1
|
Hersh CM, Sun Z, Conway DS, Sotirchos ES, Fitzgerald KC, Hua LH, Ziemssen T, Naismith RT, Pellegrini F, Grossman C, Campbell N. A 2-stage model of heterogenous treatment effects for brain atrophy in multiple sclerosis utilizing the MS PATHS research network. Mult Scler Relat Disord 2024; 91:105847. [PMID: 39260226 DOI: 10.1016/j.msard.2024.105847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 08/20/2024] [Accepted: 08/22/2024] [Indexed: 09/13/2024]
Abstract
BACKGROUND Two-stage models of heterogenous treatment effects (HTE) may advance personalized medicine in multiple sclerosis (MS). Brain atrophy is a relatively objective outcome measure that has strong relationships to MS prognosis and treatment effects and is enabled by standardized MRI. OBJECTIVES To predict brain atrophy outcomes for patients initiating disease-modifying therapies (DMT) with different efficacies, considering the patients' baseline brain atrophy risk measured via brain parenchymal fraction (BPF). METHODS Analyses included patients enrolled in the Multiple Sclerosis Partners Advancing Technology and Health Solutions (MS PATHS) network who started DMT and had complete baseline data and ≥ 6-month brain MRI follow-up. All brain MRIs were acquired using standardized acquisition sequences on Siemens 3T scanners. BPF change risk was derived by linear mixed effects models using baseline covariates. Model performance was assessed by predicted versus actual BPF change R2. Propensity score (PS) weighting was used to balance covariates between groups defined by DMT efficacy (high: natalizumab, alemtuzumab, ocrelizumab, and rituximab; moderate: dimethyl fumarate, fingolimod, and cladribine; low: teriflunomide, interferons, and glatiramer acetate). HTE models predicting 1 year change in BPF were built using a weighted linear mixed effects model with low-efficacy DMT as the reference. RESULTS Analyses included 581 high-, 183 moderate-, and 106 low-efficacy DMT-treated patients. The mean and median number of brain MRI observations per treatment period were 2.9 and 3.0, respectively. Risk model performance R2=0.55. After PS weighting, covariate standardized mean differences were <10 %, indicating excellent balance across measured variables. Changes in BPF between baseline and follow-up were found to be statistically significant (p < 0.001), suggesting a pathological change. Patients with low brain atrophy risk had a similar outcome regardless of DMT selection. In patients with high brain atrophy risk, high- and moderate-efficacy DMTs performed similarly, while a 2-fold worse BPF change was predicted for patients selecting low-efficacy DMTs (p < 0.001). Similar results were observed in a sensitivity analysis adjusting for pseudoatrophy effects in a sub-population of patients treated with natalizumab. CONCLUSIONS The relative benefit of selecting higher efficacy treatments may vary depending on patients' baseline brain atrophy risk. Poor outcomes are predicted in individuals with high baseline risk who are treated with low-efficacy DMTs.
Collapse
Affiliation(s)
- Carrie M Hersh
- Lou Ruvo Center for Brain Health, Cleveland Clinic, Las Vegas, NV, United States.
| | | | - Devon S Conway
- Mellen Center for MS Treatment and Research, Cleveland Clinic, Cleveland, OH, United States
| | - Elias S Sotirchos
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Kathryn C Fitzgerald
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Le H Hua
- Lou Ruvo Center for Brain Health, Cleveland Clinic, Las Vegas, NV, United States
| | - Tjalf Ziemssen
- Center of Clinical Neuroscience, Department of Neurology, University Clinic Carl-Gustav Carus, TU Dresden, Dresden, Germany
| | - Robert T Naismith
- Department of Neurology, Washington University, St. Louis, MO, United States
| | | | | | | |
Collapse
|
2
|
Scalfari A, Traboulsee A, Oh J, Airas L, Bittner S, Calabrese M, Garcia Dominguez JM, Granziera C, Greenberg B, Hellwig K, Illes Z, Lycke J, Popescu V, Bagnato F, Giovannoni G. Smouldering-Associated Worsening in Multiple Sclerosis: An International Consensus Statement on Definition, Biology, Clinical Implications, and Future Directions. Ann Neurol 2024; 96:826-845. [PMID: 39051525 DOI: 10.1002/ana.27034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 07/03/2024] [Accepted: 07/05/2024] [Indexed: 07/27/2024]
Abstract
Despite therapeutic suppression of relapses, multiple sclerosis (MS) patients often experience subtle deterioration, which extends beyond the definition of "progression independent of relapsing activity." We propose the concept of smouldering-associated-worsening (SAW), encompassing physical and cognitive symptoms, resulting from smouldering pathological processes, which remain unmet therapeutic targets. We provide a consensus-based framework of possible pathological substrates and manifestations of smouldering MS, and we discuss clinical, radiological, and serum/cerebrospinal fluid biomarkers for potentially monitoring SAW. Finally, we share considerations for optimizing disease surveillance and implications for clinical trials to promote the integration of smouldering MS into routine practice and future research efforts. ANN NEUROL 2024;96:826-845.
Collapse
Affiliation(s)
- Antonio Scalfari
- Center of Neuroscience, Department of Medicine, Charing Cross Hospital, Imperial College, London, UK
| | | | - Jiwon Oh
- Division of Neurology, Department of Medicine, St Michael's Hospital, University of Toronto, Toronto, Canada
| | - Laura Airas
- University of Turku and Turku University Hospital, Turku, Finland
| | - Stefan Bittner
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (Rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | | | | | - Cristina Granziera
- Translational Imaging in Neurology (THiNK) Basel, Department of Biomedical Engineering, Faculty of Medicine, University of Basel, Basel, Switzerland
- Department of Neurology and MS Center, University Hospital Basel Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), Basel, Switzerland
| | | | | | - Zsolt Illes
- Department of Neurology, Odense University Hospital, University of Southern Denmark, Odense, Denmark
| | - Jan Lycke
- Department of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Veronica Popescu
- University MS Centre Pelt-Hasselt, Noorderhart Hospital, Belgium Hasselt University, Pelt, Belgium
| | - Francesca Bagnato
- Neuroimaging Unit, Neuroimmunology Division, Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Neurology, VA Hospital, TN Valley Healthcare System, Nashville, TN, USA
| | - Gavin Giovannoni
- Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
3
|
Opfer R, Ziemssen T, Krüger J, Buddenkotte T, Spies L, Gocke C, Schwab M, Buchert R. Higher effect sizes for the detection of accelerated brain volume loss and disability progression in multiple sclerosis using deep-learning. Comput Biol Med 2024; 183:109289. [PMID: 39423705 DOI: 10.1016/j.compbiomed.2024.109289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/02/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024]
Abstract
PURPOSE Clinical validation of "BrainLossNet", a deep learning-based method for fast and robust estimation of brain volume loss (BVL) from longitudinal T1-weighted MRI, for the detection of accelerated BVL in multiple sclerosis (MS) and for the discrimination between MS patients with versus without disability progression. MATERIALS AND METHODS A longitudinal normative database of healthy controls (n = 563), two mono-scanner MS cohorts (n = 414, 156) and a mixed-scanner cohort acquired for various indications (n = 216) were included retrospectively. Mean observation period from the baseline (BL) to the last follow-up (FU) MRI scan was 2-3 years. Expanded Disability Status Scale (EDSS) at BL and FU was available in 149 MS patients. Annual BVL was computed using BrainLossNet and Siena and then adjusted for age. Repeated-measures ANOVA and Cohen's effect size were used to compare BrainLossNet and Siena regarding the detection of accelerated BVL and the differentiation between MS patients with versus without EDSS progression. RESULTS Cohen's effect size for the differentiation of patients from healthy controls based on the age-adjusted annual BVL was larger with BrainLossNet than with Siena (MS cohort 1: 0.927 versus 0.495, MS cohort 2: 0.671 versus 0.456, mixed-scanner cohort: 0.918 versus 0.730, all p < 0.001). Cohen's effect size for the discrimination between MS patients with (n = 51) versus without (n = 98) EDSS progression was larger with BrainLossNet (0.503 versus 0.400, p = 0.048). CONCLUSION BrainLossNet can provide added value in clinical routine and MS therapy trials regarding the detection of accelerated BVL in MS and the differentiation between MS patients with versus without disability progression.
Collapse
Affiliation(s)
| | - Tjalf Ziemssen
- University Hospital Carl Gustav Carus, Department of Neurology, Technische Universität Dresden, Dresden, Germany
| | | | - Thomas Buddenkotte
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Carola Gocke
- Conradia Medical Prevention Hamburg, Hamburg, Germany
| | - Matthias Schwab
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | - Ralph Buchert
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
4
|
Yang Z, Wen J, Erus G, Govindarajan ST, Melhem R, Mamourian E, Cui Y, Srinivasan D, Abdulkadir A, Parmpi P, Wittfeld K, Grabe HJ, Bülow R, Frenzel S, Tosun D, Bilgel M, An Y, Yi D, Marcus DS, LaMontagne P, Benzinger TLS, Heckbert SR, Austin TR, Waldstein SR, Evans MK, Zonderman AB, Launer LJ, Sotiras A, Espeland MA, Masters CL, Maruff P, Fripp J, Toga AW, O'Bryant S, Chakravarty MM, Villeneuve S, Johnson SC, Morris JC, Albert MS, Yaffe K, Völzke H, Ferrucci L, Nick Bryan R, Shinohara RT, Fan Y, Habes M, Lalousis PA, Koutsouleris N, Wolk DA, Resnick SM, Shou H, Nasrallah IM, Davatzikos C. Brain aging patterns in a large and diverse cohort of 49,482 individuals. Nat Med 2024; 30:3015-3026. [PMID: 39147830 PMCID: PMC11483219 DOI: 10.1038/s41591-024-03144-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 06/20/2024] [Indexed: 08/17/2024]
Abstract
Brain aging process is influenced by various lifestyle, environmental and genetic factors, as well as by age-related and often coexisting pathologies. Magnetic resonance imaging and artificial intelligence methods have been instrumental in understanding neuroanatomical changes that occur during aging. Large, diverse population studies enable identifying comprehensive and representative brain change patterns resulting from distinct but overlapping pathological and biological factors, revealing intersections and heterogeneity in affected brain regions and clinical phenotypes. Herein, we leverage a state-of-the-art deep-representation learning method, Surreal-GAN, and present methodological advances and extensive experimental results elucidating brain aging heterogeneity in a cohort of 49,482 individuals from 11 studies. Five dominant patterns of brain atrophy were identified and quantified for each individual by respective measures, R-indices. Their associations with biomedical, lifestyle and genetic factors provide insights into the etiology of observed variances, suggesting their potential as brain endophenotypes for genetic and lifestyle risks. Furthermore, baseline R-indices predict disease progression and mortality, capturing early changes as supplementary prognostic markers. These R-indices establish a dimensional approach to measuring aging trajectories and related brain changes. They hold promise for precise diagnostics, especially at preclinical stages, facilitating personalized patient management and targeted clinical trial recruitment based on specific brain endophenotypic expression and prognosis.
Collapse
Affiliation(s)
- Zhijian Yang
- Artificial Intelligence in Biomedical Imaging Laboratory (AIBIL), Center for and Data Science for Integrated Diagnostics (AI2D), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Graduate Group in Applied Mathematics and Computational Science, University of Pennsylvania, Philadelphia, PA, USA
- GE Healthcare, Bellevue, WA, USA
| | - Junhao Wen
- Laboratory of AI and Biomedical Science (LABS), Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA
| | - Guray Erus
- Artificial Intelligence in Biomedical Imaging Laboratory (AIBIL), Center for and Data Science for Integrated Diagnostics (AI2D), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sindhuja T Govindarajan
- Artificial Intelligence in Biomedical Imaging Laboratory (AIBIL), Center for and Data Science for Integrated Diagnostics (AI2D), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Randa Melhem
- Artificial Intelligence in Biomedical Imaging Laboratory (AIBIL), Center for and Data Science for Integrated Diagnostics (AI2D), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Elizabeth Mamourian
- Artificial Intelligence in Biomedical Imaging Laboratory (AIBIL), Center for and Data Science for Integrated Diagnostics (AI2D), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yuhan Cui
- Artificial Intelligence in Biomedical Imaging Laboratory (AIBIL), Center for and Data Science for Integrated Diagnostics (AI2D), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Dhivya Srinivasan
- Artificial Intelligence in Biomedical Imaging Laboratory (AIBIL), Center for and Data Science for Integrated Diagnostics (AI2D), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ahmed Abdulkadir
- Laboratory for Research in Neuroimaging, Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| | - Paraskevi Parmpi
- Artificial Intelligence in Biomedical Imaging Laboratory (AIBIL), Center for and Data Science for Integrated Diagnostics (AI2D), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Katharina Wittfeld
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
| | - Hans J Grabe
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
- Site Rostock/Greifswald, German Center for Neurodegenerative Diseases (DZNE), Greifswald, Germany
| | - Robin Bülow
- Institute of Diagnostic Radiology and Neuroradiology, University of Greifswald, Greifswald, Germany
| | - Stefan Frenzel
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
| | - Duygu Tosun
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| | - Murat Bilgel
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Yang An
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Dahyun Yi
- Institute of Human Behavioral Medicine, Medical Research Center Seoul National University, Seoul, Republic of Korea
| | - Daniel S Marcus
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Pamela LaMontagne
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Tammie L S Benzinger
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Susan R Heckbert
- Cardiovascular Health Research Unit and Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Thomas R Austin
- Cardiovascular Health Research Unit and Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Shari R Waldstein
- Department of Psychology, University of Maryland, Baltimore County, Baltimore, MD, USA
| | - Michele K Evans
- Health Disparities Research Section, Laboratory of Epidemiology and Population Sciences, NIA/NIH/IRP, Baltimore, MD, USA
| | - Alan B Zonderman
- Health Disparities Research Section, Laboratory of Epidemiology and Population Sciences, NIA/NIH/IRP, Baltimore, MD, USA
| | - Lenore J Launer
- Neuroepidemiology Section, Intramural Research Program, National Institute on Aging, Bethesda, MD, USA
| | - Aristeidis Sotiras
- Department of Radiology and Institute for Informatics, Data Science & Biostatistics, Washington University in St. Louis, St. Louis, MO, USA
| | - Mark A Espeland
- Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Colin L Masters
- Florey Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Paul Maruff
- Florey Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Jurgen Fripp
- CSIRO Health and Biosecurity, Australian e-Health Research Centre CSIRO, Brisbane, Queensland, Australia
| | - Arthur W Toga
- Laboratory of Neuro Imaging, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA
| | - Sid O'Bryant
- Institute for Translational Research University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Mallar M Chakravarty
- Computational Brain Anatomy (CoBrA) Laboratory, Cerebral Imaging Center, Douglas Mental Health University Institute, McGill University, Verdun, Quebec, Canada
| | - Sylvia Villeneuve
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Sterling C Johnson
- Wisconsin Alzheimer's Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - John C Morris
- Knight Alzheimer Disease Research Center, Dept of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Marilyn S Albert
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kristine Yaffe
- Departments of Neurology, Psychiatry and Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA
| | - Henry Völzke
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Luigi Ferrucci
- Translational Gerontology Branch, Longitudinal Studies Section, National Institute on Aging, National Institutes of Health, MedStar Harbor Hospital, Baltimore, MD, USA
| | - R Nick Bryan
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Russell T Shinohara
- Artificial Intelligence in Biomedical Imaging Laboratory (AIBIL), Center for and Data Science for Integrated Diagnostics (AI2D), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Statistics in Imaging and Visualization Center, Department of Biostatistics, Epidemiology, & Informatics, University of Pennsylvania, Philadelphia, PA, USA
| | - Yong Fan
- Artificial Intelligence in Biomedical Imaging Laboratory (AIBIL), Center for and Data Science for Integrated Diagnostics (AI2D), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Mohamad Habes
- Neuroimage Analytics Laboratory and Biggs Institute Neuroimaging Core, Glenn Biggs Institute for Neurodegenerative Disorders, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Paris Alexandros Lalousis
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Nikolaos Koutsouleris
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Section for Precision Psychiatry, Department of Psychiatry and Psychotherapy, Ludwig-Maximilian-University Munich, Munich, Germany
| | - David A Wolk
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - Susan M Resnick
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Haochang Shou
- Artificial Intelligence in Biomedical Imaging Laboratory (AIBIL), Center for and Data Science for Integrated Diagnostics (AI2D), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Statistics in Imaging and Visualization Center, Department of Biostatistics, Epidemiology, & Informatics, University of Pennsylvania, Philadelphia, PA, USA
| | - Ilya M Nasrallah
- Artificial Intelligence in Biomedical Imaging Laboratory (AIBIL), Center for and Data Science for Integrated Diagnostics (AI2D), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Christos Davatzikos
- Artificial Intelligence in Biomedical Imaging Laboratory (AIBIL), Center for and Data Science for Integrated Diagnostics (AI2D), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
5
|
Tur C, Portaccio E. Progression independent of relapse activity in multiple sclerosis: Time to account for cognitive decline. Mult Scler 2024; 30:1389-1391. [PMID: 39193697 DOI: 10.1177/13524585241273037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Affiliation(s)
- Carmen Tur
- Multiple Sclerosis Centre of Catalonia (Cemcat), Neurology Department, Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Emilio Portaccio
- Department of NEUROFARBA, University of Florence, Florence, Italy
| |
Collapse
|
6
|
Yokote H, Miyazaki Y, Fujimori J, Nishida Y, Toru S, Niino M, Nakashima I, Miura Y, Yokota T. Characterization of Japanese multiple sclerosis patients with progression independent of relapse activity: A 2-year multicenter cohort study. J Neuroimmunol 2024; 394:578407. [PMID: 39068747 DOI: 10.1016/j.jneuroim.2024.578407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/03/2024] [Accepted: 07/21/2024] [Indexed: 07/30/2024]
Abstract
Progression independent of relapse activity (PIRA) is prevalent among Caucasian patients with relapsing and remitting multiple sclerosis (RRMS). However, there is limited knowledge regarding the characteristics of PIRA in Asian patients with RRMS. Therefore, we retrospectively analyzed the clinical and radiological progression of 95 Japanese patients with RRMS during a 2-year observation period. PIRA was observed in three patients who were characterized by young age, large T2 lesion volume, and great reduction in brain volume. Despite having highly active disease, fewer patients with PIRA (33.3%) were treated with high-efficacy drugs compared with those without disease activity (60.7%).
Collapse
Affiliation(s)
- Hiroaki Yokote
- Department of Neurology, Tokyo Metropolitan Komagome Hospital, Tokyo, Japan; Department of Neurology and Neurological Science, Tokyo Medical and Dental University, Tokyo, Japan.
| | - Yusei Miyazaki
- Department of Clinical Research, National Hospital Organization Hokkaido Medical Center, Sapporo, Japan
| | - Juichi Fujimori
- Division of Neurology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Yoichiro Nishida
- Department of Neurology and Neurological Science, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shuta Toru
- Department of Neurology, Nitobe Memorial Nakano General Hospital, Tokyo, Japan
| | - Masaaki Niino
- Department of Clinical Research, National Hospital Organization Hokkaido Medical Center, Sapporo, Japan
| | - Ichiro Nakashima
- Division of Neurology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Yoshiharu Miura
- Department of Neurology, Tokyo Metropolitan Komagome Hospital, Tokyo, Japan
| | - Takanori Yokota
- Department of Neurology and Neurological Science, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
7
|
De Rosa AP, Benedetto M, Tagliaferri S, Bardozzo F, D'Ambrosio A, Bisecco A, Gallo A, Cirillo M, Tagliaferri R, Esposito F. Consensus of algorithms for lesion segmentation in brain MRI studies of multiple sclerosis. Sci Rep 2024; 14:21348. [PMID: 39266642 PMCID: PMC11393062 DOI: 10.1038/s41598-024-72649-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 09/09/2024] [Indexed: 09/14/2024] Open
Abstract
Segmentation of multiple sclerosis (MS) lesions on brain MRI scans is crucial for diagnosis, disease and treatment monitoring but is a time-consuming task. Despite several automated algorithms have been proposed, there is still no consensus on the most effective method. Here, we applied a consensus-based framework to improve lesion segmentation on T1-weighted and FLAIR scans. The framework is designed to combine publicly available state-of-the-art deep learning models, by running multiple segmentation tasks before merging the outputs of each algorithm. To assess the effectiveness of the approach, we applied it to MRI datasets from two different centers, including a private and a public dataset, with 131 and 30 MS patients respectively, with manually segmented lesion masks available. No further training was performed for any of the included algorithms. Overlap and detection scores were improved, with Dice increasing by 4-8% and precision by 3-4% respectively for the private and public dataset. High agreement was obtained between estimated and true lesion load (ρ = 0.92 and ρ = 0.97) and count (ρ = 0.83 and ρ = 0.94). Overall, this framework ensures accurate and reliable results, exploiting complementary features and overcoming some of the limitations of individual algorithms.
Collapse
Affiliation(s)
- Alessandro Pasquale De Rosa
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Piazza Luigi Miraglia, 2, 80138, Naples, Italy
| | - Marco Benedetto
- Kelyon S.r.l., Via Benedetto Brin, 59 C5/C6, 80142, Naples, Italy
- NeuRoNe Lab, DISA-MIS, University of Salerno, 84084, Fisciano, Italy
| | | | | | - Alessandro D'Ambrosio
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Piazza Luigi Miraglia, 2, 80138, Naples, Italy
| | - Alvino Bisecco
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Piazza Luigi Miraglia, 2, 80138, Naples, Italy
| | - Antonio Gallo
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Piazza Luigi Miraglia, 2, 80138, Naples, Italy
| | - Mario Cirillo
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Piazza Luigi Miraglia, 2, 80138, Naples, Italy
| | | | - Fabrizio Esposito
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Piazza Luigi Miraglia, 2, 80138, Naples, Italy.
| |
Collapse
|
8
|
Portaccio E, Magyari M, Havrdova EK, Ruet A, Brochet B, Scalfari A, Di Filippo M, Tur C, Montalban X, Amato MP. Multiple sclerosis: emerging epidemiological trends and redefining the clinical course. THE LANCET REGIONAL HEALTH. EUROPE 2024; 44:100977. [PMID: 39444703 PMCID: PMC11496978 DOI: 10.1016/j.lanepe.2024.100977] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 06/06/2024] [Accepted: 06/10/2024] [Indexed: 10/25/2024]
Abstract
Multiple sclerosis is a chronic, inflammatory, and neurodegenerative disease of the central nervous system and a major cause of neurological disability in young adults. Its prevalence and incidence are increasing, and it has been estimated at over 2.8 million cases worldwide, in addition to recent trends towards a shift in MS prevalence to older ages, with peak prevalence estimates in the sixth decade of life. Although historically the relapsing and progressive phases of the disease have been considered separate clinical entities, recent evidence of progression independent of relapse activity (PIRA) has led to a reconsideration of multiple sclerosis as a continuum, in which relapsing and progressive features variably coexist from the earliest stages of the disease, challenging the traditional view of the disease course. In this Series article, we provide an overview of how the traditional description of the clinical course of MS and epidemiological trends in Europe have evolved. For this purpose, we focus on the concept of PIRA, discussing its potential as the main mechanism by which patients acquire disability, how its definition varies between studies, and ongoing research in this field. We emphasise the importance of incorporating the assessment of hidden clinical manifestations into patient management to help uncover and quantify the PIRA phenomenon and the possible implications for future changes in the clinical classification of the disease. At the same time, we provide insights into overcoming the challenges of identifying and defining PIRA and adopting a new understanding of the clinical course of MS.
Collapse
Affiliation(s)
- Emilio Portaccio
- Department of NEUROFARBA, Unviersity of Florence, Florence, Italy
| | - Melinda Magyari
- Danish Multiple Sclerosis Center, Department of Neurology, Copenhagen University Hospital-Rigshospitalet, Glostrup, Denmark
| | - Eva Kubala Havrdova
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine and General University Hospital, Charles University, Prague, Czech Republic
| | - Aurelie Ruet
- Magendie, INSERM U 1215, Université de Bordeaux, 30776, Bordeaux Cedex, France
- Service de Neurologie et Maladies Inflammatoires du Système Nerveux Central, Centre de Ressources et Compétences Sclérose en plaques CHU de Bordeaux, 33076, Bordeaux Cedex, France
| | - Bruno Brochet
- Magendie, INSERM U 1215, Université de Bordeaux, 30776, Bordeaux Cedex, France
| | - Antonio Scalfari
- Centre of Neuroscience, Department of Medicine, Imperial College London, London, UK
| | | | - Carmen Tur
- Multiple Sclerosis Centre of Catalonia, Department of Neurology/Neuroimmunology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Xavier Montalban
- Multiple Sclerosis Centre of Catalonia, Department of Neurology/Neuroimmunology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Maria Pia Amato
- Department of NEUROFARBA, Unviersity of Florence, Florence, Italy
- IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| |
Collapse
|
9
|
Yang J, Park HM, Lee YB. Long-standing neuromyelitis optica with leukodystrophy-like asymptomatic MRI changes. Radiol Case Rep 2024; 19:3631-3636. [PMID: 38983309 PMCID: PMC11228654 DOI: 10.1016/j.radcr.2024.05.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 04/25/2024] [Accepted: 05/20/2024] [Indexed: 07/11/2024] Open
Abstract
Patients with neuromyelitis optica (NMO) are unlikely to develop clinically silent lesions on brain magnetic resonance imaging (MRI), unlike patients with multiple sclerosis (MS). We encountered a patient with NMO who showed radiological progression and leukodystrophy-like changes on MRI during a long-standing, clinically asymptomatic period.
Collapse
Affiliation(s)
- Jiwon Yang
- Department of Neurology, Gil Medical Center, Gachon University College of Medicine, Incheon, Republic of Korea
| | - Hyeon-Mi Park
- Department of Neurology, Gil Medical Center, Gachon University College of Medicine, Incheon, Republic of Korea
| | - Yeong-Bae Lee
- Department of Neurology, Gil Medical Center, Gachon University College of Medicine, Incheon, Republic of Korea
| |
Collapse
|
10
|
Okuda DT, Azevedo CJ, Pelletier D, Moog TM, Moazami S, Rezvani S, Bovis F, Sormani MP, Siva A, Kantarci O, Lebrun-Frénay C. Dimethyl fumarate preserves brainstem and cervical spinal cord integrity in radiologically isolated syndrome. J Neurol 2024; 271:5899-5910. [PMID: 38980342 DOI: 10.1007/s00415-024-12514-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/06/2024] [Accepted: 06/10/2024] [Indexed: 07/10/2024]
Abstract
BACKGROUND AND PURPOSE The first randomized placebo-controlled therapeutic trial in radiologically isolated syndrome (RIS), ARISE, demonstrated that treatment with dimethyl fumarate (DMF) delayed the onset of a first clinical event related to CNS demyelination and was associated with a significant reduction in new and/or newly enlarging T2-weighted hyperintense lesions. The purpose of this study was to explore the effect of DMF on volumetric measures, including whole brain, thalamic, and subcortical gray matter volumes, brainstem and upper cervical spine three-dimensional (3D) volumes, and brainstem and upper cervical spine surface characteristics. METHODS Standardized 3T MRIs including 3D isotropic T1-weighted gradient echo images were acquired at baseline and end-of-study according to the ARISE study protocol. The acquired data were analyzed using Structural Image Evaluation Using Normalization of Atrophy (SIENA), FreeSurfer v7.3, and an in-house pipeline for 3D conformational metrics. Multivariate mixed models for repeated measures were used to analyze rates of change in whole brain, thalamic, subcortical gray matter, as well as change in the 3D surface curvature of the dorsal pons and dorsal medulla and 3D volume change at the medulla-upper cervical spinal cord. RESULTS The study population consisted of 64 RIS subjects (DMF:30, placebo:34). No significant difference was seen in whole brain, thalamic, or subcortical gray matter volumes in treated vs. untreated RIS patients. A significant difference was observed in dorsal pons curvature with the DMF group having a lower least squares mean change of - 4.46 (standard estimate (SE): 3.77) when compared to placebo [6.94 (3.71)] (p = 0.036). In individuals that experienced a first clinical event, a greater reduction in medulla-upper cervical spinal cord volume (p = 0.044) and a decrease in surface curvature was observed at the dorsal medulla (p = 0.009) but not at the dorsal pons (p = 0.443). CONCLUSIONS The benefit of disease-modifying therapy in RIS may extend to CNS structures impacted by neurodegeneration that is below the resolution of conventional volumetric measures.
Collapse
Affiliation(s)
- Darin T Okuda
- Department of Neurology, Neuroinnovation Program, Multiple Sclerosis & Neuroimmunology Imaging Program, The University of Texas Southwestern Medical Center, 5303 Harry Hines Blvd., Dallas, TX, 75390-8806, USA.
- Peter O'Donnell Jr. Brain Institute, The University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | | | | | - Tatum M Moog
- Department of Neurology, Neuroinnovation Program, Multiple Sclerosis & Neuroimmunology Imaging Program, The University of Texas Southwestern Medical Center, 5303 Harry Hines Blvd., Dallas, TX, 75390-8806, USA
- Peter O'Donnell Jr. Brain Institute, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Saeed Moazami
- University of Southern California, Los Angeles, CA, USA
| | | | | | | | - Aksel Siva
- University of Cerrahpasa School of Medicine, Istanbul, Turkey
| | | | | |
Collapse
|
11
|
Prosperini L, Ruggieri S, Haggiag S, Tortorella C, Gasperini C. Disability patterns in multiple sclerosis: A meta-analysis on RAW and PIRA in the real-world context. Mult Scler 2024; 30:1309-1321. [PMID: 39082635 DOI: 10.1177/13524585241266180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
OBJECTIVE To summarize the current evidence on relapse-associated worsening (RAW) and progression independent of relapse activity (PIRA) through a quantitative synthesis of real-world studies. METHODS Scientific databases were searched to identify suitable articles. Random-effects meta-analyses, subgroup analyses and meta-regression models were ran to provide pooled estimates of RAW and PIRA events and to identify their potential moderators (PROSPERO registration: CRD42024503895). RESULTS Eighteen articles met the eligibility criteria, with a pooled sample size of 52,667 patients (93% relapsing-remitting, 6% clinically isolated syndrome and 1% progressive) followed for 2.4 to 12.1 years, yielding to 415,825 patient-years. Pooled event rates for RAW and PIRA were 1.6 (95 confidence interval (CI) = 1.1-2.1) and 3.1 (95% CI = 2.3-3.9) per 100 patient-years, respectively. Less RAW events were found in cohorts including patients with progressive course (β = -0.069, p = 0.006) and under high-efficacy disease-modifying treatments (DMTs) (β = -0.031, p = 0.007), while PIRA events were directly related to older age (β = 0.397, p = 0.027). In addition, we found significant differences in PIRA event rates according to the criteria adopted to define confirmed disability accrual (p < 0.05). DISCUSSION PIRA accounts for most events causing disability accumulation in the real-world setting, even at the earlier disease stages, whereas RAW represents a less frequent phenomenon, likely due to effective treatments. The detection and statistical analysis of PIRA outcomes pose challenges, raising the risk of erroneous inference. When interpreting our findings, caution is needed given the wide heterogeneity of included studies.
Collapse
Affiliation(s)
- Luca Prosperini
- MS Centre, Department of Neurosciences, San Camillo Forlanini Hospital, Rome, Italy
| | - Serena Ruggieri
- MS Centre, Department of Neurosciences, San Camillo Forlanini Hospital, Rome, Italy
| | - Shalom Haggiag
- MS Centre, Department of Neurosciences, San Camillo Forlanini Hospital, Rome, Italy
| | - Carla Tortorella
- MS Centre, Department of Neurosciences, San Camillo Forlanini Hospital, Rome, Italy
| | - Claudio Gasperini
- MS Centre, Department of Neurosciences, San Camillo Forlanini Hospital, Rome, Italy
| |
Collapse
|
12
|
Marastoni D, Turano E, Tamanti A, Colato E, Pisani AI, Scartezzini A, Carotenuto S, Mazziotti V, Camera V, Anni D, Ziccardi S, Guandalini M, Pizzini FB, Virla F, Mariotti R, Magliozzi R, Bonetti B, Steinman L, Calabrese M. Association of Levels of CSF Osteopontin With Cortical Atrophy and Disability in Early Multiple Sclerosis. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2024; 11:e200265. [PMID: 38917380 PMCID: PMC11203401 DOI: 10.1212/nxi.0000000000200265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 04/29/2024] [Indexed: 06/27/2024]
Abstract
BACKGROUND AND OBJECTIVES To evaluate CSF inflammatory markers with accumulation of cortical damage as well as disease activity in patients with early relapsing-remitting MS (RRMS). METHODS CSF levels of osteopontin (OPN) and 66 inflammatory markers were assessed using an immune-assay multiplex technique in 107 patients with RRMS (82 F/25 M, mean age 35.7 ± 11.8 years). All patients underwent regular clinical assessment and yearly 3T MRI scans for 2 years while 39 patients had a 4-year follow-up. White matter lesion number and volume, cortical lesions (CLs) and volume, and global cortical thickness (CTh) were evaluated together with the 'no evidence of disease activity' (NEDA-3) status, defined by no relapses, no disability worsening, and no MRI activity, including CLs. RESULTS The random forest algorithm selected OPN, CXCL13, TWEAK, TNF, IL19, sCD30, sTNFR1, IL35, IL16, and sCD163 as significantly associated with changes in global CTh. OPN and CXCL13 were most related to accumulation of atrophy after 2 and 4 years. In a multivariate linear regression model on CSF markers, OPN (p < 0.001), CXCL13 (p = 0.001), and sTNFR1 (p = 0.024) were increased in those patients with accumulating atrophy (adjusted R-squared 0.615). The 10 markers were added in a model that included all clinical, demographic, and MRI variables: OPN (p = 0.002) and IL19 (p = 0.022) levels were confirmed to be significantly increased in patients developing more CTh change over the follow-up (adjusted R-squared 0.619). CXCL13 and OPN also revealed the best association with NEDA-3 after 2 years, with OPN significantly linked to disability accumulation (OR 2.468 [1.46-5.034], p = 0.004) at the multivariate logistic regression model. DISCUSSION These data confirm and expand our knowledge on the prognostic role of the CSF inflammatory profile in predicting changes in cortical pathology and disease activity in early MS. The data emphasize a crucial role of OPN.
Collapse
Affiliation(s)
- Damiano Marastoni
- From the Neurology B (D.M., E.T., A.T., E.C., A.I.P., A.S., S.C., V.M., V.C., D.A., S.Z., M.G., F.V., R. Magliozzi, M.C.); Anatomy and Histology section (E.T., F.V., R. Mariotti), Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Italy; Department of Anatomy and Neurosciences (E.C.), MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, The Netherlands; Neuroradiology and Radiology Units (F.B.P.), Department of Engineering for Innovation Medicine, University of Verona, Italy; Department of Brain Sciences (R. Magliozzi), Faculty of Medicine, Imperial College London, United Kingdom; Neurology A (B.B.), Azienda Ospedaliera Universitaria Integrata di Verona, Italy; and Department of Neurology and Neurological Sciences Stanford University (L.S.), CA
| | - Ermanna Turano
- From the Neurology B (D.M., E.T., A.T., E.C., A.I.P., A.S., S.C., V.M., V.C., D.A., S.Z., M.G., F.V., R. Magliozzi, M.C.); Anatomy and Histology section (E.T., F.V., R. Mariotti), Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Italy; Department of Anatomy and Neurosciences (E.C.), MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, The Netherlands; Neuroradiology and Radiology Units (F.B.P.), Department of Engineering for Innovation Medicine, University of Verona, Italy; Department of Brain Sciences (R. Magliozzi), Faculty of Medicine, Imperial College London, United Kingdom; Neurology A (B.B.), Azienda Ospedaliera Universitaria Integrata di Verona, Italy; and Department of Neurology and Neurological Sciences Stanford University (L.S.), CA
| | - Agnese Tamanti
- From the Neurology B (D.M., E.T., A.T., E.C., A.I.P., A.S., S.C., V.M., V.C., D.A., S.Z., M.G., F.V., R. Magliozzi, M.C.); Anatomy and Histology section (E.T., F.V., R. Mariotti), Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Italy; Department of Anatomy and Neurosciences (E.C.), MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, The Netherlands; Neuroradiology and Radiology Units (F.B.P.), Department of Engineering for Innovation Medicine, University of Verona, Italy; Department of Brain Sciences (R. Magliozzi), Faculty of Medicine, Imperial College London, United Kingdom; Neurology A (B.B.), Azienda Ospedaliera Universitaria Integrata di Verona, Italy; and Department of Neurology and Neurological Sciences Stanford University (L.S.), CA
| | - Elisa Colato
- From the Neurology B (D.M., E.T., A.T., E.C., A.I.P., A.S., S.C., V.M., V.C., D.A., S.Z., M.G., F.V., R. Magliozzi, M.C.); Anatomy and Histology section (E.T., F.V., R. Mariotti), Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Italy; Department of Anatomy and Neurosciences (E.C.), MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, The Netherlands; Neuroradiology and Radiology Units (F.B.P.), Department of Engineering for Innovation Medicine, University of Verona, Italy; Department of Brain Sciences (R. Magliozzi), Faculty of Medicine, Imperial College London, United Kingdom; Neurology A (B.B.), Azienda Ospedaliera Universitaria Integrata di Verona, Italy; and Department of Neurology and Neurological Sciences Stanford University (L.S.), CA
| | - Anna Isabella Pisani
- From the Neurology B (D.M., E.T., A.T., E.C., A.I.P., A.S., S.C., V.M., V.C., D.A., S.Z., M.G., F.V., R. Magliozzi, M.C.); Anatomy and Histology section (E.T., F.V., R. Mariotti), Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Italy; Department of Anatomy and Neurosciences (E.C.), MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, The Netherlands; Neuroradiology and Radiology Units (F.B.P.), Department of Engineering for Innovation Medicine, University of Verona, Italy; Department of Brain Sciences (R. Magliozzi), Faculty of Medicine, Imperial College London, United Kingdom; Neurology A (B.B.), Azienda Ospedaliera Universitaria Integrata di Verona, Italy; and Department of Neurology and Neurological Sciences Stanford University (L.S.), CA
| | - Arianna Scartezzini
- From the Neurology B (D.M., E.T., A.T., E.C., A.I.P., A.S., S.C., V.M., V.C., D.A., S.Z., M.G., F.V., R. Magliozzi, M.C.); Anatomy and Histology section (E.T., F.V., R. Mariotti), Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Italy; Department of Anatomy and Neurosciences (E.C.), MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, The Netherlands; Neuroradiology and Radiology Units (F.B.P.), Department of Engineering for Innovation Medicine, University of Verona, Italy; Department of Brain Sciences (R. Magliozzi), Faculty of Medicine, Imperial College London, United Kingdom; Neurology A (B.B.), Azienda Ospedaliera Universitaria Integrata di Verona, Italy; and Department of Neurology and Neurological Sciences Stanford University (L.S.), CA
| | - Silvia Carotenuto
- From the Neurology B (D.M., E.T., A.T., E.C., A.I.P., A.S., S.C., V.M., V.C., D.A., S.Z., M.G., F.V., R. Magliozzi, M.C.); Anatomy and Histology section (E.T., F.V., R. Mariotti), Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Italy; Department of Anatomy and Neurosciences (E.C.), MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, The Netherlands; Neuroradiology and Radiology Units (F.B.P.), Department of Engineering for Innovation Medicine, University of Verona, Italy; Department of Brain Sciences (R. Magliozzi), Faculty of Medicine, Imperial College London, United Kingdom; Neurology A (B.B.), Azienda Ospedaliera Universitaria Integrata di Verona, Italy; and Department of Neurology and Neurological Sciences Stanford University (L.S.), CA
| | - Valentina Mazziotti
- From the Neurology B (D.M., E.T., A.T., E.C., A.I.P., A.S., S.C., V.M., V.C., D.A., S.Z., M.G., F.V., R. Magliozzi, M.C.); Anatomy and Histology section (E.T., F.V., R. Mariotti), Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Italy; Department of Anatomy and Neurosciences (E.C.), MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, The Netherlands; Neuroradiology and Radiology Units (F.B.P.), Department of Engineering for Innovation Medicine, University of Verona, Italy; Department of Brain Sciences (R. Magliozzi), Faculty of Medicine, Imperial College London, United Kingdom; Neurology A (B.B.), Azienda Ospedaliera Universitaria Integrata di Verona, Italy; and Department of Neurology and Neurological Sciences Stanford University (L.S.), CA
| | - Valentina Camera
- From the Neurology B (D.M., E.T., A.T., E.C., A.I.P., A.S., S.C., V.M., V.C., D.A., S.Z., M.G., F.V., R. Magliozzi, M.C.); Anatomy and Histology section (E.T., F.V., R. Mariotti), Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Italy; Department of Anatomy and Neurosciences (E.C.), MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, The Netherlands; Neuroradiology and Radiology Units (F.B.P.), Department of Engineering for Innovation Medicine, University of Verona, Italy; Department of Brain Sciences (R. Magliozzi), Faculty of Medicine, Imperial College London, United Kingdom; Neurology A (B.B.), Azienda Ospedaliera Universitaria Integrata di Verona, Italy; and Department of Neurology and Neurological Sciences Stanford University (L.S.), CA
| | - Daniela Anni
- From the Neurology B (D.M., E.T., A.T., E.C., A.I.P., A.S., S.C., V.M., V.C., D.A., S.Z., M.G., F.V., R. Magliozzi, M.C.); Anatomy and Histology section (E.T., F.V., R. Mariotti), Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Italy; Department of Anatomy and Neurosciences (E.C.), MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, The Netherlands; Neuroradiology and Radiology Units (F.B.P.), Department of Engineering for Innovation Medicine, University of Verona, Italy; Department of Brain Sciences (R. Magliozzi), Faculty of Medicine, Imperial College London, United Kingdom; Neurology A (B.B.), Azienda Ospedaliera Universitaria Integrata di Verona, Italy; and Department of Neurology and Neurological Sciences Stanford University (L.S.), CA
| | - Stefano Ziccardi
- From the Neurology B (D.M., E.T., A.T., E.C., A.I.P., A.S., S.C., V.M., V.C., D.A., S.Z., M.G., F.V., R. Magliozzi, M.C.); Anatomy and Histology section (E.T., F.V., R. Mariotti), Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Italy; Department of Anatomy and Neurosciences (E.C.), MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, The Netherlands; Neuroradiology and Radiology Units (F.B.P.), Department of Engineering for Innovation Medicine, University of Verona, Italy; Department of Brain Sciences (R. Magliozzi), Faculty of Medicine, Imperial College London, United Kingdom; Neurology A (B.B.), Azienda Ospedaliera Universitaria Integrata di Verona, Italy; and Department of Neurology and Neurological Sciences Stanford University (L.S.), CA
| | - Maddalena Guandalini
- From the Neurology B (D.M., E.T., A.T., E.C., A.I.P., A.S., S.C., V.M., V.C., D.A., S.Z., M.G., F.V., R. Magliozzi, M.C.); Anatomy and Histology section (E.T., F.V., R. Mariotti), Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Italy; Department of Anatomy and Neurosciences (E.C.), MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, The Netherlands; Neuroradiology and Radiology Units (F.B.P.), Department of Engineering for Innovation Medicine, University of Verona, Italy; Department of Brain Sciences (R. Magliozzi), Faculty of Medicine, Imperial College London, United Kingdom; Neurology A (B.B.), Azienda Ospedaliera Universitaria Integrata di Verona, Italy; and Department of Neurology and Neurological Sciences Stanford University (L.S.), CA
| | - Francesca B Pizzini
- From the Neurology B (D.M., E.T., A.T., E.C., A.I.P., A.S., S.C., V.M., V.C., D.A., S.Z., M.G., F.V., R. Magliozzi, M.C.); Anatomy and Histology section (E.T., F.V., R. Mariotti), Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Italy; Department of Anatomy and Neurosciences (E.C.), MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, The Netherlands; Neuroradiology and Radiology Units (F.B.P.), Department of Engineering for Innovation Medicine, University of Verona, Italy; Department of Brain Sciences (R. Magliozzi), Faculty of Medicine, Imperial College London, United Kingdom; Neurology A (B.B.), Azienda Ospedaliera Universitaria Integrata di Verona, Italy; and Department of Neurology and Neurological Sciences Stanford University (L.S.), CA
| | - Federica Virla
- From the Neurology B (D.M., E.T., A.T., E.C., A.I.P., A.S., S.C., V.M., V.C., D.A., S.Z., M.G., F.V., R. Magliozzi, M.C.); Anatomy and Histology section (E.T., F.V., R. Mariotti), Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Italy; Department of Anatomy and Neurosciences (E.C.), MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, The Netherlands; Neuroradiology and Radiology Units (F.B.P.), Department of Engineering for Innovation Medicine, University of Verona, Italy; Department of Brain Sciences (R. Magliozzi), Faculty of Medicine, Imperial College London, United Kingdom; Neurology A (B.B.), Azienda Ospedaliera Universitaria Integrata di Verona, Italy; and Department of Neurology and Neurological Sciences Stanford University (L.S.), CA
| | - Raffaella Mariotti
- From the Neurology B (D.M., E.T., A.T., E.C., A.I.P., A.S., S.C., V.M., V.C., D.A., S.Z., M.G., F.V., R. Magliozzi, M.C.); Anatomy and Histology section (E.T., F.V., R. Mariotti), Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Italy; Department of Anatomy and Neurosciences (E.C.), MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, The Netherlands; Neuroradiology and Radiology Units (F.B.P.), Department of Engineering for Innovation Medicine, University of Verona, Italy; Department of Brain Sciences (R. Magliozzi), Faculty of Medicine, Imperial College London, United Kingdom; Neurology A (B.B.), Azienda Ospedaliera Universitaria Integrata di Verona, Italy; and Department of Neurology and Neurological Sciences Stanford University (L.S.), CA
| | - Roberta Magliozzi
- From the Neurology B (D.M., E.T., A.T., E.C., A.I.P., A.S., S.C., V.M., V.C., D.A., S.Z., M.G., F.V., R. Magliozzi, M.C.); Anatomy and Histology section (E.T., F.V., R. Mariotti), Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Italy; Department of Anatomy and Neurosciences (E.C.), MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, The Netherlands; Neuroradiology and Radiology Units (F.B.P.), Department of Engineering for Innovation Medicine, University of Verona, Italy; Department of Brain Sciences (R. Magliozzi), Faculty of Medicine, Imperial College London, United Kingdom; Neurology A (B.B.), Azienda Ospedaliera Universitaria Integrata di Verona, Italy; and Department of Neurology and Neurological Sciences Stanford University (L.S.), CA
| | - Bruno Bonetti
- From the Neurology B (D.M., E.T., A.T., E.C., A.I.P., A.S., S.C., V.M., V.C., D.A., S.Z., M.G., F.V., R. Magliozzi, M.C.); Anatomy and Histology section (E.T., F.V., R. Mariotti), Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Italy; Department of Anatomy and Neurosciences (E.C.), MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, The Netherlands; Neuroradiology and Radiology Units (F.B.P.), Department of Engineering for Innovation Medicine, University of Verona, Italy; Department of Brain Sciences (R. Magliozzi), Faculty of Medicine, Imperial College London, United Kingdom; Neurology A (B.B.), Azienda Ospedaliera Universitaria Integrata di Verona, Italy; and Department of Neurology and Neurological Sciences Stanford University (L.S.), CA
| | - Lawrence Steinman
- From the Neurology B (D.M., E.T., A.T., E.C., A.I.P., A.S., S.C., V.M., V.C., D.A., S.Z., M.G., F.V., R. Magliozzi, M.C.); Anatomy and Histology section (E.T., F.V., R. Mariotti), Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Italy; Department of Anatomy and Neurosciences (E.C.), MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, The Netherlands; Neuroradiology and Radiology Units (F.B.P.), Department of Engineering for Innovation Medicine, University of Verona, Italy; Department of Brain Sciences (R. Magliozzi), Faculty of Medicine, Imperial College London, United Kingdom; Neurology A (B.B.), Azienda Ospedaliera Universitaria Integrata di Verona, Italy; and Department of Neurology and Neurological Sciences Stanford University (L.S.), CA
| | - Massimiliano Calabrese
- From the Neurology B (D.M., E.T., A.T., E.C., A.I.P., A.S., S.C., V.M., V.C., D.A., S.Z., M.G., F.V., R. Magliozzi, M.C.); Anatomy and Histology section (E.T., F.V., R. Mariotti), Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Italy; Department of Anatomy and Neurosciences (E.C.), MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, The Netherlands; Neuroradiology and Radiology Units (F.B.P.), Department of Engineering for Innovation Medicine, University of Verona, Italy; Department of Brain Sciences (R. Magliozzi), Faculty of Medicine, Imperial College London, United Kingdom; Neurology A (B.B.), Azienda Ospedaliera Universitaria Integrata di Verona, Italy; and Department of Neurology and Neurological Sciences Stanford University (L.S.), CA
| |
Collapse
|
13
|
Singh V, Zheng Y, Ontaneda D, Mahajan KR, Holloman J, Fox RJ, Nakamura K, Trapp BD. Disability independent of cerebral white matter demyelination in progressive multiple sclerosis. Acta Neuropathol 2024; 148:34. [PMID: 39217272 PMCID: PMC11365858 DOI: 10.1007/s00401-024-02796-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/20/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
The pathogenic mechanisms contributing to neurological disability in progressive multiple sclerosis (PMS) are poorly understood. Cortical neuronal loss independent of cerebral white matter (WM) demyelination in myelocortical MS (MCMS) and identification of MS patients with widespread cortical atrophy and disability progression independent of relapse activity (PIRA) support pathogenic mechanisms other than cerebral WM demyelination. The three-dimensional distribution and underlying pathology of myelinated T2 lesions were investigated in postmortem MCMS brains. Postmortem brain slices from previously characterized MCMS (10 cases) and typical MS (TMS) cases (12 cases) were co-registered with in situ postmortem T2 hyperintensities and T1 hypointensities. T1 intensity thresholds were used to establish a classifier that differentiates MCMS from TMS. The classifier was validated in 36 uncharacterized postmortem brains and applied to baseline MRIs from 255 living PMS participants enrolled in SPRINT-MS. Myelinated T2 hyperintensities in postmortem MCMS brains have a contiguous periventricular distribution that expands at the occipital poles of the lateral ventricles where a surface-in gradient of myelinated axonal degeneration was observed. The MRI classifier distinguished pathologically confirmed postmortem MCMS and TMS cases with an accuracy of 94%. For SPRINT-MS patients, the MRI classifier identified 78% as TMS, 10% as MCMS, and 12% with a paucity of cerebral T1 and T2 intensities. In SPRINT-MS, expanded disability status scale and brain atrophy measures were similar in MCMS and TMS cohorts. A paucity of cerebral WM demyelination in 22% of living PMS patients raises questions regarding a primary role for cerebral WM demyelination in disability progression in all MS patients and has implications for clinical management of MS patients and clinical trial outcomes in PMS. Periventricular myelinated fiber degeneration provides additional support for surface-in gradients of neurodegeneration in MS.
Collapse
Affiliation(s)
- Vikas Singh
- Department of Neurosciences, NC30, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
| | - Yufan Zheng
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Daniel Ontaneda
- Mellen Center for Treatment and Research in MS, Cleveland Clinic, Cleveland, OH, USA
| | - Kedar R Mahajan
- Department of Neurosciences, NC30, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
- Mellen Center for Treatment and Research in MS, Cleveland Clinic, Cleveland, OH, USA
| | - Jameson Holloman
- Department of Neurosciences, NC30, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
- Mellen Center for Treatment and Research in MS, Cleveland Clinic, Cleveland, OH, USA
| | - Robert J Fox
- Mellen Center for Treatment and Research in MS, Cleveland Clinic, Cleveland, OH, USA
| | - Kunio Nakamura
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Bruce D Trapp
- Department of Neurosciences, NC30, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA.
| |
Collapse
|
14
|
Mazziotti V, Crescenzo F, Turano E, Guandalini M, Bertolazzo M, Ziccardi S, Virla F, Camera V, Marastoni D, Tamanti A, Calabrese M. The contribution of tumor necrosis factor to multiple sclerosis: a possible role in progression independent of relapse? J Neuroinflammation 2024; 21:209. [PMID: 39169320 PMCID: PMC11340196 DOI: 10.1186/s12974-024-03193-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 07/31/2024] [Indexed: 08/23/2024] Open
Abstract
Tumor necrosis factor (TNF) is a pleiotropic cytokine regulating many physiological and pathological immune-mediated processes. Specifically, it has been recognized as an essential pro-inflammatory cytokine implicated in multiple sclerosis (MS) pathogenesis and progression. MS is a chronic immune-mediated disease of the central nervous system, characterized by multifocal acute and chronic inflammatory demyelination in white and grey matter, along with neuroaxonal loss. A recent concept in the field of MS research is disability resulting from Progression Independent of Relapse Activity (PIRA). PIRA recognizes that disability accumulation since the early phase of the disease can occur independently of relapse activity overcoming the traditional dualistic view of MS as either a relapsing-inflammatory or a progressive-neurodegenerative disease. Several studies have demonstrated an upregulation in TNF expression in both acute and chronic active MS brain lesions. Additionally, elevated TNF levels have been observed in the serum and cerebrospinal fluid of MS patients. TNF appears to play a significant role in maintaining chronic intrathecal inflammation, promoting axonal damage neurodegeneration, and consequently contributing to disease progression and disability accumulation. In summary, this review highlights the current understanding of TNF and its receptors in MS progression, specifically focusing on the relatively unexplored PIRA condition. Further research in this area holds promise for potential therapeutic interventions targeting TNF to mitigate disability in MS patients.
Collapse
Affiliation(s)
- Valentina Mazziotti
- Neurology B Unit - Multiple Sclerosis Center, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134, Verona, Italy
| | - Francesco Crescenzo
- Neurology Unit - Multiple Sclerosis Center, Scaligera Local Unit of Health and Social Services 9, Mater Salutis Hospital, 37045, Legnago, Verona, Italy
| | - Ermanna Turano
- Neurology B Unit - Multiple Sclerosis Center, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134, Verona, Italy
| | - Maddalena Guandalini
- Neurology B Unit - Multiple Sclerosis Center, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134, Verona, Italy
| | - Maddalena Bertolazzo
- Neurology B Unit - Multiple Sclerosis Center, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134, Verona, Italy
| | - Stefano Ziccardi
- Neurology B Unit - Multiple Sclerosis Center, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134, Verona, Italy
| | - Federica Virla
- Neurology B Unit - Multiple Sclerosis Center, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134, Verona, Italy
| | - Valentina Camera
- Neurology B Unit - Multiple Sclerosis Center, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134, Verona, Italy
| | - Damiano Marastoni
- Neurology B Unit - Multiple Sclerosis Center, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134, Verona, Italy
| | - Agnese Tamanti
- Neurology B Unit - Multiple Sclerosis Center, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134, Verona, Italy
| | - Massimiliano Calabrese
- Neurology B Unit - Multiple Sclerosis Center, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134, Verona, Italy.
| |
Collapse
|
15
|
Praet J, Anderhalten L, Comi G, Horakova D, Ziemssen T, Vermersch P, Lukas C, van Leemput K, Steppe M, Aguilera C, Kadas EM, Bertrand A, van Rampelbergh J, de Boer E, Zingler V, Smeets D, Ribbens A, Paul F. A future of AI-driven personalized care for people with multiple sclerosis. Front Immunol 2024; 15:1446748. [PMID: 39224590 PMCID: PMC11366570 DOI: 10.3389/fimmu.2024.1446748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 07/11/2024] [Indexed: 09/04/2024] Open
Abstract
Multiple sclerosis (MS) is a devastating immune-mediated disorder of the central nervous system resulting in progressive disability accumulation. As there is no cure available yet for MS, the primary therapeutic objective is to reduce relapses and to slow down disability progression as early as possible during the disease to maintain and/or improve health-related quality of life. However, optimizing treatment for people with MS (pwMS) is complex and challenging due to the many factors involved and in particular, the high degree of clinical and sub-clinical heterogeneity in disease progression among pwMS. In this paper, we discuss these many different challenges complicating treatment optimization for pwMS as well as how a shift towards a more pro-active, data-driven and personalized medicine approach could potentially improve patient outcomes for pwMS. We describe how the 'Clinical Impact through AI-assisted MS Care' (CLAIMS) project serves as a recent example of how to realize such a shift towards personalized treatment optimization for pwMS through the development of a platform that offers a holistic view of all relevant patient data and biomarkers, and then using this data to enable AI-supported prognostic modelling.
Collapse
Affiliation(s)
| | - Lina Anderhalten
- Experimental and Clinical Research Center (ECRC), A Cooperation Between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Giancarlo Comi
- Department of Neurorehabilitative Sciences, Casa di Cura Igea, Italy
- Department of Neurology, Vita-Salute San Raffaele University-Ospedale San Raffaele, Milan, Italy
| | - Dana Horakova
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czechia
| | - Tjalf Ziemssen
- Center of Clinical Neuroscience, Department of Neurology, University Clinic Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Patrick Vermersch
- Univ. Lille, InsermU1172 LilNCog, CHU Lille, FHU Precise, Lille, France
| | - Carsten Lukas
- Institute of Neuroradiology, St. Josef Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Koen van Leemput
- Athinoula A. Martinos Center, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, United States
- Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland
- Department of Computer Science, Aalto University, Espoo, Finland
| | | | | | | | | | | | - Erik de Boer
- Bristol-Myers Squibb Company Corp, Princeton, NJ, United States
| | - Vera Zingler
- F. Hoffmann-La Roche Ltd., Product Development Medical Affairs, Neuroscience, Basel, Switzerland
| | | | | | - Friedemann Paul
- Experimental and Clinical Research Center (ECRC), A Cooperation Between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité - Universitätsmedizin Berlin, Berlin, Germany
- Experimental and Clinical Research Center (ECRC), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Neuroscience Clinical Research Center (NCRC), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Neurology with Experimental Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
16
|
Gilio L, Fresegna D, Stampanoni Bassi M, Musella A, De Vito F, Balletta S, Sanna K, Caioli S, Pavone L, Galifi G, Simonelli I, Guadalupi L, Vanni V, Buttari F, Dolcetti E, Bruno A, Azzolini F, Borrelli A, Fantozzi R, Finardi A, Furlan R, Centonze D, Mandolesi G. Interleukin-10 contrasts inflammatory synaptopathy and central neurodegenerative damage in multiple sclerosis. Front Mol Neurosci 2024; 17:1430080. [PMID: 39169949 PMCID: PMC11338018 DOI: 10.3389/fnmol.2024.1430080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/22/2024] [Indexed: 08/23/2024] Open
Abstract
Proinflammatory cytokines are implicated in promoting neurodegeneration in multiple sclerosis (MS) by affecting excitatory and inhibitory transmission at central synapses. Conversely, the synaptic effects of anti-inflammatory molecules remain underexplored, despite their potential neuroprotective properties and their presence in the cerebrospinal fluid (CSF) of patients. In a study involving 184 newly diagnosed relapsing-remitting (RR)-MS patients, we investigated whether CSF levels of the anti-inflammatory interleukin (IL)-10 were linked to disease severity and neurodegeneration measures. Additionally, we examined IL-10 impact on synaptic transmission in striatal medium spiny neurons and its role in counteracting inflammatory synaptopathy induced by IL-1β in female C57BL/6 mice with experimental autoimmune encephalomyelitis (EAE). Our findings revealed a significant positive correlation between IL-10 CSF levels and changes in EDSS (Expanded Disability Status Scale) scores one year after MS diagnosis. Moreover, IL-10 levels in the CSF were positively correlated with volumes of specific subcortical brain structures, such as the nucleus caudate. In both MS patients' CSF and EAE mice striatum, IL-10 and IL-1β expressions were upregulated, suggesting possible antagonistic effects of these cytokines. Notably, IL-10 exhibited the ability to decrease glutamate transmission, increase GABA transmission in the striatum, and reverse IL-1β-induced abnormal synaptic transmission in EAE. In conclusion, our data suggest that IL-10 exerts direct neuroprotective effects in MS patients by modulating both excitatory and inhibitory transmission and attenuating IL-1β-induced inflammatory synaptopathy. These findings underscore the potential therapeutic significance of IL-10 in mitigating neurodegeneration in MS.
Collapse
Affiliation(s)
- Luana Gilio
- Neurology Unit, IRCCS Neuromed, Pozzilli, Italy
- Faculty of Psychology, Uninettuno Telematic International University, Rome, Italy
| | - Diego Fresegna
- Synaptic Immunopathology Lab, IRCCS San Raffaele Roma, Rome, Italy
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | | | - Alessandra Musella
- Synaptic Immunopathology Lab, IRCCS San Raffaele Roma, Rome, Italy
- Department of Human Sciences and Quality of Life Promotion, University of Rome San Raffaele, Roma, Italy
| | | | | | - Krizia Sanna
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | | | | | - Giovanni Galifi
- Neurology Unit, IRCCS Neuromed, Pozzilli, Italy
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Ilaria Simonelli
- Clinical Trial Centre Isola Tiberina-Gemelli Isola, Rome, Italy
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Livia Guadalupi
- Synaptic Immunopathology Lab, IRCCS San Raffaele Roma, Rome, Italy
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Valentina Vanni
- Synaptic Immunopathology Lab, IRCCS San Raffaele Roma, Rome, Italy
| | - Fabio Buttari
- Neurology Unit, IRCCS Neuromed, Pozzilli, Italy
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Ettore Dolcetti
- Neurology Unit, IRCCS Neuromed, Pozzilli, Italy
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Antonio Bruno
- Neurology Unit, IRCCS Neuromed, Pozzilli, Italy
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | | | | | | | - Annamaria Finardi
- Clinical Neuroimmunology Unit, Institute of Experimental Neurology (INSpe), Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Roberto Furlan
- Clinical Neuroimmunology Unit, Institute of Experimental Neurology (INSpe), Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- IRCCS San Raffaele Scientific Institute, University Vita-Salute San Raffaele, Milan, Italy
| | - Diego Centonze
- Neurology Unit, IRCCS Neuromed, Pozzilli, Italy
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Georgia Mandolesi
- Synaptic Immunopathology Lab, IRCCS San Raffaele Roma, Rome, Italy
- Department of Human Sciences and Quality of Life Promotion, University of Rome San Raffaele, Roma, Italy
| |
Collapse
|
17
|
Cagol A, Tsagkas C, Granziera C. Advanced Brain Imaging in Central Nervous System Demyelinating Diseases. Neuroimaging Clin N Am 2024; 34:335-357. [PMID: 38942520 DOI: 10.1016/j.nic.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
In recent decades, advances in neuroimaging have profoundly transformed our comprehension of central nervous system demyelinating diseases. Remarkable technological progress has enabled the integration of cutting-edge acquisition and postprocessing techniques, proving instrumental in characterizing subtle focal changes, diffuse microstructural alterations, and macroscopic pathologic processes. This review delves into state-of-the-art modalities applied to multiple sclerosis, neuromyelitis optica spectrum disorders, and myelin oligodendrocyte glycoprotein antibody-associated disease. Furthermore, it explores how this dynamic landscape holds significant promise for the development of effective and personalized clinical management strategies, encompassing support for differential diagnosis, prognosis, monitoring treatment response, and patient stratification.
Collapse
Affiliation(s)
- Alessandro Cagol
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, University Hospital Basel and University of Basel, Hegenheimermattweg 167b, 4123 Allschwil, Switzerland; Department of Neurology, University Hospital Basel, Petersgraben 4, 4031 Basel, Switzerland; Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Spitalstrasse 2, 4031 Basel, Switzerland; Department of Health Sciences, University of Genova, Via A. Pastore, 1 16132 Genova, Italy. https://twitter.com/CagolAlessandr0
| | - Charidimos Tsagkas
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, University Hospital Basel and University of Basel, Hegenheimermattweg 167b, 4123 Allschwil, Switzerland; Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), 10 Center Drive, Bethesda, MD 20892, USA
| | - Cristina Granziera
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, University Hospital Basel and University of Basel, Hegenheimermattweg 167b, 4123 Allschwil, Switzerland; Department of Neurology, University Hospital Basel, Petersgraben 4, 4031 Basel, Switzerland; Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Spitalstrasse 2, 4031 Basel, Switzerland.
| |
Collapse
|
18
|
Iaffaldano P, Lucisano G, Guerra T, Paolicelli D, Portaccio E, Inglese M, Foschi M, Patti F, Granella F, Romano S, Cavalla P, De Luca G, Gallo P, Bellantonio P, Gallo A, Montepietra S, Di Sapio A, Vianello M, Quatrale R, Spitaleri D, Clerici R, Torri Clerici V, Cocco E, Brescia Morra V, Marfia GA, Boccia VD, Filippi M, Amato MP, Trojano M. A comparison of natalizumab and ocrelizumab on disease progression in multiple sclerosis. Ann Clin Transl Neurol 2024; 11:2008-2015. [PMID: 38970214 PMCID: PMC11330227 DOI: 10.1002/acn3.52118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/17/2024] [Accepted: 05/23/2024] [Indexed: 07/08/2024] Open
Abstract
OBJECTIVE No direct comparisons of the effect of natalizumab and ocrelizumab on progression independent of relapse activity (PIRA) and relapse-associated worsening (RAW) events are currently available. We aimed to compare the risk of achieving first 6 months confirmed PIRA and RAW events and irreversible Expanded Disability Status Scale (EDSS) 4.0 and 6.0 in a cohort of naïve patients treated with natalizumab or ocrelizumab from the Italian Multiple Sclerosis Register. METHODS Patients with a first visit within 1 year from onset, treated with natalizumab or ocrelizumab, and ≥3 visits were extracted. Pairwise propensity score-matched analyses were performed. Risk of reaching the first PIRA, RAW, and EDSS 4.0 and 6.0 events were estimated using multivariable Cox proportional hazards models. Kaplan-Meier curves were used to show cumulative probabilities of reaching outcomes. RESULTS In total, 770 subjects were included (natalizumab = 568; ocrelizumab = 212) and the propensity score-matching retrieved 195 pairs. No RAW events were found in natalizumab group and only 1 was reported in ocrelizumab group. A first PIRA event was reached by 23 natalizumab and 25 ocrelizumab exposed patients; 7 natalizumab- and 10 ocrelizumab-treated patients obtained an irreversible EDSS 4.0, while 13 natalizumab- and 15 ocrelizumab-treated patients reached an irreversible EDSS 6.0. No differences between the two groups were found in the risk (HR, 95%CI) of reaching a first PIRA (1.04, 0.59-1.84; p = 0.88) event, an irreversible EDSS 4.0 (1.23, 0.57-2.66; p = 0.60) and 6.0 (0.93, 0.32-2.68; p = 0.89). INTERPRETATION Both medications strongly suppress RAW events and, in the short term, the risk of achieving PIRA events, EDSS 4.0 and 6.0 milestones is not significantly different.
Collapse
Affiliation(s)
- Pietro Iaffaldano
- Department of Translational Biomedicines and NeurosciencesUniversity of Bari Aldo MoroBariItaly
| | - Giuseppe Lucisano
- CORESEARCH ‐ Center for Outcomes Research and Clinical EpidemiologyPescaraItaly
| | - Tommaso Guerra
- Department of Translational Biomedicines and NeurosciencesUniversity of Bari Aldo MoroBariItaly
| | - Damiano Paolicelli
- Department of Translational Biomedicines and NeurosciencesUniversity of Bari Aldo MoroBariItaly
| | | | - Matilde Inglese
- Dipartimento Di Neuroscienze, Riabilitazione, Oftalmologia, Genetica E Scienze Materno ‐ Infantili (DINOGMI)Università di GenovaGenoaItaly
- IRCCS Ospedale Policlinico San MartinoGenoaItaly
| | - Matteo Foschi
- Department of Neuroscience, Multiple Sclerosis Center‐Neurology UnitS. Maria delle Croci Hospital of Ravenna, AUSL RomagnaRavenna48121Italy
| | - Francesco Patti
- Dipartimento di Scienze Mediche e Chirurgiche e Tecnologie Avanzate, GF Ingrassia, Sez. Neuroscienze, Centro Sclerosi MultiplaUniversità di CataniaCataniaItaly
| | - Franco Granella
- Unit of Neurosciences, Department of Medicine and SurgeryUniversity of ParmaParmaItaly
| | - Silvia Romano
- Department of Neurosciences, Mental Health and Sensory Organs, Centre for Experimental Neurological Therapies (CENTERS)Sapienza University of RomeRomeItaly
| | - Paola Cavalla
- Multiple Sclerosis Center and 1 Neurology Unit, Department of Neurosciences and Mental HealthAOU Città della Salute e della Scienza di Torino via Cherasco 15Torino10126Italy
| | - Giovanna De Luca
- Centro Sclerosi MultiplaClinica Neurologica, Policlinico SS. AnnunziataChietiItaly
| | - Paolo Gallo
- Department of Neurosciences, Multiple Sclerosis Centre‐Veneto Region (CeSMuV)University Hospital of PaduaPaduaItaly
| | - Paolo Bellantonio
- Unit of Neurology and NeurorehabilitationIRCCS NeuromedPozzilliItaly
| | - Antonio Gallo
- Department of Advanced Medical and Surgical SciencesUniversity of Campania “Luigi Vanvitelli”NaplesItaly
| | - Sara Montepietra
- Neurology Unit, Neuromotor and Rehabilitation DepartmentAUSL‐IRCCS of Reggio EmiliaReggio EmiliaItaly
| | - Alessia Di Sapio
- Regional Referral MS Center, Neurological UnitUniv. Hospital San LuigiOrbassanoItaly
| | | | - Rocco Quatrale
- Ambulatorio Sclerosi Multipla ‐ Divisione di NeurologiaOspedale dell'AngeloMestreItaly
| | | | - Raffaella Clerici
- Centro ad Alta Specializzazione per la diagnosi e la cura della sclerosi multiplaOspedale Generale di zona ValduceComoItaly
| | | | - Eleonora Cocco
- Department of Medical Science and Public Health, Centro Sclerosi MultiplaUniversity of CagliariCagliariItaly
| | - Vincenzo Brescia Morra
- Department of Neuroscience (NSRO)Multiple Sclerosis Clinical Care and Research Center, Federico II UniversityNaplesItaly
| | | | - Vincenzo Daniele Boccia
- Dipartimento Di Neuroscienze, Riabilitazione, Oftalmologia, Genetica E Scienze Materno ‐ Infantili (DINOGMI)Università di GenovaGenoaItaly
| | - Massimo Filippi
- Neurology Unit and MS CenterIRCCS San Raffaele Scientific InstituteMilanItaly
| | | | - Maria Trojano
- Department of Translational Biomedicines and NeurosciencesUniversity of Bari Aldo MoroBariItaly
| | | |
Collapse
|
19
|
Pfeuffer S, Wolff S, Aslan D, Rolfes L, Korsen M, Pawlitzki M, Albrecht P, Havla J, Huttner HB, Kleinschnitz C, Meuth SG, Pul R, Ruck T. Association of Clinical Relapses With Disease Outcomes in Multiple Sclerosis Patients Older Than 50 Years. Neurology 2024; 103:e209574. [PMID: 38870471 PMCID: PMC11244741 DOI: 10.1212/wnl.0000000000209574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Relapse and MRI activity usually decline with aging but are replaced by progression independent of relapse activity (PIRA) in patients with multiple sclerosis (PwMS). However, several older PwMS continue to experience clinical relapses, and the impact on their disease remains undetermined. We aimed to determine the impact of an index relapse on disease outcomes in patients older than 50 years and to identify risk factors of disadvantageous outcomes. METHODS We performed a secondary analysis from 3 prospective cohorts in Germany. We evaluated all PwMS 50 years and older with a relapse ≤60 days before a baseline visit and at least 18 months of follow-up compared with a control cohort of PwMS without a relapse. Patients were stratified according to age ("50-54" vs "55-59" vs "60+") or disease outcomes ("stable" vs "active" vs "progressive," according to the Lublin criteria). We analyzed relapses, MRI activity, relapse-associated worsening, and PIRA. Regression analysis was performed to evaluate the association of specific baseline risk factors and treatment regimen changes with disease outcomes at month 18. RESULTS A total of 681 patients were included in the "relapse cohort" (50+: 361; 55+: 220; 60+: 100). The "control cohort" comprised 232 patients (50+: 117; 55+: 71; 60+: 44). Baseline epidemiologic parameters were balanced among cohorts and subgroups. We observed increased abundance of inflammatory activity and relapse-independent disability progression in the "relapse" vs "control" cohort. In the "relapse" cohort, we identified 273 patients as "stable" (59.7%), 114 patients as "active" (24.9%), and 70 patients as "progressive" (15.3%) during follow-up. Cardiovascular risk factors (CVRFs) and older age at baseline were identified as risk factors of progressive, whereas disease-modifying treatment (DMT) administration at baseline favored stable disease. DMT during follow-up was associated with stable over active, but not over progressive disease. DISCUSSION A relapse-suggesting underlying active disease-in PwMS older than 50 years was associated with continued disease activity and increased risk of PIRA. Presence of CVRF and absence of DMT at baseline appeared as risk factors of disadvantageous disease courses. An escalation of DMT switch was associated with stable over active but not progressive disease.
Collapse
Affiliation(s)
- Steffen Pfeuffer
- From the Department of Neurology (S.P., S.W., H.B.H.), University Hospital Giessen, Justus-Liebig-University Giessen; Department of Neurology (D.A., C.K., R.P.), University Hospital Essen, University Duisburg-Essen; Department of Neurology (L.R., M.K., M.P., S.G.M., T.R.), Medical Faculty, Heinrich Heine University Düsseldorf; Department of Neurology (P.A.), Medical Faculty, Heinrich Department of Neurology, Maria-Hilf-Clinic, Mönchengladbach; and Institute of Clinical Neuroimmunology (J.H.), LMU Hospital, Ludwig-Maximilians University Munich, Germany
| | - Stephanie Wolff
- From the Department of Neurology (S.P., S.W., H.B.H.), University Hospital Giessen, Justus-Liebig-University Giessen; Department of Neurology (D.A., C.K., R.P.), University Hospital Essen, University Duisburg-Essen; Department of Neurology (L.R., M.K., M.P., S.G.M., T.R.), Medical Faculty, Heinrich Heine University Düsseldorf; Department of Neurology (P.A.), Medical Faculty, Heinrich Department of Neurology, Maria-Hilf-Clinic, Mönchengladbach; and Institute of Clinical Neuroimmunology (J.H.), LMU Hospital, Ludwig-Maximilians University Munich, Germany
| | - Derya Aslan
- From the Department of Neurology (S.P., S.W., H.B.H.), University Hospital Giessen, Justus-Liebig-University Giessen; Department of Neurology (D.A., C.K., R.P.), University Hospital Essen, University Duisburg-Essen; Department of Neurology (L.R., M.K., M.P., S.G.M., T.R.), Medical Faculty, Heinrich Heine University Düsseldorf; Department of Neurology (P.A.), Medical Faculty, Heinrich Department of Neurology, Maria-Hilf-Clinic, Mönchengladbach; and Institute of Clinical Neuroimmunology (J.H.), LMU Hospital, Ludwig-Maximilians University Munich, Germany
| | - Leoni Rolfes
- From the Department of Neurology (S.P., S.W., H.B.H.), University Hospital Giessen, Justus-Liebig-University Giessen; Department of Neurology (D.A., C.K., R.P.), University Hospital Essen, University Duisburg-Essen; Department of Neurology (L.R., M.K., M.P., S.G.M., T.R.), Medical Faculty, Heinrich Heine University Düsseldorf; Department of Neurology (P.A.), Medical Faculty, Heinrich Department of Neurology, Maria-Hilf-Clinic, Mönchengladbach; and Institute of Clinical Neuroimmunology (J.H.), LMU Hospital, Ludwig-Maximilians University Munich, Germany
| | - Melanie Korsen
- From the Department of Neurology (S.P., S.W., H.B.H.), University Hospital Giessen, Justus-Liebig-University Giessen; Department of Neurology (D.A., C.K., R.P.), University Hospital Essen, University Duisburg-Essen; Department of Neurology (L.R., M.K., M.P., S.G.M., T.R.), Medical Faculty, Heinrich Heine University Düsseldorf; Department of Neurology (P.A.), Medical Faculty, Heinrich Department of Neurology, Maria-Hilf-Clinic, Mönchengladbach; and Institute of Clinical Neuroimmunology (J.H.), LMU Hospital, Ludwig-Maximilians University Munich, Germany
| | - Marc Pawlitzki
- From the Department of Neurology (S.P., S.W., H.B.H.), University Hospital Giessen, Justus-Liebig-University Giessen; Department of Neurology (D.A., C.K., R.P.), University Hospital Essen, University Duisburg-Essen; Department of Neurology (L.R., M.K., M.P., S.G.M., T.R.), Medical Faculty, Heinrich Heine University Düsseldorf; Department of Neurology (P.A.), Medical Faculty, Heinrich Department of Neurology, Maria-Hilf-Clinic, Mönchengladbach; and Institute of Clinical Neuroimmunology (J.H.), LMU Hospital, Ludwig-Maximilians University Munich, Germany
| | - Philipp Albrecht
- From the Department of Neurology (S.P., S.W., H.B.H.), University Hospital Giessen, Justus-Liebig-University Giessen; Department of Neurology (D.A., C.K., R.P.), University Hospital Essen, University Duisburg-Essen; Department of Neurology (L.R., M.K., M.P., S.G.M., T.R.), Medical Faculty, Heinrich Heine University Düsseldorf; Department of Neurology (P.A.), Medical Faculty, Heinrich Department of Neurology, Maria-Hilf-Clinic, Mönchengladbach; and Institute of Clinical Neuroimmunology (J.H.), LMU Hospital, Ludwig-Maximilians University Munich, Germany
| | - Joachim Havla
- From the Department of Neurology (S.P., S.W., H.B.H.), University Hospital Giessen, Justus-Liebig-University Giessen; Department of Neurology (D.A., C.K., R.P.), University Hospital Essen, University Duisburg-Essen; Department of Neurology (L.R., M.K., M.P., S.G.M., T.R.), Medical Faculty, Heinrich Heine University Düsseldorf; Department of Neurology (P.A.), Medical Faculty, Heinrich Department of Neurology, Maria-Hilf-Clinic, Mönchengladbach; and Institute of Clinical Neuroimmunology (J.H.), LMU Hospital, Ludwig-Maximilians University Munich, Germany
| | - Hagen B Huttner
- From the Department of Neurology (S.P., S.W., H.B.H.), University Hospital Giessen, Justus-Liebig-University Giessen; Department of Neurology (D.A., C.K., R.P.), University Hospital Essen, University Duisburg-Essen; Department of Neurology (L.R., M.K., M.P., S.G.M., T.R.), Medical Faculty, Heinrich Heine University Düsseldorf; Department of Neurology (P.A.), Medical Faculty, Heinrich Department of Neurology, Maria-Hilf-Clinic, Mönchengladbach; and Institute of Clinical Neuroimmunology (J.H.), LMU Hospital, Ludwig-Maximilians University Munich, Germany
| | - Christoph Kleinschnitz
- From the Department of Neurology (S.P., S.W., H.B.H.), University Hospital Giessen, Justus-Liebig-University Giessen; Department of Neurology (D.A., C.K., R.P.), University Hospital Essen, University Duisburg-Essen; Department of Neurology (L.R., M.K., M.P., S.G.M., T.R.), Medical Faculty, Heinrich Heine University Düsseldorf; Department of Neurology (P.A.), Medical Faculty, Heinrich Department of Neurology, Maria-Hilf-Clinic, Mönchengladbach; and Institute of Clinical Neuroimmunology (J.H.), LMU Hospital, Ludwig-Maximilians University Munich, Germany
| | - Sven G Meuth
- From the Department of Neurology (S.P., S.W., H.B.H.), University Hospital Giessen, Justus-Liebig-University Giessen; Department of Neurology (D.A., C.K., R.P.), University Hospital Essen, University Duisburg-Essen; Department of Neurology (L.R., M.K., M.P., S.G.M., T.R.), Medical Faculty, Heinrich Heine University Düsseldorf; Department of Neurology (P.A.), Medical Faculty, Heinrich Department of Neurology, Maria-Hilf-Clinic, Mönchengladbach; and Institute of Clinical Neuroimmunology (J.H.), LMU Hospital, Ludwig-Maximilians University Munich, Germany
| | - Refik Pul
- From the Department of Neurology (S.P., S.W., H.B.H.), University Hospital Giessen, Justus-Liebig-University Giessen; Department of Neurology (D.A., C.K., R.P.), University Hospital Essen, University Duisburg-Essen; Department of Neurology (L.R., M.K., M.P., S.G.M., T.R.), Medical Faculty, Heinrich Heine University Düsseldorf; Department of Neurology (P.A.), Medical Faculty, Heinrich Department of Neurology, Maria-Hilf-Clinic, Mönchengladbach; and Institute of Clinical Neuroimmunology (J.H.), LMU Hospital, Ludwig-Maximilians University Munich, Germany
| | - Tobias Ruck
- From the Department of Neurology (S.P., S.W., H.B.H.), University Hospital Giessen, Justus-Liebig-University Giessen; Department of Neurology (D.A., C.K., R.P.), University Hospital Essen, University Duisburg-Essen; Department of Neurology (L.R., M.K., M.P., S.G.M., T.R.), Medical Faculty, Heinrich Heine University Düsseldorf; Department of Neurology (P.A.), Medical Faculty, Heinrich Department of Neurology, Maria-Hilf-Clinic, Mönchengladbach; and Institute of Clinical Neuroimmunology (J.H.), LMU Hospital, Ludwig-Maximilians University Munich, Germany
| |
Collapse
|
20
|
Ciccarelli O, Barkhof F, Calabrese M, De Stefano N, Eshaghi A, Filippi M, Gasperini C, Granziera C, Kappos L, Rocca MA, Rovira À, Sastre-Garriga J, Sormani MP, Tur C, Toosy AT. Using the Progression Independent of Relapse Activity Framework to Unveil the Pathobiological Foundations of Multiple Sclerosis. Neurology 2024; 103:e209444. [PMID: 38889384 PMCID: PMC11226318 DOI: 10.1212/wnl.0000000000209444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 03/04/2024] [Indexed: 06/20/2024] Open
Abstract
Progression independent of relapse activity (PIRA), a recent concept to formalize disability accrual in multiple sclerosis (MS) independent of relapses, has gained popularity as a potential clinical trial outcome. We discuss its shortcomings and appraise the challenges of implementing it in clinical settings, experimental trials, and research. The current definition of PIRA assumes that acute inflammation, which can manifest as a relapse, and neurodegeneration, manifesting as progressive disability accrual, can be disentangled by introducing specific time windows between the onset of relapses and the observed increase in disability. The term PIRMA (progression independent of relapse and MRI activity) was recently introduced to indicate disability accrual in the absence of both clinical relapses and new brain and spinal cord MRI lesions. Assessing PIRMA in clinical practice is highly challenging because it necessitates frequent clinical assessments and brain and spinal cord MRI scans. PIRA is commonly assessed using Expanded Disability Status Scale, a scale heavily weighted toward motor disability, whereas a more granular assessment of disability deterioration, including cognitive decline, using composite measures or other tools, such as digital tools, would possess greater utility. Similarly, using PIRA as an outcome measure in randomized clinical trials is also challenging and requires methodological considerations. The underpinning pathobiology of disability accumulation, that is not associated with relapses, may encompass chronic active lesions (slowly expanding lesions and paramagnetic rim lesions), cortical lesions, brain and spinal cord atrophy, particularly in the gray matter, diffuse and focal microglial activation, persistent leptomeningeal enhancement, and white matter tract damage. We propose to use PIRA to understand the main determinant of disability accrual in observational, cohort studies, where regular MRI scans are not included, and introduce the term of "advanced-PIRMA" to investigate the contributions to disability accrual of the abovementioned processes, using conventional and advanced imaging. This is supported by the knowledge that MRI reflects the MS pathogenic mechanisms better than purely clinical descriptors. Any residual disability accrual, which remains unexplained after considering all these mechanisms with imaging, will highlight future research priorities to help complete our understanding of MS pathogenesis.
Collapse
Affiliation(s)
- Olga Ciccarelli
- From the Queen Square MS Centre (O.C., F.B., A.E., A.T.T.), Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London; National Institute for Health and Care Research (NIHR) (O.C.), University College London Hospitals (UCLH) Biomedical Research Centre; Centre for Medical Image Computing (F.B.), University College London, United Kingdom; Department of Radiology and Nuclear Medicine (F.B.), Amsterdam UMC, Vrije Universiteit Amsterdam, the Netherlands; Department of Neurosciences, Biomedicine and Movement Sciences (M.C.), University of Verona; Department of Medicine, Surgery and Neuroscience (N.D.S.), University of Siena; Neuroimaging Research Unit (M.F., M.A.R.), Division of Neuroscience, and Neurology Unit (M.F., M.A.R.), Neurorehabilitation Unit, Neurophysiology Service, IRCCS San Raffaele Scientific Institute; Vita-Salute San Raffaele University (M.F., M.A.R.), Milan; Department of Neuroscience (C. Gasperini), San Camillo Hospital, Rome, Italy; Translational Imaging in Neurology (ThINK) Basel (C. Granziera, L.K.), Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel; Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB) (C. Granziera, L.K.); University Hospital Basel and University of Basel (C. Granziera, L.K.), Switzerland; Section of Neuroradiology (À.R.), Department of Radiology, and Multiple Sclerosis Centre of Catalonia (J.S.-G., C.T.), Department of Neurology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Spain; Department of Health Sciences (M.P.S.), University of Genova; and IRCCS Ospedale Policlinico San Martino (M.P.S.), Genova, Italy
| | - Frederik Barkhof
- From the Queen Square MS Centre (O.C., F.B., A.E., A.T.T.), Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London; National Institute for Health and Care Research (NIHR) (O.C.), University College London Hospitals (UCLH) Biomedical Research Centre; Centre for Medical Image Computing (F.B.), University College London, United Kingdom; Department of Radiology and Nuclear Medicine (F.B.), Amsterdam UMC, Vrije Universiteit Amsterdam, the Netherlands; Department of Neurosciences, Biomedicine and Movement Sciences (M.C.), University of Verona; Department of Medicine, Surgery and Neuroscience (N.D.S.), University of Siena; Neuroimaging Research Unit (M.F., M.A.R.), Division of Neuroscience, and Neurology Unit (M.F., M.A.R.), Neurorehabilitation Unit, Neurophysiology Service, IRCCS San Raffaele Scientific Institute; Vita-Salute San Raffaele University (M.F., M.A.R.), Milan; Department of Neuroscience (C. Gasperini), San Camillo Hospital, Rome, Italy; Translational Imaging in Neurology (ThINK) Basel (C. Granziera, L.K.), Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel; Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB) (C. Granziera, L.K.); University Hospital Basel and University of Basel (C. Granziera, L.K.), Switzerland; Section of Neuroradiology (À.R.), Department of Radiology, and Multiple Sclerosis Centre of Catalonia (J.S.-G., C.T.), Department of Neurology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Spain; Department of Health Sciences (M.P.S.), University of Genova; and IRCCS Ospedale Policlinico San Martino (M.P.S.), Genova, Italy
| | - Massimiliano Calabrese
- From the Queen Square MS Centre (O.C., F.B., A.E., A.T.T.), Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London; National Institute for Health and Care Research (NIHR) (O.C.), University College London Hospitals (UCLH) Biomedical Research Centre; Centre for Medical Image Computing (F.B.), University College London, United Kingdom; Department of Radiology and Nuclear Medicine (F.B.), Amsterdam UMC, Vrije Universiteit Amsterdam, the Netherlands; Department of Neurosciences, Biomedicine and Movement Sciences (M.C.), University of Verona; Department of Medicine, Surgery and Neuroscience (N.D.S.), University of Siena; Neuroimaging Research Unit (M.F., M.A.R.), Division of Neuroscience, and Neurology Unit (M.F., M.A.R.), Neurorehabilitation Unit, Neurophysiology Service, IRCCS San Raffaele Scientific Institute; Vita-Salute San Raffaele University (M.F., M.A.R.), Milan; Department of Neuroscience (C. Gasperini), San Camillo Hospital, Rome, Italy; Translational Imaging in Neurology (ThINK) Basel (C. Granziera, L.K.), Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel; Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB) (C. Granziera, L.K.); University Hospital Basel and University of Basel (C. Granziera, L.K.), Switzerland; Section of Neuroradiology (À.R.), Department of Radiology, and Multiple Sclerosis Centre of Catalonia (J.S.-G., C.T.), Department of Neurology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Spain; Department of Health Sciences (M.P.S.), University of Genova; and IRCCS Ospedale Policlinico San Martino (M.P.S.), Genova, Italy
| | - Nicola De Stefano
- From the Queen Square MS Centre (O.C., F.B., A.E., A.T.T.), Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London; National Institute for Health and Care Research (NIHR) (O.C.), University College London Hospitals (UCLH) Biomedical Research Centre; Centre for Medical Image Computing (F.B.), University College London, United Kingdom; Department of Radiology and Nuclear Medicine (F.B.), Amsterdam UMC, Vrije Universiteit Amsterdam, the Netherlands; Department of Neurosciences, Biomedicine and Movement Sciences (M.C.), University of Verona; Department of Medicine, Surgery and Neuroscience (N.D.S.), University of Siena; Neuroimaging Research Unit (M.F., M.A.R.), Division of Neuroscience, and Neurology Unit (M.F., M.A.R.), Neurorehabilitation Unit, Neurophysiology Service, IRCCS San Raffaele Scientific Institute; Vita-Salute San Raffaele University (M.F., M.A.R.), Milan; Department of Neuroscience (C. Gasperini), San Camillo Hospital, Rome, Italy; Translational Imaging in Neurology (ThINK) Basel (C. Granziera, L.K.), Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel; Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB) (C. Granziera, L.K.); University Hospital Basel and University of Basel (C. Granziera, L.K.), Switzerland; Section of Neuroradiology (À.R.), Department of Radiology, and Multiple Sclerosis Centre of Catalonia (J.S.-G., C.T.), Department of Neurology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Spain; Department of Health Sciences (M.P.S.), University of Genova; and IRCCS Ospedale Policlinico San Martino (M.P.S.), Genova, Italy
| | - Arman Eshaghi
- From the Queen Square MS Centre (O.C., F.B., A.E., A.T.T.), Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London; National Institute for Health and Care Research (NIHR) (O.C.), University College London Hospitals (UCLH) Biomedical Research Centre; Centre for Medical Image Computing (F.B.), University College London, United Kingdom; Department of Radiology and Nuclear Medicine (F.B.), Amsterdam UMC, Vrije Universiteit Amsterdam, the Netherlands; Department of Neurosciences, Biomedicine and Movement Sciences (M.C.), University of Verona; Department of Medicine, Surgery and Neuroscience (N.D.S.), University of Siena; Neuroimaging Research Unit (M.F., M.A.R.), Division of Neuroscience, and Neurology Unit (M.F., M.A.R.), Neurorehabilitation Unit, Neurophysiology Service, IRCCS San Raffaele Scientific Institute; Vita-Salute San Raffaele University (M.F., M.A.R.), Milan; Department of Neuroscience (C. Gasperini), San Camillo Hospital, Rome, Italy; Translational Imaging in Neurology (ThINK) Basel (C. Granziera, L.K.), Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel; Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB) (C. Granziera, L.K.); University Hospital Basel and University of Basel (C. Granziera, L.K.), Switzerland; Section of Neuroradiology (À.R.), Department of Radiology, and Multiple Sclerosis Centre of Catalonia (J.S.-G., C.T.), Department of Neurology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Spain; Department of Health Sciences (M.P.S.), University of Genova; and IRCCS Ospedale Policlinico San Martino (M.P.S.), Genova, Italy
| | - Massimo Filippi
- From the Queen Square MS Centre (O.C., F.B., A.E., A.T.T.), Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London; National Institute for Health and Care Research (NIHR) (O.C.), University College London Hospitals (UCLH) Biomedical Research Centre; Centre for Medical Image Computing (F.B.), University College London, United Kingdom; Department of Radiology and Nuclear Medicine (F.B.), Amsterdam UMC, Vrije Universiteit Amsterdam, the Netherlands; Department of Neurosciences, Biomedicine and Movement Sciences (M.C.), University of Verona; Department of Medicine, Surgery and Neuroscience (N.D.S.), University of Siena; Neuroimaging Research Unit (M.F., M.A.R.), Division of Neuroscience, and Neurology Unit (M.F., M.A.R.), Neurorehabilitation Unit, Neurophysiology Service, IRCCS San Raffaele Scientific Institute; Vita-Salute San Raffaele University (M.F., M.A.R.), Milan; Department of Neuroscience (C. Gasperini), San Camillo Hospital, Rome, Italy; Translational Imaging in Neurology (ThINK) Basel (C. Granziera, L.K.), Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel; Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB) (C. Granziera, L.K.); University Hospital Basel and University of Basel (C. Granziera, L.K.), Switzerland; Section of Neuroradiology (À.R.), Department of Radiology, and Multiple Sclerosis Centre of Catalonia (J.S.-G., C.T.), Department of Neurology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Spain; Department of Health Sciences (M.P.S.), University of Genova; and IRCCS Ospedale Policlinico San Martino (M.P.S.), Genova, Italy
| | - Claudio Gasperini
- From the Queen Square MS Centre (O.C., F.B., A.E., A.T.T.), Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London; National Institute for Health and Care Research (NIHR) (O.C.), University College London Hospitals (UCLH) Biomedical Research Centre; Centre for Medical Image Computing (F.B.), University College London, United Kingdom; Department of Radiology and Nuclear Medicine (F.B.), Amsterdam UMC, Vrije Universiteit Amsterdam, the Netherlands; Department of Neurosciences, Biomedicine and Movement Sciences (M.C.), University of Verona; Department of Medicine, Surgery and Neuroscience (N.D.S.), University of Siena; Neuroimaging Research Unit (M.F., M.A.R.), Division of Neuroscience, and Neurology Unit (M.F., M.A.R.), Neurorehabilitation Unit, Neurophysiology Service, IRCCS San Raffaele Scientific Institute; Vita-Salute San Raffaele University (M.F., M.A.R.), Milan; Department of Neuroscience (C. Gasperini), San Camillo Hospital, Rome, Italy; Translational Imaging in Neurology (ThINK) Basel (C. Granziera, L.K.), Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel; Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB) (C. Granziera, L.K.); University Hospital Basel and University of Basel (C. Granziera, L.K.), Switzerland; Section of Neuroradiology (À.R.), Department of Radiology, and Multiple Sclerosis Centre of Catalonia (J.S.-G., C.T.), Department of Neurology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Spain; Department of Health Sciences (M.P.S.), University of Genova; and IRCCS Ospedale Policlinico San Martino (M.P.S.), Genova, Italy
| | - Cristina Granziera
- From the Queen Square MS Centre (O.C., F.B., A.E., A.T.T.), Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London; National Institute for Health and Care Research (NIHR) (O.C.), University College London Hospitals (UCLH) Biomedical Research Centre; Centre for Medical Image Computing (F.B.), University College London, United Kingdom; Department of Radiology and Nuclear Medicine (F.B.), Amsterdam UMC, Vrije Universiteit Amsterdam, the Netherlands; Department of Neurosciences, Biomedicine and Movement Sciences (M.C.), University of Verona; Department of Medicine, Surgery and Neuroscience (N.D.S.), University of Siena; Neuroimaging Research Unit (M.F., M.A.R.), Division of Neuroscience, and Neurology Unit (M.F., M.A.R.), Neurorehabilitation Unit, Neurophysiology Service, IRCCS San Raffaele Scientific Institute; Vita-Salute San Raffaele University (M.F., M.A.R.), Milan; Department of Neuroscience (C. Gasperini), San Camillo Hospital, Rome, Italy; Translational Imaging in Neurology (ThINK) Basel (C. Granziera, L.K.), Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel; Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB) (C. Granziera, L.K.); University Hospital Basel and University of Basel (C. Granziera, L.K.), Switzerland; Section of Neuroradiology (À.R.), Department of Radiology, and Multiple Sclerosis Centre of Catalonia (J.S.-G., C.T.), Department of Neurology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Spain; Department of Health Sciences (M.P.S.), University of Genova; and IRCCS Ospedale Policlinico San Martino (M.P.S.), Genova, Italy
| | - Ludwig Kappos
- From the Queen Square MS Centre (O.C., F.B., A.E., A.T.T.), Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London; National Institute for Health and Care Research (NIHR) (O.C.), University College London Hospitals (UCLH) Biomedical Research Centre; Centre for Medical Image Computing (F.B.), University College London, United Kingdom; Department of Radiology and Nuclear Medicine (F.B.), Amsterdam UMC, Vrije Universiteit Amsterdam, the Netherlands; Department of Neurosciences, Biomedicine and Movement Sciences (M.C.), University of Verona; Department of Medicine, Surgery and Neuroscience (N.D.S.), University of Siena; Neuroimaging Research Unit (M.F., M.A.R.), Division of Neuroscience, and Neurology Unit (M.F., M.A.R.), Neurorehabilitation Unit, Neurophysiology Service, IRCCS San Raffaele Scientific Institute; Vita-Salute San Raffaele University (M.F., M.A.R.), Milan; Department of Neuroscience (C. Gasperini), San Camillo Hospital, Rome, Italy; Translational Imaging in Neurology (ThINK) Basel (C. Granziera, L.K.), Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel; Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB) (C. Granziera, L.K.); University Hospital Basel and University of Basel (C. Granziera, L.K.), Switzerland; Section of Neuroradiology (À.R.), Department of Radiology, and Multiple Sclerosis Centre of Catalonia (J.S.-G., C.T.), Department of Neurology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Spain; Department of Health Sciences (M.P.S.), University of Genova; and IRCCS Ospedale Policlinico San Martino (M.P.S.), Genova, Italy
| | - Maria A Rocca
- From the Queen Square MS Centre (O.C., F.B., A.E., A.T.T.), Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London; National Institute for Health and Care Research (NIHR) (O.C.), University College London Hospitals (UCLH) Biomedical Research Centre; Centre for Medical Image Computing (F.B.), University College London, United Kingdom; Department of Radiology and Nuclear Medicine (F.B.), Amsterdam UMC, Vrije Universiteit Amsterdam, the Netherlands; Department of Neurosciences, Biomedicine and Movement Sciences (M.C.), University of Verona; Department of Medicine, Surgery and Neuroscience (N.D.S.), University of Siena; Neuroimaging Research Unit (M.F., M.A.R.), Division of Neuroscience, and Neurology Unit (M.F., M.A.R.), Neurorehabilitation Unit, Neurophysiology Service, IRCCS San Raffaele Scientific Institute; Vita-Salute San Raffaele University (M.F., M.A.R.), Milan; Department of Neuroscience (C. Gasperini), San Camillo Hospital, Rome, Italy; Translational Imaging in Neurology (ThINK) Basel (C. Granziera, L.K.), Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel; Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB) (C. Granziera, L.K.); University Hospital Basel and University of Basel (C. Granziera, L.K.), Switzerland; Section of Neuroradiology (À.R.), Department of Radiology, and Multiple Sclerosis Centre of Catalonia (J.S.-G., C.T.), Department of Neurology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Spain; Department of Health Sciences (M.P.S.), University of Genova; and IRCCS Ospedale Policlinico San Martino (M.P.S.), Genova, Italy
| | - Àlex Rovira
- From the Queen Square MS Centre (O.C., F.B., A.E., A.T.T.), Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London; National Institute for Health and Care Research (NIHR) (O.C.), University College London Hospitals (UCLH) Biomedical Research Centre; Centre for Medical Image Computing (F.B.), University College London, United Kingdom; Department of Radiology and Nuclear Medicine (F.B.), Amsterdam UMC, Vrije Universiteit Amsterdam, the Netherlands; Department of Neurosciences, Biomedicine and Movement Sciences (M.C.), University of Verona; Department of Medicine, Surgery and Neuroscience (N.D.S.), University of Siena; Neuroimaging Research Unit (M.F., M.A.R.), Division of Neuroscience, and Neurology Unit (M.F., M.A.R.), Neurorehabilitation Unit, Neurophysiology Service, IRCCS San Raffaele Scientific Institute; Vita-Salute San Raffaele University (M.F., M.A.R.), Milan; Department of Neuroscience (C. Gasperini), San Camillo Hospital, Rome, Italy; Translational Imaging in Neurology (ThINK) Basel (C. Granziera, L.K.), Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel; Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB) (C. Granziera, L.K.); University Hospital Basel and University of Basel (C. Granziera, L.K.), Switzerland; Section of Neuroradiology (À.R.), Department of Radiology, and Multiple Sclerosis Centre of Catalonia (J.S.-G., C.T.), Department of Neurology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Spain; Department of Health Sciences (M.P.S.), University of Genova; and IRCCS Ospedale Policlinico San Martino (M.P.S.), Genova, Italy
| | - Jaume Sastre-Garriga
- From the Queen Square MS Centre (O.C., F.B., A.E., A.T.T.), Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London; National Institute for Health and Care Research (NIHR) (O.C.), University College London Hospitals (UCLH) Biomedical Research Centre; Centre for Medical Image Computing (F.B.), University College London, United Kingdom; Department of Radiology and Nuclear Medicine (F.B.), Amsterdam UMC, Vrije Universiteit Amsterdam, the Netherlands; Department of Neurosciences, Biomedicine and Movement Sciences (M.C.), University of Verona; Department of Medicine, Surgery and Neuroscience (N.D.S.), University of Siena; Neuroimaging Research Unit (M.F., M.A.R.), Division of Neuroscience, and Neurology Unit (M.F., M.A.R.), Neurorehabilitation Unit, Neurophysiology Service, IRCCS San Raffaele Scientific Institute; Vita-Salute San Raffaele University (M.F., M.A.R.), Milan; Department of Neuroscience (C. Gasperini), San Camillo Hospital, Rome, Italy; Translational Imaging in Neurology (ThINK) Basel (C. Granziera, L.K.), Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel; Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB) (C. Granziera, L.K.); University Hospital Basel and University of Basel (C. Granziera, L.K.), Switzerland; Section of Neuroradiology (À.R.), Department of Radiology, and Multiple Sclerosis Centre of Catalonia (J.S.-G., C.T.), Department of Neurology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Spain; Department of Health Sciences (M.P.S.), University of Genova; and IRCCS Ospedale Policlinico San Martino (M.P.S.), Genova, Italy
| | - Maria Pia Sormani
- From the Queen Square MS Centre (O.C., F.B., A.E., A.T.T.), Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London; National Institute for Health and Care Research (NIHR) (O.C.), University College London Hospitals (UCLH) Biomedical Research Centre; Centre for Medical Image Computing (F.B.), University College London, United Kingdom; Department of Radiology and Nuclear Medicine (F.B.), Amsterdam UMC, Vrije Universiteit Amsterdam, the Netherlands; Department of Neurosciences, Biomedicine and Movement Sciences (M.C.), University of Verona; Department of Medicine, Surgery and Neuroscience (N.D.S.), University of Siena; Neuroimaging Research Unit (M.F., M.A.R.), Division of Neuroscience, and Neurology Unit (M.F., M.A.R.), Neurorehabilitation Unit, Neurophysiology Service, IRCCS San Raffaele Scientific Institute; Vita-Salute San Raffaele University (M.F., M.A.R.), Milan; Department of Neuroscience (C. Gasperini), San Camillo Hospital, Rome, Italy; Translational Imaging in Neurology (ThINK) Basel (C. Granziera, L.K.), Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel; Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB) (C. Granziera, L.K.); University Hospital Basel and University of Basel (C. Granziera, L.K.), Switzerland; Section of Neuroradiology (À.R.), Department of Radiology, and Multiple Sclerosis Centre of Catalonia (J.S.-G., C.T.), Department of Neurology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Spain; Department of Health Sciences (M.P.S.), University of Genova; and IRCCS Ospedale Policlinico San Martino (M.P.S.), Genova, Italy
| | - Carmen Tur
- From the Queen Square MS Centre (O.C., F.B., A.E., A.T.T.), Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London; National Institute for Health and Care Research (NIHR) (O.C.), University College London Hospitals (UCLH) Biomedical Research Centre; Centre for Medical Image Computing (F.B.), University College London, United Kingdom; Department of Radiology and Nuclear Medicine (F.B.), Amsterdam UMC, Vrije Universiteit Amsterdam, the Netherlands; Department of Neurosciences, Biomedicine and Movement Sciences (M.C.), University of Verona; Department of Medicine, Surgery and Neuroscience (N.D.S.), University of Siena; Neuroimaging Research Unit (M.F., M.A.R.), Division of Neuroscience, and Neurology Unit (M.F., M.A.R.), Neurorehabilitation Unit, Neurophysiology Service, IRCCS San Raffaele Scientific Institute; Vita-Salute San Raffaele University (M.F., M.A.R.), Milan; Department of Neuroscience (C. Gasperini), San Camillo Hospital, Rome, Italy; Translational Imaging in Neurology (ThINK) Basel (C. Granziera, L.K.), Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel; Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB) (C. Granziera, L.K.); University Hospital Basel and University of Basel (C. Granziera, L.K.), Switzerland; Section of Neuroradiology (À.R.), Department of Radiology, and Multiple Sclerosis Centre of Catalonia (J.S.-G., C.T.), Department of Neurology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Spain; Department of Health Sciences (M.P.S.), University of Genova; and IRCCS Ospedale Policlinico San Martino (M.P.S.), Genova, Italy
| | - Ahmed T Toosy
- From the Queen Square MS Centre (O.C., F.B., A.E., A.T.T.), Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London; National Institute for Health and Care Research (NIHR) (O.C.), University College London Hospitals (UCLH) Biomedical Research Centre; Centre for Medical Image Computing (F.B.), University College London, United Kingdom; Department of Radiology and Nuclear Medicine (F.B.), Amsterdam UMC, Vrije Universiteit Amsterdam, the Netherlands; Department of Neurosciences, Biomedicine and Movement Sciences (M.C.), University of Verona; Department of Medicine, Surgery and Neuroscience (N.D.S.), University of Siena; Neuroimaging Research Unit (M.F., M.A.R.), Division of Neuroscience, and Neurology Unit (M.F., M.A.R.), Neurorehabilitation Unit, Neurophysiology Service, IRCCS San Raffaele Scientific Institute; Vita-Salute San Raffaele University (M.F., M.A.R.), Milan; Department of Neuroscience (C. Gasperini), San Camillo Hospital, Rome, Italy; Translational Imaging in Neurology (ThINK) Basel (C. Granziera, L.K.), Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel; Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB) (C. Granziera, L.K.); University Hospital Basel and University of Basel (C. Granziera, L.K.), Switzerland; Section of Neuroradiology (À.R.), Department of Radiology, and Multiple Sclerosis Centre of Catalonia (J.S.-G., C.T.), Department of Neurology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Spain; Department of Health Sciences (M.P.S.), University of Genova; and IRCCS Ospedale Policlinico San Martino (M.P.S.), Genova, Italy
| |
Collapse
|
21
|
Calabrese M, Preziosa P, Scalfari A, Colato E, Marastoni D, Absinta M, Battaglini M, De Stefano N, Di Filippo M, Hametner S, Howell OW, Inglese M, Lassmann H, Martin R, Nicholas R, Reynolds R, Rocca MA, Tamanti A, Vercellino M, Villar LM, Filippi M, Magliozzi R. Determinants and Biomarkers of Progression Independent of Relapses in Multiple Sclerosis. Ann Neurol 2024; 96:1-20. [PMID: 38568026 DOI: 10.1002/ana.26913] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/04/2024] [Accepted: 02/15/2024] [Indexed: 06/20/2024]
Abstract
Clinical, pathological, and imaging evidence in multiple sclerosis (MS) suggests that a smoldering inflammatory activity is present from the earliest stages of the disease and underlies the progression of disability, which proceeds relentlessly and independently of clinical and radiological relapses (PIRA). The complex system of pathological events driving "chronic" worsening is likely linked with the early accumulation of compartmentalized inflammation within the central nervous system as well as insufficient repair phenomena and mitochondrial failure. These mechanisms are partially lesion-independent and differ from those causing clinical relapses and the formation of new focal demyelinating lesions; they lead to neuroaxonal dysfunction and death, myelin loss, glia alterations, and finally, a neuronal network dysfunction outweighing central nervous system (CNS) compensatory mechanisms. This review aims to provide an overview of the state of the art of neuropathological, immunological, and imaging knowledge about the mechanisms underlying the smoldering disease activity, focusing on possible early biomarkers and their translation into clinical practice. ANN NEUROL 2024;96:1-20.
Collapse
Affiliation(s)
- Massimiliano Calabrese
- Department of Neurosciences and Biomedicine and Movement, The Multiple Sclerosis Center of University Hospital of Verona, Verona, Italy
| | - Paolo Preziosa
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Antonio Scalfari
- Centre of Neuroscience, Department of Medicine, Imperial College, London, UK
| | - Elisa Colato
- Department of Neurosciences and Biomedicine and Movement, The Multiple Sclerosis Center of University Hospital of Verona, Verona, Italy
| | - Damiano Marastoni
- Department of Neurosciences and Biomedicine and Movement, The Multiple Sclerosis Center of University Hospital of Verona, Verona, Italy
| | - Martina Absinta
- Translational Neuropathology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Marco Battaglini
- Siena Imaging S.r.l., Siena, Italy
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Nicola De Stefano
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Massimiliano Di Filippo
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Simon Hametner
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Owain W Howell
- Institute of Life Sciences, Swansea University Medical School, Swansea, UK
| | - Matilde Inglese
- Dipartimento di neuroscienze, riabilitazione, oftalmologia, genetica e scienze materno-infantili - DINOGMI, University of Genova, Genoa, Italy
| | - Hans Lassmann
- Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Roland Martin
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
- Therapeutic Design Unit, Center for Molecular Medicine, Department of Clinical Neurosciences, Karolinska Institutet, Stockholm, Sweden
- Cellerys AG, Schlieren, Switzerland
| | - Richard Nicholas
- Department of Brain Sciences, Faculty of Medicine, Burlington Danes, Imperial College London, London, UK
| | - Richard Reynolds
- Division of Neuroscience, Department of Brain Sciences, Imperial College London, London, UK
| | - Maria A Rocca
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Agnese Tamanti
- Department of Neurosciences and Biomedicine and Movement, The Multiple Sclerosis Center of University Hospital of Verona, Verona, Italy
| | - Marco Vercellino
- Multiple Sclerosis Center & Neurologia I U, Department of Neuroscience, University Hospital AOU Città della Salute e della Scienza di Torino, Turin, Italy
| | - Luisa Maria Villar
- Department of Immunology, Ramon y Cajal University Hospital. IRYCIS. REI, Madrid, Spain
| | - Massimo Filippi
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
- Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Roberta Magliozzi
- Department of Neurosciences and Biomedicine and Movement, The Multiple Sclerosis Center of University Hospital of Verona, Verona, Italy
| |
Collapse
|
22
|
Gillani RL, Kironde EN, Whiteman S, Zwang TJ, Bacskai BJ. Instability of excitatory synapses in experimental autoimmune encephalomyelitis and the outcome for excitatory circuit inputs to individual cortical neurons. Brain Behav Immun 2024; 119:251-260. [PMID: 38552924 PMCID: PMC11298162 DOI: 10.1016/j.bbi.2024.03.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/04/2024] [Accepted: 03/26/2024] [Indexed: 04/09/2024] Open
Abstract
Synapses are lost on a massive scale in the brain and spinal cord of people living with multiple sclerosis (PwMS), and this synaptic loss extends far beyond demyelinating lesions. Post-mortem studies show the long-term consequences of multiple sclerosis (MS) on synapses but do not inform on the early impacts of neuroinflammation on synapses that subsequently lead to synapse loss. How excitatory circuit inputs are altered across the dendritic tree of individual neurons under neuroinflammatory stress is not well understood. Here, we directly assessed the structural dynamics of labeled excitatory synapses in experimental autoimmune encephalomyelitis (EAE) as a model of immune-mediated cortical neuronal damage. We used in vivo two-photon imaging and a synthetic tissue-hydrogel super-resolution imaging technique to reveal the dynamics of excitatory synapses, map their location across the dendritic tree of individual neurons, and examine neurons at super-resolution for synaptic loss. We found that excitatory synapses are destabilized but not lost from dendritic spines in EAE, starting with the earliest imaging session before symptom onset. This led to changes in excitatory circuit inputs to individual cells. In EAE, stable synapses are replaced by synapses that appear or disappear across the imaging sessions or repeatedly change at the same location. These unstable excitatory inputs occur closer to one another in EAE than in healthy controls and are distributed across the dendritic tree. When imaged at super-resolution, we found that a small proportion of dendritic protrusions lost their presynapse and/or postsynapse. Our finding of diffuse destabilizing effects of neuroinflammation on excitatory synapses across cortical neurons may have significant functional consequences since normal dendritic spine dynamics and clustering are essential for learning and memory.
Collapse
Affiliation(s)
- Rebecca L Gillani
- Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Neuroimmunology and Neuro-Infectious Diseases Division, Massachusetts General Hospital, Boston, MA, USA.
| | - Eseza N Kironde
- Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Boston, MA, USA
| | - Sara Whiteman
- Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Boston, MA, USA
| | - Theodore J Zwang
- Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Brian J Bacskai
- Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| |
Collapse
|
23
|
Rosenstein I, Nordin A, Sabir H, Malmeström C, Blennow K, Axelsson M, Novakova L. Association of serum glial fibrillary acidic protein with progression independent of relapse activity in multiple sclerosis. J Neurol 2024; 271:4412-4422. [PMID: 38668889 PMCID: PMC11233378 DOI: 10.1007/s00415-024-12389-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 07/10/2024]
Abstract
OBJECTIVE Insidious disability worsening is a common feature in relapsing-remitting multiple sclerosis (RRMS). Many patients experience progression independent of relapse activity (PIRA) despite being treated with high efficacy disease-modifying therapies. We prospectively investigated associations of body-fluid and imaging biomarkers with PIRA. METHODS Patients with early RRMS (n = 104) were prospectively included and followed up for 60 months. All patients were newly diagnosed and previously untreated. PIRA was defined using a composite score including the expanded disability status scale, 9-hole peg test, timed 25 foot walk test, and the symbol digit modalities test. Eleven body fluid and imaging biomarkers were determined at baseline and levels of serum neurofilament light (sNfL) and glial fibrillary acidic protein (sGFAP) were also measured annually thereafter. Association of baseline biomarkers with PIRA was investigated in multivariable logistic regression models adjusting for clinical and demographic confounding factors. Longitudinal serum biomarker dynamics were investigated in mixed effects models. RESULTS Only sGFAP was significantly higher in PIRA at baseline (median [IQR] 73.9 [60.9-110.1] vs. 60.3 [45.2-79.9], p = 0.01). A cut-off of sGFAP > 65 pg/mL resulted in a sensitivity of 68% and specificity of 61%, to detect patients at higher risk of PIRA. In a multivariable logistic regression, sGFAP > 65 pg/mL was associated with higher odds of developing PIRA (odds ratio 4.3, 95% CI 1.44-12.86, p = 0.009). Repeated measures of sGFAP levels showed that patients with PIRA during follow-up had higher levels of sGFAP along the whole follow-up compared to stable patients (p < 0.001). CONCLUSION Determination of sGFAP at baseline and follow-up may be useful in capturing disability accrual independent of relapse activity in early RRMS.
Collapse
Affiliation(s)
- Igal Rosenstein
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology at Sahlgrenska Academy, University of Gothenburg, Blå Stråket 7, 413 45, Gothenburg, Sweden.
- Department of Neurology, Region Västra Götaland, Sahlgrenska University Hospital, Mölndal, Sweden.
| | - Anna Nordin
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology at Sahlgrenska Academy, University of Gothenburg, Blå Stråket 7, 413 45, Gothenburg, Sweden
| | - Hemin Sabir
- Department of Neurology, Region Västra Götaland, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Clas Malmeström
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology at Sahlgrenska Academy, University of Gothenburg, Blå Stråket 7, 413 45, Gothenburg, Sweden
- Department of Neurology, Region Västra Götaland, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Kaj Blennow
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Mölndal, Sweden
- Paris Brain Institute, ICM, Pitié-Salpêtrière Hospital, Sorbonne University, Paris, France
- Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, and Department of Neurology, Institute On Aging and Brain Disorders, University of Science and Technology of China and First Affiliated Hospital of USTC, Hefei, People's Republic of China
| | - Markus Axelsson
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology at Sahlgrenska Academy, University of Gothenburg, Blå Stråket 7, 413 45, Gothenburg, Sweden
- Department of Neurology, Region Västra Götaland, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Lenka Novakova
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology at Sahlgrenska Academy, University of Gothenburg, Blå Stråket 7, 413 45, Gothenburg, Sweden
- Department of Neurology, Region Västra Götaland, Sahlgrenska University Hospital, Mölndal, Sweden
| |
Collapse
|
24
|
Woo MS, Engler JB, Friese MA. The neuropathobiology of multiple sclerosis. Nat Rev Neurosci 2024; 25:493-513. [PMID: 38789516 DOI: 10.1038/s41583-024-00823-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2024] [Indexed: 05/26/2024]
Abstract
Chronic low-grade inflammation and neuronal deregulation are two components of a smoldering disease activity that drives the progression of disability in people with multiple sclerosis (MS). Although several therapies exist to dampen the acute inflammation that drives MS relapses, therapeutic options to halt chronic disability progression are a major unmet clinical need. The development of such therapies is hindered by our limited understanding of the neuron-intrinsic determinants of resilience or vulnerability to inflammation. In this Review, we provide a neuron-centric overview of recent advances in deciphering neuronal response patterns that drive the pathology of MS. We describe the inflammatory CNS environment that initiates neurotoxicity by imposing ion imbalance, excitotoxicity and oxidative stress, and by direct neuro-immune interactions, which collectively lead to mitochondrial dysfunction and epigenetic dysregulation. The neuronal demise is further amplified by breakdown of neuronal transport, accumulation of cytosolic proteins and activation of cell death pathways. Continuous neuronal damage perpetuates CNS inflammation by activating surrounding glia cells and by directly exerting toxicity on neighbouring neurons. Further, we explore strategies to overcome neuronal deregulation in MS and compile a selection of neuronal actuators shown to impact neurodegeneration in preclinical studies. We conclude by discussing the therapeutic potential of targeting such neuronal actuators in MS, including some that have already been tested in interventional clinical trials.
Collapse
Affiliation(s)
- Marcel S Woo
- Institut für Neuroimmunologie und Multiple Sklerose, Zentrum für Molekulare Neurobiologie Hamburg, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Jan Broder Engler
- Institut für Neuroimmunologie und Multiple Sklerose, Zentrum für Molekulare Neurobiologie Hamburg, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Manuel A Friese
- Institut für Neuroimmunologie und Multiple Sklerose, Zentrum für Molekulare Neurobiologie Hamburg, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
25
|
Warszawer Y, Gurevich M, Kerpel A, Dreyer Alster S, Nissan Y, Shirbint E, Hoffmann C, Achiron A. Mapping brain volume change across time in primary-progressive multiple sclerosis. Neuroradiology 2024; 66:1189-1197. [PMID: 38609687 DOI: 10.1007/s00234-024-03354-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 04/05/2024] [Indexed: 04/14/2024]
Abstract
PURPOSE Detection and prediction of the rate of brain volume loss with age is a significant unmet need in patients with primary progressive multiple sclerosis (PPMS). In this study we construct detailed brain volume maps for PPMS patients. These maps compare age-related changes in both cortical and sub-cortical regions with those in healthy individuals. METHODS We conducted retrospective analyses of brain volume using T1-weighted Magnetic Resonance Imaging (MRI) scans of a large cohort of PPMS patients and healthy subjects. The volume of brain parenchyma (BP), cortex, white matter (WM), deep gray matter, thalamus, and cerebellum were measured using the robust SynthSeg segmentation tool. Age- and gender-related regression curves were constructed based on data from healthy subjects, with the 95% prediction interval adopted as the normality threshold for each brain region. RESULTS We analyzed 495 MRI scans from 169 PPMS patients, aged 20-79 years, alongside 563 exams from healthy subjects aged 20-86. Compared to healthy subjects, a higher proportion of PPMS patients showed lower than expected brain volumes in all regions except the cerebellum. The most affected areas were BP, WM, and thalamus. Lower brain volumes correlated with longer disease duration for BP and WM, and higher disability for BP, WM, cortex, and thalamus. CONCLUSIONS Constructing age- and gender-related brain volume maps enabled identifying PPMS patients at a higher risk of brain volume loss. Monitoring these high-risk patients may lead to better treatment decisions and improve patient outcomes.
Collapse
Affiliation(s)
- Yehuda Warszawer
- Multiple Sclerosis Center, Sheba Medical Center, Ramat-Gan, Israel.
- Arrow Program for Medical Research Education, Sheba Medical Center, Ramat-Gan, Israel.
- Adelson School of Medicine, Ariel University, Ariel, Israel.
| | - Michael Gurevich
- Multiple Sclerosis Center, Sheba Medical Center, Ramat-Gan, Israel
- Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Ariel Kerpel
- Department of Radiology, Sheba Medical Center, Ramat-Gan, Israel
- Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | | | - Yael Nissan
- Multiple Sclerosis Center, Sheba Medical Center, Ramat-Gan, Israel
| | - Emanuel Shirbint
- Multiple Sclerosis Center, Sheba Medical Center, Ramat-Gan, Israel
| | - Chen Hoffmann
- Department of Radiology, Sheba Medical Center, Ramat-Gan, Israel
- Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Anat Achiron
- Multiple Sclerosis Center, Sheba Medical Center, Ramat-Gan, Israel
- Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
26
|
Akaishi T, Fujimori J, Yokote H, Nakashima I. Continuous diffuse brain atrophy independent of relapse as a hallmark of multiple sclerosis beginning from relapsing-remitting stage. Clin Neurol Neurosurg 2024; 242:108342. [PMID: 38772279 DOI: 10.1016/j.clineuro.2024.108342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/23/2024]
Abstract
BACKGROUND Neurodegenerative changes are observed in relapsing-remitting multiple sclerosis (RRMS) and are prominent in secondary progressive MS (SPMS). However, whether neurodegenerative changes accelerate and are altered after the transition into SPMS or in the presence of relapses remains uncertain. METHODS In this study, 73 patients with MS (seven with relapsing RRMS, 56 with relapse-free RRMS, and 10 with relapse-free SPMS) were evaluated for brain segmental volume changes over a 2-year follow-up period. Volume change was calculated using a within-subject unbiased longitudinal image analysis model. RESULTS The rates of brain volume change in the 11 brain regions evaluated were relatively similar among different brain regions. Moreover, they were similar among the relapsing RRMS, relapse-free RRMS, and SPMS groups, even after adjusting for age. CONCLUSIONS The relatively constant brain segmental atrophy rate throughout the disease course, regardless of relapse episodes, suggests that RRMS and SPMS are continuous, uniform, and silent progressing brain atrophy diseases on a spectrum.
Collapse
Affiliation(s)
- Tetsuya Akaishi
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Juichi Fujimori
- Division of Neurology, Tohoku Medical and Pharmaceutical University, Sendai, Japan.
| | - Hiroaki Yokote
- Department of Neurology and Neurological Science, Tokyo Medical and Dental University, Tokyo, Japan
| | - Ichiro Nakashima
- Division of Neurology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| |
Collapse
|
27
|
Balloff C, Janßen LK, Hartmann CJ, Meuth SG, Schnitzler A, Penner IK, Albrecht P. Predictive value of synaptic plasticity for functional decline in patients with multiple sclerosis. Front Neurol 2024; 15:1410673. [PMID: 38974686 PMCID: PMC11224454 DOI: 10.3389/fneur.2024.1410673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 06/10/2024] [Indexed: 07/09/2024] Open
Abstract
Background Previous research suggested that quadripulse (QPS)-induced synaptic plasticity is associated with both cognitive and motor function in patients with multiple sclerosis (MS) and does not appear to be reduced compared to healthy controls (HCs). Objective This study aimed to explore the relationship between the degree of QPS-induced plasticity and clinically significant decline in motor and cognitive functions over time. We hypothesized that MS patients experiencing functional decline would exhibit lower levels of baseline plasticity compared to those without decline. Methods QPS-induced plasticity was evaluated in 80 MS patients (56 with relapsing-remitting MS and 24 with progressive MS), and 69 age-, sex-, and education-matched HCs. Cognitive and motor functions, as well as overall disability status were evaluated annually over a median follow-up period of 2 years. Clinically meaningful change thresholds were predefined for each outcome measure. Linear mixed-effects models, Cox proportional hazard models, logistic regression, and receiver-operating characteristic analysis were applied to analyse the relationship between baseline plasticity and clinical progression in the symbol digit modalities test, brief visuospatial memory test revised (BVMT-R), nine-hole peg test (NHPT), timed 25-foot walk test, and expanded disability status scale. Results Overall, the patient cohort showed no clinically relevant change in any functional outcome over time. Variability in performance was observed across time points in both patients and HCs. MS patients who experienced clinically relevant decline in manual dexterity and/or visuospatial learning and memory had significantly lower levels of synaptic plasticity at baseline compared to those without such decline (NHPT: β = -0.25, p = 0.02; BVMT-R: β = -0.50, p = 0.005). Receiver-operating characteristic analysis underscored the predictive utility of baseline synaptic plasticity in discerning between patients experiencing functional decline and those maintaining stability only for visuospatial learning and memory (area under the curve = 0.85). Conclusion Our study suggests that QPS-induced plasticity could be linked to clinically relevant functional decline in patients with MS. However, to solidify these findings, longer follow-up periods are warranted, especially in cohorts with higher prevalences of functional decline. Additionally, the variability in cognitive performance in both patients with MS and HCs underscores the importance of conducting further research on reliable change based on neuropsychological tests.
Collapse
Affiliation(s)
- Carolin Balloff
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
- Department of Neurology, Kliniken Maria Hilf GmbH, Mönchengladbach, Germany
| | - Lisa Kathleen Janßen
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Christian Johannes Hartmann
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Sven Günther Meuth
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Alfons Schnitzler
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Iris-Katharina Penner
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Philipp Albrecht
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
- Department of Neurology, Kliniken Maria Hilf GmbH, Mönchengladbach, Germany
| |
Collapse
|
28
|
Gosetti di Sturmeck T, Malimpensa L, Ferrazzano G, Belvisi D, Leodori G, Lembo F, Brandi R, Pascale E, Cattaneo A, Salvetti M, Conte A, D’Onofrio M, Arisi I. Exploring miRNAs' Based Modeling Approach for Predicting PIRA in Multiple Sclerosis: A Comprehensive Analysis. Int J Mol Sci 2024; 25:6342. [PMID: 38928049 PMCID: PMC11203572 DOI: 10.3390/ijms25126342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 05/31/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
The current hypothesis on the pathophysiology of multiple sclerosis (MS) suggests the involvement of both inflammatory and neurodegenerative mechanisms. Disease Modifying Therapies (DMTs) effectively decrease relapse rates, thus reducing relapse-associated disability in people with MS. In some patients, disability progression, however, is not solely linked to new lesions and clinical relapses but can manifest independently. Progression Independent of Relapse Activity (PIRA) significantly contributes to long-term disability, stressing the urge to unveil biomarkers to forecast disease progression. Twenty-five adult patients with relapsing-remitting multiple sclerosis (RRMS) were enrolled in a cohort study, according to the latest McDonald criteria, and tested before and after high-efficacy Disease Modifying Therapies (DMTs) (6-24 months). Through Agilent microarrays, we analyzed miRNA profiles from peripheral blood mononuclear cells. Multivariate logistic and linear models with interactions were generated. Robustness was assessed by randomization tests in R. A subset of miRNAs, correlated with PIRA, and the Expanded Disability Status Scale (EDSS), was selected. To refine the patient stratification connected to the disease trajectory, we computed a robust logistic classification model derived from baseline miRNA expression to predict PIRA status (AUC = 0.971). We built an optimal multilinear model by selecting four other miRNA predictors to describe EDSS changes compared to baseline. Multivariate modeling offers a promising avenue to uncover potential biomarkers essential for accurate prediction of disability progression in early MS stages. These models can provide valuable insights into developing personalized and effective treatment strategies.
Collapse
Affiliation(s)
- Tommaso Gosetti di Sturmeck
- European Brain Research Institute (EBRI) Rita Levi-Montalcini, 00161 Rome, Italy; (T.G.d.S.); (R.B.); (A.C.)
| | - Leonardo Malimpensa
- IRCCS Istituto Neurologico Mediterraneo Neuromed, 86077 Pozzilli, Italy; (L.M.); (D.B.); (G.L.); (M.S.); (A.C.)
| | - Gina Ferrazzano
- Department of Human Neurosciences, Sapienza University of Rome, 00185 Rome, Italy; (G.F.); (F.L.)
| | - Daniele Belvisi
- IRCCS Istituto Neurologico Mediterraneo Neuromed, 86077 Pozzilli, Italy; (L.M.); (D.B.); (G.L.); (M.S.); (A.C.)
- Department of Human Neurosciences, Sapienza University of Rome, 00185 Rome, Italy; (G.F.); (F.L.)
| | - Giorgio Leodori
- IRCCS Istituto Neurologico Mediterraneo Neuromed, 86077 Pozzilli, Italy; (L.M.); (D.B.); (G.L.); (M.S.); (A.C.)
- Department of Human Neurosciences, Sapienza University of Rome, 00185 Rome, Italy; (G.F.); (F.L.)
| | - Flaminia Lembo
- Department of Human Neurosciences, Sapienza University of Rome, 00185 Rome, Italy; (G.F.); (F.L.)
| | - Rossella Brandi
- European Brain Research Institute (EBRI) Rita Levi-Montalcini, 00161 Rome, Italy; (T.G.d.S.); (R.B.); (A.C.)
| | - Esterina Pascale
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy;
| | - Antonino Cattaneo
- European Brain Research Institute (EBRI) Rita Levi-Montalcini, 00161 Rome, Italy; (T.G.d.S.); (R.B.); (A.C.)
- Bio@SNS Laboratory of Biology, Scuola Normale Superiore (SNS), 56126 Pisa, Italy
| | - Marco Salvetti
- IRCCS Istituto Neurologico Mediterraneo Neuromed, 86077 Pozzilli, Italy; (L.M.); (D.B.); (G.L.); (M.S.); (A.C.)
- Centre for Experimental Neurological Therapies (CENTERS), Department of Neurosciences, Mental Health and Sensory Organs, Sapienza University of Rome, 00189 Rome, Italy
| | - Antonella Conte
- IRCCS Istituto Neurologico Mediterraneo Neuromed, 86077 Pozzilli, Italy; (L.M.); (D.B.); (G.L.); (M.S.); (A.C.)
- Department of Human Neurosciences, Sapienza University of Rome, 00185 Rome, Italy; (G.F.); (F.L.)
| | - Mara D’Onofrio
- European Brain Research Institute (EBRI) Rita Levi-Montalcini, 00161 Rome, Italy; (T.G.d.S.); (R.B.); (A.C.)
| | - Ivan Arisi
- European Brain Research Institute (EBRI) Rita Levi-Montalcini, 00161 Rome, Italy; (T.G.d.S.); (R.B.); (A.C.)
- Institute of Translational Pharmacology, National Research Council, 00133 Rome, Italy
| |
Collapse
|
29
|
Harris VK, Stark J, Williams A, Roche M, Malin M, Kumar A, Carlson AL, Kizilbash C, Wollowitz J, Andy C, Gerber LM, Sadiq SA. Efficacy of intrathecal mesenchymal stem cell-neural progenitor therapy in progressive MS: results from a phase II, randomized, placebo-controlled clinical trial. Stem Cell Res Ther 2024; 15:151. [PMID: 38783390 PMCID: PMC11119709 DOI: 10.1186/s13287-024-03765-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 05/18/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND Mesenchymal stem cell-neural progenitors (MSC-NPs) are a bone marrow mesenchymal stem cell (MSC)-derived ex vivo manipulated cell product with therapeutic potential in multiple sclerosis (MS). The objective of this study was to determine efficacy of intrathecal (IT) MSC-NP treatment in patients with progressive MS. METHODS The study is a phase II randomized, double-blind, placebo-controlled clinical trial with a compassionate crossover design conducted at a single site. Subjects were stratified according to baseline Expanded Disability Status Scale (EDSS) (3.0-6.5) and disease subtype (secondary or primary progressive MS) and randomized into either treatment or placebo group to receive six IT injections of autologous MSC-NPs or saline every two months. The primary outcome was EDSS Plus, defined by improvement in EDSS, timed 25-foot walk (T25FW) or nine-hole peg test. Secondary outcomes included the individual components of EDSS Plus, the six-minute walk test (6MWT), urodynamics testing, and brain atrophy measurement. RESULTS Subjects were randomized into MSC-NP (n = 27) or saline (n = 27) groups. There was no difference in EDSS Plus improvement between the MSC-NP (33%) and saline (37%) groups. Exploratory subgroup analysis demonstrated that in subjects who require assistance for ambulation (EDSS 6.0-6.5) there was a significantly higher percentage of improvement in T25FW and 6MWT in the MSC-NP group (3.7% ± 23.1% and - 9.2% ± 18.2%) compared to the saline group (-54.4% ± 70.5% and - 32.1% ± 30.0%), (p = 0.030 and p = 0.036, respectively). IT-MSC-NP treatment was also associated with improved bladder function and reduced rate of grey matter atrophy on brain MRI. Biomarker analysis demonstrated increased MMP9 and decreased CCL2 levels in the cerebrospinal fluid following treatment. CONCLUSION Results from exploratory outcomes suggest that IT-MSC-NP treatment may be associated with a therapeutic response in a subgroup of MS patients. TRIAL REGISTRATION ClinicalTrials.gov NCT03355365, registered November 14, 2017, https://clinicaltrials.gov/study/NCT03355365?term=NCT03355365&rank=1 .
Collapse
Affiliation(s)
- Violaine K Harris
- Tisch Multiple Sclerosis Research Center of New York, New York, NY, 10019, USA
| | - James Stark
- Tisch Multiple Sclerosis Research Center of New York, New York, NY, 10019, USA
| | - Armistead Williams
- Tisch Multiple Sclerosis Research Center of New York, New York, NY, 10019, USA
| | - Morgan Roche
- Tisch Multiple Sclerosis Research Center of New York, New York, NY, 10019, USA
| | - Michaela Malin
- Tisch Multiple Sclerosis Research Center of New York, New York, NY, 10019, USA
| | - Anjali Kumar
- Tisch Multiple Sclerosis Research Center of New York, New York, NY, 10019, USA
| | - Alyssa L Carlson
- Tisch Multiple Sclerosis Research Center of New York, New York, NY, 10019, USA
| | - Cara Kizilbash
- Tisch Multiple Sclerosis Research Center of New York, New York, NY, 10019, USA
| | - Jaina Wollowitz
- Tisch Multiple Sclerosis Research Center of New York, New York, NY, 10019, USA
| | - Caroline Andy
- Weill Cornell Medicine, Department of Population Health Sciences, New York, NY, USA
| | - Linda M Gerber
- Weill Cornell Medicine, Department of Population Health Sciences, New York, NY, USA
| | - Saud A Sadiq
- Tisch Multiple Sclerosis Research Center of New York, New York, NY, 10019, USA.
| |
Collapse
|
30
|
de Boer A, van den Bosch AMR, Mekkes NJ, Fransen NL, Dagkesamanskaia E, Hoekstra E, Hamann J, Smolders J, Huitinga I, Holtman IR. Disentangling the heterogeneity of multiple sclerosis through identification of independent neuropathological dimensions. Acta Neuropathol 2024; 147:90. [PMID: 38771530 PMCID: PMC11108935 DOI: 10.1007/s00401-024-02742-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/09/2024] [Accepted: 05/09/2024] [Indexed: 05/22/2024]
Abstract
Multiple sclerosis (MS) is a heterogeneous neurological disorder with regards to clinical presentation and pathophysiology. Here, we investigated the heterogeneity of MS by performing an exploratory factor analysis on quantitative and qualitative neuropathology data collected for 226 MS donors in the Netherlands Brain Bank autopsy cohort. Three promising dimensions were identified and subsequently validated with clinical, neuropathological, and genetic data. Dimension 1 ranged from a predominance of remyelinated and inactive lesions to extensive pathological changes, higher proportions of active and mixed lesions, and foamy microglia morphology. This pattern was positively correlated with more severe disease, the presence of B and T cells, and neuroaxonal damage. Scoring high on dimension 2 was associated with active lesions, reactive sites, and the presence of nodules. These donors had less severe disease, a specific pattern of cortical lesions, and MS risk variants in the human leukocyte antigen region, the latter indicating a connection between disease onset and this neuropathological dimension. Donors scoring high on dimension 3 showed increased lesional pathology with relatively more mixed and inactive lesions and ramified microglia morphology. This pattern was associated with longer disease duration, subpial cortical lesions, less involvement of the adaptive immune system, and less axonal damage. Taken together, the three dimensions may represent (1) demyelination and immune cell activity associated with pathological and clinical progression, (2) microglia (re)activity and possibly lesion initiation, and (3) loss of lesion activity and scar formation. Our findings highlight that a thorough understanding of the interplay between multiple pathological characteristics is crucial to understand the heterogeneity of MS pathology, as well as its association with genetic predictors and disease outcomes. The scores of donors on the dimensions can serve as an important starting point for further disentanglement of MS heterogeneity and translation into observations and interventions in living cohorts with MS.
Collapse
Affiliation(s)
- Alyse de Boer
- Section Molecular Neurobiology, Department of Biomedical Sciences, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Aletta M R van den Bosch
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - Nienke J Mekkes
- Section Molecular Neurobiology, Department of Biomedical Sciences, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Machine Learning Lab, Data Science Center in Health, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Nina L Fransen
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - Ekaterina Dagkesamanskaia
- Section Molecular Neurobiology, Department of Biomedical Sciences, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Machine Learning Lab, Data Science Center in Health, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Eric Hoekstra
- Section Molecular Neurobiology, Department of Biomedical Sciences, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jörg Hamann
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
- Department of Experimental Immunology, Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Joost Smolders
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
- MS Center ErasMS, Departments of Neurology and Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Inge Huitinga
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
- Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Amsterdam, The Netherlands
- The Netherlands Brain Bank, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - Inge R Holtman
- Section Molecular Neurobiology, Department of Biomedical Sciences, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
- Machine Learning Lab, Data Science Center in Health, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
- The Netherlands Brain Bank, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands.
| |
Collapse
|
31
|
Tur C, Battiston M, Yiannakas MC, Collorone S, Calvi A, Prados F, Kanber B, Grussu F, Ricciardi A, Pajak P, Martinelli D, Schneider T, Ciccarelli O, Samson RS, Wheeler-Kingshott CAG. What contributes to disability in progressive MS? A brain and cervical cord-matched quantitative MRI study. Mult Scler 2024; 30:516-534. [PMID: 38372019 DOI: 10.1177/13524585241229969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
BACKGROUND We assessed the ability of a brain-and-cord-matched quantitative magnetic resonance imaging (qMRI) protocol to differentiate patients with progressive multiple sclerosis (PMS) from controls, in terms of normal-appearing (NA) tissue abnormalities, and explain disability. METHODS A total of 27 patients and 16 controls were assessed on the Expanded Disability Status Scale (EDSS), 25-foot timed walk (TWT), 9-hole peg (9HPT) and symbol digit modalities (SDMT) tests. All underwent 3T brain and (C2-C3) cord structural imaging and qMRI (relaxometry, quantitative magnetisation transfer, multi-shell diffusion-weighted imaging), using a fast brain-and-cord-matched protocol with brain-and-cord-unified imaging readouts. Lesion and NA-tissue volumes and qMRI metrics reflecting demyelination and axonal loss were obtained. Random forest analyses identified the most relevant volumetric/qMRI measures to clinical outcomes. Confounder-adjusted linear regression estimated the actual MRI-clinical associations. RESULTS Several qMRI/volumetric differences between patients and controls were observed (p < 0.01). Higher NA-deep grey matter quantitative-T1 (EDSS: beta = 7.96, p = 0.006; 9HPT: beta = -0.09, p = 0.004), higher NA-white matter orientation dispersion index (TWT: beta = -3.21, p = 0.005; SDMT: beta = -847.10, p < 0.001), lower whole-cord bound pool fraction (9HPT: beta = 0.79, p = 0.001) and higher NA-cortical grey matter quantitative-T1 (SDMT = -94.31, p < 0.001) emerged as particularly relevant predictors of greater disability. CONCLUSION Fast brain-and-cord-matched qMRI protocols are feasible and identify demyelination - combined with other mechanisms - as key for disability accumulation in PMS.
Collapse
Affiliation(s)
- Carmen Tur
- NMR Research Unit, Queen Square Multiple Sclerosis Centre, UCL (University College London) Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
- Multiple Sclerosis Centre of Catalonia (Cemcat). Vall d'Hebron Institute of Research. Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Marco Battiston
- NMR Research Unit, Queen Square Multiple Sclerosis Centre, UCL (University College London) Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
| | - Marios C Yiannakas
- NMR Research Unit, Queen Square Multiple Sclerosis Centre, UCL (University College London) Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
| | - Sara Collorone
- NMR Research Unit, Queen Square Multiple Sclerosis Centre, UCL (University College London) Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
| | - Alberto Calvi
- NMR Research Unit, Queen Square Multiple Sclerosis Centre, UCL (University College London) Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
- Fundació de Recerca Clínic Barcelona-Institut d'Investigacions Biomèdiques August Pi i Sunyer, Hospital Clinic, Barcelona, Spain
| | - Ferran Prados
- NMR Research Unit, Queen Square Multiple Sclerosis Centre, UCL (University College London) Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
- Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College London, London, UK
- eHealth Center, Universitat Oberta de Catalunya, Barcelona, Spain
| | - Baris Kanber
- NMR Research Unit, Queen Square Multiple Sclerosis Centre, UCL (University College London) Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
- Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| | - Francesco Grussu
- NMR Research Unit, Queen Square Multiple Sclerosis Centre, UCL (University College London) Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
- Radiomics Group, Vall d'Hebron Institute of Oncology, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Antonio Ricciardi
- NMR Research Unit, Queen Square Multiple Sclerosis Centre, UCL (University College London) Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
| | - Patrizia Pajak
- NMR Research Unit, Queen Square Multiple Sclerosis Centre, UCL (University College London) Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
| | - Daniele Martinelli
- Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
| | | | - Olga Ciccarelli
- NMR Research Unit, Queen Square Multiple Sclerosis Centre, UCL (University College London) Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
- NIHR UCLH Biomedical Research Centre, London, UK
| | - Rebecca S Samson
- NMR Research Unit, Queen Square Multiple Sclerosis Centre, UCL (University College London) Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
| | - Claudia Am Gandini Wheeler-Kingshott
- NMR Research Unit, Queen Square Multiple Sclerosis Centre, UCL (University College London) Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
- Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy; Brain Connectivity Research Center, IRCCS Mondino Foundation, Pavia, Italy
| |
Collapse
|
32
|
Barrett A, Olayinka-Amao O, Ziemssen T, Bharadia T, Henke C, Kamudoni P. Understanding the Symptoms and Impacts Experienced by People with Relapsing-Remitting MS: A Qualitative Investigation Using Semi-Structured Interviews. Neurol Ther 2024; 13:449-464. [PMID: 38345742 PMCID: PMC10951163 DOI: 10.1007/s40120-024-00584-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 01/17/2024] [Indexed: 03/20/2024] Open
Abstract
INTRODUCTION Multiple sclerosis (MS) is a disabling disease with unpredictable clinical manifestations. As clinical assessments may not fully capture the impact of MS on quality of life, they can be complemented by patient-reported outcome (PRO) measures to provide a more comprehensive picture of MS disease state and impact. The objectives of this study were to explore the experiences of people with relapsing-remitting MS, including symptoms and impacts on daily life, and to provide a conceptual model of MS outcomes. METHODS A literature review of studies that evaluated the experiences of people with MS was completed and combined with semi-structured concept elicitation interviews conducted with 14 people with relapsing-remitting MS in the USA. RESULTS The average age of the 14 participants was 43.9 (range 25-64) years, most were White (78.6%) and female (78.6%), and the mean duration since diagnosis was 6.6 (2-10) years. The most bothersome symptoms identified included fatigue (n = 9), cognitive dysfunction (n = 5), mobility/difficulty with walking (n = 3), and vision problems (n = 3). The most commonly reported impacts on daily life were balance problems/instability (n = 13), work life/productivity (n = 12), difficulty walking (n = 11), daily activities/household chores (n = 11), and leisure activities (n = 10). CONCLUSION There was a high frequency of concepts associated with physical function, fatigue, and sensory-motor actions. A conceptual model was developed that captures the disease symptoms, impairments, and impacts identified in the interviews as well as known processes and symptoms identified in the literature search. This model underpins the appropriateness of PRO instruments, such as the PROMIS Fatigue (MS) 8a and PROMIS Physical Function (MS) 15a, which evaluate symptoms and impacts that matter most to people with MS.
Collapse
Affiliation(s)
- Amy Barrett
- Patient-Centered Outcomes Assessment, RTI Health Solutions, Research Triangle Park, NC, USA
| | - Oyebimpe Olayinka-Amao
- Patient-Centered Outcomes Assessment, RTI Health Solutions, Research Triangle Park, NC, USA
| | - Tjalf Ziemssen
- Center of Clinical Neuroscience, Neurological Clinic, University Clinic Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | | | - Christian Henke
- Merck Healthcare KGaA, Frankfurter Str. 250, 64293, Darmstadt, Germany
| | - Paul Kamudoni
- Merck Healthcare KGaA, Frankfurter Str. 250, 64293, Darmstadt, Germany.
| |
Collapse
|
33
|
Thränhardt P, Veselaj A, Friedli C, Wagner F, Marti S, Diem L, Hammer H, Radojewski P, Wiest R, Chan A, Hoepner R, Salmen A. Sex differences in multiple sclerosis relapse presentation and outcome: a retrospective, monocentric study of 134 relapse events. Ther Adv Neurol Disord 2024; 17:17562864241237853. [PMID: 38532803 PMCID: PMC10964455 DOI: 10.1177/17562864241237853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 02/07/2024] [Indexed: 03/28/2024] Open
Abstract
Background Reporting of sex-specific analyses in multiple sclerosis (MS) is sparse. Disability accrual results from relapses (relapse-associated worsening) and independent thereof (progression independent of relapses). Objectives A population of MS patients during relapse treated per standard of care was analyzed for sex differences and short-term relapse outcome (3-6 months) as measured by Expanded Disability Status Scale (EDSS) change. Design Single-center retrospective study. Methods We analyzed 134 MS relapses between March 2016 and August 2020. All events required relapse treatment (steroids and/or plasma exchange). Demographic, disease, and paraclinical characteristics [cerebrospinal fluid (CSF) and magnetic resonance imaging (MRI)] were displayed separated by sex. Multivariable linear regression was run to identify factors associated with short-term EDSS change. Results Mean age at relapse was 38.4 years (95% confidence interval: 36.3-40.4) with a proportion of 71.6% women in our cohort. Smoking was more than twice as prevalent in men (65.8%) than women (32.3%). In- and after-relapse EDSSs were higher in men [men: 3.3 (2.8-3.9), women: 2.7 (2.4-3.0); men: 3.0 (1.3-3.6); women: 1.8 (1.5-2.1)] despite similar relapse intervention. Paraclinical parameters revealed no sex differences. Our primary model identified female sex, younger age, and higher EDSS at relapse to be associated with EDSS improvement. A higher immunoglobulin G (IgG) quotient (CSF/serum) was associated with poorer short-term outcome [mean days between first relapse treatment and last EDSS assessment 130.2 (79.3-181.0)]. Conclusion Sex and gender differences are important in outcome analyses of MS relapses. Effective treatment regimens need to respect putative markers for a worse outcome to modify long-term prognosis such as clinical and demographic variables, complemented by intrathecal IgG synthesis. Prospective trials should be designed to address these differences and confirm our results.
Collapse
Affiliation(s)
- Pauline Thränhardt
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Admirim Veselaj
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Christoph Friedli
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department of Neurology, Waikato Hospital, Hamilton, New Zealand
| | - Franca Wagner
- University Department of Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Translational Imaging Center, Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland
| | - Stefanie Marti
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Lara Diem
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Helly Hammer
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Piotr Radojewski
- University Department of Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Translational Imaging Center, Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland
| | - Roland Wiest
- University Department of Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Translational Imaging Center, Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland
| | - Andrew Chan
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Robert Hoepner
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Anke Salmen
- Department of Neurology, St Josef-Hospital Bochum, Ruhr-University Bochum, Gudrunstrasse 56, Bochum 44791, GermanyDepartment of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
34
|
Wang AA, Luessi F, Neziraj T, Pössnecker E, Zuo M, Engel S, Hanuscheck N, Florescu A, Bugbee E, Ma XI, Rana F, Lee D, Ward LA, Kuhle J, Himbert J, Schraad M, van Puijenbroek E, Klein C, Urich E, Ramaglia V, Pröbstel AK, Zipp F, Gommerman JL. B cell depletion with anti-CD20 promotes neuroprotection in a BAFF-dependent manner in mice and humans. Sci Transl Med 2024; 16:eadi0295. [PMID: 38446903 DOI: 10.1126/scitranslmed.adi0295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 02/13/2024] [Indexed: 03/08/2024]
Abstract
Anti-CD20 therapy to deplete B cells is highly efficacious in preventing new white matter lesions in patients with relapsing-remitting multiple sclerosis (RRMS), but its protective capacity against gray matter injury and axonal damage is unclear. In a passive experimental autoimmune encephalomyelitis (EAE) model whereby TH17 cells promote brain leptomeningeal immune cell aggregates, we found that anti-CD20 treatment effectively spared myelin content and prevented myeloid cell activation, oxidative damage, and mitochondrial stress in the subpial gray matter. Anti-CD20 treatment increased B cell survival factor (BAFF) in the serum, cerebrospinal fluid, and leptomeninges of mice with EAE. Although anti-CD20 prevented gray matter demyelination, axonal loss, and neuronal atrophy, co-treatment with anti-BAFF abrogated these benefits. Consistent with the murine studies, we observed that elevated BAFF concentrations after anti-CD20 treatment in patients with RRMS were associated with better clinical outcomes. Moreover, BAFF promoted survival of human neurons in vitro. Together, our data demonstrate that BAFF exerts beneficial functions in MS and EAE in the context of anti-CD20 treatment.
Collapse
Affiliation(s)
- Angela A Wang
- Department of Immunology, University of Toronto, Toronto, M5S 1A8, Canada
| | - Felix Luessi
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Tradite Neziraj
- Department of Neurology, University Hospital of Basel and University of Basel, 4031 Basel, Switzerland
- Departments of Biomedicine and Clinical Research, University Hospital of Basel and University of Basel, 4031 Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital of Basel and University of Basel, 4031 Basel, Switzerland
| | - Elisabeth Pössnecker
- Department of Neurology, University Hospital of Basel and University of Basel, 4031 Basel, Switzerland
- Departments of Biomedicine and Clinical Research, University Hospital of Basel and University of Basel, 4031 Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital of Basel and University of Basel, 4031 Basel, Switzerland
| | - Michelle Zuo
- Department of Immunology, University of Toronto, Toronto, M5S 1A8, Canada
| | - Sinah Engel
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Nicholas Hanuscheck
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Alexandra Florescu
- Department of Immunology, University of Toronto, Toronto, M5S 1A8, Canada
| | - Eryn Bugbee
- Department of Immunology, University of Toronto, Toronto, M5S 1A8, Canada
| | - Xianjie I Ma
- Department of Immunology, University of Toronto, Toronto, M5S 1A8, Canada
| | - Fatima Rana
- Department of Immunology, University of Toronto, Toronto, M5S 1A8, Canada
| | - Dennis Lee
- Department of Immunology, University of Toronto, Toronto, M5S 1A8, Canada
| | - Lesley A Ward
- Department of Immunology, University of Toronto, Toronto, M5S 1A8, Canada
| | - Jens Kuhle
- Department of Neurology, University Hospital of Basel and University of Basel, 4031 Basel, Switzerland
- Departments of Biomedicine and Clinical Research, University Hospital of Basel and University of Basel, 4031 Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital of Basel and University of Basel, 4031 Basel, Switzerland
| | - Johannes Himbert
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Muriel Schraad
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | | | - Christian Klein
- Roche Innovation Center Zurich, Roche Glycart AG, 8952 Schlieren, Switzerland
| | - Eduard Urich
- Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., 4052 Basel, Switzerland
| | - Valeria Ramaglia
- Department of Immunology, University of Toronto, Toronto, M5S 1A8, Canada
| | - Anne-Katrin Pröbstel
- Department of Neurology, University Hospital of Basel and University of Basel, 4031 Basel, Switzerland
- Departments of Biomedicine and Clinical Research, University Hospital of Basel and University of Basel, 4031 Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital of Basel and University of Basel, 4031 Basel, Switzerland
| | - Frauke Zipp
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | | |
Collapse
|
35
|
Tekin A, Rende B, Efendi H, Bunul SD, Çakır Ö, Çolak T, Balcı S. Volumetric and Asymmetric Index Analysis of Subcortical Structures in Multiple Sclerosis Patients: A Retrospective Study Using volBrain Software. Cureus 2024; 16:e55799. [PMID: 38590495 PMCID: PMC10999780 DOI: 10.7759/cureus.55799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2024] [Indexed: 04/10/2024] Open
Abstract
Introduction Multiple sclerosis (MS) is a chronic and autoimmune disease that has a significant influence on the central nervous system, such as the brain and spinal cord, affecting millions of individuals globally. Understanding the connection between subcortical brain regions and MS is crucial for effective diagnostic and therapeutic approaches for treating this disabling disease. This study explores the relationship between volume and contours of asymmetry index of subcortical brain regions in individuals with MS using volBrain software (https://www.volbrain.net; developed by José V. Manjón (Valencia Polytechnic University, Valencia, Spain) and Pierrick Coupé (University of Bordeaux, Bordeaux, France)). Methods In our retrospective investigation, we admitted 100 Turkish individuals, comprising 50 patients diagnosed with relapsing-remitting MS (RRMS) (24 (48%) males and 26 (52%) females) and 50 healthy controls (23 (46%) males and 27 (54%) females), registered between October 2017 and February 2022 for five years and underwent assessment in the radiology department at the Teaching and Research Hospital of Kocaeli University; 1,150 Turkish patients were excluded from our study based on our exclusion criteria. We used magnetic resonance imaging with a 3-Tesla (3T) scanner and volBrain software to assess volumes (cm3) and asymmetry indexes due to asymmetry for different levels of atrophy of total intracranial, total brain, gray matter, white matter, and subcortical regions, the most affected regions in MS patients for both patient and control cohorts. Results Statistical analysis revealed a significant difference between patient and control groups (p < 0.001), with patient group mean age at 38.32 years and control group mean age at 32.88 years. Patient group exhibited lower values for total intracranial, total brain, gray matter, white matter, and cerebrospinal fluid volume compared to control group (p < 0.05). The results indicated a statistically significant decrease (p < 0.05) in the values for total intracranial and total brain volume, whereas all other values remained unchanged. We compared volumes of subcortical structures on the right and left sides and found that the putamen, thalamus, and globus pallidus had statistically lower values in the patient group than in the control group (p < 0.001), apart from the lateral ventricle. Furthermore, our retrospective investigation demonstrated a statistically significant difference in the globus pallidus asymmetry index, indicating a preference for the patient group (p < 0.05). A lower asymmetry index value signifies a larger volume for the right side of the subcortical regions of the brain when compared to the left side. Conclusion Brain atrophy, although characterized by irreversible tissue damage, is targeted by therapeutic interventions to prevent progression. It is, therefore, imperative to develop a universally accepted measurement standard for subcortical structures that also considers the inherent variability present within each structure. Our findings serve as an important basis and indicator for the determination of subcortical atrophy and asymmetry in MS, the prognosis of the disease, and the etiology of clinical symptoms. Subsequent research may benefit by adopting the novel approach of considering brain atrophy as an outcome rather than a predictor, thereby facilitating the elucidation of the intricate biological mechanisms that give rise to volume loss.
Collapse
Affiliation(s)
- Ayla Tekin
- Anatomy, Kocaeli University, Kocaeli, TUR
| | - Buket Rende
- Anatomy, European Vocational School, Kocaeli Health and Technology University, Kocaeli, TUR
| | | | | | | | - Tuncay Çolak
- Anatomy, Faculty of Medicine, Kocaeli University, Kocaeli, TUR
| | - Sibel Balcı
- Biostatistics and Medical Informatics, Kocaeli University, Kocaeli, TUR
| |
Collapse
|
36
|
Faissner S, Bongert M, Trendelenburg P, Thiel S, Yamamura T, Hellwig K, Gold R. Eomesodermin-expressing CD4+ Th cells and association with pregnancy in multiple sclerosis. Ther Adv Neurol Disord 2024; 17:17562864241229321. [PMID: 38371384 PMCID: PMC10874138 DOI: 10.1177/17562864241229321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 01/09/2024] [Indexed: 02/20/2024] Open
Abstract
Background Pregnancy in patients with multiple sclerosis (MS) is accompanied by a decline of relapse activity with increased risk of relapses 3 months post-partum, for unknown reasons. Eomesodermin+ T-helper cells (Eomes+ Th cells) are known to mediate neuroinflammation and disease progression in MS and are induced by prolactin-secreting cells. Objectives Here, investigated immune cell alterations and the pathophysiological role of Eomes+ Th cells for disease activity during pregnancy and post-partum in MS. Methods We enrolled n = 81 pregnant patients with relapsing-remitting MS (RRMS), n = 27 post-partum RRMS and n = 26 female RRMS control patients under the umbrella of the German Multiple Sclerosis and Pregnancy Registry. Clinical data were collected and immune cell alterations were analysed using flow cytometry. Results While CD3+CD4+ Th cells were unaffected, CD3+CD8+ cytotoxic T-cells were elevated post-partum (p = 0.02) with reduced B-cell frequencies (p = 0.01) compared to non-pregnant RRMS patients. NK cells were elevated during first trimester (p = 0.02) compared to the third trimester. Frequencies of Eomes+ Th and Eomes+ Tc cells did not differ. There was no correlation of prolactin release and expression of Eomes+ Th cells. However, Eomes+ Th cells correlated with lower frequencies of regulatory T-cells during second (r = -0.42; p < 0.05) and third trimester (r = -0.37; p < 0.05). Moreover, Eomes+ Th cells correlated with frequencies of B-cells during third trimester (r = 0.54; p = 0.02). Frequencies of Eomes+ Th cells were not associated with the number of relapses before pregnancy, during pregnancy or post-partum. However, Eomes+ Th cells strongly correlated with disability post-partum as assessed using the EDSS (r = 0.52; p = 0.009). Discussion Pregnancy in MS is associated with robust immunological alterations. Eomes+ Th cells are capable of inducing immune cell alterations during the course of pregnancy, most evident during the second and third trimester as shown with a correlation of reduced Treg cells and a significant increase of B-cells. Importantly, Eomes+ Th cells correlate with disability post-partum. In summary, during late pregnancy in MS an inflammatory, cytotoxic and dysregulated immunological environment is primed gaining function post-delivery. This may be responsible for post-partum disability accumulation.
Collapse
Affiliation(s)
- Simon Faissner
- Department of Neurology, Ruhr-University Bochum, St. Josef-Hospital, Gudrunstr. 56, Bochum 44791, Germany
| | - Marielena Bongert
- Department of Neurology, Ruhr-University Bochum, St. Josef-Hospital, Bochum, Germany
| | - Paulina Trendelenburg
- Department of Neurology, Ruhr-University Bochum, St. Josef-Hospital, Bochum, Germany
| | - Sandra Thiel
- Department of Neurology, Ruhr-University Bochum, St. Josef-Hospital, Bochum, Germany
| | - Takashi Yamamura
- Department of Immunology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Kerstin Hellwig
- Department of Neurology, Ruhr-University Bochum, St. Josef-Hospital, Bochum, Germany
| | - Ralf Gold
- Department of Neurology, Ruhr-University Bochum, St. Josef-Hospital, Bochum, Germany
| |
Collapse
|
37
|
Gillani RL, Kironde EN, Whiteman S, Zwang TJ, Bacskai BJ. Instability of excitatory synapses in experimental autoimmune encephalomyelitis and the outcome for excitatory circuit inputs to individual cortical neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.23.576662. [PMID: 38328177 PMCID: PMC10849614 DOI: 10.1101/2024.01.23.576662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Synapses are lost on a massive scale in the brain and spinal cord of people living with multiple sclerosis (PwMS), and this synaptic loss extends far beyond demyelinating lesions. Post-mortem studies show the long-term consequences of multiple sclerosis (MS) on synapses but do not inform on the early impacts of neuroinflammation on synapses that subsequently lead to synapse loss. How excitatory circuit inputs are altered across the dendritic tree of individual neurons under neuroinflammatory stress is not well understood. Here, we directly assessed the structural dynamics of labeled excitatory synapses in experimental autoimmune encephalomyelitis (EAE) as a model of immune-mediated cortical neuronal damage. We used in vivo two-photon imaging and a synthetic tissue-hydrogel super-resolution imaging technique to reveal the dynamics of excitatory synapses, map their location across the dendritic tree of individual neurons, and examine neurons at super-resolution for synaptic loss. We found that excitatory synapses are destabilized but not lost from dendritic spines in EAE, starting with the earliest imaging session before symptom onset. This led to dramatic changes in excitatory circuit inputs to individual cells. In EAE, stable synapses are replaced by synapses that appear or disappear across the imaging sessions or repeatedly change at the same location. These unstable excitatory inputs occur closer to one another in EAE than in healthy controls and are distributed across the dendritic tree. When imaged at super-resolution, we found that a small proportion of dendritic protrusions lost their presynapse and/or postsynapse. Our finding of diffuse destabilizing effects of neuroinflammation on excitatory synapses across cortical neurons may have significant functional consequences since normal dendritic spine dynamics and clustering are essential for learning and memory.
Collapse
|
38
|
Sun D, Wang R, Du Q, Zhang Y, Chen H, Shi Z, Wang X, Zhou H. Causal relationship between multiple sclerosis and cortical structure: a Mendelian randomization study. J Transl Med 2024; 22:83. [PMID: 38245759 PMCID: PMC10800041 DOI: 10.1186/s12967-024-04892-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 01/13/2024] [Indexed: 01/22/2024] Open
Abstract
BACKGROUND Observational studies have suggested an association between multiple sclerosis (MS) and cortical structure, but the results have been inconsistent. OBJECTIVE We used two-sample Mendelian randomization (MR) to assess the causal relationship between MS and cortical structure. METHODS MS data as the exposure trait, including 14,498 cases and 24,091 controls, were obtained from the International Multiple Sclerosis Genetics Consortium. Genome-wide association study (GWAS) data for cortical surface area (SAw/nw) and thickness (THw/nw) in 51,665 individuals of European ancestry were obtained from the ENIGMA Consortium. The inverse-variance weighted (IVW) method was used as the primary analysis for MR. Sensitivity analyses were conducted to evaluate heterogeneity and pleiotropy. Enrichment analysis was performed on MR analyses filtered by sensitivity analysis. RESULTS After IVW and sensitivity analysis filtering, only six surviving MR results provided suggestive evidence supporting a causal relationship between MS and cortical structure, including lingual SAw (p = .0342, beta (se) = 5.7127 (2.6969)), parahippocampal SAw (p = .0224, beta (se) = 1.5577 (0.6822)), rostral middle frontal SAw (p = .0154, beta (se) = - 9.0301 (3.7281)), cuneus THw (p = .0418, beta (se) = - 0.0020 (0.0010)), lateral orbitofrontal THw (p = .0281, beta (se) = 0.0025 (0.0010)), and lateral orbitofrontal THnw (p = .0417, beta (se) = 0.0029 (0.0014)). Enrichment analysis suggested that leukocyte cell-related pathways, JAK-STAT signaling pathway, NF-kappa B signaling pathway, cytokine-cytokine receptor interaction, and prolactin signaling pathway may be involved in the effect of MS on cortical morphology. CONCLUSION Our results provide evidence supporting a causal relationship between MS and cortical structure. Enrichment analysis suggests that the pathways mediating brain morphology abnormalities in MS patients are mainly related to immune and inflammation-driven pathways.
Collapse
Affiliation(s)
- Dongren Sun
- Department of Neurology, West China Hospital, Sichuan University, Guo Xuexiang #37, Chengdu, 610041, China
| | - Rui Wang
- Department of Neurology, West China Hospital, Sichuan University, Guo Xuexiang #37, Chengdu, 610041, China
| | - Qin Du
- Department of Neurology, West China Hospital, Sichuan University, Guo Xuexiang #37, Chengdu, 610041, China
| | - Ying Zhang
- Department of Neurology, West China Hospital, Sichuan University, Guo Xuexiang #37, Chengdu, 610041, China
| | - Hongxi Chen
- Department of Neurology, West China Hospital, Sichuan University, Guo Xuexiang #37, Chengdu, 610041, China
| | - Ziyan Shi
- Department of Neurology, West China Hospital, Sichuan University, Guo Xuexiang #37, Chengdu, 610041, China
| | - Xiaofei Wang
- Department of Neurology, West China Hospital, Sichuan University, Guo Xuexiang #37, Chengdu, 610041, China.
| | - Hongyu Zhou
- Department of Neurology, West China Hospital, Sichuan University, Guo Xuexiang #37, Chengdu, 610041, China.
| |
Collapse
|
39
|
Tur C, Rocca MA. Progression Independent of Relapse Activity in Multiple Sclerosis: Closer to Solving the Pathologic Puzzle. Neurology 2024; 102:e207936. [PMID: 38165383 DOI: 10.1212/wnl.0000000000207936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 08/24/2023] [Indexed: 01/03/2024] Open
Abstract
Progression independent of relapse activity (PIRA) is one of the main mechanisms of disability accrual in multiple sclerosis (MS) even in people with relapsing-remitting MS (RRMS).1 PIRA can occur at any stage of the disease and is associated with unfavorable long-term outcomes, especially if PIRA occurs early in the disease course.2 The pathologic substrates of PIRA are not yet well understood, although there is growing evidence suggesting that PIRA may occur mainly in a predominant neurodegenerative context,3-6 sometimes in combination with an acute inflammatory activity.2,5 A deeper understanding of the pathologic processes underlying PIRA represents a vital initial stride toward averting the accumulation of irreversible disability in MS.
Collapse
Affiliation(s)
- Carmen Tur
- From the Multiple Sclerosis Centre of Catalonia (Cemcat) (C.T.), Department of Neurology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Spain; NMR Unit, Queen Square MS Centre (C.T.), Department of Neuroinflammation, UCL Queen Square Institute of Neurology, University College London, United Kingdom; Neuroimaging Research Unit (M.A.R.), Institute of Experimental Neurology, Division of Neuroscience, and Neurology Unit, IRCCS San Raffaele Scientific Institute; and Vita-Salute San Raffaele University (M.A.R.), Milan, Italy
| | - Maria A Rocca
- From the Multiple Sclerosis Centre of Catalonia (Cemcat) (C.T.), Department of Neurology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Spain; NMR Unit, Queen Square MS Centre (C.T.), Department of Neuroinflammation, UCL Queen Square Institute of Neurology, University College London, United Kingdom; Neuroimaging Research Unit (M.A.R.), Institute of Experimental Neurology, Division of Neuroscience, and Neurology Unit, IRCCS San Raffaele Scientific Institute; and Vita-Salute San Raffaele University (M.A.R.), Milan, Italy
| |
Collapse
|
40
|
Cagol A, Benkert P, Melie-Garcia L, Schaedelin SA, Leber S, Tsagkas C, Barakovic M, Galbusera R, Lu PJ, Weigel M, Ruberte E, Radue EW, Yaldizli Ö, Oechtering J, Lorscheider J, D'Souza M, Fischer-Barnicol B, Müller S, Achtnichts L, Vehoff J, Disanto G, Findling O, Chan A, Salmen A, Pot C, Bridel C, Zecca C, Derfuss T, Lieb JM, Remonda L, Wagner F, Vargas MI, Du Pasquier RA, Lalive PH, Pravatà E, Weber J, Cattin PC, Absinta M, Gobbi C, Leppert D, Kappos L, Kuhle J, Granziera C. Association of Spinal Cord Atrophy and Brain Paramagnetic Rim Lesions With Progression Independent of Relapse Activity in People With MS. Neurology 2024; 102:e207768. [PMID: 38165377 PMCID: PMC10834139 DOI: 10.1212/wnl.0000000000207768] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 09/18/2023] [Indexed: 01/03/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Progression independent of relapse activity (PIRA) is a crucial determinant of overall disability accumulation in multiple sclerosis (MS). Accelerated brain atrophy has been shown in patients experiencing PIRA. In this study, we assessed the relation between PIRA and neurodegenerative processes reflected by (1) longitudinal spinal cord atrophy and (2) brain paramagnetic rim lesions (PRLs). Besides, the same relationship was investigated in progressive MS (PMS). Last, we explored the value of cross-sectional brain and spinal cord volumetric measurements in predicting PIRA. METHODS From an ongoing multicentric cohort study, we selected patients with MS with (1) availability of a susceptibility-based MRI scan and (2) regular clinical and conventional MRI follow-up in the 4 years before the susceptibility-based MRI. Comparisons in spinal cord atrophy rates (explored with linear mixed-effect models) and PRL count (explored with negative binomial regression models) were performed between: (1) relapsing-remitting (RRMS) and PMS phenotypes and (2) patients experiencing PIRA and patients without confirmed disability accumulation (CDA) during follow-up (both considering the entire cohort and the subgroup of patients with RRMS). Associations between baseline MRI volumetric measurements and time to PIRA were explored with multivariable Cox regression analyses. RESULTS In total, 445 patients with MS (64.9% female; mean [SD] age at baseline 45.0 [11.4] years; 11.2% with PMS) were enrolled. Compared with patients with RRMS, those with PMS had accelerated cervical cord atrophy (mean difference in annual percentage volume change [MD-APC] -1.41; p = 0.004) and higher PRL load (incidence rate ratio [IRR] 1.93; p = 0.005). Increased spinal cord atrophy (MD-APC -1.39; p = 0.0008) and PRL burden (IRR 1.95; p = 0.0008) were measured in patients with PIRA compared with patients without CDA; such differences were also confirmed when restricting the analysis to patients with RRMS. Baseline volumetric measurements of the cervical cord, whole brain, and cerebral cortex significantly predicted time to PIRA (all p ≤ 0.002). DISCUSSION Our results show that PIRA is associated with both increased spinal cord atrophy and PRL burden, and this association is evident also in patients with RRMS. These findings further point to the need to develop targeted treatment strategies for PIRA to prevent irreversible neuroaxonal loss and optimize long-term outcomes of patients with MS.
Collapse
Affiliation(s)
- Alessandro Cagol
- From Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, Faculty of Medicine (A. Cagol, L.M.-G., S.L., C.T., M.B., R.G., P.-J.L., M.W., E.R., E.-W.R., Ö.Y., L.K., C. Granziera), Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB) (A. Cagol, L.M.-G., C.T., M.B., R.G., P.-J.L., M.W., E.R.,O.Y., J.O., J.L., M.D.S., B.F.-B., T.D., D.L., L.K., J.K., C. Granziera), Department of Clinical Research (P.B., S.A.S.), Division of Radiological Physics, Department of Radiology (M.W.), and Division of Diagnostic and Interventional Neuroradiology, Clinic for Radiology and Nuclear Medicine (J.M.L.), University Hospital Basel, University of Basel, Switzerland; Translational Neuroradiology Section (C.T), National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD; Medical Image Analysis Center (MIAC) and Quantitative Biomedical Imaging Group (qbig), Department of Biomedical Engineering (E.R., P.C.C.), University Basel; Departments of Neurology (S.M., J.V.) and Radiology (J.W.), Cantonal Hospital St. Gallen; Departments of Neurology (L.A., O.F.) and Radiology (L.R.), Cantonal Hospital Aarau; Departments of Neurology (G.D., C.Z., C.G.) and Neuroradiology (E.P.), Neurocenter of Southern Switzerland, Lugano; Departments of Neurology, Inselspital (A. Chan, A.S.), and Diagnostic and Interventional Neuroradiology, Inselspital (F.W.) Bern University Hospital and University of Bern; Departments of Clinical Neurosciences, Division of Neurology (C.P., R.A.D.P.), and Radiology (R.A.D.P.) Lausanne University Hospital and University of Lausanne; Department of Clinical Neurosciences, Division of Neurology (C.B., P.H.L.), and Radiology (M.I.V.) Geneva University Hospitals and Faculty of Medicine; Faculty of Biomedical Sciences (C.Z.), Università della Svizzera Italiana, Lugano, Switzerland; Institute of Experimental Neurology, Division of Neuroscience (M.A.); Vita-Salute San Raffaele University and Hospital, Milan, Italy
| | - Pascal Benkert
- From Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, Faculty of Medicine (A. Cagol, L.M.-G., S.L., C.T., M.B., R.G., P.-J.L., M.W., E.R., E.-W.R., Ö.Y., L.K., C. Granziera), Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB) (A. Cagol, L.M.-G., C.T., M.B., R.G., P.-J.L., M.W., E.R.,O.Y., J.O., J.L., M.D.S., B.F.-B., T.D., D.L., L.K., J.K., C. Granziera), Department of Clinical Research (P.B., S.A.S.), Division of Radiological Physics, Department of Radiology (M.W.), and Division of Diagnostic and Interventional Neuroradiology, Clinic for Radiology and Nuclear Medicine (J.M.L.), University Hospital Basel, University of Basel, Switzerland; Translational Neuroradiology Section (C.T), National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD; Medical Image Analysis Center (MIAC) and Quantitative Biomedical Imaging Group (qbig), Department of Biomedical Engineering (E.R., P.C.C.), University Basel; Departments of Neurology (S.M., J.V.) and Radiology (J.W.), Cantonal Hospital St. Gallen; Departments of Neurology (L.A., O.F.) and Radiology (L.R.), Cantonal Hospital Aarau; Departments of Neurology (G.D., C.Z., C.G.) and Neuroradiology (E.P.), Neurocenter of Southern Switzerland, Lugano; Departments of Neurology, Inselspital (A. Chan, A.S.), and Diagnostic and Interventional Neuroradiology, Inselspital (F.W.) Bern University Hospital and University of Bern; Departments of Clinical Neurosciences, Division of Neurology (C.P., R.A.D.P.), and Radiology (R.A.D.P.) Lausanne University Hospital and University of Lausanne; Department of Clinical Neurosciences, Division of Neurology (C.B., P.H.L.), and Radiology (M.I.V.) Geneva University Hospitals and Faculty of Medicine; Faculty of Biomedical Sciences (C.Z.), Università della Svizzera Italiana, Lugano, Switzerland; Institute of Experimental Neurology, Division of Neuroscience (M.A.); Vita-Salute San Raffaele University and Hospital, Milan, Italy
| | - Lester Melie-Garcia
- From Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, Faculty of Medicine (A. Cagol, L.M.-G., S.L., C.T., M.B., R.G., P.-J.L., M.W., E.R., E.-W.R., Ö.Y., L.K., C. Granziera), Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB) (A. Cagol, L.M.-G., C.T., M.B., R.G., P.-J.L., M.W., E.R.,O.Y., J.O., J.L., M.D.S., B.F.-B., T.D., D.L., L.K., J.K., C. Granziera), Department of Clinical Research (P.B., S.A.S.), Division of Radiological Physics, Department of Radiology (M.W.), and Division of Diagnostic and Interventional Neuroradiology, Clinic for Radiology and Nuclear Medicine (J.M.L.), University Hospital Basel, University of Basel, Switzerland; Translational Neuroradiology Section (C.T), National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD; Medical Image Analysis Center (MIAC) and Quantitative Biomedical Imaging Group (qbig), Department of Biomedical Engineering (E.R., P.C.C.), University Basel; Departments of Neurology (S.M., J.V.) and Radiology (J.W.), Cantonal Hospital St. Gallen; Departments of Neurology (L.A., O.F.) and Radiology (L.R.), Cantonal Hospital Aarau; Departments of Neurology (G.D., C.Z., C.G.) and Neuroradiology (E.P.), Neurocenter of Southern Switzerland, Lugano; Departments of Neurology, Inselspital (A. Chan, A.S.), and Diagnostic and Interventional Neuroradiology, Inselspital (F.W.) Bern University Hospital and University of Bern; Departments of Clinical Neurosciences, Division of Neurology (C.P., R.A.D.P.), and Radiology (R.A.D.P.) Lausanne University Hospital and University of Lausanne; Department of Clinical Neurosciences, Division of Neurology (C.B., P.H.L.), and Radiology (M.I.V.) Geneva University Hospitals and Faculty of Medicine; Faculty of Biomedical Sciences (C.Z.), Università della Svizzera Italiana, Lugano, Switzerland; Institute of Experimental Neurology, Division of Neuroscience (M.A.); Vita-Salute San Raffaele University and Hospital, Milan, Italy
| | - Sabine A Schaedelin
- From Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, Faculty of Medicine (A. Cagol, L.M.-G., S.L., C.T., M.B., R.G., P.-J.L., M.W., E.R., E.-W.R., Ö.Y., L.K., C. Granziera), Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB) (A. Cagol, L.M.-G., C.T., M.B., R.G., P.-J.L., M.W., E.R.,O.Y., J.O., J.L., M.D.S., B.F.-B., T.D., D.L., L.K., J.K., C. Granziera), Department of Clinical Research (P.B., S.A.S.), Division of Radiological Physics, Department of Radiology (M.W.), and Division of Diagnostic and Interventional Neuroradiology, Clinic for Radiology and Nuclear Medicine (J.M.L.), University Hospital Basel, University of Basel, Switzerland; Translational Neuroradiology Section (C.T), National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD; Medical Image Analysis Center (MIAC) and Quantitative Biomedical Imaging Group (qbig), Department of Biomedical Engineering (E.R., P.C.C.), University Basel; Departments of Neurology (S.M., J.V.) and Radiology (J.W.), Cantonal Hospital St. Gallen; Departments of Neurology (L.A., O.F.) and Radiology (L.R.), Cantonal Hospital Aarau; Departments of Neurology (G.D., C.Z., C.G.) and Neuroradiology (E.P.), Neurocenter of Southern Switzerland, Lugano; Departments of Neurology, Inselspital (A. Chan, A.S.), and Diagnostic and Interventional Neuroradiology, Inselspital (F.W.) Bern University Hospital and University of Bern; Departments of Clinical Neurosciences, Division of Neurology (C.P., R.A.D.P.), and Radiology (R.A.D.P.) Lausanne University Hospital and University of Lausanne; Department of Clinical Neurosciences, Division of Neurology (C.B., P.H.L.), and Radiology (M.I.V.) Geneva University Hospitals and Faculty of Medicine; Faculty of Biomedical Sciences (C.Z.), Università della Svizzera Italiana, Lugano, Switzerland; Institute of Experimental Neurology, Division of Neuroscience (M.A.); Vita-Salute San Raffaele University and Hospital, Milan, Italy
| | - Selina Leber
- From Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, Faculty of Medicine (A. Cagol, L.M.-G., S.L., C.T., M.B., R.G., P.-J.L., M.W., E.R., E.-W.R., Ö.Y., L.K., C. Granziera), Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB) (A. Cagol, L.M.-G., C.T., M.B., R.G., P.-J.L., M.W., E.R.,O.Y., J.O., J.L., M.D.S., B.F.-B., T.D., D.L., L.K., J.K., C. Granziera), Department of Clinical Research (P.B., S.A.S.), Division of Radiological Physics, Department of Radiology (M.W.), and Division of Diagnostic and Interventional Neuroradiology, Clinic for Radiology and Nuclear Medicine (J.M.L.), University Hospital Basel, University of Basel, Switzerland; Translational Neuroradiology Section (C.T), National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD; Medical Image Analysis Center (MIAC) and Quantitative Biomedical Imaging Group (qbig), Department of Biomedical Engineering (E.R., P.C.C.), University Basel; Departments of Neurology (S.M., J.V.) and Radiology (J.W.), Cantonal Hospital St. Gallen; Departments of Neurology (L.A., O.F.) and Radiology (L.R.), Cantonal Hospital Aarau; Departments of Neurology (G.D., C.Z., C.G.) and Neuroradiology (E.P.), Neurocenter of Southern Switzerland, Lugano; Departments of Neurology, Inselspital (A. Chan, A.S.), and Diagnostic and Interventional Neuroradiology, Inselspital (F.W.) Bern University Hospital and University of Bern; Departments of Clinical Neurosciences, Division of Neurology (C.P., R.A.D.P.), and Radiology (R.A.D.P.) Lausanne University Hospital and University of Lausanne; Department of Clinical Neurosciences, Division of Neurology (C.B., P.H.L.), and Radiology (M.I.V.) Geneva University Hospitals and Faculty of Medicine; Faculty of Biomedical Sciences (C.Z.), Università della Svizzera Italiana, Lugano, Switzerland; Institute of Experimental Neurology, Division of Neuroscience (M.A.); Vita-Salute San Raffaele University and Hospital, Milan, Italy
| | - Charidimos Tsagkas
- From Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, Faculty of Medicine (A. Cagol, L.M.-G., S.L., C.T., M.B., R.G., P.-J.L., M.W., E.R., E.-W.R., Ö.Y., L.K., C. Granziera), Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB) (A. Cagol, L.M.-G., C.T., M.B., R.G., P.-J.L., M.W., E.R.,O.Y., J.O., J.L., M.D.S., B.F.-B., T.D., D.L., L.K., J.K., C. Granziera), Department of Clinical Research (P.B., S.A.S.), Division of Radiological Physics, Department of Radiology (M.W.), and Division of Diagnostic and Interventional Neuroradiology, Clinic for Radiology and Nuclear Medicine (J.M.L.), University Hospital Basel, University of Basel, Switzerland; Translational Neuroradiology Section (C.T), National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD; Medical Image Analysis Center (MIAC) and Quantitative Biomedical Imaging Group (qbig), Department of Biomedical Engineering (E.R., P.C.C.), University Basel; Departments of Neurology (S.M., J.V.) and Radiology (J.W.), Cantonal Hospital St. Gallen; Departments of Neurology (L.A., O.F.) and Radiology (L.R.), Cantonal Hospital Aarau; Departments of Neurology (G.D., C.Z., C.G.) and Neuroradiology (E.P.), Neurocenter of Southern Switzerland, Lugano; Departments of Neurology, Inselspital (A. Chan, A.S.), and Diagnostic and Interventional Neuroradiology, Inselspital (F.W.) Bern University Hospital and University of Bern; Departments of Clinical Neurosciences, Division of Neurology (C.P., R.A.D.P.), and Radiology (R.A.D.P.) Lausanne University Hospital and University of Lausanne; Department of Clinical Neurosciences, Division of Neurology (C.B., P.H.L.), and Radiology (M.I.V.) Geneva University Hospitals and Faculty of Medicine; Faculty of Biomedical Sciences (C.Z.), Università della Svizzera Italiana, Lugano, Switzerland; Institute of Experimental Neurology, Division of Neuroscience (M.A.); Vita-Salute San Raffaele University and Hospital, Milan, Italy
| | - Muhamed Barakovic
- From Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, Faculty of Medicine (A. Cagol, L.M.-G., S.L., C.T., M.B., R.G., P.-J.L., M.W., E.R., E.-W.R., Ö.Y., L.K., C. Granziera), Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB) (A. Cagol, L.M.-G., C.T., M.B., R.G., P.-J.L., M.W., E.R.,O.Y., J.O., J.L., M.D.S., B.F.-B., T.D., D.L., L.K., J.K., C. Granziera), Department of Clinical Research (P.B., S.A.S.), Division of Radiological Physics, Department of Radiology (M.W.), and Division of Diagnostic and Interventional Neuroradiology, Clinic for Radiology and Nuclear Medicine (J.M.L.), University Hospital Basel, University of Basel, Switzerland; Translational Neuroradiology Section (C.T), National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD; Medical Image Analysis Center (MIAC) and Quantitative Biomedical Imaging Group (qbig), Department of Biomedical Engineering (E.R., P.C.C.), University Basel; Departments of Neurology (S.M., J.V.) and Radiology (J.W.), Cantonal Hospital St. Gallen; Departments of Neurology (L.A., O.F.) and Radiology (L.R.), Cantonal Hospital Aarau; Departments of Neurology (G.D., C.Z., C.G.) and Neuroradiology (E.P.), Neurocenter of Southern Switzerland, Lugano; Departments of Neurology, Inselspital (A. Chan, A.S.), and Diagnostic and Interventional Neuroradiology, Inselspital (F.W.) Bern University Hospital and University of Bern; Departments of Clinical Neurosciences, Division of Neurology (C.P., R.A.D.P.), and Radiology (R.A.D.P.) Lausanne University Hospital and University of Lausanne; Department of Clinical Neurosciences, Division of Neurology (C.B., P.H.L.), and Radiology (M.I.V.) Geneva University Hospitals and Faculty of Medicine; Faculty of Biomedical Sciences (C.Z.), Università della Svizzera Italiana, Lugano, Switzerland; Institute of Experimental Neurology, Division of Neuroscience (M.A.); Vita-Salute San Raffaele University and Hospital, Milan, Italy
| | - Riccardo Galbusera
- From Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, Faculty of Medicine (A. Cagol, L.M.-G., S.L., C.T., M.B., R.G., P.-J.L., M.W., E.R., E.-W.R., Ö.Y., L.K., C. Granziera), Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB) (A. Cagol, L.M.-G., C.T., M.B., R.G., P.-J.L., M.W., E.R.,O.Y., J.O., J.L., M.D.S., B.F.-B., T.D., D.L., L.K., J.K., C. Granziera), Department of Clinical Research (P.B., S.A.S.), Division of Radiological Physics, Department of Radiology (M.W.), and Division of Diagnostic and Interventional Neuroradiology, Clinic for Radiology and Nuclear Medicine (J.M.L.), University Hospital Basel, University of Basel, Switzerland; Translational Neuroradiology Section (C.T), National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD; Medical Image Analysis Center (MIAC) and Quantitative Biomedical Imaging Group (qbig), Department of Biomedical Engineering (E.R., P.C.C.), University Basel; Departments of Neurology (S.M., J.V.) and Radiology (J.W.), Cantonal Hospital St. Gallen; Departments of Neurology (L.A., O.F.) and Radiology (L.R.), Cantonal Hospital Aarau; Departments of Neurology (G.D., C.Z., C.G.) and Neuroradiology (E.P.), Neurocenter of Southern Switzerland, Lugano; Departments of Neurology, Inselspital (A. Chan, A.S.), and Diagnostic and Interventional Neuroradiology, Inselspital (F.W.) Bern University Hospital and University of Bern; Departments of Clinical Neurosciences, Division of Neurology (C.P., R.A.D.P.), and Radiology (R.A.D.P.) Lausanne University Hospital and University of Lausanne; Department of Clinical Neurosciences, Division of Neurology (C.B., P.H.L.), and Radiology (M.I.V.) Geneva University Hospitals and Faculty of Medicine; Faculty of Biomedical Sciences (C.Z.), Università della Svizzera Italiana, Lugano, Switzerland; Institute of Experimental Neurology, Division of Neuroscience (M.A.); Vita-Salute San Raffaele University and Hospital, Milan, Italy
| | - Po-Jui Lu
- From Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, Faculty of Medicine (A. Cagol, L.M.-G., S.L., C.T., M.B., R.G., P.-J.L., M.W., E.R., E.-W.R., Ö.Y., L.K., C. Granziera), Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB) (A. Cagol, L.M.-G., C.T., M.B., R.G., P.-J.L., M.W., E.R.,O.Y., J.O., J.L., M.D.S., B.F.-B., T.D., D.L., L.K., J.K., C. Granziera), Department of Clinical Research (P.B., S.A.S.), Division of Radiological Physics, Department of Radiology (M.W.), and Division of Diagnostic and Interventional Neuroradiology, Clinic for Radiology and Nuclear Medicine (J.M.L.), University Hospital Basel, University of Basel, Switzerland; Translational Neuroradiology Section (C.T), National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD; Medical Image Analysis Center (MIAC) and Quantitative Biomedical Imaging Group (qbig), Department of Biomedical Engineering (E.R., P.C.C.), University Basel; Departments of Neurology (S.M., J.V.) and Radiology (J.W.), Cantonal Hospital St. Gallen; Departments of Neurology (L.A., O.F.) and Radiology (L.R.), Cantonal Hospital Aarau; Departments of Neurology (G.D., C.Z., C.G.) and Neuroradiology (E.P.), Neurocenter of Southern Switzerland, Lugano; Departments of Neurology, Inselspital (A. Chan, A.S.), and Diagnostic and Interventional Neuroradiology, Inselspital (F.W.) Bern University Hospital and University of Bern; Departments of Clinical Neurosciences, Division of Neurology (C.P., R.A.D.P.), and Radiology (R.A.D.P.) Lausanne University Hospital and University of Lausanne; Department of Clinical Neurosciences, Division of Neurology (C.B., P.H.L.), and Radiology (M.I.V.) Geneva University Hospitals and Faculty of Medicine; Faculty of Biomedical Sciences (C.Z.), Università della Svizzera Italiana, Lugano, Switzerland; Institute of Experimental Neurology, Division of Neuroscience (M.A.); Vita-Salute San Raffaele University and Hospital, Milan, Italy
| | - Matthias Weigel
- From Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, Faculty of Medicine (A. Cagol, L.M.-G., S.L., C.T., M.B., R.G., P.-J.L., M.W., E.R., E.-W.R., Ö.Y., L.K., C. Granziera), Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB) (A. Cagol, L.M.-G., C.T., M.B., R.G., P.-J.L., M.W., E.R.,O.Y., J.O., J.L., M.D.S., B.F.-B., T.D., D.L., L.K., J.K., C. Granziera), Department of Clinical Research (P.B., S.A.S.), Division of Radiological Physics, Department of Radiology (M.W.), and Division of Diagnostic and Interventional Neuroradiology, Clinic for Radiology and Nuclear Medicine (J.M.L.), University Hospital Basel, University of Basel, Switzerland; Translational Neuroradiology Section (C.T), National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD; Medical Image Analysis Center (MIAC) and Quantitative Biomedical Imaging Group (qbig), Department of Biomedical Engineering (E.R., P.C.C.), University Basel; Departments of Neurology (S.M., J.V.) and Radiology (J.W.), Cantonal Hospital St. Gallen; Departments of Neurology (L.A., O.F.) and Radiology (L.R.), Cantonal Hospital Aarau; Departments of Neurology (G.D., C.Z., C.G.) and Neuroradiology (E.P.), Neurocenter of Southern Switzerland, Lugano; Departments of Neurology, Inselspital (A. Chan, A.S.), and Diagnostic and Interventional Neuroradiology, Inselspital (F.W.) Bern University Hospital and University of Bern; Departments of Clinical Neurosciences, Division of Neurology (C.P., R.A.D.P.), and Radiology (R.A.D.P.) Lausanne University Hospital and University of Lausanne; Department of Clinical Neurosciences, Division of Neurology (C.B., P.H.L.), and Radiology (M.I.V.) Geneva University Hospitals and Faculty of Medicine; Faculty of Biomedical Sciences (C.Z.), Università della Svizzera Italiana, Lugano, Switzerland; Institute of Experimental Neurology, Division of Neuroscience (M.A.); Vita-Salute San Raffaele University and Hospital, Milan, Italy
| | - Esther Ruberte
- From Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, Faculty of Medicine (A. Cagol, L.M.-G., S.L., C.T., M.B., R.G., P.-J.L., M.W., E.R., E.-W.R., Ö.Y., L.K., C. Granziera), Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB) (A. Cagol, L.M.-G., C.T., M.B., R.G., P.-J.L., M.W., E.R.,O.Y., J.O., J.L., M.D.S., B.F.-B., T.D., D.L., L.K., J.K., C. Granziera), Department of Clinical Research (P.B., S.A.S.), Division of Radiological Physics, Department of Radiology (M.W.), and Division of Diagnostic and Interventional Neuroradiology, Clinic for Radiology and Nuclear Medicine (J.M.L.), University Hospital Basel, University of Basel, Switzerland; Translational Neuroradiology Section (C.T), National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD; Medical Image Analysis Center (MIAC) and Quantitative Biomedical Imaging Group (qbig), Department of Biomedical Engineering (E.R., P.C.C.), University Basel; Departments of Neurology (S.M., J.V.) and Radiology (J.W.), Cantonal Hospital St. Gallen; Departments of Neurology (L.A., O.F.) and Radiology (L.R.), Cantonal Hospital Aarau; Departments of Neurology (G.D., C.Z., C.G.) and Neuroradiology (E.P.), Neurocenter of Southern Switzerland, Lugano; Departments of Neurology, Inselspital (A. Chan, A.S.), and Diagnostic and Interventional Neuroradiology, Inselspital (F.W.) Bern University Hospital and University of Bern; Departments of Clinical Neurosciences, Division of Neurology (C.P., R.A.D.P.), and Radiology (R.A.D.P.) Lausanne University Hospital and University of Lausanne; Department of Clinical Neurosciences, Division of Neurology (C.B., P.H.L.), and Radiology (M.I.V.) Geneva University Hospitals and Faculty of Medicine; Faculty of Biomedical Sciences (C.Z.), Università della Svizzera Italiana, Lugano, Switzerland; Institute of Experimental Neurology, Division of Neuroscience (M.A.); Vita-Salute San Raffaele University and Hospital, Milan, Italy
| | - Ernst-Wilhelm Radue
- From Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, Faculty of Medicine (A. Cagol, L.M.-G., S.L., C.T., M.B., R.G., P.-J.L., M.W., E.R., E.-W.R., Ö.Y., L.K., C. Granziera), Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB) (A. Cagol, L.M.-G., C.T., M.B., R.G., P.-J.L., M.W., E.R.,O.Y., J.O., J.L., M.D.S., B.F.-B., T.D., D.L., L.K., J.K., C. Granziera), Department of Clinical Research (P.B., S.A.S.), Division of Radiological Physics, Department of Radiology (M.W.), and Division of Diagnostic and Interventional Neuroradiology, Clinic for Radiology and Nuclear Medicine (J.M.L.), University Hospital Basel, University of Basel, Switzerland; Translational Neuroradiology Section (C.T), National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD; Medical Image Analysis Center (MIAC) and Quantitative Biomedical Imaging Group (qbig), Department of Biomedical Engineering (E.R., P.C.C.), University Basel; Departments of Neurology (S.M., J.V.) and Radiology (J.W.), Cantonal Hospital St. Gallen; Departments of Neurology (L.A., O.F.) and Radiology (L.R.), Cantonal Hospital Aarau; Departments of Neurology (G.D., C.Z., C.G.) and Neuroradiology (E.P.), Neurocenter of Southern Switzerland, Lugano; Departments of Neurology, Inselspital (A. Chan, A.S.), and Diagnostic and Interventional Neuroradiology, Inselspital (F.W.) Bern University Hospital and University of Bern; Departments of Clinical Neurosciences, Division of Neurology (C.P., R.A.D.P.), and Radiology (R.A.D.P.) Lausanne University Hospital and University of Lausanne; Department of Clinical Neurosciences, Division of Neurology (C.B., P.H.L.), and Radiology (M.I.V.) Geneva University Hospitals and Faculty of Medicine; Faculty of Biomedical Sciences (C.Z.), Università della Svizzera Italiana, Lugano, Switzerland; Institute of Experimental Neurology, Division of Neuroscience (M.A.); Vita-Salute San Raffaele University and Hospital, Milan, Italy
| | - Özgür Yaldizli
- From Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, Faculty of Medicine (A. Cagol, L.M.-G., S.L., C.T., M.B., R.G., P.-J.L., M.W., E.R., E.-W.R., Ö.Y., L.K., C. Granziera), Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB) (A. Cagol, L.M.-G., C.T., M.B., R.G., P.-J.L., M.W., E.R.,O.Y., J.O., J.L., M.D.S., B.F.-B., T.D., D.L., L.K., J.K., C. Granziera), Department of Clinical Research (P.B., S.A.S.), Division of Radiological Physics, Department of Radiology (M.W.), and Division of Diagnostic and Interventional Neuroradiology, Clinic for Radiology and Nuclear Medicine (J.M.L.), University Hospital Basel, University of Basel, Switzerland; Translational Neuroradiology Section (C.T), National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD; Medical Image Analysis Center (MIAC) and Quantitative Biomedical Imaging Group (qbig), Department of Biomedical Engineering (E.R., P.C.C.), University Basel; Departments of Neurology (S.M., J.V.) and Radiology (J.W.), Cantonal Hospital St. Gallen; Departments of Neurology (L.A., O.F.) and Radiology (L.R.), Cantonal Hospital Aarau; Departments of Neurology (G.D., C.Z., C.G.) and Neuroradiology (E.P.), Neurocenter of Southern Switzerland, Lugano; Departments of Neurology, Inselspital (A. Chan, A.S.), and Diagnostic and Interventional Neuroradiology, Inselspital (F.W.) Bern University Hospital and University of Bern; Departments of Clinical Neurosciences, Division of Neurology (C.P., R.A.D.P.), and Radiology (R.A.D.P.) Lausanne University Hospital and University of Lausanne; Department of Clinical Neurosciences, Division of Neurology (C.B., P.H.L.), and Radiology (M.I.V.) Geneva University Hospitals and Faculty of Medicine; Faculty of Biomedical Sciences (C.Z.), Università della Svizzera Italiana, Lugano, Switzerland; Institute of Experimental Neurology, Division of Neuroscience (M.A.); Vita-Salute San Raffaele University and Hospital, Milan, Italy
| | - Johanna Oechtering
- From Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, Faculty of Medicine (A. Cagol, L.M.-G., S.L., C.T., M.B., R.G., P.-J.L., M.W., E.R., E.-W.R., Ö.Y., L.K., C. Granziera), Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB) (A. Cagol, L.M.-G., C.T., M.B., R.G., P.-J.L., M.W., E.R.,O.Y., J.O., J.L., M.D.S., B.F.-B., T.D., D.L., L.K., J.K., C. Granziera), Department of Clinical Research (P.B., S.A.S.), Division of Radiological Physics, Department of Radiology (M.W.), and Division of Diagnostic and Interventional Neuroradiology, Clinic for Radiology and Nuclear Medicine (J.M.L.), University Hospital Basel, University of Basel, Switzerland; Translational Neuroradiology Section (C.T), National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD; Medical Image Analysis Center (MIAC) and Quantitative Biomedical Imaging Group (qbig), Department of Biomedical Engineering (E.R., P.C.C.), University Basel; Departments of Neurology (S.M., J.V.) and Radiology (J.W.), Cantonal Hospital St. Gallen; Departments of Neurology (L.A., O.F.) and Radiology (L.R.), Cantonal Hospital Aarau; Departments of Neurology (G.D., C.Z., C.G.) and Neuroradiology (E.P.), Neurocenter of Southern Switzerland, Lugano; Departments of Neurology, Inselspital (A. Chan, A.S.), and Diagnostic and Interventional Neuroradiology, Inselspital (F.W.) Bern University Hospital and University of Bern; Departments of Clinical Neurosciences, Division of Neurology (C.P., R.A.D.P.), and Radiology (R.A.D.P.) Lausanne University Hospital and University of Lausanne; Department of Clinical Neurosciences, Division of Neurology (C.B., P.H.L.), and Radiology (M.I.V.) Geneva University Hospitals and Faculty of Medicine; Faculty of Biomedical Sciences (C.Z.), Università della Svizzera Italiana, Lugano, Switzerland; Institute of Experimental Neurology, Division of Neuroscience (M.A.); Vita-Salute San Raffaele University and Hospital, Milan, Italy
| | - Johannes Lorscheider
- From Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, Faculty of Medicine (A. Cagol, L.M.-G., S.L., C.T., M.B., R.G., P.-J.L., M.W., E.R., E.-W.R., Ö.Y., L.K., C. Granziera), Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB) (A. Cagol, L.M.-G., C.T., M.B., R.G., P.-J.L., M.W., E.R.,O.Y., J.O., J.L., M.D.S., B.F.-B., T.D., D.L., L.K., J.K., C. Granziera), Department of Clinical Research (P.B., S.A.S.), Division of Radiological Physics, Department of Radiology (M.W.), and Division of Diagnostic and Interventional Neuroradiology, Clinic for Radiology and Nuclear Medicine (J.M.L.), University Hospital Basel, University of Basel, Switzerland; Translational Neuroradiology Section (C.T), National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD; Medical Image Analysis Center (MIAC) and Quantitative Biomedical Imaging Group (qbig), Department of Biomedical Engineering (E.R., P.C.C.), University Basel; Departments of Neurology (S.M., J.V.) and Radiology (J.W.), Cantonal Hospital St. Gallen; Departments of Neurology (L.A., O.F.) and Radiology (L.R.), Cantonal Hospital Aarau; Departments of Neurology (G.D., C.Z., C.G.) and Neuroradiology (E.P.), Neurocenter of Southern Switzerland, Lugano; Departments of Neurology, Inselspital (A. Chan, A.S.), and Diagnostic and Interventional Neuroradiology, Inselspital (F.W.) Bern University Hospital and University of Bern; Departments of Clinical Neurosciences, Division of Neurology (C.P., R.A.D.P.), and Radiology (R.A.D.P.) Lausanne University Hospital and University of Lausanne; Department of Clinical Neurosciences, Division of Neurology (C.B., P.H.L.), and Radiology (M.I.V.) Geneva University Hospitals and Faculty of Medicine; Faculty of Biomedical Sciences (C.Z.), Università della Svizzera Italiana, Lugano, Switzerland; Institute of Experimental Neurology, Division of Neuroscience (M.A.); Vita-Salute San Raffaele University and Hospital, Milan, Italy
| | - Marcus D'Souza
- From Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, Faculty of Medicine (A. Cagol, L.M.-G., S.L., C.T., M.B., R.G., P.-J.L., M.W., E.R., E.-W.R., Ö.Y., L.K., C. Granziera), Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB) (A. Cagol, L.M.-G., C.T., M.B., R.G., P.-J.L., M.W., E.R.,O.Y., J.O., J.L., M.D.S., B.F.-B., T.D., D.L., L.K., J.K., C. Granziera), Department of Clinical Research (P.B., S.A.S.), Division of Radiological Physics, Department of Radiology (M.W.), and Division of Diagnostic and Interventional Neuroradiology, Clinic for Radiology and Nuclear Medicine (J.M.L.), University Hospital Basel, University of Basel, Switzerland; Translational Neuroradiology Section (C.T), National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD; Medical Image Analysis Center (MIAC) and Quantitative Biomedical Imaging Group (qbig), Department of Biomedical Engineering (E.R., P.C.C.), University Basel; Departments of Neurology (S.M., J.V.) and Radiology (J.W.), Cantonal Hospital St. Gallen; Departments of Neurology (L.A., O.F.) and Radiology (L.R.), Cantonal Hospital Aarau; Departments of Neurology (G.D., C.Z., C.G.) and Neuroradiology (E.P.), Neurocenter of Southern Switzerland, Lugano; Departments of Neurology, Inselspital (A. Chan, A.S.), and Diagnostic and Interventional Neuroradiology, Inselspital (F.W.) Bern University Hospital and University of Bern; Departments of Clinical Neurosciences, Division of Neurology (C.P., R.A.D.P.), and Radiology (R.A.D.P.) Lausanne University Hospital and University of Lausanne; Department of Clinical Neurosciences, Division of Neurology (C.B., P.H.L.), and Radiology (M.I.V.) Geneva University Hospitals and Faculty of Medicine; Faculty of Biomedical Sciences (C.Z.), Università della Svizzera Italiana, Lugano, Switzerland; Institute of Experimental Neurology, Division of Neuroscience (M.A.); Vita-Salute San Raffaele University and Hospital, Milan, Italy
| | - Bettina Fischer-Barnicol
- From Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, Faculty of Medicine (A. Cagol, L.M.-G., S.L., C.T., M.B., R.G., P.-J.L., M.W., E.R., E.-W.R., Ö.Y., L.K., C. Granziera), Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB) (A. Cagol, L.M.-G., C.T., M.B., R.G., P.-J.L., M.W., E.R.,O.Y., J.O., J.L., M.D.S., B.F.-B., T.D., D.L., L.K., J.K., C. Granziera), Department of Clinical Research (P.B., S.A.S.), Division of Radiological Physics, Department of Radiology (M.W.), and Division of Diagnostic and Interventional Neuroradiology, Clinic for Radiology and Nuclear Medicine (J.M.L.), University Hospital Basel, University of Basel, Switzerland; Translational Neuroradiology Section (C.T), National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD; Medical Image Analysis Center (MIAC) and Quantitative Biomedical Imaging Group (qbig), Department of Biomedical Engineering (E.R., P.C.C.), University Basel; Departments of Neurology (S.M., J.V.) and Radiology (J.W.), Cantonal Hospital St. Gallen; Departments of Neurology (L.A., O.F.) and Radiology (L.R.), Cantonal Hospital Aarau; Departments of Neurology (G.D., C.Z., C.G.) and Neuroradiology (E.P.), Neurocenter of Southern Switzerland, Lugano; Departments of Neurology, Inselspital (A. Chan, A.S.), and Diagnostic and Interventional Neuroradiology, Inselspital (F.W.) Bern University Hospital and University of Bern; Departments of Clinical Neurosciences, Division of Neurology (C.P., R.A.D.P.), and Radiology (R.A.D.P.) Lausanne University Hospital and University of Lausanne; Department of Clinical Neurosciences, Division of Neurology (C.B., P.H.L.), and Radiology (M.I.V.) Geneva University Hospitals and Faculty of Medicine; Faculty of Biomedical Sciences (C.Z.), Università della Svizzera Italiana, Lugano, Switzerland; Institute of Experimental Neurology, Division of Neuroscience (M.A.); Vita-Salute San Raffaele University and Hospital, Milan, Italy
| | - Stefanie Müller
- From Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, Faculty of Medicine (A. Cagol, L.M.-G., S.L., C.T., M.B., R.G., P.-J.L., M.W., E.R., E.-W.R., Ö.Y., L.K., C. Granziera), Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB) (A. Cagol, L.M.-G., C.T., M.B., R.G., P.-J.L., M.W., E.R.,O.Y., J.O., J.L., M.D.S., B.F.-B., T.D., D.L., L.K., J.K., C. Granziera), Department of Clinical Research (P.B., S.A.S.), Division of Radiological Physics, Department of Radiology (M.W.), and Division of Diagnostic and Interventional Neuroradiology, Clinic for Radiology and Nuclear Medicine (J.M.L.), University Hospital Basel, University of Basel, Switzerland; Translational Neuroradiology Section (C.T), National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD; Medical Image Analysis Center (MIAC) and Quantitative Biomedical Imaging Group (qbig), Department of Biomedical Engineering (E.R., P.C.C.), University Basel; Departments of Neurology (S.M., J.V.) and Radiology (J.W.), Cantonal Hospital St. Gallen; Departments of Neurology (L.A., O.F.) and Radiology (L.R.), Cantonal Hospital Aarau; Departments of Neurology (G.D., C.Z., C.G.) and Neuroradiology (E.P.), Neurocenter of Southern Switzerland, Lugano; Departments of Neurology, Inselspital (A. Chan, A.S.), and Diagnostic and Interventional Neuroradiology, Inselspital (F.W.) Bern University Hospital and University of Bern; Departments of Clinical Neurosciences, Division of Neurology (C.P., R.A.D.P.), and Radiology (R.A.D.P.) Lausanne University Hospital and University of Lausanne; Department of Clinical Neurosciences, Division of Neurology (C.B., P.H.L.), and Radiology (M.I.V.) Geneva University Hospitals and Faculty of Medicine; Faculty of Biomedical Sciences (C.Z.), Università della Svizzera Italiana, Lugano, Switzerland; Institute of Experimental Neurology, Division of Neuroscience (M.A.); Vita-Salute San Raffaele University and Hospital, Milan, Italy
| | - Lutz Achtnichts
- From Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, Faculty of Medicine (A. Cagol, L.M.-G., S.L., C.T., M.B., R.G., P.-J.L., M.W., E.R., E.-W.R., Ö.Y., L.K., C. Granziera), Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB) (A. Cagol, L.M.-G., C.T., M.B., R.G., P.-J.L., M.W., E.R.,O.Y., J.O., J.L., M.D.S., B.F.-B., T.D., D.L., L.K., J.K., C. Granziera), Department of Clinical Research (P.B., S.A.S.), Division of Radiological Physics, Department of Radiology (M.W.), and Division of Diagnostic and Interventional Neuroradiology, Clinic for Radiology and Nuclear Medicine (J.M.L.), University Hospital Basel, University of Basel, Switzerland; Translational Neuroradiology Section (C.T), National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD; Medical Image Analysis Center (MIAC) and Quantitative Biomedical Imaging Group (qbig), Department of Biomedical Engineering (E.R., P.C.C.), University Basel; Departments of Neurology (S.M., J.V.) and Radiology (J.W.), Cantonal Hospital St. Gallen; Departments of Neurology (L.A., O.F.) and Radiology (L.R.), Cantonal Hospital Aarau; Departments of Neurology (G.D., C.Z., C.G.) and Neuroradiology (E.P.), Neurocenter of Southern Switzerland, Lugano; Departments of Neurology, Inselspital (A. Chan, A.S.), and Diagnostic and Interventional Neuroradiology, Inselspital (F.W.) Bern University Hospital and University of Bern; Departments of Clinical Neurosciences, Division of Neurology (C.P., R.A.D.P.), and Radiology (R.A.D.P.) Lausanne University Hospital and University of Lausanne; Department of Clinical Neurosciences, Division of Neurology (C.B., P.H.L.), and Radiology (M.I.V.) Geneva University Hospitals and Faculty of Medicine; Faculty of Biomedical Sciences (C.Z.), Università della Svizzera Italiana, Lugano, Switzerland; Institute of Experimental Neurology, Division of Neuroscience (M.A.); Vita-Salute San Raffaele University and Hospital, Milan, Italy
| | - Jochen Vehoff
- From Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, Faculty of Medicine (A. Cagol, L.M.-G., S.L., C.T., M.B., R.G., P.-J.L., M.W., E.R., E.-W.R., Ö.Y., L.K., C. Granziera), Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB) (A. Cagol, L.M.-G., C.T., M.B., R.G., P.-J.L., M.W., E.R.,O.Y., J.O., J.L., M.D.S., B.F.-B., T.D., D.L., L.K., J.K., C. Granziera), Department of Clinical Research (P.B., S.A.S.), Division of Radiological Physics, Department of Radiology (M.W.), and Division of Diagnostic and Interventional Neuroradiology, Clinic for Radiology and Nuclear Medicine (J.M.L.), University Hospital Basel, University of Basel, Switzerland; Translational Neuroradiology Section (C.T), National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD; Medical Image Analysis Center (MIAC) and Quantitative Biomedical Imaging Group (qbig), Department of Biomedical Engineering (E.R., P.C.C.), University Basel; Departments of Neurology (S.M., J.V.) and Radiology (J.W.), Cantonal Hospital St. Gallen; Departments of Neurology (L.A., O.F.) and Radiology (L.R.), Cantonal Hospital Aarau; Departments of Neurology (G.D., C.Z., C.G.) and Neuroradiology (E.P.), Neurocenter of Southern Switzerland, Lugano; Departments of Neurology, Inselspital (A. Chan, A.S.), and Diagnostic and Interventional Neuroradiology, Inselspital (F.W.) Bern University Hospital and University of Bern; Departments of Clinical Neurosciences, Division of Neurology (C.P., R.A.D.P.), and Radiology (R.A.D.P.) Lausanne University Hospital and University of Lausanne; Department of Clinical Neurosciences, Division of Neurology (C.B., P.H.L.), and Radiology (M.I.V.) Geneva University Hospitals and Faculty of Medicine; Faculty of Biomedical Sciences (C.Z.), Università della Svizzera Italiana, Lugano, Switzerland; Institute of Experimental Neurology, Division of Neuroscience (M.A.); Vita-Salute San Raffaele University and Hospital, Milan, Italy
| | - Giulio Disanto
- From Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, Faculty of Medicine (A. Cagol, L.M.-G., S.L., C.T., M.B., R.G., P.-J.L., M.W., E.R., E.-W.R., Ö.Y., L.K., C. Granziera), Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB) (A. Cagol, L.M.-G., C.T., M.B., R.G., P.-J.L., M.W., E.R.,O.Y., J.O., J.L., M.D.S., B.F.-B., T.D., D.L., L.K., J.K., C. Granziera), Department of Clinical Research (P.B., S.A.S.), Division of Radiological Physics, Department of Radiology (M.W.), and Division of Diagnostic and Interventional Neuroradiology, Clinic for Radiology and Nuclear Medicine (J.M.L.), University Hospital Basel, University of Basel, Switzerland; Translational Neuroradiology Section (C.T), National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD; Medical Image Analysis Center (MIAC) and Quantitative Biomedical Imaging Group (qbig), Department of Biomedical Engineering (E.R., P.C.C.), University Basel; Departments of Neurology (S.M., J.V.) and Radiology (J.W.), Cantonal Hospital St. Gallen; Departments of Neurology (L.A., O.F.) and Radiology (L.R.), Cantonal Hospital Aarau; Departments of Neurology (G.D., C.Z., C.G.) and Neuroradiology (E.P.), Neurocenter of Southern Switzerland, Lugano; Departments of Neurology, Inselspital (A. Chan, A.S.), and Diagnostic and Interventional Neuroradiology, Inselspital (F.W.) Bern University Hospital and University of Bern; Departments of Clinical Neurosciences, Division of Neurology (C.P., R.A.D.P.), and Radiology (R.A.D.P.) Lausanne University Hospital and University of Lausanne; Department of Clinical Neurosciences, Division of Neurology (C.B., P.H.L.), and Radiology (M.I.V.) Geneva University Hospitals and Faculty of Medicine; Faculty of Biomedical Sciences (C.Z.), Università della Svizzera Italiana, Lugano, Switzerland; Institute of Experimental Neurology, Division of Neuroscience (M.A.); Vita-Salute San Raffaele University and Hospital, Milan, Italy
| | - Oliver Findling
- From Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, Faculty of Medicine (A. Cagol, L.M.-G., S.L., C.T., M.B., R.G., P.-J.L., M.W., E.R., E.-W.R., Ö.Y., L.K., C. Granziera), Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB) (A. Cagol, L.M.-G., C.T., M.B., R.G., P.-J.L., M.W., E.R.,O.Y., J.O., J.L., M.D.S., B.F.-B., T.D., D.L., L.K., J.K., C. Granziera), Department of Clinical Research (P.B., S.A.S.), Division of Radiological Physics, Department of Radiology (M.W.), and Division of Diagnostic and Interventional Neuroradiology, Clinic for Radiology and Nuclear Medicine (J.M.L.), University Hospital Basel, University of Basel, Switzerland; Translational Neuroradiology Section (C.T), National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD; Medical Image Analysis Center (MIAC) and Quantitative Biomedical Imaging Group (qbig), Department of Biomedical Engineering (E.R., P.C.C.), University Basel; Departments of Neurology (S.M., J.V.) and Radiology (J.W.), Cantonal Hospital St. Gallen; Departments of Neurology (L.A., O.F.) and Radiology (L.R.), Cantonal Hospital Aarau; Departments of Neurology (G.D., C.Z., C.G.) and Neuroradiology (E.P.), Neurocenter of Southern Switzerland, Lugano; Departments of Neurology, Inselspital (A. Chan, A.S.), and Diagnostic and Interventional Neuroradiology, Inselspital (F.W.) Bern University Hospital and University of Bern; Departments of Clinical Neurosciences, Division of Neurology (C.P., R.A.D.P.), and Radiology (R.A.D.P.) Lausanne University Hospital and University of Lausanne; Department of Clinical Neurosciences, Division of Neurology (C.B., P.H.L.), and Radiology (M.I.V.) Geneva University Hospitals and Faculty of Medicine; Faculty of Biomedical Sciences (C.Z.), Università della Svizzera Italiana, Lugano, Switzerland; Institute of Experimental Neurology, Division of Neuroscience (M.A.); Vita-Salute San Raffaele University and Hospital, Milan, Italy
| | - Andrew Chan
- From Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, Faculty of Medicine (A. Cagol, L.M.-G., S.L., C.T., M.B., R.G., P.-J.L., M.W., E.R., E.-W.R., Ö.Y., L.K., C. Granziera), Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB) (A. Cagol, L.M.-G., C.T., M.B., R.G., P.-J.L., M.W., E.R.,O.Y., J.O., J.L., M.D.S., B.F.-B., T.D., D.L., L.K., J.K., C. Granziera), Department of Clinical Research (P.B., S.A.S.), Division of Radiological Physics, Department of Radiology (M.W.), and Division of Diagnostic and Interventional Neuroradiology, Clinic for Radiology and Nuclear Medicine (J.M.L.), University Hospital Basel, University of Basel, Switzerland; Translational Neuroradiology Section (C.T), National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD; Medical Image Analysis Center (MIAC) and Quantitative Biomedical Imaging Group (qbig), Department of Biomedical Engineering (E.R., P.C.C.), University Basel; Departments of Neurology (S.M., J.V.) and Radiology (J.W.), Cantonal Hospital St. Gallen; Departments of Neurology (L.A., O.F.) and Radiology (L.R.), Cantonal Hospital Aarau; Departments of Neurology (G.D., C.Z., C.G.) and Neuroradiology (E.P.), Neurocenter of Southern Switzerland, Lugano; Departments of Neurology, Inselspital (A. Chan, A.S.), and Diagnostic and Interventional Neuroradiology, Inselspital (F.W.) Bern University Hospital and University of Bern; Departments of Clinical Neurosciences, Division of Neurology (C.P., R.A.D.P.), and Radiology (R.A.D.P.) Lausanne University Hospital and University of Lausanne; Department of Clinical Neurosciences, Division of Neurology (C.B., P.H.L.), and Radiology (M.I.V.) Geneva University Hospitals and Faculty of Medicine; Faculty of Biomedical Sciences (C.Z.), Università della Svizzera Italiana, Lugano, Switzerland; Institute of Experimental Neurology, Division of Neuroscience (M.A.); Vita-Salute San Raffaele University and Hospital, Milan, Italy
| | - Anke Salmen
- From Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, Faculty of Medicine (A. Cagol, L.M.-G., S.L., C.T., M.B., R.G., P.-J.L., M.W., E.R., E.-W.R., Ö.Y., L.K., C. Granziera), Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB) (A. Cagol, L.M.-G., C.T., M.B., R.G., P.-J.L., M.W., E.R.,O.Y., J.O., J.L., M.D.S., B.F.-B., T.D., D.L., L.K., J.K., C. Granziera), Department of Clinical Research (P.B., S.A.S.), Division of Radiological Physics, Department of Radiology (M.W.), and Division of Diagnostic and Interventional Neuroradiology, Clinic for Radiology and Nuclear Medicine (J.M.L.), University Hospital Basel, University of Basel, Switzerland; Translational Neuroradiology Section (C.T), National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD; Medical Image Analysis Center (MIAC) and Quantitative Biomedical Imaging Group (qbig), Department of Biomedical Engineering (E.R., P.C.C.), University Basel; Departments of Neurology (S.M., J.V.) and Radiology (J.W.), Cantonal Hospital St. Gallen; Departments of Neurology (L.A., O.F.) and Radiology (L.R.), Cantonal Hospital Aarau; Departments of Neurology (G.D., C.Z., C.G.) and Neuroradiology (E.P.), Neurocenter of Southern Switzerland, Lugano; Departments of Neurology, Inselspital (A. Chan, A.S.), and Diagnostic and Interventional Neuroradiology, Inselspital (F.W.) Bern University Hospital and University of Bern; Departments of Clinical Neurosciences, Division of Neurology (C.P., R.A.D.P.), and Radiology (R.A.D.P.) Lausanne University Hospital and University of Lausanne; Department of Clinical Neurosciences, Division of Neurology (C.B., P.H.L.), and Radiology (M.I.V.) Geneva University Hospitals and Faculty of Medicine; Faculty of Biomedical Sciences (C.Z.), Università della Svizzera Italiana, Lugano, Switzerland; Institute of Experimental Neurology, Division of Neuroscience (M.A.); Vita-Salute San Raffaele University and Hospital, Milan, Italy
| | - Caroline Pot
- From Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, Faculty of Medicine (A. Cagol, L.M.-G., S.L., C.T., M.B., R.G., P.-J.L., M.W., E.R., E.-W.R., Ö.Y., L.K., C. Granziera), Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB) (A. Cagol, L.M.-G., C.T., M.B., R.G., P.-J.L., M.W., E.R.,O.Y., J.O., J.L., M.D.S., B.F.-B., T.D., D.L., L.K., J.K., C. Granziera), Department of Clinical Research (P.B., S.A.S.), Division of Radiological Physics, Department of Radiology (M.W.), and Division of Diagnostic and Interventional Neuroradiology, Clinic for Radiology and Nuclear Medicine (J.M.L.), University Hospital Basel, University of Basel, Switzerland; Translational Neuroradiology Section (C.T), National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD; Medical Image Analysis Center (MIAC) and Quantitative Biomedical Imaging Group (qbig), Department of Biomedical Engineering (E.R., P.C.C.), University Basel; Departments of Neurology (S.M., J.V.) and Radiology (J.W.), Cantonal Hospital St. Gallen; Departments of Neurology (L.A., O.F.) and Radiology (L.R.), Cantonal Hospital Aarau; Departments of Neurology (G.D., C.Z., C.G.) and Neuroradiology (E.P.), Neurocenter of Southern Switzerland, Lugano; Departments of Neurology, Inselspital (A. Chan, A.S.), and Diagnostic and Interventional Neuroradiology, Inselspital (F.W.) Bern University Hospital and University of Bern; Departments of Clinical Neurosciences, Division of Neurology (C.P., R.A.D.P.), and Radiology (R.A.D.P.) Lausanne University Hospital and University of Lausanne; Department of Clinical Neurosciences, Division of Neurology (C.B., P.H.L.), and Radiology (M.I.V.) Geneva University Hospitals and Faculty of Medicine; Faculty of Biomedical Sciences (C.Z.), Università della Svizzera Italiana, Lugano, Switzerland; Institute of Experimental Neurology, Division of Neuroscience (M.A.); Vita-Salute San Raffaele University and Hospital, Milan, Italy
| | - Claire Bridel
- From Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, Faculty of Medicine (A. Cagol, L.M.-G., S.L., C.T., M.B., R.G., P.-J.L., M.W., E.R., E.-W.R., Ö.Y., L.K., C. Granziera), Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB) (A. Cagol, L.M.-G., C.T., M.B., R.G., P.-J.L., M.W., E.R.,O.Y., J.O., J.L., M.D.S., B.F.-B., T.D., D.L., L.K., J.K., C. Granziera), Department of Clinical Research (P.B., S.A.S.), Division of Radiological Physics, Department of Radiology (M.W.), and Division of Diagnostic and Interventional Neuroradiology, Clinic for Radiology and Nuclear Medicine (J.M.L.), University Hospital Basel, University of Basel, Switzerland; Translational Neuroradiology Section (C.T), National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD; Medical Image Analysis Center (MIAC) and Quantitative Biomedical Imaging Group (qbig), Department of Biomedical Engineering (E.R., P.C.C.), University Basel; Departments of Neurology (S.M., J.V.) and Radiology (J.W.), Cantonal Hospital St. Gallen; Departments of Neurology (L.A., O.F.) and Radiology (L.R.), Cantonal Hospital Aarau; Departments of Neurology (G.D., C.Z., C.G.) and Neuroradiology (E.P.), Neurocenter of Southern Switzerland, Lugano; Departments of Neurology, Inselspital (A. Chan, A.S.), and Diagnostic and Interventional Neuroradiology, Inselspital (F.W.) Bern University Hospital and University of Bern; Departments of Clinical Neurosciences, Division of Neurology (C.P., R.A.D.P.), and Radiology (R.A.D.P.) Lausanne University Hospital and University of Lausanne; Department of Clinical Neurosciences, Division of Neurology (C.B., P.H.L.), and Radiology (M.I.V.) Geneva University Hospitals and Faculty of Medicine; Faculty of Biomedical Sciences (C.Z.), Università della Svizzera Italiana, Lugano, Switzerland; Institute of Experimental Neurology, Division of Neuroscience (M.A.); Vita-Salute San Raffaele University and Hospital, Milan, Italy
| | - Chiara Zecca
- From Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, Faculty of Medicine (A. Cagol, L.M.-G., S.L., C.T., M.B., R.G., P.-J.L., M.W., E.R., E.-W.R., Ö.Y., L.K., C. Granziera), Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB) (A. Cagol, L.M.-G., C.T., M.B., R.G., P.-J.L., M.W., E.R.,O.Y., J.O., J.L., M.D.S., B.F.-B., T.D., D.L., L.K., J.K., C. Granziera), Department of Clinical Research (P.B., S.A.S.), Division of Radiological Physics, Department of Radiology (M.W.), and Division of Diagnostic and Interventional Neuroradiology, Clinic for Radiology and Nuclear Medicine (J.M.L.), University Hospital Basel, University of Basel, Switzerland; Translational Neuroradiology Section (C.T), National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD; Medical Image Analysis Center (MIAC) and Quantitative Biomedical Imaging Group (qbig), Department of Biomedical Engineering (E.R., P.C.C.), University Basel; Departments of Neurology (S.M., J.V.) and Radiology (J.W.), Cantonal Hospital St. Gallen; Departments of Neurology (L.A., O.F.) and Radiology (L.R.), Cantonal Hospital Aarau; Departments of Neurology (G.D., C.Z., C.G.) and Neuroradiology (E.P.), Neurocenter of Southern Switzerland, Lugano; Departments of Neurology, Inselspital (A. Chan, A.S.), and Diagnostic and Interventional Neuroradiology, Inselspital (F.W.) Bern University Hospital and University of Bern; Departments of Clinical Neurosciences, Division of Neurology (C.P., R.A.D.P.), and Radiology (R.A.D.P.) Lausanne University Hospital and University of Lausanne; Department of Clinical Neurosciences, Division of Neurology (C.B., P.H.L.), and Radiology (M.I.V.) Geneva University Hospitals and Faculty of Medicine; Faculty of Biomedical Sciences (C.Z.), Università della Svizzera Italiana, Lugano, Switzerland; Institute of Experimental Neurology, Division of Neuroscience (M.A.); Vita-Salute San Raffaele University and Hospital, Milan, Italy
| | - Tobias Derfuss
- From Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, Faculty of Medicine (A. Cagol, L.M.-G., S.L., C.T., M.B., R.G., P.-J.L., M.W., E.R., E.-W.R., Ö.Y., L.K., C. Granziera), Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB) (A. Cagol, L.M.-G., C.T., M.B., R.G., P.-J.L., M.W., E.R.,O.Y., J.O., J.L., M.D.S., B.F.-B., T.D., D.L., L.K., J.K., C. Granziera), Department of Clinical Research (P.B., S.A.S.), Division of Radiological Physics, Department of Radiology (M.W.), and Division of Diagnostic and Interventional Neuroradiology, Clinic for Radiology and Nuclear Medicine (J.M.L.), University Hospital Basel, University of Basel, Switzerland; Translational Neuroradiology Section (C.T), National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD; Medical Image Analysis Center (MIAC) and Quantitative Biomedical Imaging Group (qbig), Department of Biomedical Engineering (E.R., P.C.C.), University Basel; Departments of Neurology (S.M., J.V.) and Radiology (J.W.), Cantonal Hospital St. Gallen; Departments of Neurology (L.A., O.F.) and Radiology (L.R.), Cantonal Hospital Aarau; Departments of Neurology (G.D., C.Z., C.G.) and Neuroradiology (E.P.), Neurocenter of Southern Switzerland, Lugano; Departments of Neurology, Inselspital (A. Chan, A.S.), and Diagnostic and Interventional Neuroradiology, Inselspital (F.W.) Bern University Hospital and University of Bern; Departments of Clinical Neurosciences, Division of Neurology (C.P., R.A.D.P.), and Radiology (R.A.D.P.) Lausanne University Hospital and University of Lausanne; Department of Clinical Neurosciences, Division of Neurology (C.B., P.H.L.), and Radiology (M.I.V.) Geneva University Hospitals and Faculty of Medicine; Faculty of Biomedical Sciences (C.Z.), Università della Svizzera Italiana, Lugano, Switzerland; Institute of Experimental Neurology, Division of Neuroscience (M.A.); Vita-Salute San Raffaele University and Hospital, Milan, Italy
| | - Johanna M Lieb
- From Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, Faculty of Medicine (A. Cagol, L.M.-G., S.L., C.T., M.B., R.G., P.-J.L., M.W., E.R., E.-W.R., Ö.Y., L.K., C. Granziera), Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB) (A. Cagol, L.M.-G., C.T., M.B., R.G., P.-J.L., M.W., E.R.,O.Y., J.O., J.L., M.D.S., B.F.-B., T.D., D.L., L.K., J.K., C. Granziera), Department of Clinical Research (P.B., S.A.S.), Division of Radiological Physics, Department of Radiology (M.W.), and Division of Diagnostic and Interventional Neuroradiology, Clinic for Radiology and Nuclear Medicine (J.M.L.), University Hospital Basel, University of Basel, Switzerland; Translational Neuroradiology Section (C.T), National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD; Medical Image Analysis Center (MIAC) and Quantitative Biomedical Imaging Group (qbig), Department of Biomedical Engineering (E.R., P.C.C.), University Basel; Departments of Neurology (S.M., J.V.) and Radiology (J.W.), Cantonal Hospital St. Gallen; Departments of Neurology (L.A., O.F.) and Radiology (L.R.), Cantonal Hospital Aarau; Departments of Neurology (G.D., C.Z., C.G.) and Neuroradiology (E.P.), Neurocenter of Southern Switzerland, Lugano; Departments of Neurology, Inselspital (A. Chan, A.S.), and Diagnostic and Interventional Neuroradiology, Inselspital (F.W.) Bern University Hospital and University of Bern; Departments of Clinical Neurosciences, Division of Neurology (C.P., R.A.D.P.), and Radiology (R.A.D.P.) Lausanne University Hospital and University of Lausanne; Department of Clinical Neurosciences, Division of Neurology (C.B., P.H.L.), and Radiology (M.I.V.) Geneva University Hospitals and Faculty of Medicine; Faculty of Biomedical Sciences (C.Z.), Università della Svizzera Italiana, Lugano, Switzerland; Institute of Experimental Neurology, Division of Neuroscience (M.A.); Vita-Salute San Raffaele University and Hospital, Milan, Italy
| | - Luca Remonda
- From Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, Faculty of Medicine (A. Cagol, L.M.-G., S.L., C.T., M.B., R.G., P.-J.L., M.W., E.R., E.-W.R., Ö.Y., L.K., C. Granziera), Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB) (A. Cagol, L.M.-G., C.T., M.B., R.G., P.-J.L., M.W., E.R.,O.Y., J.O., J.L., M.D.S., B.F.-B., T.D., D.L., L.K., J.K., C. Granziera), Department of Clinical Research (P.B., S.A.S.), Division of Radiological Physics, Department of Radiology (M.W.), and Division of Diagnostic and Interventional Neuroradiology, Clinic for Radiology and Nuclear Medicine (J.M.L.), University Hospital Basel, University of Basel, Switzerland; Translational Neuroradiology Section (C.T), National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD; Medical Image Analysis Center (MIAC) and Quantitative Biomedical Imaging Group (qbig), Department of Biomedical Engineering (E.R., P.C.C.), University Basel; Departments of Neurology (S.M., J.V.) and Radiology (J.W.), Cantonal Hospital St. Gallen; Departments of Neurology (L.A., O.F.) and Radiology (L.R.), Cantonal Hospital Aarau; Departments of Neurology (G.D., C.Z., C.G.) and Neuroradiology (E.P.), Neurocenter of Southern Switzerland, Lugano; Departments of Neurology, Inselspital (A. Chan, A.S.), and Diagnostic and Interventional Neuroradiology, Inselspital (F.W.) Bern University Hospital and University of Bern; Departments of Clinical Neurosciences, Division of Neurology (C.P., R.A.D.P.), and Radiology (R.A.D.P.) Lausanne University Hospital and University of Lausanne; Department of Clinical Neurosciences, Division of Neurology (C.B., P.H.L.), and Radiology (M.I.V.) Geneva University Hospitals and Faculty of Medicine; Faculty of Biomedical Sciences (C.Z.), Università della Svizzera Italiana, Lugano, Switzerland; Institute of Experimental Neurology, Division of Neuroscience (M.A.); Vita-Salute San Raffaele University and Hospital, Milan, Italy
| | - Franca Wagner
- From Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, Faculty of Medicine (A. Cagol, L.M.-G., S.L., C.T., M.B., R.G., P.-J.L., M.W., E.R., E.-W.R., Ö.Y., L.K., C. Granziera), Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB) (A. Cagol, L.M.-G., C.T., M.B., R.G., P.-J.L., M.W., E.R.,O.Y., J.O., J.L., M.D.S., B.F.-B., T.D., D.L., L.K., J.K., C. Granziera), Department of Clinical Research (P.B., S.A.S.), Division of Radiological Physics, Department of Radiology (M.W.), and Division of Diagnostic and Interventional Neuroradiology, Clinic for Radiology and Nuclear Medicine (J.M.L.), University Hospital Basel, University of Basel, Switzerland; Translational Neuroradiology Section (C.T), National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD; Medical Image Analysis Center (MIAC) and Quantitative Biomedical Imaging Group (qbig), Department of Biomedical Engineering (E.R., P.C.C.), University Basel; Departments of Neurology (S.M., J.V.) and Radiology (J.W.), Cantonal Hospital St. Gallen; Departments of Neurology (L.A., O.F.) and Radiology (L.R.), Cantonal Hospital Aarau; Departments of Neurology (G.D., C.Z., C.G.) and Neuroradiology (E.P.), Neurocenter of Southern Switzerland, Lugano; Departments of Neurology, Inselspital (A. Chan, A.S.), and Diagnostic and Interventional Neuroradiology, Inselspital (F.W.) Bern University Hospital and University of Bern; Departments of Clinical Neurosciences, Division of Neurology (C.P., R.A.D.P.), and Radiology (R.A.D.P.) Lausanne University Hospital and University of Lausanne; Department of Clinical Neurosciences, Division of Neurology (C.B., P.H.L.), and Radiology (M.I.V.) Geneva University Hospitals and Faculty of Medicine; Faculty of Biomedical Sciences (C.Z.), Università della Svizzera Italiana, Lugano, Switzerland; Institute of Experimental Neurology, Division of Neuroscience (M.A.); Vita-Salute San Raffaele University and Hospital, Milan, Italy
| | - Maria Isabel Vargas
- From Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, Faculty of Medicine (A. Cagol, L.M.-G., S.L., C.T., M.B., R.G., P.-J.L., M.W., E.R., E.-W.R., Ö.Y., L.K., C. Granziera), Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB) (A. Cagol, L.M.-G., C.T., M.B., R.G., P.-J.L., M.W., E.R.,O.Y., J.O., J.L., M.D.S., B.F.-B., T.D., D.L., L.K., J.K., C. Granziera), Department of Clinical Research (P.B., S.A.S.), Division of Radiological Physics, Department of Radiology (M.W.), and Division of Diagnostic and Interventional Neuroradiology, Clinic for Radiology and Nuclear Medicine (J.M.L.), University Hospital Basel, University of Basel, Switzerland; Translational Neuroradiology Section (C.T), National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD; Medical Image Analysis Center (MIAC) and Quantitative Biomedical Imaging Group (qbig), Department of Biomedical Engineering (E.R., P.C.C.), University Basel; Departments of Neurology (S.M., J.V.) and Radiology (J.W.), Cantonal Hospital St. Gallen; Departments of Neurology (L.A., O.F.) and Radiology (L.R.), Cantonal Hospital Aarau; Departments of Neurology (G.D., C.Z., C.G.) and Neuroradiology (E.P.), Neurocenter of Southern Switzerland, Lugano; Departments of Neurology, Inselspital (A. Chan, A.S.), and Diagnostic and Interventional Neuroradiology, Inselspital (F.W.) Bern University Hospital and University of Bern; Departments of Clinical Neurosciences, Division of Neurology (C.P., R.A.D.P.), and Radiology (R.A.D.P.) Lausanne University Hospital and University of Lausanne; Department of Clinical Neurosciences, Division of Neurology (C.B., P.H.L.), and Radiology (M.I.V.) Geneva University Hospitals and Faculty of Medicine; Faculty of Biomedical Sciences (C.Z.), Università della Svizzera Italiana, Lugano, Switzerland; Institute of Experimental Neurology, Division of Neuroscience (M.A.); Vita-Salute San Raffaele University and Hospital, Milan, Italy
| | - Renaud A Du Pasquier
- From Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, Faculty of Medicine (A. Cagol, L.M.-G., S.L., C.T., M.B., R.G., P.-J.L., M.W., E.R., E.-W.R., Ö.Y., L.K., C. Granziera), Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB) (A. Cagol, L.M.-G., C.T., M.B., R.G., P.-J.L., M.W., E.R.,O.Y., J.O., J.L., M.D.S., B.F.-B., T.D., D.L., L.K., J.K., C. Granziera), Department of Clinical Research (P.B., S.A.S.), Division of Radiological Physics, Department of Radiology (M.W.), and Division of Diagnostic and Interventional Neuroradiology, Clinic for Radiology and Nuclear Medicine (J.M.L.), University Hospital Basel, University of Basel, Switzerland; Translational Neuroradiology Section (C.T), National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD; Medical Image Analysis Center (MIAC) and Quantitative Biomedical Imaging Group (qbig), Department of Biomedical Engineering (E.R., P.C.C.), University Basel; Departments of Neurology (S.M., J.V.) and Radiology (J.W.), Cantonal Hospital St. Gallen; Departments of Neurology (L.A., O.F.) and Radiology (L.R.), Cantonal Hospital Aarau; Departments of Neurology (G.D., C.Z., C.G.) and Neuroradiology (E.P.), Neurocenter of Southern Switzerland, Lugano; Departments of Neurology, Inselspital (A. Chan, A.S.), and Diagnostic and Interventional Neuroradiology, Inselspital (F.W.) Bern University Hospital and University of Bern; Departments of Clinical Neurosciences, Division of Neurology (C.P., R.A.D.P.), and Radiology (R.A.D.P.) Lausanne University Hospital and University of Lausanne; Department of Clinical Neurosciences, Division of Neurology (C.B., P.H.L.), and Radiology (M.I.V.) Geneva University Hospitals and Faculty of Medicine; Faculty of Biomedical Sciences (C.Z.), Università della Svizzera Italiana, Lugano, Switzerland; Institute of Experimental Neurology, Division of Neuroscience (M.A.); Vita-Salute San Raffaele University and Hospital, Milan, Italy
| | - Patrice H Lalive
- From Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, Faculty of Medicine (A. Cagol, L.M.-G., S.L., C.T., M.B., R.G., P.-J.L., M.W., E.R., E.-W.R., Ö.Y., L.K., C. Granziera), Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB) (A. Cagol, L.M.-G., C.T., M.B., R.G., P.-J.L., M.W., E.R.,O.Y., J.O., J.L., M.D.S., B.F.-B., T.D., D.L., L.K., J.K., C. Granziera), Department of Clinical Research (P.B., S.A.S.), Division of Radiological Physics, Department of Radiology (M.W.), and Division of Diagnostic and Interventional Neuroradiology, Clinic for Radiology and Nuclear Medicine (J.M.L.), University Hospital Basel, University of Basel, Switzerland; Translational Neuroradiology Section (C.T), National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD; Medical Image Analysis Center (MIAC) and Quantitative Biomedical Imaging Group (qbig), Department of Biomedical Engineering (E.R., P.C.C.), University Basel; Departments of Neurology (S.M., J.V.) and Radiology (J.W.), Cantonal Hospital St. Gallen; Departments of Neurology (L.A., O.F.) and Radiology (L.R.), Cantonal Hospital Aarau; Departments of Neurology (G.D., C.Z., C.G.) and Neuroradiology (E.P.), Neurocenter of Southern Switzerland, Lugano; Departments of Neurology, Inselspital (A. Chan, A.S.), and Diagnostic and Interventional Neuroradiology, Inselspital (F.W.) Bern University Hospital and University of Bern; Departments of Clinical Neurosciences, Division of Neurology (C.P., R.A.D.P.), and Radiology (R.A.D.P.) Lausanne University Hospital and University of Lausanne; Department of Clinical Neurosciences, Division of Neurology (C.B., P.H.L.), and Radiology (M.I.V.) Geneva University Hospitals and Faculty of Medicine; Faculty of Biomedical Sciences (C.Z.), Università della Svizzera Italiana, Lugano, Switzerland; Institute of Experimental Neurology, Division of Neuroscience (M.A.); Vita-Salute San Raffaele University and Hospital, Milan, Italy
| | - Emanuele Pravatà
- From Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, Faculty of Medicine (A. Cagol, L.M.-G., S.L., C.T., M.B., R.G., P.-J.L., M.W., E.R., E.-W.R., Ö.Y., L.K., C. Granziera), Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB) (A. Cagol, L.M.-G., C.T., M.B., R.G., P.-J.L., M.W., E.R.,O.Y., J.O., J.L., M.D.S., B.F.-B., T.D., D.L., L.K., J.K., C. Granziera), Department of Clinical Research (P.B., S.A.S.), Division of Radiological Physics, Department of Radiology (M.W.), and Division of Diagnostic and Interventional Neuroradiology, Clinic for Radiology and Nuclear Medicine (J.M.L.), University Hospital Basel, University of Basel, Switzerland; Translational Neuroradiology Section (C.T), National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD; Medical Image Analysis Center (MIAC) and Quantitative Biomedical Imaging Group (qbig), Department of Biomedical Engineering (E.R., P.C.C.), University Basel; Departments of Neurology (S.M., J.V.) and Radiology (J.W.), Cantonal Hospital St. Gallen; Departments of Neurology (L.A., O.F.) and Radiology (L.R.), Cantonal Hospital Aarau; Departments of Neurology (G.D., C.Z., C.G.) and Neuroradiology (E.P.), Neurocenter of Southern Switzerland, Lugano; Departments of Neurology, Inselspital (A. Chan, A.S.), and Diagnostic and Interventional Neuroradiology, Inselspital (F.W.) Bern University Hospital and University of Bern; Departments of Clinical Neurosciences, Division of Neurology (C.P., R.A.D.P.), and Radiology (R.A.D.P.) Lausanne University Hospital and University of Lausanne; Department of Clinical Neurosciences, Division of Neurology (C.B., P.H.L.), and Radiology (M.I.V.) Geneva University Hospitals and Faculty of Medicine; Faculty of Biomedical Sciences (C.Z.), Università della Svizzera Italiana, Lugano, Switzerland; Institute of Experimental Neurology, Division of Neuroscience (M.A.); Vita-Salute San Raffaele University and Hospital, Milan, Italy
| | - Johannes Weber
- From Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, Faculty of Medicine (A. Cagol, L.M.-G., S.L., C.T., M.B., R.G., P.-J.L., M.W., E.R., E.-W.R., Ö.Y., L.K., C. Granziera), Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB) (A. Cagol, L.M.-G., C.T., M.B., R.G., P.-J.L., M.W., E.R.,O.Y., J.O., J.L., M.D.S., B.F.-B., T.D., D.L., L.K., J.K., C. Granziera), Department of Clinical Research (P.B., S.A.S.), Division of Radiological Physics, Department of Radiology (M.W.), and Division of Diagnostic and Interventional Neuroradiology, Clinic for Radiology and Nuclear Medicine (J.M.L.), University Hospital Basel, University of Basel, Switzerland; Translational Neuroradiology Section (C.T), National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD; Medical Image Analysis Center (MIAC) and Quantitative Biomedical Imaging Group (qbig), Department of Biomedical Engineering (E.R., P.C.C.), University Basel; Departments of Neurology (S.M., J.V.) and Radiology (J.W.), Cantonal Hospital St. Gallen; Departments of Neurology (L.A., O.F.) and Radiology (L.R.), Cantonal Hospital Aarau; Departments of Neurology (G.D., C.Z., C.G.) and Neuroradiology (E.P.), Neurocenter of Southern Switzerland, Lugano; Departments of Neurology, Inselspital (A. Chan, A.S.), and Diagnostic and Interventional Neuroradiology, Inselspital (F.W.) Bern University Hospital and University of Bern; Departments of Clinical Neurosciences, Division of Neurology (C.P., R.A.D.P.), and Radiology (R.A.D.P.) Lausanne University Hospital and University of Lausanne; Department of Clinical Neurosciences, Division of Neurology (C.B., P.H.L.), and Radiology (M.I.V.) Geneva University Hospitals and Faculty of Medicine; Faculty of Biomedical Sciences (C.Z.), Università della Svizzera Italiana, Lugano, Switzerland; Institute of Experimental Neurology, Division of Neuroscience (M.A.); Vita-Salute San Raffaele University and Hospital, Milan, Italy
| | - Philippe C Cattin
- From Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, Faculty of Medicine (A. Cagol, L.M.-G., S.L., C.T., M.B., R.G., P.-J.L., M.W., E.R., E.-W.R., Ö.Y., L.K., C. Granziera), Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB) (A. Cagol, L.M.-G., C.T., M.B., R.G., P.-J.L., M.W., E.R.,O.Y., J.O., J.L., M.D.S., B.F.-B., T.D., D.L., L.K., J.K., C. Granziera), Department of Clinical Research (P.B., S.A.S.), Division of Radiological Physics, Department of Radiology (M.W.), and Division of Diagnostic and Interventional Neuroradiology, Clinic for Radiology and Nuclear Medicine (J.M.L.), University Hospital Basel, University of Basel, Switzerland; Translational Neuroradiology Section (C.T), National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD; Medical Image Analysis Center (MIAC) and Quantitative Biomedical Imaging Group (qbig), Department of Biomedical Engineering (E.R., P.C.C.), University Basel; Departments of Neurology (S.M., J.V.) and Radiology (J.W.), Cantonal Hospital St. Gallen; Departments of Neurology (L.A., O.F.) and Radiology (L.R.), Cantonal Hospital Aarau; Departments of Neurology (G.D., C.Z., C.G.) and Neuroradiology (E.P.), Neurocenter of Southern Switzerland, Lugano; Departments of Neurology, Inselspital (A. Chan, A.S.), and Diagnostic and Interventional Neuroradiology, Inselspital (F.W.) Bern University Hospital and University of Bern; Departments of Clinical Neurosciences, Division of Neurology (C.P., R.A.D.P.), and Radiology (R.A.D.P.) Lausanne University Hospital and University of Lausanne; Department of Clinical Neurosciences, Division of Neurology (C.B., P.H.L.), and Radiology (M.I.V.) Geneva University Hospitals and Faculty of Medicine; Faculty of Biomedical Sciences (C.Z.), Università della Svizzera Italiana, Lugano, Switzerland; Institute of Experimental Neurology, Division of Neuroscience (M.A.); Vita-Salute San Raffaele University and Hospital, Milan, Italy
| | - Martina Absinta
- From Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, Faculty of Medicine (A. Cagol, L.M.-G., S.L., C.T., M.B., R.G., P.-J.L., M.W., E.R., E.-W.R., Ö.Y., L.K., C. Granziera), Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB) (A. Cagol, L.M.-G., C.T., M.B., R.G., P.-J.L., M.W., E.R.,O.Y., J.O., J.L., M.D.S., B.F.-B., T.D., D.L., L.K., J.K., C. Granziera), Department of Clinical Research (P.B., S.A.S.), Division of Radiological Physics, Department of Radiology (M.W.), and Division of Diagnostic and Interventional Neuroradiology, Clinic for Radiology and Nuclear Medicine (J.M.L.), University Hospital Basel, University of Basel, Switzerland; Translational Neuroradiology Section (C.T), National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD; Medical Image Analysis Center (MIAC) and Quantitative Biomedical Imaging Group (qbig), Department of Biomedical Engineering (E.R., P.C.C.), University Basel; Departments of Neurology (S.M., J.V.) and Radiology (J.W.), Cantonal Hospital St. Gallen; Departments of Neurology (L.A., O.F.) and Radiology (L.R.), Cantonal Hospital Aarau; Departments of Neurology (G.D., C.Z., C.G.) and Neuroradiology (E.P.), Neurocenter of Southern Switzerland, Lugano; Departments of Neurology, Inselspital (A. Chan, A.S.), and Diagnostic and Interventional Neuroradiology, Inselspital (F.W.) Bern University Hospital and University of Bern; Departments of Clinical Neurosciences, Division of Neurology (C.P., R.A.D.P.), and Radiology (R.A.D.P.) Lausanne University Hospital and University of Lausanne; Department of Clinical Neurosciences, Division of Neurology (C.B., P.H.L.), and Radiology (M.I.V.) Geneva University Hospitals and Faculty of Medicine; Faculty of Biomedical Sciences (C.Z.), Università della Svizzera Italiana, Lugano, Switzerland; Institute of Experimental Neurology, Division of Neuroscience (M.A.); Vita-Salute San Raffaele University and Hospital, Milan, Italy
| | - Claudio Gobbi
- From Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, Faculty of Medicine (A. Cagol, L.M.-G., S.L., C.T., M.B., R.G., P.-J.L., M.W., E.R., E.-W.R., Ö.Y., L.K., C. Granziera), Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB) (A. Cagol, L.M.-G., C.T., M.B., R.G., P.-J.L., M.W., E.R.,O.Y., J.O., J.L., M.D.S., B.F.-B., T.D., D.L., L.K., J.K., C. Granziera), Department of Clinical Research (P.B., S.A.S.), Division of Radiological Physics, Department of Radiology (M.W.), and Division of Diagnostic and Interventional Neuroradiology, Clinic for Radiology and Nuclear Medicine (J.M.L.), University Hospital Basel, University of Basel, Switzerland; Translational Neuroradiology Section (C.T), National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD; Medical Image Analysis Center (MIAC) and Quantitative Biomedical Imaging Group (qbig), Department of Biomedical Engineering (E.R., P.C.C.), University Basel; Departments of Neurology (S.M., J.V.) and Radiology (J.W.), Cantonal Hospital St. Gallen; Departments of Neurology (L.A., O.F.) and Radiology (L.R.), Cantonal Hospital Aarau; Departments of Neurology (G.D., C.Z., C.G.) and Neuroradiology (E.P.), Neurocenter of Southern Switzerland, Lugano; Departments of Neurology, Inselspital (A. Chan, A.S.), and Diagnostic and Interventional Neuroradiology, Inselspital (F.W.) Bern University Hospital and University of Bern; Departments of Clinical Neurosciences, Division of Neurology (C.P., R.A.D.P.), and Radiology (R.A.D.P.) Lausanne University Hospital and University of Lausanne; Department of Clinical Neurosciences, Division of Neurology (C.B., P.H.L.), and Radiology (M.I.V.) Geneva University Hospitals and Faculty of Medicine; Faculty of Biomedical Sciences (C.Z.), Università della Svizzera Italiana, Lugano, Switzerland; Institute of Experimental Neurology, Division of Neuroscience (M.A.); Vita-Salute San Raffaele University and Hospital, Milan, Italy
| | - David Leppert
- From Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, Faculty of Medicine (A. Cagol, L.M.-G., S.L., C.T., M.B., R.G., P.-J.L., M.W., E.R., E.-W.R., Ö.Y., L.K., C. Granziera), Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB) (A. Cagol, L.M.-G., C.T., M.B., R.G., P.-J.L., M.W., E.R.,O.Y., J.O., J.L., M.D.S., B.F.-B., T.D., D.L., L.K., J.K., C. Granziera), Department of Clinical Research (P.B., S.A.S.), Division of Radiological Physics, Department of Radiology (M.W.), and Division of Diagnostic and Interventional Neuroradiology, Clinic for Radiology and Nuclear Medicine (J.M.L.), University Hospital Basel, University of Basel, Switzerland; Translational Neuroradiology Section (C.T), National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD; Medical Image Analysis Center (MIAC) and Quantitative Biomedical Imaging Group (qbig), Department of Biomedical Engineering (E.R., P.C.C.), University Basel; Departments of Neurology (S.M., J.V.) and Radiology (J.W.), Cantonal Hospital St. Gallen; Departments of Neurology (L.A., O.F.) and Radiology (L.R.), Cantonal Hospital Aarau; Departments of Neurology (G.D., C.Z., C.G.) and Neuroradiology (E.P.), Neurocenter of Southern Switzerland, Lugano; Departments of Neurology, Inselspital (A. Chan, A.S.), and Diagnostic and Interventional Neuroradiology, Inselspital (F.W.) Bern University Hospital and University of Bern; Departments of Clinical Neurosciences, Division of Neurology (C.P., R.A.D.P.), and Radiology (R.A.D.P.) Lausanne University Hospital and University of Lausanne; Department of Clinical Neurosciences, Division of Neurology (C.B., P.H.L.), and Radiology (M.I.V.) Geneva University Hospitals and Faculty of Medicine; Faculty of Biomedical Sciences (C.Z.), Università della Svizzera Italiana, Lugano, Switzerland; Institute of Experimental Neurology, Division of Neuroscience (M.A.); Vita-Salute San Raffaele University and Hospital, Milan, Italy
| | - Ludwig Kappos
- From Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, Faculty of Medicine (A. Cagol, L.M.-G., S.L., C.T., M.B., R.G., P.-J.L., M.W., E.R., E.-W.R., Ö.Y., L.K., C. Granziera), Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB) (A. Cagol, L.M.-G., C.T., M.B., R.G., P.-J.L., M.W., E.R.,O.Y., J.O., J.L., M.D.S., B.F.-B., T.D., D.L., L.K., J.K., C. Granziera), Department of Clinical Research (P.B., S.A.S.), Division of Radiological Physics, Department of Radiology (M.W.), and Division of Diagnostic and Interventional Neuroradiology, Clinic for Radiology and Nuclear Medicine (J.M.L.), University Hospital Basel, University of Basel, Switzerland; Translational Neuroradiology Section (C.T), National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD; Medical Image Analysis Center (MIAC) and Quantitative Biomedical Imaging Group (qbig), Department of Biomedical Engineering (E.R., P.C.C.), University Basel; Departments of Neurology (S.M., J.V.) and Radiology (J.W.), Cantonal Hospital St. Gallen; Departments of Neurology (L.A., O.F.) and Radiology (L.R.), Cantonal Hospital Aarau; Departments of Neurology (G.D., C.Z., C.G.) and Neuroradiology (E.P.), Neurocenter of Southern Switzerland, Lugano; Departments of Neurology, Inselspital (A. Chan, A.S.), and Diagnostic and Interventional Neuroradiology, Inselspital (F.W.) Bern University Hospital and University of Bern; Departments of Clinical Neurosciences, Division of Neurology (C.P., R.A.D.P.), and Radiology (R.A.D.P.) Lausanne University Hospital and University of Lausanne; Department of Clinical Neurosciences, Division of Neurology (C.B., P.H.L.), and Radiology (M.I.V.) Geneva University Hospitals and Faculty of Medicine; Faculty of Biomedical Sciences (C.Z.), Università della Svizzera Italiana, Lugano, Switzerland; Institute of Experimental Neurology, Division of Neuroscience (M.A.); Vita-Salute San Raffaele University and Hospital, Milan, Italy
| | - Jens Kuhle
- From Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, Faculty of Medicine (A. Cagol, L.M.-G., S.L., C.T., M.B., R.G., P.-J.L., M.W., E.R., E.-W.R., Ö.Y., L.K., C. Granziera), Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB) (A. Cagol, L.M.-G., C.T., M.B., R.G., P.-J.L., M.W., E.R.,O.Y., J.O., J.L., M.D.S., B.F.-B., T.D., D.L., L.K., J.K., C. Granziera), Department of Clinical Research (P.B., S.A.S.), Division of Radiological Physics, Department of Radiology (M.W.), and Division of Diagnostic and Interventional Neuroradiology, Clinic for Radiology and Nuclear Medicine (J.M.L.), University Hospital Basel, University of Basel, Switzerland; Translational Neuroradiology Section (C.T), National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD; Medical Image Analysis Center (MIAC) and Quantitative Biomedical Imaging Group (qbig), Department of Biomedical Engineering (E.R., P.C.C.), University Basel; Departments of Neurology (S.M., J.V.) and Radiology (J.W.), Cantonal Hospital St. Gallen; Departments of Neurology (L.A., O.F.) and Radiology (L.R.), Cantonal Hospital Aarau; Departments of Neurology (G.D., C.Z., C.G.) and Neuroradiology (E.P.), Neurocenter of Southern Switzerland, Lugano; Departments of Neurology, Inselspital (A. Chan, A.S.), and Diagnostic and Interventional Neuroradiology, Inselspital (F.W.) Bern University Hospital and University of Bern; Departments of Clinical Neurosciences, Division of Neurology (C.P., R.A.D.P.), and Radiology (R.A.D.P.) Lausanne University Hospital and University of Lausanne; Department of Clinical Neurosciences, Division of Neurology (C.B., P.H.L.), and Radiology (M.I.V.) Geneva University Hospitals and Faculty of Medicine; Faculty of Biomedical Sciences (C.Z.), Università della Svizzera Italiana, Lugano, Switzerland; Institute of Experimental Neurology, Division of Neuroscience (M.A.); Vita-Salute San Raffaele University and Hospital, Milan, Italy
| | - Cristina Granziera
- From Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, Faculty of Medicine (A. Cagol, L.M.-G., S.L., C.T., M.B., R.G., P.-J.L., M.W., E.R., E.-W.R., Ö.Y., L.K., C. Granziera), Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB) (A. Cagol, L.M.-G., C.T., M.B., R.G., P.-J.L., M.W., E.R.,O.Y., J.O., J.L., M.D.S., B.F.-B., T.D., D.L., L.K., J.K., C. Granziera), Department of Clinical Research (P.B., S.A.S.), Division of Radiological Physics, Department of Radiology (M.W.), and Division of Diagnostic and Interventional Neuroradiology, Clinic for Radiology and Nuclear Medicine (J.M.L.), University Hospital Basel, University of Basel, Switzerland; Translational Neuroradiology Section (C.T), National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD; Medical Image Analysis Center (MIAC) and Quantitative Biomedical Imaging Group (qbig), Department of Biomedical Engineering (E.R., P.C.C.), University Basel; Departments of Neurology (S.M., J.V.) and Radiology (J.W.), Cantonal Hospital St. Gallen; Departments of Neurology (L.A., O.F.) and Radiology (L.R.), Cantonal Hospital Aarau; Departments of Neurology (G.D., C.Z., C.G.) and Neuroradiology (E.P.), Neurocenter of Southern Switzerland, Lugano; Departments of Neurology, Inselspital (A. Chan, A.S.), and Diagnostic and Interventional Neuroradiology, Inselspital (F.W.) Bern University Hospital and University of Bern; Departments of Clinical Neurosciences, Division of Neurology (C.P., R.A.D.P.), and Radiology (R.A.D.P.) Lausanne University Hospital and University of Lausanne; Department of Clinical Neurosciences, Division of Neurology (C.B., P.H.L.), and Radiology (M.I.V.) Geneva University Hospitals and Faculty of Medicine; Faculty of Biomedical Sciences (C.Z.), Università della Svizzera Italiana, Lugano, Switzerland; Institute of Experimental Neurology, Division of Neuroscience (M.A.); Vita-Salute San Raffaele University and Hospital, Milan, Italy
| |
Collapse
|
41
|
Iaffaldano P, Portaccio E, Lucisano G, Simone M, Manni A, Guerra T, Paolicelli D, Betti M, De Meo E, Pastò L, Razzolini L, Rocca MA, Ferrè L, Brescia Morra V, Patti F, Zaffaroni M, Gasperini C, De Luca G, Ferraro D, Granella F, Pozzilli C, Romano S, Gallo P, Bergamaschi R, Coniglio MG, Lus G, Vianello M, Banfi P, Lugaresi A, Totaro R, Spitaleri D, Cocco E, Di Palma F, Maimone D, Valentino P, Torri Clerici V, Protti A, Maniscalco GT, Salemi G, Pesci I, Aguglia U, Lepore V, Filippi M, Trojano M, Amato MP. Multiple Sclerosis Progression and Relapse Activity in Children. JAMA Neurol 2024; 81:50-58. [PMID: 38010712 PMCID: PMC10682937 DOI: 10.1001/jamaneurol.2023.4455] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 09/27/2023] [Indexed: 11/29/2023]
Abstract
Importance Although up to 20% of patients with multiple sclerosis (MS) experience onset before 18 years of age, it has been suggested that people with pediatric-onset MS (POMS) are protected against disability because of greater capacity for repair. Objective To assess the incidence of and factors associated with progression independent of relapse activity (PIRA) and relapse-associated worsening (RAW) in POMS compared with typical adult-onset MS (AOMS) and late-onset MS (LOMS). Design, Setting, and Participants This cohort study on prospectively acquired data from the Italian MS Register was performed from June 1, 2000, to September 30, 2021. At the time of data extraction, longitudinal data from 73 564 patients from 120 MS centers were available in the register. Main Outcomes and Measures The main outcomes included age-related cumulative incidence and adjusted hazard ratios (HRs) for PIRA and RAW and associated factors. Exposures Clinical and magnetic resonance imaging features, time receiving disease-modifying therapy (DMT), and time to first DMT. Results After applying the inclusion and exclusion criteria, the study assessed 16 130 patients with MS (median [IQR] age at onset, 28.7 [22.8-36.2 years]; 68.3% female). Compared with AOMS and LOMS, patients with POMS had less disability, exhibited more active disease, and were exposed to DMT for a longer period. A first 48-week-confirmed PIRA occurred in 7176 patients (44.5%): 558 patients with POMS (40.4%), 6258 patients with AOMS (44.3%), and 360 patients with LOMS (56.8%) (P < .001). Factors associated with PIRA were older age at onset (AOMS vs POMS HR, 1.42; 95% CI, 1.30-1.55; LOMS vs POMS HR, 2.98; 95% CI, 2.60-3.41; P < .001), longer disease duration (HR, 1.04; 95% CI, 1.04-1.05; P < .001), and shorter DMT exposure (HR, 0.69; 95% CI, 0.64-0.74; P < .001). The incidence of PIRA was 1.3% at 20 years of age, but it rapidly increased approximately 7 times between 21 and 30 years of age (9.0%) and nearly doubled for each age decade from 40 to 70 years (21.6% at 40 years, 39.0% at 50 years, 61.0% at 60 years, and 78.7% at 70 years). The cumulative incidence of RAW events followed a similar trend from 20 to 60 years (0.5% at 20 years, 3.5% at 30 years, 7.8% at 40 years, 14.4% at 50 years, and 24.1% at 60 years); no further increase was found at 70 years (27.7%). Delayed DMT initiation was associated with higher risk of PIRA (HR, 1.16; 95% CI, 1.00-1.34; P = .04) and RAW (HR, 1.75; 95% CI, 1.28-2.39; P = .001). Conclusions and Relevance PIRA can occur at any age, and although pediatric onset is not fully protective against progression, this study's findings suggest that patients with pediatric onset are less likely to exhibit PIRA over a decade of follow-up. However, these data also reinforce the benefit for DMT initiation in patients with POMS, as treatment was associated with reduced occurrence of both PIRA and RAW regardless of age at onset.
Collapse
Affiliation(s)
- Pietro Iaffaldano
- Department of Translational Biomedicines and Neurosciences, University of Bari Aldo Moro, Bari, Italy
| | - Emilio Portaccio
- Department of Neurofarba, University of Florence, Florence, Italy
| | - Giuseppe Lucisano
- Department of Translational Biomedicines and Neurosciences, University of Bari Aldo Moro, Bari, Italy
- Center for Outcomes Research and Clinical Epidemiology (CORESEARCH), Pescara, Italy
| | - Marta Simone
- Dipartimento di Medicina di Precisione e Rigenerativa e Area Jonica (DiMePRe-J), University of Bari Aldo Moro, Bari, Italy
| | - Alessia Manni
- Department of Translational Biomedicines and Neurosciences, University of Bari Aldo Moro, Bari, Italy
| | - Tommaso Guerra
- Department of Translational Biomedicines and Neurosciences, University of Bari Aldo Moro, Bari, Italy
| | - Damiano Paolicelli
- Department of Translational Biomedicines and Neurosciences, University of Bari Aldo Moro, Bari, Italy
| | - Matteo Betti
- Department of Neurofarba, University of Florence, Florence, Italy
| | - Ermelinda De Meo
- Department of Neurofarba, University of Florence, Florence, Italy
| | - Luisa Pastò
- Department of Neurofarba, University of Florence, Florence, Italy
| | | | - Maria A. Rocca
- Neurology Unit and MS Center, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Laura Ferrè
- Neurology Unit and MS Center, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), San Raffaele Scientific Institute, Milan, Italy
| | - Vincenzo Brescia Morra
- Multiple Sclerosis Clinical Care and Research Center, Department of Neuroscience (NSRO), Federico II University, Naples, Italy
| | - Francesco Patti
- Dipartimento di Scienze Mediche e Chirurgiche e Tecnologie Avanzate, GF Ingrassia, Sez. Neuroscienze, Centro Sclerosi Multipla, Università di Catania, Catania, Italy
| | - Mauro Zaffaroni
- Multiple Sclerosis Center, Hospital of Gallarate, ASST della Valle Olona, Gallarate (Varese), Italy
| | - Claudio Gasperini
- Centro Sclerosi Multipla–Azienda Ospedaliera S. Camillo Forlanini, Rome, Italy
| | - Giovanna De Luca
- Centro Sclerosi Multipla, Clinica Neurologica, Policlinico SS. Annunziata, Chieti, Italy
| | - Diana Ferraro
- Department of Neurosciences, Ospedale Civile di Baggiovara, Azienda Ospedaliero–Universitaria di Modena, Modena, Italy
| | - Franco Granella
- Unit of Neurosciences, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Carlo Pozzilli
- Multiple Sclerosis Center, Department of Human Neuroscience, S. Andrea Hospital, Rome, Italy
| | - Silvia Romano
- Department of Neurosciences, Mental Health and Sensory Organs, Centre for Experimental Neurological Therapies (CENTERS), Sapienza University of Rome, Rome, Italy
| | - Paolo Gallo
- Department of Neurosciences, Multiple Sclerosis Centre–Veneto Region (CeSMuV), University Hospital of Padua, Padua, Italy
| | | | | | - Giacomo Lus
- Multiple Sclerosis Center, II Division of Neurology, Department of Clinical and Experimental Medicine, Second University of Naples, Naples, Italy
| | | | - Paola Banfi
- Neurology and Stroke Unit, University of Insubria, Varese, Italy
| | - Alessandra Lugaresi
- IRCCS Istituto Scienze Neurologiche di Bologna, Bologna, Italy
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Rocco Totaro
- San Salvatore Hospital, Demyelinating Disease Center, L’Aquila, Italy
| | - Daniele Spitaleri
- Department of Neurology, AORN San G. Moscati di Avellino, Avellino, Italy
| | - Eleonora Cocco
- University of Cagliari, Department of Medical Science and Public Health, Centro Sclerosi Multipla, Cagliari, Italy
| | - Franco Di Palma
- Department of Neurology, ASST Lariana Ospedale S. Anna, Como, Italy
| | - Davide Maimone
- Department of Neurology, Ospedale Garibaldi, Catania, Italy
| | - Paola Valentino
- Institute of Neurology, Magna Græcia University of Catanzaro, Catanzaro, Italy
| | | | | | | | - Giuseppe Salemi
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Ilaria Pesci
- Multiple Sclerosis Center, UO Neurology, Fidenza Hospital, Fidenza, Italy
| | - Umberto Aguglia
- Department of Medical and Surgical Sciences, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Vito Lepore
- Public Health Department, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Massimo Filippi
- Neurology Unit and MS Center, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Maria Trojano
- Department of Translational Biomedicines and Neurosciences, University of Bari Aldo Moro, Bari, Italy
| | - Maria Pia Amato
- Department of Neurofarba, University of Florence, Florence, Italy
- IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| |
Collapse
|
42
|
Yan Z, Yuan S, Zhu Q, Wang X, Shi Z, Zhang Y, Liu J, Feng J, Wei Y, Yin F, Chen S, Li Y. Radiomics models based on cortical damages for identification of multiple sclerosis with cognitive impairment. Mult Scler Relat Disord 2024; 81:105348. [PMID: 38061318 DOI: 10.1016/j.msard.2023.105348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 10/12/2023] [Accepted: 11/25/2023] [Indexed: 01/23/2024]
Abstract
BACKGROUND Cognitive impairment (CI) is a common symptom in multiple sclerosis (MS) patients. Cortical damages can be closely associated with cognitive network dysfunction and clinically significant CI in MS. So, in this study, We aimed to develop a radiomics model to efficiently identify the MS patients with CI based on clinical data and cortical damages. METHODS One hundred and eighteen patients with MS were divided into CI and normal cognitive (NC) cohorts (62/56) as defined by the Montreal Cognitive Assessment (MoCA). All participants were randomly divided into train and test sets with a ratio of 7:3. The radiomic features were selected by using the least absolute shrinkage and selection operator (LASSO) method. The discrimination models were built with the support vector machines (SVM) by the clinical data, radiomic features, and merge data, respectively. And the patients were further divided according to each cognitive domain including memory, visuospatial, language, attention and executive, and each domain model was applied by the most suitable classifier. RESULTS A total of 2298 features were extracted, of which 36 were finally selected. The merge model showed the greatest performance with the area under the curve (AUC) of 0.86 (95 % confidence interval: 0.81-0.91), accuracy (ACC) of 0.78, sensitivity of 0.79 and specificity of 0.77 in test cohort. However, although the visuospatial domain model showed the highest AUC of 0.71 (95 % confidence interval: 0.61-0.81) among five domain models, other domain models did not meet satisfactory results with a relatively low AUC, ACC, sensitivity and specificity. CONCLUSIONS The radiomics model based on clinical data and cortical damages had a great potential to identify the MS patients with CI for clinical cognitive assessment.
Collapse
Affiliation(s)
- Zichun Yan
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shiqi Yuan
- Department of Computer Science, Southwest University, Chongqing, China
| | - Qiyuan Zhu
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaohua Wang
- College of Medical Informatics, Chongqing Medical University, Chongqing, China
| | - Zhuowei Shi
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yu Zhang
- Department of Computer Science, Southwest University, Chongqing, China
| | - Jie Liu
- Department of Computer Science, Southwest University, Chongqing, China
| | - Jinzhou Feng
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yiqiu Wei
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Feiyue Yin
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shanxiong Chen
- Department of Computer Science, Southwest University, Chongqing, China.
| | - Yongmei Li
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
43
|
Husseini L, Geladaris A, Weber MS. Toward identifying key mechanisms of progression in multiple sclerosis. Trends Neurosci 2024; 47:58-70. [PMID: 38102058 DOI: 10.1016/j.tins.2023.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/16/2023] [Accepted: 11/14/2023] [Indexed: 12/17/2023]
Abstract
A major therapeutic goal in the treatment of multiple sclerosis (MS) is to prevent the accumulation of disability over an often decades-long disease course. Disability progression can result from acute relapses as well as from CNS intrinsic parenchymal disintegration without de novo CNS lesion formation. Research focus has shifted to progression not associated with acute inflammation, as it is not sufficiently controlled by currently available treatments. This review outlines how recent advances in the understanding of the pathogenesis of progressive MS have been facilitated by the development of more precise, less static pathogenetic concepts of progressive MS, as well as by new techniques for the analysis of region-specific proteomic and transcriptomic signatures in the human CNS. We highlight key drivers of MS disease progression and potential targets in its treatment.
Collapse
Affiliation(s)
- Leila Husseini
- Department of Neurology, University Medical Center, Göttingen, Germany
| | - Anastasia Geladaris
- Institute of Neuropathology, University Medical Center, Göttingen, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology, 37073 Göttingen, Germany
| | - Martin S Weber
- Department of Neurology, University Medical Center, Göttingen, Germany; Institute of Neuropathology, University Medical Center, Göttingen, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology, 37073 Göttingen, Germany.
| |
Collapse
|
44
|
Calvi A, Mendelsohn Z, Hamed W, Chard D, Tur C, Stutters J, MacManus D, Kanber B, Wheeler‐Kingshott CAMG, Barkhof F, Prados F. Treatment reduces the incidence of newly appearing multiple sclerosis lesions evolving into chronic active, slowly expanding lesions: A retrospective analysis. Eur J Neurol 2024; 31:e16092. [PMID: 37823722 PMCID: PMC11236028 DOI: 10.1111/ene.16092] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/05/2023] [Accepted: 09/21/2023] [Indexed: 10/13/2023]
Abstract
BACKGROUND AND PURPOSE Newly appearing lesions in multiple sclerosis (MS) may evolve into chronically active, slowly expanding lesions (SELs), leading to sustained disability progression. The aim of this study was to evaluate the incidence of newly appearing lesions developing into SELs, and their correlation to clinical evolution and treatment. METHODS A retrospective analysis of a fingolimod trial in primary progressive MS (PPMS; INFORMS, NCT00731692) was undertaken. Data were available from 324 patients with magnetic resonance imaging scans up to 3 years after screening. New lesions at year 1 were identified with convolutional neural networks, and SELs obtained through a deformation-based method. Clinical disability was assessed annually by Expanded Disability Status Scale (EDSS), Nine-Hole Peg Test, Timed 25-Foot Walk, and Paced Auditory Serial Addition Test. Linear, logistic, and mixed-effect models were used to assess the relationship between the Jacobian expansion in new lesions and SELs, disability scores, and treatment status. RESULTS One hundred seventy patients had ≥1 new lesions at year 1 and had a higher lesion count at screening compared to patients with no new lesions (median = 27 vs. 22, p = 0.007). Among the new lesions (median = 2 per patient), 37% evolved into definite or possible SELs. Higher SEL volume and count were associated with EDSS worsening and confirmed disability progression. Treated patients had lower volume and count of definite SELs (β = -0.04, 95% confidence interval [CI] = -0.07 to -0.01, p = 0.015; β = -0.36, 95% CI = -0.67 to -0.06, p = 0.019, respectively). CONCLUSIONS Incident chronic active lesions are common in PPMS, and fingolimod treatment can reduce their number.
Collapse
Affiliation(s)
- Alberto Calvi
- NMR Research Unit, Institute of NeurologyUniversity College LondonLondonUK
- Laboratory of Advanced Imaging in Neuroimmunological Diseases, Hospital Clinic Barcelona, Fundació Clinic per a la Recerca BiomèdicaBarcelonaSpain
| | - Zoe Mendelsohn
- NMR Research Unit, Institute of NeurologyUniversity College LondonLondonUK
- Department of RadiologyCharité School of Medicine and University Hospital BerlinBerlinGermany
| | - Weaam Hamed
- NMR Research Unit, Institute of NeurologyUniversity College LondonLondonUK
- Department of RadiologyMansoura University HospitalMansouraEgypt
| | - Declan Chard
- NMR Research Unit, Institute of NeurologyUniversity College LondonLondonUK
- National Institute for Health Research, Biomedical Research CentreUniversity College London HospitalsLondonUK
| | - Carmen Tur
- NMR Research Unit, Institute of NeurologyUniversity College LondonLondonUK
- Neurology‐Neuroimmunology DepartmentMultiple Sclerosis Centre of Catalonia, Vall d'Hebron Barcelona Hospital CampusBarcelonaSpain
| | - Jon Stutters
- NMR Research Unit, Institute of NeurologyUniversity College LondonLondonUK
| | - David MacManus
- NMR Research Unit, Institute of NeurologyUniversity College LondonLondonUK
| | - Baris Kanber
- National Institute for Health Research, Biomedical Research CentreUniversity College London HospitalsLondonUK
- Department of Medical Physics and Biomedical Engineering, Centre for Medical Image ComputingUniversity College LondonLondonUK
| | | | - Frederik Barkhof
- NMR Research Unit, Institute of NeurologyUniversity College LondonLondonUK
- Department of Medical Physics and Biomedical Engineering, Centre for Medical Image ComputingUniversity College LondonLondonUK
- Radiology and Nuclear Medicine, Amsterdam University Medical Centers (UMC)Vrije UniversiteitAmsterdamthe Netherlands
| | - Ferran Prados
- NMR Research Unit, Institute of NeurologyUniversity College LondonLondonUK
- Department of Medical Physics and Biomedical Engineering, Centre for Medical Image ComputingUniversity College LondonLondonUK
- e‐Health CentreUniversitat Oberta de CatalunyaBarcelonaSpain
| |
Collapse
|
45
|
Weeda MM, van Nederpelt DR, Twisk JWR, Brouwer I, Kuijer JPA, van Dam M, Hulst HE, Killestein J, Barkhof F, Vrenken H, Pouwels PJW. Multimodal MRI study on the relation between WM integrity and connected GM atrophy and its effect on disability in early multiple sclerosis. J Neurol 2024; 271:355-373. [PMID: 37716917 PMCID: PMC10769935 DOI: 10.1007/s00415-023-11937-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/09/2023] [Accepted: 08/11/2023] [Indexed: 09/18/2023]
Abstract
BACKGROUND Multiple sclerosis (MS) is characterized by pathology in white matter (WM) and atrophy of grey matter (GM), but it remains unclear how these processes are related, or how they influence clinical progression. OBJECTIVE To study the spatial and temporal relationship between GM atrophy and damage in connected WM in relapsing-remitting (RR) MS in relation to clinical progression. METHODS Healthy control (HC) and early RRMS subjects visited our center twice with a 1-year interval for MRI and clinical examinations, including the Expanded Disability Status Scale (EDSS) and Multiple Sclerosis Functional Composite (MSFC) scores. RRMS subjects were categorized as MSFC decliners or non-decliners based on ΔMSFC over time. Ten deep (D)GM and 62 cortical (C) GM structures were segmented and probabilistic tractography was performed to identify the connected WM. WM integrity was determined per tract with, amongst others, fractional anisotropy (FA), mean diffusivity (MD), neurite density index (NDI), and myelin water fraction (MWF). Linear mixed models (LMMs) were used to investigate GM and WM differences between HC and RRMS, and between MSFC decliners and non-decliners. LMM was also used to test associations between baseline WM z-scores and changes in connected GM z-scores, and between baseline GM z-scores and changes in connected WM z-scores, in HC/RRMS subjects and in MSFC decliners/non-decliners. RESULTS We included 13 HCs and 31 RRMS subjects with an average disease duration of 3.5 years and a median EDSS of 3.0. Fifteen RRMS subjects showed declining MSFC scores over time, and they showed higher atrophy rates and greater WM integrity loss compared to non-decliners. Lower baseline WM integrity was associated with increased CGM atrophy over time in RRMS, but not in HC subjects. This effect was only seen in MSFC decliners, especially when an extended WM z-score was used, which included FA, MD, NDI and MWF. Baseline GM measures were not significantly related to WM integrity changes over time in any of the groups. DISCUSSION Lower baseline WM integrity was related to more cortical atrophy in RRMS subjects that showed clinical progression over a 1-year follow-up, while baseline GM did not affect WM integrity changes over time. WM damage, therefore, seems to drive atrophy more than conversely.
Collapse
Affiliation(s)
- Merlin M Weeda
- MS Center Amsterdam, Radiology and Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands.
| | - D R van Nederpelt
- MS Center Amsterdam, Radiology and Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
| | - J W R Twisk
- Epidemiology and Data Science, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
| | - I Brouwer
- MS Center Amsterdam, Radiology and Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
| | - J P A Kuijer
- MS Center Amsterdam, Radiology and Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
| | - M van Dam
- MS Center Amsterdam, Anatomy and Neurosciences, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
| | - H E Hulst
- Health-, Medical-, and Neuropsychology Unit, Institute of Psychology, Leiden University, Leiden, The Netherlands
| | - J Killestein
- MS Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
| | - F Barkhof
- MS Center Amsterdam, Radiology and Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
- UCL Queen Square Institute of Neurology and Centre for Medical Image Computing, University College London, London, UK
| | - H Vrenken
- MS Center Amsterdam, Radiology and Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
| | - P J W Pouwels
- MS Center Amsterdam, Radiology and Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
| |
Collapse
|
46
|
Yang Z, Wen J, Erus G, Govindarajan ST, Melhem R, Mamourian E, Cui Y, Srinivasan D, Abdulkadir A, Parmpi P, Wittfeld K, Grabe HJ, Bülow R, Frenzel S, Tosun D, Bilgel M, An Y, Yi D, Marcus DS, LaMontagne P, Benzinger TL, Heckbert SR, Austin TR, Waldstein SR, Evans MK, Zonderman AB, Launer LJ, Sotiras A, Espeland MA, Masters CL, Maruff P, Fripp J, Toga A, O’Bryant S, Chakravarty MM, Villeneuve S, Johnson SC, Morris JC, Albert MS, Yaffe K, Völzke H, Ferrucci L, Bryan NR, Shinohara RT, Fan Y, Habes M, Lalousis PA, Koutsouleris N, Wolk DA, Resnick SM, Shou H, Nasrallah IM, Davatzikos C. Five dominant dimensions of brain aging are identified via deep learning: associations with clinical, lifestyle, and genetic measures. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.12.29.23300642. [PMID: 38234857 PMCID: PMC10793523 DOI: 10.1101/2023.12.29.23300642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Brain aging is a complex process influenced by various lifestyle, environmental, and genetic factors, as well as by age-related and often co-existing pathologies. MRI and, more recently, AI methods have been instrumental in understanding the neuroanatomical changes that occur during aging in large and diverse populations. However, the multiplicity and mutual overlap of both pathologic processes and affected brain regions make it difficult to precisely characterize the underlying neurodegenerative profile of an individual from an MRI scan. Herein, we leverage a state-of-the art deep representation learning method, Surreal-GAN, and present both methodological advances and extensive experimental results that allow us to elucidate the heterogeneity of brain aging in a large and diverse cohort of 49,482 individuals from 11 studies. Five dominant patterns of neurodegeneration were identified and quantified for each individual by their respective (herein referred to as) R-indices. Significant associations between R-indices and distinct biomedical, lifestyle, and genetic factors provide insights into the etiology of observed variances. Furthermore, baseline R-indices showed predictive value for disease progression and mortality. These five R-indices contribute to MRI-based precision diagnostics, prognostication, and may inform stratification into clinical trials.
Collapse
Affiliation(s)
- Zhijian Yang
- Artificial Intelligence in Biomedical Imaging Laboratory (AIBIL), Center for and Data Science for Integrated Diagnostics (AID), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Graduate Group in Applied Mathematics and Computational Science, University of Pennsylvania, Philadelphia, PA, USA
| | - Junhao Wen
- Laboratory of AI and Biomedical Science (LABS), Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, California, USA
| | - Guray Erus
- Artificial Intelligence in Biomedical Imaging Laboratory (AIBIL), Center for and Data Science for Integrated Diagnostics (AID), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sindhuja T. Govindarajan
- Artificial Intelligence in Biomedical Imaging Laboratory (AIBIL), Center for and Data Science for Integrated Diagnostics (AID), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Randa Melhem
- Artificial Intelligence in Biomedical Imaging Laboratory (AIBIL), Center for and Data Science for Integrated Diagnostics (AID), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Elizabeth Mamourian
- Artificial Intelligence in Biomedical Imaging Laboratory (AIBIL), Center for and Data Science for Integrated Diagnostics (AID), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yuhan Cui
- Artificial Intelligence in Biomedical Imaging Laboratory (AIBIL), Center for and Data Science for Integrated Diagnostics (AID), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Dhivya Srinivasan
- Artificial Intelligence in Biomedical Imaging Laboratory (AIBIL), Center for and Data Science for Integrated Diagnostics (AID), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ahmed Abdulkadir
- Laboratory for Research in Neuroimaging, Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| | - Paraskevi Parmpi
- Artificial Intelligence in Biomedical Imaging Laboratory (AIBIL), Center for and Data Science for Integrated Diagnostics (AID), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Katharina Wittfeld
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Germany
| | - Hans J. Grabe
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Germany
- German Center for Neurodegenerative Diseases (DZNE), Site Rostock/Greifswald, Germany
| | - Robin Bülow
- Institute of Diagnostic Radiology and Neuroradiology, University of Greifswald, Germany
| | - Stefan Frenzel
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Germany
| | - Duygu Tosun
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| | - Murat Bilgel
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Yang An
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Dahyun Yi
- Institute of Human Behavioral Medicine, Medical Research Center Seoul National University, Seoul, Republic of Korea
| | - Daniel S. Marcus
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Pamela LaMontagne
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Tammie L.S. Benzinger
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Susan R. Heckbert
- Cardiovascular Health Research Unit and Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Thomas R. Austin
- Cardiovascular Health Research Unit and Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Shari R. Waldstein
- Department of Psychology, University of Maryland, Baltimore County, Catonsville, MD, USA
| | - Michele K. Evans
- Health Disparities Research Section, Laboratory of Epidemiology and Population Sciences, NIA/NIH/IRP, Baltimore, MD, USA
| | - Alan B. Zonderman
- Health Disparities Research Section, Laboratory of Epidemiology and Population Sciences, NIA/NIH/IRP, Baltimore, MD, USA
| | - Lenore J. Launer
- Neuroepidemiology Section, Intramural Research Program, National Institute on Aging, Bethesda, Maryland, USA
| | - Aristeidis Sotiras
- Department of Radiology and Institute of Informatics, Washington University in St. Luis, St. Luis, MO63110, USA
| | - Mark A. Espeland
- Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Colin L. Masters
- Florey Institute, The University of Melbourne, Parkville, VIC, 3052, Australia
| | - Paul Maruff
- Florey Institute, The University of Melbourne, Parkville, VIC, 3052, Australia
| | - Jurgen Fripp
- CSIRO Health and Biosecurity, Australian e-Health Research Centre CSIRO, Brisbane, Queensland, Australia
| | - Arthur Toga
- Laboratory of Neuro Imaging, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, California, USA
| | - Sid O’Bryant
- Institute for Translational Research University of North Texas Health Science Center Fort Worth Texas USA
| | - Mallar M. Chakravarty
- Computational Brain Anatomy (CoBrA) Laboratory, Cerebral Imaging Center, Douglas Mental Health University Institute, McGill University, Verdun, Quebec, Canada
| | - Sylvia Villeneuve
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Sterling C. Johnson
- Wisconsin Alzheimer’s Institute, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - John C. Morris
- Knight Alzheimer Disease Research Center, Washington University in St. Louis, St. Louis, MO, USA
| | - Marilyn S. Albert
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kristine Yaffe
- Departments of Neurology, Psychiatry and Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA
| | - Henry Völzke
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Luigi Ferrucci
- Translational Gerontology Branch, Longitudinal Studies Section, National Institute on Aging, National Institutes of Health, MedStar Harbor Hospital, 3001 S. Hanover Street, Baltimore, MD, USA
| | - Nick R. Bryan
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Russell T. Shinohara
- Artificial Intelligence in Biomedical Imaging Laboratory (AIBIL), Center for and Data Science for Integrated Diagnostics (AID), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Statistics in Imaging and Visualization Center, Department of Biostatistics, Epidemiology, & Informatics, University of Pennsylvania, Philadelphia, PA, USA
| | - Yong Fan
- Artificial Intelligence in Biomedical Imaging Laboratory (AIBIL), Center for and Data Science for Integrated Diagnostics (AID), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Mohamad Habes
- Biggs Alzheimer’s Institute, University of Texas San Antonio Health Science Center, USA
| | - Paris Alexandros Lalousis
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom
| | - Nikolaos Koutsouleris
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom
- Section for Precision Psychiatry, Department of Psychiatry and Psychotherapy, Ludwig-Maximilian-University Munich, Munich, Germany
| | - David A. Wolk
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - Susan M. Resnick
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Haochang Shou
- Artificial Intelligence in Biomedical Imaging Laboratory (AIBIL), Center for and Data Science for Integrated Diagnostics (AID), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Statistics in Imaging and Visualization Center, Department of Biostatistics, Epidemiology, & Informatics, University of Pennsylvania, Philadelphia, PA, USA
| | - Ilya M. Nasrallah
- Artificial Intelligence in Biomedical Imaging Laboratory (AIBIL), Center for and Data Science for Integrated Diagnostics (AID), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Christos Davatzikos
- Artificial Intelligence in Biomedical Imaging Laboratory (AIBIL), Center for and Data Science for Integrated Diagnostics (AID), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
47
|
Lauerer M, McGinnis J, Bussas M, El Husseini M, Pongratz V, Engl C, Wuschek A, Berthele A, Riederer I, Kirschke JS, Zimmer C, Hemmer B, Mühlau M. Prognostic value of spinal cord lesion measures in early relapsing-remitting multiple sclerosis. J Neurol Neurosurg Psychiatry 2023; 95:37-43. [PMID: 37495267 PMCID: PMC10804039 DOI: 10.1136/jnnp-2023-331799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/12/2023] [Indexed: 07/28/2023]
Abstract
BACKGROUND Spinal cord (SC) lesions have been associated with unfavourable clinical outcomes in multiple sclerosis (MS). However, the relation of whole SC lesion number (SCLN) and volume (SCLV) to the future occurrence and type of confirmed disability accumulation (CDA) remains largely unexplored. METHODS In this monocentric retrospective study, SC lesions were manually delineated. Inclusion criteria were: age between 18 and 60 years, relapsing-remitting MS, disease duration under 2 years and clinical follow-up of 5 years. The first CDA event after baseline, determined by a sustained increase in the Expanded Disability Status Scale over 6 months, was classified as either progression independent of relapse activity (PIRA) or relapse-associated worsening (RAW). SCLN and SCLV were compared between different (sub)groups to assess their prospective value. RESULTS 204 patients were included, 148 of which had at least one SC lesion and 59 experienced CDA. Patients without any SC lesions experienced significantly less CDA (OR 5.8, 95% CI 2.1 to 19.8). SCLN and SCLV were closely correlated (rs=0.91, p<0.001) and were both significantly associated with CDA on follow-up (p<0.001). Subgroup analyses confirmed this association for patients with PIRA on CDA (34 events, p<0.001 for both SC lesion measures) but not for RAW (25 events, p=0.077 and p=0.22). CONCLUSION Patients without any SC lesions are notably less likely to experience CDA. Both the number and volume of SC lesions on MRI are associated with future accumulation of disability largely independent of relapses.
Collapse
Affiliation(s)
- Markus Lauerer
- Department of Neurology, School of Medicine, Technical University, Munich, Germany
- TUM-Neuroimaging Center, School of Medicine, Technical University, Munich, Germany
| | - Julian McGinnis
- Department of Neurology, School of Medicine, Technical University, Munich, Germany
- Institute for AI in Medicine, Technical University, Munich, Germany
| | - Matthias Bussas
- Department of Neurology, School of Medicine, Technical University, Munich, Germany
- TUM-Neuroimaging Center, School of Medicine, Technical University, Munich, Germany
| | - Malek El Husseini
- Department of Neuroradiology, School of Medicine, Technical University, Munich, Germany
| | - Viola Pongratz
- Department of Neurology, School of Medicine, Technical University, Munich, Germany
- TUM-Neuroimaging Center, School of Medicine, Technical University, Munich, Germany
| | - Christina Engl
- Department of Neurology, School of Medicine, Technical University, Munich, Germany
| | - Alexander Wuschek
- Department of Neurology, School of Medicine, Technical University, Munich, Germany
| | - Achim Berthele
- Department of Neurology, School of Medicine, Technical University, Munich, Germany
| | - Isabelle Riederer
- Department of Neuroradiology, School of Medicine, Technical University, Munich, Germany
| | - Jan S Kirschke
- Department of Neuroradiology, School of Medicine, Technical University, Munich, Germany
| | - Claus Zimmer
- Department of Neuroradiology, School of Medicine, Technical University, Munich, Germany
| | - Bernhard Hemmer
- Department of Neurology, School of Medicine, Technical University, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Mark Mühlau
- Department of Neurology, School of Medicine, Technical University, Munich, Germany
- TUM-Neuroimaging Center, School of Medicine, Technical University, Munich, Germany
| |
Collapse
|
48
|
Dzau W, Sharmin S, Patti F, Izquierdo G, Eichau S, Prat A, Girard M, Duquette P, Onofrj M, Lugaresi A, Ozakbas S, Gerlach O, Boz C, Grammond P, Terzi M, Amato MP, La Spitaleri D, Ramo-Tello C, Maimone D, Cartechini E, Buzzard K, Skibina O, van der Walt A, Butzkueven H, Iuliano G, Soysal A, Kalincik T. Risk of secondary progressive multiple sclerosis after early worsening of disability. J Neurol Neurosurg Psychiatry 2023; 94:984-991. [PMID: 37414538 DOI: 10.1136/jnnp-2023-331748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 06/12/2023] [Indexed: 07/08/2023]
Abstract
BACKGROUND Whether progression independent of relapse activity (PIRA) heralds earlier onset of secondary progressive multiple sclerosis (SPMS) and more rapid accumulation of disability during SPMS remains to be determined. We investigated the association between early PIRA, relapse-associated worsening (RAW) of disability and time to SPMS, subsequent disability progression and their response to therapy. METHODS This observational cohort study included patients with relapsing-remitting multiple sclerosis (RRMS) from the MSBase international registry across 146 centres and 39 countries. Associations between the number of PIRA and RAW during early multiple sclerosis (MS) (the initial 5 years of MS onset) were analysed with respect to: time to SPMS using Cox proportional hazards models adjusted for disease characteristics; and disability progression during SPMS, calculated as the change of Multiple Sclerosis Severity Scores over time, using multivariable linear regression. RESULTS 10 692 patients met the inclusion criteria: 3125 (29%) were men and the mean MS onset age was 32.2 years. A higher number of early PIRA (HR=1.50, 95% CI 1.28 to 1.76, p<0.001) and RAW (HR=2.53, 95% CI 2.25 to 2.85, p<0.001) signalled a higher risk of SPMS. A higher proportion of early disease-modifying therapy exposure (per 10%) reduced the effect of early RAW (HR=0.94, 95% CI 0.89 to 1.00, p=0.041) but not PIRA (HR=0.97, 95% CI 0.91 to 1.05, p=0.49) on SPMS risk. No association between early PIRA/RAW and disability progression during SPMS was found. CONCLUSIONS Early disability increase during RRMS is associated with a greater risk of SPMS but not the rate of disability progression during SPMS. The deterioration associated with early relapses represents a potentially treatable risk factor of SPMS. TRIAL REGISTRATION NUMBER Australian New Zealand Clinical Trials Registry (ACTRN12605000455662).
Collapse
Affiliation(s)
- Winston Dzau
- Neuroimmunology Centre, Department of Neurology, The Royal Melbourne Hospital, Parkville, Victoria, Australia
- CORe, Department of Medicine, The University of Melbourne, Melbourne, Victoria, Australia
| | - Sifat Sharmin
- CORe, Department of Medicine, The University of Melbourne, Melbourne, Victoria, Australia
| | - Francesco Patti
- Neuroscience, University of Catania Department of Surgical and Medical Sciences and Advanced Technologies 'G.F. Ingrassia', Catania, Italy
- Multiple Sclerosis Center, University of Catania, Catania, Italy
| | - Guillermo Izquierdo
- Department of Neurology, Hospital Universitario Virgen Macarena, Sevilla, Andalucía, Spain
| | - Sara Eichau
- Department of Neurology, Hospital Universitario Virgen Macarena, Sevilla, Andalucía, Spain
| | - Alexandre Prat
- MS Center, CHUM, Montreal, Quebec, Canada
- Faculty of Medicine, Universite de Montreal, Montreal, Quebec, Canada
| | - Marc Girard
- MS Center, CHUM, Montreal, Quebec, Canada
- Faculty of Medicine, Universite de Montreal, Montreal, Quebec, Canada
| | - Pierre Duquette
- MS Center, CHUM, Montreal, Quebec, Canada
- Faculty of Medicine, Universite de Montreal, Montreal, Quebec, Canada
| | - Marco Onofrj
- Department of Neuroscience, Imaging, and Clinical Sciences, Gabriele d'Annunzio University of Chieti and Pescara Department of Sciences, Chieti, Italy
| | - Alessandra Lugaresi
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
- UOSI Riabilitazione Sclerosi Multipla, IRCCS Istituto Delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Serkan Ozakbas
- Faculty of Medicine, Dokuz Eylul Universitesi, Izmir, Turkey
| | - Oliver Gerlach
- Department of Neurology, Zuyderland Medical Centre, Sittard-Geleen, The Netherlands
- School for Mental Health and Neuroscience, Universiteit Maastricht, Maastricht, The Netherlands
| | - Cavit Boz
- Medical Faculty, Karadeniz Technical University, Trabzon, Trabzon, Turkey
| | - Pierre Grammond
- Department of Neurology, CIUSSS du Centre-Ouest-de-l'Ile-de-Montreal, Montreal, Quebec, Canada
| | - Murat Terzi
- Medical Faculty, Ondokuz Mayis University, Samsun, Turkey
| | - Maria Pia Amato
- Department NEUROFARBA, University of Florence, Firenze, Italy
| | - Daniele La Spitaleri
- Department of Neurology, Azienda Ospedaliera di Rilievo Nazionale e di Alta Specialità San Giuseppe Moscati, Avellino, Italy
| | | | - Davide Maimone
- UO Neurologia, Azienda Ospedaliera di Rilievo Nazionale e di Alta Specializzazione Garibaldi, Catania, Sicilia, Italy
| | | | - Katherine Buzzard
- Neuroimmunology Centre, Department of Neurology, The Royal Melbourne Hospital, Parkville, Victoria, Australia
- Department of Neurology, Box Hill Hospital, Box Hill, Victoria, Australia
- Department of Medicine, Monash University, Clayton, Victoria, Australia
| | - Olga Skibina
- Department of Neurology, Box Hill Hospital, Box Hill, Victoria, Australia
- Department of Medicine, Monash University, Clayton, Victoria, Australia
- Department of Neurology, The Alfred, Melbourne, Victoria, Australia
| | - Anneke van der Walt
- Department of Neurology, The Alfred, Melbourne, Victoria, Australia
- Central Clinical School, Monash University, Clayton, Victoria, Australia
| | - Helmut Butzkueven
- Department of Neurology, The Alfred, Melbourne, Victoria, Australia
- Central Clinical School, Monash University, Clayton, Victoria, Australia
| | - Gerardo Iuliano
- Department of Neurology, Azienda Ospedaliera Universitaria 'San Giovanni di Dio e Ruggi d'Aragona' Plesso 'Ruggi', Salerno, Italy
| | - Aysun Soysal
- Department of Neurology, Bakirkoy Education and Research Hospital for Psychiatric and Neurological Diseases, Istanbul, Turkey
| | - Tomas Kalincik
- Neuroimmunology Centre, Department of Neurology, The Royal Melbourne Hospital, Parkville, Victoria, Australia
- CORe, Department of Medicine, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
49
|
Abdelhak A, Benkert P, Schaedelin S, Boscardin WJ, Cordano C, Oechtering J, Ananth K, Granziera C, Melie-Garcia L, Montes SC, Beaudry-Richard A, Achtnichts L, Oertel FC, Lalive PH, Leppert D, Müller S, Henry RG, Pot C, Matthias A, Salmen A, Oksenberg JR, Disanto G, Zecca C, D’Souza M, Du Pasquier R, Bridel C, Gobbi C, Kappos L, Hauser SL, Cree BAC, Kuhle J, Green AJ. Neurofilament Light Chain Elevation and Disability Progression in Multiple Sclerosis. JAMA Neurol 2023; 80:1317-1325. [PMID: 37930670 PMCID: PMC10628837 DOI: 10.1001/jamaneurol.2023.3997] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 08/16/2023] [Indexed: 11/07/2023]
Abstract
Importance Mechanisms contributing to disability accumulation in multiple sclerosis (MS) are poorly understood. Blood neurofilament light chain (NfL) level, a marker of neuroaxonal injury, correlates robustly with disease activity in people with MS (MS); however, data on the association between NfL level and disability accumulation have been conflicting. Objective To determine whether and when NfL levels are elevated in the context of confirmed disability worsening (CDW). Design, Setting, and Participants This study included 2 observational cohorts: results from the Expression, Proteomics, Imaging, Clinical (EPIC) study at the University of California San Francisco (since 2004) were confirmed in the Swiss Multiple Sclerosis Cohort (SMSC), a multicenter study in 8 centers since 2012. Data were extracted from EPIC in April 2022 (sampling July 1, 2004, to December 20, 2016) and SMSC in December 2022 (sampling June 6, 2012, to September 2, 2021). The study included 2 observational cohorts in tertiary MS centers. All participants of both cohorts with available NfL results were included in the study, and no eligible participants were excluded or declined to participate. Exposure Association between NfL z scores and CDW. Main Outcome Measures CDW was defined as Expanded Disability Status Scale (EDSS) worsening that was confirmed after 6 or more months and classified into CDW associated with clinical relapses (CDW-R) or independent of clinical relapses (CDW-NR). Visits were classified in relation to the disability worsening events into CDW(-2) for 2 visits preceding event, CDW(-1) for directly preceding event, CDW(event) for first diagnosis of EDSS increase, and the confirmation visit. Mixed linear and Cox regression models were used to evaluate NfL dynamics and to assess the association of NfL with future CDW, respectively. Results A total of 3906 EPIC visits (609 participants; median [IQR] age, 42.0 [35.0-50.0] years; 424 female [69.6%]) and 8901 SMSC visits (1290 participants; median [IQR] age, 41.2 [32.5-49.9] years; 850 female [65.9%]) were included. In CDW-R (EPIC, 36 events; SMSC, 93 events), NfL z scores were 0.71 (95% CI, 0.35-1.07; P < .001) units higher at CDW-R(-1) in EPIC and 0.32 (95% CI, 0.14-0.49; P < .001) in SMSC compared with stable MS samples. NfL elevation could be detected preceding CDW-NR (EPIC, 191 events; SMSC, 342 events) at CDW-NR(-2) (EPIC: 0.23; 95% CI, 0.01-0.45; P = .04; SMSC: 0.28; 95% CI, 0.18-0.37; P < .001) and at CDW-NR(-1) (EPIC: 0.27; 95% CI, 0.11-0.44; P < .001; SMSC: 0.09; 95% CI, 0-0.18; P = .06). Those findings were replicated in the subgroup with relapsing-remitting MS. Time-to-event analysis confirmed the association between NfL levels and future CDW-R within approximately 1 year and CDW-NR (in approximately 1-2 years). Conclusions and Relevance This cohort study documents the occurrence of NfL elevation in advance of clinical worsening and may hint to a potential window of ongoing dynamic central nervous system pathology that precedes the diagnosis of CDW.
Collapse
Affiliation(s)
- Ahmed Abdelhak
- Weill Institute for Neurosciences, Department of Neurology, University of California at San Francisco, San Francisco
| | - Pascal Benkert
- Department of Clinical Research, University Hospital Basel and University of Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Basel, Switzerland
- Multiple Sclerosis Center, Department of Neurology, University Hospital and University of Basel, Basel, Switzerland
| | - Sabine Schaedelin
- Department of Clinical Research, University Hospital Basel and University of Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Basel, Switzerland
- Multiple Sclerosis Center, Department of Neurology, University Hospital and University of Basel, Basel, Switzerland
| | - W. John Boscardin
- Departments of Medicine and Epidemiology & Biostatistics, University of California at San Francisco, San Francisco
| | - Christian Cordano
- Weill Institute for Neurosciences, Department of Neurology, University of California at San Francisco, San Francisco
- Department of Neurology, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Johanna Oechtering
- Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Basel, Switzerland
- Multiple Sclerosis Center, Department of Neurology, University Hospital and University of Basel, Basel, Switzerland
| | - Kirtana Ananth
- Weill Institute for Neurosciences, Department of Neurology, University of California at San Francisco, San Francisco
| | - Cristina Granziera
- Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Basel, Switzerland
- Multiple Sclerosis Center, Department of Neurology, University Hospital and University of Basel, Basel, Switzerland
- Translational Imaging in Neurology (ThINK) Basel, Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Lester Melie-Garcia
- Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Basel, Switzerland
- Multiple Sclerosis Center, Department of Neurology, University Hospital and University of Basel, Basel, Switzerland
- Translational Imaging in Neurology (ThINK) Basel, Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Shivany Condor Montes
- Weill Institute for Neurosciences, Department of Neurology, University of California at San Francisco, San Francisco
| | - Alexandra Beaudry-Richard
- Weill Institute for Neurosciences, Department of Neurology, University of California at San Francisco, San Francisco
| | - Lutz Achtnichts
- Department of Neurology, Cantonal Hospital Aarau, Aarau, Switzerland
| | - Frederike C. Oertel
- Weill Institute for Neurosciences, Department of Neurology, University of California at San Francisco, San Francisco
| | - Patrice H. Lalive
- Unit of Neuroimmunology, Division of Neurology, Department of Clinical Neurosciences, University Hospital of Geneva and Faculty of Medicine, Geneva, Switzerland
| | - David Leppert
- Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Basel, Switzerland
- Multiple Sclerosis Center, Department of Neurology, University Hospital and University of Basel, Basel, Switzerland
| | - Stefanie Müller
- Department of Neurology, Cantonal Hospital St Gallen, St Gallen, Switzerland
| | - Roland G. Henry
- Weill Institute for Neurosciences, Department of Neurology, University of California at San Francisco, San Francisco
| | - Caroline Pot
- Department of Clinical Neurosciences, Service of Neurology, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Amandine Matthias
- Department of Clinical Neurosciences, Service of Neurology, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Anke Salmen
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Jorge R. Oksenberg
- Weill Institute for Neurosciences, Department of Neurology, University of California at San Francisco, San Francisco
| | - Giulio Disanto
- Multiple Sclerosis Center, Department of Neurology, Neurocenter of Southern Switzerland, ECO, Lugano, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
| | - Chiara Zecca
- Multiple Sclerosis Center, Department of Neurology, Neurocenter of Southern Switzerland, ECO, Lugano, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
| | - Marcus D’Souza
- Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Basel, Switzerland
- Multiple Sclerosis Center, Department of Neurology, University Hospital and University of Basel, Basel, Switzerland
| | - Renaud Du Pasquier
- Department of Clinical Neurosciences, Service of Neurology, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Claire Bridel
- Unit of Neuroimmunology, Division of Neurology, Department of Clinical Neurosciences, University Hospital of Geneva and Faculty of Medicine, Geneva, Switzerland
| | - Claudio Gobbi
- Multiple Sclerosis Center, Department of Neurology, Neurocenter of Southern Switzerland, ECO, Lugano, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
| | - Ludwig Kappos
- Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Basel, Switzerland
- Multiple Sclerosis Center, Department of Neurology, University Hospital and University of Basel, Basel, Switzerland
| | - Stephen L. Hauser
- Weill Institute for Neurosciences, Department of Neurology, University of California at San Francisco, San Francisco
| | - Bruce A. C. Cree
- Weill Institute for Neurosciences, Department of Neurology, University of California at San Francisco, San Francisco
| | - Jens Kuhle
- Department of Clinical Research, University Hospital Basel and University of Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Basel, Switzerland
- Multiple Sclerosis Center, Department of Neurology, University Hospital and University of Basel, Basel, Switzerland
| | - Ari J. Green
- Weill Institute for Neurosciences, Department of Neurology, University of California at San Francisco, San Francisco
- Department of Ophthalmology, University of California at San Francisco, San Francisco
| |
Collapse
|
50
|
Müller J, Cagol A, Lorscheider J, Tsagkas C, Benkert P, Yaldizli Ö, Kuhle J, Derfuss T, Sormani MP, Thompson A, Granziera C, Kappos L. Harmonizing Definitions for Progression Independent of Relapse Activity in Multiple Sclerosis: A Systematic Review. JAMA Neurol 2023; 80:1232-1245. [PMID: 37782515 DOI: 10.1001/jamaneurol.2023.3331] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Importance Emerging evidence suggests that progression independent of relapse activity (PIRA) is a substantial contributor to long-term disability accumulation in relapsing-remitting multiple sclerosis (RRMS). To date, there is no uniform agreed-upon definition of PIRA, limiting the comparability of published studies. Objective To summarize the current evidence about PIRA based on a systematic review, to discuss the various terminologies used in the context of PIRA, and to propose a harmonized definition for PIRA for use in clinical practice and future trials. Evidence Review A literature search was conducted using the search terms multiple sclerosis, PIRA, progression independent of relapse activity, silent progression, and progression unrelated to relapses in PubMed, Embase, Cochrane, and Web of Science, published between January 1990 and December 2022. Findings Of 119 identified single records, 48 eligible studies were analyzed. PIRA was reported to occur in roughly 5% of all patients with RRMS per annum, causing at least 50% of all disability accrual events in typical RRMS. The proportion of PIRA vs relapse-associated worsening increased with age, longer disease duration, and, despite lower absolute event numbers, potent suppression of relapses by highly effective disease-modifying therapy. However, different studies used various definitions of PIRA, rendering the comparability of studies difficult. Conclusion and Relevance PIRA is the most frequent manifestation of disability accumulation across the full spectrum of traditional MS phenotypes, including clinically isolated syndrome and early RRMS. The harmonized definition suggested here may improve the comparability of results in current and future cohorts and data sets.
Collapse
Affiliation(s)
- Jannis Müller
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel, Basel, Switzerland
- Neurologic Clinic and Policlinic, Department of Neurology, University Hospital Basel, Basel, Switzerland
| | - Alessandro Cagol
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Johannes Lorscheider
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
- Neurologic Clinic and Policlinic, Department of Neurology, University Hospital Basel, Basel, Switzerland
| | - Charidimos Tsagkas
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel, Basel, Switzerland
- Neurologic Clinic and Policlinic, Department of Neurology, University Hospital Basel, Basel, Switzerland
| | - Pascal Benkert
- Department of Clinical Research, Clinical Trial Unit, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Özgür Yaldizli
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel, Basel, Switzerland
- Neurologic Clinic and Policlinic, Department of Neurology, University Hospital Basel, Basel, Switzerland
| | - Jens Kuhle
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
- Neurologic Clinic and Policlinic, Department of Neurology, University Hospital Basel, Basel, Switzerland
| | - Tobias Derfuss
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
- Neurologic Clinic and Policlinic, Department of Neurology, University Hospital Basel, Basel, Switzerland
| | - Maria Pia Sormani
- Department of Health Sciences, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Alan Thompson
- Queen Square MS Centre, UCL Institute of Neurology, London, United Kingdom
- NIHR University College London Hospitals Biomedical Research Centre, London, United Kingdom
| | - Cristina Granziera
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel, Basel, Switzerland
- Neurologic Clinic and Policlinic, Department of Neurology, University Hospital Basel, Basel, Switzerland
| | - Ludwig Kappos
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel, Basel, Switzerland
| |
Collapse
|