1
|
McAllister TW, Broglio SP, Perkins SM, Katz BP, Pasquina PF, McCrea MA. Characterizing the Effects of Concussion and Head Impact Exposure: Design, Methods, and Participant Traits of the CARE 2.0 Study. J Neuropsychiatry Clin Neurosci 2024:appineuropsych20240022. [PMID: 39385574 DOI: 10.1176/appi.neuropsych.20240022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
OBJECTIVE This article describes the design, methods, and participant characteristics of the second phase of the Concussion Assessment, Research, and Education (CARE) Consortium study ("CARE 2.0") of the effects of concussion and repetitive head impact exposure on neuropsychiatric health. METHODS The authors conducted a prospective multisite observational study of male and female collegiate athletes and military service academy cadets and midshipmen participating in the CARE study. Participants were assessed at three time points: undergraduate baseline (UB), before departure from university or service academy (exit), and up to 6 years following graduation (postgrad) via an online battery of brain health assessments. Participant characteristics were compared across the three time points and four levels of head impact exposure. RESULTS A total of 4,643 participants completed the exit assessment, and 3,981 completed the postgrad assessment. Relative to the UB assessment cohort, the exit and postgrad assessment cohorts differed with respect to the percentage of women, baseline Wechsler Test of Adult Reading scores, National Collegiate Athletic Association division category, sport contact level, and number of previous concussions. The median standardized difference across balancing variables, assessment time points, and degree of head impact exposure was 0.12 (with 90% of effect sizes ≤0.29). CONCLUSIONS Although there were some statistically significant differences between participants across assessments, the effect sizes were modest, and overall the data suggest that the exit and postgrad cohorts reflect the characteristics of the baseline cohort. The CARE study design and its large, richly characterized sample provide an opportunity to answer important questions about cumulative and persistent effects of concussion and repetitive head impact exposure on neuropsychiatric health.
Collapse
Affiliation(s)
- Thomas W McAllister
- Department of Psychiatry (McAllister) and Department of Biostatistics and Health Data Science (Perkins, Katz), Indiana University School of Medicine, Indianapolis; Michigan Concussion Center, University of Michigan, Ann Arbor (Broglio); Richard M. Fairbanks School of Public Health, Indiana University, Indianapolis (Perkins, Katz); Department of Physical Medicine and Rehabilitation, Uniformed Services University, and Department of Rehabilitation, Walter Reed National Military Medical Center, Bethesda, Md. (Pasquina); Department of Neurosurgery, Medical College of Wisconsin, Milwaukee (McCrea)
| | - Steven P Broglio
- Department of Psychiatry (McAllister) and Department of Biostatistics and Health Data Science (Perkins, Katz), Indiana University School of Medicine, Indianapolis; Michigan Concussion Center, University of Michigan, Ann Arbor (Broglio); Richard M. Fairbanks School of Public Health, Indiana University, Indianapolis (Perkins, Katz); Department of Physical Medicine and Rehabilitation, Uniformed Services University, and Department of Rehabilitation, Walter Reed National Military Medical Center, Bethesda, Md. (Pasquina); Department of Neurosurgery, Medical College of Wisconsin, Milwaukee (McCrea)
| | - Susan M Perkins
- Department of Psychiatry (McAllister) and Department of Biostatistics and Health Data Science (Perkins, Katz), Indiana University School of Medicine, Indianapolis; Michigan Concussion Center, University of Michigan, Ann Arbor (Broglio); Richard M. Fairbanks School of Public Health, Indiana University, Indianapolis (Perkins, Katz); Department of Physical Medicine and Rehabilitation, Uniformed Services University, and Department of Rehabilitation, Walter Reed National Military Medical Center, Bethesda, Md. (Pasquina); Department of Neurosurgery, Medical College of Wisconsin, Milwaukee (McCrea)
| | - Barry P Katz
- Department of Psychiatry (McAllister) and Department of Biostatistics and Health Data Science (Perkins, Katz), Indiana University School of Medicine, Indianapolis; Michigan Concussion Center, University of Michigan, Ann Arbor (Broglio); Richard M. Fairbanks School of Public Health, Indiana University, Indianapolis (Perkins, Katz); Department of Physical Medicine and Rehabilitation, Uniformed Services University, and Department of Rehabilitation, Walter Reed National Military Medical Center, Bethesda, Md. (Pasquina); Department of Neurosurgery, Medical College of Wisconsin, Milwaukee (McCrea)
| | - Paul F Pasquina
- Department of Psychiatry (McAllister) and Department of Biostatistics and Health Data Science (Perkins, Katz), Indiana University School of Medicine, Indianapolis; Michigan Concussion Center, University of Michigan, Ann Arbor (Broglio); Richard M. Fairbanks School of Public Health, Indiana University, Indianapolis (Perkins, Katz); Department of Physical Medicine and Rehabilitation, Uniformed Services University, and Department of Rehabilitation, Walter Reed National Military Medical Center, Bethesda, Md. (Pasquina); Department of Neurosurgery, Medical College of Wisconsin, Milwaukee (McCrea)
| | - Michael A McCrea
- Department of Psychiatry (McAllister) and Department of Biostatistics and Health Data Science (Perkins, Katz), Indiana University School of Medicine, Indianapolis; Michigan Concussion Center, University of Michigan, Ann Arbor (Broglio); Richard M. Fairbanks School of Public Health, Indiana University, Indianapolis (Perkins, Katz); Department of Physical Medicine and Rehabilitation, Uniformed Services University, and Department of Rehabilitation, Walter Reed National Military Medical Center, Bethesda, Md. (Pasquina); Department of Neurosurgery, Medical College of Wisconsin, Milwaukee (McCrea)
| |
Collapse
|
2
|
Tabor JB, Penner LC, Galarneau JM, Josafatow N, Cooper J, Ghodsi M, Huang J, Fraser DD, Smirl J, Esser MJ, Yeates KO, Wellington CL, Debert CT, Emery CA. Plasma Biomarkers of Traumatic Brain Injury in Adolescents With Sport-Related Concussion. JAMA Netw Open 2024; 7:e2431959. [PMID: 39235809 PMCID: PMC11378000 DOI: 10.1001/jamanetworkopen.2024.31959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/06/2024] Open
Abstract
Importance Blood-based biomarkers may clarify underlying neuropathology and potentially assist in clinical management of adolescents with sport-related concussion (SRC). Objective To investigate the association between SRC and plasma biomarkers in adolescents. Design, Setting, and Participants Prospective cohort study in Canadian sport and clinic settings (Surveillance in High Schools and Community Sport to Reduce Concussions and Their Consequences study; September 2019 to November 2022). Participants were a convenience sample of 849 adolescent (ages 10-18 years) sport participants with blood samples. Data were analyzed from February to September 2023. Exposures Blood collection and clinical testing preseason (uninjured) and post-SRC follow-ups (ie, ≤72 hours, 1 week, and biweekly until medical clearance to return to play [RTP]). Main Outcomes and Measures Plasma glial fibrillary acidic protein (GFAP), ubiquitin c-terminal hydrolase-L1 (UCH-L1), neurofilament light (NfL), and total tau (t-tau) were assayed. Group-level comparisons of biomarker levels were conducted between uninjured and post-SRC intervals (postinjury day [PID] 0-3, 4-10, 11-28, and >28) considering age and sex as modifiers. Secondary analyses explored associations between biomarker concentrations and clinical outcomes (Sport Concussion Assessment Tool, Fifth Edition [SCAT5] symptom scores and time to RTP). Results This study included 1023 plasma specimens from 695 uninjured participants (467 male participants [67.2%]; median [IQR] age, 15.90 [15.13-16.84] years) and 154 participants with concussion (78 male participants [51.0%]; median [IQR] age, 16.12 [15.31-17.11] years). Acute (PID 0-3) differences relative to uninjured levels were found for GFAP (female participants: 17.8% increase; β = 0.164; 95% CI, 0.064 to 0.263; P = .001; male participants: 17.1% increase; β = 0.157; 95% CI, 0.086 to 0.229; P < .001), UCH-L1 (female participants: 43.4% increase; β = 0.361; 95% CI, 0.125 to 0.596; P = .003), NfL (male participants: 19.0% increase; β = 0.174; 95% CI, 0.087 to 0.261; P < .001), and t-tau (female participants: -22.9%; β = -0.260; 95% CI, -0.391 to -0.130; P < .001; male participants: -18.4%; β = -0.203; 95% CI, -0.300 to -0.106; P < .001). Differences were observed for all biomarkers at PID 4 to 10, 11 to 28, and greater than 28 compared with uninjured groups. GFAP, NfL, and t-tau were associated with SCAT5 symptom scores across several PID intervals. Higher GFAP after 28 days post-SRC was associated with earlier clearance to RTP (hazard ratio, 4.78; 95% CI, 1.59 to 14.31; P = .01). Male participants exhibited lower GFAP (-9.7%), but higher UCH-L1 (21.3%) compared with female participants. Age was associated with lower GFAP (-5.4% per year) and t-tau (-5.3% per year). Conclusions and Relevance In this cohort study of 849 adolescents, plasma biomarkers differed between uninjured participants and those with concussions, supporting their continued use to understand concussion neuropathology. Age and sex are critical considerations as these biomarkers progress toward clinical validation.
Collapse
Affiliation(s)
- Jason B Tabor
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Linden C Penner
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Jean-Michel Galarneau
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Nik Josafatow
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Jennifer Cooper
- Department of Pathology and Laboratory Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Mohammad Ghodsi
- Department of Pathology and Laboratory Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Johnny Huang
- Department of Pathology and Laboratory Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Douglas D Fraser
- Department of Pediatrics and Clinical Neurological Sciences, Western University, London, Ontario, Canada
| | - Jonathan Smirl
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Michael J Esser
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Keith Owen Yeates
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Department of Psychology, University of Calgary, Calgary, Alberta, Canada
| | - Cheryl L Wellington
- Department of Pathology and Laboratory Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Chantel T Debert
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Carolyn A Emery
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Departments of Pediatrics and Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
3
|
Papini MG, Avila AN, Fitzgerald M, Hellewell SC. Evidence for Altered White Matter Organization After Mild Traumatic Brain Injury: A Scoping Review on the Use of Diffusion Magnetic Resonance Imaging and Blood-Based Biomarkers to Investigate Acute Pathology and Relationship to Persistent Post-Concussion Symptoms. J Neurotrauma 2024. [PMID: 39096132 DOI: 10.1089/neu.2024.0039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024] Open
Abstract
Mild traumatic brain injury (mTBI) is the most common form of traumatic brain injury. Post-concussive symptoms typically resolve after a few weeks although up to 20% of people experience these symptoms for >3 months, termed persistent post-concussive symptoms (PPCS). Subtle white matter (WM) microstructural damage is thought to underlie neurological and cognitive deficits experienced post-mTBI. Evidence suggests that diffusion magnetic resonance imaging (dMRI) and blood-based biomarkers could be used as surrogate markers of WM organization. We conducted a scoping review according to PRISMA-ScR guidelines, aiming to collate evidence for the use of dMRI and/or blood-based biomarkers of WM organization, in mTBI and PPCS, and document relationships between WM biomarkers and symptoms. We focused specifically on biomarkers of axonal or myelin integrity post-mTBI. Biomarkers excluded from this review therefore included the following: astroglial, perivascular, endothelial, and inflammatory markers. A literature search performed across four databases, EMBASE, Scopus, Google Scholar, and ProQuest, identified 100 records: 68 analyzed dMRI, 28 assessed blood-based biomarkers, and 4 used both. Blood biomarker studies commonly assessed axonal cytoskeleton proteins (i.e., tau); dMRI studies assessed measures of WM organization (i.e., fractional anisotropy). Significant biomarker alterations were frequently associated with heightened symptom burden and prolonged recovery time post-injury. These data suggest that dMRI and blood-based biomarkers may be useful proxies of WM organization, although few studies assessed these complementary measures in parallel, and the relationship between modalities remains unclear. Further studies are warranted to assess the benefit of a combined biomarker approach in evaluating alterations to WM organization after mTBI.
Collapse
Affiliation(s)
- Melissa G Papini
- Curtin Medical School, Faculty of Health Sciences, Curtin University, Perth, Australia
- Curtin Health Innovation Research Institute, Curtin University, Perth, Australia
- Perron Institute for Neurological and Translational Science, Perth, Australia
| | - André N Avila
- Curtin Medical School, Faculty of Health Sciences, Curtin University, Perth, Australia
- Curtin Health Innovation Research Institute, Curtin University, Perth, Australia
- Perron Institute for Neurological and Translational Science, Perth, Australia
| | - Melinda Fitzgerald
- Curtin Health Innovation Research Institute, Curtin University, Perth, Australia
- Perron Institute for Neurological and Translational Science, Perth, Australia
| | - Sarah C Hellewell
- Curtin Health Innovation Research Institute, Curtin University, Perth, Australia
- Perron Institute for Neurological and Translational Science, Perth, Australia
| |
Collapse
|
4
|
Mastandrea P, Mengozzi S, Bernardini S. Systematic review and meta-analysis of observational studies evaluating glial fibrillary acidic protein (GFAP) and ubiquitin C-terminal hydrolase L1 (UCHL1) as blood biomarkers of mild acute traumatic brain injury (mTBI) or sport-related concussion (SRC) in adult subjects. Diagnosis (Berl) 2024:dx-2024-0078. [PMID: 39167371 DOI: 10.1515/dx-2024-0078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 07/14/2024] [Indexed: 08/23/2024]
Abstract
INTRODUCTION Neurotrauma is the leading cause of death in individuals <45 years old. Many of the published articles on UCHL1 and GFAP lack rigorous methods and reporting. CONTENT Due to the high heterogeneity between studies, we evaluated blood GFAP and UCHL1 levels in the same subjects. We determined the biomarker congruence among areas under the ROC curves (AUCs), sensitivities, specificities, and laboratory values in ng/L to avoid spurious results. The definitive meta-analysis included 1,880 subjects in eight studies. The items with the highest risk of bias were as follows: cut-off not prespecified and case-control design not avoided. The AUC of GFAP was greater than the AUC of UCHL1, with a lower prediction interval (PI) limit of 50.1 % for GFAP and 37.3 % for UCHL1, and a significantly greater percentage of GFAP Sp. The PI of laboratory results for GFAP and UCHL1 were 0.517-7,518 ng/L (diseased), 1.2-255 ng/L (nondiseased), and 3-4,180 vs. 3.2-1,297 ng/L, respectively. SUMMARY Only the GFAP positive cut-off (255 ng/L) appears to be reliable. The negative COs appear unreliable. OUTLOOK GFAP needs better standardization. However, the AUCs of the phospho-Tau and phospho-Tau/Tau proteins resulted not significantly lower than AUC of GFAP, but this result needs further verifications.
Collapse
Affiliation(s)
- Paolo Mastandrea
- Department of Clinical Pathology, 90384 Azienda Ospedaliera di Rilievo Nazionale e di Alta Specialità San Giuseppe Moscati , Salerno, Italy
| | - Silvia Mengozzi
- U.O. Patologia Clinica, AUSL della Romagna, Laboratorio Unico, Cesena, Forli'-Cesena, Italy
| | - Sergio Bernardini
- Department of Experimental Medicine and Surgery, "Tor Vergata" University Hospital, Rome, Rome, Italy
| |
Collapse
|
5
|
Huang S, Li M, Huang C, Liu J. Acute limbic system connectivity predicts chronic cognitive function in mild traumatic brain injury: An individualized differential structural covariance network study. Pharmacol Res 2024; 206:107274. [PMID: 38906205 DOI: 10.1016/j.phrs.2024.107274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 06/16/2024] [Accepted: 06/18/2024] [Indexed: 06/23/2024]
Abstract
Mild traumatic brain injury (mTBI) is a known risk factor for neurodegenerative diseases, yet the precise pathophysiological mechanisms remain poorly understand, often obscured by group-level analysis in non-invasive neuroimaging studies. Individual-based method is critical to exploring heterogeneity in mTBI. We recruited 80 mTBI patients and 40 matched healthy controls, obtaining high-resolution structural MRI for constructing Individual Differential Structural Covariance Networks (IDSCN). Comparisons were conducted at both the individual and group levels. Connectome-based Predictive Modeling (CPM) was applied to predict cognitive performance based on whole-brain connectivity. During the acute stage of mTBI, patients exhibited significant heterogeneity in the count and direction of altered edges, obscured by group-level analysis. In the chronic stage, the number of altered edges decreased and became more consistent, aligning with clinical observations of acute cognitive impairment and gradual improvement. Subgroup analysis based on loss of consciousness/post-traumatic amnesia revealed distinct patterns of alterations. The temporal lobe, particularly regions related to the limbic system, significantly predicted cognitive function from acute to chronic stage. The use of IDSCN and CPM has provided valuable individual-level insights, reconciling discrepancies from previous studies. Additionally, the limbic system may be an appropriate target for future intervention efforts.
Collapse
Affiliation(s)
- Sihong Huang
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Mengjun Li
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Chuxin Huang
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Jun Liu
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Department of Radiology Quality Control Center, Hunan Province, Changsha, Hunan 410011, China; Clinical Research Center for Medical Imaging in Hunan Province, Changsha, Hunan 410011, China.
| |
Collapse
|
6
|
DeGroot A, Huber DL, Leddy JJ, Raff H, McCrea MA, Johnson BD, Nelson LD. Use of the Buffalo Concussion Treadmill Test in community adult patients with mild traumatic brain injury. PM R 2024; 16:826-835. [PMID: 38411367 PMCID: PMC11323219 DOI: 10.1002/pmrj.13132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 11/27/2023] [Accepted: 12/26/2023] [Indexed: 02/28/2024]
Abstract
BACKGROUND The Buffalo Concussion Treadmill Test (BCTT) is used to establish exercise tolerance for rehabilitation and identify injury subtypes for youth athletes after mild traumatic brain injury (mTBI). Its utility in adult community members is unknown. OBJECTIVE Primary: To describe how adults with and without mTBI tolerate the BCTT. Secondary: To explore relationships between baseline factors, mTBI-related symptoms, and BCTT duration. DESIGN Prospective, observational, longitudinal. SETTING Academic medical center. PARTICIPANTS Thirty-seven adults treated in a level 1 trauma center emergency department with mTBI; 24 uninjured controls (UC). INTERVENTIONS N/A. MAIN MEASURES Participants completed two visits 3 weeks apart (1 week and 1 month after mTBI) including a 15-minute BCTT, the Rivermead Post Concussion Symptoms Questionnaire (RPQ), and preinjury International Physical Activity Questionnaire. Analyses characterized BCTT response and associations between baseline factors, RPQ scores, and BCTT duration. RESULTS Persons with mTBI discontinued earlier than UC at 1-week postinjury using standard discontinuation criteria for exercise intolerance. The percentage of mTBI participants with signs of possible mTBI-related intolerance was 55.6% at 1 week (36.1% for mTBI-related symptom exacerbation, 19.4% for exertion/fatigue before reaching 85% of one's age-predicted maximum heart rate [HR]) and 48.0% at 1 month (40.0% mTBI-related symptom exacerbation, 8.0% exertion without reaching the target HR). Thirty percent of UCs completed the BCTT at both assessments. UCs met discontinuation criteria for increased nonspecific symptoms (eg, pain/general discomfort and increased Visual Analog Scale ratings; 39-61%) and physical exertion (9-26%). Shorter duration was associated with higher body mass index (r = -0.42 - -0.45), shorter height (r = 0.22-0.29), female gender (r = -0.26 - -0.27), and greater RPQ symptoms (r = -0.28 - -0.47). CONCLUSION The BCTT exacerbates mTBI-related symptoms in adult community members. Participant characteristics and noninjury factors influence performance. The findings imply the BCTT could be useful in clinical assessments of adults with mTBI. Interpretation should account for the unique characteristics of nonathletes.
Collapse
Affiliation(s)
- Andrew DeGroot
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Daniel L Huber
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - John J Leddy
- UBMD Orthopaedics and Sports Medicine; SUNY Buffalo Jacobs School of Medicine and Biomedical Sciences, Buffalo, New York, USA
| | - Hershel Raff
- Department of Medicine, Surgery, and Physiology, Medical College of Wisconsin, Milwaukee WI and the Endocrine Research Laboratory, Aurora St. Luke's Medical Center, Advocate Aurora Research Institute, Milwaukee, Wisconsin, USA
| | - Michael A McCrea
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Blair D Johnson
- Department of Kinesiology, Indiana University, Bloomington, Indiana, USA
| | - Lindsay D Nelson
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
7
|
Plummer CJ, Abramson N. Acute Concussion. Phys Med Rehabil Clin N Am 2024; 35:523-533. [PMID: 38945648 DOI: 10.1016/j.pmr.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Concussions are the most common type of traumatic brain injury. They result from external force to the head that causes a neuro-metabolic cascade to unfold. This can then lead to a variety of symptoms in the domains of physical, cognition, mood, and sleep. Concussions are a clinical diagnosis but it is important to rule out acute intracranial pathology through a detailed history and physical examination in addition to possible head imaging. Treatment should include an individualized approach that focuses on what domains are affected after concussion.
Collapse
Affiliation(s)
- Clausyl J Plummer
- Department of Physical Medicine and Rehabilitation, Vanderbilt University Medical Center, 2201 Children's Way, Nashville, TN 37212, USA.
| | - Nicholas Abramson
- Department of Physical Medicine and Rehabilitation, Vanderbilt University Medical Center, 2201 Children's Way, Nashville, TN 37212, USA
| |
Collapse
|
8
|
Van Bortel KM, Hamill KE, Goeckner BD, Mayer AR, Brett BL, Meier TB. The relationship between multiple concussions and multidimensional sleep quality in collegiate-aged, active athletes. Sleep Health 2024; 10:441-448. [PMID: 38845307 PMCID: PMC11309901 DOI: 10.1016/j.sleh.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 04/10/2024] [Accepted: 04/19/2024] [Indexed: 08/10/2024]
Abstract
OBJECTIVES Determine the association of cumulative concussion and repetitive head impacts with self-reported sleep quality in healthy collegiate-aged athletes. METHODS Collegiate-aged athletes (N = 212; mean age 21.00, 62.7% male) completed semistructured interviews for sport and concussion history and the Pittsburgh Sleep Quality Index (PSQI). Number of concussions was retrospectively determined based on the 1993 American Congress of Rehabilitation Medicine (ACRM) criteria; repetitive head impact was measured based on the cumulative years of contact sport exposure. Associations of number of concussions and repetitive head impact exposure with global PSQI score, overall poor (PSQI >5) vs. good sleep, and binarized subscale scores were tested. Secondary analyses were conducted using alternative concussion criteria and metrics of repetitive head impact. RESULTS The number of prior concussions was associated with higher PSQI global scores (B(SE)= 0.50(0.13), p < .001). Participants with more concussions were more likely to be poor sleepers (OR=1.52, p < .001), report poorer sleep quality (OR=1.29, p = .037), longer sleep latency (OR=1.34, p = .005), more sleep disturbances (OR=1.56, p = .001), increased use of sleep medications or sleep aids (OR=1.35, p = .008), and more sleep-related daily dysfunction (OR=1.38, p = .002). Similar results were observed for alternative definitions of concussion. No metric of repetitive head impact was associated with any sleep quality metric. CONCLUSIONS More prior concussions, but not repetitive head impact exposure, are associated with worse self-reported sleep, with subscale analyses showing concussion history associated with multiple aspects of subjective sleep quality rather than sleep quantity. Sleep represents an important factor to consider for future research aimed at characterizing and ultimately preventing adverse long-term health outcomes associated with concussion history.
Collapse
Affiliation(s)
- Kearnin M Van Bortel
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Keeley E Hamill
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Bryna D Goeckner
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Andrew R Mayer
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Neurology and Psychiatry Departments, University of New Mexico School of Medicine, Department of Psychology, University of New Mexico, Albuquerque, New Mexico, USA
| | - Benjamin L Brett
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin, USA; Department of Neurology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Timothy B Meier
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin, USA; Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, Wisconsin, USA; Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.
| |
Collapse
|
9
|
Huber CM, Thakore AD, Oeur RA, Margulies SS. Distinct Serum Glial Fibrillary Acidic Protein and Neurofilament Light Time-Courses After Rapid Head Rotations. J Neurotrauma 2024; 41:1914-1928. [PMID: 38698671 DOI: 10.1089/neu.2023.0660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024] Open
Abstract
Traumatic brain injury (TBI) causes significant neurophysiological deficits and is typically associated with rapid head accelerations common in sports-related incidents and automobile accidents. There are over 1.5 million TBIs in the United States each year, with children aged 0-4 being particularly vulnerable. TBI diagnosis is currently achieved through interpretation of clinical signs and symptoms and neuroimaging; however, there is increasing interest in minimally invasive fluid biomarkers to detect TBI objectively across all ages. Pre-clinical porcine models offer controlled conditions to evaluate TBI with known biomechanical conditions and without comorbidities. The objective of the current study was to establish pediatric porcine healthy reference ranges (RRs) of common human serum TBI biomarkers and to report their acute time-course after nonimpact rotational head injury. A retrospective analysis was completed to quantify biomarker concentrations in porcine serum samples collected from 4-week-old female (n = 215) and uncastrated male (n = 6) Yorkshire piglets. Subjects were assigned to one of three experimental groups (sham, sagittal-single, sagittal-multiple) or to a baseline only group. A rapid nonimpact rotational head injury model was used to produce mild-to-moderate TBI in piglets following a single rotation and moderate-to-severe TBI following multiple rotations. The Quanterix Simoa Human Neurology 4-Plex A assay was used to quantify glial fibrillary acidic protein (GFAP), neurofilament light (Nf-L), tau, and ubiquitin carboxyl-terminal hydrolase L1 (UCH-L1). The 95% healthy RRs for females were calculated and validated for GFAP (6.3-69.4 pg/mL), Nf-L (9.5-67.2 pg/mL), and UCH-L1 (3.8-533.7 pg/mL). Rising early, GFAP increased significantly above the healthy RRs for sagittal-single (to 164 and 243 pg/mL) and increased significantly higher in sagittal-multiple (to 494 and 413 pg/mL) groups at 30 min and 1 h postinjury, respectively, returning to healthy RRs by 1-week postinjury. Rising later, Nf-L increased significantly above the healthy RRs by 1 day in sagittal-single (to 69 pg/mL) and sagittal-multiple groups (to 140 pg/mL) and rising further at 1 week (single = 231 pg/mL, multiple = 481 pg/mL). Sagittal-single and sagittal-multiple UCH-L1 serum samples did not differ from shams or the healthy RRs. Sex differences were observed but inconsistent. Serum GFAP and Nf-L levels had distinct time-courses following head rotations in piglets, and both corresponded to load exposure. We conclude that serum GFAP and Nf-L offer promise for early TBI diagnosis and intervention decisions for TBI and other neurological trauma.
Collapse
Affiliation(s)
- Colin M Huber
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University Atlanta, Atlanta, Georgia, USA
| | - Akshara D Thakore
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University Atlanta, Atlanta, Georgia, USA
| | - R Anna Oeur
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University Atlanta, Atlanta, Georgia, USA
| | - Susan S Margulies
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University Atlanta, Atlanta, Georgia, USA
| |
Collapse
|
10
|
Beard K, Gauff AK, Pennington AM, Marion DW, Smith J, Sloley S. Biofluid, Imaging, Physiological, and Functional Biomarkers of Mild Traumatic Brain Injury and Subconcussive Head Impacts. J Neurotrauma 2024. [PMID: 38943278 DOI: 10.1089/neu.2024.0136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2024] Open
Abstract
Post-concussive symptoms are frequently reported by individuals who sustain mild traumatic brain injuries (mTBIs) and subconcussive head impacts, even when evidence of intracranial pathology is lacking. Current strategies used to evaluate head injuries, which primarily rely on self-report, have a limited ability to predict the incidence, severity, and duration of post-concussive symptoms that will develop in an individual patient. In addition, these self-report measures have little association with the underlying mechanisms of pathology that may contribute to persisting symptoms, impeding advancement in precision treatment for TBI. Emerging evidence suggests that biofluid, imaging, physiological, and functional biomarkers associated with mTBI and subconcussive head impacts may address these shortcomings by providing more objective measures of injury severity and underlying pathology. Interest in the use of biomarker data has rapidly accelerated, which is reflected by the recent efforts of organizations such as the National Institute of Neurological Disorders and Stroke and the National Academies of Sciences, Engineering, and Medicine to prioritize the collection of biomarker data during TBI characterization in acute-care settings. Thus, this review aims to describe recent progress in the identification and development of biomarkers of mTBI and subconcussive head impacts and to discuss important considerations for the implementation of these biomarkers in clinical practice.
Collapse
Affiliation(s)
- Kryshawna Beard
- General Dynamics Information Technology Fairfax, Falls Church, Virginia, USA
- Traumatic Brain Injury Center of Excellence, Silver Spring, Maryland, USA
| | - Amina K Gauff
- Traumatic Brain Injury Center of Excellence, Silver Spring, Maryland, USA
- Xynergie Federal, LLC, San Juan, United States Minor Outlying Islands
| | - Ashley M Pennington
- Traumatic Brain Injury Center of Excellence, Silver Spring, Maryland, USA
- Xynergie Federal, LLC, San Juan, United States Minor Outlying Islands
| | - Donald W Marion
- General Dynamics Information Technology Fairfax, Falls Church, Virginia, USA
- Traumatic Brain Injury Center of Excellence, Silver Spring, Maryland, USA
| | - Johanna Smith
- Traumatic Brain Injury Center of Excellence, Silver Spring, Maryland, USA
| | - Stephanie Sloley
- Traumatic Brain Injury Center of Excellence, Silver Spring, Maryland, USA
| |
Collapse
|
11
|
Mullins AV, Snider JM, Michael B, Porter LR, Brinton RD, Chilton FH. Impact of fish oil supplementation on plasma levels of highly unsaturated fatty acid-containing lipid classes and molecular species in American football athletes. Nutr Metab (Lond) 2024; 21:43. [PMID: 38978004 PMCID: PMC11232345 DOI: 10.1186/s12986-024-00815-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/18/2024] [Indexed: 07/10/2024] Open
Abstract
BACKGROUND Previous studies have linked sports-related concussions and repeated subconcussive head impacts in contact sport athletes to elevated brain injury biomarkers. Docosahexaenoic acid (DHA), the primary omega-3 (n-3) highly unsaturated fatty acid (HUFA) in the brain, has shown neuroprotective effects in animal models after brain injury, but clinical research has shown mixed results. METHODS We conducted a randomized, double-blind, placebo-controlled study on 29 Division 1 collegiate American football players, exploring the impact of DHA (2.5 g) and eicosapentaenoic acid (EPA) (1.0 g) supplied as ethyl esters, on levels of plasma lipids shown to cross the blood-brain barrier. Dietary intake data was collected using food frequency questionnaires (FFQ). Complex lipids and unesterified fatty acids were isolated from plasma, separated via reversed-phase liquid chromatography and analyzed by targeted lipidomics analysis. RESULTS FFQ results indicated that participants had low dietary n-3 HUFA intake and high omega-6 (n-6):n-3 polyunsaturated fatty acids (PUFA) and HUFA ratios at baseline. After DHA + EPA supplementation, plasma lysophosphatidylcholine (LPC) containing DHA and EPA significantly increased at all timepoints (weeks 17, 21, and 26; p < 0.0001), surpassing placebo at Weeks 17 (p < 0.05) and 21 (p < 0.05). Phosphatidylcholine (PC) molecular species containing DHA or EPA, PC38:6 PC36:6, PC38:7, PC40:6, and PC40:8, increased significantly in the DHA + EPA treatment group at Weeks 17 (and 21. Plasma concentrations of non-esterified DHA and EPA rose post-supplementation in Weeks 17 and 21. CONCLUSIONS This study demonstrates that n-3 HUFA supplementation, in the form of ethyl esters, increased the DHA and EPA containing plasma lipid pools the have the capacity to enrich brain lipids and the potential to mitigate the effects of sports-related concussions and repeated subconcussive head impacts. TRIAL REGISTRATION All deidentified data are available at ClinicalTrials.gov #NCT0479207.
Collapse
Affiliation(s)
- Anne Veronica Mullins
- School of Nutritional Sciences and Wellness, Bioscience Research Laboratory (BSRL), University of Arizona, Room 370, 1230 N Cherry Avenue, Tucson, AZ, 85719, USA
| | - Justin M Snider
- School of Nutritional Sciences and Wellness, Bioscience Research Laboratory (BSRL), University of Arizona, Room 370, 1230 N Cherry Avenue, Tucson, AZ, 85719, USA
- Center for Precision Nutrition and Wellness, University of Arizona, 1230 N Cherry Avenue, Tucson, AZ, 85719, USA
| | - Bryce Michael
- School of Nutritional Sciences and Wellness, Bioscience Research Laboratory (BSRL), University of Arizona, Room 370, 1230 N Cherry Avenue, Tucson, AZ, 85719, USA
| | - Lydia Rose Porter
- School of Nutritional Sciences and Wellness, Bioscience Research Laboratory (BSRL), University of Arizona, Room 370, 1230 N Cherry Avenue, Tucson, AZ, 85719, USA
| | - Roberta Diaz Brinton
- Center for Innovation in Brain Science, The University of Arizona Health Sciences, University of Arizona, 1230 N. Cherry Avenue, Tucson, AZ, 85719, USA
| | - Floyd H Chilton
- School of Nutritional Sciences and Wellness, Bioscience Research Laboratory (BSRL), University of Arizona, Room 370, 1230 N Cherry Avenue, Tucson, AZ, 85719, USA.
- Center for Precision Nutrition and Wellness, University of Arizona, 1230 N Cherry Avenue, Tucson, AZ, 85719, USA.
| |
Collapse
|
12
|
Bazarian JJ, Abar B, Merchant-Borna K, Pham DL, Rozen E, Mannix R, Kawata K, Chou Y, Stephen S, Gill JM. A Pilot Study Investigating the Use of Serum Glial Fibrillary Acidic Protein to Monitor Changes in Brain White Matter Integrity After Repetitive Head Hits During a Single Collegiate Football Game. J Neurotrauma 2024; 41:1597-1608. [PMID: 38753702 DOI: 10.1089/neu.2023.0307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024] Open
Abstract
Repetitive head hits (RHHs) in sports and military settings are increasingly recognized as a risk factor for adverse neurological outcomes, but they are not currently tracked. Blood-based biomarkers of concussion have recently been shown to increase after nonconcussive RHHs during a single sporting contest, raising the possibility that they could be used in real time to monitor the brain's early response to repeated asymptomatic head hits. To test this hypothesis, we measured GFAP in serum immediately before (T0), immediately after (T1) and 45 min (T2) after a single collegiate football game in 30 athletes. Glial fibrillary acidic protein (GFAP) changes were correlated with three measures of head impact exposure (number of hits, total linear acceleration, and total rotational acceleration captured by helmet impact sensors) and to changes in brain white matter (WM) integrity, estimated by regional changes in fractional anisotropy (FA) and mean diffusivity (MD) on diffusion tensor imaging from 24 h before (T1) to 48 h after (T3) the game. To account for the potentially confounding effects of physical exertion on GFAP, correlations were adjusted for kilocalories of energy expended during the game measured by wearable body sensors. All 30 participants were male with a mean age of 19.5 ± 1.2 years. No participant had a concussion during the index game. We observed a significant increase in GFAP from T0 to T1 (mean 79.69 vs. 91.95 pg/mL, p = 0.008) and from T0 to T2 (mean 79.69 vs. 99.21 pg/mL, p < 0.001). WM integrity decreased in multiple WM regions but was statistically significant in the right fornix (mean % FA change -1.43, 95% confidence interval [CI]: -2.20, -0.66). T0 to T2 increases in GFAP correlated with reduced FA in the left fornix, right fornix, and right medical meniscus and with increased MD in the right fornix (r-values ranged from 0.59 to 0.61). Adjustment for exertion had minimal effect on these correlations. GFAP changes did not correlate to head hit exposure, but after adjustment for exertion, T0 to T2 increases correlated with all three hit metrics (r-values ranged from 0.69 to 0.74). Thus, acute elevations in GFAP after a single collegiate football game of RHHs correlated with in-game head hit exposure and with reduced WM integrity 2 days later. These results suggest that GFAP may be a biologically relevant indicator of the brain's early response to RHHs during a single sporting event. Developing tools to measure the neurological response to RHHs on an individual level has the potential to provide insight into the heterogeneity in adverse outcomes after RHH exposure and for developing effective and personalized countermeasures. Owing to the small sample size, these findings should be considered preliminary; validation in a larger, independent cohort is necessary.
Collapse
Affiliation(s)
- Jeffrey J Bazarian
- Department of Emergency Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Beau Abar
- Department of Emergency Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Kian Merchant-Borna
- Department of Emergency Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Dzung L Pham
- Center for Neuroscience and Regenerative Medicine, Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Eric Rozen
- Department of Athletics and Recreation, University of Rochester, Rochester, New York, USA
| | - Rebekah Mannix
- Departments of Pediatrics and Emergency Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Keisuke Kawata
- Department of Kinesiology, Indiana University, Bloomington, Indiana, USA
| | - Yiyu Chou
- Center for Neuroscience and Regenerative Medicine, Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Steve Stephen
- University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Jessica M Gill
- Johns Hopkins School of Nursing and Medicine, Baltimore, Maryland, USA
| |
Collapse
|
13
|
Gard A, Kornaropoulos EN, Portonova Wernersson M, Rorsman I, Blennow K, Zetterberg H, Tegner Y, De Maio A, Markenroth Bloch K, Björkman-Burtscher I, Pessah-Rasmussen H, Nilsson M, Marklund N. Widespread White Matter Abnormalities in Concussed Athletes Detected by 7T Diffusion Magnetic Resonance Imaging. J Neurotrauma 2024; 41:1533-1549. [PMID: 38481124 DOI: 10.1089/neu.2023.0099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2024] Open
Abstract
Sports-related concussions may cause white matter injuries and persistent post-concussive symptoms (PPCS). We hypothesized that athletes with PPCS would have neurocognitive impairments and white matter abnormalities that could be revealed by advanced neuroimaging using ultra-high field strength diffusion tensor (DTI) and diffusion kurtosis (DKI) imaging metrics and cerebrospinal fluid (CSF) biomarkers. A cohort of athletes with PPCS severity limiting the ability to work/study and participate in sport school and/or social activities for ≥6 months completed 7T magnetic resonance imaging (MRI) (morphological T1-weighed volumetry, DTI and DKI), extensive neuropsychological testing, symptom rating, and CSF biomarker sampling. Twenty-two athletes with PPCS and 22 controls were included. Concussed athletes performed below norms and significantly lower than controls on all but one of the psychometric neuropsychology tests. Supratentorial white and gray matter, as well as hippocampal volumes did not differ between concussed athletes and controls. However, of the 72 examined white matter tracts, 16% of DTI and 35% of DKI metrics (in total 28%) were significantly different between concussed athletes and controls. DKI fractional anisotropy and axial kurtosis were increased, and DKI radial diffusivity and radial kurtosis decreased in concussed athletes when compared with controls. CSF neurofilament light (NfL; an axonal injury marker), although not glial fibrillary acidic protein, correlated with several diffusion metrics. In this first 7T DTI and DKI study investigating PPCS, widespread microstructural alterations were observed in the white matter, correlating with CSF markers of axonal injury. More white matter changes were observed using DKI than using DTI. These white matter alterations may indicate persistent pathophysiological processes following concussion in sport.
Collapse
Affiliation(s)
- Anna Gard
- Department of Clinical Sciences Lund, Neurosurgery, Neurology, Lund University, Lund, Sweden
| | - Evgenios N Kornaropoulos
- Department of Clinical Sciences Lund, Diagnostic Radiology, Neurology, Lund University, Lund, Sweden
| | - Maria Portonova Wernersson
- Department of Neurology, Rehabilitation Medicine, Memory Disorders and Geriatrics, Skåne University Hospital, Neurology, Lund University, Lund, Sweden
| | - Ia Rorsman
- Department of Clinical Sciences Lund, Neurology, Lund University, Lund, Sweden
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
| | - Yelverton Tegner
- Department of Health, Education and Technology, Division of Health and Rehabilitation, Luleå University of Technology, Luleå, Sweden
| | - Alessandro De Maio
- Department of Radiological, Oncological and Pathological Sciences. Policlinico Umberto I, Sapienza University of Rome, Rome, Italy
| | - Karin Markenroth Bloch
- Department of Clinical Sciences Lund, Lund University Bioimaging Center, Lund University, Lund, Sweden
| | - Isabella Björkman-Burtscher
- Department of Radiology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Hélène Pessah-Rasmussen
- Department of Neurology, Rehabilitation Medicine, Memory Disorders and Geriatrics, Skåne University Hospital, Neurology, Lund University, Lund, Sweden
- Department of Clinical Sciences Lund, Neurology, Lund University, Lund, Sweden
| | - Markus Nilsson
- Department of Clinical Sciences Lund, Diagnostic Radiology, Neurology, Lund University, Lund, Sweden
| | - Niklas Marklund
- Department of Clinical Sciences Lund, Neurosurgery, Lund University, and Skåne University Hospital, Lund, Sweden
| |
Collapse
|
14
|
Pybus AF, Bitarafan S, Brothers RO, Rohrer A, Khaitan A, Moctezuma FR, Udeshi K, Davies B, Triplett S, Griffin MN, Dammer EB, Rangaraju S, Buckley EM, Wood LB. Profiling the neuroimmune cascade in 3xTg-AD mice exposed to successive mild traumatic brain injuries. J Neuroinflammation 2024; 21:156. [PMID: 38872143 PMCID: PMC11177462 DOI: 10.1186/s12974-024-03128-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 05/12/2024] [Indexed: 06/15/2024] Open
Abstract
Repetitive mild traumatic brain injuries (rmTBI) sustained within a window of vulnerability can result in long term cognitive deficits, depression, and eventual neurodegeneration associated with tau pathology, amyloid beta (Aβ) plaques, gliosis, and neuronal and functional loss. However, a comprehensive study relating acute changes in immune signaling and glial reactivity to neuronal changes and pathological markers after single and repetitive mTBIs is currently lacking. In the current study, we addressed the question of how repeated injuries affect the brain neuroimmune response in the acute phase of injury (< 24 h) by exposing the 3xTg-AD mouse model of tau and Aβ pathology to successive (1x-5x) once-daily weight drop closed-head injuries and quantifying immune markers, pathological markers, and transcriptional profiles at 30 min, 4 h, and 24 h after each injury. We used young adult 2-4 month old 3xTg-AD mice to model the effects of rmTBI in the absence of significant tau and Aβ pathology. We identified pronounced sexual dimorphism in this model, with females eliciting more diverse changes after injury compared to males. Specifically, females showed: (1) a single injury caused a decrease in neuron-enriched genes inversely correlated with inflammatory protein expression and an increase in AD-related genes within 24 h, (2) each injury significantly increased a group of cortical cytokines (IL-1α, IL-1β, IL-2, IL-9, IL-13, IL-17, KC) and MAPK phospho-proteins (phospho-Atf2, phospho-Mek1), several of which co-labeled with neurons and correlated with phospho-tau, and (3) repetitive injury caused increased expression of genes associated with astrocyte reactivity and macrophage-associated immune function. Collectively our data suggest that neurons respond to a single injury within 24 h, while other cell types, including astrocytes, transition to inflammatory phenotypes within days of repetitive injury.
Collapse
Affiliation(s)
- Alyssa F Pybus
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Sara Bitarafan
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Rowan O Brothers
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Alivia Rohrer
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Arushi Khaitan
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Felix Rivera Moctezuma
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Kareena Udeshi
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Brae Davies
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Sydney Triplett
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Martin N Griffin
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Eric B Dammer
- Center for Neurodegenerative Diseases, School of Medicine, Emory University, Atlanta, GA, USA
| | - Srikant Rangaraju
- Department of Neurology, School of Medicine, Yale University, New Haven, CT, USA
| | - Erin M Buckley
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA.
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA, USA.
- Children's Healthcare of Atlanta, Atlanta, GA, USA.
| | - Levi B Wood
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA.
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
15
|
O’Brien WT, Spitz G, Xie B, Major BP, Mutimer S, Giesler LP, Bain J, Evans LJ, Duarte Martins B, Piantella S, Alhassan A, Brady S, Cappellari D, Somma V, McColl T, Symons GF, Gore T, Sun M, Kuek T, Horan S, Bei M, Ponsford JL, Willmott C, Reyes J, Ashton NJ, Zetterberg H, Mitra B, O’Brien TJ, Shultz SR, McDonald SJ. Biomarkers of Neurobiologic Recovery in Adults With Sport-Related Concussion. JAMA Netw Open 2024; 7:e2415983. [PMID: 38848061 PMCID: PMC11161851 DOI: 10.1001/jamanetworkopen.2024.15983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 04/04/2024] [Indexed: 06/10/2024] Open
Abstract
Importance Sport-related concussion (SRC), a form of mild traumatic brain injury, is a prevalent occurrence in collision sports. There are no well-established approaches for tracking neurobiologic recovery after SRC. Objective To examine the levels of serum glial fibrillary acidic protein (GFAP) and neurofilament light (NfL) in Australian football athletes who experience SRC. Design, Setting, and Participants A cohort study recruiting from April 10, 2021, to September 17, 2022, was conducted through the Victorian Amateur Football Association, Melbourne, Australia. Participants included adult Australian football players with or without SRC. Data analysis was performed from May 26, 2023, to March 27, 2024. Exposure Sport-related concussion, defined as at least 1 observable sign and/or 2 or more symptoms. Main Outcomes and Measures Primary outcomes were serum GFAP and NfL levels at 24 hours, and 1, 2, 4, 6, 8, 12, and 26 weeks. Secondary outcomes were symptoms, cognitive performance, and return to training times. Results Eighty-one individuals with SRC (median age, 22.8 [IQR, 21.3-26.0] years; 89% male) and 56 control individuals (median age, 24.6 [IQR, 22.4-27.3] years; 96% male) completed a total of 945 of 1057 eligible testing sessions. Compared with control participants, those with SRC exhibited higher GFAP levels at 24 hours (mean difference [MD] in natural log, pg/mL, 0.66 [95% CI, 0.50-0.82]) and 4 weeks (MD, 0.17 [95% CI, 0.02-0.32]), and NfL from 1 to 12 weeks (1-week MD, 0.31 [95% CI, 0.12-0.51]; 2-week MD, 0.38 [95% CI, 0.19-0.58]; 4-week MD, 0.31 [95% CI, 0.12-0.51]; 6-week MD, 0.27 [95% CI, 0.07-0.47]; 8-week MD, 0.36 [95% CI, 0.15-0.56]; and 12-week MD, 0.25 [95% CI, 0.04-0.46]). Growth mixture modeling identified 2 GFAP subgroups: extreme prolonged (16%) and moderate transient (84%). For NfL, 3 subgroups were identified: extreme prolonged (7%), moderate prolonged (15%), and minimal or no change (78%). Individuals with SRC who reported loss of consciousness (LOC) (33% of SRC cases) had higher GFAP at 24 hours (MD, 1.01 [95% CI, 0.77-1.24]), 1 week (MD, 0.27 [95% CI, 0.06-0.49]), 2 weeks (MD, 0.21 [95% CI, 0.004-0.42]) and 4 weeks (MD, 0.34 [95% CI, 0.13-0.55]), and higher NfL from 1 week to 12 weeks (1-week MD, 0.73 [95% CI, 0.42-1.03]; 2-week MD, 0.91 [95% CI, 0.61-1.21]; 4-week MD, 0.90 [95% CI, 0.59-1.20]; 6-week MD, 0.81 [95% CI, 0.50-1.13]; 8-week MD, 0.73 [95% CI, 0.42-1.04]; and 12-week MD, 0.54 [95% CI, 0.22-0.85]) compared with SRC participants without LOC. Return to training times were longer in the GFAP extreme compared with moderate subgroup (incident rate ratio [IRR], 1.99 [95% CI, 1.69-2.34]; NfL extreme (IRR, 3.24 [95% CI, 2.63-3.97]) and moderate (IRR, 1.43 [95% CI, 1.18-1.72]) subgroups compared with the minimal subgroup, and for individuals with LOC compared with those without LOC (IRR, 1.65 [95% CI, 1.41-1.93]). Conclusions and Relevance In this cohort study, a subset of SRC cases, particularly those with LOC, showed heightened and prolonged increases in GFAP and NfL levels, that persisted for at least 4 weeks. These findings suggest that serial biomarker measurement could identify such cases, guiding return to play decisions based on neurobiologic recovery. While further investigation is warranted, the association between prolonged biomarker elevations and LOC may support the use of more conservative return to play timelines for athletes with this clinical feature.
Collapse
Affiliation(s)
- William T. O’Brien
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
| | - Gershon Spitz
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
- Monash-Epworth Rehabilitation Research Centre, School of Psychological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Becca Xie
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
| | - Brendan P. Major
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
| | - Steven Mutimer
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
| | - Lauren P. Giesler
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
| | - Jesse Bain
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
| | - Lauren J. Evans
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
| | | | - Stefan Piantella
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
| | - Afizu Alhassan
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
| | - Shelby Brady
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
| | - David Cappellari
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
| | - Vincenzo Somma
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
| | - Thomas McColl
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
| | - Georgia F. Symons
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
| | - Tenae Gore
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
| | - Matthew Sun
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
| | - Timothy Kuek
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
| | - Seamus Horan
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
| | - Michael Bei
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
| | - Jennie L. Ponsford
- Monash-Epworth Rehabilitation Research Centre, School of Psychological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Catherine Willmott
- Monash-Epworth Rehabilitation Research Centre, School of Psychological Sciences, Monash University, Melbourne, Victoria, Australia
- Australian Football League, Melbourne, Victoria, Australia
| | - Jonathan Reyes
- Monash-Epworth Rehabilitation Research Centre, School of Psychological Sciences, Monash University, Melbourne, Victoria, Australia
- Australian Football League, Melbourne, Victoria, Australia
| | - Nicholas J. Ashton
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
- King’s College London, Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Institute Clinical Neuroscience Institute, London, United Kingdom
- NIHR Biomedical Research Centre for Mental Health and Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation, London, United Kingdom
- Centre for Age-Related Medicine, Stavanger University Hospital, Stavanger, Norway
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, University College London Institute of Neurology, Queen Square, London, United Kingdom
- UK Dementia Research Institute at University College London, London, United Kingdom
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, Hong Kong SAR, China
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison
| | - Biswadev Mitra
- Emergency & Trauma Centre, The Alfred Hospital, Australia
- School of Public Health & Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Terence J. O’Brien
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
- Department of Neurology, The Alfred Hospital, Melbourne, Victoria, Australia
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria, Australia
| | - Sandy R. Shultz
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
- Department of Neurology, The Alfred Hospital, Melbourne, Victoria, Australia
- Health Sciences, Vancouver Island University, Nanaimo, British Columbia, Canada
| | - Stuart J. McDonald
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
- Department of Neurology, The Alfred Hospital, Melbourne, Victoria, Australia
| |
Collapse
|
16
|
Meier TB. The search for blood-biomarkers of persistent post-concussion symptoms. J Neurol Sci 2024; 460:123015. [PMID: 38627180 DOI: 10.1016/j.jns.2024.123015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 05/12/2024]
Affiliation(s)
- Timothy B Meier
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| |
Collapse
|
17
|
Hardaker N, King D, Hume PA, Stewart T, Sims S, Basu I, Shilton B, Selfe J. Female RNA concussion (FeRNAC) study: assessing hormone profiles and salivary RNA in females with concussion by emergency departments in New Zealand: a study protocol. BMC Neurol 2024; 24:149. [PMID: 38698312 PMCID: PMC11064333 DOI: 10.1186/s12883-024-03653-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 04/26/2024] [Indexed: 05/05/2024] Open
Abstract
BACKGROUND Females of reproductive age with concussion report a greater number of symptoms that can be more severe and continue for longer than age matched males. Underlying mechanisms for sex differences are not well understood. Short non-coding Ribonucleic Acids (sncRNAs) are candidate salivary biomarkers for concussion and have been studied primarily in male athletes. Female sex hormones influence expression of these biomarkers, and it remains unclear whether a similar pattern of sncRNA expression would be observed in females following concussion. This study aims to evaluate recovery time, the ratio of salivary sncRNAs and symptom severity across different hormone profiles in females presenting to emergency departments (ED) with concussion and, to investigate the presence of low energy availability (LEA) as a potential modifier of concussion symptoms. METHODS This prospective cohort study recruits participants from New Zealand EDs who are biologically female, of reproductive age (16-50 years) and with a confirmed diagnosis of concussion from an ED healthcare professional. Participants are excluded by ED healthcare professionals from study recruitment as part of initial routine assessment if they have a pre-diagnosed psychiatric condition, neurological condition (i.e., epilepsy, cerebral palsy) or more than three previously diagnosed concussions. Participants provide a saliva sample for measurement of sncRNA's, and online survey responses relating to hormone profile and symptom recovery at 7-day intervals after injury until they report a full return to work/study. The study is being performed in accordance with ethical standards of the Declaration of Helsinki with ethics approval obtained from the Health and Disability Ethics Committee (HDEC #2021 EXP 11655), Auckland University of Technology Ethics Committee (AUTEC #22/110) and locality consent through Wellington hospital research office. DISCUSSION If saliva samples confirm presence of sncRNAs in females with concussion, it will provide evidence of the potential of saliva sampling as an objective tool to aid in diagnosis of, and confirmation of recovery from, concussion. Findings will determine whether expression of sncRNAs is influenced by steroid hormones in females and may outline the need for sex specific application and interpretation of sncRNAs as a clinical and/or research tool. TRIAL REGISTRATION Australian New Zealand Clinical Trials Registry (ANZCTR) registration number ACTRN12623001129673.
Collapse
Affiliation(s)
- Natalie Hardaker
- Faculty of Health and Environmental Science, Sports Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, New Zealand Wellington, New Zealand.
- Accident Compensation Corporation, Wellington, New Zealand.
- Traumatic Brain Injury Network (TBIN), Auckland University of Technology, Auckland, New Zealand.
| | - Doug King
- Faculty of Health and Environmental Science, Sports Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, New Zealand Wellington, New Zealand
- Traumatic Brain Injury Network (TBIN), Auckland University of Technology, Auckland, New Zealand
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
- Department of Sport and Exercise Sciences, Wolfson Research Institute for Health and Wellbeing, Durham University, Durham, UK
| | - Patria A Hume
- Faculty of Health and Environmental Science, Sports Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, New Zealand Wellington, New Zealand
- Traumatic Brain Injury Network (TBIN), Auckland University of Technology, Auckland, New Zealand
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
- Technology and Policy Lab - Law School, The University of Western Australia, Perth, Australia
| | - Tom Stewart
- Faculty of Health and Environmental Science, Sports Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, New Zealand Wellington, New Zealand
| | - Stacy Sims
- Faculty of Health and Environmental Science, Sports Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, New Zealand Wellington, New Zealand
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
- Stanford Lifestyle Medicine, Stanford University, Palo Alto, CA, USA
| | | | | | - James Selfe
- Department of Health Professions, Faculty of Health and Education, Manchester Metropolitan University, Manchester, UK
| |
Collapse
|
18
|
Relman DA. Neurological Illness and National Security: Lessons to Be Learned. JAMA 2024; 331:1093-1095. [PMID: 38497785 DOI: 10.1001/jama.2023.26818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Affiliation(s)
- David A Relman
- Department of Medicine, Stanford University School of Medicine, Stanford, California
- Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, California
- Center for International Security and Cooperation, Stanford University, Stanford, California
- Infectious Diseases Section, Veterans Affairs Palo Alto Health Care System, Palo Alto, California
| |
Collapse
|
19
|
D'Lauro C, Register-Mihalik JK, Meier TB, Kerr ZY, Knight K, Broglio SP, Leeds D, Lynall RC, Kroshus E, McCrea MA, McAllister TW, Schmidt JD, Master C, McGinty G, Jackson JC, Cameron KL, Buckley T, Kaminski T, Mihalik JP. Optimizing Concussion Care Seeking: Connecting Care-Seeking Behaviors and Neurophysiological States Through Blood Biomarkers. Am J Sports Med 2024; 52:801-810. [PMID: 38340366 DOI: 10.1177/03635465231221782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
BACKGROUND Timely and appropriate medical care after concussion presents a difficult public health problem. Concussion identification and treatment rely heavily on self-report, but more than half of concussions go unreported or are reported after a delay. If incomplete self-report increases exposure to harm, blood biomarkers may objectively indicate this neurobiological dysfunction. PURPOSE/HYPOTHESIS The purpose of this study was to compare postconcussion biomarker levels between individuals with different previous concussion diagnosis statuses and care-seeking statuses. It was hypothesized that individuals with undiagnosed concussions and poorer care seeking would show altered biomarker profiles. STUDY DESIGN Cohort study; Level of evidence, 3. METHODS Blood samples were collected from 287 military academy cadets and collegiate athletes diagnosed with concussion in the Advanced Research Core of the Concussion Assessment, Research and Education Consortium. The authors extracted each participant's self-reported previous concussion diagnosis status (no history, all diagnosed, ≥1 undiagnosed) and whether they had delayed or immediate symptom onset, symptom reporting, and removal from activity after the incident concussion. The authors compared the following blood biomarkers associated with neural injury between previous concussion diagnosis status groups and care-seeking groups: glial fibrillary acidic protein, ubiquitin c-terminal hydrolase-L1 (UCH-L1), neurofilament light chain (NF-L), and tau protein, captured at baseline, 24 to 48 hours, asymptomatic, and 7 days after unrestricted return to activity using tests of parallel profiles. RESULTS The undiagnosed previous concussion group (n = 21) had higher levels of NF-L at 24- to 48-hour and asymptomatic time points relative to all diagnosed (n = 72) or no previous concussion (n = 194) groups. For those with delayed removal from activity (n = 127), UCH-L1 was lower at 7 days after return to activity than that for athletes immediately removed from activity (n = 131). No other biomarker differences were observed. CONCLUSION Individuals with previous undiagnosed concussions or delayed removal from activity showed some different biomarker levels after concussion and after clinical recovery, despite a lack of baseline differences. This may indicate that poorer care seeking can create neurobiological differences in the concussed brain.
Collapse
Affiliation(s)
- Christopher D'Lauro
- Department of Behavioral Sciences and Leadership, United States Air Force Academy, Colorado Springs, Colorado, USA
- Investigation performed at University of Georgia, Athens, Georgia, USA
| | - Johna K Register-Mihalik
- Matthew Gfeller Center & STAR Heel Performance Laboratory, Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Investigation performed at University of Georgia, Athens, Georgia, USA
| | - Timothy B Meier
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Investigation performed at University of Georgia, Athens, Georgia, USA
| | - Zachary Yukio Kerr
- Matthew Gfeller Center & STAR Heel Performance Laboratory, Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Investigation performed at University of Georgia, Athens, Georgia, USA
| | - Kristen Knight
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA
- Investigation performed at University of Georgia, Athens, Georgia, USA
| | - Steven P Broglio
- University of Michigan Concussion Center, University of Michigan, Ann Arbor, Michigan, USA
- Investigation performed at University of Georgia, Athens, Georgia, USA
| | - Daniel Leeds
- Computer and Information Sciences, Fordham University, New York, New York, USA
- Investigation performed at University of Georgia, Athens, Georgia, USA
| | - Robert C Lynall
- UGA Concussion Research Laboratory, Department of Kinesiology, University of Georgia, Athens, Georgia, USA
- Investigation performed at University of Georgia, Athens, Georgia, USA
| | - Emily Kroshus
- University of Washington, Department of Pediatrics & Seattle Children's Research Institute, Center for Child Health, Behavior, and Development, Seattle, Washington, USA
- Investigation performed at University of Georgia, Athens, Georgia, USA
| | - Michael A McCrea
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Investigation performed at University of Georgia, Athens, Georgia, USA
| | - Thomas W McAllister
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Investigation performed at University of Georgia, Athens, Georgia, USA
| | - Julianne D Schmidt
- UGA Concussion Research Laboratory, Department of Kinesiology, University of Georgia, Athens, Georgia, USA
- Investigation performed at University of Georgia, Athens, Georgia, USA
| | - Christina Master
- Division of Orthopedics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Investigation performed at University of Georgia, Athens, Georgia, USA
| | - Gerald McGinty
- United States Air Force Academy, Colorado Springs, Colorado, USA
- Investigation performed at University of Georgia, Athens, Georgia, USA
| | - Jonathan C Jackson
- United States Air Force Academy, Colorado Springs, Colorado, USA
- Investigation performed at University of Georgia, Athens, Georgia, USA
| | - Kenneth L Cameron
- Keller Army Hospital, United States Military Academy, West Point, New York, USA
- Investigation performed at University of Georgia, Athens, Georgia, USA
| | - Thomas Buckley
- Department of Kinesiology & Applied Physiology, University of Delaware, Newark, Delaware, USA
- Investigation performed at University of Georgia, Athens, Georgia, USA
| | - Thomas Kaminski
- Department of Kinesiology & Applied Physiology, University of Delaware, Newark, Delaware, USA
- Investigation performed at University of Georgia, Athens, Georgia, USA
| | - Jason P Mihalik
- Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Investigation performed at University of Georgia, Athens, Georgia, USA
| |
Collapse
|
20
|
Granholm AC, Hamlett ED. The Role of Tau Pathology in Alzheimer's Disease and Down Syndrome. J Clin Med 2024; 13:1338. [PMID: 38592182 PMCID: PMC10932364 DOI: 10.3390/jcm13051338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/10/2024] [Accepted: 02/20/2024] [Indexed: 04/10/2024] Open
Abstract
Background: Individuals with Down syndrome (DS) exhibit an almost complete penetrance of Alzheimer's disease (AD) pathology but are underrepresented in clinical trials for AD. The Tau protein is associated with microtubule function in the neuron and is crucial for normal axonal transport. In several different neurodegenerative disorders, Tau misfolding leads to hyper-phosphorylation of Tau (p-Tau), which may seed pathology to bystander cells and spread. This review is focused on current findings regarding p-Tau and its potential to seed pathology as a "prion-like" spreader. It also considers the consequences of p-Tau pathology leading to AD, particularly in individuals with Down syndrome. Methods: Scopus (SC) and PubMed (PM) were searched in English using keywords "tau AND seeding AND brain AND down syndrome". A total of 558 SC or 529 PM potentially relevant articles were identified, of which only six SC or three PM articles mentioned Down syndrome. This review was built upon the literature and the recent findings of our group and others. Results: Misfolded p-Tau isoforms are seeding competent and may be responsible for spreading AD pathology. Conclusions: This review demonstrates recent work focused on understanding the role of neurofibrillary tangles and monomeric/oligomeric Tau in the prion-like spreading of Tau pathology in the human brain.
Collapse
Affiliation(s)
- Ann-Charlotte Granholm
- Department of Neurosurgery, University of Colorado Anschutz Medical Center, Aurora, CO 80045, USA
| | - Eric D. Hamlett
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29425, USA;
| |
Collapse
|
21
|
Tuure J, Mohammadian M, Tenovuo O, Blennow K, Hossain I, Hutchinson P, Maanpää HR, Menon DK, Newcombe VF, Takala RSK, Tallus J, van Gils M, Zetterberg H, Posti JP. Late Blood Levels of Neurofilament Light Correlate With Outcome in Patients With Traumatic Brain Injury. J Neurotrauma 2024; 41:359-368. [PMID: 37698882 PMCID: PMC11071082 DOI: 10.1089/neu.2023.0207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023] Open
Abstract
Neurofilament light (NF-L) is an axonal protein that has shown promise as a traumatic brain injury (TBI) biomarker. Serum NF-L shows a rather slow rise after injury, peaking after 1-2 weeks, although some studies suggest that it may remain elevated for months after TBI. The aim of this study was to examine if plasma NF-L levels several months after the injury correlate with functional outcome in patients who have sustained TBIs of variable initial severity. In this prospective study of 178 patients with TBI and 40 orthopedic injury controls, we measured plasma NF-L levels in blood samples taken at the follow-up appointment on average 9 months after injury. Patients with TBI were divided into two groups (mild [mTBI] vs. moderate-to-severe [mo/sTBI]) according to the severity of injury assessed with the Glasgow Coma Scale upon admission. Recovery and functional outcome were assessed using the Extended Glasgow Outcome Scale (GOSE). Higher levels of NF-L at the follow-up correlated with worse outcome in patients with moderate-to-severe TBI (Spearman's rho = -0.18; p < 0.001). In addition, in computed tomography-positive mTBI group, the levels of NF-L were significantly lower in patients with GOSE 7-8 (median 18.14; interquartile range [IQR] 9.82, 32.15) when compared with patients with GOSE <7 (median 73.87; IQR 32.17, 110.54; p = 0.002). In patients with mTBI, late NF-L levels do not seem to provide clinical benefit for late-stage assessment, but in patients with initially mo/sTBI, persistently elevated NF-L levels are associated with worse outcome after TBI and may reflect ongoing brain injury.
Collapse
Affiliation(s)
- Juho Tuure
- Department of Clinical Neurosciences, University of Turku, Finland
| | - Mehrbod Mohammadian
- Department of Clinical Neurosciences, University of Turku, Finland
- Turku Brain Injury Center, Turku University Hospital, Finland
| | - Olli Tenovuo
- Department of Clinical Neurosciences, University of Turku, Finland
- Turku Brain Injury Center, Turku University Hospital, Finland
| | - Kaj Blennow
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, United Kingdom
- UK Dementia Research Institute at UCL, University College London, London, United Kingdom
| | - Iftakher Hossain
- Department of Clinical Neurosciences, University of Turku, Finland
- Turku Brain Injury Center, Turku University Hospital, Finland
- Neurocenter, Department of Neurosurgery, Turku University Hospital, Finland
- Department of Clinical Neurosciences, Neurosurgery Unit, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Peter Hutchinson
- Department of Clinical Neurosciences, Neurosurgery Unit, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Henna-Riikka Maanpää
- Department of Clinical Neurosciences, University of Turku, Finland
- Turku Brain Injury Center, Turku University Hospital, Finland
- Neurocenter, Department of Neurosurgery, Turku University Hospital, Finland
| | - David K Menon
- Division of Anaesthesia, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Virginia F Newcombe
- Division of Anaesthesia, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Riikka S K Takala
- Perioperative Services, Intensive Care Medicine and Pain Management, Turku University Hospital and University of Turku, Finland
| | - Jussi Tallus
- Department of Clinical Neurosciences, University of Turku, Finland
- Turku Brain Injury Center, Turku University Hospital, Finland
- Department of Radiology, Turku University Hospital and University of Turku, Finland
| | - Mark van Gils
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Henrik Zetterberg
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, United Kingdom
- UK Dementia Research Institute at UCL, University College London, London, United Kingdom
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
| | - Jussi P Posti
- Department of Clinical Neurosciences, University of Turku, Finland
- Turku Brain Injury Center, Turku University Hospital, Finland
- Neurocenter, Department of Neurosurgery, Turku University Hospital, Finland
| |
Collapse
|
22
|
Giesler LP, O'Brien WT, Symons GF, Salberg S, Spitz G, Wesselingh R, O'Brien TJ, Mychasiuk R, Shultz SR, McDonald SJ. Investigating the Association Between Extended Participation in Collision Sports and Fluid Biomarkers Among Masters Athletes. Neurotrauma Rep 2024; 5:74-80. [PMID: 38463419 PMCID: PMC10923547 DOI: 10.1089/neur.2023.0086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024] Open
Abstract
Traumatic brain injuries (TBIs) and concussions are prevalent in collision sports, and there is evidence that levels of exposure to such sports may increase the risk of neurological abnormalities. Elevated levels of fluid-based biomarkers have been observed after concussions or among athletes with a history of participating in collision sports, and certain biomarkers exhibit sensitivity toward neurodegeneration. This study investigated a cohort of 28 male amateur athletes competing in "Masters" competitions for persons >35 years of age. The primary objective of this study was to compare the levels of blood and saliva biomarkers associated with brain injury, inflammation, aging, and neurodegeneration between athletes with an extensive history of collision sport participation (i.e., median = 27 years; interquartile range = 18-44, minimum = 8) and those with no history. Plasma proteins associated with neural damage and neurodegeneration were measured using Simoa® assays, and saliva was analyzed for markers associated with inflammation and telomere length using quantitative real-time polymerase chain reaction. There were no significant differences between collision and non-collision sport athletes for plasma levels of glial fibrillary acidic protein, neurofilament light, ubiquitin C-terminal hydrolase L1, tau, tau phosphorylated at threonine 181, and brain-derived neurotrophic factor. Moreover, salivary levels of genes associated with inflammation and telomere length were similar between groups. There were no significant differences between groups in symptom frequency or severity on the Sport Concussion Assessment Tool-5th Edition. Overall, these findings provide preliminary evidence that biomarkers associated with neural tissue damage, neurodegeneration, and inflammation may not exhibit significant alterations in asymptomatic amateur athletes with an extensive history of amateur collision sport participation.
Collapse
Affiliation(s)
- Lauren P. Giesler
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - William T. O'Brien
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Georgia F. Symons
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Sabrina Salberg
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Gershon Spitz
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Turner Institute for Brain and Mental Health, Monash University, Melbourne, Victoria, Australia
| | - Robb Wesselingh
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Department of Neurology, Alfred Hospital, Melbourne, Victoria, Australia
| | - Terence J. O'Brien
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Department of Neurology, Alfred Hospital, Melbourne, Victoria, Australia
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria, Australia
| | - Richelle Mychasiuk
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Sandy R. Shultz
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Department of Neurology, Alfred Hospital, Melbourne, Victoria, Australia
- Health Sciences, Vancouver Island University, Nanaimo, British Columbia, Canada
| | - Stuart J. McDonald
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Department of Neurology, Alfred Hospital, Melbourne, Victoria, Australia
| |
Collapse
|
23
|
Meier TB, Huber DL, Goeckner BD, Gill JM, Pasquina P, Broglio SP, McAllister TW, Harezlak J, McCrea MA. Association of Blood Biomarkers of Inflammation With Acute Concussion in Collegiate Athletes and Military Service Academy Cadets. Neurology 2024; 102:e207991. [PMID: 38165315 PMCID: PMC11407501 DOI: 10.1212/wnl.0000000000207991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 09/20/2023] [Indexed: 01/03/2024] Open
Abstract
BACKGROUND AND OBJECTIVES The objective was to characterize the acute effects of concussion (a subset of mild traumatic brain injury) on serum interleukin (IL)-6 and IL-1 receptor antagonist (RA) and 5 additional inflammatory markers in athletes and military service academy members from the Concussion Assessment, Research, and Education Consortium and to determine whether these markers aid in discrimination of concussed participants from controls. METHODS Athletes and cadets with concussion and matched controls provided blood at baseline and postinjury visits between January 2015 and March 2020. Linear models investigated changes in inflammatory markers measured using Meso Scale Discovery assays across time points (baseline and 0-12, 12-36, 36-60 hours). Subanalyses were conducted in participants split by sex and injury population. Logistic regression analyses tested whether acute levels of IL-6 and IL-1RA improved discrimination of concussed participants relative to brain injury markers (glial fibrillary acidic protein, tau, neurofilament light, ubiquitin c-terminal hydrolase-L1) or clinical data (Sport Concussion Assessment Tool-Third Edition, Standardized Assessment of Concussion, Balance Error Scoring System). RESULTS Participants with concussion (total, N = 422) had elevated IL-6 and IL-1RA at 0-12 hours vs controls (n = 345; IL-6: mean difference [MD] (standard error) = 0.701 (0.091), p < 0.0001; IL-1RA: MD = 0.283 (0.042), p < 0.0001) and relative to baseline (IL-6: MD = 0.656 (0.078), p < 0.0001; IL-1RA: MD = 0.242 (0.038), p < 0.0001), 12-36 hours (IL-6: MD = 0.609 (0.086), p < 0.0001; IL-1RA: MD = 0.322 (0.041), p < 0.0001), and 36-60 hours (IL-6: MD = 0.818 (0.084), p < 0.0001; IL-1RA: MD = 0.317 (0.040), p < 0.0001). IL-6 and IL-1RA were elevated in participants with sport (IL-6: MD = 0.748 (0.115), p < 0.0001; IL-1RA: MD = 0.304 (0.055), p < 0.0001) and combative-related concussions (IL-6: MD = 0.583 (0.178), p = 0.001; IL-1RA: MD = 0.312 (0.081), p = 0.0001). IL-6 was elevated in male (MD = 0.734 (0.105), p < 0.0001) and female participants (MD = 0.600 (0.177), p = 0.0008); IL-1RA was only elevated in male participants (MD = 0.356 (0.047), p < 0.0001). Logistic regression showed the inclusion of IL-6 and IL-1RA at 0-12 hours improved the discrimination of participants with concussion from controls relative to brain injury markers (χ2(2) = 17.855, p = 0.0001; area under the receiver operating characteristic curve [AUC] 0.73 [0.66-0.80] to 0.78 [0.71-0.84]), objective clinical measures (balance and cognition; χ2(2) = 40.661, p < 0.0001; AUC 0.81 [0.76-0.86] to 0.87 [0.83-0.91]), and objective and subjective measures combined (χ2(2) = 13.456, p = 0.001; AUC 0.97 [0.95-0.99] to 0.98 [0.96-0.99]), although improvement in AUC was only significantly relative to objective clinical measures. DISCUSSION IL-6 and IL-1RA (male participants only) are elevated in the early-acute window postconcussion and may aid in diagnostic decisions beyond traditional blood markers and common clinical measures. IL-1RA results highlight sex differences in the immune response to concussion which should be considered in future biomarker work.
Collapse
Affiliation(s)
- Timothy B Meier
- From the Departments of Neurosurgery (T.B.M., D.L.H., M.A.M.), Biomedical Engineering (T.B.M.), Cell Biology, Neurobiology and Anatomy (T.B.M.), Biophysics (B.D.G.), and Neurology (M.A.M.), Medical College of Wisconsin, Milwaukee; National Institute of Nursing Research (J.M.G.), NIH, Bethesda; Johns Hopkins School of Nursing and Medicine (J.M.G.), Baltimore, MD; Department of Physical Medicine and Rehabilitation (P.P.), Uniformed Services University of the Health Sciences, Bethesda, MD; Michigan Concussion Center (S.P.B.), University of Michigan, Ann Arbor; Department of Psychiatry (T.W.M.), Indiana University School of Medicine, Indianapolis; Department of Epidemiology and Biostatistics (J.H.), School of Public Health-Bloomington, Indiana University
| | - Daniel L Huber
- From the Departments of Neurosurgery (T.B.M., D.L.H., M.A.M.), Biomedical Engineering (T.B.M.), Cell Biology, Neurobiology and Anatomy (T.B.M.), Biophysics (B.D.G.), and Neurology (M.A.M.), Medical College of Wisconsin, Milwaukee; National Institute of Nursing Research (J.M.G.), NIH, Bethesda; Johns Hopkins School of Nursing and Medicine (J.M.G.), Baltimore, MD; Department of Physical Medicine and Rehabilitation (P.P.), Uniformed Services University of the Health Sciences, Bethesda, MD; Michigan Concussion Center (S.P.B.), University of Michigan, Ann Arbor; Department of Psychiatry (T.W.M.), Indiana University School of Medicine, Indianapolis; Department of Epidemiology and Biostatistics (J.H.), School of Public Health-Bloomington, Indiana University
| | - Bryna D Goeckner
- From the Departments of Neurosurgery (T.B.M., D.L.H., M.A.M.), Biomedical Engineering (T.B.M.), Cell Biology, Neurobiology and Anatomy (T.B.M.), Biophysics (B.D.G.), and Neurology (M.A.M.), Medical College of Wisconsin, Milwaukee; National Institute of Nursing Research (J.M.G.), NIH, Bethesda; Johns Hopkins School of Nursing and Medicine (J.M.G.), Baltimore, MD; Department of Physical Medicine and Rehabilitation (P.P.), Uniformed Services University of the Health Sciences, Bethesda, MD; Michigan Concussion Center (S.P.B.), University of Michigan, Ann Arbor; Department of Psychiatry (T.W.M.), Indiana University School of Medicine, Indianapolis; Department of Epidemiology and Biostatistics (J.H.), School of Public Health-Bloomington, Indiana University
| | - Jessica M Gill
- From the Departments of Neurosurgery (T.B.M., D.L.H., M.A.M.), Biomedical Engineering (T.B.M.), Cell Biology, Neurobiology and Anatomy (T.B.M.), Biophysics (B.D.G.), and Neurology (M.A.M.), Medical College of Wisconsin, Milwaukee; National Institute of Nursing Research (J.M.G.), NIH, Bethesda; Johns Hopkins School of Nursing and Medicine (J.M.G.), Baltimore, MD; Department of Physical Medicine and Rehabilitation (P.P.), Uniformed Services University of the Health Sciences, Bethesda, MD; Michigan Concussion Center (S.P.B.), University of Michigan, Ann Arbor; Department of Psychiatry (T.W.M.), Indiana University School of Medicine, Indianapolis; Department of Epidemiology and Biostatistics (J.H.), School of Public Health-Bloomington, Indiana University
| | - Paul Pasquina
- From the Departments of Neurosurgery (T.B.M., D.L.H., M.A.M.), Biomedical Engineering (T.B.M.), Cell Biology, Neurobiology and Anatomy (T.B.M.), Biophysics (B.D.G.), and Neurology (M.A.M.), Medical College of Wisconsin, Milwaukee; National Institute of Nursing Research (J.M.G.), NIH, Bethesda; Johns Hopkins School of Nursing and Medicine (J.M.G.), Baltimore, MD; Department of Physical Medicine and Rehabilitation (P.P.), Uniformed Services University of the Health Sciences, Bethesda, MD; Michigan Concussion Center (S.P.B.), University of Michigan, Ann Arbor; Department of Psychiatry (T.W.M.), Indiana University School of Medicine, Indianapolis; Department of Epidemiology and Biostatistics (J.H.), School of Public Health-Bloomington, Indiana University
| | - Steven P Broglio
- From the Departments of Neurosurgery (T.B.M., D.L.H., M.A.M.), Biomedical Engineering (T.B.M.), Cell Biology, Neurobiology and Anatomy (T.B.M.), Biophysics (B.D.G.), and Neurology (M.A.M.), Medical College of Wisconsin, Milwaukee; National Institute of Nursing Research (J.M.G.), NIH, Bethesda; Johns Hopkins School of Nursing and Medicine (J.M.G.), Baltimore, MD; Department of Physical Medicine and Rehabilitation (P.P.), Uniformed Services University of the Health Sciences, Bethesda, MD; Michigan Concussion Center (S.P.B.), University of Michigan, Ann Arbor; Department of Psychiatry (T.W.M.), Indiana University School of Medicine, Indianapolis; Department of Epidemiology and Biostatistics (J.H.), School of Public Health-Bloomington, Indiana University
| | - Thomas W McAllister
- From the Departments of Neurosurgery (T.B.M., D.L.H., M.A.M.), Biomedical Engineering (T.B.M.), Cell Biology, Neurobiology and Anatomy (T.B.M.), Biophysics (B.D.G.), and Neurology (M.A.M.), Medical College of Wisconsin, Milwaukee; National Institute of Nursing Research (J.M.G.), NIH, Bethesda; Johns Hopkins School of Nursing and Medicine (J.M.G.), Baltimore, MD; Department of Physical Medicine and Rehabilitation (P.P.), Uniformed Services University of the Health Sciences, Bethesda, MD; Michigan Concussion Center (S.P.B.), University of Michigan, Ann Arbor; Department of Psychiatry (T.W.M.), Indiana University School of Medicine, Indianapolis; Department of Epidemiology and Biostatistics (J.H.), School of Public Health-Bloomington, Indiana University
| | - Jaroslaw Harezlak
- From the Departments of Neurosurgery (T.B.M., D.L.H., M.A.M.), Biomedical Engineering (T.B.M.), Cell Biology, Neurobiology and Anatomy (T.B.M.), Biophysics (B.D.G.), and Neurology (M.A.M.), Medical College of Wisconsin, Milwaukee; National Institute of Nursing Research (J.M.G.), NIH, Bethesda; Johns Hopkins School of Nursing and Medicine (J.M.G.), Baltimore, MD; Department of Physical Medicine and Rehabilitation (P.P.), Uniformed Services University of the Health Sciences, Bethesda, MD; Michigan Concussion Center (S.P.B.), University of Michigan, Ann Arbor; Department of Psychiatry (T.W.M.), Indiana University School of Medicine, Indianapolis; Department of Epidemiology and Biostatistics (J.H.), School of Public Health-Bloomington, Indiana University
| | - Michael A McCrea
- From the Departments of Neurosurgery (T.B.M., D.L.H., M.A.M.), Biomedical Engineering (T.B.M.), Cell Biology, Neurobiology and Anatomy (T.B.M.), Biophysics (B.D.G.), and Neurology (M.A.M.), Medical College of Wisconsin, Milwaukee; National Institute of Nursing Research (J.M.G.), NIH, Bethesda; Johns Hopkins School of Nursing and Medicine (J.M.G.), Baltimore, MD; Department of Physical Medicine and Rehabilitation (P.P.), Uniformed Services University of the Health Sciences, Bethesda, MD; Michigan Concussion Center (S.P.B.), University of Michigan, Ann Arbor; Department of Psychiatry (T.W.M.), Indiana University School of Medicine, Indianapolis; Department of Epidemiology and Biostatistics (J.H.), School of Public Health-Bloomington, Indiana University
| |
Collapse
|
24
|
Goeckner BD, Brett BL, Mayer AR, España LY, Banerjee A, Muftuler LT, Meier TB. Associations of prior concussion severity with brain microstructure using mean apparent propagator magnetic resonance imaging. Hum Brain Mapp 2024; 45:e26556. [PMID: 38158641 PMCID: PMC10789198 DOI: 10.1002/hbm.26556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 10/16/2023] [Accepted: 11/21/2023] [Indexed: 01/03/2024] Open
Abstract
Magnetic resonance imaging (MRI) diffusion studies have shown chronic microstructural tissue abnormalities in athletes with history of concussion, but with inconsistent findings. Concussions with post-traumatic amnesia (PTA) and/or loss of consciousness (LOC) have been connected to greater physiological injury. The novel mean apparent propagator (MAP) MRI is expected to be more sensitive to such tissue injury than the conventional diffusion tensor imaging. This study examined effects of prior concussion severity on microstructure with MAP-MRI. Collegiate-aged athletes (N = 111, 38 females; ≥6 months since most recent concussion, if present) completed semistructured interviews to determine the presence of prior concussion and associated injury characteristics, including PTA and LOC. MAP-MRI metrics (mean non-Gaussian diffusion [NG Mean], return-to-origin probability [RTOP], and mean square displacement [MSD]) were calculated from multi-shell diffusion data, then evaluated for associations with concussion severity through group comparisons in a primary model (athletes with/without prior concussion) and two secondary models (athletes with/without prior concussion with PTA and/or LOC, and athletes with/without prior concussion with LOC only). Bayesian multilevel modeling estimated models in regions of interest (ROI) in white matter and subcortical gray matter, separately. In gray matter, the primary model showed decreased NG Mean and RTOP in the bilateral pallidum and decreased NG Mean in the left putamen with prior concussion. In white matter, lower NG Mean with prior concussion was present in all ROI across all models and was further decreased with LOC. However, only prior concussion with LOC was associated with decreased RTOP and increased MSD across ROI. Exploratory analyses conducted separately in male and female athletes indicate associations in the primary model may differ by sex. Results suggest microstructural measures in gray matter are associated with a general history of concussion, while a severity-dependent association of prior concussion may exist in white matter.
Collapse
Affiliation(s)
- Bryna D. Goeckner
- Department of BiophysicsMedical College of WisconsinMilwaukeeWisconsinUSA
| | - Benjamin L. Brett
- Department of NeurosurgeryMedical College of WisconsinMilwaukeeWisconsinUSA
- Department of NeurologyMedical College of WisconsinMilwaukeeWisconsinUSA
| | - Andrew R. Mayer
- The Mind Research Network/Lovelace Biomedical and Environmental Research InstituteAlbuquerqueNew MexicoUSA
- Departments of Neurology and PsychiatryUniversity of New Mexico School of MedicineAlbuquerqueNew MexicoUSA
- Department of PsychologyUniversity of New MexicoAlbuquerqueNew MexicoUSA
| | - Lezlie Y. España
- Department of NeurosurgeryMedical College of WisconsinMilwaukeeWisconsinUSA
| | - Anjishnu Banerjee
- Department of BiostatisticsMedical College of WisconsinMilwaukeeWisconsinUSA
| | - L. Tugan Muftuler
- Department of NeurosurgeryMedical College of WisconsinMilwaukeeWisconsinUSA
| | - Timothy B. Meier
- Department of NeurosurgeryMedical College of WisconsinMilwaukeeWisconsinUSA
- Department of Biomedical EngineeringMedical College of WisconsinMilwaukeeWisconsinUSA
- Department of Cell Biology, Neurobiology and AnatomyMedical College of WisconsinMilwaukeeWisconsinUSA
| |
Collapse
|
25
|
van der Horn HJ, de Koning ME, Visser K, Kok MGJ, Spikman JM, Scheenen ME, Renken RJ, Calhoun VD, Vergara VM, Cabral J, Mayer AR, van der Naalt J. Dynamic phase-locking states and personality in sub-acute mild traumatic brain injury: An exploratory study. PLoS One 2023; 18:e0295984. [PMID: 38100479 PMCID: PMC10723684 DOI: 10.1371/journal.pone.0295984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 12/01/2023] [Indexed: 12/17/2023] Open
Abstract
Research has shown that maladaptive personality characteristics, such as Neuroticism, are associated with poor outcome after mild traumatic brain injury (mTBI). The current exploratory study investigated the neural underpinnings of this process using dynamic functional network connectivity (dFNC) analyses of resting-state (rs) fMRI, and diffusion MRI (dMRI). Twenty-seven mTBI patients and 21 healthy controls (HC) were included. After measuring the Big Five personality dimensions, principal component analysis (PCA) was used to obtain a superordinate factor representing emotional instability, consisting of high Neuroticism, moderate Openness, and low Extraversion, Agreeableness, and Conscientiousness. Persistent symptoms were measured using the head injury symptom checklist at six months post-injury; symptom severity (i.e., sum of all items) was used for further analyses. For patients, brain MRI was performed in the sub-acute phase (~1 month) post-injury. Following parcellation of rs-fMRI using independent component analysis, leading eigenvector dynamic analysis (LEiDA) was performed to compute dynamic phase-locking brain states. Main patterns of brain diffusion were computed using tract-based spatial statistics followed by PCA. No differences in phase-locking state measures were found between patients and HC. Regarding dMRI, a trend significant decrease in fractional anisotropy was found in patients relative to HC, particularly in the fornix, genu of the corpus callosum, anterior and posterior corona radiata. Visiting one specific phase-locking state was associated with lower symptom severity after mTBI. This state was characterized by two clearly delineated communities (each community consisting of areas with synchronized phases): one representing an executive/saliency system, with a strong contribution of the insulae and basal ganglia; the other representing the canonical default mode network. In patients who scored high on emotional instability, this relationship was even more pronounced. Dynamic phase-locking states were not related to findings on dMRI. Altogether, our results provide preliminary evidence for the coupling between personality and dFNC in the development of long-term symptoms after mTBI.
Collapse
Affiliation(s)
- Harm J. van der Horn
- Department of Neurology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- The Mind Research Network/Lovelace Biomedical Research Institute, Pete & Nancy Domenici Hall, Albuquerque, NM, United States of America
| | | | - Koen Visser
- Department of Neurology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Marius G. J. Kok
- Department of Radiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jacoba M. Spikman
- Department of Neuropsychology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Myrthe E. Scheenen
- Department of Neuropsychology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Remco J. Renken
- Department of Neuroscience, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Vince D. Calhoun
- Tri-institutional Center for Translational Research (TReNDS), Georgia State, Georgia Tech, Emory, Atlanta, GA, United States of America
| | - Victor M. Vergara
- Tri-institutional Center for Translational Research (TReNDS), Georgia State, Georgia Tech, Emory, Atlanta, GA, United States of America
| | - Joana Cabral
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
| | - Andrew R. Mayer
- The Mind Research Network/Lovelace Biomedical Research Institute, Pete & Nancy Domenici Hall, Albuquerque, NM, United States of America
- Department of Neurology, University of New Mexico School of Medicine, Albuquerque, NM, United States of America
- Department of Psychiatry, University of New Mexico School of Medicine, Albuquerque, NM, United States of America
- Department of Psychology, University of New Mexico School of Medicine, Albuquerque, NM, United States of America
| | - Joukje van der Naalt
- Department of Neurology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
26
|
Mayer AR, Meier TB, Ling JM, Dodd AB, Brett BL, Robertson-Benta CR, Huber DL, Van der Horn HJ, Broglio SP, McCrea MA, McAllister T. Increased brain age and relationships with blood-based biomarkers following concussion in younger populations. J Neurol 2023; 270:5835-5848. [PMID: 37594499 PMCID: PMC10632216 DOI: 10.1007/s00415-023-11931-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/19/2023] [Accepted: 08/03/2023] [Indexed: 08/19/2023]
Abstract
OBJECTIVE Brain age is increasingly being applied to the spectrum of brain injury to define neuropathological changes in conjunction with blood-based biomarkers. However, data from the acute/sub-acute stages of concussion are lacking, especially among younger cohorts. METHODS Predicted brain age differences were independently calculated in large, prospectively recruited cohorts of pediatric concussion and matched healthy controls (total N = 446), as well as collegiate athletes with sport-related concussion and matched non-contact sport controls (total N = 184). Effects of repetitive head injury (i.e., exposure) were examined in a separate cohort of contact sport athletes (N = 82), as well as by quantifying concussion history through semi-structured interviews and years of contact sport participation. RESULTS Findings of increased brain age during acute and sub-acute concussion were independently replicated across both cohorts, with stronger evidence of recovery for pediatric (4 months) relative to concussed athletes (6 months). Mixed evidence existed for effects of repetitive head injury, as brain age was increased in contact sport athletes, but was not associated with concussion history or years of contact sport exposure. There was no difference in brain age between concussed and contact sport athletes. Total tau decreased immediately (~ 1.5 days) post-concussion relative to the non-contact group, whereas pro-inflammatory markers were increased in both concussed and contact sport athletes. Anti-inflammatory markers were inversely related to brain age, whereas markers of axonal injury (neurofilament light) exhibited a trend positive association. CONCLUSION Current and previous findings collectively suggest that the chronicity of brain age differences may be mediated by age at injury (adults > children), with preliminary findings suggesting that exposure to contact sports may also increase brain age.
Collapse
Affiliation(s)
- Andrew R Mayer
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, 1101 Yale Blvd. NE, Albuquerque, NM, 87106, USA.
- Neurology and Psychiatry Departments, University of New Mexico School of Medicine, Albuquerque, NM, USA.
- Department of Psychology, University of New Mexico, Albuquerque, NM, USA.
| | - Timothy B Meier
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Josef M Ling
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, 1101 Yale Blvd. NE, Albuquerque, NM, 87106, USA
| | - Andrew B Dodd
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, 1101 Yale Blvd. NE, Albuquerque, NM, 87106, USA
| | - Benjamin L Brett
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Neurology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Cidney R Robertson-Benta
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, 1101 Yale Blvd. NE, Albuquerque, NM, 87106, USA
| | - Daniel L Huber
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Harm J Van der Horn
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, 1101 Yale Blvd. NE, Albuquerque, NM, 87106, USA
| | - Steven P Broglio
- Michigan Concussion Center, University of Michigan, Ann Arbor, MI, USA
| | - Michael A McCrea
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Neurology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Thomas McAllister
- Department of Psychiatry, Indiana University School of Medicine, Bloomington, IN, USA
| |
Collapse
|
27
|
Kobeissy F, Goli M, Yadikar H, Shakkour Z, Kurup M, Haidar MA, Alroumi S, Mondello S, Wang KK, Mechref Y. Advances in neuroproteomics for neurotrauma: unraveling insights for personalized medicine and future prospects. Front Neurol 2023; 14:1288740. [PMID: 38073638 PMCID: PMC10703396 DOI: 10.3389/fneur.2023.1288740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/01/2023] [Indexed: 02/12/2024] Open
Abstract
Neuroproteomics, an emerging field at the intersection of neuroscience and proteomics, has garnered significant attention in the context of neurotrauma research. Neuroproteomics involves the quantitative and qualitative analysis of nervous system components, essential for understanding the dynamic events involved in the vast areas of neuroscience, including, but not limited to, neuropsychiatric disorders, neurodegenerative disorders, mental illness, traumatic brain injury, chronic traumatic encephalopathy, and other neurodegenerative diseases. With advancements in mass spectrometry coupled with bioinformatics and systems biology, neuroproteomics has led to the development of innovative techniques such as microproteomics, single-cell proteomics, and imaging mass spectrometry, which have significantly impacted neuronal biomarker research. By analyzing the complex protein interactions and alterations that occur in the injured brain, neuroproteomics provides valuable insights into the pathophysiological mechanisms underlying neurotrauma. This review explores how such insights can be harnessed to advance personalized medicine (PM) approaches, tailoring treatments based on individual patient profiles. Additionally, we highlight the potential future prospects of neuroproteomics, such as identifying novel biomarkers and developing targeted therapies by employing artificial intelligence (AI) and machine learning (ML). By shedding light on neurotrauma's current state and future directions, this review aims to stimulate further research and collaboration in this promising and transformative field.
Collapse
Affiliation(s)
- Firas Kobeissy
- Department of Neurobiology, School of Medicine, Neuroscience Institute, Atlanta, GA, United States
| | - Mona Goli
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, United States
| | - Hamad Yadikar
- Department of Biological Sciences Faculty of Science, Kuwait University, Safat, Kuwait
| | - Zaynab Shakkour
- Department of Pathology and Anatomical Sciences, University of Missouri School of Medicine, Columbia, MO, United States
| | - Milin Kurup
- Alabama College of Osteopathic Medicine, Dothan, AL, United States
| | | | - Shahad Alroumi
- Department of Biological Sciences Faculty of Science, Kuwait University, Safat, Kuwait
| | - Stefania Mondello
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Kevin K. Wang
- Department of Neurobiology, School of Medicine, Neuroscience Institute, Atlanta, GA, United States
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, United States
| |
Collapse
|
28
|
Reyes J, Spitz G, Major BP, O'Brien WT, Giesler LP, Bain JWP, Xie B, Rosenfeld JV, Law M, Ponsford JL, O'Brien TJ, Shultz SR, Willmott C, Mitra B, McDonald SJ. Utility of Acute and Subacute Blood Biomarkers to Assist Diagnosis in CT-Negative Isolated Mild Traumatic Brain Injury. Neurology 2023; 101:e1992-e2004. [PMID: 37788938 PMCID: PMC10662993 DOI: 10.1212/wnl.0000000000207881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 08/22/2023] [Indexed: 10/05/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Blood biomarkers glial fibrillary acidic protein (GFAP) and ubiquitin carboxy-terminal hydrolase L1 (UCH-L1) have recently been Food and Drug Administration approved as predictors of intracranial lesions on CT after mild traumatic brain injury (mTBI). However, most cases with mTBI are CT negative, and no biomarkers are approved to assist diagnosis in these individuals. In this study, we aimed to determine the optimal combination of blood biomarkers to assist mTBI diagnosis in otherwise healthy adults younger than 50 years presenting to an emergency department within 6 hours of injury. To further understand the utility of biomarkers, we assessed how biological sex, presence or absence of loss of consciousness and/or post-traumatic amnesia (LOC/PTA), and delayed presentation affected classification performance. METHODS Blood samples, symptom questionnaires, and cognitive tests were prospectively conducted for participants with mTBI recruited from The Alfred Hospital Level 1 Emergency & Trauma Center and uninjured controls. Follow-up testing was conducted at 7 days. Simoa quantified plasma GFAP, UCH-L1, tau, neurofilament light chain (NfL), interleukin (IL)-6, and IL-1β. Area under the receiver operating characteristic (AUC) analysis assessed classification accuracy for diagnosed mTBI, and logistic regression models identified optimal biomarker combinations. RESULTS Plasma IL-6 (AUC 0.91, 95% CI 0.86-0.96), GFAP (AUC 0.85, 95% CI 0.78-0.93), and UCH-L1 (AUC 0.79, 95% CI 0.70-0.88) best differentiated mTBI (n = 74) from controls (n = 44) acutely (<6 hours), with NfL (AUC 0.81, 95% CI 0.72-0.90) the only marker to have such utility subacutely (7 days). Biomarker performance was similar between sexes and for participants with and without LOC/PTA, with the exception at 7 days, where GFAP and IL-6 retained some utility in female participants (GFAP: AUC 0.71, 95% CI 0.55-0.88; IL-6: AUC 0.71, 95% CI 0.55-0.87) and in those with LOC/PTA (GFAP: AUC 0.73, 95% CI 0.59-0.86; IL-6: AUC 0.71, 95% CI 0.57-0.84). Acute IL-6 (R 2 = 0.50, 95% CI 0.34-0.64) outperformed GFAP and UCH-L1 combined (R 2 = 0.35, 95% CI 0.17-0.50), with the best acute model featuring GFAP and IL-6 (R 2 = 0.54, 95% CI 0.34-0.68). DISCUSSION These findings indicate that adding IL-6 to a panel of brain-specific proteins such as GFAP and UCH-L1 might assist in the acute diagnosis of mTBI in adults younger than 50 years. Multiple markers had high classification accuracy in participants without LOC/PTA. When compared with the best-performing acute markers, subacute measures of plasma NfL resulted in minimal reduction in classification accuracy. Future studies will investigate the optimal time frame over which plasma IL-6 might assist diagnostic decisions and how extracranial trauma affects utility.
Collapse
Affiliation(s)
- Jonathan Reyes
- From the Department of Neuroscience (J.R., G.S., B.P.M., W.T.O.B., L.P.G., J.W.P.B., B.X., M.L., T.J.O.B., S.R.S., S.J.M.), School of Psychological Sciences (J.R., G.S., C.W.), Monash University; Monash-Epworth Rehabilitation Research Centre (J.R., G.S., J.L.P., C.W.), Epworth Hospital; Department of Neurosurgery (J.V.R.), The Alfred Hospital; Department of Surgery (J.V.R.), Monash University; Department of Radiology (M.L.), The Alfred Hospital; Department of Electrical and Computer Systems Engineering (M.L.), Monash University; Department of Neurology (T.J.O.B., S.R.S., S.J.M.), The Alfred Hospital, Melbourne; Department of Medicine (T.J.O.B., S.R.S.), Royal Melbourne Hospital, The University of Melbourne, Parkville, Australia; Health Sciences (S.R.S.), Vancouver Island University, Nanaimo, British Columbia, Canada; Australian Football League (AFL) (C.W.); Emergency & Trauma Centre (B.M.), The Alfred Hospital; and School of Public Health & Preventive Medicine (B.M.), Monash University, Melbourne, Australia
| | - Gershon Spitz
- From the Department of Neuroscience (J.R., G.S., B.P.M., W.T.O.B., L.P.G., J.W.P.B., B.X., M.L., T.J.O.B., S.R.S., S.J.M.), School of Psychological Sciences (J.R., G.S., C.W.), Monash University; Monash-Epworth Rehabilitation Research Centre (J.R., G.S., J.L.P., C.W.), Epworth Hospital; Department of Neurosurgery (J.V.R.), The Alfred Hospital; Department of Surgery (J.V.R.), Monash University; Department of Radiology (M.L.), The Alfred Hospital; Department of Electrical and Computer Systems Engineering (M.L.), Monash University; Department of Neurology (T.J.O.B., S.R.S., S.J.M.), The Alfred Hospital, Melbourne; Department of Medicine (T.J.O.B., S.R.S.), Royal Melbourne Hospital, The University of Melbourne, Parkville, Australia; Health Sciences (S.R.S.), Vancouver Island University, Nanaimo, British Columbia, Canada; Australian Football League (AFL) (C.W.); Emergency & Trauma Centre (B.M.), The Alfred Hospital; and School of Public Health & Preventive Medicine (B.M.), Monash University, Melbourne, Australia
| | - Brendan P Major
- From the Department of Neuroscience (J.R., G.S., B.P.M., W.T.O.B., L.P.G., J.W.P.B., B.X., M.L., T.J.O.B., S.R.S., S.J.M.), School of Psychological Sciences (J.R., G.S., C.W.), Monash University; Monash-Epworth Rehabilitation Research Centre (J.R., G.S., J.L.P., C.W.), Epworth Hospital; Department of Neurosurgery (J.V.R.), The Alfred Hospital; Department of Surgery (J.V.R.), Monash University; Department of Radiology (M.L.), The Alfred Hospital; Department of Electrical and Computer Systems Engineering (M.L.), Monash University; Department of Neurology (T.J.O.B., S.R.S., S.J.M.), The Alfred Hospital, Melbourne; Department of Medicine (T.J.O.B., S.R.S.), Royal Melbourne Hospital, The University of Melbourne, Parkville, Australia; Health Sciences (S.R.S.), Vancouver Island University, Nanaimo, British Columbia, Canada; Australian Football League (AFL) (C.W.); Emergency & Trauma Centre (B.M.), The Alfred Hospital; and School of Public Health & Preventive Medicine (B.M.), Monash University, Melbourne, Australia
| | - William T O'Brien
- From the Department of Neuroscience (J.R., G.S., B.P.M., W.T.O.B., L.P.G., J.W.P.B., B.X., M.L., T.J.O.B., S.R.S., S.J.M.), School of Psychological Sciences (J.R., G.S., C.W.), Monash University; Monash-Epworth Rehabilitation Research Centre (J.R., G.S., J.L.P., C.W.), Epworth Hospital; Department of Neurosurgery (J.V.R.), The Alfred Hospital; Department of Surgery (J.V.R.), Monash University; Department of Radiology (M.L.), The Alfred Hospital; Department of Electrical and Computer Systems Engineering (M.L.), Monash University; Department of Neurology (T.J.O.B., S.R.S., S.J.M.), The Alfred Hospital, Melbourne; Department of Medicine (T.J.O.B., S.R.S.), Royal Melbourne Hospital, The University of Melbourne, Parkville, Australia; Health Sciences (S.R.S.), Vancouver Island University, Nanaimo, British Columbia, Canada; Australian Football League (AFL) (C.W.); Emergency & Trauma Centre (B.M.), The Alfred Hospital; and School of Public Health & Preventive Medicine (B.M.), Monash University, Melbourne, Australia
| | - Lauren P Giesler
- From the Department of Neuroscience (J.R., G.S., B.P.M., W.T.O.B., L.P.G., J.W.P.B., B.X., M.L., T.J.O.B., S.R.S., S.J.M.), School of Psychological Sciences (J.R., G.S., C.W.), Monash University; Monash-Epworth Rehabilitation Research Centre (J.R., G.S., J.L.P., C.W.), Epworth Hospital; Department of Neurosurgery (J.V.R.), The Alfred Hospital; Department of Surgery (J.V.R.), Monash University; Department of Radiology (M.L.), The Alfred Hospital; Department of Electrical and Computer Systems Engineering (M.L.), Monash University; Department of Neurology (T.J.O.B., S.R.S., S.J.M.), The Alfred Hospital, Melbourne; Department of Medicine (T.J.O.B., S.R.S.), Royal Melbourne Hospital, The University of Melbourne, Parkville, Australia; Health Sciences (S.R.S.), Vancouver Island University, Nanaimo, British Columbia, Canada; Australian Football League (AFL) (C.W.); Emergency & Trauma Centre (B.M.), The Alfred Hospital; and School of Public Health & Preventive Medicine (B.M.), Monash University, Melbourne, Australia
| | - Jesse W P Bain
- From the Department of Neuroscience (J.R., G.S., B.P.M., W.T.O.B., L.P.G., J.W.P.B., B.X., M.L., T.J.O.B., S.R.S., S.J.M.), School of Psychological Sciences (J.R., G.S., C.W.), Monash University; Monash-Epworth Rehabilitation Research Centre (J.R., G.S., J.L.P., C.W.), Epworth Hospital; Department of Neurosurgery (J.V.R.), The Alfred Hospital; Department of Surgery (J.V.R.), Monash University; Department of Radiology (M.L.), The Alfred Hospital; Department of Electrical and Computer Systems Engineering (M.L.), Monash University; Department of Neurology (T.J.O.B., S.R.S., S.J.M.), The Alfred Hospital, Melbourne; Department of Medicine (T.J.O.B., S.R.S.), Royal Melbourne Hospital, The University of Melbourne, Parkville, Australia; Health Sciences (S.R.S.), Vancouver Island University, Nanaimo, British Columbia, Canada; Australian Football League (AFL) (C.W.); Emergency & Trauma Centre (B.M.), The Alfred Hospital; and School of Public Health & Preventive Medicine (B.M.), Monash University, Melbourne, Australia
| | - Becca Xie
- From the Department of Neuroscience (J.R., G.S., B.P.M., W.T.O.B., L.P.G., J.W.P.B., B.X., M.L., T.J.O.B., S.R.S., S.J.M.), School of Psychological Sciences (J.R., G.S., C.W.), Monash University; Monash-Epworth Rehabilitation Research Centre (J.R., G.S., J.L.P., C.W.), Epworth Hospital; Department of Neurosurgery (J.V.R.), The Alfred Hospital; Department of Surgery (J.V.R.), Monash University; Department of Radiology (M.L.), The Alfred Hospital; Department of Electrical and Computer Systems Engineering (M.L.), Monash University; Department of Neurology (T.J.O.B., S.R.S., S.J.M.), The Alfred Hospital, Melbourne; Department of Medicine (T.J.O.B., S.R.S.), Royal Melbourne Hospital, The University of Melbourne, Parkville, Australia; Health Sciences (S.R.S.), Vancouver Island University, Nanaimo, British Columbia, Canada; Australian Football League (AFL) (C.W.); Emergency & Trauma Centre (B.M.), The Alfred Hospital; and School of Public Health & Preventive Medicine (B.M.), Monash University, Melbourne, Australia
| | - Jeffrey V Rosenfeld
- From the Department of Neuroscience (J.R., G.S., B.P.M., W.T.O.B., L.P.G., J.W.P.B., B.X., M.L., T.J.O.B., S.R.S., S.J.M.), School of Psychological Sciences (J.R., G.S., C.W.), Monash University; Monash-Epworth Rehabilitation Research Centre (J.R., G.S., J.L.P., C.W.), Epworth Hospital; Department of Neurosurgery (J.V.R.), The Alfred Hospital; Department of Surgery (J.V.R.), Monash University; Department of Radiology (M.L.), The Alfred Hospital; Department of Electrical and Computer Systems Engineering (M.L.), Monash University; Department of Neurology (T.J.O.B., S.R.S., S.J.M.), The Alfred Hospital, Melbourne; Department of Medicine (T.J.O.B., S.R.S.), Royal Melbourne Hospital, The University of Melbourne, Parkville, Australia; Health Sciences (S.R.S.), Vancouver Island University, Nanaimo, British Columbia, Canada; Australian Football League (AFL) (C.W.); Emergency & Trauma Centre (B.M.), The Alfred Hospital; and School of Public Health & Preventive Medicine (B.M.), Monash University, Melbourne, Australia
| | - Meng Law
- From the Department of Neuroscience (J.R., G.S., B.P.M., W.T.O.B., L.P.G., J.W.P.B., B.X., M.L., T.J.O.B., S.R.S., S.J.M.), School of Psychological Sciences (J.R., G.S., C.W.), Monash University; Monash-Epworth Rehabilitation Research Centre (J.R., G.S., J.L.P., C.W.), Epworth Hospital; Department of Neurosurgery (J.V.R.), The Alfred Hospital; Department of Surgery (J.V.R.), Monash University; Department of Radiology (M.L.), The Alfred Hospital; Department of Electrical and Computer Systems Engineering (M.L.), Monash University; Department of Neurology (T.J.O.B., S.R.S., S.J.M.), The Alfred Hospital, Melbourne; Department of Medicine (T.J.O.B., S.R.S.), Royal Melbourne Hospital, The University of Melbourne, Parkville, Australia; Health Sciences (S.R.S.), Vancouver Island University, Nanaimo, British Columbia, Canada; Australian Football League (AFL) (C.W.); Emergency & Trauma Centre (B.M.), The Alfred Hospital; and School of Public Health & Preventive Medicine (B.M.), Monash University, Melbourne, Australia
| | - Jennie L Ponsford
- From the Department of Neuroscience (J.R., G.S., B.P.M., W.T.O.B., L.P.G., J.W.P.B., B.X., M.L., T.J.O.B., S.R.S., S.J.M.), School of Psychological Sciences (J.R., G.S., C.W.), Monash University; Monash-Epworth Rehabilitation Research Centre (J.R., G.S., J.L.P., C.W.), Epworth Hospital; Department of Neurosurgery (J.V.R.), The Alfred Hospital; Department of Surgery (J.V.R.), Monash University; Department of Radiology (M.L.), The Alfred Hospital; Department of Electrical and Computer Systems Engineering (M.L.), Monash University; Department of Neurology (T.J.O.B., S.R.S., S.J.M.), The Alfred Hospital, Melbourne; Department of Medicine (T.J.O.B., S.R.S.), Royal Melbourne Hospital, The University of Melbourne, Parkville, Australia; Health Sciences (S.R.S.), Vancouver Island University, Nanaimo, British Columbia, Canada; Australian Football League (AFL) (C.W.); Emergency & Trauma Centre (B.M.), The Alfred Hospital; and School of Public Health & Preventive Medicine (B.M.), Monash University, Melbourne, Australia
| | - Terence J O'Brien
- From the Department of Neuroscience (J.R., G.S., B.P.M., W.T.O.B., L.P.G., J.W.P.B., B.X., M.L., T.J.O.B., S.R.S., S.J.M.), School of Psychological Sciences (J.R., G.S., C.W.), Monash University; Monash-Epworth Rehabilitation Research Centre (J.R., G.S., J.L.P., C.W.), Epworth Hospital; Department of Neurosurgery (J.V.R.), The Alfred Hospital; Department of Surgery (J.V.R.), Monash University; Department of Radiology (M.L.), The Alfred Hospital; Department of Electrical and Computer Systems Engineering (M.L.), Monash University; Department of Neurology (T.J.O.B., S.R.S., S.J.M.), The Alfred Hospital, Melbourne; Department of Medicine (T.J.O.B., S.R.S.), Royal Melbourne Hospital, The University of Melbourne, Parkville, Australia; Health Sciences (S.R.S.), Vancouver Island University, Nanaimo, British Columbia, Canada; Australian Football League (AFL) (C.W.); Emergency & Trauma Centre (B.M.), The Alfred Hospital; and School of Public Health & Preventive Medicine (B.M.), Monash University, Melbourne, Australia
| | - Sandy R Shultz
- From the Department of Neuroscience (J.R., G.S., B.P.M., W.T.O.B., L.P.G., J.W.P.B., B.X., M.L., T.J.O.B., S.R.S., S.J.M.), School of Psychological Sciences (J.R., G.S., C.W.), Monash University; Monash-Epworth Rehabilitation Research Centre (J.R., G.S., J.L.P., C.W.), Epworth Hospital; Department of Neurosurgery (J.V.R.), The Alfred Hospital; Department of Surgery (J.V.R.), Monash University; Department of Radiology (M.L.), The Alfred Hospital; Department of Electrical and Computer Systems Engineering (M.L.), Monash University; Department of Neurology (T.J.O.B., S.R.S., S.J.M.), The Alfred Hospital, Melbourne; Department of Medicine (T.J.O.B., S.R.S.), Royal Melbourne Hospital, The University of Melbourne, Parkville, Australia; Health Sciences (S.R.S.), Vancouver Island University, Nanaimo, British Columbia, Canada; Australian Football League (AFL) (C.W.); Emergency & Trauma Centre (B.M.), The Alfred Hospital; and School of Public Health & Preventive Medicine (B.M.), Monash University, Melbourne, Australia
| | - Catherine Willmott
- From the Department of Neuroscience (J.R., G.S., B.P.M., W.T.O.B., L.P.G., J.W.P.B., B.X., M.L., T.J.O.B., S.R.S., S.J.M.), School of Psychological Sciences (J.R., G.S., C.W.), Monash University; Monash-Epworth Rehabilitation Research Centre (J.R., G.S., J.L.P., C.W.), Epworth Hospital; Department of Neurosurgery (J.V.R.), The Alfred Hospital; Department of Surgery (J.V.R.), Monash University; Department of Radiology (M.L.), The Alfred Hospital; Department of Electrical and Computer Systems Engineering (M.L.), Monash University; Department of Neurology (T.J.O.B., S.R.S., S.J.M.), The Alfred Hospital, Melbourne; Department of Medicine (T.J.O.B., S.R.S.), Royal Melbourne Hospital, The University of Melbourne, Parkville, Australia; Health Sciences (S.R.S.), Vancouver Island University, Nanaimo, British Columbia, Canada; Australian Football League (AFL) (C.W.); Emergency & Trauma Centre (B.M.), The Alfred Hospital; and School of Public Health & Preventive Medicine (B.M.), Monash University, Melbourne, Australia
| | - Biswadev Mitra
- From the Department of Neuroscience (J.R., G.S., B.P.M., W.T.O.B., L.P.G., J.W.P.B., B.X., M.L., T.J.O.B., S.R.S., S.J.M.), School of Psychological Sciences (J.R., G.S., C.W.), Monash University; Monash-Epworth Rehabilitation Research Centre (J.R., G.S., J.L.P., C.W.), Epworth Hospital; Department of Neurosurgery (J.V.R.), The Alfred Hospital; Department of Surgery (J.V.R.), Monash University; Department of Radiology (M.L.), The Alfred Hospital; Department of Electrical and Computer Systems Engineering (M.L.), Monash University; Department of Neurology (T.J.O.B., S.R.S., S.J.M.), The Alfred Hospital, Melbourne; Department of Medicine (T.J.O.B., S.R.S.), Royal Melbourne Hospital, The University of Melbourne, Parkville, Australia; Health Sciences (S.R.S.), Vancouver Island University, Nanaimo, British Columbia, Canada; Australian Football League (AFL) (C.W.); Emergency & Trauma Centre (B.M.), The Alfred Hospital; and School of Public Health & Preventive Medicine (B.M.), Monash University, Melbourne, Australia
| | - Stuart J McDonald
- From the Department of Neuroscience (J.R., G.S., B.P.M., W.T.O.B., L.P.G., J.W.P.B., B.X., M.L., T.J.O.B., S.R.S., S.J.M.), School of Psychological Sciences (J.R., G.S., C.W.), Monash University; Monash-Epworth Rehabilitation Research Centre (J.R., G.S., J.L.P., C.W.), Epworth Hospital; Department of Neurosurgery (J.V.R.), The Alfred Hospital; Department of Surgery (J.V.R.), Monash University; Department of Radiology (M.L.), The Alfred Hospital; Department of Electrical and Computer Systems Engineering (M.L.), Monash University; Department of Neurology (T.J.O.B., S.R.S., S.J.M.), The Alfred Hospital, Melbourne; Department of Medicine (T.J.O.B., S.R.S.), Royal Melbourne Hospital, The University of Melbourne, Parkville, Australia; Health Sciences (S.R.S.), Vancouver Island University, Nanaimo, British Columbia, Canada; Australian Football League (AFL) (C.W.); Emergency & Trauma Centre (B.M.), The Alfred Hospital; and School of Public Health & Preventive Medicine (B.M.), Monash University, Melbourne, Australia.
| |
Collapse
|
29
|
Rauchman SH, Pinkhasov A, Gulkarov S, Placantonakis DG, De Leon J, Reiss AB. Maximizing the Clinical Value of Blood-Based Biomarkers for Mild Traumatic Brain Injury. Diagnostics (Basel) 2023; 13:3330. [PMID: 37958226 PMCID: PMC10650880 DOI: 10.3390/diagnostics13213330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/23/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
Mild traumatic brain injury (TBI) and concussion can have serious consequences that develop over time with unpredictable levels of recovery. Millions of concussions occur yearly, and a substantial number result in lingering symptoms, loss of productivity, and lower quality of life. The diagnosis may not be made for multiple reasons, including due to patient hesitancy to undergo neuroimaging and inability of imaging to detect minimal damage. Biomarkers could fill this gap, but the time needed to send blood to a laboratory for analysis made this impractical until point-of-care measurement became available. A handheld blood test is now on the market for diagnosis of concussion based on the specific blood biomarkers glial fibrillary acidic protein (GFAP) and ubiquitin carboxyl terminal hydrolase L1 (UCH-L1). This paper discusses rapid blood biomarker assessment for mild TBI and its implications in improving prediction of TBI course, avoiding repeated head trauma, and its potential role in assessing new therapeutic options. Although we focus on the Abbott i-STAT TBI plasma test because it is the first to be FDA-cleared, our discussion applies to any comparable test systems that may become available in the future. The difficulties in changing emergency department protocols to include new technology are addressed.
Collapse
Affiliation(s)
| | - Aaron Pinkhasov
- Department of Medicine and Biomedical Research Institute, NYU Grossman Long Island School of Medicine, Mineola, NY 11501, USA; (A.P.); (S.G.); (J.D.L.)
| | - Shelly Gulkarov
- Department of Medicine and Biomedical Research Institute, NYU Grossman Long Island School of Medicine, Mineola, NY 11501, USA; (A.P.); (S.G.); (J.D.L.)
| | | | - Joshua De Leon
- Department of Medicine and Biomedical Research Institute, NYU Grossman Long Island School of Medicine, Mineola, NY 11501, USA; (A.P.); (S.G.); (J.D.L.)
| | - Allison B. Reiss
- Department of Medicine and Biomedical Research Institute, NYU Grossman Long Island School of Medicine, Mineola, NY 11501, USA; (A.P.); (S.G.); (J.D.L.)
| |
Collapse
|
30
|
Tabor JB, Galarneau JM, Penner LC, Cooper J, Ghodsi M, Fraser DD, Wellington CL, Debert CT, Emery CA. Use of Biostatistical Models to Manage Replicate Error in Concussion Biomarker Research. JAMA Netw Open 2023; 6:e2339733. [PMID: 37870831 PMCID: PMC10594140 DOI: 10.1001/jamanetworkopen.2023.39733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 09/13/2023] [Indexed: 10/24/2023] Open
Abstract
Importance Advancing research on fluid biomarkers associated with sport-related concussion (SRC) highlights the importance of detecting low concentrations using ultrasensitive platforms. However, common statistical practices may overlook replicate errors and specimen exclusion, emphasizing the need to explore robust modeling approaches that consider all available replicate data for comprehensive understanding of sample variation and statistical inferences. Objective To evaluate the impact of replicate error and different biostatistical modeling approaches on SRC biomarker interpretation. Design, Setting, and Participants This cross-sectional study within the Surveillance in High Schools to Reduce the Risk of Concussions and Their Consequences study used data from healthy youth athletes (ages 11-18 years) collected from 3 sites across Canada between September 2019 and November 2021. Data were analyzed from November 2022 to February 2023. Exposures Demographic variables included age, sex, and self-reported history of previous concussion. Main Outcomes and Measures Outcomes of interest were preinjury plasma glial fibrillary acidic protein (GFAP), ubiquitin C-terminal hydrolase-L1 (UCH-L1), neurofilament-light (NFL), total tau (t-tau) and phosphorylated-tau-181 (p-tau-181) assayed in duplicate. Bland-Altman analysis determined the 95% limits of agreement (LOAs) for each biomarker. The impact of replicate error was explored using 3 biostatistical modeling approaches assessing the associations of age, sex, and previous concussion on biomarker concentrations: multilevel regression using all available replicate data, single-level regression using the means of replicate data, and single-level regression with replicate means, excluding specimens demonstrating more than 20% coefficient variation (CV). Results The sample included 149 healthy youth athletes (78 [52%] male; mean [SD] age, 15.74 [1.41] years; 51 participants [34%] reporting ≥1 previous concussions). Wide 95% LOAs were observed for GFAP (-17.74 to 18.20 pg/mL), UCH-L1 (-13.80 to 14.77 pg/mL), and t-tau (65.27% to 150.03%). GFAP and UCH-L1 were significantly associated with sex in multilevel regression (GFAP: effect size, 15.65%; β = -0.17; 95% CI, -0.30 to -0.04]; P = .02; UCH-L1: effect size, 17.24%; β = -0.19; 95% CI, -0.36 to -0.02]; P = .03) and single-level regression using the means of replicate data (GFAP: effect size, 15.56%; β = -0.17; 95% CI, -0.30 to -0.03]; P = .02; UCH-L1: effect size, 18.02%; β = -0.20; 95% CI, -0.37 to -0.03]; P = .02); however, there was no association for UCH-L1 after excluding specimens demonstrating more than 20% CV. Excluding specimens demonstrating more than 20% CV resulted in decreased differences associated with sex in GFAP (effect size, 12.29%; β = -0.14; 95% CI, -0.273 to -0.004]; P = .04) and increased sex differences in UCH-L1 (effect size, 23.59%; β = -0.27; 95% CI, -0.55 to 0.01]; P = .06), with the widest 95% CIs (ie, least precision) found in UCH-L1. Conclusions and Relevance In this cross-sectional study of healthy youth athletes, varying levels of agreement between SRC biomarker technical replicates suggested that means of measurements may not optimize precision for population values. Multilevel regression modeling demonstrated how incorporating all available biomarker data could capture replicate variation, avoiding challenges associated with means and percentage of CV exclusion thresholds to produce more representative estimates of association.
Collapse
Affiliation(s)
- Jason B. Tabor
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Jean-Michel Galarneau
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Linden C. Penner
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Jennifer Cooper
- Department of Pathology and Laboratory Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Mohammad Ghodsi
- Department of Pathology and Laboratory Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Douglas D. Fraser
- Department of Pediatrics and Clinical Neurological Sciences, Western University, London, Ontario, Canada
| | - Cheryl L. Wellington
- Department of Pathology and Laboratory Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Chantel T. Debert
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Carolyn A. Emery
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Departments of Pediatrics and Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
31
|
Mayer AR, Dodd AB, Dodd RJ, Stephenson DD, Ling JM, Mehos CJ, Patton DA, Robertson-Benta CR, Gigliotti AP, Vermillion MS, Noghero A. Head Kinematics, Blood Biomarkers, and Histology in Large Animal Models of Traumatic Brain Injury and Hemorrhagic Shock. J Neurotrauma 2023; 40:2205-2216. [PMID: 37341029 PMCID: PMC10701512 DOI: 10.1089/neu.2022.0338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2023] Open
Abstract
Traumatic brain injury (TBI) and severe blood loss resulting in hemorrhagic shock (HS) are each leading causes of mortality and morbidity worldwide, and present additional treatment considerations when they are comorbid (TBI+HS) as a result of competing pathophysiological responses. The current study rigorously quantified injury biomechanics with high precision sensors and examined whether blood-based surrogate markers were altered in general trauma as well as post-neurotrauma. Eighty-nine sexually mature male and female Yucatan swine were subjected to a closed-head TBI+HS (40% of circulating blood volume; n = 68), HS only (n = 9), or sham trauma (n = 12). Markers of systemic (e.g., glucose, lactate) and neural functioning were obtained at baseline, and at 35 and 295 min post-trauma. Opposite and approximately twofold differences existed for both magnitude (device > head) and duration (head > device) of quantified injury biomechanics. Circulating levels of neurofilament light chain (NfL), glial fibrillary acidic protein (GFAP), and ubiquitin C-terminal hydrolase L1 (UCH-L1) demonstrated differential sensitivity for both general trauma (HS) and neurotrauma (TBI+HS) relative to shams in a temporally dynamic fashion. GFAP and NfL were both strongly associated with changes in systemic markers during general trauma and exhibited consistent time-dependent changes in individual sham animals. Finally, circulating GFAP was associated with histopathological markers of diffuse axonal injury and blood-brain barrier breach, as well as variations in device kinematics following TBI+HS. Current findings therefore highlight the need to directly quantify injury biomechanics with head mounted sensors and suggest that GFAP, NfL, and UCH-L1 are sensitive to multiple forms of trauma rather than having a single pathological indication (e.g., GFAP = astrogliosis).
Collapse
Affiliation(s)
- Andrew R. Mayer
- The Mind Research Network/Lovelace Biomedical Research Institute, Pete & Nancy Domenici Hall, Albuquerque, New Mexico, USA
- Department of Neurology, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
- Department of Psychiatry, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
- Department of Psychology, and University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| | - Andrew B. Dodd
- The Mind Research Network/Lovelace Biomedical Research Institute, Pete & Nancy Domenici Hall, Albuquerque, New Mexico, USA
| | - Rebecca J. Dodd
- The Mind Research Network/Lovelace Biomedical Research Institute, Pete & Nancy Domenici Hall, Albuquerque, New Mexico, USA
| | - David D. Stephenson
- The Mind Research Network/Lovelace Biomedical Research Institute, Pete & Nancy Domenici Hall, Albuquerque, New Mexico, USA
| | - Josef M. Ling
- The Mind Research Network/Lovelace Biomedical Research Institute, Pete & Nancy Domenici Hall, Albuquerque, New Mexico, USA
| | - Carissa J. Mehos
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| | - Declan A. Patton
- Center for Injury Research and Prevention, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Cidney R. Robertson-Benta
- The Mind Research Network/Lovelace Biomedical Research Institute, Pete & Nancy Domenici Hall, Albuquerque, New Mexico, USA
| | - Andrew P. Gigliotti
- The Mind Research Network/Lovelace Biomedical Research Institute, Pete & Nancy Domenici Hall, Albuquerque, New Mexico, USA
| | - Meghan S. Vermillion
- The Mind Research Network/Lovelace Biomedical Research Institute, Pete & Nancy Domenici Hall, Albuquerque, New Mexico, USA
| | - Alessio Noghero
- The Mind Research Network/Lovelace Biomedical Research Institute, Pete & Nancy Domenici Hall, Albuquerque, New Mexico, USA
| |
Collapse
|
32
|
de Souza DN, Jarmol M, Bell CA, Marini C, Balcer LJ, Galetta SL, Grossman SN. Precision Concussion Management: Approaches to Quantifying Head Injury Severity and Recovery. Brain Sci 2023; 13:1352. [PMID: 37759953 PMCID: PMC10526525 DOI: 10.3390/brainsci13091352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023] Open
Abstract
Mitigating the substantial public health impact of concussion is a particularly difficult challenge. This is partly because concussion is a highly prevalent condition, and diagnosis is predominantly symptom-based. Much of contemporary concussion management relies on symptom interpretation and accurate reporting by patients. These types of reports may be influenced by a variety of factors for each individual, such as preexisting mental health conditions, headache disorders, and sleep conditions, among other factors. This can all be contributory to non-specific and potentially misleading clinical manifestations in the aftermath of a concussion. This review aimed to conduct an examination of the existing literature on emerging approaches for objectively evaluating potential concussion, as well as to highlight current gaps in understanding where further research is necessary. Objective assessments of visual and ocular motor concussion symptoms, specialized imaging techniques, and tissue-based concentrations of specific biomarkers have all shown promise for specifically characterizing diffuse brain injuries, and will be important to the future of concussion diagnosis and management. The consolidation of these approaches into a comprehensive examination progression will be the next horizon for increased precision in concussion diagnosis and treatment.
Collapse
Affiliation(s)
- Daniel N. de Souza
- Department of Neurology, New York University Grossman School of Medicine, New York, NY 10017, USA; (D.N.d.S.); (M.J.); (C.A.B.); (C.M.); (L.J.B.); (S.L.G.)
| | - Mitchell Jarmol
- Department of Neurology, New York University Grossman School of Medicine, New York, NY 10017, USA; (D.N.d.S.); (M.J.); (C.A.B.); (C.M.); (L.J.B.); (S.L.G.)
| | - Carter A. Bell
- Department of Neurology, New York University Grossman School of Medicine, New York, NY 10017, USA; (D.N.d.S.); (M.J.); (C.A.B.); (C.M.); (L.J.B.); (S.L.G.)
| | - Christina Marini
- Department of Neurology, New York University Grossman School of Medicine, New York, NY 10017, USA; (D.N.d.S.); (M.J.); (C.A.B.); (C.M.); (L.J.B.); (S.L.G.)
| | - Laura J. Balcer
- Department of Neurology, New York University Grossman School of Medicine, New York, NY 10017, USA; (D.N.d.S.); (M.J.); (C.A.B.); (C.M.); (L.J.B.); (S.L.G.)
- Department of Ophthalmology, New York University Grossman School of Medicine, New York, NY 10017, USA
- Department of Population Health, New York University Grossman School of Medicine, New York, NY 10017, USA
| | - Steven L. Galetta
- Department of Neurology, New York University Grossman School of Medicine, New York, NY 10017, USA; (D.N.d.S.); (M.J.); (C.A.B.); (C.M.); (L.J.B.); (S.L.G.)
- Department of Ophthalmology, New York University Grossman School of Medicine, New York, NY 10017, USA
| | - Scott N. Grossman
- Department of Neurology, New York University Grossman School of Medicine, New York, NY 10017, USA; (D.N.d.S.); (M.J.); (C.A.B.); (C.M.); (L.J.B.); (S.L.G.)
- Department of Ophthalmology, New York University Grossman School of Medicine, New York, NY 10017, USA
| |
Collapse
|
33
|
Dey A, Ghosh S, Bhuniya T, Koley M, Bera A, Guha S, Chakraborty K, Muthu S, Gorai S, Vorn R, Vadivalagan C, Anand K. Clinical Theragnostic Signature of Extracellular Vesicles in Traumatic Brain Injury (TBI). ACS Chem Neurosci 2023; 14:2981-2994. [PMID: 37624044 PMCID: PMC10485905 DOI: 10.1021/acschemneuro.3c00386] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 08/16/2023] [Indexed: 08/26/2023] Open
Abstract
Traumatic brain injury (TBI) is a common cause of disability and fatality worldwide. Depending on the clinical presentation, it is a type of acquired brain damage that can be mild, moderate, or severe. The degree of patient's discomfort, prognosis, therapeutic approach, survival rates, and recurrence can all be strongly impacted by an accurate diagnosis made early on. The Glasgow Coma Scale (GCS), along with neuroimaging (MRI (Magnetic Resonance Imaging) and CT scan), is a neurological assessment tools used to evaluate and categorize the severity of TBI based on the patient's level of consciousness, eye opening, and motor response. Extracellular vesicles (EVs) are a growing domain, explaining neurological complications in a more detailed manner. EVs, in general, play a role in cellular communication. Its molecular signature such as DNA, RNA, protein, etc. contributes to the status (health or pathological stage) of the parental cell. Brain-derived EVs support more specific screening (diagnostic and prognostic) in TBI research. Therapeutic impact of EVs are more promising for aiding in TBI healing. It is nontoxic, biocompatible, and capable of crossing the blood-brain barrier (BBB) to transport therapeutic molecules. This review has highlighted the relationships between EVs and TBI theranostics, EVs and TBI-related clinical trials, and related research domain-associated challenges and solutions. This review motivates further exploration of associations between EVs and TBI and develops a better approach to TBI management.
Collapse
Affiliation(s)
- Anuvab Dey
- Department
of Biological Sciences and Biological Engineering, IIT Guwahati, North
Guwahati, Assam 781039, India
| | | | - Tiyasa Bhuniya
- Department
of Biotechnology, NIT Durgapur, Mahatma Gandhi Rd, A-Zone, Durgapur, West Bengal 713209, India
| | - Madhurima Koley
- Chemistry
and Chemical Biology department, IIT(ISM), Dhanbad 826004, India
| | - Aishi Bera
- Heritage
Institute of Technology, Chowbaga, Anandapur, Kolkata 700107, India
| | - Sudeepta Guha
- Chemistry
and Chemical Biology department, IIT(ISM), Dhanbad 826004, India
| | | | - Sathish Muthu
- Department
of Orthopaedics, Orthopaedic Research Group, Coimbatore 641045, Tamil Nadu, India
- Department
of Biotechnology, Faculty of Engineering, Karpagam Academy of Higher Education, Coimbatore 641021, Tamil Nadu, India
| | - Sukhamoy Gorai
- Rush University
Medical Center, 1620 W Harrison St, Chicago, Illinois 60612, United States
| | - Rany Vorn
- School
of Nursing and Medicine, Johns Hopkins University, Baltimore, Maryland 21287, United States
| | - Chithravel Vadivalagan
- Department
of Surgery, University of Michigan Medical
Center, Ann Arbor, Michigan 48109, United States
| | - Krishnan Anand
- Department
of Chemical Pathology, School of Pathology, Faculty of Health Sciences, University of the Free State, Bloemfontein 9300, South Africa
| |
Collapse
|
34
|
Neumann KD, Broshek DK, Newman BT, Druzgal TJ, Kundu BK, Resch JE. Concussion: Beyond the Cascade. Cells 2023; 12:2128. [PMID: 37681861 PMCID: PMC10487087 DOI: 10.3390/cells12172128] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/14/2023] [Accepted: 08/17/2023] [Indexed: 09/09/2023] Open
Abstract
Sport concussion affects millions of athletes each year at all levels of sport. Increasing evidence demonstrates clinical and physiological recovery are becoming more divergent definitions, as evidenced by several studies examining blood-based biomarkers of inflammation and imaging studies of the central nervous system (CNS). Recent studies have shown elevated microglial activation in the CNS in active and retired American football players, as well as in active collegiate athletes who were diagnosed with a concussion and returned to sport. These data are supportive of discordance in clinical symptomology and the inflammatory response in the CNS upon symptom resolution. In this review, we will summarize recent advances in the understanding of the inflammatory response associated with sport concussion and broader mild traumatic brain injury, as well as provide an outlook for important research questions to better align clinical and physiological recovery.
Collapse
Affiliation(s)
- Kiel D. Neumann
- Department of Diagnostic Imaging, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA;
| | - Donna K. Broshek
- Department of Psychiatry and Neurobehavioral Sciences, University of Virginia, Charlottesville, VA 22903, USA;
| | - Benjamin T. Newman
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA 22903, USA; (B.T.N.); (T.J.D.); (B.K.K.)
| | - T. Jason Druzgal
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA 22903, USA; (B.T.N.); (T.J.D.); (B.K.K.)
| | - Bijoy K. Kundu
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA 22903, USA; (B.T.N.); (T.J.D.); (B.K.K.)
| | - Jacob E. Resch
- Department of Kinesiology, University of Virginia, Charlottesville, VA 22903, USA
| |
Collapse
|
35
|
Gard A, Vedung F, Piehl F, Khademi M, Wernersson MP, Rorsman I, Tegner Y, Pessah-Rasmussen H, Ruscher K, Marklund N. Cerebrospinal fluid levels of neuroinflammatory biomarkers are increased in athletes with persistent post-concussive symptoms following sports-related concussion. J Neuroinflammation 2023; 20:189. [PMID: 37592277 PMCID: PMC10433539 DOI: 10.1186/s12974-023-02864-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/29/2023] [Indexed: 08/19/2023] Open
Abstract
A sports-related concussion (SRC) is often caused by rapid head rotation at impact, leading to shearing and stretching of axons in the white matter and initiation of secondary inflammatory processes that may exacerbate the initial injury. We hypothesized that athletes with persistent post-concussive symptoms (PPCS) display signs of ongoing neuroinflammation, as reflected by altered profiles of cerebrospinal fluid (CSF) biomarkers, in turn relating to symptom severity. We recruited athletes with PPCS preventing sports participation as well as limiting work, school and/or social activities for ≥ 6 months for symptom rating using the Sport Concussion Assessment Tool, version 5 (SCAT-5) and for cognitive assessment using the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS). Following a spinal tap, we analysed 27 CSF inflammatory biomarkers (pro-inflammatory chemokines and cytokine panels) by a multiplex immunoassay using antibodies as electrochemiluminescent labels to quantify concentrations in PPCS athletes, and in healthy age- and sex-matched controls exercising ≤ 2 times/week at low-to-moderate intensity. Thirty-six subjects were included, 24 athletes with PPCS and 12 controls. The SRC athletes had sustained a median of five concussions, the most recent at a median of 17 months prior to the investigation. CSF cytokines and chemokines levels were significantly increased in eight (IL-2, TNF-α, IL-15, TNF-β, VEGF, Eotaxin, IP-10, and TARC), significantly decreased in one (Eotaxin-3), and unaltered in 16 in SRC athletes when compared to controls, and two were un-detectable. The SRC athletes reported many and severe post-concussive symptoms on SCAT5, and 10 out of 24 athletes performed in the impaired range (Z < - 1.5) on cognitive testing. Individual biomarker concentrations did not strongly correlate with symptom rating or cognitive function. Limitations include evaluation at a single post-injury time point in relatively small cohorts, and no control group of concussed athletes without persisting symptoms was included. Based on CSF inflammatory marker profiling we find signs of ongoing neuroinflammation persisting months to years after the last SRC in athletes with persistent post-concussive symptoms. Since an ongoing inflammatory response may exacerbate the brain injury these results encourage studies of treatments targeting the post-injury inflammatory response in sports-related concussion.
Collapse
Affiliation(s)
- Anna Gard
- Department of Clinical Sciences Lund, Neurosurgery, Lund University, Lund, Sweden
| | - Fredrik Vedung
- Department of Neuroscience, Neurosurgery, Uppsala University, Uppsala, Sweden
| | - Fredrik Piehl
- Department of Clinical Neuroscience, Neuroimmunology Unit, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Mohsen Khademi
- Department of Clinical Neuroscience, Neuroimmunology Unit, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | | | - Ia Rorsman
- Department of Neurology and Rehabilitation Medicine, Skåne University Hospital, Lund, Sweden
| | - Yelverton Tegner
- Department of Health Sciences, Luleå University of Technology, Luleå, Sweden
| | - Hélène Pessah-Rasmussen
- Department of Neurology and Rehabilitation Medicine, Skåne University Hospital, Lund, Sweden
- Department of Clinical Sciences Lund, Neurology, Lund University, Lund, Sweden
| | - Karsten Ruscher
- Department of Clinical Sciences Lund, Neurosurgery, Lund University, Lund, Sweden
| | - Niklas Marklund
- Department of Clinical Sciences Lund, Neurosurgery, Lund University, Lund, Sweden
- Department of Clinical Sciences Lund, Neurosurgery, Lund University, Skåne University Hospital EA-Blocket Plan 4, Klinikgatan 17A7, 221 85 Lund, Sweden
| |
Collapse
|
36
|
Devoto C, Vorn R, Mithani S, Meier TB, Lai C, Broglio SP, McAllister T, Giza CC, Huber D, Harezlak J, Cameron KL, McGinty G, Jackson J, Guskiewicz K, Mihalik JP, Brooks A, Duma S, Rowson S, Nelson LD, Pasquina P, Turtzo C, Latour L, McCrea MA, Gill JM. Plasma phosphorylated tau181 as a biomarker of mild traumatic brain injury: findings from THINC and NCAA-DoD CARE Consortium prospective cohorts. Front Neurol 2023; 14:1202967. [PMID: 37662031 PMCID: PMC10470112 DOI: 10.3389/fneur.2023.1202967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 07/18/2023] [Indexed: 09/05/2023] Open
Abstract
Objective The aim of this study was to investigate phosphorylated tau (p-tau181) protein in plasma in a cohort of mild traumatic brain injury (mTBI) patients and a cohort of concussed athletes. Methods This pilot study comprised two independent cohorts. The first cohort-part of a Traumatic Head Injury Neuroimaging Classification (THINC) study-with a mean age of 46 years was composed of uninjured controls (UIC, n = 30) and mTBI patients (n = 288) recruited from the emergency department with clinical computed tomography (CT) and research magnetic resonance imaging (MRI) findings. The second cohort-with a mean age of 19 years-comprised 133 collegiate athletes with (n = 112) and without (n = 21) concussions. The participants enrolled in the second cohort were a part of a multicenter, prospective, case-control study conducted by the NCAA-DoD Concussion Assessment, Research and Education (CARE) Consortium at six CARE Advanced Research Core (ARC) sites between 2015 and 2019. Blood was collected within 48 h of injury for both cohorts. Plasma concentration (pg/ml) of p-tau181 was measured using the Single Molecule Array ultrasensitive assay. Results Concentrations of plasma p-tau181 in both cohorts were significantly elevated compared to controls within 48 h of injury, with the highest concentrations of p-tau181 within 18 h of injury, with an area under the curve (AUC) of 0.690-0.748, respectively, in distinguishing mTBI patients and concussed athletes from controls. Among the mTBI patients, the levels of plasma p-tau181 were significantly higher in patients with positive neuroimaging (either CT+/MRI+, n = 74 or CT-/MRI+, n = 89) compared to mTBI patients with negative neuroimaging (CT-/MRI-, n = 111) findings and UIC (P-values < 0.05). Conclusion These findings indicate that plasma p-tau181 concentrations likely relate to brain injury, with the highest levels in patients with neuroimaging evidence of injury. Future research is needed to replicate and validate this protein assay's performance as a possible early diagnostic biomarker for mTBI/concussions.
Collapse
Affiliation(s)
- Christina Devoto
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States
| | - Rany Vorn
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
- School of Nursing, Johns Hopkins University, Baltimore, MD, United States
| | - Sara Mithani
- School of Nursing, University of Texas Health at San Antonio, San Antonio, TX, United States
| | - Timothy B. Meier
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Chen Lai
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University and Health Science, Bethesda, MD, United States
| | - Steven P. Broglio
- Michigan Concussion Center, University of Michigan, Ann Arbor, MI, United States
| | - Thomas McAllister
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Christopher C. Giza
- Departments of Pediatrics and Neurosurgery, UCLA Steve Tisch BrainSPORT Program, University of California, Los Angeles, Los Angeles, CA, United States
| | - Daniel Huber
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Jaroslaw Harezlak
- Department of Epidemiology and Biostatistics School of Public Health-Bloomington, Indiana University, Bloomington, IN, United States
| | - Kenneth L. Cameron
- John A. Feagin Sports Medicine Fellowship, Keller Army Hospital, West Point, NY, United States
| | - Gerald McGinty
- United States Air Force Academy, Colorado Springs, CO, United States
| | - Jonathan Jackson
- United States Air Force Academy, Colorado Springs, CO, United States
| | - Kevin Guskiewicz
- Matthew Gfeller Center, Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Jason P. Mihalik
- Matthew Gfeller Center, Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Alison Brooks
- Department of Orthopedics and Sports Medicine, University of Wisconsin, Madison, WI, United States
| | - Stefan Duma
- Department of Biomedical Engineering, Virginia Tech, Blacksburg, VA, United States
| | - Steven Rowson
- Department of Biomedical Engineering, Virginia Tech, Blacksburg, VA, United States
| | - Lindsay D. Nelson
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Paul Pasquina
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University and Health Science, Bethesda, MD, United States
| | - Christine Turtzo
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Lawrence Latour
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Michael A. McCrea
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Jessica M. Gill
- School of Nursing, Johns Hopkins University, Baltimore, MD, United States
- Department of Neurology, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
37
|
Halabi C, Norton L, Norton K, Smith WS. Headpulse Biometric Measures Following Concussion in Young Adult Athletes. JAMA Netw Open 2023; 6:e2328633. [PMID: 37566413 PMCID: PMC10422194 DOI: 10.1001/jamanetworkopen.2023.28633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 06/24/2023] [Indexed: 08/12/2023] Open
Abstract
Importance Concussions are common in sports. Return-to-play protocols can be enhanced by objective biometrics. Objective To characterize temporal changes of headpulse, a digital biometric, in athletes with sports-related concussion; to explore the association of unstructured physical activity with headpulse changes. Design, Setting, and Participants This cohort study included headpulse measurements from players in the highest level of amateur Australian Rules Football in South Australia. Analysis included feasibility and validation phases, with the feasibility cohort recruited between August 5, 2021, and September 10, 2021, and the validation cohort recruited between May 5, 2022, and September 3, 2022. Data were analyzed October 2022 through January 2023. Interventions Cranial accelerometry detected micromovements of the head following cardiac contraction (what we have described as "headpulse"). Headpulse was serially recorded for 1 month in concussed individuals. Main Outcomes and Measures Headpulse waveforms underwent frequency transformation analysis per prespecified algorithm. Result Z scores were calculated. Headpulse Z scores exceeding 2 (2 SDs from control means) met an abnormality threshold. Headpulse sensitivity, timing, and duration of change were determined. Results A total of 59 control and 43 concussed individuals (44 total concussions; 1 control also concussed, 1 concussed individual injured twice) provided headpulse measurements. The feasibility cohort (all male) included 17 control (median [IQR] age, 23 [19-28] years) and 15 concussed individuals (median [IQR] age, 21 [19-23] years). The validation cohort included 25 female (median [IQR] age, 21 [20-22] years) and 17 male (median [IQR] age, 26 [23-29] years) control individuals, and 8 female (median [IQR] age, 28 [20-31] years) and 20 male (median [IQR] age, 21 [19-23] years) concussed individuals. Headpulse reached abnormality threshold in 26 of 32 concussed individuals (81%; 9% on day 0, 50% by day 2, 90% by day 14). Headpulse alterations lasted 14 days longer than symptoms and were exacerbated by return-to-play or unsupervised physical activity. Conclusions and Relevance In this study of 101 amateur Australian Rules Football athletes, the digital headpulse biometric was evaluated in 44 sports-related concussions. Compared with controls, new headpulse changes occurred after concussion; this objective metric may complement return-to-play protocols.
Collapse
Affiliation(s)
- Cathra Halabi
- Department of Neurology, University of California, San Francisco
- Weill Institute for Neurosciences, University of California, San Francisco
| | - Lynda Norton
- Alliance for Research in Exercise, Nutrition and Activity (ARENA), Allied Health and Human Performance, University of South Australia, Adelaide, Australia
| | - Kevin Norton
- Alliance for Research in Exercise, Nutrition and Activity (ARENA), Allied Health and Human Performance, University of South Australia, Adelaide, Australia
| | - Wade S. Smith
- Department of Neurology, University of California, San Francisco
- Weill Institute for Neurosciences, University of California, San Francisco
| |
Collapse
|
38
|
Wu YC, Wen Q, Thukral R, Yang HC, Gill JM, Gao S, Lane KA, Meier TB, Riggen LD, Harezlak J, Giza CC, Goldman J, Guskiewicz KM, Mihalik JP, LaConte SM, Duma SM, Broglio SP, Saykin AJ, McAllister TW, McCrea MA. Longitudinal Associations Between Blood Biomarkers and White Matter MRI in Sport-Related Concussion: A Study of the NCAA-DoD CARE Consortium. Neurology 2023; 101:e189-e201. [PMID: 37328299 PMCID: PMC10351550 DOI: 10.1212/wnl.0000000000207389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 03/22/2023] [Indexed: 06/18/2023] Open
Abstract
BACKGROUND AND OBJECTIVES To study longitudinal associations between blood-based neural biomarkers (including total tau, neurofilament light [NfL], glial fibrillary acidic protein [GFAP], and ubiquitin C-terminal hydrolase-L1) and white matter neuroimaging biomarkers in collegiate athletes with sport-related concussion (SRC) from 24 hours postinjury to 1 week after return to play. METHODS We analyzed clinical and imaging data of concussed collegiate athletes in the Concussion Assessment, Research, and Education (CARE) Consortium. The CARE participants completed same-day clinical assessments, blood draws, and diffusion tensor imaging (DTI) at 3 time points: 24-48 hours postinjury, point of becoming asymptomatic, and 7 days after return to play. DTI probabilistic tractography was performed for each participant at each time point to render 27 participant-specific major white matter tracts. The microstructural organization of these tracts was characterized by 4 DTI metrics. Mixed-effects models with random intercepts were applied to test whether white matter microstructural abnormalities are associated with the blood-based biomarkers at the same time point. An interaction model was used to test whether the association varies across time points. A lagged model was used to test whether early blood-based biomarkers predict later microstructural changes. RESULTS Data from 77 collegiate athletes were included in the following analyses. Among the 4 blood-based biomarkers, total tau had significant associations with the DTI metrics across the 3 time points. In particular, high tau level was associated with high radial diffusivity (RD) in the right corticospinal tract (β = 0.25, SE = 0.07, p FDR-adjusted = 0.016) and superior thalamic radiation (β = 0.21, SE = 0.07, p FDR-adjusted = 0.042). NfL and GFAP had time-dependent associations with the DTI metrics. NfL showed significant associations only at the asymptomatic time point (|β|s > 0.12, SEs <0.09, psFDR-adjusted < 0.05) and GFAP showed a significant association only at 7 days after return to play (βs > 0.14, SEs <0.06, psFDR-adjusted < 0.05). The p values for the associations of early tau and later RD were not significant after multiple comparison adjustment, but were less than 0.1 in 7 white matter tracts. DISCUSSION This prospective study using data from the CARE Consortium demonstrated that in the early phase of SRC, white matter microstructural integrity detected by DTI neuroimaging was associated with elevated levels of blood-based biomarkers of traumatic brain injury. Total tau in the blood showed the strongest association with white matter microstructural changes.
Collapse
Affiliation(s)
- Yu-Chien Wu
- From the Department of Radiology and Imaging Sciences (Y.-C.W., Q.W., R.T., H.-C.Y., A.J.S.), Indiana University School of Medicine, Indianapolis; School of Nursing (J.M.G.), Johns Hopkins University, Baltimore, MD; Department of Biostatistics and Health Data Science (S.G., K.A.L., L.D.R.), Indiana University School of Medicine, Indianapolis; Department of Neurosurgery (T.B.M., M.A.M.), Medical College of Wisconsin, Milwaukee; Department of Epidemiology and Biostatistics (J.H.), School of Public Health, Indiana University, Bloomington; Department of Neurosurgery (C.C.G.), David Geffen School of Medicine at University of California Los Angeles; Family Medicine (J.G.), Ronald Reagan UCLA Medical Center, UCLA Health-Santa Monica Medical Center; Matthew Gfeller Center (K.M.G., J.P.M.), Department of Exercise and Sport Science, University of North Carolina, Chapel Hill; School of Biomedical Engineering and Sciences (S.M.L., S.M.D.), Wake-Forest and Virginia Tech University, Blacksburg; Michigan Concussion Center (S.P.B.), University of Michigan, Ann Arbor; and Department of Psychiatry (T.W.M.), Indiana University School of Medicine, Indianapolis.
| | - Qiuting Wen
- From the Department of Radiology and Imaging Sciences (Y.-C.W., Q.W., R.T., H.-C.Y., A.J.S.), Indiana University School of Medicine, Indianapolis; School of Nursing (J.M.G.), Johns Hopkins University, Baltimore, MD; Department of Biostatistics and Health Data Science (S.G., K.A.L., L.D.R.), Indiana University School of Medicine, Indianapolis; Department of Neurosurgery (T.B.M., M.A.M.), Medical College of Wisconsin, Milwaukee; Department of Epidemiology and Biostatistics (J.H.), School of Public Health, Indiana University, Bloomington; Department of Neurosurgery (C.C.G.), David Geffen School of Medicine at University of California Los Angeles; Family Medicine (J.G.), Ronald Reagan UCLA Medical Center, UCLA Health-Santa Monica Medical Center; Matthew Gfeller Center (K.M.G., J.P.M.), Department of Exercise and Sport Science, University of North Carolina, Chapel Hill; School of Biomedical Engineering and Sciences (S.M.L., S.M.D.), Wake-Forest and Virginia Tech University, Blacksburg; Michigan Concussion Center (S.P.B.), University of Michigan, Ann Arbor; and Department of Psychiatry (T.W.M.), Indiana University School of Medicine, Indianapolis
| | - Rhea Thukral
- From the Department of Radiology and Imaging Sciences (Y.-C.W., Q.W., R.T., H.-C.Y., A.J.S.), Indiana University School of Medicine, Indianapolis; School of Nursing (J.M.G.), Johns Hopkins University, Baltimore, MD; Department of Biostatistics and Health Data Science (S.G., K.A.L., L.D.R.), Indiana University School of Medicine, Indianapolis; Department of Neurosurgery (T.B.M., M.A.M.), Medical College of Wisconsin, Milwaukee; Department of Epidemiology and Biostatistics (J.H.), School of Public Health, Indiana University, Bloomington; Department of Neurosurgery (C.C.G.), David Geffen School of Medicine at University of California Los Angeles; Family Medicine (J.G.), Ronald Reagan UCLA Medical Center, UCLA Health-Santa Monica Medical Center; Matthew Gfeller Center (K.M.G., J.P.M.), Department of Exercise and Sport Science, University of North Carolina, Chapel Hill; School of Biomedical Engineering and Sciences (S.M.L., S.M.D.), Wake-Forest and Virginia Tech University, Blacksburg; Michigan Concussion Center (S.P.B.), University of Michigan, Ann Arbor; and Department of Psychiatry (T.W.M.), Indiana University School of Medicine, Indianapolis
| | - Ho-Ching Yang
- From the Department of Radiology and Imaging Sciences (Y.-C.W., Q.W., R.T., H.-C.Y., A.J.S.), Indiana University School of Medicine, Indianapolis; School of Nursing (J.M.G.), Johns Hopkins University, Baltimore, MD; Department of Biostatistics and Health Data Science (S.G., K.A.L., L.D.R.), Indiana University School of Medicine, Indianapolis; Department of Neurosurgery (T.B.M., M.A.M.), Medical College of Wisconsin, Milwaukee; Department of Epidemiology and Biostatistics (J.H.), School of Public Health, Indiana University, Bloomington; Department of Neurosurgery (C.C.G.), David Geffen School of Medicine at University of California Los Angeles; Family Medicine (J.G.), Ronald Reagan UCLA Medical Center, UCLA Health-Santa Monica Medical Center; Matthew Gfeller Center (K.M.G., J.P.M.), Department of Exercise and Sport Science, University of North Carolina, Chapel Hill; School of Biomedical Engineering and Sciences (S.M.L., S.M.D.), Wake-Forest and Virginia Tech University, Blacksburg; Michigan Concussion Center (S.P.B.), University of Michigan, Ann Arbor; and Department of Psychiatry (T.W.M.), Indiana University School of Medicine, Indianapolis
| | - Jessica M Gill
- From the Department of Radiology and Imaging Sciences (Y.-C.W., Q.W., R.T., H.-C.Y., A.J.S.), Indiana University School of Medicine, Indianapolis; School of Nursing (J.M.G.), Johns Hopkins University, Baltimore, MD; Department of Biostatistics and Health Data Science (S.G., K.A.L., L.D.R.), Indiana University School of Medicine, Indianapolis; Department of Neurosurgery (T.B.M., M.A.M.), Medical College of Wisconsin, Milwaukee; Department of Epidemiology and Biostatistics (J.H.), School of Public Health, Indiana University, Bloomington; Department of Neurosurgery (C.C.G.), David Geffen School of Medicine at University of California Los Angeles; Family Medicine (J.G.), Ronald Reagan UCLA Medical Center, UCLA Health-Santa Monica Medical Center; Matthew Gfeller Center (K.M.G., J.P.M.), Department of Exercise and Sport Science, University of North Carolina, Chapel Hill; School of Biomedical Engineering and Sciences (S.M.L., S.M.D.), Wake-Forest and Virginia Tech University, Blacksburg; Michigan Concussion Center (S.P.B.), University of Michigan, Ann Arbor; and Department of Psychiatry (T.W.M.), Indiana University School of Medicine, Indianapolis
| | - Sujuan Gao
- From the Department of Radiology and Imaging Sciences (Y.-C.W., Q.W., R.T., H.-C.Y., A.J.S.), Indiana University School of Medicine, Indianapolis; School of Nursing (J.M.G.), Johns Hopkins University, Baltimore, MD; Department of Biostatistics and Health Data Science (S.G., K.A.L., L.D.R.), Indiana University School of Medicine, Indianapolis; Department of Neurosurgery (T.B.M., M.A.M.), Medical College of Wisconsin, Milwaukee; Department of Epidemiology and Biostatistics (J.H.), School of Public Health, Indiana University, Bloomington; Department of Neurosurgery (C.C.G.), David Geffen School of Medicine at University of California Los Angeles; Family Medicine (J.G.), Ronald Reagan UCLA Medical Center, UCLA Health-Santa Monica Medical Center; Matthew Gfeller Center (K.M.G., J.P.M.), Department of Exercise and Sport Science, University of North Carolina, Chapel Hill; School of Biomedical Engineering and Sciences (S.M.L., S.M.D.), Wake-Forest and Virginia Tech University, Blacksburg; Michigan Concussion Center (S.P.B.), University of Michigan, Ann Arbor; and Department of Psychiatry (T.W.M.), Indiana University School of Medicine, Indianapolis
| | - Kathleen A Lane
- From the Department of Radiology and Imaging Sciences (Y.-C.W., Q.W., R.T., H.-C.Y., A.J.S.), Indiana University School of Medicine, Indianapolis; School of Nursing (J.M.G.), Johns Hopkins University, Baltimore, MD; Department of Biostatistics and Health Data Science (S.G., K.A.L., L.D.R.), Indiana University School of Medicine, Indianapolis; Department of Neurosurgery (T.B.M., M.A.M.), Medical College of Wisconsin, Milwaukee; Department of Epidemiology and Biostatistics (J.H.), School of Public Health, Indiana University, Bloomington; Department of Neurosurgery (C.C.G.), David Geffen School of Medicine at University of California Los Angeles; Family Medicine (J.G.), Ronald Reagan UCLA Medical Center, UCLA Health-Santa Monica Medical Center; Matthew Gfeller Center (K.M.G., J.P.M.), Department of Exercise and Sport Science, University of North Carolina, Chapel Hill; School of Biomedical Engineering and Sciences (S.M.L., S.M.D.), Wake-Forest and Virginia Tech University, Blacksburg; Michigan Concussion Center (S.P.B.), University of Michigan, Ann Arbor; and Department of Psychiatry (T.W.M.), Indiana University School of Medicine, Indianapolis
| | - Timothy B Meier
- From the Department of Radiology and Imaging Sciences (Y.-C.W., Q.W., R.T., H.-C.Y., A.J.S.), Indiana University School of Medicine, Indianapolis; School of Nursing (J.M.G.), Johns Hopkins University, Baltimore, MD; Department of Biostatistics and Health Data Science (S.G., K.A.L., L.D.R.), Indiana University School of Medicine, Indianapolis; Department of Neurosurgery (T.B.M., M.A.M.), Medical College of Wisconsin, Milwaukee; Department of Epidemiology and Biostatistics (J.H.), School of Public Health, Indiana University, Bloomington; Department of Neurosurgery (C.C.G.), David Geffen School of Medicine at University of California Los Angeles; Family Medicine (J.G.), Ronald Reagan UCLA Medical Center, UCLA Health-Santa Monica Medical Center; Matthew Gfeller Center (K.M.G., J.P.M.), Department of Exercise and Sport Science, University of North Carolina, Chapel Hill; School of Biomedical Engineering and Sciences (S.M.L., S.M.D.), Wake-Forest and Virginia Tech University, Blacksburg; Michigan Concussion Center (S.P.B.), University of Michigan, Ann Arbor; and Department of Psychiatry (T.W.M.), Indiana University School of Medicine, Indianapolis
| | - Larry D Riggen
- From the Department of Radiology and Imaging Sciences (Y.-C.W., Q.W., R.T., H.-C.Y., A.J.S.), Indiana University School of Medicine, Indianapolis; School of Nursing (J.M.G.), Johns Hopkins University, Baltimore, MD; Department of Biostatistics and Health Data Science (S.G., K.A.L., L.D.R.), Indiana University School of Medicine, Indianapolis; Department of Neurosurgery (T.B.M., M.A.M.), Medical College of Wisconsin, Milwaukee; Department of Epidemiology and Biostatistics (J.H.), School of Public Health, Indiana University, Bloomington; Department of Neurosurgery (C.C.G.), David Geffen School of Medicine at University of California Los Angeles; Family Medicine (J.G.), Ronald Reagan UCLA Medical Center, UCLA Health-Santa Monica Medical Center; Matthew Gfeller Center (K.M.G., J.P.M.), Department of Exercise and Sport Science, University of North Carolina, Chapel Hill; School of Biomedical Engineering and Sciences (S.M.L., S.M.D.), Wake-Forest and Virginia Tech University, Blacksburg; Michigan Concussion Center (S.P.B.), University of Michigan, Ann Arbor; and Department of Psychiatry (T.W.M.), Indiana University School of Medicine, Indianapolis
| | - Jaroslaw Harezlak
- From the Department of Radiology and Imaging Sciences (Y.-C.W., Q.W., R.T., H.-C.Y., A.J.S.), Indiana University School of Medicine, Indianapolis; School of Nursing (J.M.G.), Johns Hopkins University, Baltimore, MD; Department of Biostatistics and Health Data Science (S.G., K.A.L., L.D.R.), Indiana University School of Medicine, Indianapolis; Department of Neurosurgery (T.B.M., M.A.M.), Medical College of Wisconsin, Milwaukee; Department of Epidemiology and Biostatistics (J.H.), School of Public Health, Indiana University, Bloomington; Department of Neurosurgery (C.C.G.), David Geffen School of Medicine at University of California Los Angeles; Family Medicine (J.G.), Ronald Reagan UCLA Medical Center, UCLA Health-Santa Monica Medical Center; Matthew Gfeller Center (K.M.G., J.P.M.), Department of Exercise and Sport Science, University of North Carolina, Chapel Hill; School of Biomedical Engineering and Sciences (S.M.L., S.M.D.), Wake-Forest and Virginia Tech University, Blacksburg; Michigan Concussion Center (S.P.B.), University of Michigan, Ann Arbor; and Department of Psychiatry (T.W.M.), Indiana University School of Medicine, Indianapolis
| | - Christopher C Giza
- From the Department of Radiology and Imaging Sciences (Y.-C.W., Q.W., R.T., H.-C.Y., A.J.S.), Indiana University School of Medicine, Indianapolis; School of Nursing (J.M.G.), Johns Hopkins University, Baltimore, MD; Department of Biostatistics and Health Data Science (S.G., K.A.L., L.D.R.), Indiana University School of Medicine, Indianapolis; Department of Neurosurgery (T.B.M., M.A.M.), Medical College of Wisconsin, Milwaukee; Department of Epidemiology and Biostatistics (J.H.), School of Public Health, Indiana University, Bloomington; Department of Neurosurgery (C.C.G.), David Geffen School of Medicine at University of California Los Angeles; Family Medicine (J.G.), Ronald Reagan UCLA Medical Center, UCLA Health-Santa Monica Medical Center; Matthew Gfeller Center (K.M.G., J.P.M.), Department of Exercise and Sport Science, University of North Carolina, Chapel Hill; School of Biomedical Engineering and Sciences (S.M.L., S.M.D.), Wake-Forest and Virginia Tech University, Blacksburg; Michigan Concussion Center (S.P.B.), University of Michigan, Ann Arbor; and Department of Psychiatry (T.W.M.), Indiana University School of Medicine, Indianapolis
| | - Joshua Goldman
- From the Department of Radiology and Imaging Sciences (Y.-C.W., Q.W., R.T., H.-C.Y., A.J.S.), Indiana University School of Medicine, Indianapolis; School of Nursing (J.M.G.), Johns Hopkins University, Baltimore, MD; Department of Biostatistics and Health Data Science (S.G., K.A.L., L.D.R.), Indiana University School of Medicine, Indianapolis; Department of Neurosurgery (T.B.M., M.A.M.), Medical College of Wisconsin, Milwaukee; Department of Epidemiology and Biostatistics (J.H.), School of Public Health, Indiana University, Bloomington; Department of Neurosurgery (C.C.G.), David Geffen School of Medicine at University of California Los Angeles; Family Medicine (J.G.), Ronald Reagan UCLA Medical Center, UCLA Health-Santa Monica Medical Center; Matthew Gfeller Center (K.M.G., J.P.M.), Department of Exercise and Sport Science, University of North Carolina, Chapel Hill; School of Biomedical Engineering and Sciences (S.M.L., S.M.D.), Wake-Forest and Virginia Tech University, Blacksburg; Michigan Concussion Center (S.P.B.), University of Michigan, Ann Arbor; and Department of Psychiatry (T.W.M.), Indiana University School of Medicine, Indianapolis
| | - Kevin M Guskiewicz
- From the Department of Radiology and Imaging Sciences (Y.-C.W., Q.W., R.T., H.-C.Y., A.J.S.), Indiana University School of Medicine, Indianapolis; School of Nursing (J.M.G.), Johns Hopkins University, Baltimore, MD; Department of Biostatistics and Health Data Science (S.G., K.A.L., L.D.R.), Indiana University School of Medicine, Indianapolis; Department of Neurosurgery (T.B.M., M.A.M.), Medical College of Wisconsin, Milwaukee; Department of Epidemiology and Biostatistics (J.H.), School of Public Health, Indiana University, Bloomington; Department of Neurosurgery (C.C.G.), David Geffen School of Medicine at University of California Los Angeles; Family Medicine (J.G.), Ronald Reagan UCLA Medical Center, UCLA Health-Santa Monica Medical Center; Matthew Gfeller Center (K.M.G., J.P.M.), Department of Exercise and Sport Science, University of North Carolina, Chapel Hill; School of Biomedical Engineering and Sciences (S.M.L., S.M.D.), Wake-Forest and Virginia Tech University, Blacksburg; Michigan Concussion Center (S.P.B.), University of Michigan, Ann Arbor; and Department of Psychiatry (T.W.M.), Indiana University School of Medicine, Indianapolis
| | - Jason P Mihalik
- From the Department of Radiology and Imaging Sciences (Y.-C.W., Q.W., R.T., H.-C.Y., A.J.S.), Indiana University School of Medicine, Indianapolis; School of Nursing (J.M.G.), Johns Hopkins University, Baltimore, MD; Department of Biostatistics and Health Data Science (S.G., K.A.L., L.D.R.), Indiana University School of Medicine, Indianapolis; Department of Neurosurgery (T.B.M., M.A.M.), Medical College of Wisconsin, Milwaukee; Department of Epidemiology and Biostatistics (J.H.), School of Public Health, Indiana University, Bloomington; Department of Neurosurgery (C.C.G.), David Geffen School of Medicine at University of California Los Angeles; Family Medicine (J.G.), Ronald Reagan UCLA Medical Center, UCLA Health-Santa Monica Medical Center; Matthew Gfeller Center (K.M.G., J.P.M.), Department of Exercise and Sport Science, University of North Carolina, Chapel Hill; School of Biomedical Engineering and Sciences (S.M.L., S.M.D.), Wake-Forest and Virginia Tech University, Blacksburg; Michigan Concussion Center (S.P.B.), University of Michigan, Ann Arbor; and Department of Psychiatry (T.W.M.), Indiana University School of Medicine, Indianapolis
| | - Stephen M LaConte
- From the Department of Radiology and Imaging Sciences (Y.-C.W., Q.W., R.T., H.-C.Y., A.J.S.), Indiana University School of Medicine, Indianapolis; School of Nursing (J.M.G.), Johns Hopkins University, Baltimore, MD; Department of Biostatistics and Health Data Science (S.G., K.A.L., L.D.R.), Indiana University School of Medicine, Indianapolis; Department of Neurosurgery (T.B.M., M.A.M.), Medical College of Wisconsin, Milwaukee; Department of Epidemiology and Biostatistics (J.H.), School of Public Health, Indiana University, Bloomington; Department of Neurosurgery (C.C.G.), David Geffen School of Medicine at University of California Los Angeles; Family Medicine (J.G.), Ronald Reagan UCLA Medical Center, UCLA Health-Santa Monica Medical Center; Matthew Gfeller Center (K.M.G., J.P.M.), Department of Exercise and Sport Science, University of North Carolina, Chapel Hill; School of Biomedical Engineering and Sciences (S.M.L., S.M.D.), Wake-Forest and Virginia Tech University, Blacksburg; Michigan Concussion Center (S.P.B.), University of Michigan, Ann Arbor; and Department of Psychiatry (T.W.M.), Indiana University School of Medicine, Indianapolis
| | - Stefan M Duma
- From the Department of Radiology and Imaging Sciences (Y.-C.W., Q.W., R.T., H.-C.Y., A.J.S.), Indiana University School of Medicine, Indianapolis; School of Nursing (J.M.G.), Johns Hopkins University, Baltimore, MD; Department of Biostatistics and Health Data Science (S.G., K.A.L., L.D.R.), Indiana University School of Medicine, Indianapolis; Department of Neurosurgery (T.B.M., M.A.M.), Medical College of Wisconsin, Milwaukee; Department of Epidemiology and Biostatistics (J.H.), School of Public Health, Indiana University, Bloomington; Department of Neurosurgery (C.C.G.), David Geffen School of Medicine at University of California Los Angeles; Family Medicine (J.G.), Ronald Reagan UCLA Medical Center, UCLA Health-Santa Monica Medical Center; Matthew Gfeller Center (K.M.G., J.P.M.), Department of Exercise and Sport Science, University of North Carolina, Chapel Hill; School of Biomedical Engineering and Sciences (S.M.L., S.M.D.), Wake-Forest and Virginia Tech University, Blacksburg; Michigan Concussion Center (S.P.B.), University of Michigan, Ann Arbor; and Department of Psychiatry (T.W.M.), Indiana University School of Medicine, Indianapolis
| | - Steven P Broglio
- From the Department of Radiology and Imaging Sciences (Y.-C.W., Q.W., R.T., H.-C.Y., A.J.S.), Indiana University School of Medicine, Indianapolis; School of Nursing (J.M.G.), Johns Hopkins University, Baltimore, MD; Department of Biostatistics and Health Data Science (S.G., K.A.L., L.D.R.), Indiana University School of Medicine, Indianapolis; Department of Neurosurgery (T.B.M., M.A.M.), Medical College of Wisconsin, Milwaukee; Department of Epidemiology and Biostatistics (J.H.), School of Public Health, Indiana University, Bloomington; Department of Neurosurgery (C.C.G.), David Geffen School of Medicine at University of California Los Angeles; Family Medicine (J.G.), Ronald Reagan UCLA Medical Center, UCLA Health-Santa Monica Medical Center; Matthew Gfeller Center (K.M.G., J.P.M.), Department of Exercise and Sport Science, University of North Carolina, Chapel Hill; School of Biomedical Engineering and Sciences (S.M.L., S.M.D.), Wake-Forest and Virginia Tech University, Blacksburg; Michigan Concussion Center (S.P.B.), University of Michigan, Ann Arbor; and Department of Psychiatry (T.W.M.), Indiana University School of Medicine, Indianapolis
| | - Andrew J Saykin
- From the Department of Radiology and Imaging Sciences (Y.-C.W., Q.W., R.T., H.-C.Y., A.J.S.), Indiana University School of Medicine, Indianapolis; School of Nursing (J.M.G.), Johns Hopkins University, Baltimore, MD; Department of Biostatistics and Health Data Science (S.G., K.A.L., L.D.R.), Indiana University School of Medicine, Indianapolis; Department of Neurosurgery (T.B.M., M.A.M.), Medical College of Wisconsin, Milwaukee; Department of Epidemiology and Biostatistics (J.H.), School of Public Health, Indiana University, Bloomington; Department of Neurosurgery (C.C.G.), David Geffen School of Medicine at University of California Los Angeles; Family Medicine (J.G.), Ronald Reagan UCLA Medical Center, UCLA Health-Santa Monica Medical Center; Matthew Gfeller Center (K.M.G., J.P.M.), Department of Exercise and Sport Science, University of North Carolina, Chapel Hill; School of Biomedical Engineering and Sciences (S.M.L., S.M.D.), Wake-Forest and Virginia Tech University, Blacksburg; Michigan Concussion Center (S.P.B.), University of Michigan, Ann Arbor; and Department of Psychiatry (T.W.M.), Indiana University School of Medicine, Indianapolis
| | - Thomas Walker McAllister
- From the Department of Radiology and Imaging Sciences (Y.-C.W., Q.W., R.T., H.-C.Y., A.J.S.), Indiana University School of Medicine, Indianapolis; School of Nursing (J.M.G.), Johns Hopkins University, Baltimore, MD; Department of Biostatistics and Health Data Science (S.G., K.A.L., L.D.R.), Indiana University School of Medicine, Indianapolis; Department of Neurosurgery (T.B.M., M.A.M.), Medical College of Wisconsin, Milwaukee; Department of Epidemiology and Biostatistics (J.H.), School of Public Health, Indiana University, Bloomington; Department of Neurosurgery (C.C.G.), David Geffen School of Medicine at University of California Los Angeles; Family Medicine (J.G.), Ronald Reagan UCLA Medical Center, UCLA Health-Santa Monica Medical Center; Matthew Gfeller Center (K.M.G., J.P.M.), Department of Exercise and Sport Science, University of North Carolina, Chapel Hill; School of Biomedical Engineering and Sciences (S.M.L., S.M.D.), Wake-Forest and Virginia Tech University, Blacksburg; Michigan Concussion Center (S.P.B.), University of Michigan, Ann Arbor; and Department of Psychiatry (T.W.M.), Indiana University School of Medicine, Indianapolis
| | - Michael A McCrea
- From the Department of Radiology and Imaging Sciences (Y.-C.W., Q.W., R.T., H.-C.Y., A.J.S.), Indiana University School of Medicine, Indianapolis; School of Nursing (J.M.G.), Johns Hopkins University, Baltimore, MD; Department of Biostatistics and Health Data Science (S.G., K.A.L., L.D.R.), Indiana University School of Medicine, Indianapolis; Department of Neurosurgery (T.B.M., M.A.M.), Medical College of Wisconsin, Milwaukee; Department of Epidemiology and Biostatistics (J.H.), School of Public Health, Indiana University, Bloomington; Department of Neurosurgery (C.C.G.), David Geffen School of Medicine at University of California Los Angeles; Family Medicine (J.G.), Ronald Reagan UCLA Medical Center, UCLA Health-Santa Monica Medical Center; Matthew Gfeller Center (K.M.G., J.P.M.), Department of Exercise and Sport Science, University of North Carolina, Chapel Hill; School of Biomedical Engineering and Sciences (S.M.L., S.M.D.), Wake-Forest and Virginia Tech University, Blacksburg; Michigan Concussion Center (S.P.B.), University of Michigan, Ann Arbor; and Department of Psychiatry (T.W.M.), Indiana University School of Medicine, Indianapolis
| |
Collapse
|
39
|
Pybus AF, Bitarafan S, Brothers RO, Rohrer A, Khaitan A, Moctezuma FR, Udeshi K, Davies B, Triplett S, Dammer E, Rangaraju S, Buckley EM, Wood LB. Profiling the neuroimmune cascade in 3xTg mice exposed to successive mild traumatic brain injuries. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.13.544838. [PMID: 37397993 PMCID: PMC10312742 DOI: 10.1101/2023.06.13.544838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Repetitive mild traumatic brain injuries (rmTBI) sustained within a window of vulnerability can result in long term cognitive deficits, depression, and eventual neurodegeneration associated with tau pathology, amyloid beta (Aβ) plaques, gliosis, and neuronal and functional loss. However, we have limited understanding of how successive injuries acutely affect the brain to result in these devastating long-term consequences. In the current study, we addressed the question of how repeated injuries affect the brain in the acute phase of injury (<24hr) by exposing the 3xTg-AD mouse model of tau and Aβ pathology to successive (1x, 3x, 5x) once-daily weight drop closed-head injuries and quantifying immune markers, pathological markers, and transcriptional profiles at 30min, 4hr, and 24hr after each injury. We used young adult mice (2-4 months old) to model the effects of rmTBI relevant to young adult athletes, and in the absence of significant tau and Aβ pathology. Importantly, we identified pronounced sexual dimorphism, with females eliciting more differentially expressed proteins after injury compared to males. Specifically, females showed: 1) a single injury caused a decrease in neuron-enriched genes inversely correlated with inflammatory protein expression as well as an increase in AD-related genes within 24hr, 2) each injury significantly increased expression of a group of cortical cytokines (IL-1α, IL-1β, IL-2, IL-9, IL-13, IL-17, KC) and MAPK phospho-proteins (phospho-Atf2, phospho-Mek1), several of which were co-labeled with neurons and correlated with phospho-tau, and 3) repetitive injury caused increased expression of genes associated with astrocyte reactivity and immune function. Collectively our data suggest that neurons respond to a single injury within 24h, while other cell types including astrocytes transition to inflammatory phenotypes within days of repetitive injury.
Collapse
|
40
|
Echemendia RJ, Burma JS, Bruce JM, Davis GA, Giza CC, Guskiewicz KM, Naidu D, Black AM, Broglio S, Kemp S, Patricios JS, Putukian M, Zemek R, Arango-Lasprilla JC, Bailey CM, Brett BL, Didehbani N, Gioia G, Herring SA, Howell D, Master CL, Valovich McLeod TC, Meehan WP, Premji Z, Salmon D, van Ierssel J, Bhathela N, Makdissi M, Walton SR, Kissick J, Pardini J, Schneider KJ. Acute evaluation of sport-related concussion and implications for the Sport Concussion Assessment Tool (SCAT6) for adults, adolescents and children: a systematic review. Br J Sports Med 2023; 57:722-735. [PMID: 37316213 DOI: 10.1136/bjsports-2022-106661] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2023] [Indexed: 06/16/2023]
Abstract
OBJECTIVES To systematically review the scientific literature regarding the acute assessment of sport-related concussion (SRC) and provide recommendations for improving the Sport Concussion Assessment Tool (SCAT6). DATA SOURCES Systematic searches of seven databases from 2001 to 2022 using key words and controlled vocabulary relevant to concussion, sports, SCAT, and acute evaluation. ELIGIBILITY CRITERIA (1) Original research articles, cohort studies, case-control studies, and case series with a sample of >10; (2) ≥80% SRC; and (3) studies using a screening tool/technology to assess SRC acutely (<7 days), and/or studies containing psychometric/normative data for common tools used to assess SRC. DATA EXTRACTION Separate reviews were conducted involving six subdomains: Cognition, Balance/Postural Stability, Oculomotor/Cervical/Vestibular, Emerging Technologies, and Neurological Examination/Autonomic Dysfunction. Paediatric/Child studies were included in each subdomain. Risk of Bias and study quality were rated by coauthors using a modified SIGN (Scottish Intercollegiate Guidelines Network) tool. RESULTS Out of 12 192 articles screened, 612 were included (189 normative data and 423 SRC assessment studies). Of these, 183 focused on cognition, 126 balance/postural stability, 76 oculomotor/cervical/vestibular, 142 emerging technologies, 13 neurological examination/autonomic dysfunction, and 23 paediatric/child SCAT. The SCAT discriminates between concussed and non-concussed athletes within 72 hours of injury with diminishing utility up to 7 days post injury. Ceiling effects were apparent on the 5-word list learning and concentration subtests. More challenging tests, including the 10-word list, were recommended. Test-retest data revealed limitations in temporal stability. Studies primarily originated in North America with scant data on children. CONCLUSION Support exists for using the SCAT within the acute phase of injury. Maximal utility occurs within the first 72 hours and then diminishes up to 7 days after injury. The SCAT has limited utility as a return to play tool beyond 7 days. Empirical data are limited in pre-adolescents, women, sport type, geographical and culturally diverse populations and para athletes. PROSPERO REGISTRATION NUMBER CRD42020154787.
Collapse
Affiliation(s)
- Ruben J Echemendia
- Concussion Care Clinic, University Orthopedics, State College, Pennsylvania, USA
- University of Missouri Kansas City, Kansas City, Missouri, USA
| | - Joel S Burma
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Jared M Bruce
- Biomedical and Health Informatics, University of Missouri - Kansas City, Kansas City, Missouri, USA
| | - Gavin A Davis
- Murdoch Children's Research Institute, Parkville, Victoria, Australia
- Cabrini Health, Malvern, Victoria, Australia
| | - Christopher C Giza
- Neurosurgery, UCLA Steve Tisch BrainSPORT Program, Los Angeles, California, USA
- Pediatrics/Pediatric Neurology, Mattel Children's Hospital UCLA, Los Angeles, California, USA
| | - Kevin M Guskiewicz
- Matthew Gfeller Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Dhiren Naidu
- Medicine, University of Alberta, Edmonton, Alberta, Canada
| | | | - Steven Broglio
- Michigan Concussion Center, University of Michigan, Ann Arbor, Michigan, USA
| | - Simon Kemp
- Sports Medicine, Rugby Football Union, London, UK
| | - Jon S Patricios
- Wits Sport and Health (WiSH), School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg-Braamfontein, South Africa
| | | | - Roger Zemek
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
- Department of Pediatrics, University of Ottawa, Ottawa, Ontario, Canada
| | | | - Christopher M Bailey
- Neurology, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
- Neurology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Benjamin L Brett
- Neurosurgery/ Neurology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | | | - Gerry Gioia
- Depts of Pediatrics and Psychiatry & Behavioral Sciences, Children's National Health System, Washington, District of Columbia, USA
| | - Stanley A Herring
- Department of Rehabilitation Medicine, Orthopaedics and Sports Medicine, and Neurological Surgery, University of Washington, Seattle, Washington, USA
| | - David Howell
- Orthopedics, Sports Medicine Center, Children's Hospital Colorado, Aurora, Colorado, USA
| | | | - Tamara C Valovich McLeod
- Department of Athletic Training and School of Osteopathic Medicine in Arizona, A.T. Still University, Mesa, Arizona, USA
| | - William P Meehan
- Sports Medicine, Children's Hospital Boston, Boston, Massachusetts, USA
- Emergency Medicine, Children's Hospital Boston, Boston, Massachusetts, USA
| | - Zahra Premji
- Libraries, University of Victoria, Victoria, British Columbia, Canada
| | | | | | - Neil Bhathela
- UCLA Health Steve Tisch BrainSPORT Program, Los Angeles, California, USA
| | - Michael Makdissi
- Florey Institute of Neuroscience and Mental Health - Austin Campus, Heidelberg, Victoria, Australia
- La Trobe Sport and Exercise Medicine Research Centre, Melbourne, Victoria, Australia
| | - Samuel R Walton
- Department of Physical Medicine and Rehabilitation, School of Medicine, Richmond, Virginia, USA
| | - James Kissick
- Dept of Family Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Jamie Pardini
- Departments of Internal Medicine and Neurology, University of Arizona College of Medicine, Phoenix, Arizona, USA
| | - Kathryn J Schneider
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
41
|
Tabor JB, Brett BL, Nelson L, Meier T, Penner LC, Mayer AR, Echemendia RJ, McAllister T, Meehan WP, Patricios J, Makdissi M, Bressan S, Davis GA, Premji Z, Schneider KJ, Zetterberg H, McCrea M. Role of biomarkers and emerging technologies in defining and assessing neurobiological recovery after sport-related concussion: a systematic review. Br J Sports Med 2023; 57:789-797. [PMID: 37316184 DOI: 10.1136/bjsports-2022-106680] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/05/2023] [Indexed: 06/16/2023]
Abstract
OBJECTIVE Determine the role of fluid-based biomarkers, advanced neuroimaging, genetic testing and emerging technologies in defining and assessing neurobiological recovery after sport-related concussion (SRC). DESIGN Systematic review. DATA SOURCES Searches of seven databases from 1 January 2001 through 24 March 2022 using keywords and index terms relevant to concussion, sports and neurobiological recovery. Separate reviews were conducted for studies involving neuroimaging, fluid biomarkers, genetic testing and emerging technologies. A standardised method and data extraction tool was used to document the study design, population, methodology and results. Reviewers also rated the risk of bias and quality of each study. ELIGIBILITY CRITERIA FOR SELECTING STUDIES Studies were included if they: (1) were published in English; (2) represented original research; (3) involved human research; (4) pertained only to SRC; (5) included data involving neuroimaging (including electrophysiological testing), fluid biomarkers or genetic testing or other advanced technologies used to assess neurobiological recovery after SRC; (6) had a minimum of one data collection point within 6 months post-SRC; and (7) contained a minimum sample size of 10 participants. RESULTS A total of 205 studies met inclusion criteria, including 81 neuroimaging, 50 fluid biomarkers, 5 genetic testing, 73 advanced technologies studies (4 studies overlapped two separate domains). Numerous studies have demonstrated the ability of neuroimaging and fluid-based biomarkers to detect the acute effects of concussion and to track neurobiological recovery after injury. Recent studies have also reported on the diagnostic and prognostic performance of emerging technologies in the assessment of SRC. In sum, the available evidence reinforces the theory that physiological recovery may persist beyond clinical recovery after SRC. The potential role of genetic testing remains unclear based on limited research. CONCLUSIONS Advanced neuroimaging, fluid-based biomarkers, genetic testing and emerging technologies are valuable research tools for the study of SRC, but there is not sufficient evidence to recommend their use in clinical practice. PROSPERO REGISTRATION NUMBER CRD42020164558.
Collapse
Affiliation(s)
- Jason B Tabor
- Sport Injury Prevention Research Centre, Faculty of Kinesiology; University of Calgary, Calgary, Alberta, Canada
| | - Benjamin L Brett
- Department of Neurosurgery and Center for Neurotrauma Research, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Lindsay Nelson
- Department of Neurosurgery and Center for Neurotrauma Research, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Timothy Meier
- Department of Neurosurgery and Center for Neurotrauma Research, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Linden C Penner
- Sport Injury Prevention Research Centre, Faculty of Kinesiology; University of Calgary, Calgary, Alberta, Canada
| | - Andrew R Mayer
- The Mind Research Network, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| | - Ruben J Echemendia
- Psychology, University of Missouri Kansas City, Kansas City, Missouri, USA
- Psychological and Neurobehavioral Associates, Inc, State College, PA, USA
| | - Thomas McAllister
- Psychiatry, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - William P Meehan
- Micheli Center for Sports Injury Prevention, Boston Children's Hospital, Boston, Massachusetts, USA
- Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jon Patricios
- Wits Sport and Health (WiSH), School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand South, Johannesburg, South Africa
| | - Michael Makdissi
- Florey Institute of Neuroscience and Mental Health - Austin Campus, Heidelberg, Victoria, Australia
- Australian Football League, Melbourne, Victoria, Australia
| | - Silvia Bressan
- Department of Women's and Children's Health, University of Padova, Padova, Italy
| | - Gavin A Davis
- Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Zahra Premji
- Libraries, University of Victoria, Victoria, British Columbia, Canada
| | - Kathryn J Schneider
- Sport Injury Prevention Research Centre, Faculty of Kinesiology; University of Calgary, Calgary, Alberta, Canada
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy, University of Gothenburg, Molndal, Sweden
| | - Michael McCrea
- Department of Neurosurgery and Center for Neurotrauma Research, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
42
|
Vorn R, Devoto C, Meier TB, Lai C, Yun S, Broglio SP, Mithani S, McAllister TW, Giza CC, Kim HS, Huber D, Harezlak J, Cameron KL, McGinty G, Jackson J, Guskiewicz KM, Mihalik JP, Brooks A, Duma S, Rowson S, Nelson LD, Pasquina P, McCrea MA, Gill JM. Are EPB41 and alpha-synuclein diagnostic biomarkers of sport-related concussion? Findings from the NCAA and Department of Defense CARE Consortium. JOURNAL OF SPORT AND HEALTH SCIENCE 2023; 12:379-387. [PMID: 36403906 DOI: 10.1016/j.jshs.2022.11.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 07/15/2022] [Accepted: 10/08/2022] [Indexed: 05/17/2023]
Abstract
BACKGROUND Current protein biomarkers are only moderately predictive at identifying individuals with mild traumatic brain injury or concussion. Therefore, more accurate diagnostic markers are needed for sport-related concussion. METHODS This was a multicenter, prospective, case-control study of athletes who provided blood samples and were diagnosed with a concussion or were a matched non-concussed control within the National Collegiate Athletic Association-Department of Defense Concussion Assessment, Research, and Education Consortium conducted between 2015 and 2019. The blood was collected within 48 h of injury to identify protein abnormalities at the acute and subacute timepoints. Athletes with concussion were divided into 6 h post-injury (0-6 h post-injury) and after 6 h post-injury (7-48 h post-injury) groups. We applied a highly multiplexed proteomic technique that used a DNA aptamers assay to target 1305 proteins in plasma samples from athletes with and without sport-related concussion. RESULTS A total of 140 athletes with concussion (79.3% males; aged 18.71 ± 1.10 years, mean ± SD) and 21 non-concussed athletes (76.2% males; 19.14 ± 1.10 years) were included in this study. We identified 338 plasma proteins that significantly differed in abundance (319 upregulated and 19 downregulated) in concussed athletes compared to non-concussed athletes. The top 20 most differentially abundant proteins discriminated concussed athletes from non-concussed athletes with an area under the curve (AUC) of 0.954 (95% confidence interval: 0.922‒0.986). Specifically, after 6 h of injury, the individual AUC of plasma erythrocyte membrane protein band 4.1 (EPB41) and alpha-synuclein (SNCA) were 0.956 and 0.875, respectively. The combination of EPB41 and SNCA provided the best AUC (1.000), which suggests this combination of candidate plasma biomarkers is the best for diagnosing concussion in athletes after 6 h of injury. CONCLUSION Our data suggest that proteomic profiling may provide novel diagnostic protein markers and that a combination of EPB41 and SNCA is the most predictive biomarker of concussion after 6 h of injury.
Collapse
Affiliation(s)
- Rany Vorn
- Johns Hopkins School of Nursing and Medicine, Baltimore, MD 21205, USA; National Institutes of Health, Bethesda, MD 20892, USA
| | | | - Timothy B Meier
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Chen Lai
- National Institutes of Health, Bethesda, MD 20892, USA
| | - Sijung Yun
- Predictiv Care, Inc., Mountain View, CA 94086, USA
| | - Steven P Broglio
- Michigan Concussion Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sara Mithani
- National Institutes of Health, Bethesda, MD 20892, USA
| | - Thomas W McAllister
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Christopher C Giza
- Departments of Pediatrics and Neurosurgery, University of California at Los Angeles (UCLA), Los Angeles, CA 90024, USA
| | - Hyung-Suk Kim
- National Institutes of Health, Bethesda, MD 20892, USA
| | - Daniel Huber
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Jaroslaw Harezlak
- Department of Epidemiology and Biostatistics School of Public Health - Bloomington, Indiana University, Bloomington, IN 47405, USA
| | - Kenneth L Cameron
- John A. Feagin Sports Medicine Fellowship, Keller Army Community Hospital, West Point, NY 10996, USA
| | - Gerald McGinty
- United States Air Force Academy, Colorado Springs, CO 80840, USA
| | - Jonathan Jackson
- United States Air Force Academy, Colorado Springs, CO 80840, USA
| | - Kevin M Guskiewicz
- Mathew Gfeller Center, Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Jason P Mihalik
- Mathew Gfeller Center, Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Alison Brooks
- Department of Orthopedics, Division of Sports Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53705, USA
| | - Stefan Duma
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA 24061, USA
| | - Steven Rowson
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA 24061, USA
| | - Lindsay D Nelson
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Paul Pasquina
- Center for Neuroscience & Regenerative Medicine, Uniformed Services University, Bethesda, MD 20814, USA
| | - Michael A McCrea
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Jessica M Gill
- Johns Hopkins School of Nursing and Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
43
|
Hicks SD, Onks C, Kim RY, Zhen KJ, Loeffert J, Loeffert AC, Olympia RP, Fedorchak G, DeVita S, Gagnon Z, McLoughlin C, Madeira MM, Zuckerman SL, Lee T, Heller M, Monteith C, Campbell TR, Neville C, Fengler E, Dretsch MN. Refinement of saliva microRNA biomarkers for sports-related concussion. JOURNAL OF SPORT AND HEALTH SCIENCE 2023; 12:369-378. [PMID: 34461327 DOI: 10.1016/j.jshs.2021.08.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/29/2021] [Accepted: 07/13/2021] [Indexed: 05/17/2023]
Abstract
BACKGROUND Recognizing sport-related concussion (SRC) is challenging and relies heavily on subjective symptom reports. An objective, biological marker could improve recognition and understanding of SRC. There is emerging evidence that salivary micro-ribonucleic acids (miRNAs) may serve as biomarkers of concussion; however, it remains unclear whether concussion-related miRNAs are impacted by exercise. We sought to determine whether 40 miRNAs previously implicated in concussion pathophysiology were affected by participation in a variety of contact and non-contact sports. Our goal was to refine a miRNA-based tool capable of identifying athletes with SRC without the confounding effects of exercise. METHODS This case-control study harmonized data from concussed and non-concussed athletes recruited across 10 sites. Levels of salivary miRNAs within 455 samples from 314 individuals were measured with RNA sequencing. Within-subjects testing was used to identify and exclude miRNAs that changed with either (a) a single episode of exercise (166 samples from 83 individuals) or (b) season-long participation in contact sports (212 samples from 106 individuals). The miRNAs that were not impacted by exercise were interrogated for SRC diagnostic utility using logistic regression (172 samples from 75 concussed and 97 non-concussed individuals). RESULTS Two miRNAs (miR-532-5p and miR-182-5p) decreased (adjusted p < 0.05) after a single episode of exercise, and 1 miRNA (miR-4510) increased only after contact sports participation. Twenty-three miRNAs changed at the end of a contact sports season. Two of these miRNAs (miR-26b-3p and miR-29c-3p) were associated (R > 0.50; adjusted p < 0.05) with the number of head impacts sustained in a single football practice. Among the 15 miRNAs not confounded by exercise or season-long contact sports participation, 11 demonstrated a significant difference (adjusted p < 0.05) between concussed and non-concussed participants, and 6 displayed moderate ability (area under curve > 0.70) to identify concussion. A single ratio (miR-27a-5p/miR-30a-3p) displayed the highest accuracy (AUC = 0.810, sensitivity = 82.4%, specificity = 73.3%) for differentiating concussed and non-concussed participants. Accuracy did not differ between participants with SRC and non-SRC (z = 0.5, p = 0.60). CONCLUSION Salivary miRNA levels may accurately identify SRC when not confounded by exercise. Refinement of this approach in a large cohort of athletes could eventually lead to a non-invasive, sideline adjunct for SRC assessment.
Collapse
Affiliation(s)
- Steven D Hicks
- Department of Pediatrics, College of Medicine, Pennsylvania State University, Hershey, PA 17033, USA.
| | - Cayce Onks
- Department of Orthopaedics and Rehabilitation, College of Medicine, Pennsylvania State University, Hershey, PA 17033, USA; Department of Family Medicine, College of Medicine, Pennsylvania State University, Hershey, PA 17033, USA
| | - Raymond Y Kim
- Department of Orthopaedics and Rehabilitation, College of Medicine, Pennsylvania State University, Hershey, PA 17033, USA
| | - Kevin J Zhen
- Department of Pediatrics, College of Medicine, Pennsylvania State University, Hershey, PA 17033, USA
| | - Jayson Loeffert
- Department of Orthopaedics and Rehabilitation, College of Medicine, Pennsylvania State University, Hershey, PA 17033, USA; Department of Family Medicine, College of Medicine, Pennsylvania State University, Hershey, PA 17033, USA
| | - Andrea C Loeffert
- Department of Pediatrics, College of Medicine, Pennsylvania State University, Hershey, PA 17033, USA
| | - Robert P Olympia
- Department of Emergency Medicine, College of Medicine, Pennsylvania State University, Hershey, PA 17033, USA
| | - Gregory Fedorchak
- Department of Research and Development, Quadrant Biosciences Inc., Syracuse, NY 13210, USA
| | - Samantha DeVita
- Department of Research and Development, Quadrant Biosciences Inc., Syracuse, NY 13210, USA
| | - Zofia Gagnon
- Department of Biology, Marist College, Poughkeepsie, NY 12601, USA
| | | | - Miguel M Madeira
- Department of Biology, Marist College, Poughkeepsie, NY 12601, USA
| | - Scott L Zuckerman
- Sports Concussion Center, College of Medicine, Vanderbilt University, Nashville, TN 37212, USA
| | - Timothy Lee
- Sports Concussion Center, College of Medicine, Vanderbilt University, Nashville, TN 37212, USA
| | - Matthew Heller
- Department of Family Medicine, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY 11568, USA
| | - Chuck Monteith
- Department of Athletic Training, Colgate University, Hamilton, NY 13346, USA
| | - Thomas R Campbell
- Department of Rehabilitation Sciences, Old Dominion University, Norfolk, VA 23529, USA
| | - Christopher Neville
- Department of Physical Therapy Education, Orthopedics, and Neuroscience, College of Medicine, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Elise Fengler
- Department of Exercise Science, Syracuse University, Syracuse, NY 13210, USA
| | - Michael N Dretsch
- Department of Medical Research-West, Walter Reed Army Institute of Research, US Army Joint Base Lewis-McChord, Hillhurst, WA 98433, USA
| |
Collapse
|
44
|
Wong ET, Kapadia A, Krishnamurthy V, Mikulis DJ. Cerebrovascular Reactivity and Concussion. Neuroimaging Clin N Am 2023; 33:335-342. [PMID: 36965950 DOI: 10.1016/j.nic.2023.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
Abstract
Cerebrovascular reactivity (CVR) reflects the change in cerebral blood flow in response to vasodilatory stimuli enabling assessment of the health of the cerebral vasculature. Recent advances in the quantitative delivery of CO2 stimuli with computer-controlled sequential gas delivery have enabled mapping of the speed and magnitude of response to flow stimuli. These CVR advances when applied to patients with acute concussion have unexpectedly shown faster speed and greater magnitude of responses unseen in other diseases that typically show the opposite effects. The strength of the CVR alterations have diagnostic potential in single subjects with AUC values in the 0.90-0.94 range.
Collapse
Affiliation(s)
- Erin T Wong
- Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada; Department of Medical Imaging, Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5, Canada
| | - Anish Kapadia
- Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada; Department of Medical Imaging, Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5, Canada
| | - Venkatagiri Krishnamurthy
- Department of Medicine, Division of Geriatrics and Gerontology, Emory University, Atlanta, GA, USA; Center for Visual and Neurocognitive Rehabilitation, Atlanta Veterans Affairs Medical Center (VAMC), 1670 Clairmont Road, Suite # 12C 141, Decatur, GA 30033, USA; Department of Neurology, Emory University, Atlanta, GA, USA
| | - David J Mikulis
- Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada; Department of Medical Imaging, University Health Network, Toronto Western Hospital, 399 Bathurst Street, Toronto, Ontario M5T 2S8, Canada.
| |
Collapse
|
45
|
Neumann KD, Seshadri V, Thompson XD, Broshek DK, Druzgal J, Massey JC, Newman B, Reyes J, Simpson SR, McCauley KS, Patrie J, Stone JR, Kundu BK, Resch JE. Microglial activation persists beyond clinical recovery following sport concussion in collegiate athletes. Front Neurol 2023; 14:1127708. [PMID: 37034078 PMCID: PMC10080132 DOI: 10.3389/fneur.2023.1127708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/06/2023] [Indexed: 04/11/2023] Open
Abstract
Introduction In concussion, clinical and physiological recovery are increasingly recognized as diverging definitions. This study investigated whether central microglial activation persisted in participants with concussion after receiving an unrestricted return-to-play (uRTP) designation using [18F]DPA-714 PET, an in vivo marker of microglia activation. Methods Eight (5 M, 3 F) current athletes with concussion (Group 1) and 10 (5 M, 5 F) healthy collegiate students (Group 2) were enrolled. Group 1 completed a pre-injury (Visit1) screen, follow-up Visit2 within 24 h of a concussion diagnosis, and Visit3 at the time of uRTP. Healthy participants only completed assessments at Visit2 and Visit3. At Visit2, all participants completed a multidimensional battery of tests followed by a blood draw to determine genotype and study inclusion. At Visit3, participants completed a clinical battery of tests, brain MRI, and brain PET; no imaging tests were performed outside of Visit3. Results For Group 1, significant differences were observed between Visits 1 and 2 (p < 0.05) in ImPACT, SCAT5 and SOT performance, but not between Visit1 and Visit3 for standard clinical measures (all p > 0.05), reflecting clinical recovery. Despite achieving clinical recovery, PET imaging at Visit3 revealed consistently higher [18F]DPA-714 tracer distribution volume (VT) of Group 1 compared to Group 2 in 10 brain regions (p < 0.001) analyzed from 164 regions of the whole brain, most notably within the limbic system, dorsal striatum, and medial temporal lobe. No notable differences were observed between clinical measures and VT between Group 1 and Group 2 at Visit3. Discussion Our study is the first to demonstrate persisting microglial activation in active collegiate athletes who were diagnosed with a sport concussion and cleared for uRTP based on a clinical recovery.
Collapse
Affiliation(s)
- Kiel D Neumann
- Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis, TN, United States
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, United States
| | - Vikram Seshadri
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, United States
| | - Xavier D Thompson
- Department of Kinesiology, University of Virginia, Charlottesville, VA, United States
| | - Donna K Broshek
- Department of Psychiatry and Neurobehavioral Sciences, University of Virginia, Charlottesville, VA, United States
| | - Jason Druzgal
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, United States
| | - James C Massey
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, United States
| | - Benjamin Newman
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, United States
| | - Jose Reyes
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, United States
| | - Spenser R Simpson
- Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Katelyenn S McCauley
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, United States
| | - James Patrie
- Department of Public Health Sciences, University of Virginia, Charlottesville, VA, United States
| | - James R Stone
- Department of Public Health Sciences, University of Virginia, Charlottesville, VA, United States
| | - Bijoy K Kundu
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, United States
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, United States
| | - Jacob E Resch
- Department of Kinesiology, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
46
|
Kohlhase K, Frank F, Wilmes C, Koerbel K, Schaller-Paule MA, Miles M, Betz C, Steinmetz H, Foerch C. Brain-specific biomarkers in urine as a non-invasive approach to monitor neuronal and glial damage. Eur J Neurol 2023; 30:729-740. [PMID: 36409153 DOI: 10.1111/ene.15641] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 10/25/2022] [Accepted: 11/04/2022] [Indexed: 11/23/2022]
Abstract
BACKGROUND AND PURPOSE This study evaluates the quantitative measurability of glial fibrillary acidic protein (GFAP), neurofilament light chain (NfL), ubiquitin carboxy-terminal hydrolase L1 (UCH-L1) and total tau (t-tau) in urine of patients with acute cerebral damage. METHODS Serum and urine samples were prospectively collected from patients with an acute ischemic stroke or intracerebral hemorrhage (target group) and compared to healthy subjects (control group); samples were measured using ultrasensitive single-molecule arrays (Simoa®). Glomerular barrier function was assessed based on albumin-creatinine ratio (ACR); biomarker-creatinine ratios were calculated for correction of urine dilution. RESULTS Ninety-three urine-serum pairs in the target group and 10 urine-serum pairs in the control group were measured. The mean absolute concentration ± standard deviation in urine of the target and control groups were 184.7 ± 362.4 pg/ml and 27.3 ± 24.1 pg/ml for GFAP (r = 0.3 [Wilcoxon effect size], p = 0.007), 17.5 ± 38.6 pg/ml and 0.9 ± 0.3 pg/ml for NfL (r = 0.4, p < 0.005), 320.2 ± 443.3 pg/ml and 109.6 ± 116.8 pg/ml for UCH-L1 (r = 0.26, p = 0.014), and 219.5 ± 255.8 pg/ml and 21.1 ± 27.1 pg/ml for t-tau (r = 0.37, p < 0.005), respectively, whereas biomarker-creatinine ratio was significantly different only for NfL (r = 0.29, p = 0.015) and t-tau (r = 0.32, p < 0.01). In patients with intact glomerular barrier (ACR < 30 mg/g), only NfL in urine was significantly different between the target and control group and showed a significant correlation with the respective serum concentrations (r = 0.58 [Pearson's correlation-coefficient], p < 0.005). CONCLUSION All four investigated biomarkers could be measured in urine, with NfL and t-tau showing the strongest effect size after correction for urine dilution. NfL revealed the most accurate relation between serum and urine concentrations in patients with intact kidney function.
Collapse
Affiliation(s)
- Konstantin Kohlhase
- Department of Neurology, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Franziska Frank
- Department of Neurology, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Christian Wilmes
- Department of Neurology, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Kimberly Koerbel
- Department of Neurology, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Martin A Schaller-Paule
- Department of Neurology, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | | | - Christoph Betz
- Medical Clinic III - Department of Nephrology, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Helmuth Steinmetz
- Department of Neurology, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Christian Foerch
- Department of Neurology, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| |
Collapse
|
47
|
Tabor J, La P, Kline G, Wang M, Bonfield S, Machan M, Wynne-Edwards K, Emery C, Debert C. Saliva Cortisol as a Biomarker of Injury in Youth Sport-Related Concussion. J Neurotrauma 2023; 40:296-308. [PMID: 35906800 DOI: 10.1089/neu.2022.0190] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Increasing rates of sport-related concussion (SRC) in youth impose a significant burden on public health systems and the lives of young athletes. Accurate prediction for those likely to develop persistent post-concussion symptomology (PPCS) using a fluid biomarker, reflecting both acute injury and recovery processes, would provide the opportunity for early intervention. Cortisol, a stress hormone released through the hypothalamic-pituitary-adrenal (HPA) axis following injury, may provide a missing physiological link to clinical recovery. This cohort study investigated the change in saliva cortisol following SRC and the association between cortisol and symptom burden in pediatric ice hockey players. Further, the association between cortisol levels and medical clearance to return to play was explored. In total, cortisol samples from 233 players were included; 165 athletes (23.6% female) provided pre-injury saliva and 68 athletes (19.1% female) provided post-SRC saliva samples for cortisol analysis. Quantile (median) regressions were used to compare cortisol between pre-injury and post-SRC groups, and the association between total symptoms (/22) and symptom severity scores (/132) reported on the Sport Concussion Assessment Tool (SCAT)3/SCAT5 and post-SRC cortisol (adjusting for age, sex, history of concussion, and time from injury to sample collection). Results demonstrated significantly lower saliva cortisol in post-SRC athletes compared with the pre-injury group (β = -0.62, 95% confidence interval [CI; -1.08, -0.16], p = 0.009). Post-SRC cortisol was not significantly associated with the SCAT3/SCAT5 symptom totals or symptom severity scores; however, females were found to report more symptoms (β = 6.95, 95% CI [0.35, 13.55], p = 0.040) and greater symptom severity (β = 23.87, 95% CI [9.58, 38.15], p = 0.002) compared with males. Exploratory time-to-event analysis revealed a point estimate suggesting a potential association between low cortisol levels and days to medical clearance to return to play. Although preliminary, these findings suggest that the HPA axis may be dysregulated post-SRC. Further, our exploratory analysis and case presentation of post-injury outliers highlight the need to further research cortisol as a prognostic biomarker to inform individualized sex-specific care after SRC.
Collapse
Affiliation(s)
- Jason Tabor
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Parker La
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada.,Departments of Pediatrics and Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Gregory Kline
- Division of Endocrinology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Meng Wang
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Stephan Bonfield
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Matthew Machan
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Katherine Wynne-Edwards
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Carolyn Emery
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada.,Departments of Pediatrics and Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Chantel Debert
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada.,Departments of Pediatrics and Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
48
|
Mayer AR, Meier TB, Dodd AB, Stephenson DD, Robertson-Benta CR, Ling JM, Pabbathi Reddy S, Zotev V, Vakamudi K, Campbell RA, Sapien RE, Erhardt EB, Phillips JP, Vakhtin AA. Prospective Study of Gray Matter Atrophy Following Pediatric Mild Traumatic Brain Injury. Neurology 2023; 100:e516-e527. [PMID: 36522161 PMCID: PMC9931084 DOI: 10.1212/wnl.0000000000201470] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 09/09/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND AND OBJECTIVES The clinical and physiologic time course for recovery following pediatric mild traumatic brain injury (pmTBI) remains actively debated. The primary objective of the current study was to prospectively examine structural brain changes (cortical thickness and subcortical volumes) and age-at-injury effects. A priori study hypotheses predicted reduced cortical thickness and hippocampal volumes up to 4 months postinjury, which would be inversely associated with age at injury. METHODS Prospective cohort study design with consecutive recruitment. Study inclusion adapted from American Congress of Rehabilitation Medicine (upper threshold) and Zurich Concussion in Sport Group (minimal threshold) and diagnosed by Emergency Department and Urgent Care clinicians. Major neurologic, psychiatric, or developmental disorders were exclusionary. Clinical (Common Data Element) and structural (3 T MRI) evaluations within 11 days (subacute visit [SA]) and at 4 months (early chronic visit [EC]) postinjury. Age- and sex-matched healthy controls (HC) to control for repeat testing/neurodevelopment. Clinical outcomes based on self-report and cognitive testing. Structural images quantified with FreeSurfer (version 7.1.1). RESULTS A total of 208 patients with pmTBI (age = 14.4 ± 2.9; 40.4% female) and 176 HC (age = 14.2 ± 2.9; 42.0% female) were included in the final analyses (>80% retention). Reduced cortical thickness (right rostral middle frontal gyrus; d = -0.49) and hippocampal volumes (d = -0.24) observed for pmTBI, but not associated with age at injury. Hippocampal volume recovery was mediated by loss of consciousness/posttraumatic amnesia. Significantly greater postconcussive symptoms and cognitive deficits were observed at SA and EC visits, but were not associated with the structural abnormalities. Structural abnormalities slightly improved balanced classification accuracy above and beyond clinical gold standards (∆+3.9%), with a greater increase in specificity (∆+7.5%) relative to sensitivity (∆+0.3%). DISCUSSION Current findings indicate that structural brain abnormalities may persist up to 4 months post-pmTBI and are partially mediated by initial markers of injury severity. These results contribute to a growing body of evidence suggesting prolonged physiologic recovery post-pmTBI. In contrast, there was no evidence for age-at-injury effects or physiologic correlates of persistent symptoms in our sample.
Collapse
Affiliation(s)
- Andrew R Mayer
- From the The Mind Research Network/Lovelace Biomedical Research Institute (A.R.M., A.B.D., D.D.S., C.R.R.-B., J.M.L., S.P.R., V.Z., K.V., J.P.P., A.A.V.); Department of Psychology (A.R.M.), Department of Neurology (A.R.M., J.P.P.), and Department of Psychiatry & Behavioral Sciences (A.R.M., R.A.C.), University of New Mexico, Albuquerque; Department of Neurosurgery (T.B.M.), Department of Cell Biology, Neurobiology and Anatomy (T.B.M.), and Department of Biomedical Engineering (T.B.M.), Medical College of Wisconsin, Milwaukee; and Department of Emergency Medicine (R.E.S.), and Department of Mathematics and Statistics (E.B.E.), University of New Mexico, Albuquerque.
| | - Timothy B Meier
- From the The Mind Research Network/Lovelace Biomedical Research Institute (A.R.M., A.B.D., D.D.S., C.R.R.-B., J.M.L., S.P.R., V.Z., K.V., J.P.P., A.A.V.); Department of Psychology (A.R.M.), Department of Neurology (A.R.M., J.P.P.), and Department of Psychiatry & Behavioral Sciences (A.R.M., R.A.C.), University of New Mexico, Albuquerque; Department of Neurosurgery (T.B.M.), Department of Cell Biology, Neurobiology and Anatomy (T.B.M.), and Department of Biomedical Engineering (T.B.M.), Medical College of Wisconsin, Milwaukee; and Department of Emergency Medicine (R.E.S.), and Department of Mathematics and Statistics (E.B.E.), University of New Mexico, Albuquerque
| | - Andrew B Dodd
- From the The Mind Research Network/Lovelace Biomedical Research Institute (A.R.M., A.B.D., D.D.S., C.R.R.-B., J.M.L., S.P.R., V.Z., K.V., J.P.P., A.A.V.); Department of Psychology (A.R.M.), Department of Neurology (A.R.M., J.P.P.), and Department of Psychiatry & Behavioral Sciences (A.R.M., R.A.C.), University of New Mexico, Albuquerque; Department of Neurosurgery (T.B.M.), Department of Cell Biology, Neurobiology and Anatomy (T.B.M.), and Department of Biomedical Engineering (T.B.M.), Medical College of Wisconsin, Milwaukee; and Department of Emergency Medicine (R.E.S.), and Department of Mathematics and Statistics (E.B.E.), University of New Mexico, Albuquerque
| | - David D Stephenson
- From the The Mind Research Network/Lovelace Biomedical Research Institute (A.R.M., A.B.D., D.D.S., C.R.R.-B., J.M.L., S.P.R., V.Z., K.V., J.P.P., A.A.V.); Department of Psychology (A.R.M.), Department of Neurology (A.R.M., J.P.P.), and Department of Psychiatry & Behavioral Sciences (A.R.M., R.A.C.), University of New Mexico, Albuquerque; Department of Neurosurgery (T.B.M.), Department of Cell Biology, Neurobiology and Anatomy (T.B.M.), and Department of Biomedical Engineering (T.B.M.), Medical College of Wisconsin, Milwaukee; and Department of Emergency Medicine (R.E.S.), and Department of Mathematics and Statistics (E.B.E.), University of New Mexico, Albuquerque
| | - Cidney R Robertson-Benta
- From the The Mind Research Network/Lovelace Biomedical Research Institute (A.R.M., A.B.D., D.D.S., C.R.R.-B., J.M.L., S.P.R., V.Z., K.V., J.P.P., A.A.V.); Department of Psychology (A.R.M.), Department of Neurology (A.R.M., J.P.P.), and Department of Psychiatry & Behavioral Sciences (A.R.M., R.A.C.), University of New Mexico, Albuquerque; Department of Neurosurgery (T.B.M.), Department of Cell Biology, Neurobiology and Anatomy (T.B.M.), and Department of Biomedical Engineering (T.B.M.), Medical College of Wisconsin, Milwaukee; and Department of Emergency Medicine (R.E.S.), and Department of Mathematics and Statistics (E.B.E.), University of New Mexico, Albuquerque
| | - Josef M Ling
- From the The Mind Research Network/Lovelace Biomedical Research Institute (A.R.M., A.B.D., D.D.S., C.R.R.-B., J.M.L., S.P.R., V.Z., K.V., J.P.P., A.A.V.); Department of Psychology (A.R.M.), Department of Neurology (A.R.M., J.P.P.), and Department of Psychiatry & Behavioral Sciences (A.R.M., R.A.C.), University of New Mexico, Albuquerque; Department of Neurosurgery (T.B.M.), Department of Cell Biology, Neurobiology and Anatomy (T.B.M.), and Department of Biomedical Engineering (T.B.M.), Medical College of Wisconsin, Milwaukee; and Department of Emergency Medicine (R.E.S.), and Department of Mathematics and Statistics (E.B.E.), University of New Mexico, Albuquerque
| | - Sharvani Pabbathi Reddy
- From the The Mind Research Network/Lovelace Biomedical Research Institute (A.R.M., A.B.D., D.D.S., C.R.R.-B., J.M.L., S.P.R., V.Z., K.V., J.P.P., A.A.V.); Department of Psychology (A.R.M.), Department of Neurology (A.R.M., J.P.P.), and Department of Psychiatry & Behavioral Sciences (A.R.M., R.A.C.), University of New Mexico, Albuquerque; Department of Neurosurgery (T.B.M.), Department of Cell Biology, Neurobiology and Anatomy (T.B.M.), and Department of Biomedical Engineering (T.B.M.), Medical College of Wisconsin, Milwaukee; and Department of Emergency Medicine (R.E.S.), and Department of Mathematics and Statistics (E.B.E.), University of New Mexico, Albuquerque
| | - Vadim Zotev
- From the The Mind Research Network/Lovelace Biomedical Research Institute (A.R.M., A.B.D., D.D.S., C.R.R.-B., J.M.L., S.P.R., V.Z., K.V., J.P.P., A.A.V.); Department of Psychology (A.R.M.), Department of Neurology (A.R.M., J.P.P.), and Department of Psychiatry & Behavioral Sciences (A.R.M., R.A.C.), University of New Mexico, Albuquerque; Department of Neurosurgery (T.B.M.), Department of Cell Biology, Neurobiology and Anatomy (T.B.M.), and Department of Biomedical Engineering (T.B.M.), Medical College of Wisconsin, Milwaukee; and Department of Emergency Medicine (R.E.S.), and Department of Mathematics and Statistics (E.B.E.), University of New Mexico, Albuquerque
| | - Kishore Vakamudi
- From the The Mind Research Network/Lovelace Biomedical Research Institute (A.R.M., A.B.D., D.D.S., C.R.R.-B., J.M.L., S.P.R., V.Z., K.V., J.P.P., A.A.V.); Department of Psychology (A.R.M.), Department of Neurology (A.R.M., J.P.P.), and Department of Psychiatry & Behavioral Sciences (A.R.M., R.A.C.), University of New Mexico, Albuquerque; Department of Neurosurgery (T.B.M.), Department of Cell Biology, Neurobiology and Anatomy (T.B.M.), and Department of Biomedical Engineering (T.B.M.), Medical College of Wisconsin, Milwaukee; and Department of Emergency Medicine (R.E.S.), and Department of Mathematics and Statistics (E.B.E.), University of New Mexico, Albuquerque
| | - Richard A Campbell
- From the The Mind Research Network/Lovelace Biomedical Research Institute (A.R.M., A.B.D., D.D.S., C.R.R.-B., J.M.L., S.P.R., V.Z., K.V., J.P.P., A.A.V.); Department of Psychology (A.R.M.), Department of Neurology (A.R.M., J.P.P.), and Department of Psychiatry & Behavioral Sciences (A.R.M., R.A.C.), University of New Mexico, Albuquerque; Department of Neurosurgery (T.B.M.), Department of Cell Biology, Neurobiology and Anatomy (T.B.M.), and Department of Biomedical Engineering (T.B.M.), Medical College of Wisconsin, Milwaukee; and Department of Emergency Medicine (R.E.S.), and Department of Mathematics and Statistics (E.B.E.), University of New Mexico, Albuquerque
| | - Robert E Sapien
- From the The Mind Research Network/Lovelace Biomedical Research Institute (A.R.M., A.B.D., D.D.S., C.R.R.-B., J.M.L., S.P.R., V.Z., K.V., J.P.P., A.A.V.); Department of Psychology (A.R.M.), Department of Neurology (A.R.M., J.P.P.), and Department of Psychiatry & Behavioral Sciences (A.R.M., R.A.C.), University of New Mexico, Albuquerque; Department of Neurosurgery (T.B.M.), Department of Cell Biology, Neurobiology and Anatomy (T.B.M.), and Department of Biomedical Engineering (T.B.M.), Medical College of Wisconsin, Milwaukee; and Department of Emergency Medicine (R.E.S.), and Department of Mathematics and Statistics (E.B.E.), University of New Mexico, Albuquerque
| | - Erik B Erhardt
- From the The Mind Research Network/Lovelace Biomedical Research Institute (A.R.M., A.B.D., D.D.S., C.R.R.-B., J.M.L., S.P.R., V.Z., K.V., J.P.P., A.A.V.); Department of Psychology (A.R.M.), Department of Neurology (A.R.M., J.P.P.), and Department of Psychiatry & Behavioral Sciences (A.R.M., R.A.C.), University of New Mexico, Albuquerque; Department of Neurosurgery (T.B.M.), Department of Cell Biology, Neurobiology and Anatomy (T.B.M.), and Department of Biomedical Engineering (T.B.M.), Medical College of Wisconsin, Milwaukee; and Department of Emergency Medicine (R.E.S.), and Department of Mathematics and Statistics (E.B.E.), University of New Mexico, Albuquerque
| | - John P Phillips
- From the The Mind Research Network/Lovelace Biomedical Research Institute (A.R.M., A.B.D., D.D.S., C.R.R.-B., J.M.L., S.P.R., V.Z., K.V., J.P.P., A.A.V.); Department of Psychology (A.R.M.), Department of Neurology (A.R.M., J.P.P.), and Department of Psychiatry & Behavioral Sciences (A.R.M., R.A.C.), University of New Mexico, Albuquerque; Department of Neurosurgery (T.B.M.), Department of Cell Biology, Neurobiology and Anatomy (T.B.M.), and Department of Biomedical Engineering (T.B.M.), Medical College of Wisconsin, Milwaukee; and Department of Emergency Medicine (R.E.S.), and Department of Mathematics and Statistics (E.B.E.), University of New Mexico, Albuquerque
| | - Andrei A Vakhtin
- From the The Mind Research Network/Lovelace Biomedical Research Institute (A.R.M., A.B.D., D.D.S., C.R.R.-B., J.M.L., S.P.R., V.Z., K.V., J.P.P., A.A.V.); Department of Psychology (A.R.M.), Department of Neurology (A.R.M., J.P.P.), and Department of Psychiatry & Behavioral Sciences (A.R.M., R.A.C.), University of New Mexico, Albuquerque; Department of Neurosurgery (T.B.M.), Department of Cell Biology, Neurobiology and Anatomy (T.B.M.), and Department of Biomedical Engineering (T.B.M.), Medical College of Wisconsin, Milwaukee; and Department of Emergency Medicine (R.E.S.), and Department of Mathematics and Statistics (E.B.E.), University of New Mexico, Albuquerque
| |
Collapse
|
49
|
Swaney EEK, Cai T, Seal ML, Ignjatovic V. Blood biomarkers of secondary outcomes following concussion: A systematic review. Front Neurol 2023; 14:989974. [PMID: 36925940 PMCID: PMC10011122 DOI: 10.3389/fneur.2023.989974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 01/31/2023] [Indexed: 03/08/2023] Open
Abstract
Introduction Blood biomarkers have been identified as an alternative tool for predicting secondary outcomes following concussion. This systematic review aimed to summarize the literature on blood biomarkers of secondary outcomes following concussion in both pediatric and adult cohorts. Methods A literature search of Embase, Medline and PubMed was conducted. Two reviewers independently assessed retrieved studies to determine inclusion in systematic review synthesis. Results A total of 1771 unique studies were retrieved, 58 of which were included in the final synthesis. S100B, GFAP and tau were identified as being associated with secondary outcomes following concussion. Seventeen percent of studies were performed in a solely pediatric setting. Conclusions Validation of biomarkers associated with secondary outcomes following concussion have been largely limited by heterogeneous study cohorts and definitions of concussion and mTBI, presenting a hurdle for translation of these markers into clinical practice. Additionally, there was an underrepresentation of studies which investigated pediatric cohorts. Adult markers are not appropriate for children, therefore pediatric specific markers of secondary outcomes following concussion present the biggest gap in this field.
Collapse
Affiliation(s)
- Ella E K Swaney
- Department of Haematology, Murdoch Children's Research Institute, Melbourne, VIC, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
| | - Tengyi Cai
- Department of Haematology, Murdoch Children's Research Institute, Melbourne, VIC, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
| | - Marc L Seal
- Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia.,Developmental Imaging, Murdoch Children's Research Institute, Melbourne, VIC, Australia
| | - Vera Ignjatovic
- Department of Haematology, Murdoch Children's Research Institute, Melbourne, VIC, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia.,Institute for Clinical and Translational Research, Johns Hopkins All Children's Hospital, St. Petersburg, FL, United States.,Department of Pediatrics, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
50
|
McDonald SJ, Piantella S, O'Brien WT, Hale MW, O'Halloran P, Kinsella G, Horan B, O'Brien TJ, Maruff P, Shultz SR, Wright BJ. Clinical and Blood Biomarker Trajectories after Concussion: New Insights from a Longitudinal Pilot Study of Professional Flat-Track Jockeys. J Neurotrauma 2023; 40:52-62. [PMID: 35734899 DOI: 10.1089/neu.2022.0169] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
There is a recognized need for objective tools for detecting and tracking clinical and neuropathological recovery after sports-related concussion (SRC). Although computerized neurocognitive testing has been shown to be sensitive to cognitive deficits after SRC, and some blood biomarkers have shown promise as indicators of axonal and glial damage, the potential utility of these measures in isolation and combination for assisting SRC diagnosis and tracking recovery is not well understood. To provide new insights, we conducted a prospective study of 64 male and female professional flat-track jockeys (49 non-SRC, 15 SRC), with each jockey undergoing symptom evaluation, cognitive testing using the CogSport battery, and serum biomarker quantification of glial fibrillary acidic protein (GFAP), tau, and neurofilament light (NfL) using a Simoa HD-X Analyzer. Measures were performed at baseline (i.e., pre-injury), and 2 and 7 days and 1 and 12 months after SRC. Symptoms were most pronounced at 2 days and had largely resolved by either 7 days or 1 month. CogSport testing at 2 days revealed cognitive impairments relative to both non-concussed peers and their own pre-injury baselines, with SRC classification utility found at 2 days, and to a slightly lesser extent, at 7 days. Relatively prolonged changes in serum NfL were observed, with elevated levels and classification utility persisting beyond the resolution of SRC symptoms and cognitive deficits. Finally, SRC classification performance throughout the 1st month after SRC was optimized through the combination of cognitive testing and serum biomarkers. Considered together, these findings provide further evidence for a role of computerized cognitive testing and fluid biomarkers of neuropathology as objective measures to assist in the identification of SRC and the monitoring of clinical and neuropathological recovery.
Collapse
Affiliation(s)
- Stuart J McDonald
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia.,Department of Neurology, Alfred Health, Melbourne, Victoria, Australia
| | - Stefan Piantella
- Department of Psychology and Counselling, School of Psychology and Public Health, La Trobe University, Melbourne, Victoria, Australia
| | - William T O'Brien
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Matthew W Hale
- Department of Psychology and Counselling, School of Psychology and Public Health, La Trobe University, Melbourne, Victoria, Australia
| | - Paul O'Halloran
- Department of Psychology and Counselling, School of Psychology and Public Health, La Trobe University, Melbourne, Victoria, Australia
| | - Glynda Kinsella
- Department of Psychology and Counselling, School of Psychology and Public Health, La Trobe University, Melbourne, Victoria, Australia
| | - Ben Horan
- School of Engineering, Deakin University, Geelong, Victoria, Australia
| | - Terence J O'Brien
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia.,Department of Neurology, Alfred Health, Melbourne, Victoria, Australia.,Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria, Australia
| | - Paul Maruff
- The Florey Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Sandy R Shultz
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia.,Department of Neurology, Alfred Health, Melbourne, Victoria, Australia.,Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria, Australia
| | - Bradley J Wright
- Department of Psychology and Counselling, School of Psychology and Public Health, La Trobe University, Melbourne, Victoria, Australia
| |
Collapse
|