1
|
Alanazi WA, Alqudayri Y, Alqahtani F, Alasmari F, El-Nagar DM. Evaluation of the effects of Tempol on oxidative stress and angiotensin-II induced hypertension in mice exposed to nicotine from electronic and tobacco cigarettes. Toxicol Appl Pharmacol 2025; 500:117386. [PMID: 40360057 DOI: 10.1016/j.taap.2025.117386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 05/04/2025] [Accepted: 05/07/2025] [Indexed: 05/15/2025]
Abstract
Electronic cigarette (E-Cig) is commonly used as an alternative to tobacco cigarette (T-Cig), as it lacks many of the toxicants present in T-Cigs. However, the toxicological mechanisms underlying E-Cig-induced hypertension are not yet well understood. The goal of this research was to explore the effects of Tempol in reducing hypertension caused by T-Cig and E-Cig exposure by mitigating oxidative stress and regulating angiotensin-II production in mouse models subjected to T-Cig and E-Cig smoke. Male C57BL/6 J mice were assigned to eight distinct groups: Air, Air + Tempol, T-Cig, T-Cig + Tempol, NIC-free E-Cig, NIC-free E-Cig + Tempol, E-Cig, and E-Cig + Tempol. Mice exposed to smoking for 12 min per hour, 6 cycles/day, 7 days/week for 4 weeks. Blood pressure was monitored, and Angiotensin-II and cGMP levels were measured using ELISA. Oxidative stress markers (GPx, GSTA1, SOD, MDA, nitrite) were assessed by RT-PCR and biochemical assays. The collected data showed a weight loss with high blood pressure and vasoconstriction in the T-Cig and E-Cig groups. Results showed an induction of angiotensin-II, GPx, GSTA1, SOD, and MDA. In contrast, cGMP and nitrite levels were reduced in the T-Cig and E-Cig groups. Tempol treatment regulated oxidative stress markers, angiotensin-II and cGMP levels, leading to a significant reduction in blood pressure. The results indicate that Tempol is essential in reducing oxidative stress and the effects of angiotensin-II caused by T-Cig and E-Cig exposure, thereby contributing to the regulation of systemic hemodynamic function.
Collapse
Affiliation(s)
- Wael A Alanazi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia.
| | - Yazeed Alqudayri
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Faleh Alqahtani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Fawaz Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Doaa M El-Nagar
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
2
|
Bitar M, Mercier C, Bertoletti L, Pourchez J, Forest V. Flavor-induced inflammation and cytotoxicity in human aortic smooth muscle cells: Potential implications for E-cigarette safety. Toxicol Appl Pharmacol 2025; 500:117388. [PMID: 40354984 DOI: 10.1016/j.taap.2025.117388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Revised: 04/29/2025] [Accepted: 05/07/2025] [Indexed: 05/14/2025]
Abstract
Electronic nicotine delivery systems (ENDS), commonly known as e-cigarettes, are considered safer alternatives to tobacco smoking, yet their long-term health effects, particularly on cardiovascular health, remain unclear. The aim of this study was to investigate the cytotoxic and pro-inflammatory effects of device power, nicotine content and flavor molecules on human aortic smooth muscle cells. AoSMCs cells were exposed to e-liquids and e-cigarette aerosol condensates containing different ratios of propylene glycol (PG) and vegetable glycerin (VG), nicotine (0, 10, 20 mg/mL), and flavors (cinnamon, menthol, tobacco), with the devices operated at different power levels (10 W, 15 W, 25 W). After a 24 h incubation, cytotoxicity was evaluated using lactate dehydrogenase (LDH) release, while pro-inflammatory effects were measured by interleukin-8 (IL-8) production. The results showed no significant cytotoxicity or inflammation in cells exposed to PG/VG base or nicotine-containing e-liquids. However, e-liquids as well as aerosol condensates containing flavors induced significant increases in IL-8 production compared to controls without flavor. Moreover, the pro-inflammatory response was more pronounced in response to aerosol condensates than to the corresponding e-liquids. Cinnamon, in particular, produced the highest inflammatory response, and the effect was enhanced at higher power settings (25 W), which also induced cytotoxicity, particularly at high concentrations. These findings demonstrate that flavors, especially cinnamon, and device power levels are key factors influencing the inflammatory potential and cytotoxicity of e-cigarette aerosols. Further studies are needed to explore the long-term cardiovascular risks associated with ENDS use and the role of flavor molecules and of their thermal degradation products.
Collapse
MESH Headings
- Humans
- Electronic Nicotine Delivery Systems
- Flavoring Agents/toxicity
- Flavoring Agents/adverse effects
- Nicotine/toxicity
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Aorta/drug effects
- Aorta/pathology
- Aorta/metabolism
- Aorta/cytology
- Inflammation/chemically induced
- Inflammation/pathology
- Inflammation/metabolism
- Interleukin-8/metabolism
- Cells, Cultured
- Cell Survival/drug effects
- Aerosols
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Propylene Glycol/toxicity
- Dose-Response Relationship, Drug
Collapse
Affiliation(s)
- Mariam Bitar
- Mines Saint-Etienne, Univ Jean Monnet, INSERM, U 1059 Sainbiose, Centre CIS, F-42023 Saint-Etienne, France
| | - Clément Mercier
- Mines Saint-Etienne, Univ Jean Monnet, INSERM, U 1059 Sainbiose, Centre CIS, F-42023 Saint-Etienne, France
| | - Laurent Bertoletti
- Service de Médecine Vasculaire et Thérapeutique, CHU de Saint-Etienne, Saint-Etienne, France; INSERM, UMR1059, Equipe Dysfonction Vasculaire et Hémostase, Université Jean-Monnet, F-42055 Saint-Etienne, France; INSERM, CIC-1408, CHU Saint-Etienne, F-42055 Saint-Etienne, France
| | - Jérémie Pourchez
- Mines Saint-Etienne, Univ Jean Monnet, INSERM, U 1059 Sainbiose, Centre CIS, F-42023 Saint-Etienne, France
| | - Valérie Forest
- Mines Saint-Etienne, Univ Jean Monnet, INSERM, U 1059 Sainbiose, Centre CIS, F-42023 Saint-Etienne, France.
| |
Collapse
|
3
|
Kundu A, Feore A, Sanchez S, Abu-Zarour N, Sutton M, Sachdeva K, Seth S, Schwartz R, Chaiton M. Cardiovascular health effects of vaping e-cigarettes: a systematic review and meta-analysis. Heart 2025; 111:599-608. [PMID: 40010935 DOI: 10.1136/heartjnl-2024-325030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 01/24/2025] [Indexed: 02/28/2025] Open
Abstract
BACKGROUND There is substantial interest in the cardiovascular effects of e-cigarette use, highlighting the need to update our knowledge on the subject. We conducted this review to analyse whether e-cigarette use increases cardiovascular health risks and how these risks vary among different populations. METHODS We searched six databases and included peer-reviewed human, animal, cell/in vitro original studies but excluded qualitative studies, which were published between July 2021 and December 2023. Three types of e-cigarette exposure were examined: acute, short-to-medium term and long term. Different risk of bias tools were used for assessing the quality of the included human studies and we conducted meta-analysis when possible. RESULTS We included 63 studies in the main analysis, 12 studies in the meta-analysis and 32 studies in the sociodemographic factor-based subgroup analysis. Over half of the human studies had low risk of bias. Acute exposure to e-cigarette was associated with increased heart rate (HR) (mean difference (MD) 11.329, p<0.01) and blood pressure (BP) (MD 12.856, p<0.01 for systolic; MD 7.676, p<0.01 for diastolic) compared with non-use. While HR was lower after acute exposure to e-cigarettes compared with cigarettes (MD -5.415, p<0.01), no significant difference in systolic or diastolic BP was observed. Non-smoker current vapers had no significant differences in resting HR and BP compared with non-users but lower resting HR (MD -2.608, p<0.01) and diastolic BP (MD -3.226, p<0.01) compared with non-vaper current smokers. Despite some association between e-cigarette and endothelial dysfunction, short-to-medium-term transition from cigarettes to e-cigarettes may improve blood flow and BP, particularly among females and younger individuals. There is lack of evidence supporting any association of e-cigarette use with cardiovascular diseases and cardiac dysfunction or remodelling. CONCLUSIONS This review highlighted several important cardiovascular impacts of e-cigarette use compared with non-use and cigarette smoking. However, the evidence is still limited and requires future research. PROSPERO REGISTRATION NUMBER CRD42023385632.
Collapse
Affiliation(s)
- Anasua Kundu
- University of Toronto Temerty Faculty of Medicine, Toronto, Ontario, Canada
| | | | - Sherald Sanchez
- University of Toronto Temerty Faculty of Medicine, Toronto, Ontario, Canada
| | | | | | | | - Siddharth Seth
- University of Toronto Temerty Faculty of Medicine, Toronto, Ontario, Canada
| | - Robert Schwartz
- Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- University of Toronto Dalla Lana School of Public Health, Toronto, Ontario, Canada
| | - Michael Chaiton
- Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- University of Toronto Dalla Lana School of Public Health, Toronto, Ontario, Canada
| |
Collapse
|
4
|
Amjad MA, Ocazionez Trujillo D, Estrada-Y-Martin RM, Cherian SV. E-Cigarette or Vaping Product Use-Associated Lung Injury: A Comprehensive Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2025; 22:792. [PMID: 40427906 PMCID: PMC12111167 DOI: 10.3390/ijerph22050792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 05/12/2025] [Accepted: 05/14/2025] [Indexed: 05/29/2025]
Abstract
E-cigarette or vaping product use-associated lung injury (EVALI) is a critical and potentially fatal form of lung injury that gained considerable public health concern in 2019. The use of e-cigarettes and vaping products is causally associated with EVALI, a condition characterized by a constellation of respiratory symptoms, such as coughing, shortness of breath, and chest pain. This comprehensive narrative literature review explores the complexities of EVALI, including its association with the structure and composition of e-cigarettes and its epidemiology, pathogenesis, clinical and radiological manifestations, management strategies, and public health implications. Moreover, it uncovers the long-term repercussions of EVALI and underscores the ongoing research endeavors designed to mitigate and comprehend the risks associated with using e-cigarettes.
Collapse
Affiliation(s)
- Mohammad Asim Amjad
- Divisions of Critical Care, Pulmonary and Sleep Medicine, Department of Internal Medicine, University of Texas Health-McGovern Medical School, 6431 Fannin Street, MSB 1.434, Houston, TX 77030, USA; (M.A.A.); (R.M.E.-Y.-M.)
| | - Daniel Ocazionez Trujillo
- Department of Diagnostic and Interventional Imaging, University of Texas Health-McGovern Medical School, Houston, TX 77030, USA;
| | - Rosa M. Estrada-Y-Martin
- Divisions of Critical Care, Pulmonary and Sleep Medicine, Department of Internal Medicine, University of Texas Health-McGovern Medical School, 6431 Fannin Street, MSB 1.434, Houston, TX 77030, USA; (M.A.A.); (R.M.E.-Y.-M.)
| | - Sujith V. Cherian
- Divisions of Critical Care, Pulmonary and Sleep Medicine, Department of Internal Medicine, University of Texas Health-McGovern Medical School, 6431 Fannin Street, MSB 1.434, Houston, TX 77030, USA; (M.A.A.); (R.M.E.-Y.-M.)
| |
Collapse
|
5
|
Subramanian R, Samson K, Dai HD. Tobacco control messages for individuals who use both cigarettes and e-cigarettes: a randomised trial comparing biomarker outcome with cessation experience narratives. Tob Control 2025:tc-2024-059137. [PMID: 40335266 DOI: 10.1136/tc-2024-059137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 04/24/2025] [Indexed: 05/09/2025]
Abstract
BACKGROUND Dual use of e-cigarettes and cigarettes is prevalent among US adults, increasing nicotine addiction and health risks. This study investigated what type of narrative messages would be more effective in encouraging individuals who use both e-cigarettes and cigarettes to quit both smoking and vaping. METHODS We conducted an online between-subjects randomised experiment on individuals who currently use both e-cigarettes and cigarettes (n=489). The 'biomarker outcome' narrative group viewed a 'why-quit' message that highlighted a decrease in biomarkers of toxicant exposure on quitting smoking and vaping; the 'cessation experience' narrative group viewed a 'how-to-quit' message that highlighted strategies for quitting smoking and vaping. Multivariable regressions were conducted to evaluate message effects on motivation to quit smoking and vaping based on perceived importance, commitment and readiness (range: 0-10). Mediation analyses were performed to assess pathways from messages through emotional responses to motivation to quit. RESULTS As compared with viewing the 'cessation experience' narrative, exposure to the 'biomarker outcome' narrative led to larger increases in the motivation to quit smoking (adjusted β (SE)=0.3 (0.1), p=0.02) and vaping (adjusted β (SE)=0.5 (0.1), p=0.003). Individuals who were exposed to the 'biomarker outcome' narrative reported higher negative emotions and lower positive emotions than those in the 'cessation experience' narrative group. The message effects on changes in motivation to quit smoking (βindirect effect=0.06, p=0.002) and vaping (βindirect effect=0.05, p=0.009) were significantly mediated by negative emotions, but not by positive emotions. CONCLUSION A biomarker outcome narrative message that highlights the efficacy of quitting smoking and vaping by presenting evidence-based, objective biomarkers of toxicant exposure may be a persuasive message format in anti-dual use messaging.
Collapse
Affiliation(s)
| | - Kaeli Samson
- University of Nebraska Medical Center, Omaha, Nebraska, USA
| | | |
Collapse
|
6
|
Kim DH, Koutrakis P, Son YS. Preliminary study on the effect of first- and second-hand smoke of heat-not-burn tobacco products on urinary nicotine and cotinine levels and cardiovascular system. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2025; 115:104657. [PMID: 40023268 DOI: 10.1016/j.etap.2025.104657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/09/2025] [Accepted: 02/10/2025] [Indexed: 03/04/2025]
Abstract
Heart rate variability (HRV) of 10 participants was assessed to evaluate the impact of exposure to first- and second-hand smoke from heat-not-burn (HnB) products and conventional cigarettes on cardiovascular health and the autonomic nervous system. The nicotine and cotinine concentrations in the urine of smokers and non-smokers exposed to this smoke were also measured. Nicotine levels in the urine of smokers exposed to HnB products and conventional cigarettes averaged 71.76 and 229.36 ng/ml, respectively. Short-term analyses of HRV in both time- and frequency-domain were performed. There were no significant differences in HRV indicators between both groups at baseline. However, decreases in SDNN, rMSSD, TINN, and pNN50 (%) were observed in smokers exposed to both first- and second-hand smoke from HnB products and conventional cigarettes. No significant trends were noted in non-smokers. The frequency-domain analysis revealed a decrease in low frequency components among smokers.
Collapse
Affiliation(s)
- Dae-Hyeon Kim
- Division of Environmental System Science, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan 48513, Republic of Korea
| | - Petros Koutrakis
- Department of Environmental Health, Harvard University T.H. Chan School of Public Health, Boston, MA 02115, United States
| | - Youn-Suk Son
- Division of Environmental System Science, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan 48513, Republic of Korea.
| |
Collapse
|
7
|
Shah NP, Singh A, Higano T, Tilki D, Fleshner N, Nguyen P, Plummer C, Rivas JG, Zhang K, Rendon R, Morgans A, Cirne F, Leong D, Lenihan D, Lopes RD. Addressing cardiovascular risks with a goal to prevent cardiovascular complications in patients undergoing antihormonal therapy for prostate cancer. CARDIO-ONCOLOGY (LONDON, ENGLAND) 2025; 11:31. [PMID: 40155990 PMCID: PMC11954300 DOI: 10.1186/s40959-025-00318-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 02/07/2025] [Indexed: 04/01/2025]
Abstract
Over 1 million cases of prostate cancer are reported every year, and it is the second most common cancer in men. Androgen deprivation therapy (ADT) is a hallmark treatment for prostate cancer but is associated with the development or exacerbation of cardiovascular disease. The most common cause of non-cancer death in patients with prostate cancer is cardiovascular disease. Thus, a better understanding of the prevalence of cardiovascular toxicity across all therapies, management of potential cardiovascular complications, and prevention of cardiovascular events is essential as treatments continue to evolve. In this article, the first in a 2-part series, we provide a review of the current landscape of ADT therapy and its association with cardiovascular disease, summarize recent clinical trial data evaluating cardiovascular outcomes, and provide insights on the management of cardiovascular risk factors and adverse events for clinicians managing this high-risk population of men undergoing potentially cardiotoxic treatment for prostate cancer.
Collapse
Affiliation(s)
- Nishant P Shah
- Duke Clinical Research Institute, P.O. Box 17969, Durham, NC, 27715, USA
| | - Avinash Singh
- Division of Cardiology, East Carolina University, Greenville, NC, USA
| | - Tia Higano
- Department of Urologic Sciences at the University of British Columbia, Vancouver, BC, Canada
| | - Derya Tilki
- Martini-Klinik Prostate Cancer Center and Department of Urology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Neil Fleshner
- Division of Urology, University of Toronto, Toronto, ON, Canada
| | | | - Chris Plummer
- Freeman Hospital, The Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UK
| | | | - Kathleen Zhang
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA
| | - Ricardo Rendon
- Department of Urology, Dalhousie University, Halifax, NS, Canada
| | | | - Filipe Cirne
- Division of Cardiology, East Carolina University, Greenville, NC, USA
| | - Darryl Leong
- Department of Medicine and Population Health Research Institute, McMaster University, Hamilton, Canada
| | - Daniel Lenihan
- International Cardio-Oncology Society, Tampa, FL, USA
- St. Francis Healthcare, Cape Cardiology, Cape Girardeau, MO, USA
| | - Renato D Lopes
- Duke Clinical Research Institute, P.O. Box 17969, Durham, NC, 27715, USA.
| |
Collapse
|
8
|
Gambadauro A, Galletta F, Andrenacci B, Foti Randazzese S, Patria MF, Manti S. Impact of E-Cigarettes on Fetal and Neonatal Lung Development: The Influence of Oxidative Stress and Inflammation. Antioxidants (Basel) 2025; 14:262. [PMID: 40227218 PMCID: PMC11939789 DOI: 10.3390/antiox14030262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 02/21/2025] [Accepted: 02/23/2025] [Indexed: 04/15/2025] Open
Abstract
Electronic cigarettes (e-cigs) recently increased their popularity as "safer" alternatives to traditional tobacco smoking, including among pregnant women. However, the effect of e-cig exposure on fetal and neonatal developing lungs remains poorly investigated. In this review, we analysed the impact of e-cig aerosol components (e.g., nicotine, solvents, and flavouring agents) on respiratory system development. We particularly emphasized the role of e-cig-related oxidative stress and inflammation on lung impairment. Nicotine contained in e-cigs can impair lung development at anatomical and molecular levels. Solvents and flavours induce inflammation and oxidative stress and contribute to compromising neonatal lung function. Studies suggest that prenatal e-cig aerosol exposure may increase the risk of future development of respiratory diseases in offspring, such as asthma and chronic obstructive pulmonary disease (COPD). Preventive strategies, such as smoking cessation programs and antioxidant supplementation, may be essential for safeguarding respiratory health. There is an urgent need to explore the safety profile and potential risks of e-cigs, especially considering the limited studies in humans. This review highlights the necessity of regulating e-cig use during pregnancy and promoting awareness of its potential consequences on fetal and neonatal development.
Collapse
Affiliation(s)
- Antonella Gambadauro
- Pediatric Unit, Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98124 Messina, Italy; (F.G.); (S.M.)
| | - Francesca Galletta
- Pediatric Unit, Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98124 Messina, Italy; (F.G.); (S.M.)
| | - Beatrice Andrenacci
- S.C. Pneumoinfettivologia Pediatrica, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (B.A.); (M.F.P.)
| | - Simone Foti Randazzese
- Pediatric Unit, Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98124 Messina, Italy; (F.G.); (S.M.)
| | - Maria Francesca Patria
- S.C. Pneumoinfettivologia Pediatrica, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (B.A.); (M.F.P.)
| | - Sara Manti
- Pediatric Unit, Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98124 Messina, Italy; (F.G.); (S.M.)
| |
Collapse
|
9
|
Rahman M, Alatiqi M, Al Jarallah M, Hussain MY, Monayem A, Panduranga P, Rajan R. Cardiovascular Effects of Smoking and Smoking Cessation: A 2024 Update. Glob Heart 2025; 20:15. [PMID: 39991592 PMCID: PMC11843939 DOI: 10.5334/gh.1399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 01/23/2025] [Indexed: 02/25/2025] Open
Abstract
Smoking is a significant risk factor for both acute and chronic cardiovascular diseases. These diseases contribute to approximately twenty percent of all-cause mortality. Research indicates that quitting smoking can substantially reduce or even reverse the harmful effects associated with smoking on cardiovascular health. Notably, these benefits can be observed in a relatively short period compared to the duration of smoking history. This article aims to provide data to understand the effects of smoking on the cardiovascular system locally as well as its effects as a pandemic globally and hence provide comprehensive strategies in the management of cardiovascular patients for smoking cessation.
Collapse
Affiliation(s)
| | | | - Mohammed Al Jarallah
- Department of Cardiology, Sabah Al Ahmed Cardiac Centre, Al Amiri Hospital, Kuwait City, Kuwait
| | | | | | - Prashant Panduranga
- Department of Cardiology, Royal Hospital, and Director General of Specialized Medical Care, Ministry of Health, Muscat, Oman
| | - Rajesh Rajan
- Department of Cardiology, Sabah Al Ahmed Cardiac Centre, Al Amiri Hospital, Kuwait City, Kuwait
| |
Collapse
|
10
|
Chitteti R, Zuniga-Hertz JP, Masso-Silva JA, Shin J, Niesman I, Bojanowski CM, Kumar AJ, Hepokoski M, Crotty Alexander LE, Patel HH, Roth DM. E-cigarette-induced changes in cell stress and mitochondrial function. Free Radic Biol Med 2025; 228:329-338. [PMID: 39756490 DOI: 10.1016/j.freeradbiomed.2025.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/22/2024] [Accepted: 01/02/2025] [Indexed: 01/07/2025]
Abstract
Inhaling aerosols from electronic nicotine delivery systems, such as e-cigarettes (e-cigs), may pose health risks beyond those caused by nicotine intake. Exposure to e-cig aerosols can lead to the release of exosomes and metabolites into the bloodstream, potentially affecting mitochondrial physiology across the body, leading to chronic inflammatory diseases. In this study we assessed the effects of e-cig use by young healthy human subjects on the circulating exosome profile and markers of cell stress, and also defined the effects of e-cig user plasma on mitochondrial function in endothelial cells (EA. Hy 926) and epithelial cells (A549) via adoptive transfer. E-cig users had altered plasma exosome profiles, with significantly increased levels of cell free mitochondrial DNA (mtDNA), protein carbonyls, and 4-HNE relative to non-users. Plasma from e-cig users decreased maximal mitochondrial respiration and spare capacity of cells, while also increasing metabolic stress, as evidenced by changes in mitochondrial phenotype from basal to stressed in both endothelial and epithelial cells, which was corroborated by electron microscopy demonstrating structural changes in mitochondria. Mitochondrial membrane potential (MMP) and reactive oxygen species (ROS) levels significantly increased in e-cig plasma-subjected cells. Overall, we identified alterations in plasma exosome profiles and increased markers of mitochondrial stress in e-cig users and evidence that circulating factors within plasma from e-cig users drives metabolic stress in endothelial and epithelial cells. Our results imply that e-cig use adversely affects mitochondrial function, leading to stress and potentially chronic inflammation across the body.
Collapse
Affiliation(s)
- Ramamurthy Chitteti
- VA San Diego Healthcare System, San Diego, CA, USA; Department of Anesthesiology, School of Medicine, University of California San Diego, USA.
| | - Juan Pablo Zuniga-Hertz
- VA San Diego Healthcare System, San Diego, CA, USA; Department of Anesthesiology, School of Medicine, University of California San Diego, USA
| | - Jorge A Masso-Silva
- VA San Diego Healthcare System, San Diego, CA, USA; Division of Pulmonary, Critical Care and Sleep Medicine, University of California San Diego, USA
| | - John Shin
- Division of Pulmonary, Critical Care and Sleep Medicine, University of California San Diego, USA
| | - Ingrid Niesman
- San Diego State University, Electron Microscope Facility, 5500 Campanile Dr, San Diego, CA, 92182, USA
| | - Christine M Bojanowski
- Division of Pulmonary, Critical Care and Sleep Medicine, University of California San Diego, USA; Division of Pulmonary and Critical Care, Tulane University, New Orleans, LA, USA
| | - Avnee J Kumar
- VA San Diego Healthcare System, San Diego, CA, USA; Division of Pulmonary, Critical Care and Sleep Medicine, University of California San Diego, USA
| | - Mark Hepokoski
- VA San Diego Healthcare System, San Diego, CA, USA; Division of Pulmonary, Critical Care and Sleep Medicine, University of California San Diego, USA
| | - Laura E Crotty Alexander
- VA San Diego Healthcare System, San Diego, CA, USA; Division of Pulmonary, Critical Care and Sleep Medicine, University of California San Diego, USA
| | - Hemal H Patel
- VA San Diego Healthcare System, San Diego, CA, USA; Department of Anesthesiology, School of Medicine, University of California San Diego, USA
| | - David M Roth
- VA San Diego Healthcare System, San Diego, CA, USA; Department of Anesthesiology, School of Medicine, University of California San Diego, USA
| |
Collapse
|
11
|
Castellanos JA, Cornett CG, Gonzalez DH, Li L, Luna K, Middlekauff HR, Gupta R, Jordan MC, Rünger D, Zhu Y, Shao XM, Roos KP, Araujo JA. Electronic cigarettes alter cardiac rhythm and heart rate variability hyperacutely in mice. Toxicol Appl Pharmacol 2025; 495:117174. [PMID: 39608730 DOI: 10.1016/j.taap.2024.117174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 11/21/2024] [Accepted: 11/23/2024] [Indexed: 11/30/2024]
Abstract
AIMS There has been an unprecedented rise in electronic cigarette (EC) usage likely because of its perception of being safer than smoking. Recent studies show that EC exposures impact heart rate (HR) and heart rate variability (HRV), but how they are affected by the timing and frequency of exposures remain unclear. We examined the electrocardiographic (EKG) effects induced by brief EC exposures over time, their relation to EC aerosol particle and mass concentrations, and potential to promote prooxidative effects in the lungs. METHODS & RESULTS Six 10-week-old C57BL/6J mice, implanted with telemetry devices to monitor EKG activity continuously, were exposed once per week for three weeks to two EC exposures, each lasting 15-min followed by 45-min post-exposure periods. Filtered air (primary) and PBS aerosol (secondary) were used as controls. After combining weeks, EC aerosol induced bradycardia and increased time domain parameters during EC exposures with significant reductions in the post-exposure periods. Log-transformed frequency domain parameters were significantly elevated during and after exposures (p < 0.001). HRV changes occurred within minutes with similar trends observed in particle number and mass concentrations of EC aerosol. HR and HRV varied by week and parameter, with Week 2 and 3 effects overshadowing those in Week 1. ECs induced prooxidative effects in the lungs as evidenced by elevated potential for hydroxyl radical generation in bronchoalveolar lavage fluid of exposed mice (p = 0.003). CONCLUSION Short-term EC exposures altered murine HR and HRV within minutes during and after exposures, effects that were modulated by the timing and frequency of EC exposures.
Collapse
Affiliation(s)
- Jocelyn A Castellanos
- Division of Cardiology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States of America; Department of Environmental Health Sciences, Fielding School of Public Health at University of California Los Angeles, Los Angeles, California, United States of America
| | - Carson G Cornett
- Division of Cardiology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States of America
| | - David H Gonzalez
- Division of Cardiology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States of America; Environmental and Molecular Toxicology Interdepartmental Program, University of California Los Angeles, Los Angeles, California, United States of America
| | - Liqiao Li
- Department of Environmental Health Sciences, Fielding School of Public Health at University of California Los Angeles, Los Angeles, California, United States of America
| | - Karla Luna
- Division of Cardiology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States of America
| | - Holly R Middlekauff
- Division of Cardiology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States of America; Department of Physiology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States of America
| | - Rajat Gupta
- Division of Cardiology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States of America; Environmental and Molecular Toxicology Interdepartmental Program, University of California Los Angeles, Los Angeles, California, United States of America
| | - Maria C Jordan
- Department of Physiology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States of America
| | - Dennis Rünger
- Department of Medicine, Division of General Internal Medicine and Health Services Research, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States of America
| | - Yifang Zhu
- Department of Environmental Health Sciences, Fielding School of Public Health at University of California Los Angeles, Los Angeles, California, United States of America
| | - Xuesi M Shao
- Department of Neurobiology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States of America
| | - Kenneth P Roos
- Department of Physiology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States of America
| | - Jesus A Araujo
- Division of Cardiology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States of America; Department of Environmental Health Sciences, Fielding School of Public Health at University of California Los Angeles, Los Angeles, California, United States of America; Environmental and Molecular Toxicology Interdepartmental Program, University of California Los Angeles, Los Angeles, California, United States of America; Molecular Biology Institute, University of California Los Angeles, Los Angeles, California, United States of America.
| |
Collapse
|
12
|
Souza-Gabriel AE, Paschoini-Costa VL, Sousa-Neto MD, Silva-Sousa AC. E-cigarette exposure increases caries risk and modifies dental surface in an in vitro model. Arch Oral Biol 2025; 170:106128. [PMID: 39579397 DOI: 10.1016/j.archoralbio.2024.106128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/31/2024] [Accepted: 11/10/2024] [Indexed: 11/25/2024]
Abstract
OBJECTIVE Electronic cigarettes have become increasingly popular and can deliver nicotine at levels comparable to traditional tobacco cigarettes. However, the potential adverse effects of these alternative smoking devices on dental health remain uncertain. This study investigates changes in the cariogenic potential of tooth surfaces and analyzes alterations in the chemical composition of aerosols generated from sweet-flavored e-liquids used in electronic cigarettes. DESIGN Smoking was simulated using an electronic-cigarette testing machine. Eighty specimens of enamel, dentin and root dentin were divided in two groups according smoking: pre-smoke and post-smoke. The response variables were Microhardness (n=10), SEM (n=5) and FTIR (n=5). E-liquid was analyzed pre-smoke and post-smoke by HPLC-UV/Vis. Data were analyzed by one-way ANOVA and Tukey's tests, with a significance level of 5 %. SEM, FTIR and HPLC-UV/Vis data were qualitatively analyzed. RESULTS Enamel exhibited higher microhardness values before and after smoking, with all substrates showing significant microhardness reduction after smoking. All dentin specimens presented standard dentinal tubules, and post-smoke enamel prisms appeared disorganized with various orientations. The specimens' chemical constituents remained stable. Dentin and root dentin post-smoke, carbonate band intensity decreased. There was a thermal degradation of e-liquid products and the formation of new compounds post-vaporization. CONCLUSIONS E-cigarette smoking reduces the microhardness of enamel, dentin, and root dentin, alters enamel morphology, induces chemical interactions between e-liquid and tooth tissues, and may increase the risk of cariogenic potential.
Collapse
Affiliation(s)
- Aline Evangelista Souza-Gabriel
- Department of Restorative Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
| | - Vitoria Leite Paschoini-Costa
- Department of Restorative Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Manoel Damião Sousa-Neto
- Department of Restorative Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Alice Corrêa Silva-Sousa
- Department of Restorative Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
13
|
Hassan M, Vinagolu-Baur J, Li V, Frasier K, Herrick G, Scotto T, Rankin E. E-cigarettes and arterial health: A review of the link between vaping and atherosclerosis progression. World J Cardiol 2024; 16:707-719. [PMID: 39734821 PMCID: PMC11669975 DOI: 10.4330/wjc.v16.i12.707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/05/2024] [Accepted: 09/10/2024] [Indexed: 11/26/2024] Open
Abstract
Recent studies have suggested an evolving understanding of the association between vaping, specifically electronic cigarette (e-cigarette) use, and the progression of atherosclerosis, a significant contributor to cardiovascular disease. Despite the prevailing perception of vaping as a safer alternative to traditional tobacco smoking, accumulating evidence suggests that the aerosols emitted by e-cigarettes contain harmful constituents that may promote endothelial dysfunction, oxidative stress, inflammation, and dyslipidemia-key mechanisms implicated in atherosclerosis pathogenesis. While past research, including experimental studies and clinical investigations, has shed light on the potential cardiovascular risks associated with vaping, gaps in knowledge persist. Future research endeavors should focus on interpreting the long-term effects of vaping on atherosclerosis development and progression, exploring the impact of different e-cigarette formulations and user demographics, and identifying effective strategies for mitigating the cardiovascular consequences of vaping. By identifying and addressing these research gaps, we can enhance our understanding of the cardiovascular implications of vaping and inform evidence-based interventions and policies to safeguard public health.
Collapse
Affiliation(s)
- Muhammad Hassan
- Department of Medicine, Nuvance Health, Vassar Brothers Medical Center, Poughkeepsie, NY 12601, United States
| | - Julia Vinagolu-Baur
- Department of Medical Education, State University of New York, Upstate Medical University, Syracuse, NY 13210, United States
| | - Vivian Li
- Department of Medicine, Nuvance Health, Vassar Brothers Medical Center, Poughkeepsie, NY 12601, United States.
| | - Kelly Frasier
- Department of Medicine, Nuvance Health, Vassar Brothers Medical Center, Poughkeepsie, NY 12601, United States
| | - Grace Herrick
- Department of Medical Education, Alabama College of Osteopathic Medicine, Dothan, AL 36303, United States
| | - Tiffany Scotto
- Department of Medicine, University of Florida Health, Jacksonville, FL 32209, United States
| | - Erica Rankin
- Department of Medical Education, Nova Southeastern University Kiran C. Patel College of Osteopathic Medicine, Fort Lauderdale, FL 33328, United States
| |
Collapse
|
14
|
Lu Y, Jiang H, Ren Y, Wang M, Yuan A, Wu J, Ruan Z, Ding X. Association of the use of e-cigarettes, combustible cigarettes or dual use with hypertension and mortality in hypertensive individuals: Insights from NHANES 2015-2018. Tob Induc Dis 2024; 22:TID-22-178. [PMID: 39563721 PMCID: PMC11574958 DOI: 10.18332/tid/195397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/29/2024] [Accepted: 11/01/2024] [Indexed: 11/21/2024] Open
Abstract
INTRODUCTION Combustible cigarettes have been shown to increase hypertension risk. Nevertheless, data on the association between electronic cigarettes (e-cigarettes), as well as dual use of e-cigarettes and combustible cigarettes, and hypertension, are limited. METHODS This study aims to examine the association of the use of e-cigarettes, combustible cigarettes or dual use with hypertension. Data from the 2015-2018 National Health and Nutrition Examination Survey were used. Weighted logistic regression models were employed to determine the relationship between cigarette use and hypertension. Weighted Cox proportional hazard regression models were developed to evaluate the association between electronic/combustible cigarettes or dual use and mortality in hypertensive individuals. RESULTS A total of 7696 participants (median age 47 years; 51.76% females) were included. In the adjusted model, the groups of e-cigarette use, combustible cigarette use, and dual use were found to be significantly associated with the risk of hypertension with AOR and 95% CI of 1.56 (1.01-2.42), 1.29 (1.01-1.64) and 1.83 (1.03-3.27) respectively. Significant trends of the relationship between cigarette use and hypertension were observed. The median follow-up for mortality was 38 months. Current e-cigarette use showed a positive correlation with all-cause death and cardiovascular death compared to never e-cigarette use with HR and 95% CI of 1.30 (1.01-1.66) and 1.30 (1.01-1.67), respectively. The trend of association of e-cigarette use with mortality was significant. CONCLUSIONS This study shows that electronic/combustible cigarette use or dual use increased risk of hypertension. E-cigarettes were associated with a higher risk of all-cause mortality and cardiovascular mortality. Notably, the increased risk of mortality among e-cigarette users may be due to underlying, pre-existing comorbidities related to prior combustible cigarette use. Findings from the study provide evidence of the benefits of e-cigarette use control, especially among individuals with hypertension.
Collapse
Affiliation(s)
- Yi Lu
- Department of Cardiology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, China
| | - Hao Jiang
- Department of Cardiology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, China
| | - Yin Ren
- Department of Cardiology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, China
| | - Meixiang Wang
- Department of Cardiology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, China
| | - Aili Yuan
- Department of Cardiology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, China
| | - Jing Wu
- Department of Cardiology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, China
| | - Zhongbao Ruan
- Department of Cardiology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, China
| | - Xiangwei Ding
- Department of Cardiology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, China
| |
Collapse
|
15
|
Magna A, Polisena N, Polisena L, Bagnato C, Pacella E, Carnevale R, Nocella C, Loffredo L. The Hidden Dangers: E-Cigarettes, Heated Tobacco, and Their Impact on Oxidative Stress and Atherosclerosis-A Systematic Review and Narrative Synthesis of the Evidence. Antioxidants (Basel) 2024; 13:1395. [PMID: 39594537 PMCID: PMC11591068 DOI: 10.3390/antiox13111395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 11/03/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
Electronic cigarettes and heated tobacco products have seen significant growth in sales and usage in recent years. Initially promoted as potentially less harmful alternatives to traditional tobacco, recent scientific evidence has raised serious concerns about the risks they pose, particularly in relation to atherosclerosis. While atherosclerosis has long been associated with conventional tobacco smoking, emerging research suggests that electronic cigarettes and heated tobacco may also contribute to the development of this condition and related cardiovascular complications. In a narrative review, we examined the potential effects of heated tobacco products and electronic cigarettes on oxidative stress and atherosclerosis. Several studies have shown that e-cigarettes and heated tobacco increase oxidative stress through the activation of enzymes such as NADPH oxidase. One of the primary effects of these products is their pro-thrombotic and pro-atherosclerotic impact on endothelial cells and platelets, which promotes inflammatory processes within the arteries. Furthermore, the chemicals found in electronic cigarette liquids may exacerbate inflammation and cause endothelial dysfunction. Furthermore, through a systematic review, we analyzed the effects of chronic exposure to electronic and heated tobacco cigarettes on endothelial function, as assessed by brachial flow-mediated dilation (FMD). Although electronic cigarettes and heated tobacco cigarettes are often perceived as safer alternatives to traditional smoking, they could still present risks to cardiovascular health. It is essential to raise public awareness about the potential dangers associated with these products and implement protective measures, particularly for young people.
Collapse
Affiliation(s)
- Arianna Magna
- Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - Nausica Polisena
- Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - Ludovica Polisena
- Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - Chiara Bagnato
- Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - Elena Pacella
- Department of Sense Organs, Faculty of Medicine and Dentistry, Sapienza University of Rome, 00161 Rome, Italy
| | - Roberto Carnevale
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy
- IRCCS—Istituto di Ricovero e Cura a Carattere Scientifico Neuromed, 86077 Pozzilli, Italy
| | - Cristina Nocella
- Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - Lorenzo Loffredo
- Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| |
Collapse
|
16
|
Carvalho BFDC, Faria NDC, Silva KCS, Greenfield E, Alves MGO, Dias M, Mendes MA, Pérez-Sayáns M, Almeida JD. Salivary Metabolic Pathway Alterations in Brazilian E-Cigarette Users. Int J Mol Sci 2024; 25:11750. [PMID: 39519301 PMCID: PMC11546306 DOI: 10.3390/ijms252111750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/22/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
In recent years, the use of electronic cigarettes (e-cigs) has increased. However, their long-term effects on oral health and saliva remain poorly understood. Therefore, this study aimed to evaluate the saliva of e-cig users and investigate possible biomarkers. Participants were divided into two groups: the Electronic Cigarette Group (EG)-25 regular and exclusive e-cig users-and Control Group (CG)-25 non-smokers and non-e-cig users, matched in sex and age to the EG. The clinical analysis included the following parameters: age, sex, heart rate, oximetry, capillary blood glucose, carbon monoxide (CO) concentration in exhaled air, and alcohol use disorder identification test (AUDIT). Qualitative and quantitative analyses of saliva included sialometry, viscosity, pH, and cotinine concentrations. Furthermore, the EG and CG salivary metabolomes were compared using gas chromatography coupled with mass spectrometry (GC-MS). Data were analyzed using the Mann-Whitney test. The MetaboAnalyst 6.0 software was used for statistical analysis and biomarker evaluation. The EG showed high means for exhaled CO concentration and AUDIT but lower means for oximetry and salivary viscosity. Furthermore, 10 metabolites (isoleucine, 2-hydroxyglutaric acid, 3-phenyl-lactic acid, linoleic acid, 3-hydroxybutyric acid, 1,6-anhydroglucose, glucuronic acid, valine, stearic acid, and elaidic acid) were abundant in EG but absent in CG. It was concluded that e-cig users had high rates of alcohol consumption and experienced significant impacts on their general health, including increased cotinine and CO concentration in exhaled air, decreased oximetry, and low salivary viscosity. Furthermore, they showed a notable increase in salivary metabolites, especially those related to inflammation, xenobiotic metabolism, and biomass-burning pathways.
Collapse
Affiliation(s)
- Bruna Fernandes do Carmo Carvalho
- Instituto de Ciência e Tecnologia, Universidade Estadual Paulista (UNESP), Câmpus São José dos Campos, Av. Eng. Francisco José Longo, 777, São Dimas, São José dos Campos 12245-000, São Paulo, Brazil; (B.F.d.C.C.)
| | - Natalia de Carvalho Faria
- Instituto de Ciência e Tecnologia, Universidade Estadual Paulista (UNESP), Câmpus São José dos Campos, Av. Eng. Francisco José Longo, 777, São Dimas, São José dos Campos 12245-000, São Paulo, Brazil; (B.F.d.C.C.)
| | - Kethilyn Chris Sousa Silva
- Instituto de Ciência e Tecnologia, Universidade Estadual Paulista (UNESP), Câmpus São José dos Campos, Av. Eng. Francisco José Longo, 777, São Dimas, São José dos Campos 12245-000, São Paulo, Brazil; (B.F.d.C.C.)
| | - Ellen Greenfield
- Technology Research Center (NPT), Universidade Mogi das Cruzes, Mogi das Cruzes 08780-911, São Paulo, Brazil
| | - Mônica Ghislaine Oliveira Alves
- Instituto de Ciência e Tecnologia, Universidade Estadual Paulista (UNESP), Câmpus São José dos Campos, Av. Eng. Francisco José Longo, 777, São Dimas, São José dos Campos 12245-000, São Paulo, Brazil; (B.F.d.C.C.)
| | - Meriellen Dias
- Dempster MS Lab, Department of Chemical Engineering, Polytechnic School, University of São Paulo, São Paulo 05508-040, São Paulo, Brazil
| | - Maria Anita Mendes
- Dempster MS Lab, Department of Chemical Engineering, Polytechnic School, University of São Paulo, São Paulo 05508-040, São Paulo, Brazil
| | - Mario Pérez-Sayáns
- Oral Medicine, Oral Surgery and Implantology Unit (MedOralRes), Faculty of Medicine and Dentistry, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
- ORALRES Group, Instituto de Investigación Sanitaria de Santiago (IDIS), 15782 Santiago de Compostela, Spain
- Instituto de los Materiales de Santiago de Compostela (iMATUS), 15782 Santiago de Compostela, Spain
| | - Janete Dias Almeida
- Instituto de Ciência e Tecnologia, Universidade Estadual Paulista (UNESP), Câmpus São José dos Campos, Av. Eng. Francisco José Longo, 777, São Dimas, São José dos Campos 12245-000, São Paulo, Brazil; (B.F.d.C.C.)
| |
Collapse
|
17
|
Kassem NOF, Strongin RM, Stroup AM, Brinkman MC, El-Hellani A, Erythropel HC, Etemadi A, Exil V, Goniewicz ML, Kassem NO, Klupinski TP, Liles S, Muthumalage T, Noël A, Peyton DH, Wang Q, Rahman I, Valerio LG. A Review of the Toxicity of Ingredients in e-Cigarettes, Including Those Ingredients Having the FDA's "Generally Recognized as Safe (GRAS)" Regulatory Status for Use in Food. Nicotine Tob Res 2024; 26:1445-1454. [PMID: 38783714 PMCID: PMC11494494 DOI: 10.1093/ntr/ntae123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 04/26/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024]
Abstract
Some firms and marketers of electronic cigarettes (e-cigarettes; a type of electronic nicotine delivery system (ENDS)) and refill liquids (e-liquids) have made claims about the safety of ingredients used in their products based on the term "GRAS or Generally Recognized As Safe" (GRAS). However, GRAS is a provision within the definition of a food additive under section 201(s) (21 U.S.C. 321(s)) of the U.S. Federal Food Drug and Cosmetic Act (FD&C Act). Food additives and GRAS substances are by the FD&C Act definition intended for use in food, thus safety is based on oral consumption; the term GRAS cannot serve as an indicator of the toxicity of e-cigarette ingredients when aerosolized and inhaled (ie, vaped). There is no legal or scientific support for labeling e-cigarette product ingredients as "GRAS." This review discusses our concerns with the GRAS provision being applied to e-cigarette products and provides examples of chemical compounds that have been used as food ingredients but have been shown to lead to adverse health effects when inhaled. The review provides scientific insight into the toxicological evaluation of e-liquid ingredients and their aerosols to help determine the potential respiratory risks associated with their use in e-cigarettes.
Collapse
Affiliation(s)
- Nada O F Kassem
- Health Promotion and Behavioral Science, San Diego State University, San Diego, CA, USA
- Hookah Tobacco Research Center, San Diego State University Research Foundation, San Diego, CA, USA
| | - Robert M Strongin
- Department of Chemistry, Portland State University, Portland, OR, USA
| | - Andrea M Stroup
- Behavioral Health and Health Policy Practice, Westat, Rockville, MD, USA
| | - Marielle C Brinkman
- College of Public Health, The Ohio State University, Columbus, OH, USA
- Center for Tobacco Research, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Ahmad El-Hellani
- Center for Tobacco Research, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
- Division of Environmental Health Sciences, College of Public Health, The Ohio State University, Columbus, OH, USA
| | - Hanno C Erythropel
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT, USA
- Department of Psychiatry, Yale Center for the Study of Tobacco Products (YCSTP), Yale School of Medicine, New Haven, CT, USA
| | - Arash Etemadi
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Vernat Exil
- School of Medicine, St. Louis University, St. Louis, MO, USA
| | - Maciej L Goniewicz
- Department of Health Behavior, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Noura O Kassem
- Health Promotion and Behavioral Science, San Diego State University, San Diego, CA, USA
- Hookah Tobacco Research Center, San Diego State University Research Foundation, San Diego, CA, USA
| | | | - Sandy Liles
- Health Promotion and Behavioral Science, San Diego State University, San Diego, CA, USA
- Hookah Tobacco Research Center, San Diego State University Research Foundation, San Diego, CA, USA
| | | | - Alexandra Noël
- Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA
| | - David H Peyton
- Department of Chemistry, Portland State University, Portland, OR, USA
| | - Qixin Wang
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Irfan Rahman
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Luis G Valerio
- Division of Nonclinical Science (DNCS), Office of Science/Center for Tobacco Products, U.S. Food and Drug Administration, Silver Spring, MD, USA
| |
Collapse
|
18
|
Dong K, Wang S, Qu C, Zheng K, Sun P. Schizophrenia and type 2 diabetes risk: a systematic review and meta-analysis. Front Endocrinol (Lausanne) 2024; 15:1395771. [PMID: 39324122 PMCID: PMC11422011 DOI: 10.3389/fendo.2024.1395771] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 08/23/2024] [Indexed: 09/27/2024] Open
Abstract
Objectives The metabolic syndrome in patients with schizophrenia has consistently been a challenge for clinicians. Previous studies indicate that individuals with schizophrenia are highly prone to developing type 2 diabetes mellitus (T2DM). In recent years, a continuous stream of new observational studies has been reported, emphasizing the pressing need for clinicians to gain a more precise understanding of the association between schizophrenia and T2DM. The objective of this meta-analysis is to integrate new observational studies and further explore the potential link between schizophrenia and the risk of T2DM. Methods We conducted a comprehensive search of PubMed, Cochrane Library, Embase, and Web of Science using medical subject headings (MeSH) and relevant keywords. The risk of bias in cohort studies and case-control studies was assessed using the Newcastle-Ottawa Scale (NOS), while cross-sectional studies were evaluated using the Agency for Healthcare Research and Quality scale (AHRQ), scoring was based on the content of the original studies. A fixed-effects model was employed if P > 0.1 and I2 ≤ 50%, indicating low heterogeneity. Conversely, a random-effects model was utilized if I2 > 50%, indicating substantial heterogeneity. Publication bias was assessed using funnel plots and Egger's test. Statistical analyses were carried out using Stata statistical software version 14.0. Results This meta-analysis comprised 32 observational studies, involving a total of 2,007,168 patients with schizophrenia and 35,883,980 without schizophrenia, published from 2004 to 2023. The pooled analysis revealed a significant association between a history of schizophrenia and an increased risk of T2DM (Odds Ratio [OR] = 2.15; 95% Confidence Interval [CI]: 1.83-2.52; I2 = 98.9%, P < 0.001). Stratified by gender, females with schizophrenia (OR = 2.12; 95% CI: 1.70-2.64; I2 = 90.7%, P < 0.001) had a significantly higher risk of T2DM than males (OR = 1.68; 95% CI: 1.39-2.04; I2 = 91.3%, P < 0.001). Regarding WHO regions, EURO (OR = 2.73; 95% CI: 2.23-3.35; I2 = 97.5%, P < 0.001) exhibited a significantly higher risk of T2DM compared to WPRO (OR = 1.72; 95% CI: 1.32-2.23; I2 = 95.2%, P < 0.001) and AMRO (OR = 1.82; 95% CI: 1.40-2.37; I2 = 99.1%, P < 0.001). In terms of follow-up years, the >20 years subgroup (OR = 3.17; 95% CI: 1.24-8.11; I2 = 99.4%, P < 0.001) showed a significantly higher risk of T2DM than the 10-20 years group (OR = 2.26; 95% CI: 1.76-2.90; I2 = 98.6%, P < 0.001) and <10 years group (OR = 1.68; 95% CI: 1.30-2.19; I2 = 95.4%, P < 0.001). Conclusions This meta-analysis indicates a strong association between schizophrenia and an elevated risk of developing diabetes, suggesting that schizophrenia may function as an independent risk factor for T2DM. Systematic review registration https://www.crd.york.ac.uk/PROSPERO/, identifier CRD42023465826.
Collapse
Affiliation(s)
- Kai Dong
- College of Mental Health, Jining Medical University, Jining, China
- Qingdao Mental Health Center, Qingdao, China
| | | | - Chunhui Qu
- Qingdao Mental Health Center, Qingdao, China
| | - Kewei Zheng
- College of Special Education and Rehabilitation, Binzhou Medical University, Yantai, China
| | - Ping Sun
- Qingdao Mental Health Center, Qingdao, China
| |
Collapse
|
19
|
Nguyen HL, Nguyen TD, Phan PT. Prevalence and Associated Factors of Paroxysmal Atrial Fibrillation and Atrial Arrhythmias During Hospitalizations for Exacerbation of COPD. Int J Chron Obstruct Pulmon Dis 2024; 19:1989-2000. [PMID: 39247665 PMCID: PMC11380853 DOI: 10.2147/copd.s473289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 08/23/2024] [Indexed: 09/10/2024] Open
Abstract
Purpose This study aimed to investigate the proportion and risk factors of paroxysmal atrial fibrillation (AF) and atrial arrhythmias (AA) in patients hospitalized for acute exacerbation of chronic obstructive pulmonary disease (AECOPD) in Vietnam. Patients and Methods A prospective observational study was conducted at two major hospitals in Hanoi, Vietnam, from January 2022 to January 2023. A total of 197 AECOPD patients were recruited. ECG and 24-hour Holter ECG were used to diagnose paroxysmal AF and AA. Results The prevalence of paroxysmal AF and AA were 15.2% and 72.6%, respectively. Factors associated with a higher likelihood of paroxysmal AF included aging 75 years old and above (aOR = 3.15; 95% CI: 1.28 to 8.48), Premature atrial complex (PAC) with 500 or more (aOR = 3.81; 95% CI: 1.48 to 10.97) and severity of COPD as group C and D (aOR = 3.41; 95% CI: 1.28 to 10.50). For AA, aging 75 years old and above (aOR = 2.25; 95% CI: 1.28 to 5.20), smoking (aOR = 2.10; 95% CI: 1.07 to 4.23) and P wave dispersion (PWD) with 40 milliseconds or more (aOR = 3.04; 95% CI: 1.54 to 6.19) were associated with a higher likelihood of AA. Conclusion Overall, our findings highlight the associated factors with the paroxysmal AF and AA among AECOPD patients. This underscores the importance of a multifaceted approach to risk assessment and management in this vulnerable population, focusing not only on respiratory symptoms but also on comprehensive cardiovascular evaluation and intervention.
Collapse
Affiliation(s)
- Hieu Lan Nguyen
- Cardiovascular Department, Hanoi Medical University, Hanoi City, Vietnam
- Cardiovascular Center, Hanoi Medical University Hospital, Hanoi City, Vietnam
| | - Thang Duy Nguyen
- Cardiovascular Department, Hanoi Medical University, Hanoi City, Vietnam
- Cardiovascular Center, Hanoi Medical University Hospital, Hanoi City, Vietnam
| | - Phuong Thu Phan
- Internal Medicine Department, Hanoi Medical University, Hanoi City, Vietnam
- Respiratory Center, Bach Mai Hospital, Hanoi City, Vietnam
| |
Collapse
|
20
|
Farfán Bajaña MJ, Zevallos JC, Chérrez-Ojeda I, Alvarado G, Green T, Kirimi B, Jaramillo D, Felix M, Vanegas E, Farfan A, Cadena-Vargas M, Simancas-Racines D, Faytong-Haro M. Association between the use of electronic cigarettes and myocardial infarction in U.S. adults. BMC Public Health 2024; 24:2110. [PMID: 39103826 PMCID: PMC11299295 DOI: 10.1186/s12889-024-19561-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/23/2024] [Indexed: 08/07/2024] Open
Abstract
BACKGROUND Compared with conventional cigarettes, electronic cigarettes are less harmful in some studies. However, recent research may indicate the opposite. This study aimed to determine whether e-cigarette use is related to myocardial health in adults in the U.S. METHODS This study used data from the 2020 Behavioral Risk Factor Surveillance System (BRFSS), a cross-sectional survey of adult US residents aged 18 years or older. We examined whether e-cigarette use was related to myocardial infarction byapplying a logistic regression model to calculate odds ratios (ORs) and 95% confidence intervals (CIs). RESULTS The final analytical sample included 198,530 adults in the U.S. Logistic regression indicated that U.S. adults who reported being former and some days of e-cigarette use had 23% and 52% greater odds of ever having an MI, respectively, than did those who reported never using e-cigarettes (OR = 1.23, 95% CI 1.08-1.40, p = 0.001; OR = 1.52, 95% CI 1.10-2.09, p = 0.010). CONCLUSIONS The results suggest that former and someday users of e-cigarettes probably have increased odds of myocardial infarction in adults in the U.S. Further research is needed, including long-term follow-up studies on e-cigarettes, since it is still unknown whether they should be discouraged.
Collapse
Affiliation(s)
- María José Farfán Bajaña
- School of Medicine, Universidad Espíritu Santo, Samborondón, Ecuador
- Respiralab Research Group, Guayaquil, Ecuador
| | | | - Ivan Chérrez-Ojeda
- School of Medicine, Universidad Espíritu Santo, Samborondón, Ecuador.
- Respiralab Research Group, Guayaquil, Ecuador.
| | - Geovanny Alvarado
- School of Medicine, Universidad Espíritu Santo, Samborondón, Ecuador
| | - Tiffany Green
- College of Medicine, American University of Antigua, Osbourn, Antigua and Barbuda
| | - Betty Kirimi
- College of Medicine, American University of Antigua, Osbourn, Antigua and Barbuda
| | - Daniel Jaramillo
- School of Medicine, Universidad Espíritu Santo, Samborondón, Ecuador
| | - Miguel Felix
- School of Medicine, Universidad Espíritu Santo, Samborondón, Ecuador
- Respiralab Research Group, Guayaquil, Ecuador
- Department of Internal Medicine, MetroWest Medical Center, Framingham, United States
| | - Emanuel Vanegas
- School of Medicine, Universidad Espíritu Santo, Samborondón, Ecuador
- Respiralab Research Group, Guayaquil, Ecuador
- Department of Internal Medicine, NYC Health + Hospitals Woodhull, Brooklyn, United States
| | - Alejandra Farfan
- School of Medicine, Universidad Espíritu Santo, Samborondón, Ecuador
| | | | - Daniel Simancas-Racines
- Centro de Investigación en Salud Pública y Epidemiología Clínica (CISPEC), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, 170527, Ecuador
| | - Marco Faytong-Haro
- Respiralab Research Group, Guayaquil, Ecuador
- Universidad Estatal de Milagro, Milagro, Ecuador
| |
Collapse
|
21
|
Ruedisueli I, Shi K, Lopez S, Gornbein J, Middlekauff HR. Arrhythmogenic effects of acute electronic cigarette compared to tobacco cigarette smoking in people living with HIV. Physiol Rep 2024; 12:e16158. [PMID: 39044007 PMCID: PMC11265994 DOI: 10.14814/phy2.16158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/21/2024] [Accepted: 07/10/2024] [Indexed: 07/25/2024] Open
Abstract
The leading cause of death in people living with HIV (PLWH) is cardiovascular disease, and the high prevalence of tobacco cigarette (TC) smoking is a major contributor. Switching to electronic cigarettes (ECs) has been promoted as a harm reduction strategy. We sought to determine if acute EC compared to TC smoking had less harmful effects on arrhythmogenic risk factors including acute changes in hemodynamics, heart rate variability (HRV), and ventricular repolarization (VR). In PLWH who smoke, changes in hemodynamics, HRV, and VR were compared pre/post acutely using an EC, TC, or puffing on an empty straw on different days in random order, in a crossover study. Thirty-seven PLWH (36 males, mean age 40.5 ± 9.1 years) participated. Plasma nicotine was greater after TC versus EC use (10.12 ± 0.96 vs. 6.18 ± 0.99 ng/mL, respectively, p = 0.004). HR increased significantly, and similarly, after acute EC and TC smoking compared to control. Changes in HRV that confer increased cardiac risk (LF/HF ratio) were significantly smaller after acute EC versus TC use, consistent with a harm reduction effect. In a post-hoc analysis of PLWH with and without positive concurrent recreational drug use as indicated by point of care urine toxicology testing, this differential effect was only seen in PLWH not currently using recreational drugs. Changes in VR were not different among the three exposures. In PLWH who smoke, EC compared to TC smoking resulted in smaller adverse changes in HRV. This differential effect was accompanied by a smaller increase in plasma nicotine, and was negated by concurrent recreational drug use. Additional studies are warranted in this vulnerable population disproportionately affected by tobacco-related health disparities.
Collapse
Affiliation(s)
- Isabelle Ruedisueli
- Department of Medicine, Division of CardiologyUCLA David Geffen School of MedicineLos AngelesCaliforniaUSA
| | - Katie Shi
- Department of Medicine, Division of CardiologyUCLA David Geffen School of MedicineLos AngelesCaliforniaUSA
| | - Samuel Lopez
- Department of Medicine, Division of CardiologyUCLA David Geffen School of MedicineLos AngelesCaliforniaUSA
| | - Jeffrey Gornbein
- Departments of Medicine and Computational MedicineUCLA David Geffen School of MedicineLos AngelesCaliforniaUSA
| | - Holly R. Middlekauff
- Department of Medicine, Division of CardiologyUCLA David Geffen School of MedicineLos AngelesCaliforniaUSA
| |
Collapse
|
22
|
Zong H, Hu Z, Li W, Wang M, Zhou Q, Li X, Liu H. Electronic cigarettes and cardiovascular disease: epidemiological and biological links. Pflugers Arch 2024; 476:875-888. [PMID: 38376568 PMCID: PMC11139732 DOI: 10.1007/s00424-024-02925-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/08/2024] [Accepted: 02/09/2024] [Indexed: 02/21/2024]
Abstract
Electronic cigarettes (e-cigarettes), as alternative nicotine delivery methods, has rapidly increased among youth and adults in recent years. However, cardiovascular safety is an important consideration regarding e-cigarettes usage. e-cigarette emissions, including nicotine, propylene glycol, flavorings, nitrosamine, and metals, might have adverse effects on cardiovascular health. A large body of epidemiological evidence has indicated that e-cigarettes are considered an independent risk factor for increased rates of cardiovascular disease occurrence and death. The incidence and mortality of various types of cardiovascular disease, such as cardiac arrhythmia, hypertension, acute coronary syndromes, and heart failure, have a modest growth in vapers (users of e-cigarettes). Although the underlying biological mechanisms have not been fully understood, studies have validated that oxidative stress, inflammation, endothelial dysfunction, atherosclerosis, hemodynamic effects, and platelet function play important roles in which e-cigarettes work in the human body. This minireview consolidates and discusses the epidemiological and biological links between e-cigarettes and various types of cardiovascular disease.
Collapse
Affiliation(s)
- Huiqi Zong
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Zhekai Hu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Xicheng District, Beijing, 100053, China
| | - Weina Li
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Xicheng District, Beijing, 100053, China
| | - Mina Wang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Qi Zhou
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| | - Xiang Li
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China.
| | - Hongxu Liu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China.
| |
Collapse
|
23
|
Guevara A, Smith CER, Caldwell JL, Ngo L, Mott LR, Lee IJ, Tapa S, Wang Z, Wang L, Woodward WR, Ng GA, Habecker BA, Ripplinger CM. Chronic nicotine exposure is associated with electrophysiological and sympathetic remodeling in the intact rabbit heart. Am J Physiol Heart Circ Physiol 2024; 326:H1337-H1349. [PMID: 38551482 PMCID: PMC11381014 DOI: 10.1152/ajpheart.00749.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/27/2024] [Accepted: 03/27/2024] [Indexed: 04/09/2024]
Abstract
Nicotine is the primary addictive component of tobacco products. Through its actions on the heart and autonomic nervous system, nicotine exposure is associated with electrophysiological changes and increased arrhythmia susceptibility. To assess the underlying mechanisms, we treated rabbits with transdermal nicotine (NIC, 21 mg/day) or control (CT) patches for 28 days before performing dual optical mapping of transmembrane potential (RH237) and intracellular Ca2+ (Rhod-2 AM) in isolated hearts with intact sympathetic innervation. Sympathetic nerve stimulation (SNS) was performed at the first to third thoracic vertebrae, and β-adrenergic responsiveness was additionally evaluated following norepinephrine (NE) perfusion. Baseline ex vivo heart rate (HR) and SNS stimulation threshold were higher in NIC versus CT (P = 0.004 and P = 0.003, respectively). Action potential duration alternans emerged at longer pacing cycle lengths (PCL) in NIC versus CT at baseline (P = 0.002) and during SNS (P = 0.0003), with similar results obtained for Ca2+ transient alternans. SNS shortened the PCL at which alternans emerged in CT but not in NIC hearts. NIC-exposed hearts tended to have slower and reduced HR responses to NE perfusion, but ventricular responses to NE were comparable between groups. Although fibrosis was unaltered, NIC hearts had lower sympathetic nerve density (P = 0.03) but no difference in NE content versus CT. These results suggest both sympathetic hypoinnervation of the myocardium and regional differences in β-adrenergic responsiveness with NIC. This autonomic remodeling may contribute to the increased risk of arrhythmias associated with nicotine exposure, which may be further exacerbated with long-term use.NEW & NOTEWORTHY Here, we show that chronic nicotine exposure was associated with increased heart rate, increased susceptibility to alternans, and reduced sympathetic electrophysiological responses in the intact rabbit heart. We suggest that this was due to sympathetic hypoinnervation of the myocardium and diminished β-adrenergic responsiveness of the sinoatrial node following nicotine treatment. Though these differences did not result in increased arrhythmia propensity in our study, we hypothesize that prolonged nicotine exposure may exacerbate this proarrhythmic remodeling.
Collapse
Affiliation(s)
- Amanda Guevara
- Department of Pharmacology, University of California Davis, Davis, California, United States
| | - Charlotte E R Smith
- Department of Pharmacology, University of California Davis, Davis, California, United States
| | - Jessica L Caldwell
- Department of Pharmacology, University of California Davis, Davis, California, United States
| | - Lena Ngo
- Department of Pharmacology, University of California Davis, Davis, California, United States
| | - Lilian R Mott
- Department of Pharmacology, University of California Davis, Davis, California, United States
| | - I-Ju Lee
- Department of Pharmacology, University of California Davis, Davis, California, United States
| | - Srinivas Tapa
- Department of Pharmacology, University of California Davis, Davis, California, United States
| | - Zhen Wang
- Department of Pharmacology, University of California Davis, Davis, California, United States
- Shantou University Medical College, Shantou, People's Republic of China
| | - Lianguo Wang
- Department of Pharmacology, University of California Davis, Davis, California, United States
| | - William R Woodward
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, Oregon, United States
| | - G Andre Ng
- Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
- National Institute for Health and Care Research, Leicester Biomedical Research Centre, Leicester, United Kingdom
- Glenfield Hospital, Leicester, United Kingdom
| | - Beth A Habecker
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, Oregon, United States
- Department of Medicine and Knight Cardiovascular Institute, Oregon Health and Science University, Portland, Oregon, United States
| | - Crystal M Ripplinger
- Department of Pharmacology, University of California Davis, Davis, California, United States
| |
Collapse
|
24
|
Critselis E, Panagiotakos D. Impact of Electronic Cigarette use on Cardiovascular Health: Current Evidence, Causal Pathways, and Public Health Implications. Angiology 2024; 75:417-424. [PMID: 36913951 DOI: 10.1177/00033197231161905] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
Abstract
Electronic cigarette (e-cigarette) use is increasing in Europe and the USA. While mounting evidence exists regarding an array of associated adverse health effects, to date limited evidence exists regarding the health effects of e-cigarette use on cardiovascular (CV) disease (CVD). The present review summarizes the effects of e-cigarette use on CV health. A search strategy of in vivo experimental, observational studies (including population-based cohort studies), and interventional studies was conducted in PubMed, MEDLINE, and Web of Science (April 1, 2009-April 1, 2022). The main findings revealed that the influence of e-cigarette on health are attributed mainly to the individual and interactive effects of flavors and additives used in e-cigarette fluids, along with the extended heating. The above collectively stimulate prolonged sympathoexcitatory CV autonomic effects, such as increased heart rate and diastolic blood pressure (BP), as well as decreased oxygen saturation. Hence, e-cigarette users are at increased risk of developing atherosclerosis, hypertension, arrhythmia, myocardial infarction, and heart failure. Such risks are anticipated to increase, especially among the young who are increasingly adopting e-cigarette use particularly with flavored additives. Further investigations are urgently needed to evaluate the long-term effects of e-cigarette use, particularly among susceptible population groups such as youth.
Collapse
Affiliation(s)
- Elena Critselis
- Department of Nutrition and Dietetics, School of Health Sciences and Education, Harokopio University, Athens, Greece
- Department of Primary Care and Population Health, University of Nicosia Medical School, Nicosia, Cyprus
| | - Demosthenes Panagiotakos
- Department of Nutrition and Dietetics, School of Health Sciences and Education, Harokopio University, Athens, Greece
- Faculty of Health, University of Canberra, Canberra, Australia
| |
Collapse
|
25
|
Kucera C, Ramalingam A, Srivastava S, Bhatnagar A, Carll AP. Nicotine Formulation Influences the Autonomic and Arrhythmogenic Effects of Electronic Cigarettes. Nicotine Tob Res 2024; 26:536-544. [PMID: 38011908 PMCID: PMC11033561 DOI: 10.1093/ntr/ntad237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/09/2023] [Accepted: 11/20/2023] [Indexed: 11/29/2023]
Abstract
INTRODUCTION Evidence is mounting that electronic cigarette (e-cig) use induces cardiac sympathetic dominance and electrical dysfunction conducive to arrhythmias and dependent upon nicotine. A variety of nicotine types and concentrations are available in e-cigs, but their relative cardiovascular effects remain unclear. Here we examine how different nicotine forms (racemic, free base, and salt) and concentrations influence e-cig-evoked cardiac dysfunction and arrhythmogenesis and provide a mechanism for nicotine-salt-induced autonomic imbalance. METHODS ECG-telemetered C57BL/6J mice were exposed to filtered air (FA) or e-cig aerosols from propylene glycol and vegetable glycerin solvents either without nicotine (vehicle) or with increasing nicotine concentrations (1%, 2.5%, and 5%) for three 9-minute puff sessions per concentration. Spontaneous ventricular premature beat (VPB) incidence rates, heart rate, and heart rate variability (HRV) were compared between treatments. Subsequently, to test the role of β1-adrenergic activation in e-cig-induced cardiac effects, mice were pretreated with atenolol and exposed to either FA or 2.5% nicotine salt. RESULTS During puffing and washout phases, ≥2.5% racemic nicotine reduced heart rate and increased HRV relative to FA and vehicle controls, indicating parasympathetic dominance. Relative to both controls, 5% nicotine salt elevated heart rate and decreased HRV during washout, suggesting sympathetic dominance, and also increased VPB frequency. Atenolol abolished e-cig-induced elevations in heart rate and declines in HRV during washout, indicating e-cig-evoked sympathetic dominance is mediated by β1-adrenergic stimulation. CONCLUSIONS Our findings suggest that inhalation of e-cig aerosols from nicotine-salt-containing e-liquids could increase the cardiovascular risks of vaping by inducing sympathetic dominance and cardiac arrhythmias. IMPLICATIONS Exposure to e-cig aerosols containing commercially relevant concentrations of nicotine salts may increase nicotine delivery and impair cardiac function by eliciting β1-adrenoceptor-mediated sympathoexcitation and provoking ventricular arrhythmias. If confirmed in humans, our work suggests that regulatory targeting of nicotine salts through minimum pH standards or limits on acid additives in e-liquids may mitigate the public health risks of vaping.
Collapse
Affiliation(s)
- Cory Kucera
- Department of Physiology, University of Louisville School of Medicine (ULSOM), Louisville, KY, USA
- Christina Lee Brown Envirome Institute, ULSOM, Louisville, KY, USA
- American Heart Association Tobacco Regulation and Addiction Center 2.0 (A-TRAC 2.0), ULSOM, Louisville, KY, USA
- Center for Cardiometabolic Science, ULSOM, Louisville, KY, USA
| | - Anand Ramalingam
- Christina Lee Brown Envirome Institute, ULSOM, Louisville, KY, USA
- American Heart Association Tobacco Regulation and Addiction Center 2.0 (A-TRAC 2.0), ULSOM, Louisville, KY, USA
- Center for Cardiometabolic Science, ULSOM, Louisville, KY, USA
| | - Shweta Srivastava
- Christina Lee Brown Envirome Institute, ULSOM, Louisville, KY, USA
- American Heart Association Tobacco Regulation and Addiction Center 2.0 (A-TRAC 2.0), ULSOM, Louisville, KY, USA
- Center for Cardiometabolic Science, ULSOM, Louisville, KY, USA
| | - Aruni Bhatnagar
- Christina Lee Brown Envirome Institute, ULSOM, Louisville, KY, USA
- American Heart Association Tobacco Regulation and Addiction Center 2.0 (A-TRAC 2.0), ULSOM, Louisville, KY, USA
- Center for Cardiometabolic Science, ULSOM, Louisville, KY, USA
- Division of Environmental Medicine, ULSOM, Louisville, KY, USA
- Center for Integrative Environmental Health Sciences, ULSOM, Louisville, KY, USA
| | - Alex P Carll
- Department of Physiology, University of Louisville School of Medicine (ULSOM), Louisville, KY, USA
- Christina Lee Brown Envirome Institute, ULSOM, Louisville, KY, USA
- American Heart Association Tobacco Regulation and Addiction Center 2.0 (A-TRAC 2.0), ULSOM, Louisville, KY, USA
- Center for Cardiometabolic Science, ULSOM, Louisville, KY, USA
- Division of Environmental Medicine, ULSOM, Louisville, KY, USA
- Center for Integrative Environmental Health Sciences, ULSOM, Louisville, KY, USA
| |
Collapse
|
26
|
Tao X, Zhang J, Meng Q, Chu J, Zhao R, Liu Y, Dong Y, Xu H, Tian T, Cui J, Zhang L, Chu M. The potential health effects associated with electronic-cigarette. ENVIRONMENTAL RESEARCH 2024; 245:118056. [PMID: 38157958 DOI: 10.1016/j.envres.2023.118056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 12/17/2023] [Accepted: 12/25/2023] [Indexed: 01/03/2024]
Abstract
A good old gateway theory that electronic-cigarettes (e-cigarettes) are widely recognized as safer tobacco substitutes. In actuality, demographics also show that vaping cannibalizes smoking, the best explanation of the data is the "common liability". However, the utilization of e-cigarette products remains a controversial topic at present. Currently, there has been a widespread and substantial growth in e-cigarette use worldwide owing to their endless new flavors and customizable characteristics. Furthermore, e-cigarette has grown widespread among smokers as well as non-smokers, including adolescents and young adults. And some studies have shown that e-cigarette users are at greater risk to start using combustible cigarettes while e-cigarettes use was also observed the potential benefits to people who want to quit smoking or not. Although it is true that e-cigarettes generally contain fewer toxic substances than combustible cigarettes, this does not mean that the chemical composition in e-cigarettes aerosols poses absolutely no risks. While concerns about toxic substances in e-cigarettes and their widespread use in the population are reasonable, it is also crucial to consider that e-cigarettes have been associated with the potential for promoting smoking cessation and the clinically relevant improvements in users with smoking-related pathologies. Meanwhile, there is still short of understanding of the health impacts associated with e-cigarette use. Therefore, in this review, we discussed the health impacts of e-cigarette exposure on oral, nasal, pulmonary, cardiovascular systems and brain. We aspire for this review to change people's previous perceptions of e-cigarettes and provide them with a more balanced perspective. Additionally, we suggest appropriate adjustments on regulation and policy for e-cigarette to gain greater public health benefits.
Collapse
Affiliation(s)
- Xiaobo Tao
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu, China
| | - Jiale Zhang
- The Second People's Hospital of Nantong, Nantong, Jiangsu, China
| | - Qianyao Meng
- Department of Global Health and Population, School of Public Health, Harvard University, Boston, USA
| | - Junfeng Chu
- Department of Oncology, Jiangdu People's Hospital of Yangzhou, Yangzhou, Jiangsu, China
| | - Rongrong Zhao
- Department of Oncology, Jiangdu People's Hospital of Yangzhou, Yangzhou, Jiangsu, China
| | - Yiran Liu
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu, China
| | - Yang Dong
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu, China
| | - Huiwen Xu
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu, China
| | - Tian Tian
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu, China
| | - Jiahua Cui
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu, China
| | - Lei Zhang
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu, China.
| | - Minjie Chu
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu, China.
| |
Collapse
|
27
|
Dai Y, Yang W, Song H, He X, Guan R, Wu Z, Jiang X, Li M, Liu P, Chen J. Long-term effects of chronic exposure to electronic cigarette aerosol on the cardiovascular and pulmonary system in mice: A comparative study to cigarette smoke. ENVIRONMENT INTERNATIONAL 2024; 185:108521. [PMID: 38508052 DOI: 10.1016/j.envint.2024.108521] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/03/2024] [Accepted: 02/19/2024] [Indexed: 03/22/2024]
Abstract
Electronic cigarettes (e-cigarettes) have rapidly gained popularity as alternatives to traditional combustible cigarettes. However, their long-term health impact remains uncertain. This study aimed to investigate the effects of chronic exposure to e-cigarette aerosol (ECA) in mice compared to conventional cigarette smoke (CS) exposure. The mice were exposed to air (control), low, medium, or high doses of ECA, or a reference CS dose orally and nasally for eight months. Various cardiovascular and pulmonary assessments have been conducted to determine the biological and prosthetic effects. Histopathological analysis was used to determine structural changes in the heart and lungs. Biological markers associated with fibrosis, inflammation, and oxidative stress were investigated. Cardiac proteomic analysis was applied to reveal the shared and unique protein expression changes in ECA and CS groups, which related to processes such as immune activation, lipid metabolism, and intracellular transport. Overall, chronic exposure to ECA led to adverse cardiovascular and pulmonary effects in mice, although they were less pronounced than those of CS exposure. This study provides evidence that e-cigarettes may be less harmful than combustible cigarettes for the long-term health of the cardiovascular and respiratory systems in mice. However, further human studies are needed to clarify the long-term health risks associated with e-cigarette use.
Collapse
Affiliation(s)
- Yuxing Dai
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Wanchun Yang
- Jieyang Medical Research Center, Jieyang People's Hospital, Jieyang, Guangdong, China
| | - Hongjia Song
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xiangjun He
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Ruoqing Guan
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Zehong Wu
- RELX Science Center, Shenzhen RELX Tech. Co. Ltd., Shenzhen 518101, China
| | - Xingtao Jiang
- RELX Science Center, Shenzhen RELX Tech. Co. Ltd., Shenzhen 518101, China
| | - Min Li
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China; National and Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Guangdong Engineering Laboratory of Druggability and New Drug Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Peiqing Liu
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China; National and Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Guangdong Engineering Laboratory of Druggability and New Drug Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Jianwen Chen
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China; National and Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Guangdong Engineering Laboratory of Druggability and New Drug Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
28
|
Sheth P, Mehta F, Jangid G, Anamika FNU, Singh B, Kanagala SG, Jain R. The Rising Use of E-Cigarettes: Unveiling the Health Risks and Controversies. Cardiol Rev 2024:00045415-990000000-00217. [PMID: 38385663 DOI: 10.1097/crd.0000000000000666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
The use of e-cigarettes has tremendously increased in recent times due to the widespread availability of e-cigarettes in diverse flavors, reduced cost compared to regular cigarettes, and misconception of being comparatively safe, which have led to around 2.55 million US middle and high school students smoking e-cigarettes. These devices use a nicotine-rich liquid, which is aerosolized electronically, producing vapors that may also include hazardous chemicals and heavy metals. E-cigarettes are associated with e-cigarette or vaping-associated lung injury, which presents as an acute respiratory ailment mirroring various pulmonary diseases. Additionally, it causes endothelial dysfunction, alters blood lipid profile by elevating circulating levels of low-density lipoprotein cholesterol, increases sympathetic tone, and is found to correlate with arterial stiffening, hence negatively affecting respiratory, cardiovascular, and overall health. We aim to provide a comprehensive analysis of the data on e-cigarettes and their harmful effects on health in comparison to conventional cigarette use by highlighting the pathophysiology of e-cigarette-induced adverse effects and critically analyzing the data both in favor and against its use. Our review concludes that no matter how much nicotine an e-cigarette contains, evidence shows that using it increases the risk of cardiovascular disease, albeit maybe not as much as smoking regular tobacco. Nonetheless, it is crucial to note that the long-term effects of e-cigarette usage are still not fully understood, and existing data have provided opposing viewpoints.
Collapse
Affiliation(s)
- Parth Sheth
- From the Internal Medicine, Smt. NHL Municipal Medical College, Ahmedabad, India
| | - Fena Mehta
- From the Internal Medicine, Smt. NHL Municipal Medical College, Ahmedabad, India
| | - Gurusha Jangid
- Internal Medicine, Dr. Sampurnanand Medical College, Jodhpur, India
| | - F N U Anamika
- Internal Medicine, University College of Medical Sciences, New Delhi, India
| | - Bhupinder Singh
- Internal Medicine, Government Medical College, Amritsar, Punjab, India
| | | | - Rohit Jain
- Internal Medicine, Penn State Hershey Medical Center, Hershey, PA
| |
Collapse
|
29
|
Nguyen R, Ruedisueli I, Lakhani K, Ma J, Middlekauff HR. Acute cardiovascular effects of 4th generation electronic cigarettes and combusted cigarettes: implications for harm reduction. J Appl Physiol (1985) 2024; 136:440-449. [PMID: 38205548 PMCID: PMC11219004 DOI: 10.1152/japplphysiol.00067.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 12/05/2023] [Accepted: 12/23/2023] [Indexed: 01/12/2024] Open
Abstract
The health consequences associated with using electronic cigarettes (ECs) are of great public interest because of their potential role in smoking cessation. In 110 participants, including 41 nonusers, 34 people who exclusively use ECs (EC group), and 35 people who smoke tobacco cigarettes (TCs) including 12 dual users (collectively called the TC-D group), the heart rate (HR), blood pressure (BP), and heart rate variability (HRV) were compared at baseline. People in the EC or the TC-D groups were also compared after using a 4th generation EC with or without nicotine, a TC with or without nicotine (TC-D group only), and a straw-control. Baseline HR, BP, and HRV parameters were not different among the EC, the TC-D, and nonuser groups. In people who exclusively use ECs, acute nicotine-EC use increased HR and BP, and produced changes in HRV patterns suggestive of increased cardiac sympathetic influence. In people in the TC-D group, BP increased similarly after acutely smoking a nicotine-TC or a nicotine-EC. However, the increase in HR was significantly greater after smoking a TC compared with the nicotine-EC despite similar acute increases in plasma nicotine. Overall, all exposures containing nicotine significantly increased HR and BP in both cohorts when compared with non-nicotine exposures. Since acute EC use 1) produces an abnormal HRV pattern associated with increased cardiac sympathetic tone in people who chronically use ECs, and 2) similar hemodynamic increases compared with acute TC smoking in people who chronically smoke TCs including dual users, the role of ECs as part of a harm reduction strategy is questioned.NEW & NOTEWORTHY We found that nicotine, not the non-nicotine constituents in tobacco cigarette (TC) or electronic cigarette (EC) emissions, may be the instigator of the acute, potentially adverse, changes in hemodynamics and heart rate variability (HRV) that were recorded several minutes after tobacco product use. Furthermore, acute EC use produced an abnormal HRV pattern associated with increased cardiac risk in people who chronically smoke ECs and produced similar hemodynamic increases compared with acute TC use in people who chronically smoke TCs, including people who are dual users.
Collapse
Affiliation(s)
- Randy Nguyen
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, United States
| | - Isabelle Ruedisueli
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, United States
| | - Karishma Lakhani
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, United States
| | - Joyce Ma
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, United States
| | - Holly R Middlekauff
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, United States
| |
Collapse
|
30
|
Dorotheo EU, Arora M, Banerjee A, Bianco E, Cheah NP, Dalmau R, Eissenberg T, Hasegawa K, Naidoo P, Nazir NT, Newby LK, Obeidat N, Skipalskyi A, Stępińska J, Willett J, Wang Y. Nicotine and Cardiovascular Health: When Poison is Addictive - a WHF Policy Brief. Glob Heart 2024; 19:14. [PMID: 38312998 PMCID: PMC10836189 DOI: 10.5334/gh.1292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 12/28/2023] [Indexed: 02/06/2024] Open
Abstract
Nicotine is universally recognized as the primary addictive substance fuelling the continued use of tobacco products, which are responsible for over 8 million deaths annually. In recent years, the popularity of newer recreational nicotine products has surged drastically in many countries, raising health and safety concerns. For decades, the tobacco industry has promoted the myth that nicotine is as harmless as caffeine. Nonetheless, evidence shows that nicotine is far from innocuous, even on its own. In fact, numerous studies have demonstrated that nicotine can harm multiple organs, including the respiratory and cardiovascular systems. Tobacco and recreational nicotine products are commercialized in various types and forms, delivering varying levels of nicotine along with other toxic compounds. These products deliver nicotine in profiles that can initiate and perpetuate addiction, especially in young populations. Notably, some electronic nicotine delivery systems (ENDS) and heated tobacco products (HTP) can deliver concentrations of nicotine that are comparable to those of traditional cigarettes. Despite being regularly advertised as such, ENDS and HTP have demonstrated limited effectiveness as tobacco cessation aids in real-world settings. Furthermore, ENDS have also been associated with an increased risk of cardiovascular disease. In contrast, nicotine replacement therapies (NRT) are proven to be safe and effective medications for tobacco cessation. NRTs are designed to release nicotine in a slow and controlled manner, thereby minimizing the potential for abuse. Moreover, the long-term safety of NRTs has been extensively studied and documented. The vast majority of tobacco and nicotine products available in the market currently contain nicotine derived from tobacco leaves. However, advancements in the chemical synthesis of nicotine have introduced an economically viable alternative source. The tobacco industry has been exploiting synthetic nicotine to circumvent existing tobacco control laws and regulations. The emergence of newer tobacco and recreational nicotine products, along with synthetic nicotine, pose a tangible threat to established tobacco control policies. Nicotine regulations need to be responsive to address these evolving challenges. As such, governments should regulate all tobacco and non-medical nicotine products through a global, comprehensive, and consistent approach in order to safeguard tobacco control progress in past decades.
Collapse
Affiliation(s)
| | | | - Amitava Banerjee
- University College London, United Kingdom
- Amrita Institute of Medical Sciences, India
| | | | | | | | | | - Koji Hasegawa
- National Hospital Organization Kyoto Medical Center, Japan
| | - Pamela Naidoo
- Heart and Stroke Foundation South Africa, South Africa
- University of the Western Cape, South Africa
| | | | | | | | | | - Janina Stępińska
- Department of Medical Communication, School of Public Health, Centre of Postgraduate Medical Education, Warsaw, Poland
| | | | | |
Collapse
|
31
|
Hofmann JJ, Poulos VC, Zhou J, Sharma M, Parraga G, McIntosh MJ. Review of quantitative and functional lung imaging evidence of vaping-related lung injury. Front Med (Lausanne) 2024; 11:1285361. [PMID: 38327710 PMCID: PMC10847544 DOI: 10.3389/fmed.2024.1285361] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 01/08/2024] [Indexed: 02/09/2024] Open
Abstract
Introduction The pulmonary effects of e-cigarette use (or vaping) became a healthcare concern in 2019, following the rapid increase of e-cigarette-related or vaping-associated lung injury (EVALI) in young people, which resulted in the critical care admission of thousands of teenagers and young adults. Pulmonary functional imaging is well-positioned to provide information about the acute and chronic effects of vaping. We generated a systematic review to retrieve relevant imaging studies that describe the acute and chronic imaging findings that underly vaping-related lung structure-function abnormalities. Methods A systematic review was undertaken on June 13th, 2023 using PubMed to search for published manuscripts using the following criteria: [("Vaping" OR "e-cigarette" OR "EVALI") AND ("MRI" OR "CT" OR "Imaging")]. We included only studies involving human participants, vaping/e-cigarette use, and MRI, CT and/or PET. Results The search identified 445 manuscripts, of which 110 (668 unique participants) specifically mentioned MRI, PET or CT imaging in cases or retrospective case series of patients who vaped. This included 105 manuscripts specific to CT (626 participants), three manuscripts which mainly used MRI (23 participants), and two manuscripts which described PET findings (20 participants). Most studies were conducted in North America (n = 90), with the remaining studies conducted in Europe (n = 15), Asia (n = 4) and South America (n = 1). The vast majority of publications described case studies (n = 93) and a few described larger retrospective or prospective studies (n = 17). In e-cigarette users and patients with EVALI, key CT findings included ground-glass opacities, consolidations and subpleural sparing, MRI revealed abnormal ventilation, perfusion and ventilation/perfusion matching, while PET showed evidence of pulmonary inflammation. Discussion and conclusion Pulmonary structural and functional imaging abnormalities were common in patients with EVALI and in e-cigarette users with or without respiratory symptoms, which suggests that functional MRI may be helpful in the investigation of the pulmonary health effects associated with e-cigarette use.
Collapse
Affiliation(s)
| | | | - Jiahai Zhou
- Robarts Research Institute, London, ON, Canada
| | - Maksym Sharma
- Robarts Research Institute, London, ON, Canada
- Department of Medical Biophysics, London, ON, Canada
| | - Grace Parraga
- Robarts Research Institute, London, ON, Canada
- Department of Medical Biophysics, London, ON, Canada
- Department of Medical Imaging, Western University, London, ON, Canada
| | - Marrissa J. McIntosh
- Robarts Research Institute, London, ON, Canada
- Department of Medical Biophysics, London, ON, Canada
| |
Collapse
|
32
|
López-Ojeda W, Hurley RA. Vaping and the Brain: Effects of Electronic Cigarettes and E-Liquid Substances. J Neuropsychiatry Clin Neurosci 2024; 36:A41-5. [PMID: 38226910 DOI: 10.1176/appi.neuropsych.20230184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Affiliation(s)
- Wilfredo López-Ojeda
- Veterans Affairs Mid-Atlantic Mental Illness Research, Education and Clinical Center (MIRECC) and Research and Academic Affairs Service Line, W.G. Hefner Veterans Affairs Medical Center, Salisbury, N.C. (López-Ojeda, Hurley); Department of Psychiatry and Behavioral Medicine (López-Ojeda, Hurley) and Department of Radiology (Hurley), Wake Forest University School of Medicine, Winston-Salem, N.C.; Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston (Hurley)
| | - Robin A Hurley
- Veterans Affairs Mid-Atlantic Mental Illness Research, Education and Clinical Center (MIRECC) and Research and Academic Affairs Service Line, W.G. Hefner Veterans Affairs Medical Center, Salisbury, N.C. (López-Ojeda, Hurley); Department of Psychiatry and Behavioral Medicine (López-Ojeda, Hurley) and Department of Radiology (Hurley), Wake Forest University School of Medicine, Winston-Salem, N.C.; Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston (Hurley)
| |
Collapse
|
33
|
Ebrahimi Kalan M, Lazard AJ, Sheldon JM, Whitesell C, Hall MG, Ribisl KM, Brewer NT. Terms tobacco users employ to describe e-cigarette aerosol. Tob Control 2023; 33:15-20. [PMID: 35728932 PMCID: PMC9768092 DOI: 10.1136/tobaccocontrol-2021-057233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 06/02/2022] [Indexed: 11/04/2022]
Abstract
BACKGROUND The scientific term for the substance people inhale and exhale from a vaping device is 'aerosol', but whether the public uses this term is unclear. To inform tobacco control communication efforts, we sought to understand what tobacco users call e-cigarette aerosols. METHODS Participants were a national convenience sample of 1628 US adults who used e-cigarettes, cigarettes or both (dual users). In an online survey, conducted in spring 2021, participants described what 'people inhale and exhale when they vape', using an open-ended and then a closed-ended response scale. Participants then evaluated warning statements, randomly assigned to contain the term 'aerosol' or 'vapor' (eg, 'E-cigarette aerosol/vapor contains nicotine, which can lead to seizures'). RESULTS In open-ended responses, tobacco users most commonly provided the terms 'vapor' (31%) and 'smoke' (23%) but rarely 'aerosol' (<1%). In closed-ended responses, the most commonly endorsed terms were again 'vapor' (57%) and 'smoke' (22%) but again infrequently 'aerosol' (2%). In closed-ended responses, use of the term 'vapor' was more common than other terms among people who were older; white; gay, lesbian or bisexual; college educated; or vape users only (all p<0.05). In the experiment, warnings using the terms 'aerosol' and 'vapor' were equally effective (all p>0.05). CONCLUSIONS The public rarely uses the term 'aerosol' to describe e-cigarette output, potentially complicating educational efforts that use the term. Future studies should explore public knowledge and understanding of the terms 'aerosol' and the more popular 'vapor' to better inform vaping risk communication.
Collapse
Affiliation(s)
- Mohammad Ebrahimi Kalan
- Department of Health Behavior, University of North Carolina, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Allison J Lazard
- Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
- School of Media and Journalism, University of North Carolina, Chapel Hill, NC, USA
| | | | - Callie Whitesell
- Department of Health Behavior, University of North Carolina, Chapel Hill, NC, USA
| | - Marissa G Hall
- Department of Health Behavior, University of North Carolina, Chapel Hill, NC, USA
| | - Kurt M Ribisl
- Department of Health Behavior, University of North Carolina, Chapel Hill, NC, USA
| | - Noel T Brewer
- Department of Health Behavior, University of North Carolina, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
34
|
McCaughey CJ, Murphy G, Jones J, Mirza KB, Hensey M. Safety and efficacy of e-cigarettes in those with atherosclerotic disease: a review. Open Heart 2023; 10:e002341. [PMID: 38065586 PMCID: PMC10711928 DOI: 10.1136/openhrt-2023-002341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 10/11/2023] [Indexed: 12/18/2023] Open
Abstract
Smoking cessation is the most effective intervention to reduce mortality in patients with established atherosclerotic cardiovascular disease (ASCVD), with 'e-cigarettes' becoming an increasingly used intervention to achieve smoking cessation. The current review aims to summarise the current evidence base for their efficacy and safety in the ASCVD cohort. A search of the PUBMED and MEDLINE databases using the terms 'e-cigarette', 'cessation', 'safety' and 'efficacy' since 2012 yielded 706 results. Both observational and experimental studies were included, while those with an unavailable full text, non-English or duplicates were excluded, yielding 78 relevant articles, with 13 subsequent additional articles included from a search of reference lists, for a total of 91 included papers. E-cigarette vapour contains many known pro-atherosclerotic substances and has been demonstrated to potentiate traditional atherosclerotic mechanisms. While e-cigarettes may be more effective in promoting smoking cessation in the general population over a medium term (>6 months), when compared with nicotine replacement therapy (NRT), few studies specifically examined those with ASCVD, despite the latter having a higher baseline quit rate (52% vs 2%). Most studies compare e-cigarettes with NRT alone and do not include pharmacotherapy, which may be more effective in the ASCVD cohort. The single randomised controlled trial addressing the research question favoured traditional methods. Those that successfully quit smoking using e-cigarettes are more likely to continue to use the intervention at 1 year (90% vs 9%). Conflicting advice exists regarding the utilisation of e-cigarettes for smoking cessation. E-cigarettes may be inferior to standard care for smoking cessation in those with ASCVD, and their use is likely to promote the key drivers of the atherosclerotic process already active in this cohort.
Collapse
Affiliation(s)
| | - Greg Murphy
- Cardiology, St James Hospital, Dublin, Ireland
| | - Jennifer Jones
- National Institute of Preventive Cardiology, National University of Ireland Galway, Galway, Ireland
| | | | - Mark Hensey
- Cardiology, St James Hospital, Dublin, Ireland
| |
Collapse
|
35
|
Halstead KM, Wetzel EM, Cho JL, Stanhewicz AE. Sex Differences in Oxidative Stress-Mediated Reductions in Microvascular Endothelial Function in Young Adult e-Cigarette Users. Hypertension 2023; 80:2641-2649. [PMID: 37800370 PMCID: PMC10848654 DOI: 10.1161/hypertensionaha.123.21684] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 09/19/2023] [Indexed: 10/07/2023]
Abstract
BACKGROUND Chronic electronic-cigarette (EC) use is reported to decrease vascular endothelial function. However, the mechanism(s) mediating this reduction remain unclear. In this study, we examined endothelium- and NO-dependent dilation, and the role of oxidative stress in attenuating these responses, in healthy young EC users (n=20, 10 males/10 females) compared with healthy controls (n=20, 10 males/10 females). We hypothesized that EC would have reduced endothelium- and NO-dependent dilation and administration of the superoxide scavenger tempol would increase these responses in EC. We further hypothesized that female EC would have the greatest reductions in endothelium- and NO-dependent dilation. METHODS We assessed microvascular endothelium-dependent vasodilator function in vivo by measurement of cutaneous vascular conductance (%CVCmax) responses to a standardized local heating protocol in control and 10 μM tempol-treated sites. After full expression of the local heating response, 15 mM NG-nitro-L-arginine methyl ester (NO synthase inhibition) was perfused. RESULTS EC had significantly reduced endothelium- (73±15 versus 87±9%CVCmax; P<0.001) and NO-dependent (48±17% versus 62±15%; P=0.011) dilation. Tempol perfusion increased endothelium-dependent (84±12%CVCmax P=0.01) and NO-dependent (63±14% P=0.005) dilation in EC but had no effect in healthy control. Within female sex, EC had lower endothelium-dependent (71±13 versus 89±7%CVCmax; P=0.002) and NO-dependent (50±6 versus 69±11%; P=0.005) dilation compared with healthy control, and tempol augmented endothelium-dependent (83±13%CVCmax; P=0.002) and NO-dependent (62±13%; P=0.015) dilation. There were no group or treatment differences within male sex. CONCLUSION Healthy young adult EC users have reduced microvascular endothelium-dependent and NO-dependent dilation, driven by greater reductions in female EC users, and mediated in part by superoxide.
Collapse
Affiliation(s)
- Kristen M Halstead
- Department of Health and Human Physiology, The University of Iowa, Iowa City, IA (K.M.H., E.M.W., A.E.S.)
| | - Elizabeth M Wetzel
- Department of Health and Human Physiology, The University of Iowa, Iowa City, IA (K.M.H., E.M.W., A.E.S.)
| | - Josalyn L Cho
- Department of Internal Medicine, Carver College of Medicine, Iowa City, IA (J.L.C.)
| | - Anna E Stanhewicz
- Department of Health and Human Physiology, The University of Iowa, Iowa City, IA (K.M.H., E.M.W., A.E.S.)
| |
Collapse
|
36
|
Guevara A, Smith CER, Caldwell JL, Ngo L, Mott LR, Lee IJ, Tapa I, Wang Z, Wang L, Woodward WR, Ng GA, Habecker BA, Ripplinger CM. Chronic nicotine exposure is associated with electrophysiological and sympathetic remodeling in the intact rabbit heart. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.23.567754. [PMID: 38045290 PMCID: PMC10690259 DOI: 10.1101/2023.11.23.567754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Nicotine is the primary addictive component in tobacco products. Through its actions on the heart and autonomic nervous system, nicotine exposure is associated with electrophysiological changes and increased arrhythmia susceptibility. However, the underlying mechanisms are unclear. To address this, we treated rabbits with transdermal nicotine (NIC, 21 mg/day) or control (CT) patches for 28 days prior to performing dual optical mapping of transmembrane potential (RH237) and intracellular Ca 2+ (Rhod-2 AM) in isolated hearts with intact sympathetic innervation. Sympathetic nerve stimulation (SNS) was performed at the 1 st - 3 rd thoracic vertebrae, and β-adrenergic responsiveness was additionally evaluated as changes in heart rate (HR) following norepinephrine (NE) perfusion. Baseline ex vivo HR and SNS stimulation threshold were increased in NIC vs. CT ( P = 0.004 and P = 0.003 respectively). Action potential duration alternans emerged at longer pacing cycle lengths (PCL) in NIC vs. CT at baseline ( P = 0.002) and during SNS ( P = 0.0003), with similar results obtained for Ca 2+ transient alternans. SNS reduced the PCL at which alternans emerged in CT but not NIC hearts. NIC exposed hearts also tended to have slower and reduced HR responses to NE perfusion. While fibrosis was unaltered, NIC hearts had lower sympathetic nerve density ( P = 0.03) but no difference in NE content vs. CT. These results suggest both sympathetic hypo-innervation of the myocardium and diminished β-adrenergic responsiveness with NIC. This autonomic remodeling may underlie the increased risk of arrhythmias associated with nicotine exposure, which may be further exacerbated with continued long-term usage. NEW & NOTEWORTHY Here we show that chronic nicotine exposure was associated with increased heart rate, lower threshold for alternans and reduced sympathetic electrophysiological responses in the intact rabbit heart. We suggest that this was due to the sympathetic hypo-innervation of the myocardium and diminished β- adrenergic responsiveness observed following nicotine treatment. Though these differences did not result in increased arrhythmia propensity in our study, we hypothesize that prolonged nicotine exposure may exacerbate this pro-arrhythmic remodeling.
Collapse
|
37
|
Espinoza-Derout J, Arambulo JML, Ramirez-Trillo W, Rivera JC, Hasan KM, Lao CJ, Jordan MC, Shao XM, Roos KP, Sinha-Hikim AP, Friedman TC. The lipolysis inhibitor acipimox reverses the cardiac phenotype induced by electronic cigarettes. Sci Rep 2023; 13:18239. [PMID: 37880325 PMCID: PMC10600141 DOI: 10.1038/s41598-023-44082-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 10/03/2023] [Indexed: 10/27/2023] Open
Abstract
Electronic cigarettes (e-cigarettes) are a prevalent alternative to conventional nicotine cigarettes among smokers and people who have never smoked. Increased concentrations of serum free fatty acids (FFAs) are crucial in generating lipotoxicity. We studied the effects of acipimox, an antilipolytic drug, on e-cigarette-induced cardiac dysfunction. C57BL/6J wild-type mice on high fat diet were treated with saline, e-cigarette with 2.4% nicotine [e-cigarette (2.4%)], and e-cigarette (2.4%) plus acipimox for 12 weeks. Fractional shortening and ejection fraction were diminished in mice exposed to e-cigarettes (2.4%) compared with saline and acipimox-treated mice. Mice exposed to e-cigarette (2.4%) had increased circulating levels of inflammatory cytokines and FFAs, which were diminished by acipimox. Gene Set Enrichment Analysis revealed that e-cigarette (2.4%)-treated mice had gene expression changes in the G2/M DNA damage checkpoint pathway that was normalized by acipimox. Accordingly, we showed that acipimox suppressed the nuclear localization of phospho-p53 induced by e-cigarette (2.4%). Additionally, e-cigarette (2.4%) increased the apurinic/apyrimidinic sites, a marker of oxidative DNA damage which was normalized by acipimox. Mice exposed to e-cigarette (2.4%) had increased cardiac Heme oxygenase 1 protein levels and 4-hydroxynonenal (4-HNE). These markers of oxidative stress were decreased by acipimox. Therefore, inhibiting lipolysis with acipimox normalizes the physiological changes induced by e-cigarettes and the associated increase in inflammatory cytokines, oxidative stress, and DNA damage.
Collapse
Affiliation(s)
- Jorge Espinoza-Derout
- Division of Endocrinology, Metabolism and Molecular Medicine, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, 1731 E. 120th Street, Los Angeles, CA, 90059, USA.
- Departments of Physiology, Medicine, and Neurobiology, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| | - Jose Mari Luis Arambulo
- Division of Endocrinology, Metabolism and Molecular Medicine, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, 1731 E. 120th Street, Los Angeles, CA, 90059, USA
| | - William Ramirez-Trillo
- Division of Endocrinology, Metabolism and Molecular Medicine, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, 1731 E. 120th Street, Los Angeles, CA, 90059, USA
| | - Juan Carlos Rivera
- Division of Endocrinology, Metabolism and Molecular Medicine, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, 1731 E. 120th Street, Los Angeles, CA, 90059, USA
| | - Kamrul M Hasan
- Division of Endocrinology, Metabolism and Molecular Medicine, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, 1731 E. 120th Street, Los Angeles, CA, 90059, USA
- Departments of Physiology, Medicine, and Neurobiology, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Candice J Lao
- Division of Endocrinology, Metabolism and Molecular Medicine, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, 1731 E. 120th Street, Los Angeles, CA, 90059, USA
- Departments of Physiology, Medicine, and Neurobiology, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Maria C Jordan
- Departments of Physiology, Medicine, and Neurobiology, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Xuesi M Shao
- Division of Endocrinology, Metabolism and Molecular Medicine, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, 1731 E. 120th Street, Los Angeles, CA, 90059, USA
- Departments of Physiology, Medicine, and Neurobiology, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Kenneth P Roos
- Departments of Physiology, Medicine, and Neurobiology, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Amiya P Sinha-Hikim
- Division of Endocrinology, Metabolism and Molecular Medicine, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, 1731 E. 120th Street, Los Angeles, CA, 90059, USA
- Departments of Physiology, Medicine, and Neurobiology, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Theodore C Friedman
- Division of Endocrinology, Metabolism and Molecular Medicine, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, 1731 E. 120th Street, Los Angeles, CA, 90059, USA
- Departments of Physiology, Medicine, and Neurobiology, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, 90095, USA
| |
Collapse
|
38
|
Jones CA, Wallace MJ, Bandaru P, Woodbury ED, Mohler PJ, Wold LE. E-cigarettes and arrhythmogenesis: a comprehensive review of pre-clinical studies and their clinical implications. Cardiovasc Res 2023; 119:2157-2164. [PMID: 37517059 PMCID: PMC10578912 DOI: 10.1093/cvr/cvad113] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 06/21/2023] [Accepted: 06/29/2023] [Indexed: 08/01/2023] Open
Abstract
Electronic cigarette use has grown exponentially in recent years, and while their popularity has increased, the long-term effects on the heart are yet to be fully studied and understood. Originally designed as devices to assist with those trying to quit traditional combustible cigarette use, their popularity has attracted use by teens and adolescents who traditionally have not smoked combustible cigarettes. Acute effects on the heart have been shown to be similar to traditional combustible cigarettes, including increased heart rate and blood pressure. The main components of electronic cigarettes that contribute to these arrhythmic effects are found in the e-liquid that is aerosolized and inhaled, comprised of nicotine, flavourings, and a combination of vegetable glycerin (VG) and propylene glycol (PG). Nicotine can potentially induce both ventricular and atrial arrhythmogenesis, with both the atrial and ventricular effects resulting from the interactions of nicotine and the catecholamines they release via potassium channels. Atrial arrhythmogenesis, more specifically atrial fibrillation, can also occur due to structural alterations, which happens because of nicotine downregulating microRNAs 133 and 590, both post-transcriptional growth factor repressors. Liquid flavourings and the combination of PG and VG can possibly lead to arrhythmic events by exposing users to acrolein, an aldehyde that stimulates TRPA1 that in turn causes a change towards sympathetic activation and autonomic imbalance. The design of these electronic delivery devices is constantly changing; therefore, it has proven extremely difficult to study the long-term effects on the heart caused by electronic cigarettes but will be important to understand given their rising popularity. The arrhythmic effects of electronic cigarettes appear similar to traditional cigarettes as well; however, a comprehensive review has not been compiled and is the focus of this article.
Collapse
Affiliation(s)
- Carson A Jones
- Dorothy M. Davis Heart and Lung Research Institute, Wexner Medical Center, The Ohio State University, 473 W 12th Avenue, Columbus, OH 43210, USA
| | - Michael J Wallace
- Dorothy M. Davis Heart and Lung Research Institute, Wexner Medical Center, The Ohio State University, 473 W 12th Avenue, Columbus, OH 43210, USA
| | - Priya Bandaru
- Dorothy M. Davis Heart and Lung Research Institute, Wexner Medical Center, The Ohio State University, 473 W 12th Avenue, Columbus, OH 43210, USA
| | - Emerson D Woodbury
- Dorothy M. Davis Heart and Lung Research Institute, Wexner Medical Center, The Ohio State University, 473 W 12th Avenue, Columbus, OH 43210, USA
| | - Peter J Mohler
- Dorothy M. Davis Heart and Lung Research Institute, Wexner Medical Center, The Ohio State University, 473 W 12th Avenue, Columbus, OH 43210, USA
- Department of Internal Medicine, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | - Loren E Wold
- Dorothy M. Davis Heart and Lung Research Institute, Wexner Medical Center, The Ohio State University, 473 W 12th Avenue, Columbus, OH 43210, USA
- Division of Cardiac Surgery, Department of Surgery, Wexner Medical Center, The Ohio State University, 473 W 12th Avenue, Room 603, Columbus, OH 43210, USA
| |
Collapse
|
39
|
Kelesidis T, Sharma M, Sharma E, Ruedisueli I, Tran E, Middlekauff HR. Chronic Electronic Cigarette Use and Atherosclerosis Risk in Young People: A Cross-Sectional Study-Brief Report. Arterioscler Thromb Vasc Biol 2023; 43:1713-1718. [PMID: 37409529 PMCID: PMC10527452 DOI: 10.1161/atvbaha.123.319172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 06/12/2023] [Indexed: 07/07/2023]
Abstract
BACKGROUND Little is known whether electronic cigarettes (ECIG) increase vulnerability to future atherosclerotic cardiovascular disease. We determined, using an ex vivo mechanistic atherogenesis assay, whether proatherogenic changes including monocyte transendothelial migration and monocyte-derived foam cell formation are increased in people who use ECIGs. METHODS In a cross-sectional single-center study using plasma and peripheral blood mononuclear cells from healthy participants who are nonsmokers or with exclusive use of ECIGs or tobacco cigarettes (TCIGs), autologous peripheral blood mononuclear cells with patient plasma and pooled peripheral blood mononuclear cells from healthy nonsmokers with patient plasma were utilized to dissect patient-specific ex vivo proatherogenic circulating factors present in plasma and cellular factors present in monocytes. Our main outcomes were monocyte transendothelial migration (% of blood monocyte cells that undergo transendothelial migration through a collagen gel) and monocyte-derived foam cell formation as determined by flow cytometry and the median fluorescence intensity of the lipid-staining fluorochrome BODIPY in monocytes of participants in the setting of an ex vivo model of atherogenesis. RESULTS Study participants (N=60) had median age of 24.0 years (interquartile range [IQR], 22.0-25.0 years), and 31 were females. Monocyte transendothelial migration was increased in people who exclusively used TCIGs (n=18; median [IQR], 2.30 [ 1.29-2.82]; P<0.001) and in people who exclusively used ECIGs (n=21; median [IQR], 1.42 [ 0.96-1.91]; P<0.01) compared with nonsmoking controls (n=21; median [IQR], 1.05 [0.66-1.24]). Monocyte-derived foam cell formation was increased in people who exclusively used TCIGs (median [IQR], 2.01 [ 1.59-2.49]; P<0.001) and in people who exclusively used ECIGs (median [IQR], 1.54 [ 1.10-1.86]; P<0.001) compared with nonsmoker controls (median [IQR], 0.97 [0.86-1.22]). Both monocyte transendothelial migration and monocyte-derived foam cell formation were higher in TCIG smokers compared with ECIG users and in ECIG users who were former smokers versus ECIG users who were never smokers (P<0.05 for all comparisons). CONCLUSIONS The finding of alterations in proatherogenic properties of blood monocytes and plasma in TCIG smokers compared with nonsmokers validates this assay as a strong ex vivo mechanistic tool with which to measure proatherogenic changes in people who use ECIGs. Similar yet significantly less severe alterations in proatherogenic properties of monocytes and plasma were detected in the blood from ECIG users. Future studies are necessary to determine whether these findings are attributable to a residual effect of prior smoking or are a direct effect of current ECIG use.
Collapse
Affiliation(s)
- Theodoros Kelesidis
- Department of Medicine, Division of Infectious Disease, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Madhav Sharma
- Department of Medicine, Division of Infectious Disease, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Eashan Sharma
- Department of Medicine, Division of Infectious Disease, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Isabelle Ruedisueli
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Elizabeth Tran
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Holly R. Middlekauff
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, California
| |
Collapse
|
40
|
Rose JJ, Krishnan-Sarin S, Exil VJ, Hamburg NM, Fetterman JL, Ichinose F, Perez-Pinzon MA, Rezk-Hanna M, Williamson E. Cardiopulmonary Impact of Electronic Cigarettes and Vaping Products: A Scientific Statement From the American Heart Association. Circulation 2023; 148:703-728. [PMID: 37458106 DOI: 10.1161/cir.0000000000001160] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Vaping and electronic cigarette (e-cigarette) use have grown exponentially in the past decade, particularly among youth and young adults. Cigarette smoking is a risk factor for both cardiovascular and pulmonary disease. Because of their more limited ingredients and the absence of combustion, e-cigarettes and vaping products are often touted as safer alternative and potential tobacco-cessation products. The outbreak of e-cigarette or vaping product use-associated lung injury in the United States in 2019, which led to >2800 hospitalizations, highlighted the risks of e-cigarettes and vaping products. Currently, all e-cigarettes are regulated as tobacco products and thus do not undergo the premarket animal and human safety studies required of a drug product or medical device. Because youth prevalence of e-cigarette and vaping product use was as high as 27.5% in high school students in 2019 in the United States, it is critical to assess the short-term and long-term health effects of these products, as well as the development of interventional and public health efforts to reduce youth use. The objectives of this scientific statement are (1) to describe and discuss e-cigarettes and vaping products use patterns among youth and adults; (2) to identify harmful and potentially harmful constituents in vaping aerosols; (3) to critically assess the molecular, animal, and clinical evidence on the acute and chronic cardiovascular and pulmonary risks of e-cigarette and vaping products use; (4) to describe the current evidence of e-cigarettes and vaping products as potential tobacco-cessation products; and (5) to summarize current public health and regulatory efforts of e-cigarettes and vaping products. It is timely, therefore, to review the short-term and especially the long-term implications of e-cigarettes and vaping products on cardiopulmonary health. Early molecular and clinical evidence suggests various acute physiological effects from electronic nicotine delivery systems, particularly those containing nicotine. Additional clinical and animal-exposure model research is critically needed as the use of these products continues to grow.
Collapse
|
41
|
Boakye E, Uddin SMI, Osuji N, Meinert J, Obisesan OH, Mirbolouk M, Tasdighi E, El-Shahawy O, Erhabor J, Osei AD, Rajan T, Patatanian M, Holbrook JT, Bhatnagar A, Biswal SS, Blaha MJ. Examining the association of habitual e-cigarette use with inflammation and endothelial dysfunction in young adults: The VAPORS-Endothelial function study. Tob Induc Dis 2023; 21:75. [PMID: 37305426 PMCID: PMC10257221 DOI: 10.18332/tid/162327] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/15/2023] [Accepted: 03/18/2023] [Indexed: 06/13/2023] Open
Abstract
INTRODUCTION Acute exposure to e-cigarette aerosol has been shown to have potentially deleterious effects on the cardiovascular system. However, the cardiovascular effects of habitual e-cigarette use have not been fully elucidated. Therefore, we aimed to assess the association of habitual e-cigarette use with endothelial dysfunction and inflammation - subclinical markers known to be associated with increased cardiovascular risk. METHODS In this cross-sectional study, we analyzed data from 46 participants (23 exclusive e-cigarette users; 23 non-users) enrolled in the VAPORS-Endothelial function study. E-cigarette users had used e-cigarettes for ≥6 consecutive months. Non-users had used e-cigarettes <5 times and had a negative urine cotinine test (<30 ng/mL). Flow-mediated dilation (FMD) and reactive hyperemia index (RHI) were used to assess endothelial dysfunction, and we assayed high-sensitivity C-reactive protein, interleukin-6, fibrinogen, p-selectin, and myeloperoxidase as serum measures of inflammation. We used multivariable linear regression to assess the association of e-cigarette use with the markers of endothelial dysfunction and inflammation. RESULTS Of the 46 participants with mean age of 24.3 ± 4.0 years, the majority were males (78%), non-Hispanic (89%), and White (59%). Among non-users, 6 had cotinine levels <10 ng/mL while 17 had levels 10-30 ng/mL. Conversely, among e-cigarette users, the majority (14 of 23) had cotinine ≥500 ng/mL. At baseline, the systolic blood pressure was higher among e-cigarette users than non-users (p=0.011). The mean FMD was slightly lower among e-cigarette users (6.32%) compared to non-users (6.53%). However, in the adjusted analysis, current e-cigarette users did not differ significantly from non-users in their mean FMD (Coefficient=2.05; 95% CI: -2.52-6.63) or RHI (Coefficient= -0.20; 95% CI: -0.88-0.49). Similarly, the levels of inflammatory markers were generally low and did not differ between e-cigarette users and non-users. CONCLUSIONS Our findings suggest that e-cigarette use may not be significantly associated with endothelial dysfunction and systemic inflammation in relatively young and healthy individuals. Longer term studies with larger sample sizes are needed to validate these findings.
Collapse
Affiliation(s)
- Ellen Boakye
- Johns Hopkins Ciccarone Center for Prevention of Cardiovascular Disease, The Johns Hopkins University, Baltimore, United States
- The American Heart Association Tobacco Regulation and Addiction Center, University of Louisville, Dallas, United States
| | - S. M. Iftekhar Uddin
- Department of Medicine, Brookdale University Hospital Medical Center, New York City, United States
| | - Ngozi Osuji
- Department of Internal Medicine, University of Pittsburg Medical Center, Pittsburg, United States
| | - Jill Meinert
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, United States
| | | | - Mohammadhassan Mirbolouk
- Johns Hopkins Ciccarone Center for Prevention of Cardiovascular Disease, The Johns Hopkins University, Baltimore, United States
| | - Erfan Tasdighi
- Johns Hopkins Ciccarone Center for Prevention of Cardiovascular Disease, The Johns Hopkins University, Baltimore, United States
| | - Omar El-Shahawy
- The American Heart Association Tobacco Regulation and Addiction Center, University of Louisville, Dallas, United States
- Department of Population Health, New York University Grossman School of Medicine, New York, United States
| | - John Erhabor
- Johns Hopkins Ciccarone Center for Prevention of Cardiovascular Disease, The Johns Hopkins University, Baltimore, United States
- The American Heart Association Tobacco Regulation and Addiction Center, University of Louisville, Dallas, United States
| | - Albert D. Osei
- Department of Medicine, MedStar Union Memorial Hospital, Baltimore, United States
| | - Tanuja Rajan
- Johns Hopkins Ciccarone Center for Prevention of Cardiovascular Disease, The Johns Hopkins University, Baltimore, United States
| | - Michael Patatanian
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, United States
| | - Janet T. Holbrook
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, United States
| | - Aruni Bhatnagar
- The American Heart Association Tobacco Regulation and Addiction Center, University of Louisville, Dallas, United States
- Department of Medicine, University of Louisville School of Medicine, Louisville, United States
| | - Shyam S. Biswal
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, United States
| | - Michael J. Blaha
- Johns Hopkins Ciccarone Center for Prevention of Cardiovascular Disease, The Johns Hopkins University, Baltimore, United States
- The American Heart Association Tobacco Regulation and Addiction Center, University of Louisville, Dallas, United States
| |
Collapse
|
42
|
Ding R, Ren X, Sun Q, Sun Z, Duan J. An integral perspective of canonical cigarette and e-cigarette-related cardiovascular toxicity based on the adverse outcome pathway framework. J Adv Res 2023; 48:227-257. [PMID: 35998874 PMCID: PMC10248804 DOI: 10.1016/j.jare.2022.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/29/2022] [Accepted: 08/15/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Nowadays, cigarette smoking remains the leading cause of chronic disease and premature death, especially cardiovascular disease. As an emerging tobacco product, e-cigarettes have been advocated as alternatives to canonical cigarettes, and thus may be an aid to promote smoking cessation. However, recent studies indicated that e-cigarettes should not be completely harmless to the cardiovascular system. AIM OF REVIEW This review aimed to build up an integral perspective of cigarettes and e-cigarettes-related cardiovascular toxicity. KEY SCIENTIFIC CONCEPTS OF REVIEW This review adopted the adverse outcome pathway (AOP) framework as a pivotal tool and aimed to elucidate the association between the molecular initiating events (MIEs) induced by cigarette and e-cigarette exposure to the cardiovascular adverse outcome. Since the excessive generation of reactive oxygen species (ROS) has been widely approved to play a critical role in cigarette smoke-related CVD and may also be involved in e-cigarette-induced toxic effects, the ROS overproduction and subsequent oxidative stress are regarded as essential parts of this framework. As far as we know, this should be the first AOP framework focusing on cigarette and e-cigarette-related cardiovascular toxicity, and we hope our work to be a guide in exploring the biomarkers and novel therapies for cardiovascular injury.
Collapse
Affiliation(s)
- Ruiyang Ding
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Xiaoke Ren
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Qinglin Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Zhiwei Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China.
| | - Junchao Duan
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China.
| |
Collapse
|
43
|
Mulorz J, Spin JM, Mulorz P, Wagenhäuser MU, Deng A, Mattern K, Rhee YH, Toyama K, Adam M, Schelzig H, Maegdefessel L, Tsao PS. E-cigarette exposure augments murine abdominal aortic aneurysm development: role of Chil1. Cardiovasc Res 2023; 119:867-878. [PMID: 36413508 PMCID: PMC10409905 DOI: 10.1093/cvr/cvac173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 10/12/2022] [Accepted: 10/19/2022] [Indexed: 11/23/2022] Open
Abstract
AIMS Abdominal aortic aneurysm (AAA) is a common cardiovascular disease with a strong correlation to smoking, although underlying mechanisms have been minimally explored. Electronic cigarettes (e-cigs) have gained recent broad popularity and can deliver nicotine at comparable levels to tobacco cigarettes, but effects on AAA development are unknown. METHODS AND RESULTS We evaluated the impact of daily e-cig vaping with nicotine on AAA using two complementary murine models and found that exposure enhanced aneurysm development in both models and genders. E-cigs induced changes in key mediators of AAA development including cytokine chitinase-3-like protein 1 (CHI3L1/Chil1) and its targeting microRNA-24 (miR-24). We show that nicotine triggers inflammatory signalling and reactive oxygen species while modulating miR-24 and CHI3L1/Chil1 in vitro and that Chil1 is crucial to e-cig-augmented aneurysm formation using a knockout model. CONCLUSIONS In conclusion our work shows increased aneurysm formation along with augmented vascular inflammation in response to e-cig exposure with nicotine. Further, we identify Chil1 as a key mediator in this context. Our data raise concerns regarding the potentially harmful long-term effects of e-cig nicotine vaping.
Collapse
Affiliation(s)
- Joscha Mulorz
- Clinic for Vascular and Endovascular Surgery, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
- Department of Medicine, Stanford University, 300 Pasteur Drive, Standford, CA 94305, USA
- VA Palo Alto Health Care System, 3801 Miranda Ave, Palo Alto, CA 94304, USA
- Department of Medicine, Stanford Cardiovascular Institute, 300 Pasteur Drive, Standford, CA 94305, USA
| | - Joshua M Spin
- Department of Medicine, Stanford University, 300 Pasteur Drive, Standford, CA 94305, USA
- VA Palo Alto Health Care System, 3801 Miranda Ave, Palo Alto, CA 94304, USA
- Department of Medicine, Stanford Cardiovascular Institute, 300 Pasteur Drive, Standford, CA 94305, USA
| | - Pireyatharsheny Mulorz
- Department of Medicine, Stanford University, 300 Pasteur Drive, Standford, CA 94305, USA
- VA Palo Alto Health Care System, 3801 Miranda Ave, Palo Alto, CA 94304, USA
- Department of Medicine, Stanford Cardiovascular Institute, 300 Pasteur Drive, Standford, CA 94305, USA
| | - Markus Udo Wagenhäuser
- Clinic for Vascular and Endovascular Surgery, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
| | - Alicia Deng
- Department of Medicine, Stanford University, 300 Pasteur Drive, Standford, CA 94305, USA
- VA Palo Alto Health Care System, 3801 Miranda Ave, Palo Alto, CA 94304, USA
- Department of Medicine, Stanford Cardiovascular Institute, 300 Pasteur Drive, Standford, CA 94305, USA
| | - Karin Mattern
- Department of Anesthesiology, Intensive Care and Emergency Medicine, Medical University of Göttingen, Göttingen, Germany
| | - Yae H Rhee
- Clinic for Vascular and Endovascular Surgery, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
- Department of Medicine, Stanford University, 300 Pasteur Drive, Standford, CA 94305, USA
- VA Palo Alto Health Care System, 3801 Miranda Ave, Palo Alto, CA 94304, USA
- Department of Medicine, Stanford Cardiovascular Institute, 300 Pasteur Drive, Standford, CA 94305, USA
| | - Kensuke Toyama
- Department of Pharmacology, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Matti Adam
- Department of Cardiology, Heart Center, University of Cologne, Cologne, Germany
| | - Hubert Schelzig
- Clinic for Vascular and Endovascular Surgery, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
| | - Lars Maegdefessel
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
- Department of Medicine, Karolinska Institute, Stockholm, Sweden
- German Center for Cardiovascular Research (DZHK), Berlin, Germany (partner site: Munich)
| | - Philip S Tsao
- Department of Medicine, Stanford University, 300 Pasteur Drive, Standford, CA 94305, USA
- VA Palo Alto Health Care System, 3801 Miranda Ave, Palo Alto, CA 94304, USA
- Department of Medicine, Stanford Cardiovascular Institute, 300 Pasteur Drive, Standford, CA 94305, USA
| |
Collapse
|
44
|
Rahman A, Alqaisi S, Alzakhari R, Saith S. Characterization and Summarization of the Impact of Electronic Cigarettes on the Cardiovascular System: A Systematic Review and Meta-Analysis. Cureus 2023; 15:e39528. [PMID: 37366450 PMCID: PMC10290866 DOI: 10.7759/cureus.39528] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/26/2023] [Indexed: 06/28/2023] Open
Abstract
Electronic cigarettes may increase the risk of long-term cardiovascular morbidity. To protect the heart, awareness should be raised of the risks and limits of E-cigarette aerosol exposure. Thus, this systematic review and meta-analysis assessed the cardiovascular risk of e-smoking. This systematic review was conducted by using the Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) statement. We searched PubMed, Embase, Scopus, Web of Science, and Science Direct databases in December 2022 to identify studies investigating e-cigarettes' impact on the heart. The study was supported by meta-analysis and qualitative review. Out of the initial 493 papers, only 15 met the inclusion criteria and were included in the study. The cumulative number of participants in the myocardial infarction (MI) group was 85,420, and in the sympathetic groups in whom the systolic blood pressure (SBP), diastolic blood pressure (DBP), mean blood pressure (MBP), and heart rate (HR) were measured, were 332 cigarette smokers. The control group included the "never use," "non-smokers," and "never smoke." The pooled analysis showed a significant difference between the e-cigarette smokers and the control group regarding the risk of developing MI in former smokers (OR= 0.12; 95% CI: 0.01-1.72, P = 0.12) and never smoked (OR= 0.02; 95% CI: 0.00-0.44, P = 0.01) favoring the control group. The pooled analysis of the included studies showed a significant difference between the e-cigarette smokers with nicotine and the control group regarding the mean difference (MD) of the SBP (MD = 2.89; 95% CI: 1.94-3.84; P < 0.001), the DBP (MD = 3.10; 95% CI: 0.42-5.78; P = 0.02), the MBP (MD = 7.05; 95% CI: 2.70-1.40; P = 0.001), and HF (MD = 3.13; 95% CI: 0.96-5.29; P = 0.005) favoring the control group. We conclude that using e-cigarettes has a detrimental effect on cardiac health. The risk of severe cardiac conditions increases with e-cigarettes. Thus, vaping can do more harm than good. Consequently, the misleading notion that e-cigarettes are less harmful should be challenged.
Collapse
Affiliation(s)
- Ali Rahman
- Internal Medicine, Northwell Health at Mather Hospital, Port Jefferson, USA
| | - Sura Alqaisi
- Internal Medicine, Memorial Healthcare, Pembroke Pines, USA
| | - Rana Alzakhari
- Internal Medicine, Richmond University Medical Center, Staten Island, USA
| | - Sunil Saith
- Cardiology, State University of New York Downstate Medical Center, Brooklyn, USA
| |
Collapse
|
45
|
Saaoud F, Shao Y, Cornwell W, Wang H, Rogers TJ, Yang X. Cigarette Smoke Modulates Inflammation and Immunity via Reactive Oxygen Species-Regulated Trained Immunity and Trained Tolerance Mechanisms. Antioxid Redox Signal 2023; 38:1041-1069. [PMID: 36017612 PMCID: PMC10171958 DOI: 10.1089/ars.2022.0087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 08/22/2022] [Indexed: 12/14/2022]
Abstract
Significance: Cigarette smoke (CS) is a prominent cause of morbidity and death and poses a serious challenge to the current health care system worldwide. Its multifaceted roles have led to cardiovascular, respiratory, immunological, and neoplastic diseases. Recent Advances: CS influences both innate and adaptive immunity and regulates immune responses by exacerbating pathogenic immunological responses and/or suppressing defense immunity. There is substantial evidence pointing toward a critical role of CS in vascular immunopathology, but a comprehensive and up-to-date review is lacking. Critical Issues: This review aims to synthesize novel conceptual advances on the immunomodulatory action of CS with a focus on the cardiovascular system from the following perspectives: (i) the signaling of danger-associated molecular pattern (DAMP) receptors contributes to CS modulation of inflammation and immunity; (ii) CS reprograms immunometabolism and trained immunity-related metabolic pathways in innate immune cells and T cells, which can be sensed by the cytoplasmic (cytosolic and non-nuclear organelles) reactive oxygen species (ROS) system in vascular cells; (iii) how nuclear ROS drive CS-promoted DNA damage and cell death pathways, thereby amplifying inflammation and immune responses; and (iv) CS induces endothelial cell (EC) dysfunction and vascular inflammation to promote cardiovascular diseases (CVDs). Future Directions: Despite significant progress in understanding the cellular and molecular mechanisms linking CS to immunity, further investigations are warranted to elucidate novel mechanisms responsible for CS-mediated immunopathology of CVDs; in particular, the research in redox regulation of immune functions of ECs and their fate affected by CS is still in its infancy.
Collapse
Affiliation(s)
- Fatma Saaoud
- Cardiovascular Research Center, Department of Cardiovascular Sciences, Department of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania, USA
| | - Ying Shao
- Cardiovascular Research Center, Department of Cardiovascular Sciences, Department of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania, USA
| | - William Cornwell
- Center for Inflammation and Lung Research, Department of Microbiology, Immunology & Inflammation, Department of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania, USA
| | - Hong Wang
- Metabolic Disease Research and Thrombosis Research Centers, Department of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania, USA
| | - Thomas J. Rogers
- Center for Inflammation and Lung Research, Department of Microbiology, Immunology & Inflammation, Department of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania, USA
| | - Xiaofeng Yang
- Cardiovascular Research Center, Department of Cardiovascular Sciences, Department of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania, USA
- Metabolic Disease Research and Thrombosis Research Centers, Department of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
46
|
E-cigarettes and myocardial infarction: A systematic review and meta-analysis. Int J Cardiol 2023; 371:65-70. [PMID: 36087629 DOI: 10.1016/j.ijcard.2022.09.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 08/06/2022] [Accepted: 09/03/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND With widespread awareness about the harmful effects of traditional smoking, many people are considering using an e-cigarette. However, many studies have shown that e-cigarettes are not entirely harmless, and their use has been implicated in causing major adverse cardiovascular events. METHODS We adopted the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines to conduct this systematic review. An electronic search was conducted comprehensively through five databases to find the relevant articles. The odds ratio (OR) was used for comparing groups. Meta-analysis was conducted using R statistical software version 3.4.3. A random-effects model was used. RESULTS A total of 4 studies were included in the analysis incorporating data on 585,306 individuals. Of these, 19,435 were e-cigarettes users, while 1693 used only traditional cigarettes, and 553,095 were non-e-cigarette users. 7.0% of e-cigarettes users suffered an MI (myocardial infarction), while 7.7% and 6.5% of traditional smokers and non-e-cigarettes users suffered an MI. The OR of getting an MI in e-cigarettes (e-cigarettes only or e-cigarettes + traditional smoking) users was 1.33 (95% CI = 1.14-1.56, p-value = 0.01) in comparison to non e-cigarette users (traditional smoking or no smoking). While it is 0.61 (95% CI = 0.40-0.93, p-value 0.02) when compared with traditional smoking. CONCLUSION Those using e-cigarettes have higher odds of suffering from an MI in comparison to not using e-cigarettes. However, using e-cigarettes is associated with half risk of the risk of MI in comparison to traditional smoking.
Collapse
|
47
|
Goldberg Scott S, Feigelson HS, Powers JD, Clennin MN, Lyons JA, Gray MT, Vachani A, Burnett-Hartman AN. Demographic, Clinical, and Behavioral Factors Associated With Electronic Nicotine Delivery Systems Use in a Large Cohort in the United States. Tob Use Insights 2023; 16:1179173X221134855. [PMID: 36636234 PMCID: PMC9829996 DOI: 10.1177/1179173x221134855] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Introduction Our primary purpose is to understand comorbidities and health outcomes associated with electronic nicotine delivery systems (ENDS) use. Methods Study participants were Kaiser Permanente (KP) members from eight US regions who joined the Kaiser Permanente Research Bank (KPRB) from September 2015 through December 2019 and completed a questionnaire assessing demographic and behavioral factors, including ENDS and traditional cigarette use. Medical history and health outcomes were obtained from electronic health records. We used multinomial logistic regression to estimate odd ratios (ORs) and 95% confidence intervals (CIs) of current and former ENDS use according to member characteristics, behavioral factors, and clinical history. We used Cox regression to estimate hazard ratios (HRs) and 95% CIs comparing risk of health outcomes according to ENDS use. Results Of 119 593 participants, 1594 (1%) reported current ENDS use and 5603 (5%) reported past ENDS use. ENDS users were more likely to be younger, male, gay or lesbian, and American Indian / Alaskan Native or Asian. After adjustment for confounding, current ENDS use was associated with current traditional cigarette use (OR = 39.55; CI:33.44-46.77), current marijuana use (OR = 6.72; CI:5.61-8.05), history of lung cancer (OR = 2.64; CI:1.42-4.92), non-stroke cerebral vascular disease (OR = 1.55; CI:1.21-1.99), and chronic obstructive pulmonary disease (OR = 2.16; CI:1.77-2.63). Current ENDS use was also associated with increased risk of emergency room (ER) visits (HR = 1.17; CI: 1.05-1.30) and death (HR = 1.84; CI:1.02-3.32). Conclusions Concurrent traditional cigarette use, marijuana use, and comorbidities were prevalent among those who used ENDS, and current ENDS use was associated with an increased risk of ER visits and death. Additional research focused on health risks associated with concurrent ENDS and traditional cigarette use in those with underlying comorbidities is needed.
Collapse
Affiliation(s)
| | | | - John David Powers
- Institute for Health
Research, Kaiser Permanente Colorado,
Aurora, CO, USA
| | - Morgan N. Clennin
- Institute for Health
Research, Kaiser Permanente Colorado,
Aurora, CO, USA
| | - Jason A. Lyons
- Institute for Health
Research, Kaiser Permanente Colorado,
Aurora, CO, USA
| | - Mark T. Gray
- Institute for Health
Research, Kaiser Permanente Colorado,
Aurora, CO, USA
| | - Anil Vachani
- Perelman School of Medicine,
University
of Pennsylvania, Philadelphia, PA,
USA
| | - Andrea N. Burnett-Hartman
- Institute for Health
Research, Kaiser Permanente Colorado,
Aurora, CO, USA
- Department of Health Systems
Science, Kaiser
Permanente Bernard J. Tyson School of
Medicine, Pasadena, CA, USA
| |
Collapse
|
48
|
Aboaziza E, Feaster K, Hare L, Chantler PD, Olfert IM. Maternal electronic cigarette use during pregnancy affects long-term arterial function in offspring. J Appl Physiol (1985) 2023; 134:59-71. [PMID: 36417201 PMCID: PMC9762967 DOI: 10.1152/japplphysiol.00582.2022] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/22/2022] [Accepted: 11/22/2022] [Indexed: 11/24/2022] Open
Abstract
Vaping, or electronic cigarette (ecig) use, is prevalent among pregnant women, although little is known about the effects of perinatal ecig use on cardiovascular health of the progeny (even when using nicotine-free e-liquid). Maternal toxicant inhalation may adversely affect vital conduit vessel development. We tested the hypothesis that perinatal exposure to maternal vaping would lead to a dose-dependent dysfunction that would persist into later life of offspring. Pregnant Sprague-Dawley rats were exposed to either nicotine-free (ecig0) or nicotine-containing ecig aerosol (18 mg/mL, ecig18) starting on gestational day 2 and continued until pups were weaned (postnatal day 21). Pups were never directly exposed. Conduit artery function (stiffness and reactivity) and structure were assessed in 3- and 7-mo-old offspring. At 3 mo, pulse wave velocity (PWV) in the ecig0 and ecig18 offspring was significantly higher than controls in both the 20 puffs/day (6.6 ± 2.1 and 4.8 ± 1.3 vs. 3.2 ± 0.7 m/s, respectively, P < 0.05, means ± SD) and in 60 puffs/day exposure cohort (7.5 ± 2.8 and 7.5 ± 2.5 vs. 3.2 ± 0.5 m/s, respectively, P < 0.01). Wire myography revealed (range of 23%-31%) impaired aortic relaxation in all ecig exposure groups (with or without nicotine). Incubation of vessels with TEMPOL or Febuxostat reversed the aortic dysfunction, implicating the involvement of reactive oxygen species. Nearly identical changes and pattern was seen in vascular outcomes of 7-mo-old offspring. The take-home message from this preclinical study is that maternal vaping during pregnancy, with or without nicotine, leads to maladaptations in vascular (aortic) development that persist into adult life of offspring.NEW & NOTEWORTHY We observe a significant alteration in arterial structure and function in adolescent and adult offspring due to developmental exposure to toxicants resulting from perinatal maternal vaping. Taken together with previous work that described lasting dysfunction in cerebral microvasculature in offspring, these data underscore the adverse consequences of maternal exposure to electronic cigarette aerosol in conduit and resistance vessels alike, irrespective of nicotine content.
Collapse
Affiliation(s)
- Eiman Aboaziza
- West Virginia Clinical and Translational Science Institute, West Virginia University School of Medicine, Morgantown, West Virginia
- WVU Center of Inhalation Toxicology, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Kimberly Feaster
- Department of Pathology, Anatomy and Laboratory Medicine, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Lance Hare
- WVU Center of Inhalation Toxicology, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Paul D Chantler
- West Virginia Clinical and Translational Science Institute, West Virginia University School of Medicine, Morgantown, West Virginia
- WVU Center of Inhalation Toxicology, West Virginia University School of Medicine, Morgantown, West Virginia
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia
| | - I Mark Olfert
- West Virginia Clinical and Translational Science Institute, West Virginia University School of Medicine, Morgantown, West Virginia
- WVU Center of Inhalation Toxicology, West Virginia University School of Medicine, Morgantown, West Virginia
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia
- Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, West Virginia
| |
Collapse
|
49
|
Moheimani RS, Kajbaf J, Chang Chien GC. Patient Factors Affecting Regenerative Medicine Outcomes. Regen Med 2023. [DOI: 10.1007/978-3-030-75517-1_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
|
50
|
Sutherland BD, Viera Perez PM, Crooks KE, Flannery JS, Hill-Bowen LD, Riedel MC, Laird AR, Trucco EM, Sutherland MT. The association of amygdala-insula functional connectivity and adolescent e-cigarette use via sleep problems and depressive symptoms. Addict Behav 2022; 135:107458. [PMID: 35998541 PMCID: PMC9730909 DOI: 10.1016/j.addbeh.2022.107458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 06/16/2022] [Accepted: 08/02/2022] [Indexed: 11/20/2022]
Abstract
BACKGROUND Adolescent electronic cigarette (e-cigarette) use remains high. Elucidating contributing factors may enhance prevention strategies. Neurobiologically, amygdala-insula resting-state functional connectivity (rsFC) has been linked with aspects of sleep, affect, and substance use (SU). As such, we hypothesized that amygdala's rsFC with the insula would be associated with e-cigarette use via sleep problems and/or depression levels. METHODS An adolescent sample (N = 146) completed a rs-fMRI scan at time 1 and self-reports at time 2 (∼15 months later). Given consistent associations between mental health outcomes and the rsFC of the laterobasal amygdala (lbAMY) with the anterior insula, we utilized a seed region (lbAMY) to region of interest (ROI) analysis approach to characterize brain-behavior relationships. Two serial mediation models tested the interrelations between amygdala's rsFC with distinct anterior insula subregions (i.e., ventral insula [vI], dorsal insula [dI]), sleep problems, depression levels, and days of e-cigarette use. RESULTS An indirect effect was observed when considering the lbAMY's rsFC with the vI. Greater rsFC predicted more sleep problems, more sleep problems were linked with greater depressive symptoms, and greater depressive symptoms were associated with more e-cigarette use (indirect effect = 0.08, CI [0.01,0.21]). Indicative of a neurobiological dissociation, a similar indirect effect linking these variables was not observed when considering the lbAMY's rsFC with the dI (indirect effect = 0.03, CI [-0.001,0.10]). CONCLUSIONS These outcomes highlight functional interactions between the amygdala and insula as a neurobiological contributor to sleep problems, depressive symptoms, and ultimately SU thereby suggesting potential intervention points to reduce teen e-cigarette use.
Collapse
Affiliation(s)
| | | | - Katharine E Crooks
- Department of Psychology, Florida International University, Miami, FL, United States
| | - Jessica S Flannery
- Department of Psychology and Neuroscience, University of North Carolina, Chapel Hill, NC, United States
| | - Lauren D Hill-Bowen
- Department of Psychology, Florida International University, Miami, FL, United States
| | - Michael C Riedel
- Department of Physics, Florida International University, Miami, FL, United States
| | - Angela R Laird
- Department of Physics, Florida International University, Miami, FL, United States
| | - Elisa M Trucco
- Department of Psychology, Florida International University, Miami, FL, United States; Addiction Center, University of Michigan, Ann Arbor, MI, United States; Department of Psychiatry, University of Michigan, Ann Arbor, MI, United States
| | - Matthew T Sutherland
- Department of Psychology, Florida International University, Miami, FL, United States
| |
Collapse
|