression processing and how they are linked by sex and anxiety during development is essential, as alterations in this processing have been associated with psychiatric disorders. Herein, 191 typically developing youth (6- to 15-years old) completed an implicit face processing task involving three facial expressions (angry, happy, and neutral) during functional magnetic resonance imaging. We conducted linear models on the fMRI data to investigate the impact sex and anxiety on brain responses to emotional faces, accounting for age. Our findings indicated a significant anxiety-by-sex interaction in a posterior network covering bilateral visual and medial temporal cortices during the happy > neutral contrast. Specifically, girls with higher anxiety showed weaker activation while boys showed the opposite pattern. These findings suggest that the inter-subject variability reported in typically developing individuals in response to facial emotions may be related to many factors, including sex and anxiety level.
Collapse
Affiliation(s)
- Gaelle E Doucet
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE 68010, USA
- Center for Pediatric Brain Health, Boys Town National Research Hospital, Boys Town, NE 68010, USA
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, NE 68178, USA
| | - Jordanna A Kruse
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE 68010, USA
| | - Ahrianna Keefe
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE 68010, USA
| | - Danielle L Rice
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE 68010, USA
| | - Anna T Coutant
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE 68010, USA
| | - Haley Pulliam
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE 68010, USA
| | - OgheneTejiri V Smith
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE 68010, USA
| | - Vince D Calhoun
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, and Emory University, Atlanta, GA 30303, USA
| | | | - Yu-Ping Wang
- Department of Biomedical Engineering, Tulane University, New Orleans, LA 70118, USA
| | - Stuart F White
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE 68010, USA
- Nebraska Children and Families Foundation, Lincoln, NE 68508, USA
| | - Giorgia Picci
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE 68010, USA
- Center for Pediatric Brain Health, Boys Town National Research Hospital, Boys Town, NE 68010, USA
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, NE 68178, USA
| | - Brittany K Taylor
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE 68010, USA
- Center for Pediatric Brain Health, Boys Town National Research Hospital, Boys Town, NE 68010, USA
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, NE 68178, USA
| | - Tony W Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE 68010, USA
- Center for Pediatric Brain Health, Boys Town National Research Hospital, Boys Town, NE 68010, USA
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, NE 68178, USA
| |
Collapse
|
4
|
Fox AS, Shackman AJ. An Honest Reckoning With the Amygdala and Mental Illness. Am J Psychiatry 2024; 181:1059-1075. [PMID: 39616453 PMCID: PMC11611071 DOI: 10.1176/appi.ajp.20240941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Anxiety disorders are a leading source of human misery, morbidity, and premature mortality. Existing treatments are far from curative for many, underscoring the need to clarify the underlying neural mechanisms. Although many brain regions contribute, the amygdala has received the most intense scientific attention. Over the past several decades, this scrutiny has yielded a detailed understanding of amygdala function, but it has failed to produce new clinical assays, biomarkers, or cures. Rising to this urgent public health challenge demands an honest reckoning with the functional-neuroanatomical complexity of the amygdala and a shift from theories anchored on "the amygdala" to models centered on specific amygdala nuclei and cell types. This review begins by examining evidence from studies of rodents, monkeys, and humans for the "canonical model," the idea that the amygdala plays a central role in fear- and anxiety-related states, traits, and disorders. Next, the authors selectively highlight work indicating that the canonical model, while true, is overly simplistic and fails to adequately capture the actual state of the evidentiary record, the breadth of amygdala-associated functions and illnesses, or the complexity of the amygdala's functional architecture. The authors describe the implications of these facts for basic and clinical neuroimaging research. The review concludes with some general recommendations for grappling with the complexity of the amygdala and accelerating efforts to understand and more effectively treat amygdala-related psychopathology.
Collapse
Affiliation(s)
- Andrew S. Fox
- Department of Psychology, University of California, Davis, CA 95616 USA
- California National Primate Research Center, University of California, Davis, CA 95616 USA
| | - Alexander J. Shackman
- Department of Psychology, University of Maryland, College Park, MD 20742 USA
- Department of Neuroscience and Cognitive Science Program, University of Maryland, College Park, MD 20742 USA
- Department of Maryland Neuroimaging Center, University of Maryland, College Park, MD 20742 USA
| |
Collapse
|
5
|
Klimes-Dougan B, Wiglesworth A, Başgöze Z, Cullen KR. Seeing adolescents grow from many angles using a multilevel approach: A tribute to the contributions of Dante Cicchetti to the field of developmental psychopathology. Dev Psychopathol 2024; 36:2173-2185. [PMID: 39363720 DOI: 10.1017/s0954579424001123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Dante Cicchetti propelled forward the field of developmental psychopathology by advancing this framework and championing new methods, including emphasizing the central role that multilevel analysis holds for explicating pathways of risk and resilience. His work continues to change the face of existing science. It has also paved the way for the formation of new projects, like the Research Domain Criteria initiative. This paper uses our laboratory's work on multilevel approaches to studying adolescent depression, non-suicidal self-injury, and suicidal thoughts and behaviors to shine a spotlight on Dr Cicchetti's contributions. In addition, we review recent developments, ongoing challenges, and promising future directions within developmental psychopathology as we endeavor to carry on the tradition of growth in the field.
Collapse
Affiliation(s)
| | | | - Zeynep Başgöze
- Psychiatry and Behavioral Sciences, University of Minnesota Medical School Twin Cities, Minneapolis, MN, USA
| | - Kathryn R Cullen
- Psychiatry and Behavioral Sciences, University of Minnesota Medical School Twin Cities, Minneapolis, MN, USA
| |
Collapse
|
6
|
Buck Z, Michalchyshyn E, Nishat A, Lisi M, Huang Y, Liu H, Makarenka A, Plyngam CP, Windle A, Yang Z, Walther DB. Aesthetic processing in neurodiverse populations. Neurosci Biobehav Rev 2024; 166:105878. [PMID: 39260715 DOI: 10.1016/j.neubiorev.2024.105878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/07/2024] [Accepted: 09/05/2024] [Indexed: 09/13/2024]
Abstract
Neurodiversity is a perspective on cognition which suggests a non-pathological view of individual cognitive differences. Aesthetics research on neurodivergent brains has generally been limited to neuropsychological cases. Although this research has been integral to establishing the neurological correlates of aesthetic experience, it is crucial to expand this paradigm to more psychologically complex disorders. We offer a review of research on aesthetic preference in neurodivergent brains beyond neuropsychological cases: across populations with psychotic disorder, anhedonia and depression, anxiety disorder, and autism. We identify stable patterns of aesthetic bias in these populations, relate these biases to symptoms at perceptual, emotional, and evaluative levels of cognition, review relevant neurological correlates, and connect this evidence to current neuroaesthetics theory. Critically, we synthesize the reviewed evidence and discuss its relevance for three brain networks regularly implicated in aesthetic processing: the mesocorticolimbic reward circuit, frontolimbic connections, and the default mode network. Finally, we propose that broadening the subject populations for neuroaesthetics research to include neurodiverse populations is instrumental for yielding new insights into aesthetic processing in the brain.
Collapse
Affiliation(s)
- Zach Buck
- Department of Psychology, University of Toronto, Toronto, Canada
| | | | - Amna Nishat
- Department of Psychology, University of Toronto, Toronto, Canada
| | - Mikayla Lisi
- Department of Psychology, University of Toronto, Toronto, Canada
| | - Yichen Huang
- Department of Psychology, University of Toronto, Toronto, Canada
| | - Hanyu Liu
- Department of Psychology, University of Toronto, Toronto, Canada
| | - Arina Makarenka
- Department of Psychology, University of Toronto, Toronto, Canada
| | | | - Abigail Windle
- Department of Psychology, University of Toronto, Toronto, Canada
| | - Zhen Yang
- Department of Psychology, University of Toronto, Toronto, Canada
| | - Dirk B Walther
- Department of Psychology, University of Toronto, Toronto, Canada.
| |
Collapse
|
7
|
Wegiel J, Chadman K, London E, Wisniewski T, Wegiel J. Contribution of the serotonergic system to developmental brain abnormalities in autism spectrum disorder. Autism Res 2024; 17:1300-1321. [PMID: 38500252 PMCID: PMC11272444 DOI: 10.1002/aur.3123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/28/2024] [Indexed: 03/20/2024]
Abstract
This review highlights a key role of the serotonergic system in brain development and in distortions of normal brain development in early stages of fetal life resulting in cascades of abnormalities, including defects of neurogenesis, neuronal migration, neuronal growth, differentiation, and arborization, as well as defective neuronal circuit formation in the cortex, subcortical structures, brainstem, and cerebellum of autistic subjects. In autism, defects in regulation of neuronal growth are the most frequent and ubiquitous developmental changes associated with impaired neuron differentiation, smaller size, distorted shape, loss of spatial orientation, and distortion of cortex organization. Common developmental defects of the brain in autism include multiregional focal dysplastic changes contributing to local neuronal circuit distortion, epileptogenic activity, and epilepsy. There is a discrepancy between more than 500 reports demonstrating the contribution of the serotonergic system to autism's behavioral anomalies, highlighted by lack of studies of autistic subjects' brainstem raphe nuclei, the center of brain serotonergic innervation, and of the contribution of the serotonergic system to the diagnostic features of autism spectrum disorder (ASD). Discovery of severe fetal brainstem auditory system neuronal deficits and other anomalies leading to a spectrum of hearing deficits contributing to a cascade of behavioral alterations, including deficits of social and verbal communication in individuals with autism, is another argument to intensify postmortem studies of the type and topography of, and the severity of developmental defects in raphe nuclei and their contribution to abnormal brain development and to the broad spectrum of functional deficits and comorbid conditions in ASD.
Collapse
Affiliation(s)
- Jarek Wegiel
- Department of Developmental Neurobiology, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, USA
| | - Kathryn Chadman
- Department of Developmental Neurobiology, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, USA
| | - Eric London
- Department of Psychology, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, USA
| | - Thomas Wisniewski
- Department of Developmental Neurobiology, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, USA
- Center for Cognitive Neurology, Department of Neurology, Pathology and Psychiatry, NYU Grossman School of Medicine, New York, New York, USA
| | - Jerzy Wegiel
- Department of Developmental Neurobiology, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, USA
| |
Collapse
|
8
|
Kitt ER, Zacharek SJ, Odriozola P, Nardini C, Hommel G, Martino A, Anderson T, Spencer H, Broussard A, Dean J, Marin CE, Silverman WK, Lebowitz ER, Gee DG. Responding to threat: Associations between neural reactivity to and behavioral avoidance of threat in pediatric anxiety. J Affect Disord 2024; 351:818-826. [PMID: 38290579 PMCID: PMC10981528 DOI: 10.1016/j.jad.2024.01.204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 02/01/2024]
Abstract
BACKGROUND Despite broad recognition of the central role of avoidance in anxiety, a lack of specificity in its operationalization has hindered progress in understanding this clinically significant construct. The current study uses a multimodal approach to investigate how specific measures of avoidance relate to neural reactivity to threat in youth with anxiety disorders. METHODS Children with anxiety disorders (ages 6-12 years; n = 65 for primary analyses) completed laboratory task- and clinician-based measures of avoidance, as well as a functional magnetic resonance imaging task probing neural reactivity to threat. Primary analyses examined the ventral anterior insula (vAI), amygdala, and ventromedial prefrontal cortex (vmPFC). RESULTS Significant but distinct patterns of association with task- versus clinician-based measures of avoidance emerged. Clinician-rated avoidance was negatively associated with right and left vAI reactivity to threat, whereas laboratory-based avoidance was positively associated with right vAI reactivity to threat. Moreover, left vAI-right amygdala and bilateral vmPFC-right amygdala functional connectivity were negatively associated with clinician-rated avoidance but not laboratory-based avoidance. LIMITATIONS These results should be considered in the context of the restricted range of our treatment-seeking sample, which limits the ability to draw conclusions about these associations across children with a broader range of symptomatology. In addition, the limited racial and ethnic diversity of our sample may limit the generalizability of findings. CONCLUSION These findings mark an important step towards bridging neural findings and behavioral patterns using a multimodal approach. Advancing understanding of behavioral avoidance in pediatric anxiety may guide future treatment optimization by identifying individual-specific targets for treatment.
Collapse
Affiliation(s)
| | | | | | | | - Grace Hommel
- Yale University, New Haven, CT, United States of America
| | - Alyssa Martino
- Yale University, New Haven, CT, United States of America
| | - Tess Anderson
- Yale University, New Haven, CT, United States of America
| | - Hannah Spencer
- Yale University, New Haven, CT, United States of America
| | | | - Janice Dean
- Yale University, New Haven, CT, United States of America
| | - Carla E Marin
- Yale University, New Haven, CT, United States of America
| | | | - Eli R Lebowitz
- Yale University, New Haven, CT, United States of America
| | - Dylan G Gee
- Yale University, New Haven, CT, United States of America.
| |
Collapse
|
9
|
Nusslock R, Alloy LB, Brody GH, Miller GE. Annual Research Review: Neuroimmune network model of depression: a developmental perspective. J Child Psychol Psychiatry 2024; 65:538-567. [PMID: 38426610 PMCID: PMC11090270 DOI: 10.1111/jcpp.13961] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/18/2024] [Indexed: 03/02/2024]
Abstract
Depression is a serious public health problem, and adolescence is an 'age of risk' for the onset of Major Depressive Disorder. Recently, we and others have proposed neuroimmune network models that highlight bidirectional communication between the brain and the immune system in both mental and physical health, including depression. These models draw on research indicating that the cellular actors (particularly monocytes) and signaling molecules (particularly cytokines) that orchestrate inflammation in the periphery can directly modulate the structure and function of the brain. In the brain, inflammatory activity heightens sensitivity to threats in the cortico-amygdala circuit, lowers sensitivity to rewards in the cortico-striatal circuit, and alters executive control and emotion regulation in the prefrontal cortex. When dysregulated, and particularly under conditions of chronic stress, inflammation can generate feelings of dysphoria, distress, and anhedonia. This is proposed to initiate unhealthy, self-medicating behaviors (e.g. substance use, poor diet) to manage the dysphoria, which further heighten inflammation. Over time, dysregulation in these brain circuits and the inflammatory response may compound each other to form a positive feedback loop, whereby dysregulation in one organ system exacerbates the other. We and others suggest that this neuroimmune dysregulation is a dynamic joint vulnerability for depression, particularly during adolescence. We have three goals for the present paper. First, we extend neuroimmune network models of mental and physical health to generate a developmental framework of risk for the onset of depression during adolescence. Second, we examine how a neuroimmune network perspective can help explain the high rates of comorbidity between depression and other psychiatric disorders across development, and multimorbidity between depression and stress-related medical illnesses. Finally, we consider how identifying neuroimmune pathways to depression can facilitate a 'next generation' of behavioral and biological interventions that target neuroimmune signaling to treat, and ideally prevent, depression in youth and adolescents.
Collapse
Affiliation(s)
- Robin Nusslock
- Department of Psychology, Northwestern University, Evanston IL, USA
- Institute for Policy Research, Northwestern University, Evanston IL, USA
| | - Lauren B. Alloy
- Department of Psychology and Neuroscience, Temple University, Philadelphia, PA. USA
| | - Gene H. Brody
- Center for Family Research, University of Georgia, Athens GA, USA
| | - Gregory E. Miller
- Department of Psychology, Northwestern University, Evanston IL, USA
- Institute for Policy Research, Northwestern University, Evanston IL, USA
| |
Collapse
|
10
|
Jirsaraie RJ, Palma AM, Small SL, Sandman CA, Davis EP, Baram TZ, Stern H, Glynn LM, Yassa MA. Prenatal Exposure to Maternal Mood Entropy Is Associated With a Weakened and Inflexible Salience Network in Adolescence. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2024; 9:207-216. [PMID: 37611745 PMCID: PMC10881896 DOI: 10.1016/j.bpsc.2023.08.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 08/04/2023] [Accepted: 08/07/2023] [Indexed: 08/25/2023]
Abstract
BACKGROUND Fetal exposure to maternal mood dysregulation influences child cognitive and emotional development, which may have long-lasting implications for mental health. However, the neurobiological alterations associated with this dimension of adversity have yet to be explored. Here, we tested the hypothesis that fetal exposure to entropy, a novel index of dysregulated maternal mood, would predict the integrity of the salience network, which is involved in emotional processing. METHODS A sample of 138 child-mother pairs (70 females) participated in this prospective longitudinal study. Maternal negative mood level and entropy (an index of variable and unpredictable mood) were assessed 5 times during pregnancy. Adolescents engaged in a functional magnetic resonance imaging task that was acquired between 2 resting-state scans. Changes in network integrity were analyzed using mixed-effect and latent growth curve models. The amplitude of low frequency fluctuations was analyzed to corroborate findings. RESULTS Prenatal maternal mood entropy, but not mood level, was associated with salience network integrity. Both prenatal negative mood level and entropy were associated with the amplitude of low frequency fluctuations of the salience network. Latent class analysis yielded 2 profiles based on changes in network integrity across all functional magnetic resonance imaging sequences. The profile that exhibited little variation in network connectivity (i.e., inflexibility) consisted of adolescents who were exposed to higher negative maternal mood levels and more entropy. CONCLUSIONS These findings suggest that fetal exposure to maternal mood dysregulation is associated with a weakened and inflexible salience network. More broadly, they identify maternal mood entropy as a novel marker of early adversity that exhibits long-lasting associations with offspring brain development.
Collapse
Affiliation(s)
- Robert J Jirsaraie
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, California; Department of Neurobiology and Behavior, University of California, Irvine, Irvine, California
| | - Anton M Palma
- Department of Statistics, University of California, Irvine, Irvine, California
| | - Steven L Small
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, Texas
| | - Curt A Sandman
- Department of Psychiatry and Human Behavior, University of California, Irvine, Irvine, California
| | - Elysia Poggi Davis
- Department of Psychology, University of Denver, Denver, Colorado; Department of Pediatrics, University of California, Irvine, Irvine, California
| | - Tallie Z Baram
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, California; Department of Pediatrics, University of California, Irvine, Irvine, California; Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, California
| | - Hal Stern
- Department of Statistics, University of California, Irvine, Irvine, California
| | - Laura M Glynn
- Department of Psychology, Chapman University, Orange, California.
| | - Michael A Yassa
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, California; Department of Neurobiology and Behavior, University of California, Irvine, Irvine, California; Department of Psychiatry and Human Behavior, University of California, Irvine, Irvine, California; Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, California.
| |
Collapse
|
11
|
Díaz DE, Tseng WL, Michalska KJ. Pre-scan state anxiety is associated with greater right amygdala-hippocampal response to fearful versus happy faces among trait-anxious Latina girls. BMC Psychiatry 2024; 24:1. [PMID: 38167015 PMCID: PMC10759434 DOI: 10.1186/s12888-023-05403-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 11/24/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Unfamiliarity with academic research may contribute to higher levels of anticipatory state anxiety about affective neuroimaging tasks. Children with high trait anxiety display differences in brain response to fearful facial affect compared to non-anxious youth, but little is known about the influence of state anxiety on this association. Because reduced engagement in scientific research and greater mistrust among minoritized groups may lead to systematic differences in pre-scan state anxiety, it is crucial to understand the neural correlates of state anxiety during emotion processing so as to disambiguate sources of individual differences. METHODS The present study probed the interactive effects of pre-scan state anxiety, trait anxiety, and emotional valence (fearful vs. happy faces) on neural activation during implicit emotion processing in a community sample of 46 preadolescent Latina girls (8-13 years). RESULTS Among girls with mean and high levels of trait anxiety, pre-scan state anxiety was associated with greater right amygdala-hippocampal and left inferior parietal lobe response to fearful faces relative to happy faces. CONCLUSIONS Anticipatory state anxiety in the scanning context may cause children with moderate and high trait anxiety to be hypervigilant to threats, further compounding the effects of trait anxiety. Neuroimaging researchers should control for state anxiety so that systematic differences in brain activation resulting from MRI apprehension are not misleadingly attributed to demographic or environmental characteristics.
Collapse
Affiliation(s)
- Dana E Díaz
- Department of Psychology, University of California, Riverside, CA, USA.
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA.
| | - Wan-Ling Tseng
- Yale Child Study Center, Yale School of Medicine, Yale University, New Haven, CT, USA
| | | |
Collapse
|
12
|
Flournoy JC, Bryce NV, Dennison MJ, Rodman AM, McNeilly EA, Lurie LA, Bitran D, Reid-Russell A, Vidal Bustamante CM, Madhyastha T, McLaughlin KA. A precision neuroscience approach to estimating reliability of neural responses during emotion processing: Implications for task-fMRI. Neuroimage 2024; 285:120503. [PMID: 38141745 PMCID: PMC10872443 DOI: 10.1016/j.neuroimage.2023.120503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 12/25/2023] Open
Abstract
Recent work demonstrating low test-retest reliability of neural activation during fMRI tasks raises questions about the utility of task-based fMRI for the study of individual variation in brain function. Two possible sources of the instability in task-based BOLD signal over time are noise or measurement error in the instrument, and meaningful variation across time within-individuals in the construct itself-brain activation elicited during fMRI tasks. Examining the contribution of these two sources of test-retest unreliability in task-evoked brain activity has far-reaching implications for cognitive neuroscience. If test-retest reliability largely reflects measurement error, it suggests that task-based fMRI has little utility in the study of either inter- or intra-individual differences. On the other hand, if task-evoked BOLD signal varies meaningfully over time, it would suggest that this tool may yet be well suited to studying intraindividual variation. We parse these sources of variance in BOLD signal in response to emotional cues over time and within-individuals in a longitudinal sample with 10 monthly fMRI scans. Test-retest reliability was low, reflecting a lack of stability in between-person differences across scans. In contrast, within-person, within-session internal consistency of the BOLD signal was higher, and within-person fluctuations across sessions explained almost half the variance in voxel-level neural responses. Additionally, monthly fluctuations in neural response to emotional cues were associated with intraindividual variation in mood, sleep, and exposure to stressors. Rather than reflecting trait-like differences across people, neural responses to emotional cues may be more reflective of intraindividual variation over time. These patterns suggest that task-based fMRI may be able to contribute to the study of individual variation in brain function if more attention is given to within-individual variation approaches, psychometrics-beginning with improving reliability beyond the modest estimates observed here, and the validity of task fMRI beyond the suggestive associations reported here.
Collapse
Affiliation(s)
| | | | - Meg J Dennison
- Phoenix Australia-Centre for Posttraumatic Mental Health, Department of Psychiatry, The University of Melbourne, Melbourne, VIC, Australia
| | | | | | - Lucy A Lurie
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill
| | | | | | | | - Tara Madhyastha
- Rescale; Integrated Brain Imaging Center, University of Washington
| | | |
Collapse
|
13
|
Chen K, Zhang L, Wang F, Mao H, Tang Q, Shi G, You Y, Yuan Q, Chen B, Fang X. Altered functional connectivity within the brain fear circuit in Parkinson's disease with anxiety: A seed-based functional connectivity study. Heliyon 2023; 9:e15871. [PMID: 37305477 PMCID: PMC10256910 DOI: 10.1016/j.heliyon.2023.e15871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 04/06/2023] [Accepted: 04/24/2023] [Indexed: 06/13/2023] Open
Abstract
Objectives Aimed to investigate whether there are abnormal changes in the functional connectivity (FC) between the amygdala with other brain areas, in Parkinson's disease (PD) patients with anxiety. Methods Participants were enrolled prospectively, and the Hamilton Anxiety Rating (HAMA) Scale was used to quantify anxiety disorder. Rest-state functional MRI (rs-fMRI) was applied to analyze the amygdala FC patterns among anxious PD patients, non-anxious PD patients, and healthy controls. Results Thirty-three PD patients were recruited, 13 with anxiety, 20 without anxiety, and 19 non-anxious healthy controls. In anxious PD patients, FC between the amygdala with the hippocampus, putamen, intraparietal sulcus, and precuneus showed abnormal alterations compared with non-anxious PD patients and healthy controls. In particular, FC between the amygdala and hippocampus negatively correlated with the HAMA score (r = -0.459, p = 0.007). Conclusion Our results support the role of the fear circuit in emotional regulation in PD with anxiety. Also, the abnormal FC patterns of the amygdala could preliminarily explain the neural mechanisms of anxiety in PD.
Collapse
Affiliation(s)
- Kaidong Chen
- Department of Radiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, No. 299, Qingyang Road, Liangxi District, Wuxi, 214023, Jiangsu Province, China
| | - Li Zhang
- Department of Neurology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, No. 299, Qingyang Road, Liangxi District, Wuxi, 214023, Jiangsu Province, China
| | - Feng Wang
- Department of Neurology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, No. 299, Qingyang Road, Liangxi District, Wuxi, 214023, Jiangsu Province, China
| | - Haixia Mao
- Department of Radiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, No. 299, Qingyang Road, Liangxi District, Wuxi, 214023, Jiangsu Province, China
| | - Qunfeng Tang
- Department of Neurology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, No. 299, Qingyang Road, Liangxi District, Wuxi, 214023, Jiangsu Province, China
| | - Guofeng Shi
- Department of Neurology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, No. 299, Qingyang Road, Liangxi District, Wuxi, 214023, Jiangsu Province, China
| | - Yiping You
- Department of Neurology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, No. 299, Qingyang Road, Liangxi District, Wuxi, 214023, Jiangsu Province, China
| | - Qingfang Yuan
- Department of Neurology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, No. 299, Qingyang Road, Liangxi District, Wuxi, 214023, Jiangsu Province, China
| | - Bixue Chen
- Department of Radiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, No. 299, Qingyang Road, Liangxi District, Wuxi, 214023, Jiangsu Province, China
| | - Xiangming Fang
- Department of Radiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, No. 299, Qingyang Road, Liangxi District, Wuxi, 214023, Jiangsu Province, China
| |
Collapse
|
14
|
Huang P, Chan SY, Ngoh ZM, Nadarajan R, Chong YS, Gluckman PD, Chen H, Fortier MV, Tan AP, Meaney MJ. Functional connectivity analysis of childhood depressive symptoms. Neuroimage Clin 2023; 38:103395. [PMID: 37031637 PMCID: PMC10120398 DOI: 10.1016/j.nicl.2023.103395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 03/26/2023] [Accepted: 03/27/2023] [Indexed: 04/09/2023]
Abstract
BACKGROUND Childhood depression is a highly distinct and prevalent condition with an unknown neurobiological basis. We wish to explore the resting state fMRI data in children for potential associations between neural connectivity and childhood depressive symptoms. METHODS A longitudinal birth cohort study with neuroimaging data obtained at 4.5, 6.0 and 7.5 years of age and the Children Depression Inventory 2 (CDI) administered between 8.5 and 10.5 years was used. The CDI score was used as the dependent variable and tested for correlation, both simple Pearson and network based statistic, with the functional connectivity values obtained from the resting state fMRI. Cross-validated permutation testing with a general linear model was used to validate that the identified functional connections were indeed implicated in childhood depression. RESULTS Ten functional connections and four brain regions (Somatomotor Area B, Temporoparietal Junction, Orbitofrontal Cortex and Insula) were identified as significantly associated with childhood depressive symptoms for girls at 6.0 and 7.5 years. No significant functional connections were found in girls at 4.5 years or for boys at any timepoint. Network based statistic and permutation testing confirmed these findings. CONCLUSIONS This study revealed significant sex-dependent associations of neural connectivity and childhood depressive symptoms. The regions identified are implicated in speech/language, social cognition and information integration and suggest unique pathways to childhood depressive symptoms.
Collapse
Affiliation(s)
- Pei Huang
- Singapore Institute for Clinical Sciences, Agency for Science and Technology, Singapore.
| | - Shi Yu Chan
- Singapore Institute for Clinical Sciences, Agency for Science and Technology, Singapore
| | - Zhen Ming Ngoh
- Singapore Institute for Clinical Sciences, Agency for Science and Technology, Singapore; Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Ranjani Nadarajan
- Department of Psychiatry, Douglas Mental Health University Institute, McGill University, Montreal, Quebec, Canada
| | - Yap Seng Chong
- Singapore Institute for Clinical Sciences, Agency for Science and Technology, Singapore; Department of Obstetrics & Gynaecology, National University Hospital Singapore, Singapore
| | - Peter D Gluckman
- Singapore Institute for Clinical Sciences, Agency for Science and Technology, Singapore; Centre for Human Evolution, Adaptation and Disease, Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Helen Chen
- Department of Psychological Medicine, KK Women's and Children's Hospital, Singapore; Duke-National University of Singapore, Singapore
| | - Marielle V Fortier
- Singapore Institute for Clinical Sciences, Agency for Science and Technology, Singapore; Department of Diagnostic and Interventional Radiology, KK Women's and Children's Hospital, Singapore
| | - Ai Peng Tan
- Singapore Institute for Clinical Sciences, Agency for Science and Technology, Singapore; Department of Diagnostic Imaging, National University Hospital Singapore, Singapore
| | - Michael J Meaney
- Singapore Institute for Clinical Sciences, Agency for Science and Technology, Singapore; Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Psychiatry, Douglas Mental Health University Institute, McGill University, Montreal, Quebec, Canada; Brain - Body Initiative, Agency for Science and Technology, Singapore
| |
Collapse
|
15
|
Zhang F, Liu W, Zheng Y, Liu C, Hu Y, Chen H, Tang X, Wei Y, Zhang T, Wang J, Guo Q, Li G, Liu X. Decreased hemodynamic response to fearful faces relative to neutral faces in the medial frontal cortex of first-episode drug-naïve major depressive disorder. J Affect Disord 2023; 326:57-65. [PMID: 36682699 DOI: 10.1016/j.jad.2023.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/19/2022] [Accepted: 01/03/2023] [Indexed: 01/22/2023]
Abstract
BACKGROUND Major depressive disorder (MDD) is a disabling disease with impaired recognition of emotional facial expressions. However, the evidence is heterogeneous, regarding the mechanism of emotional processing in MDD. Focusing on patients with first-episode drug-naïve MDD, we used functional near-infrared spectroscopy (fNIRS) to investigate whether MDD have characteristic patterns in cerebral activation under facial emotion recognition task (FERT). METHODS Thirty-five patients with first-episode drug-naïve MDD and 39 healthy controls (HCs) underwent fNIRS measure to evaluate cerebral hemodynamic response in the frontal and temporal cortex during FERT. The 17-item Hamilton Depression Rating Scale, Hamilton Anxiety Rating Scale and Inventory of Depressive Symptomatology-Self Report were applied to assess the symptoms of the patients. Cognitive functions were assessed using THINC-integrated tool. RESULTS Hypoactivation in the medial frontal was observed in patients with MDD during recognition of fearful faces relative to neutral faces (F-N faces). Specifically, we found more right lateralized activation in the medial frontal cortex among patients with MDD compared to HCs. Further, the medial frontal activation under the condition of F-N faces was positively correlated to scores of digit symbol substitution test, and negatively relative to severity of depressive symptoms in MDD group. LIMITATIONS Our study is cross-sectional designed, and has a relatively small sample size. CONCLUSIONS We found abnormal patterns in the medial frontal activation of patients with first-episode drug-naïve MDD in recognition of F-N faces, which correlates with performance in cognitive function and depressive symptoms.
Collapse
Affiliation(s)
- Fuxu Zhang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Wanying Liu
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Yanqun Zheng
- Huashan Hospital, Affiliated with Fudan University, Shanghai 200030, China
| | - Caiping Liu
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Yao Hu
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Haiying Chen
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Xiaochen Tang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Yanyan Wei
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Tianhong Zhang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Jijun Wang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Qian Guo
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China.
| | - Guanjun Li
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China.
| | - Xiaohua Liu
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China.
| |
Collapse
|
16
|
Vila-Merkle H, González-Martínez A, Campos-Jiménez R, Martínez-Ricós J, Teruel-Martí V, Lloret A, Blasco-Serra A, Cervera-Ferri A. Sex differences in amygdalohippocampal oscillations and neuronal activation in a rodent anxiety model and in response to infralimbic deep brain stimulation. Front Behav Neurosci 2023; 17:1122163. [PMID: 36910127 PMCID: PMC9995972 DOI: 10.3389/fnbeh.2023.1122163] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 02/09/2023] [Indexed: 02/25/2023] Open
Abstract
Introduction Depression and anxiety are highly comorbid mental disorders with marked sex differences. Both disorders show altered activity in the amygdala, hippocampus, and prefrontal cortex. Infralimbic deep brain stimulation (DBS-IL) has anxiolytic and antidepressant effects, but the underlying mechanisms remain unclear. We aimed to contribute to understanding sex differences in the neurobiology of these disorders. Methods In male and female rats, we recorded neural oscillations along the dorsoventral axis of the hippocampus and the amygdala in response to an anxiogenic drug, FG-7142. Following this, we applied DBS-IL. Results Surprisingly, in females, the anxiogenic drug failed to induce most of the changes observed in males. We found sex differences in slow, delta, theta, and beta oscillations, and the amygdalo-hippocampal communication in response to FG-7142, with modest changes in females. Females had a more prominent basal gamma, and the drug altered this band only in males. We also analyzed c-Fos expression in both sexes in stress-related structures in response to FG-7142, DBS-IL, and combined interventions. With the anxiogenic drug, females showed reduced expression in the nucleus incertus, amygdala, septohippocampal network, and neocortical levels. In both experiments, the DBS-IL reversed FG-7142-induced effects, with a more substantial effect in males than females. Discussion Here, we show a reduced response in female rats which contrasts with the higher prevalence of anxiety in women but is consistent with other studies in rodents. Our results open compelling questions about sex differences in the neurobiology of anxiety and depression and their study in animal models.
Collapse
Affiliation(s)
- Hanna Vila-Merkle
- Neuronal Circuits Laboratory, Department of Human Anatomy and Embryology, Faculty of Medicine, University of Valencia, Valencia, Spain
| | - Alicia González-Martínez
- Neuronal Circuits Laboratory, Department of Human Anatomy and Embryology, Faculty of Medicine, University of Valencia, Valencia, Spain
| | - Rut Campos-Jiménez
- Neuronal Circuits Laboratory, Department of Human Anatomy and Embryology, Faculty of Medicine, University of Valencia, Valencia, Spain
| | - Joana Martínez-Ricós
- Neuronal Circuits Laboratory, Department of Human Anatomy and Embryology, Faculty of Medicine, University of Valencia, Valencia, Spain
| | - Vicent Teruel-Martí
- Neuronal Circuits Laboratory, Department of Human Anatomy and Embryology, Faculty of Medicine, University of Valencia, Valencia, Spain
| | - Ana Lloret
- Department of Physiology, Faculty of Medicine, Health Research Institute INCLIVA, CIBERFES, University of Valencia, Valencia, Spain
| | - Arantxa Blasco-Serra
- Study Group for the Anatomical Substrate of Pain and Analgesia (GESADA) Laboratory, Department of Human Anatomy and Embryology, Faculty of Medicine and Odontology, University of Valencia, Valencia, Spain
| | - Ana Cervera-Ferri
- Neuronal Circuits Laboratory, Department of Human Anatomy and Embryology, Faculty of Medicine, University of Valencia, Valencia, Spain
| |
Collapse
|
17
|
Kitt ER, Odriozola P, Gee DG. Extinction Learning Across Development: Neurodevelopmental Changes and Implications for Pediatric Anxiety Disorders. Curr Top Behav Neurosci 2023; 64:237-256. [PMID: 37532964 DOI: 10.1007/7854_2023_430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
Alterations in extinction learning relate to the development and maintenance of anxiety disorders across the lifespan. While exposure therapy, based on principles of extinction, can be highly effective for treating anxiety, many patients do not show sufficient improvement following treatment. In particular, evidence suggests that exposure therapy does not work sufficiently for up to 40% of children who receive this evidence-based treatment.Importantly, fear learning and extinction, as well as the neural circuitry supporting these processes, undergo dynamic changes across development. An improved understanding of developmental changes in extinction learning and the associated neural circuitry may help to identify targets to improve treatment response in clinically anxious children and adolescents. In this chapter, we provide a brief overview of methods used to study fear learning and extinction in developmental populations. We then review what is currently known about the developmental changes that occur in extinction learning and related neural circuitry. We end this chapter with a discussion of the implications of these neurodevelopmental changes for the characterization and treatment of pediatric anxiety disorders.
Collapse
Affiliation(s)
| | - Paola Odriozola
- Department of Psychology, Yale University, New Haven, CT, USA
| | - Dylan G Gee
- Department of Psychology, Yale University, New Haven, CT, USA.
| |
Collapse
|
18
|
Maternal symptoms of depression and anxiety during the postpartum period moderate infants' neural response to emotional faces of their mother and of female strangers. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2022; 22:1370-1389. [PMID: 35799031 DOI: 10.3758/s13415-022-01022-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/17/2022] [Indexed: 01/27/2023]
Abstract
Affective exchanges between mothers and infants are key to the intergenerational transmission of depression and anxiety, possibly via adaptations in neural systems that support infants' attention to facial affect. The current study examined associations between postnatal maternal symptoms of depression, panic and social anxiety, maternal parenting behaviours, and infants' neural responses to emotional facial expressions portrayed by their mother and by female strangers. The Negative Central (Nc), an event-related potential component that indexes attention to salient stimuli and is sensitive to emotional expression, was recorded from 30 infants. Maternal sensitivity, intrusiveness, and warmth, as well as infant's positive engagement with their mothers, were coded from unstructured interactions. Mothers reporting higher levels of postnatal depression symptoms were rated by coders as less sensitive and warm, and their infants exhibited decreased positive engagement with the mothers. In contrast, postnatal maternal symptoms of panic and social anxiety were not significantly associated with experimenter-rated parenting behaviours. Additionally, infants of mothers reporting greater postnatal depression symptoms showed a smaller Nc to their own mother's facial expressions, whereas infants of mothers endorsing greater postnatal symptoms of panic demonstrated a larger Nc to fearful facial expressions posed by both their mother and female strangers. Together, these results suggest that maternal symptoms of depression and anxiety during the postpartum period have distinct effects on infants' neural responses to parent and stranger displays of emotion.
Collapse
|
19
|
Glenn DE, Merenstein JL, Bennett IJ, Michalska KJ. Anxiety symptoms and puberty interactively predict lower cingulum microstructure in preadolescent Latina girls. Sci Rep 2022; 12:20755. [PMID: 36456602 PMCID: PMC9713745 DOI: 10.1038/s41598-022-24803-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 11/21/2022] [Indexed: 12/03/2022] Open
Abstract
Preadolescence is a period of increased vulnerability for anxiety, especially among Latina girls. Reduced microstructure (fractional anisotropy; FA) of white matter tracts between limbic and prefrontal regions may underlie regulatory impairments in anxiety. However, developmental research on the association between anxiety and white matter microstructure is mixed, possibly due to interactive influences with puberty. In a sample of 39 Latina girls (8-13 years), we tested whether pubertal stage moderated the association between parent- and child-reported anxiety symptoms and FA in the cingulum and uncinate fasciculus. Parent- but not child-reported anxiety symptoms predicted lower cingulum FA, and this effect was moderated by pubertal stage, such that this association was only significant for prepubertal girls. Neither anxiety nor pubertal stage predicted uncinate fasciculus FA. These findings suggest that anxiety is associated with disruptions in girls' cingulum white matter microstructure and that this relationship undergoes maturational changes during puberty.
Collapse
Affiliation(s)
- Dana E Glenn
- Department of Psychology, University of California, Riverside, 900 University Avenue, Riverside, CA, 92521, USA.
| | - Jenna L Merenstein
- Department of Psychology, University of California, Riverside, 900 University Avenue, Riverside, CA, 92521, USA
- Brain Imaging and Analysis Center, Duke University, Durham, NC, USA
| | - Ilana J Bennett
- Department of Psychology, University of California, Riverside, 900 University Avenue, Riverside, CA, 92521, USA
| | - Kalina J Michalska
- Department of Psychology, University of California, Riverside, 900 University Avenue, Riverside, CA, 92521, USA
| |
Collapse
|
20
|
Hu P, Lu Y, Pan BX, Zhang WH. New Insights into the Pivotal Role of the Amygdala in Inflammation-Related Depression and Anxiety Disorder. Int J Mol Sci 2022; 23:11076. [PMID: 36232376 PMCID: PMC9570160 DOI: 10.3390/ijms231911076] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/19/2022] [Accepted: 09/19/2022] [Indexed: 12/04/2022] Open
Abstract
Depression and anxiety disorders are the two most prevalent psychiatric diseases that affect hundreds of millions of individuals worldwide. Understanding the etiology and related mechanisms is of great importance and might yield new therapeutic strategies to treat these diseases effectively. During the past decades, a growing number of studies have pointed out the importance of the stress-induced inflammatory response in the amygdala, a kernel region for processing emotional stimuli, as a potentially critical contributor to the pathophysiology of depression and anxiety disorders. In this review, we first summarized the recent progress from both animal and human studies toward understanding the causal link between stress-induced inflammation and depression and anxiety disorders, with particular emphasis on findings showing the effect of inflammation on the functional changes in neurons in the amygdala, at levels ranging from molecular signaling, cellular function, synaptic plasticity, and the neural circuit to behavior, as well as their contributions to the pathology of inflammation-related depression and anxiety disorders. Finally, we concluded by discussing some of the difficulties surrounding the current research and propose some issues worth future study in this field.
Collapse
Affiliation(s)
- Ping Hu
- Institute of Translational Medicine, Nanchang University, Nanchang 330001, China
| | - Ying Lu
- Department of Biological Science, School of Life Science, Nanchang University, Nanchang 330031, China
- Laboratory of Fear and Anxiety Disorders, Institutes of Life Science, Nanchang University, Nanchang 330031, China
| | - Bing-Xing Pan
- Department of Biological Science, School of Life Science, Nanchang University, Nanchang 330031, China
- Laboratory of Fear and Anxiety Disorders, Institutes of Life Science, Nanchang University, Nanchang 330031, China
| | - Wen-Hua Zhang
- Department of Biological Science, School of Life Science, Nanchang University, Nanchang 330031, China
- Laboratory of Fear and Anxiety Disorders, Institutes of Life Science, Nanchang University, Nanchang 330031, China
| |
Collapse
|
21
|
Cui B, Jia HZ, Gao LX, Dong XF. Risk of anxiety and depression in patients with uveitis: a Meta-analysis. Int J Ophthalmol 2022; 15:1381-1390. [PMID: 36017044 DOI: 10.18240/ijo.2022.08.23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 10/11/2021] [Indexed: 11/23/2022] Open
Abstract
AIM To quantitatively evaluate the risk of anxiety and depression in patients with uveitis via performing a Meta-analysis. METHODS Three electronic database (PubMed, Embase, and Cochrane Library databases) were searched for studies recording data about uveitis and anxiety as well as depression simultaneously up to January 2021. The incidence rate and standard mean difference (SMD) with a 95% confidence interval (95%CI) were calculated to analyse the association using random-effects models based on heterogeneity tests. RESULTS In total, 12 observational studies containing 874 patients with uveitis were included. The results showed that there was a significant association between uveitis and anxiety (SMD=0.97, 95%CI: 0.39 to 1.54, P=0.0009) and depression (SMD=0.79, 95%CI: 0.51 to 1.07, P<0.00001). The overall morbidities of anxiety and depression in patients with uveitis were 39% and 17%, respectively. With subgroup analysis, the heterogeneity actually came from different kinds of uveitis. Specifically, the incidence rates of both anxiety and depression were relatively low in patients with anterior uveitis (33% and 15%), moderate in patients with infectious uveitis (46% and 22%), and high in patients with unspecified uveitis (59% and 35%). CONCLUSION It is preliminarily indicated that patients with uveitis may have a high risk of anxiety and depression. Ophthalmologists and psychologists should pay more attention to the psychological state when dealing with patients with uveitis. Further high-quality studies with detailed direct data are needed to draw more precise conclusions.
Collapse
Affiliation(s)
- Bei Cui
- Senior Department of Ophthalmology, the Third Medical Centre of Chinese People's Liberation Army General Hospital, Beijing 100039, China
| | - Hong-Zhen Jia
- Senior Department of Ophthalmology, the Third Medical Centre of Chinese People's Liberation Army General Hospital, Beijing 100039, China
| | - Li-Xiong Gao
- Senior Department of Ophthalmology, the Third Medical Centre of Chinese People's Liberation Army General Hospital, Beijing 100039, China
| | - Xiao-Fei Dong
- Department of Ophthalmology, No.967 Hospital of the Joint Logistics Support Force of the Chinese PLA, Dalian 116000, Liaoning Province, China
| |
Collapse
|
22
|
Seguin D, Pac S, Wang J, Nicolson R, Martinez-Trujillo J, Anagnostou E, Lerch JP, Hammill C, Schachar R, Crosbie J, Kelley E, Ayub M, Brian J, Liu X, Arnold PD, Georgiades S, Duerden EG. Amygdala subnuclei volumes and anxiety behaviors in children and adolescents with autism spectrum disorder, attention deficit hyperactivity disorder, and obsessive-compulsive disorder. Hum Brain Mapp 2022; 43:4805-4816. [PMID: 35819018 PMCID: PMC9582362 DOI: 10.1002/hbm.26005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/11/2022] [Accepted: 06/26/2022] [Indexed: 12/14/2022] Open
Abstract
Alterations in the structural maturation of the amygdala subnuclei volumes are associated with anxiety behaviors in adults and children with neurodevelopmental and associated disorders. This study investigated the relationship between amygdala subnuclei volumes and anxiety in 233 children and adolescents (mean age = 11.02 years; standard deviation = 3.17) with autism spectrum disorder (ASD), attention deficit hyperactivity disorder (ADHD), and children with obsessive compulsive disorder (OCD), as well as typically developing (TD) children. Parents completed the Child Behavior Checklist (CBCL), and the children underwent structural MRI at 3 T. FreeSurfer software was used to automatically segment the amygdala subnuclei. A general linear model revealed that children and adolescents with ASD, ADHD, and OCD had higher anxiety scores compared to TD children (p < .001). A subsequent interaction analysis revealed that children with ASD (B = 0.09, p < .0001) and children with OCD (B = 0.1, p < .0001) who had high anxiety had larger right central nuclei volumes compared with TD children. Similar results were obtained for the right anterior amygdaloid area. Amygdala subnuclei volumes may be key to identifying children with neurodevelopmental disorders or those with OCD who are at high risk for anxiety. Findings may inform the development of targeted behavioral interventions to address anxiety behaviors and to assess the downstream effects of such interventions.
Collapse
Affiliation(s)
- Diane Seguin
- Physiology & Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Canada
| | - Sara Pac
- Neuroscience, Schulich School of Medicine and Dentistry, Western University, London, Canada
| | - Jianan Wang
- Biomedical Engineering, Faculty of Engineering, Western University, London, Canada
| | - Rob Nicolson
- Psychiatry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Canada
| | - Julio Martinez-Trujillo
- Physiology & Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Canada
| | - Evdokia Anagnostou
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, University of Toronto, Toronto, Canada
| | - Jason P Lerch
- The Hospital for Sick Children, Toronto, Canada.,Wellcome Centre for Integrative Neuroimaging, University of Oxford, FMRIB, Nuffield Department of Clinical Neurosciences, Oxford, UK.,Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | | | | | | | | | - Muhammad Ayub
- Department of Psychiatry, Queen's University, Kingston, Canada
| | - Jessica Brian
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, University of Toronto, Toronto, Canada
| | - Xudong Liu
- Department of Psychiatry, Queen's University, Kingston, Canada.,Queen's Genomics Lab at Ongwanada (QGLO), Ongwanada Resource Center, Kingston, Canada
| | - Paul D Arnold
- Department of Psychiatry Cumming School of Medicine, University of Calgary, Calgary, Canada.,Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Stelios Georgiades
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Canada
| | - Emma G Duerden
- Psychiatry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Canada.,Applied Psychology, Faculty of Education, Western University, London, Canada
| |
Collapse
|
23
|
Tamm S, Harmer CJ, Schiel J, Holub F, Rutter MK, Spiegelhalder K, Kyle SD. No Association Between Amygdala Responses to Negative Faces and Depressive Symptoms: Cross-Sectional Data from 28,638 Individuals in the UK Biobank Cohort. Am J Psychiatry 2022; 179:509-513. [PMID: 35775158 DOI: 10.1176/appi.ajp.21050466] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Sandra Tamm
- Department of Psychiatry, University of Oxford and Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, U.K. (Tamm, Harmer); Department of Clinical Neuroscience, Karolinska Institute, Stockholm (Tamm); Department of Psychiatry and Psychotherapy, University of Freiburg Medical Centre and Faculty of Medicine, University of Freiburg, Freiburg, Germany (Schiel, Holub, Spiegelhalder); Centre for Biological Timing, Faculty of Biology, Medicine and Health, University of Manchester and the Diabetes, Endocrinology and Metabolism Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, U.K. (Rutter); Sleep and Circadian Neuroscience Institute, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, U.K. (Kyle)
| | - Catherine J Harmer
- Department of Psychiatry, University of Oxford and Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, U.K. (Tamm, Harmer); Department of Clinical Neuroscience, Karolinska Institute, Stockholm (Tamm); Department of Psychiatry and Psychotherapy, University of Freiburg Medical Centre and Faculty of Medicine, University of Freiburg, Freiburg, Germany (Schiel, Holub, Spiegelhalder); Centre for Biological Timing, Faculty of Biology, Medicine and Health, University of Manchester and the Diabetes, Endocrinology and Metabolism Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, U.K. (Rutter); Sleep and Circadian Neuroscience Institute, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, U.K. (Kyle)
| | - Julian Schiel
- Department of Psychiatry, University of Oxford and Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, U.K. (Tamm, Harmer); Department of Clinical Neuroscience, Karolinska Institute, Stockholm (Tamm); Department of Psychiatry and Psychotherapy, University of Freiburg Medical Centre and Faculty of Medicine, University of Freiburg, Freiburg, Germany (Schiel, Holub, Spiegelhalder); Centre for Biological Timing, Faculty of Biology, Medicine and Health, University of Manchester and the Diabetes, Endocrinology and Metabolism Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, U.K. (Rutter); Sleep and Circadian Neuroscience Institute, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, U.K. (Kyle)
| | - Florian Holub
- Department of Psychiatry, University of Oxford and Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, U.K. (Tamm, Harmer); Department of Clinical Neuroscience, Karolinska Institute, Stockholm (Tamm); Department of Psychiatry and Psychotherapy, University of Freiburg Medical Centre and Faculty of Medicine, University of Freiburg, Freiburg, Germany (Schiel, Holub, Spiegelhalder); Centre for Biological Timing, Faculty of Biology, Medicine and Health, University of Manchester and the Diabetes, Endocrinology and Metabolism Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, U.K. (Rutter); Sleep and Circadian Neuroscience Institute, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, U.K. (Kyle)
| | - Martin K Rutter
- Department of Psychiatry, University of Oxford and Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, U.K. (Tamm, Harmer); Department of Clinical Neuroscience, Karolinska Institute, Stockholm (Tamm); Department of Psychiatry and Psychotherapy, University of Freiburg Medical Centre and Faculty of Medicine, University of Freiburg, Freiburg, Germany (Schiel, Holub, Spiegelhalder); Centre for Biological Timing, Faculty of Biology, Medicine and Health, University of Manchester and the Diabetes, Endocrinology and Metabolism Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, U.K. (Rutter); Sleep and Circadian Neuroscience Institute, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, U.K. (Kyle)
| | - Kai Spiegelhalder
- Department of Psychiatry, University of Oxford and Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, U.K. (Tamm, Harmer); Department of Clinical Neuroscience, Karolinska Institute, Stockholm (Tamm); Department of Psychiatry and Psychotherapy, University of Freiburg Medical Centre and Faculty of Medicine, University of Freiburg, Freiburg, Germany (Schiel, Holub, Spiegelhalder); Centre for Biological Timing, Faculty of Biology, Medicine and Health, University of Manchester and the Diabetes, Endocrinology and Metabolism Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, U.K. (Rutter); Sleep and Circadian Neuroscience Institute, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, U.K. (Kyle)
| | - Simon D Kyle
- Department of Psychiatry, University of Oxford and Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, U.K. (Tamm, Harmer); Department of Clinical Neuroscience, Karolinska Institute, Stockholm (Tamm); Department of Psychiatry and Psychotherapy, University of Freiburg Medical Centre and Faculty of Medicine, University of Freiburg, Freiburg, Germany (Schiel, Holub, Spiegelhalder); Centre for Biological Timing, Faculty of Biology, Medicine and Health, University of Manchester and the Diabetes, Endocrinology and Metabolism Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, U.K. (Rutter); Sleep and Circadian Neuroscience Institute, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, U.K. (Kyle)
| |
Collapse
|
24
|
Huggins AA, McTeague LM, Davis MM, Bustos N, Crum KI, Polcyn R, Adams ZW, Carpenter LA, Hajcak G, Halliday CA, Joseph JE, Danielson CK. Neighborhood Disadvantage Associated With Blunted Amygdala Reactivity to Predictable and Unpredictable Threat in a Community Sample of Youth. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2022; 2:242-252. [PMID: 35928141 PMCID: PMC9348572 DOI: 10.1016/j.bpsgos.2022.03.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Childhood socioeconomic disadvantage is a form of adversity associated with alterations in critical frontolimbic circuits involved in the pathophysiology of psychiatric disorders. Most work has focused on individual-level socioeconomic position, yet individuals living in deprived communities typically encounter additional environmental stressors that have unique effects on the brain and health outcomes. Notably, chronic and unpredictable stressors experienced in the everyday lives of youth living in disadvantaged neighborhoods may impact neural responsivity to uncertain threat. METHODS A community sample of children (N = 254) ages 8 to 15 years (mean = 12.15) completed a picture anticipation task during a functional magnetic resonance imaging scan, during which neutral and negatively valenced photos were presented in a temporally predictable or unpredictable manner. Area Deprivation Index (ADI) scores were derived from participants' home addresses as an index of relative neighborhood disadvantage. Voxelwise analyses examined interactions of ADI, valence, and predictability on neural response to picture presentation. RESULTS There was a significant ADI × valence interaction in the middle temporal gyrus, anterior cingulate cortex, hippocampus, and amygdala. Higher ADI was associated with less amygdala activation to negatively valenced images. ADI also interacted with predictability. Higher ADI was associated with greater activation of lingual and calcarine gyri for unpredictably presented stimuli. There was no three-way interaction of ADI, valence, and predictability. CONCLUSIONS Neighborhood disadvantage may impact how the brain perceives and responds to potential threats. Future longitudinal work is critical for delineating how such effects may persist across the life span and how health outcomes may be modifiable with community-based interventions and policies.
Collapse
Affiliation(s)
- Ashley A. Huggins
- Duke-UNC Brain Imaging and Analysis Center, Duke University, Durham, North Carolina
| | - Lisa M. McTeague
- Department of Psychiatry, Medical University of South Carolina, Charleston, South Carolina
| | - Megan M. Davis
- Department of Psychology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Nicholas Bustos
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina
| | - Kathleen I. Crum
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, Indiana
| | - Rachel Polcyn
- Department of Psychiatry, Medical University of South Carolina, Charleston, South Carolina
| | - Zachary W. Adams
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, Indiana
| | - Laura A. Carpenter
- Department of Pediatrics, Medical University of South Carolina, Charleston, South Carolina
| | - Greg Hajcak
- Department of Biomedical Sciences, Florida State University, Tallahassee, Florida
| | - Colleen A. Halliday
- Department of Psychiatry, Medical University of South Carolina, Charleston, South Carolina
| | - Jane E. Joseph
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina
| | - Carla Kmett Danielson
- Department of Psychiatry, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
25
|
Stressed rats fail to exhibit avoidance reactions to innately aversive social calls. Neuropsychopharmacology 2022; 47:1145-1155. [PMID: 34848856 PMCID: PMC9018727 DOI: 10.1038/s41386-021-01230-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 10/01/2021] [Accepted: 10/30/2021] [Indexed: 02/02/2023]
Abstract
Disruptions in amygdalar function, a brain area involved in encoding emotionally salient information, has been implicated in stress-related affective disorders. Earlier animal studies on the behavioral consequences of stress-induced abnormalities in the amygdala focused on learned behaviors using fear conditioning paradigms. If and how stress affects unconditioned, innate fear responses to ethologically natural aversive stimuli remains unexplored. Hence, we subjected rats to aversive ultrasonic vocalization calls emitted on one end of a linear track. Unstressed control rats exhibited a robust avoidance response by spending more time away from the source of the playback calls. Unexpectedly, prior exposure to chronic immobilization stress prevented this avoidance reaction, rather than enhancing it. Further, this stress-induced impairment extended to other innately aversive stimuli, such as white noise and electric shock in an inhibitory avoidance task. However, conditioned fear responses were enhanced by the same stress. Inactivation of the basolateral amygdala (BLA) in control rats prevented this avoidance reaction evoked by the playback. Consistent with this, analysis of the immediate early gene cFos revealed higher activity in the BLA of control, but not stressed rats, after exposure to the playback. Further, in vivo recordings in freely behaving control rats exposed to playback showed enhanced theta activity in the BLA, which also was absent in stressed rats. These findings offer a new framework for studying stress-induced alterations in amygdala-dependent maladaptive responses to more naturally threatening and emotionally relevant social stimuli. The divergent impact of stress on defensive responses--impaired avoidance responses together with increased conditioned fear--also has important implications for models of learned helplessness and depression.
Collapse
|
26
|
Tseng A, Camchong J, Francis SM, Mueller BA, Lim KO, Conelea CA, Jacob S. Differential extrinsic brain network connectivity and social cognitive task-specific demands in Autism Spectrum Disorder (ASD). J Psychiatr Res 2022; 148:230-239. [PMID: 35149435 DOI: 10.1016/j.jpsychires.2022.01.066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 01/17/2022] [Accepted: 01/28/2022] [Indexed: 11/30/2022]
Abstract
Few studies have used task-based functional connectivity (FC) magnetic resonance imaging to examine emotion-processing during the critical neurodevelopmental period of adolescence in Autism Spectrum Disorders (ASDs). Moreover, task designs with pervasive confounds (e.g., lack of appropriate controls) persist because they activate neural circuits of interest reliably. As an alternative approach to "subtracting" activity from putative control conditions, we propose examining FC across an entire task run. By pivoting our analysis and interpretation of existing paradigms, we may better understand neural response to non-focal instances of socially-relevant stimuli that approximate real-world experiences more closely. Hence, using two well-established affective tasks (face-viewing, face-matching) with diverging social-cognitive demands, we investigated extrinsic FC from amygdala (AMG) and fusiform gyrus (FG) seeds in typically-developing (TD; N = 17) and ASD (N = 17) male adolescents (10-18 yo) and clinical correlations (Social Communication Questionnaire; SCQ) of group FC differences. Participant data (4TD, 6ASD) with excessive head-motion were excluded from final analysis. Direct between-group comparisons revealed significant differences between groups for neural response but not task performance (accuracy, reaction time). During face-viewing, we found greater FC from AMG and FG seeds for ASD participants (ASD > TD) in regions involved in the Default Mode and Fronto-Parietal Task Control Networks. During face-matching, we found greater FC from AMG and FG seeds for TD participants (TD > ASD), in regions associated with the Salience, Dorsal Attention, and Somatosensory Networks. SCQ scores correlated positively with regions with group differences on the face-viewing task and negatively with regions identified for the face-matching task. Task-dependent group differences in FC despite comparable behavioral performance suggest that high-functioning ASD may wield compensatory strategies; clinically-correlated FC patterns may associate with differential task-demands, ecological validity, and context-dependent processing. Employing this novel approach may further the development of targeted therapeutic interventions informed by individual differences in the highly heterogeneous ASD population.
Collapse
Affiliation(s)
- Angela Tseng
- Department of Psychiatry & Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA.
| | - Jazmin Camchong
- Department of Psychiatry & Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA.
| | - Sunday M Francis
- Department of Psychiatry & Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA.
| | - Bryon A Mueller
- Department of Psychiatry & Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA.
| | - Kelvin O Lim
- Department of Psychiatry & Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA.
| | - Christine A Conelea
- Department of Psychiatry & Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA.
| | - Suma Jacob
- Department of Psychiatry & Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
27
|
Bourne SV, Korom M, Dozier M. Consequences of Inadequate Caregiving for Children's Attachment, Neurobiological Development, and Adaptive Functioning. Clin Child Fam Psychol Rev 2022; 25:166-181. [PMID: 35201540 DOI: 10.1007/s10567-022-00386-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2022] [Indexed: 11/03/2022]
Abstract
Given that human infants are almost fully reliant on caregivers for survival, the presence of parents who provide sensitive, responsive care support infants and young children in developing the foundation for optimal biological functioning. Conversely, when parents are unavailable or insensitive, there are consequences for infants' and children's attachment and neurobiological development. In this paper, we describe effects of inadequate parenting on children's neurobiological and behavioral development, with a focus on developing capacities for executive functioning, emotion regulation, and other important cognitive-affective processes. Most prior research has examined correlational associations among these constructs. Given that interventions tested through randomized clinical trials allow for causal inferences, we review longitudinal intervention effects on children's biobehavioral and cognitive-affective outcomes. In particular, we provide an overview of the Bucharest Early Intervention Project, a study in which children were randomized to continue in orphanage care (typically the most extreme condition of privation) or were placed into the homes of trained, supported foster parents. We also discuss findings regarding Attachment and Biobehavioral Catch-up, an intervention enhancing sensitivity among high-risk parents. We conclude by suggesting future directions for research in this area.
Collapse
Affiliation(s)
- Stacia V Bourne
- Department of Psychological & Brain Sciences, University of Delaware, Newark, DE, USA.
| | - Marta Korom
- Department of Psychological & Brain Sciences, University of Delaware, Newark, DE, USA
| | - Mary Dozier
- Department of Psychological & Brain Sciences, University of Delaware, Newark, DE, USA
| |
Collapse
|
28
|
Facial emotion recognition impairment predicts social and emotional problems in children with (subthreshold) ADHD. Eur Child Adolesc Psychiatry 2022; 31:715-727. [PMID: 33415471 PMCID: PMC9142461 DOI: 10.1007/s00787-020-01709-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 12/19/2020] [Indexed: 12/28/2022]
Abstract
Children with attention-deficit/hyperactivity disorder (ADHD) symptoms often experience social and emotional problems. Impaired facial emotion recognition has been suggested as a possible underlying mechanism, although impairments may depend on the type and intensity of emotions. We investigated facial emotion recognition in children with (subthreshold) ADHD and controls using a novel task with children's faces of emotional expressions varying in type and intensity. We further investigated associations between emotion recognition accuracy and social and emotional problems in the ADHD group. 83 children displaying ADHD symptoms and 30 controls (6-12 years) completed the Morphed Facial Emotion Recognition Task (MFERT). The MFERT assesses emotion recognition accuracy on four emotions using five expression intensity levels. Teachers and parents rated social and emotional problems on the Strengths and Difficulties Questionnaire. Repeated measures analysis of variance revealed that the ADHD group showed poorer emotion recognition accuracy compared to controls across emotions (small effect). The significant group by expression intensity interaction (small effect) showed that the increase in accuracy with increasing expression intensity was smaller in the ADHD group compared to controls. Multiple regression analyses within the ADHD group showed that emotion recognition accuracy was inversely related to social and emotional problems, but not prosocial behavior. Not only children with an ADHD diagnosis, but also children with subthreshold ADHD experience impairments in facial emotion recognition. This impairment is predictive for social and emotional problems, which may suggest that emotion recognition may contribute to the development of social and emotional problems in these children.
Collapse
|
29
|
Jamieson AJ, Harrison BJ, Davey CG. Altered effective connectivity of the extended face processing system in depression and its association with treatment response: findings from the YoDA-C randomized controlled trial. Psychol Med 2021; 51:2933-2944. [PMID: 37676047 DOI: 10.1017/s0033291721002567] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND Depression is commonly associated with fronto-amygdala dysfunction during the processing of emotional face expressions. Interactions between these regions are hypothesized to contribute to negative emotional processing biases and as such have been highlighted as potential biomarkers of treatment response. This study aimed to investigate depression associated alterations to directional connectivity and assess the utility of these parameters as predictors of treatment response. METHODS Ninety-two unmedicated adolescents and young adults (mean age 20.1; 56.5% female) with moderate-to-severe major depressive disorder and 88 healthy controls (mean age 19.8; 61.4% female) completed an implicit emotional face processing fMRI task. Patients were randomized to receive cognitive behavioral therapy for 12 weeks, plus either fluoxetine or placebo. Using dynamic causal modelling, we examined functional relationships between six brain regions implicated in emotional face processing, comparing both patients and controls and treatment responders and non-responders. RESULTS Depressed patients demonstrated reduced inhibition from the dlPFC to vmPFC and reduced excitation from the dlPFC to amygdala during sad expression processing. During fearful expression processing patients showed reduced inhibition from the vmPFC to amygdala and reduced excitation from the amygdala to dlPFC. Response was associated with connectivity from the amygdala to dlPFC during sad expression processing and amygdala to vmPFC connectivity during fearful expression processing. CONCLUSIONS Our study clarifies the nature of face processing network alterations in adolescents and young adults with depression, highlighting key interactions between the amygdala and prefrontal cortex. Moreover, these findings highlight the potential utility of these interactions in predicting treatment response.
Collapse
Affiliation(s)
- Alec J Jamieson
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Australia
| | - Ben J Harrison
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Australia
| | - Christopher G Davey
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Australia
- Department of Psychiatry, The University of Melbourne, Australia
| |
Collapse
|
30
|
Cohodes EM, Kribakaran S, Odriozola P, Bakirci S, McCauley S, Hodges HR, Sisk LM, Zacharek SJ, Gee DG. Migration-related trauma and mental health among migrant children emigrating from Mexico and Central America to the United States: Effects on developmental neurobiology and implications for policy. Dev Psychobiol 2021; 63:e22158. [PMID: 34292596 PMCID: PMC8410670 DOI: 10.1002/dev.22158] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 05/11/2021] [Accepted: 06/20/2021] [Indexed: 12/24/2022]
Abstract
Children make up over half of the world's migrants and refugees and face a multitude of traumatic experiences prior to, during, and following migration. Here, we focus on migrant children emigrating from Mexico and Central America to the United States and review trauma related to migration, as well as its implications for the mental health of migrant and refugee children. We then draw upon the early adversity literature to highlight potential behavioral and neurobiological sequalae of migration-related trauma exposure, focusing on attachment, emotion regulation, and fear learning and extinction as transdiagnostic mechanisms underlying the development of internalizing and externalizing symptomatology following early-life adversity. This review underscores the need for interdisciplinary efforts to both mitigate the effects of trauma faced by migrant and refugee youth emigrating from Mexico and Central America and, of primary importance, to prevent child exposure to trauma in the context of migration. Thus, we conclude by outlining policy recommendations aimed at improving the mental health of migrant and refugee youth.
Collapse
Affiliation(s)
- Emily M Cohodes
- Department of Psychology, Yale University, New Haven, Connecticut, USA
| | - Sahana Kribakaran
- Department of Psychology, Yale University, New Haven, Connecticut, USA
| | - Paola Odriozola
- Department of Psychology, Yale University, New Haven, Connecticut, USA
| | - Sarah Bakirci
- Department of Psychology, Yale University, New Haven, Connecticut, USA
| | - Sarah McCauley
- Department of Psychology, Yale University, New Haven, Connecticut, USA
| | - H R Hodges
- Department of Psychology, Yale University, New Haven, Connecticut, USA
| | - Lucinda M Sisk
- Department of Psychology, Yale University, New Haven, Connecticut, USA
| | - Sadie J Zacharek
- Department of Psychology, Yale University, New Haven, Connecticut, USA
| | - Dylan G Gee
- Department of Psychology, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
31
|
Sawalha J, Yousefnezhad M, Selvitella AM, Cao B, Greenshaw AJ, Greiner R. Predicting pediatric anxiety from the temporal pole using neural responses to emotional faces. Sci Rep 2021; 11:16723. [PMID: 34408203 PMCID: PMC8373898 DOI: 10.1038/s41598-021-95987-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 07/23/2021] [Indexed: 12/30/2022] Open
Abstract
A prominent cognitive aspect of anxiety is dysregulation of emotional interpretation of facial expressions, associated with neural activity from the amygdala and prefrontal cortex. We report machine learning analysis of fMRI results supporting a key role for a third area, the temporal pole (TP) for childhood anxiety in this context. This finding is based on differential fMRI responses to emotional faces (angry versus fearful faces) in children with one or more of generalized anxiety, separation anxiety, and social phobia (n = 22) compared with matched controls (n = 23). In our machine learning (Adaptive Boosting) model, the right TP distinguished anxious from control children (accuracy = 81%). Involvement of the TP as significant for neurocognitive aspects of pediatric anxiety is a novel finding worthy of further investigation.
Collapse
Affiliation(s)
- Jeffrey Sawalha
- Department of Psychiatry, University of Alberta, Alberta, Canada.,Department of Computing Science, University of Alberta, Alberta, Canada.,Alberta Machine Intelligence Institute (Amii), Alberta, Canada
| | - Muhammad Yousefnezhad
- Department of Psychiatry, University of Alberta, Alberta, Canada.,Department of Computing Science, University of Alberta, Alberta, Canada.,Alberta Machine Intelligence Institute (Amii), Alberta, Canada
| | - Alessandro M Selvitella
- Department of Mathematical Sciences, Purdue University, Fort Wayne, United States.,eScience Institute, University of Washington, Seattle, WA, USA
| | - Bo Cao
- Department of Psychiatry, University of Alberta, Alberta, Canada
| | | | - Russell Greiner
- Department of Psychiatry, University of Alberta, Alberta, Canada. .,Department of Computing Science, University of Alberta, Alberta, Canada. .,Alberta Machine Intelligence Institute (Amii), Alberta, Canada.
| |
Collapse
|
32
|
Zacharek SJ, Kribakaran S, Kitt ER, Gee DG. Leveraging big data to map neurodevelopmental trajectories in pediatric anxiety. Dev Cogn Neurosci 2021; 50:100974. [PMID: 34147988 PMCID: PMC8225701 DOI: 10.1016/j.dcn.2021.100974] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 05/26/2021] [Accepted: 06/08/2021] [Indexed: 12/30/2022] Open
Abstract
Anxiety disorders are the most prevalent psychiatric condition among youth, with symptoms commonly emerging prior to or during adolescence. Delineating neurodevelopmental trajectories associated with anxiety disorders is important for understanding the pathophysiology of pediatric anxiety and for early risk identification. While a growing literature has yielded valuable insights into the nature of brain structure and function in pediatric anxiety, progress has been limited by inconsistent findings and challenges common to neuroimaging research. In this review, we first discuss these challenges and the promise of ‘big data’ to map neurodevelopmental trajectories in pediatric anxiety. Next, we review evidence of age-related differences in neural structure and function among anxious youth, with a focus on anxiety-relevant processes such as threat and safety learning. We then highlight large-scale cross-sectional and longitudinal studies that assess anxiety and are well positioned to inform our understanding of neurodevelopment in pediatric anxiety. Finally, we detail relevant challenges of ‘big data’ and propose future directions through which large publicly available datasets can advance knowledge of deviations from normative brain development in anxiety. Leveraging ‘big data’ will be essential for continued progress in understanding the neurobiology of pediatric anxiety, with implications for identifying markers of risk and novel treatment targets.
Collapse
Affiliation(s)
- Sadie J Zacharek
- Massachusetts Institute of Technology, Department of Brain and Cognitive Sciences, Cambridge, MA, 02139, United States; Yale University, Department of Psychology, New Haven, CT, 06511, United States
| | - Sahana Kribakaran
- Yale University, Department of Psychology, New Haven, CT, 06511, United States
| | - Elizabeth R Kitt
- Yale University, Department of Psychology, New Haven, CT, 06511, United States
| | - Dylan G Gee
- Yale University, Department of Psychology, New Haven, CT, 06511, United States.
| |
Collapse
|
33
|
Li X, Wang J. Abnormal neural activities in adults and youths with major depressive disorder during emotional processing: a meta-analysis. Brain Imaging Behav 2021; 15:1134-1154. [PMID: 32710330 DOI: 10.1007/s11682-020-00299-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Abnormal neural activities during emotional processing have been found in both adults and youths with major depressive disorder. However, findings were inconsistent in each group and cannot be compared to each other. METHODS We first identified neuroimaging experiments that revealed abnormal neural activities during emotional processing in patients with major depressive disorder published from January 1997 to January 2019. Then we conducted voxel-wise meta-analyses on adult and youth patients separately and compared the two age groups using direct meta-comparison. RESULTS Fifty-four studies comprising 1141 patients and 1242 healthy controls were identified. Both adult and youth patients showed abnormal neural activities in anterior cingulate cortex, insula, superior and middle temporal gyrus, and occipital cortex compared to healthy controls. However, hyperactivities in the superior and middle frontal gyrus, amygdala, and hippocampus were only observed in adult patients, while hyperactivity in the striatum was only found in youth patients compared to controls. In addition, compared with youths, adult patients exhibited significantly greater abnormal activities in insula, middle frontal gyrus, and hippocampus, and significantly lower abnormal activities in middle temporal gyrus, middle occipital gyrus, lingual gyrus, and striatum. CONCLUSIONS The common alterations confirmed the negative processing bias in major depressive disorder. Both adult and youth patients were suggested to have disturbed emotional perception, appraisal, and reactivity. However, adult patients might be more subject to the impaired appraisal and reactivity processes, while youth patients were more subject to the impaired perception process. These findings help us understand the progressive pathophysiology of major depressive disorder.
Collapse
Affiliation(s)
- Xuqian Li
- Department of Applied Psychology, Guangdong University of Foreign Studies, Guangzhou, 510006, China.,School of Psychology, The University of Queensland, Brisbane, 4067, Australia
| | - Junjing Wang
- Department of Applied Psychology, Guangdong University of Foreign Studies, Guangzhou, 510006, China.
| |
Collapse
|
34
|
Emerging Evidence for Putative Neural Networks and Antecedents of Pediatric Anxiety in the Fetal, Neonatal, and Infant Periods. Biol Psychiatry 2021; 89:672-680. [PMID: 33518264 PMCID: PMC8087150 DOI: 10.1016/j.biopsych.2020.11.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 11/12/2020] [Accepted: 11/22/2020] [Indexed: 12/20/2022]
Abstract
Anxiety disorders are the most prevalent psychiatric disorders in youth and are associated with profound individual impairment and public health costs. Research shows that clinically significant anxiety symptoms manifest in preschool-aged children, and correlates of anxiety symptoms are observable in infancy. Yet, predicting who is at risk for developing anxiety remains an enduring challenge. Predictive biomarkers of anxiety are needed before school age when anxiety symptoms typically consolidate into diagnostic profiles. Increasing evidence indicates that early neural measures implicated in anxiety and anxious temperament may be incorporated with traditional measures of behavioral risk (i.e., behavioral inhibition) to provide more robust classification of pediatric anxiety problems. This review examines the phenomenology of anxiety disorders in early life, highlighting developmental research that interrogates the putative neurocircuitry of pediatric anxiety. First, we discuss enduring challenges in identifying and predicting risk for pediatric anxiety. Second, we summarize emerging evidence for putative neural antecedents and networks underlying risk for pediatric anxiety in the fetal, neonatal, and infant periods that represent novel potential avenues for risk identification and prediction. We focus on evidence examining the importance of early amygdala and extended amygdala circuitry development to the emergence of anxiety. Finally, we discuss the utility of integrating developmental psychopathology and neuroscience to facilitate future research and clinical work.
Collapse
|
35
|
Bylsma LM. Emotion context insensitivity in depression: Toward an integrated and contextualized approach. Psychophysiology 2021; 58:e13715. [PMID: 33274773 PMCID: PMC8097691 DOI: 10.1111/psyp.13715] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 07/31/2020] [Accepted: 08/17/2020] [Indexed: 12/12/2022]
Abstract
Major depressive disorder (MDD) is characterized by pervasive mood disturbance as well as deficits in emotional processing, reactivity, and regulation. There is accumulating evidence that MDD is characterized by emotional patterns consistent with environmental disengagement, as reflected in attenuated positive and negative emotional reactivity, consistent with Emotion Context Insensitivity (ECI) theory. However, MDD individuals vary considerably in the extent to which they exhibit specific alterations in patterns of emotional responding. Emotions are complex, multicomponent processes that invoke responses across multiple functional domains and levels of analysis, including subjective experience, behavior, autonomic regulation, cognition, and neural processing. In this article, I review the current state of the literature on emotional responding and MDD from the lens of ECI. I focus on the importance of assessing emotional indices from multiple levels of analysis across development and contexts. I also discuss methodological and measurement issues that may contribute to inconsistent findings. In particular, I emphasize how psychophysiological measures can help elucidate emotional processes that underlie the pathophysiology of MDD as part of an integrated and contextualized approach.
Collapse
Affiliation(s)
- Lauren M Bylsma
- Departments of Psychiatry and Psychology, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
36
|
Strawn JR, Lu L, Peris T, Levine A, Walkup JT. Research Review: Pediatric anxiety disorders - what have we learnt in the last 10 years? J Child Psychol Psychiatry 2021; 62:114-139. [PMID: 32500537 PMCID: PMC7718323 DOI: 10.1111/jcpp.13262] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/21/2020] [Indexed: 02/05/2023]
Abstract
BACKGROUND Anxiety disorders first emerge during the critical developmental periods of childhood and adolescence. This review synthesizes recent findings on the prevalence, risk factors, and course of the anxiety disorders; and their neurobiology and treatment. METHODS For this review, searches were conducted using PubMed, PsycINFO, and clinicaltrials.gov. Findings related to the epidemiology, neurobiology, risk factors, and treatment of pediatric anxiety disorders were then summarized. FINDINGS Anxiety disorders are high prevalence, and early-onset conditions associated with multiple risk factors including early inhibited temperament, environment stress, and structural and functional abnormalities in the prefrontal-amygdala circuitry as well as the default mode and salience networks. The anxiety disorders are effectively treated with cognitive behavioral therapy (CBT), selective serotonin reuptake inhibitors (SSRIs), and serotonin-norepinephrine reuptake inhibitors (SNRIs). CONCLUSIONS Anxiety disorders are high prevalence, early-onset conditions associated with a distinct neurobiological fingerprint, and are consistently responsive to treatment. Questions remain regarding who is at risk of developing anxiety disorders as well as the way in which neurobiology predicts treatment response.
Collapse
Affiliation(s)
- Jeffrey R. Strawn
- Department of Psychiatry, College of Medicine, University of Cincinnati, Cincinnati, Ohio
| | - Lu Lu
- Department of Psychiatry, College of Medicine, University of Cincinnati, Cincinnati, Ohio
- Huaxi MR Research Center, Dept. of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Tara Peris
- UCLA Semel Institute for Neuroscience and Human Behavior, Los Angeles, California
| | - Amir Levine
- Department of Psychiatry, Columbia University and New York State Psychiatric Institute, New York, NY
| | - John T. Walkup
- Pritzker Department of Psychiatry and Behavioral Health, Lurie Children’s Hospital, Chicago, Illinois
| |
Collapse
|
37
|
Jamieson D, Shan Z, Lagopoulos J, Hermens DF. The role of adolescent sleep quality in the development of anxiety disorders: A neurobiologically-informed model. Sleep Med Rev 2021; 59:101450. [PMID: 33588272 DOI: 10.1016/j.smrv.2021.101450] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/22/2020] [Accepted: 11/24/2020] [Indexed: 12/26/2022]
Abstract
In a series of cognitive and neuroimaging studies we investigated the relationships between adolescent sleep quality, white matter (WM) microstructural integrity and psychological distress. Collectively these studies showed that during early adolescence (12-14 years of age), sleep quality and psychological distress are significantly related. Sleep quality and the microstructure of the posterior limb of the internal capsule (PLIC), a WM tract that provides important connectivity between the cortex, thalamus and brain stem, were also shown to be significantly correlated as too were social connectedness and psychological distress. Longitudinally the uncinate fasciculus (UF), a WM tract that provides bidirectional connectivity between the amygdala and executive control centers in the Prefrontal cortex (PFC), was observed to be undergoing continued development during this period and sleep quality was shown to impact this development. Sleep latency was also shown to be a significant predictor of worry endured by early adolescents during future stressful situations. The current review places these findings within the broader literature and proposes an empirically supported model based in a theoretical framework. This model focuses on how fronto-limbic top-down control (or lack thereof) explains how poor sleep quality during early adolescence plays a crucial role in the initial development of anxiety disorders, and possibly in the reduced ability of anxiety disorder sufferers to benefit from cognitive reappraisal based therapies. While the findings outlined in these studies highlight the importance of sleep quality for WM development and in mitigating psychological distress, further research is required to further explicate the associations proposed within the model to allow causal inferences to be made.
Collapse
Affiliation(s)
| | - Zack Shan
- Thompson Institute, Birtinya, QLD, Australia
| | | | | |
Collapse
|
38
|
Wiktorowska L, Bilecki W, Tertil M, Kudla L, Szumiec L, Mackowiak M, Przewlocki R. Knockdown of the astrocytic glucocorticoid receptor in the central nucleus of the amygdala diminishes conditioned fear expression and anxiety. Behav Brain Res 2021; 402:113095. [PMID: 33359366 DOI: 10.1016/j.bbr.2020.113095] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 12/18/2020] [Accepted: 12/19/2020] [Indexed: 12/31/2022]
Abstract
The amygdala is a key structure involved in both physiological and behavioural effects of fearful and stressful stimuli. The central stress response is controlled by the activity of the hypothalamic-pituitary-adrenal (HPA) axis via glucocorticoid hormones, acting mainly through glucocorticoid receptors (GR), widely expressed among different brain regions, including the central nucleus of the amygdala (CeA). Although to date, neuronal GR was postulated to be involved in the mediating stress effects, increasing evidence points to the vital role of glial GR. Here, we aimed to evaluate the role of astrocytic GR in CeA in various aspects of the stress response. We used a lentiviral vector to disrupt an astrocytic GR in the CeA of Aldh1l1-Cre transgenic mice. Astrocytic GR knockdown mice (GR KD) exhibited an attenuated expression of fear-related memory in the fear conditioning paradigm. Interestingly, the consolidation of non-stressful memory in the novel object recognition test remained unchanged. Moreover, GR KD group presented reduced anxiety, measured in the open field test. However, knockdown of astrocytic GR in the CeA did not affect an acute response to stress in the tail suspension test. Taken together, obtained results suggest that astrocytic GR in the CeA promotes aversive memory consolidation and some aspects of anxiety behaviour.
Collapse
Affiliation(s)
- Lucja Wiktorowska
- Department of Molecular Neuropharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Wiktor Bilecki
- Laboratory of Pharmacology and Brain Biostructure, Department of Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Magdalena Tertil
- Laboratory of Pharmacology and Brain Biostructure, Department of Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Lucja Kudla
- Department of Molecular Neuropharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Lukasz Szumiec
- Department of Molecular Neuropharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Marzena Mackowiak
- Laboratory of Pharmacology and Brain Biostructure, Department of Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Ryszard Przewlocki
- Department of Molecular Neuropharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland.
| |
Collapse
|
39
|
Kroll DS, Feldman DE, Wang SYA, Zhang R, Manza P, Wiers CE, Volkow ND, Wang GJ. The associations of comorbid substance use disorders and psychiatric conditions with adolescent brain structure and function: A review. J Neurol Sci 2020; 418:117099. [PMID: 32866814 PMCID: PMC9003866 DOI: 10.1016/j.jns.2020.117099] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 07/15/2020] [Accepted: 08/14/2020] [Indexed: 12/30/2022]
Abstract
Adolescence is a period of rapid neural and behavioral development that often precipitates substance use, substance use disorders (SUDs), and other psychopathology. While externalizing disorders have been closely linked to SUD epidemiologically, the comorbidity of internalizing disorders and SUD is less well understood. Neuroimaging studies can be used to measure structural and functional developments in the brain that mediate the relationship between psychopathology and SUD in adolescence. Externalizing disorders and SUD are both associated with structural and functional changes in the basal ganglia and prefrontal cortex in adolescence. The neural mechanisms underlying internalizing disorders and SUD are less clear, but evidence points to involvement of the amygdala and prefrontal cortex. We also highlight independent contributions of SUD, which may vary in certain ways by the substances assessed. A deeper understanding of the neural basis of the relationship between psychopathology and SUD will allow for more informed interventions in this critical developmental stage.
Collapse
Affiliation(s)
- Danielle S Kroll
- National Institute on Alcohol Abuse and Alcoholism, 10 Center Dr, Rm B2L124, Bethesda, MD 20892-1013, USA
| | - Dana E Feldman
- National Institute on Alcohol Abuse and Alcoholism, 10 Center Dr, Rm B2L124, Bethesda, MD 20892-1013, USA
| | - Szu-Yung Ariel Wang
- National Institute on Alcohol Abuse and Alcoholism, 10 Center Dr, Rm B2L124, Bethesda, MD 20892-1013, USA
| | - Rui Zhang
- National Institute on Alcohol Abuse and Alcoholism, 10 Center Dr, Rm B2L124, Bethesda, MD 20892-1013, USA
| | - Peter Manza
- National Institute on Alcohol Abuse and Alcoholism, 10 Center Dr, Rm B2L124, Bethesda, MD 20892-1013, USA
| | - Corinde E Wiers
- National Institute on Alcohol Abuse and Alcoholism, 10 Center Dr, Rm B2L124, Bethesda, MD 20892-1013, USA
| | - Nora D Volkow
- National Institute on Alcohol Abuse and Alcoholism, 10 Center Dr, Rm B2L124, Bethesda, MD 20892-1013, USA; National Institute on Drug Abuse, National Institutes of Health, 6001 Executive Blvd., Suite 5274, Bethesda, MD 20892-9581, USA
| | - Gene-Jack Wang
- National Institute on Alcohol Abuse and Alcoholism, 10 Center Dr, Rm B2L124, Bethesda, MD 20892-1013, USA.
| |
Collapse
|
40
|
Malejko K, Tumani V, Rau V, Neumann F, Plener PL, Fegert JM, Abler B, Straub J. Neural correlates of script-driven imagery in adolescents with interpersonal traumatic experiences: A pilot study. Psychiatry Res Neuroimaging 2020; 303:111131. [PMID: 32585577 DOI: 10.1016/j.pscychresns.2020.111131] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 04/03/2020] [Accepted: 06/18/2020] [Indexed: 01/22/2023]
Abstract
In adults, trauma imagery has proven to be a useful tool to assess the neural mechanisms of psychological trauma processing. In adolescents, heterogeneous results could be found for other tasks, however, a trauma imagery paradigm has not been evaluated. For this purpose, we investigated a trauma imagery paradigm with control scripts to assess neural correlates of traumatic experiences in youth. 15 adolescents, who had experienced a traumatic interpersonal event in the past and have developed clinically relevant symptoms, underwent an fMRI scan while listening to their individual trauma- versus two control scripts (positive/negative). We analysed a parametric contrast of the imagery phases (trauma > negative > positive) which revealed activity in the thalamus, dorsal anterior cingulate cortex, cuneus, dorsomedial prefrontal cortex and amygdala. Additionally, amygdala-activity correlated positively with depression-symptom-severity. Our data provide evidence for the feasibility of fMRI during a trauma imagery task in adolescents to investigate networks previously related to hyperarousal in adults with PTSD. Further, we demonstrate the specificity of the activated networks for trauma imagery as compared to imagery of other emotional situations. The task might be particularly useful to evaluate neural correlates of treatment in adolescents when hyperarousal is a target symptom.
Collapse
Affiliation(s)
- K Malejko
- Ulm University, Department of Psychiatry and Psychotherapy III, Ulm, Germany.
| | - V Tumani
- Ulm University, Department of Psychiatry and Psychotherapy III, Ulm, Germany
| | - V Rau
- Ulm University, Department of Psychiatry and Psychotherapy III, Ulm, Germany
| | - F Neumann
- Ulm University, Department of Child and Adolescent Psychiatry and Psychotherapy, Ulm, Germany
| | - P L Plener
- Ulm University, Department of Child and Adolescent Psychiatry and Psychotherapy, Ulm, Germany; Medical University Vienna, Department of Child and Adolescent Psychiatry, Vienna, Austria
| | - J M Fegert
- Ulm University, Department of Child and Adolescent Psychiatry and Psychotherapy, Ulm, Germany
| | - B Abler
- Ulm University, Department of Psychiatry and Psychotherapy III, Ulm, Germany
| | - J Straub
- Ulm University, Department of Child and Adolescent Psychiatry and Psychotherapy, Ulm, Germany
| |
Collapse
|
41
|
Won E, Kim YK. Neuroinflammation-Associated Alterations of the Brain as Potential Neural Biomarkers in Anxiety Disorders. Int J Mol Sci 2020; 21:ijms21186546. [PMID: 32906843 PMCID: PMC7555994 DOI: 10.3390/ijms21186546] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/30/2020] [Accepted: 09/02/2020] [Indexed: 02/06/2023] Open
Abstract
Stress-induced changes in the immune system, which lead to neuroinflammation and consequent brain alterations, have been suggested as possible neurobiological substrates of anxiety disorders, with previous literature predominantly focusing on panic disorder, agoraphobia, and generalized anxiety disorder, among the anxiety disorders. Anxiety disorders have frequently been associated with chronic stress, with chronically stressful situations being reported to precipitate the onset of anxiety disorders. Also, chronic stress has been reported to lead to hypothalamic–pituitary–adrenal axis and autonomic nervous system disruption, which may in turn induce systemic proinflammatory conditions. Preliminary evidence suggests anxiety disorders are also associated with increased inflammation. Systemic inflammation can access the brain, and enhance pro-inflammatory cytokine levels that have been shown to precipitate direct and indirect neurotoxic effects. Prefrontal and limbic structures are widely reported to be influenced by neuroinflammatory conditions. In concordance with these findings, various imaging studies on panic disorder, agoraphobia, and generalized anxiety disorder have reported alterations in structure, function, and connectivity of prefrontal and limbic structures. Further research is needed on the use of inflammatory markers and brain imaging in the early diagnosis of anxiety disorders, along with the possible efficacy of anti-inflammatory interventions on the prevention and treatment of anxiety disorders.
Collapse
Affiliation(s)
- Eunsoo Won
- Department of Psychiatry, CHA Bundang Medical Center, CHA University, Seongnam 13496, Korea;
| | - Yong-Ku Kim
- Department of Psychiatry, Korea University Ansan Hospital, Korea University College of Medicine, Ansan 15355, Korea
- Correspondence: ; Tel.: +82-31-412-5140; Fax: +82-31-412-5144
| |
Collapse
|
42
|
Tenenbaum RB, Musser ED, Morris S, Ward AR, Raiker JS, Coles EK, Pelham WE. Response Inhibition, Response Execution, and Emotion Regulation among Children with Attention-Deficit/Hyperactivity Disorder. JOURNAL OF ABNORMAL CHILD PSYCHOLOGY 2020; 47:589-603. [PMID: 30112596 DOI: 10.1007/s10802-018-0466-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is associated with deficits in response inhibition, response execution, and emotion regulation. However, the nature of the associations among these deficits remains unclear. Thus, this study examines these associations using a multi-method design. One hundred sixty-six children (aged 5-13 years; 66.3% male; 75 with ADHD) completed two conditions (i.e., neutral and fear) of an emotional go/no-go task. Parasympathetic-based regulation was indexed via respiratory sinus arrhythmia (RSA), and sympathetic-based reactivity was indexed via cardiac pre-ejection period (PEP). Overall, children exhibited more difficulty with response execution (i.e., more omission errors, fewer correct go responses) and less difficulty with response inhibition (i.e., fewer commission errors, more correct no-go responses) during the fear condition than the neutral condition. Children with ADHD displayed more difficulty with response execution during the fear condition compared to typically developing youth. Additionally, children with ADHD displayed parasympathetic-based dysregulation (i.e., RSA increase from baseline) and reduced sympathetic-based reactivity (i.e., PEP lengthening) compared to typically developing youth across task conditions. In sum, children with ADHD demonstrate greater difficulty with response execution during emotionally salient contexts, as well as parasympathetic-based emotion dysregulation. Future work should examine these associations longitudinally with the aim of predicting impairment and treatment response in youth with ADHD.
Collapse
Affiliation(s)
- Rachel B Tenenbaum
- Center for Children and Families, Department of Psychology, Florida International University, 11200 SW 8th St., AHC 4 455, Miami, FL, 33100, USA
| | - Erica D Musser
- Center for Children and Families, Department of Psychology, Florida International University, 11200 SW 8th St., AHC 4 455, Miami, FL, 33100, USA.
| | - Stephanie Morris
- Center for Children and Families, Department of Psychology, Florida International University, 11200 SW 8th St., AHC 4 455, Miami, FL, 33100, USA
| | - Anthony R Ward
- Center for Children and Families, Department of Psychology, Florida International University, 11200 SW 8th St., AHC 4 455, Miami, FL, 33100, USA
| | - Joseph S Raiker
- Center for Children and Families, Department of Psychology, Florida International University, 11200 SW 8th St., AHC 4 455, Miami, FL, 33100, USA
| | - Erika K Coles
- Center for Children and Families, Department of Psychology, Florida International University, 11200 SW 8th St., AHC 4 455, Miami, FL, 33100, USA
| | - William E Pelham
- Center for Children and Families, Department of Psychology, Florida International University, 11200 SW 8th St., AHC 4 455, Miami, FL, 33100, USA
| |
Collapse
|
43
|
Weerdmeester J, van Rooij MM, Engels RC, Granic I. An Integrative Model for the Effectiveness of Biofeedback Interventions for Anxiety Regulation: Viewpoint. J Med Internet Res 2020; 22:e14958. [PMID: 32706654 PMCID: PMC7413290 DOI: 10.2196/14958] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 01/03/2020] [Accepted: 01/22/2020] [Indexed: 12/22/2022] Open
Abstract
Biofeedback has shown to be a promising tool for the treatment of anxiety; however, several theoretical as well as practical limitations have prevented widespread adaptation until now. With current technological advances and the increasing interest in the use of self-monitoring technology to improve mental health, we argue that this is an ideal time to launch a new wave of biofeedback training. In this viewpoint paper, we reflect on the current state of biofeedback training, including the more traditional techniques and mechanisms that have been thought to explain the effectiveness of biofeedback such as the integration of operant learning and meditation techniques, and the changes in interoceptive awareness and physiology. Subsequently, we propose an integrative model that includes a set of cognitive appraisals as potential determinants of adaptive trajectories within biofeedback training such as growth mindset, self-efficacy, locus of control, and threat-challenge appraisals. Finally, we present a set of detailed guidelines based on the integration of our model with the mechanics and mechanisms offered by emerging interactive technology to encourage a new phase of research and implementation using biofeedback. There is a great deal of promise for future biofeedback interventions that harness the power of wearables and video games, and that adopt a user-centered approach to help people regulate their anxiety in a way that feels engaging, personal, and meaningful.
Collapse
Affiliation(s)
| | | | | | - Isabela Granic
- Behavioural Science Institute, Radboud University, Nijmegen, Netherlands
| |
Collapse
|
44
|
Acosta H, Kantojärvi K, Hashempour N, Pelto J, Scheinin NM, Lehtola SJ, Lewis JD, Fonov VS, Collins DL, Evans A, Parkkola R, Lähdesmäki T, Saunavaara J, Karlsson L, Merisaari H, Paunio T, Karlsson H, Tuulari JJ. Partial Support for an Interaction Between a Polygenic Risk Score for Major Depressive Disorder and Prenatal Maternal Depressive Symptoms on Infant Right Amygdalar Volumes. Cereb Cortex 2020; 30:6121-6134. [PMID: 32676648 DOI: 10.1093/cercor/bhaa158] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 04/02/2020] [Accepted: 05/09/2020] [Indexed: 12/22/2022] Open
Abstract
Psychiatric disease susceptibility partly originates prenatally and is shaped by an interplay of genetic and environmental risk factors. A recent study has provided preliminary evidence that an offspring polygenic risk score for major depressive disorder (PRS-MDD), based on European ancestry, interacts with prenatal maternal depressive symptoms (GxE) on neonatal right amygdalar (US and Asian cohort) and hippocampal volumes (Asian cohort). However, to date, this GxE interplay has only been addressed by one study and is yet unknown for a European ancestry sample. We investigated in 105 Finnish mother-infant dyads (44 female, 11-54 days old) how offspring PRS-MDD interacts with prenatal maternal depressive symptoms (Edinburgh Postnatal Depression Scale, gestational weeks 14, 24, 34) on infant amygdalar and hippocampal volumes. We found a GxE effect on right amygdalar volumes, significant in the main analysis, but nonsignificant after multiple comparison correction and some of the control analyses, whose direction paralleled the US cohort findings. Additional exploratory analyses suggested a sex-specific GxE effect on right hippocampal volumes. Our study is the first to provide support, though statistically weak, for an interplay of offspring PRS-MDD and prenatal maternal depressive symptoms on infant limbic brain volumes in a cohort matched to the PRS-MDD discovery sample.
Collapse
Affiliation(s)
- H Acosta
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Institute of Clinical Medicine, University of Turku, 20500 Turku, Finland.,Department of Psychiatry and Psychotherapy, Philipps University of Marburg, 35037 Marburg, Germany
| | - K Kantojärvi
- Finnish Institute for Health and Welfare, Genomics and Biobank Unit, FI-00271 Helsinki, Finland.,Department of Psychiatry and SleepWell Research Program, Faculty of Medicine, Helsinki University Central Hospital, University of Helsinki, 00100 Helsinki, Finland
| | - N Hashempour
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Institute of Clinical Medicine, University of Turku, 20500 Turku, Finland
| | - J Pelto
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Institute of Clinical Medicine, University of Turku, 20500 Turku, Finland
| | - N M Scheinin
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Institute of Clinical Medicine, University of Turku, 20500 Turku, Finland.,Department of Psychiatry, Turku University Hospital, University of Turku, 20500 Turku, Finland
| | - S J Lehtola
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Institute of Clinical Medicine, University of Turku, 20500 Turku, Finland
| | - J D Lewis
- Montreal Neurological Institute, McGill University, Montreal H3A 0G4, Canada
| | - V S Fonov
- Montreal Neurological Institute, McGill University, Montreal H3A 0G4, Canada
| | - D L Collins
- Montreal Neurological Institute, McGill University, Montreal H3A 0G4, Canada
| | - A Evans
- Montreal Neurological Institute, McGill University, Montreal H3A 0G4, Canada
| | - R Parkkola
- Department of Radiology, Turku University Hospital, University of Turku, 20500 Turku, Finland
| | - T Lähdesmäki
- Department of Pediatric Neurology, Turku University Hospital, University of Turku, 20500 Turku, Finland
| | - J Saunavaara
- Department of Medical Physics, Turku University Hospital, 20521 Turku, Finland
| | - L Karlsson
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Institute of Clinical Medicine, University of Turku, 20500 Turku, Finland.,Department of Child Psychiatry, Turku University Hospital, University of Turku, 20500 Turku, Finland
| | - H Merisaari
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Institute of Clinical Medicine, University of Turku, 20500 Turku, Finland.,Department of Future Technologies, University of Turku, 20500 Turku, Finland.,Center of Computational Imaging and Personalized Diagnostics, Case Western Reserve University, Cleveland, OH 44106, USA
| | - T Paunio
- Finnish Institute for Health and Welfare, Genomics and Biobank Unit, FI-00271 Helsinki, Finland.,Department of Psychiatry and SleepWell Research Program, Faculty of Medicine, Helsinki University Central Hospital, University of Helsinki, 00100 Helsinki, Finland
| | - H Karlsson
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Institute of Clinical Medicine, University of Turku, 20500 Turku, Finland.,Department of Psychiatry, Turku University Hospital, University of Turku, 20500 Turku, Finland
| | - J J Tuulari
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Institute of Clinical Medicine, University of Turku, 20500 Turku, Finland.,Department of Psychiatry, Turku University Hospital, University of Turku, 20500 Turku, Finland.,Turku Collegium for Science and Medicine, University of Turku, 20500 Turku, Finland.,Department of Psychiatry, University of Oxford, Oxford, OX1 2JD, UK
| |
Collapse
|
45
|
Systematic Review of Affective Functional Magnetic Resonance Imaging in Pediatric Major Depressive Disorder. JOURNAL OF PEDIATRIC NEUROPSYCHOLOGY 2020. [DOI: 10.1007/s40817-020-00080-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
46
|
Kneer K, Reinhard J, Ziegler C, Slyschak A, Schiele M, Vietz M, Peters K, Meisenzahl EM, Pauli P, Reif A, Deckert J, Romanos M, Domschke K, Neufang S. Serotonergic influence on depressive symptoms and trait anxiety is mediated by negative life events and frontal activation in children and adolescents. Eur Child Adolesc Psychiatry 2020; 29:691-706. [PMID: 31422473 DOI: 10.1007/s00787-019-01389-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 08/07/2019] [Indexed: 12/18/2022]
Abstract
Depression and anxiety are common in childhood and adolescence. Even though cardinal symptoms differ, there is a considerable overlap regarding the pathogenic influence of serotonergic innervation, negative life experience, disturbed emotion perception/affect regulation, and impaired neural functioning in the fronto-limbic circuit. In this study, we examined the effect of the 5-HTTLPR/rs25531 genotype on depressive symptoms and trait anxiety under the consideration of the amount of negative life events in healthy children and adolescents (N = 389). In a subsample of 49 subjects, we performed fMRI to add fronto-limbic brain activation as a second interacting factor. Across all subjects, negative life events moderated the influence of the 5-HTTLPR/rs25531 genotype on both depressive symptoms and trait anxiety. In the fMRI subsample, 5-HTTLPR/rs25531 S + S/LG + S/LA + LGLA + LGLG genotype-associated left middle frontal gyrus (MFG) activation mediated the influence of 5-HTTLPR/rs25531 genotype on depressive symptoms, however, only in combination with negative life events. Genetic influence on trait anxiety was predominantly mediated by negative life events; only LALA genotype-specific activation in the right MFG worked as a mediator in combination with negative life events. The present findings hint towards distinct mechanisms mediating the influence of 5-HTTLPR/rs25531 genotype on depressive symptoms and anxiety, with negative life events playing a crucial role in both phenotypes. With regard to depressive symptoms, however, this influence was only visible in combination with MFG activation, whereas, in anxiety, it was independent of brain activation.
Collapse
Affiliation(s)
- Katharina Kneer
- Department of Child and Adolescent Psychiatry, Psychotherapy and Psychosomatics, Center of Mental Health, University Hospital Würzburg, Würzburg, Germany
| | - Julia Reinhard
- Department of Child and Adolescent Psychiatry, Psychotherapy and Psychosomatics, Center of Mental Health, University Hospital Würzburg, Würzburg, Germany
| | - Christiane Ziegler
- Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Anna Slyschak
- Department of Child and Adolescent Psychiatry, Psychotherapy and Psychosomatics, Center of Mental Health, University Hospital Würzburg, Würzburg, Germany
| | - Miriam Schiele
- Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Melanie Vietz
- Department of Psychiatry, Psychotherapy and Psychosomatics, Center of Mental Health, University Hospital Würzburg, Würzburg, Germany
| | - Katharina Peters
- Department of Child and Adolescent Psychiatry, Psychotherapy and Psychosomatics, Center of Mental Health, University Hospital Würzburg, Würzburg, Germany
| | - Eva M Meisenzahl
- Department of Psychiatry and Psychotherapy, Medical Faculty Heinrich-Heine University, Bergische Landstraße 2, 40629, Düsseldorf, Germany
| | - Paul Pauli
- Department of Psychology, Center of Mental Health, University of Würzburg, Würzburg, Germany
| | - Andreas Reif
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt, Germany
| | - Jürgen Deckert
- Department of Psychiatry, Psychotherapy and Psychosomatics, Center of Mental Health, University Hospital Würzburg, Würzburg, Germany
| | - Marcel Romanos
- Department of Child and Adolescent Psychiatry, Psychotherapy and Psychosomatics, Center of Mental Health, University Hospital Würzburg, Würzburg, Germany
| | - Katharina Domschke
- Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Centre for Basics in Neuromodulation, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Susanne Neufang
- Department of Child and Adolescent Psychiatry, Psychotherapy and Psychosomatics, Center of Mental Health, University Hospital Würzburg, Würzburg, Germany.
- Department of Psychiatry and Psychotherapy, Medical Faculty Heinrich-Heine University, Bergische Landstraße 2, 40629, Düsseldorf, Germany.
| |
Collapse
|
47
|
Shen Y, Zhang Y, Chan BSM, Meng F, Yang T, Luo X, Huang C. Association of ADHD symptoms, depression and suicidal behaviors with anxiety in Chinese medical college students. BMC Psychiatry 2020; 20:180. [PMID: 32321462 PMCID: PMC7175542 DOI: 10.1186/s12888-020-02555-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 03/18/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Anxiety is one of the most common psychiatric disorder and imposes a great burden on both the individual and the society. Previous studies indicate a high comorbidity of anxiety disorders and Attention Deficit Hyperactivity Disorder (ADHD). However, few studies have examined the comorbidity of anxiety and ADHD among medical college students in mainland China. This study aimed to examine the prevalence of anxiety and the associated risk factor of anxiety disorder as well as to explore the association between ADHD symptoms, depression, suicidal behaviors and anxiety. METHODS A cross-sectional design was employed among 4882 medical college students who were recruited and enrolled with convenience sampling. Self-reported demographic information and clinical characteristics were collected online on a computer or through a social media app named Wechat. RESULTS The prevalence of anxiety in this study was 19.9%. Students with anxiety were more likely to have a poor relationship with parents, be of Han nationality, have smoking or drinking habits, have an extensive physical disorder history and have engaged in suicidal behaviors. The independent risk factors for anxiety were: smoking, physical disorder history, suicidal ideations, suicide attempts, inattention and hyperactivity. Significant associations were observed between anxiety and depression, inattention, hyperactivity, suicide plans and suicide attempts. CONCLUSIONS Nearly one in five medical students suffered from anxiety. The findings of this study indicate the importance of addressing both anxiety and ADHD symptoms in order to better promote mental health and the well-being of medical students as well as reduce suicidal behaviors.
Collapse
Affiliation(s)
- Yanmei Shen
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.,Mental Health Institute of Central South University, China National Clinical Research Center on Mental Disorders (Xiangya), China National Technology Institute on Mental Disorders, Hunan Technology Institute of Psychiatry, Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, 410011, Hunan, China.,The Department of Educational and Counselling Psychology, and Special Education, The University of British Columbia, Vancouver, Canada
| | - Yaru Zhang
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.,Mental Health Institute of Central South University, China National Clinical Research Center on Mental Disorders (Xiangya), China National Technology Institute on Mental Disorders, Hunan Technology Institute of Psychiatry, Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, 410011, Hunan, China
| | - Bella Siu Man Chan
- The Department of Educational and Counselling Psychology, and Special Education, The University of British Columbia, Vancouver, Canada
| | - Fanchao Meng
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.,Mental Health Institute of Central South University, China National Clinical Research Center on Mental Disorders (Xiangya), China National Technology Institute on Mental Disorders, Hunan Technology Institute of Psychiatry, Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, 410011, Hunan, China
| | - Tingyu Yang
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.,Mental Health Institute of Central South University, China National Clinical Research Center on Mental Disorders (Xiangya), China National Technology Institute on Mental Disorders, Hunan Technology Institute of Psychiatry, Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, 410011, Hunan, China
| | - Xuerong Luo
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China. .,Mental Health Institute of Central South University, China National Clinical Research Center on Mental Disorders (Xiangya), China National Technology Institute on Mental Disorders, Hunan Technology Institute of Psychiatry, Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, 410011, Hunan, China.
| | - Chunxiang Huang
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China. .,Mental Health Institute of Central South University, China National Clinical Research Center on Mental Disorders (Xiangya), China National Technology Institute on Mental Disorders, Hunan Technology Institute of Psychiatry, Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, 410011, Hunan, China.
| |
Collapse
|
48
|
Li C, Fan L, Wang B. Post-encoding positive emotion impairs associative memory for English vocabulary. PLoS One 2020; 15:e0228614. [PMID: 32251436 PMCID: PMC7135307 DOI: 10.1371/journal.pone.0228614] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Accepted: 01/20/2020] [Indexed: 11/19/2022] Open
Abstract
There is evidence that emotion induced during encoding impairs associative memory (e.g., Bisby, Horner, Bush, & Burgess, 2018), yet the effect of post-encoding emotion (particularly positive emotion) on associative memory remains largely unclear. Two experiments were conducted to examine the effect of post-encoding positive emotion on associative memory for English vocabulary. In Experiment 1, high school students memorized Chinese definitions of a list of English words, immediately recalled the Chinese definitions, watched a neutral or comic video, and took a delayed memory test 25 minutes after encoding. The result showed a significant impairing effect of post-encoding positive emotion on memory for Chinese definitions. In Experiment 2, primary school students encoded English words with their associative pictures, took an immediate test where, on each trial, they were asked to choose the correct English word that matches a picture. Following the test, they watched a neutral or comic video, and took a memory test 10 minutes after encoding. Consistent with Experiment 1, Experiment 2 showed an impairing effect of positive emotion. Taken together, these findings support the hypothesis that post-encoding positive emotion can impair associative memory, providing important implications for acquisition of vocabulary of English as a foreign language.
Collapse
Affiliation(s)
- Chengchen Li
- School of Foreign Languages, Huazhong University of Science and Technology, Wuhan, China
| | - Lin Fan
- National Research Center for Foreign Language Education, Beijing Foreign Studies University, Beijing, China
| | - Bo Wang
- Department of Psychology, Central University of Finance and Economics, Beijing, China
| |
Collapse
|
49
|
Rakesh D, Allen NB, Whittle S. Balancing act: Neural correlates of affect dysregulation in youth depression and substance use - A systematic review of functional neuroimaging studies. Dev Cogn Neurosci 2020; 42:100775. [PMID: 32452461 PMCID: PMC7139159 DOI: 10.1016/j.dcn.2020.100775] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 03/03/2020] [Accepted: 03/09/2020] [Indexed: 12/22/2022] Open
Abstract
Both depression and substance use problems have their highest incidence during youth (i.e., adolescence and emerging adulthood), and are characterized by emotion regulation deficits. Influential neurodevelopmental theories suggest that alterations in the function of limbic and frontal regions render youth susceptible to these deficits. However, whether depression and substance use in youth are associated with similar alterations in emotion regulation neural circuitry is unknown. In this systematic review we synthesized the results of functional magnetic resonance imaging (fMRI) studies investigating the neural correlates of emotion regulation in youth depression and substance use. Resting-state fMRI studies focusing on limbic connectivity were also reviewed. While findings were largely inconsistent within and between studies of depression and substance use, some patterns emerged. First, youth depression appears to be associated with exaggerated amygdala activity in response to negative stimuli; second, both depression and substance use appear to be associated with lower functional connectivity between the amygdala and prefrontal cortex during rest. Findings are discussed in relation to support for existing neurodevelopmental models, and avenues for future work are suggested, including studying neurodevelopmental trajectories from a network perspective.
Collapse
Affiliation(s)
- Divyangana Rakesh
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Melbourne, Victoria, Australia
| | - Nicholas B Allen
- Department of Psychology, University of Oregon, Eugene, Oregon, USA
| | - Sarah Whittle
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Melbourne, Victoria, Australia; Melbourne School of Psychological Sciences, The University of Melbourne, Melbourne, Victoria, Australia.
| |
Collapse
|
50
|
Siless V, Hubbard NA, Jones R, Wang J, Lo N, Bauer CCC, Goncalves M, Frosch I, Norton D, Vergara G, Conroy K, De Souza FV, Rosso IM, Wickham AH, Cosby EA, Pinaire M, Hirshfeld-Becker D, Pizzagalli DA, Henin A, Hofmann SG, Auerbach RP, Ghosh S, Gabrieli J, Whitfield-Gabrieli S, Yendiki A. Image acquisition and quality assurance in the Boston Adolescent Neuroimaging of Depression and Anxiety study. Neuroimage Clin 2020; 26:102242. [PMID: 32339824 PMCID: PMC7184183 DOI: 10.1016/j.nicl.2020.102242] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 02/19/2020] [Accepted: 03/10/2020] [Indexed: 12/18/2022]
Abstract
The Connectomes Related to Human Diseases (CRHD) initiative was developed with the Human Connectome Project (HCP) to provide high-resolution, open-access, multi-modal MRI data to better understand the neural correlates of human disease. Here, we present an introduction to a CRHD project, the Boston Adolescent Neuroimaging of Depression and Anxiety (BANDA) study, which is collecting multimodal neuroimaging, clinical, and neuropsychological data from 225 adolescents (ages 14-17), 150 of whom are expected to have a diagnosis of depression and/or anxiety. Our transdiagnostic recruitment approach samples the full spectrum of depressed/anxious symptoms and their comorbidity, consistent with NIMH Research Domain Criteria (RDoC). We focused on an age range that is critical for brain development and for the onset of mental illness. This project sought to harmonize imaging sequences, hardware, and functional tasks with other HCP studies, although some changes were made to canonical HCP methods to accommodate our study population and questions. We present a thorough overview of our imaging sequences, hardware, and scanning protocol. We detail similarities and differences between this study and other HCP studies. We evaluate structural-, diffusion-, and functional-image-quality measures that may be influenced by clinical factors (e.g., disorder, symptomatology). Signal-to-noise and motion estimates from the first 140 adolescents suggest minimal influence of clinical factors on image quality. We anticipate enrollment of an additional 85 participants, most of whom are expected to have a diagnosis of anxiety and/or depression. Clinical and neuropsychological data from the first 140 participants are currently freely available through the National Institute of Mental Health Data Archive (NDA).
Collapse
Affiliation(s)
- Viviana Siless
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, United States; Harvard Medical School, Boston, MA, United States
| | - Nicholas A Hubbard
- Massachusetts Institute of Technology, Cambridge, MA, United States; University of Nebraska, Lincoln, Lincoln, NE, United States
| | - Robert Jones
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, United States; Harvard Medical School, Boston, MA, United States
| | - Jonathan Wang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, United States; Harvard Medical School, Boston, MA, United States
| | - Nicole Lo
- Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Clemens C C Bauer
- Massachusetts Institute of Technology, Cambridge, MA, United States; Northeastern University, Department of Psychology, Boston, MA, United States
| | | | - Isabelle Frosch
- Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Daniel Norton
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, United States; Harvard Medical School, Boston, MA, United States
| | | | | | | | - Isabelle M Rosso
- McLean Hospital, Belmont, MA, United States; Harvard Medical School, Boston, MA, United States
| | | | | | | | | | | | - Aude Henin
- Massachusetts General Hospital, Boston, MA, United States
| | | | | | - Satrajit Ghosh
- Harvard Medical School, Boston, MA, United States; Massachusetts Institute of Technology, Cambridge, MA, United States
| | - John Gabrieli
- Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Susan Whitfield-Gabrieli
- Massachusetts Institute of Technology, Cambridge, MA, United States; Northeastern University, Department of Psychology, Boston, MA, United States
| | - Anastasia Yendiki
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, United States; Harvard Medical School, Boston, MA, United States.
| |
Collapse
|