1
|
Liu L, Zhang Y, Liu H, Yang J, Tian Q, Chueakula N, Ramasamy S, Verma NK, Cheung C, Kusumbe AP. Transforming Cancer Therapy: Unlocking the Potential of Targeting Vascular and Stromal Cells in the Tumor Microenvironment. Cancer Res 2025; 85:2152-2164. [PMID: 40173050 DOI: 10.1158/0008-5472.can-24-4744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/27/2025] [Accepted: 03/31/2025] [Indexed: 04/04/2025]
Abstract
The tumor microenvironment (TME) orchestrates cancer progression by fostering a complex interplay between cancer cells and the surrounding cellular and acellular elements. Through dynamic interactions with cancer cells, vascular and stromal cells not only promote tumor growth but also enhance metastatic potential and restrict therapeutic responses. Vascular and stromal cells play a critical role in regulating epithelial-mesenchymal transition (EMT) and sustaining resistance pathways, making them compelling targets for innovative therapies. This review delves into the vascular and stromal components of the TME, their contributions to EMT and resistance mechanisms, and emerging strategies to target these interactions for improved cancer therapy outcomes.
Collapse
Affiliation(s)
- Lu Liu
- Tissue and Tumor Microenvironments Lab, Cancer Discovery and Regenerative Medicine Program, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Yuheng Zhang
- Tissue and Tumor Microenvironments Lab, Cancer Discovery and Regenerative Medicine Program, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Hanyu Liu
- Tissue and Tumor Microenvironments Lab, Cancer Discovery and Regenerative Medicine Program, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Jian Yang
- Tissue and Tumor Microenvironments Lab, Cancer Discovery and Regenerative Medicine Program, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Qi Tian
- Tissue and Tumor Microenvironments Lab, Cancer Discovery and Regenerative Medicine Program, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Multidisciplinary Institute of Ageing (MIA-Portugal), Coimbra, Portugal
| | - Nareekarn Chueakula
- Tissue and Tumor Microenvironments Lab, Cancer Discovery and Regenerative Medicine Program, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Saravana Ramasamy
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Navin Kumar Verma
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Christine Cheung
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Anjali P Kusumbe
- Tissue and Tumor Microenvironments Lab, Cancer Discovery and Regenerative Medicine Program, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Multidisciplinary Institute of Ageing (MIA-Portugal), Coimbra, Portugal
| |
Collapse
|
2
|
Gabizon AA. Cancer nanomedicine from a clinician-scientist perspective: Lessons and prospects. J Control Release 2025; 382:113731. [PMID: 40228664 DOI: 10.1016/j.jconrel.2025.113731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 04/09/2025] [Accepted: 04/11/2025] [Indexed: 04/16/2025]
Abstract
The nanomedicine field has progressed enormously in the last couple of decades. From a loose group of liposomologists, polymer scientists, chemical engineers, and experts in metal nanoparticles, mesoporous silica, and other nanomaterials, the field has gradually consolidated and has generated vast amounts of research and clinical data, but, until the development of lipid nanoparticle (LNP)-based vaccinations for Covid-19, has remained with low visibility in the clinic. Applications in the cancer field are the most frequently sought projects in nanomedicine. For the last 45 years, my clinical career has mingled with my research career focusing on ways to formulate drugs in liposomes to improve their safety and efficacy in cancer therapy. In this review, I will discuss my contribution to the development of pegylated liposomal doxorubicin and other cancer nanomedicines from my privileged position as a clinician and scientist.
Collapse
Affiliation(s)
- Alberto A Gabizon
- The Leah and Jakub Susskind Nano-Oncology Research Laboratory at the Helmsley Cancer Center, Shaare Zedek Medical Center and the Hebrew University-Faculty of Medicine, Jerusalem, Israel.
| |
Collapse
|
3
|
Neophytou C, Charalambous A, Voutouri C, Angeli S, Panagi M, Stylianopoulos T, Mpekris F. Sonopermeation combined with stroma normalization enables complete cure using nano-immunotherapy in murine breast tumors. J Control Release 2025; 382:113722. [PMID: 40233830 PMCID: PMC12076078 DOI: 10.1016/j.jconrel.2025.113722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 04/09/2025] [Accepted: 04/09/2025] [Indexed: 04/17/2025]
Abstract
Nano-immunotherapy shows great promise in improving patient outcomes, as seen in advanced triple-negative breast cancer, but it does not cure the disease, with median survival under two years. Therefore, understanding resistance mechanisms and developing strategies to enhance its effectiveness in breast cancer is crucial. A key resistance mechanism is the pronounced desmoplasia in the tumor microenvironment, which leads to dysfunction of tumor blood vessels and thus, to hypoperfusion, limited drug delivery and hypoxia. Ultrasound sonopermeation and agents that normalize the tumor stroma have been employed separately to restore vascular abnormalities in tumors with some success. Here, we performed in vivo studies in two murine, orthotopic breast tumor models to explore if combination of ultrasound sonopermeation with a stroma normalization drug can synergistically improve tumor perfusion and enhance the efficacy of nano-immunotherapy. We found that the proposed combinatorial treatment can drastically reduce primary tumor growth and in many cases tumors were no longer measurable. Overall survival studies showed that all mice that received the combination treatment survived and rechallenge experiments revealed that the survivors obtained immunological memory. Employing ultrasound elastography and contrast enhanced ultrasound along with proteomics analysis, flow cytometry and immunofluorescene staining, we found the combinatorial treatment reduced tumor stiffness to normal levels, restoring tumor perfusion and oxygenation. Furthermore, it increased infiltration and activity of immune cells and altered the levels of immunosupportive chemokines. Finally, using machine learning analysis, we identified that tumor stiffness, CD8+ T cells and M2-type macrophages were strong predictors of treatment response.
Collapse
Affiliation(s)
- Constantina Neophytou
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia 1678, Cyprus; Cancer Genetics, Therapeutics & Ultrastructural Pathology Department, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Antonia Charalambous
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia 1678, Cyprus
| | - Chrysovalantis Voutouri
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia 1678, Cyprus
| | - Stella Angeli
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia 1678, Cyprus; Cancer Genetics, Therapeutics & Ultrastructural Pathology Department, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Myrofora Panagi
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia 1678, Cyprus
| | - Triantafyllos Stylianopoulos
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia 1678, Cyprus
| | - Fotios Mpekris
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia 1678, Cyprus; Cancer Genetics, Therapeutics & Ultrastructural Pathology Department, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus.
| |
Collapse
|
4
|
Dreyer SB, Beer P, Hingorani SR, Biankin AV. Improving outcomes of patients with pancreatic cancer. Nat Rev Clin Oncol 2025; 22:439-456. [PMID: 40329051 DOI: 10.1038/s41571-025-01019-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2025] [Indexed: 05/08/2025]
Abstract
Research studies aimed at improving the outcomes of patients with pancreatic ductal adenocarcinoma (PDAC) have brought about limited progress, and in clinical practice, the optimized use of surgery, chemotherapy and supportive care have led to modest improvements in survival that have probably reached a plateau. As a result, PDAC is expected to be the second leading cause of cancer-related death in Western societies within a decade. The development of therapeutic advances in PDAC has been challenging owing to a lack of actionable molecular targets, a typically immunosuppressive microenvironment, and a disease course characterized by rapid progression and clinical deterioration. Yet, the progress in our understanding of PDAC and identification of novel therapeutic opportunities over the past few years is leading to a strong sense of optimism in the field. In this Perspective, we address the aforementioned challenges, including biological aspects of PDAC that make this malignancy particularly difficult to treat. We explore specific areas with potential for therapeutic advances, including targeting mutant KRAS, novel strategies to harness the antitumour immune response and approaches to early detection, and propose mechanisms to improve clinical trial design and to overcome various community and institutional barriers to progress.
Collapse
Affiliation(s)
- Stephan B Dreyer
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Glasgow, UK
- West of Scotland Hepato-Biliary and Pancreatic Unit, Glasgow Royal Infirmary, Glasgow, UK
- Department of Hepatobiliary Surgery, Royal Liverpool University Hospital, Liverpool, UK
| | - Philip Beer
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Glasgow, UK
- Hull York Medical School, University of York, York, UK
| | - Sunil R Hingorani
- Department of Internal Medicine, Division of Hemotology/Oncology, University of Nebraska Medical Center, Omaha, NE, USA
- Pancreatic Cancer Center of Excellence, University of Nebraska Medical Center, Omaha, NE, USA
| | - Andrew V Biankin
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Glasgow, UK.
- West of Scotland Hepato-Biliary and Pancreatic Unit, Glasgow Royal Infirmary, Glasgow, UK.
| |
Collapse
|
5
|
Sigirli S, Karakas D. Fibrotic Fortresses and Therapeutic Frontiers: Pancreatic Stellate Cells and the Extracellular Matrix in Pancreatic Cancer. Cancer Med 2025; 14:e70788. [PMID: 40437741 PMCID: PMC12119906 DOI: 10.1002/cam4.70788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 02/19/2025] [Accepted: 03/08/2025] [Indexed: 06/01/2025] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is characterized by a unique tumor microenvironment (TME) that plays pivotal roles in cancer progression, angiogenesis, metastasis, and drug resistance. This complex and dynamic ecosystem comprises cancer cells, stromal cells, and extracellular matrix (ECM) components, which interact synergistically to drive cancer aggressiveness. Among the stromal cells, cancer-associated fibroblasts (CAFs) and pancreatic stellate cells (PSCs), mainly accepted as a group of CAFs, are central players in shaping the desmoplastic, hypoxic, and immunosuppressive stroma of PDAC. PSCs, the most abundant stromal cells in PDAC, are resident pancreatic cells that undergo phenotypic changes upon activation, driving tumor progression through the secretion of cytokines, growth factors, ECM components (e.g., collagen, hyaluronic acid, fibronectin), and matrix metalloproteinases. In addition to cellular elements, ECM components significantly contribute to cancer aggressiveness by forming a physical barrier that hinders drug penetration, activating signaling pathways through specific receptor interactions, and generating peptides originating from the fragmentation of proteins to induce cancer migration. Regarding their critical roles in tumor progression, therapeutic approaches targeting PSCs and the ECM have garnered increasing interest in recent years. However, PSCs and stromal components may exhibit dual roles, with the potential to both promote and suppress tumor progression under different conditions. Therefore, targeting PSCs or stroma may lead to unintended outcomes, including exacerbation of cancer aggressiveness. METHODS This review focuses on the multifaceted roles of PSCs in PDAC, particularly their interactions with cancer cells and their contributions to therapy resistance. Additionally, we discuss current and emerging therapeutic strategies targeting PSCs and the ECM components, including both preclinical and clinical efforts. CONCLUSION By synthesizing insights from recent literature, this review provides a comprehensive understanding of the role of PSCs in PDAC pathobiology and highlights potential therapeutic approaches targeting PSCs or ECM components to improve patient outcomes.
Collapse
Affiliation(s)
- Sila Sigirli
- Medical Biotechnology, Graduate School of HealthAcibadem Mehmet Ali Aydinlar UniversityIstanbulTurkiye
| | - Didem Karakas
- Medical Biotechnology, Graduate School of HealthAcibadem Mehmet Ali Aydinlar UniversityIstanbulTurkiye
| |
Collapse
|
6
|
Glapiński F, Zając W, Fudalej M, Deptała A, Czerw A, Sygit K, Kozłowski R, Badowska-Kozakiewicz A. The Role of the Tumor Microenvironment in Pancreatic Ductal Adenocarcinoma: Recent Advancements and Emerging Therapeutic Strategies. Cancers (Basel) 2025; 17:1599. [PMID: 40427098 PMCID: PMC12110676 DOI: 10.3390/cancers17101599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2025] [Revised: 04/30/2025] [Accepted: 05/06/2025] [Indexed: 05/29/2025] Open
Abstract
Pancreatic cancer (PC), with pancreatic ductal adenocarcinoma (PDAC) comprising about 90% of all cases, is one of the most aggressive and lethal solid tumors. PDAC remains one of the most significant challenges of oncology to this day due to its inadequate response to conventional treatment, gradual rise in incidence since 2004, and poor five-year survival rates. As cancer cells are the primary adversary in this uneven fight, they remain the primary research target. Nevertheless, increasing attention is being paid to the tumor microenvironment (TME). The most crucial TME constellation components are immune cells, especially macrophages, stellate cells and lymphocytes, fibroblasts, bacterial and fungal microflora, and neuronal cells. Depending on the particular phenotype of these cells, the composition of the microenvironment, and the cell ratio, patients can experience different disease outcomes and varying vulnerability to treatment approaches. This study aims to present the current knowledge and review the most up-to-date scientific findings regarding the microenvironment of PC. It contains detailed information on the structure and cellular composition of the stroma, including its impact on disease development, metastasis, and response to treatment, as well as the therapeutic opportunities that arise from targeting this tissue.
Collapse
Affiliation(s)
- Franciszek Glapiński
- Students’ Scientific Organization of Cancer Cell Biology, Department of Oncological Propaedeutics, Medical University of Warsaw, 01-445 Warsaw, Poland
| | - Weronika Zając
- Students’ Scientific Organization of Cancer Cell Biology, Department of Oncological Propaedeutics, Medical University of Warsaw, 01-445 Warsaw, Poland
| | - Marta Fudalej
- Department of Oncological Propaedeutics, Medical University of Warsaw, 01-445 Warsaw, Poland; (M.F.); (A.D.)
- Department of Oncology, National Medical Institute of the Ministry of the Interior and Administration, 02-507 Warsaw, Poland
| | - Andrzej Deptała
- Department of Oncological Propaedeutics, Medical University of Warsaw, 01-445 Warsaw, Poland; (M.F.); (A.D.)
| | - Aleksandra Czerw
- Department of Health Economics and Medical Law, Medical University of Warsaw, 02-091 Warsaw, Poland;
- Department of Economic and System Analyses, National Institute of Public Health NIH—National Research Institute, 00-791 Warsaw, Poland
| | - Katarzyna Sygit
- Faculty of Health Sciences, Calisia University, 62-800 Kalisz, Poland
| | - Remigiusz Kozłowski
- Department of Management and Logistics in Healthcare, Medical University of Lodz, 90-131 Lodz, Poland
| | - Anna Badowska-Kozakiewicz
- Department of Oncological Propaedeutics, Medical University of Warsaw, 01-445 Warsaw, Poland; (M.F.); (A.D.)
| |
Collapse
|
7
|
Neophytou C, Stylianopoulos T, Mpekris F. The synergistic potential of mechanotherapy and sonopermeation to enhance cancer treatment effectiveness. NPJ BIOLOGICAL PHYSICS AND MECHANICS 2025; 2:13. [PMID: 40337117 PMCID: PMC12052595 DOI: 10.1038/s44341-025-00017-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 03/04/2025] [Indexed: 05/09/2025]
Abstract
Inefficient drug delivery in tumors, especially in desmoplastic cancers, arises from blood vessel collapse due to tumor stiffening and mechanical compression. Vessel collapse also leads to hypoxia, immune evasion, and metastasis, reducing treatment efficacy. Mechanotherapeutics and ultrasound sonopermeation, which address tumor stiffness and enhance vessel permeability, respectively, show promise in restoring tumor microenvironment abnormalities and improving drug delivery. This perspective highlights their independent and combined potential to optimize cancer therapy.
Collapse
Affiliation(s)
- Constantina Neophytou
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus
| | - Triantafyllos Stylianopoulos
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus
| | - Fotios Mpekris
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus
| |
Collapse
|
8
|
Aquino A, Franzese O. Reciprocal Modulation of Tumour and Immune Cell Motility: Uncovering Dynamic Interplays and Therapeutic Approaches. Cancers (Basel) 2025; 17:1547. [PMID: 40361472 PMCID: PMC12072109 DOI: 10.3390/cancers17091547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Revised: 04/28/2025] [Accepted: 04/30/2025] [Indexed: 05/15/2025] Open
Abstract
Dysregulated cell movement is a hallmark of cancer progression and metastasis, the leading cause of cancer-related mortality. The metastatic cascade involves tumour cell migration, invasion, intravasation, dissemination, and colonisation of distant organs. These processes are influenced by reciprocal interactions between cancer cells and the tumour microenvironment (TME), including immune cells, stromal components, and extracellular matrix proteins. The epithelial-mesenchymal transition (EMT) plays a crucial role in providing cancer cells with invasive and stem-like properties, promoting dissemination and resistance to apoptosis. Conversely, the mesenchymal-epithelial transition (MET) facilitates metastatic colonisation and tumour re-initiation. Immune cells within the TME contribute to either anti-tumour response or immune evasion. These cells secrete cytokines, chemokines, and growth factors that shape the immune landscape and influence responses to immunotherapy. Notably, immune checkpoint blockade (ICB) has transformed cancer treatment, yet its efficacy is often dictated by the immune composition of the tumour site. Elucidating the molecular cross-talk between immune and cancer cells, identifying predictive biomarkers for ICB response, and developing strategies to convert cold tumours into immune-active environments is critical to overcoming resistance to immunotherapy and improving patient survival.
Collapse
Affiliation(s)
| | - Ornella Franzese
- Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy;
| |
Collapse
|
9
|
Tao M, Liu W, Chen J, Liu R, Zou J, Yu B, Wang C, Huang M, Chen Q, Zhang Z, Chen Z, Sun H, Zhou C, Tan S, Zheng Y, Wang H. Transcriptome Landscape of Cancer-Associated Fibroblasts in Human PDAC. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2415196. [PMID: 40019403 PMCID: PMC12120754 DOI: 10.1002/advs.202415196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/27/2025] [Indexed: 03/01/2025]
Abstract
Cancer-associated fibroblasts (CAFs) play a crucial role in the progression of pancreatic ductal adenocarcinoma (PDAC). Here, integrated single-cell RNA sequencing analysis is utilized to comprehensively map CAFs in the human PDAC tumor microenvironment (TME). Normal fibroblasts (NFs) and nine distinct CAF subtypes are identified including newly identified CAF subtypes, CDCP1+FTL+ CAFs, transitional CAFs (tCAFs), interferon simulated genes (ISG)+ myofibroblastic CAFs (myCAFs), and proliferative CAFs (pCAFs). CDCP1+FTL+ CAFs, pCAFs, and ISG+ myCAFs are associated with unfavorable clinical outcomes. CDCP1+FTL+ CAFs exhibit enhanced glycolysis and iron metabolism, resisting ferroptosis. The antigen-presenting CAFs (apCAFs) show high heterogeneity, consisting of multiple subtypes expressing distinct immune cell signatures. The CAF subtypes display differentiation plasticity, transitioning from early normal-like CAFs (nCAFs) to inflammatory CAFs (iCAFs) and myCAFs, ultimately leading to more invasive pCAFs. AP-1 family members FOS and JUN regulate the malignant phenotype conversion of NFs to nCAFs, while transforming growth factor-β (TGFβ) and interferon-γ (IFNγ) signals trigger the interconversion between classic myCAFs and iCAFs, respectively. A close interaction between CAFs and myeloid cells (especially neutrophils) is further observed in PDAC-TME, mainly mediated by CXCR4-CXCL12 chemotaxis. This work depicts a detailed CAF map and its dynamic interconvertible shift, providing important insights for combined targeted CAFs therapy.
Collapse
Affiliation(s)
- Mengyu Tao
- Department of OncologyShanghai General HospitalShanghai Jiaotong University School of MedicineShanghai200800P. R. China
| | - Wenting Liu
- Department of Medical OncologyFudan University Shanghai Cancer CenterShanghai200032P. R. China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032P. R. China
| | - Jianhua Chen
- Department of Medical OncologyFudan University Shanghai Cancer CenterShanghai200032P. R. China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032P. R. China
| | - Rujiao Liu
- Department of Medical OncologyFudan University Shanghai Cancer CenterShanghai200032P. R. China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032P. R. China
| | - Jianling Zou
- Department of Medical OncologyFudan University Shanghai Cancer CenterShanghai200032P. R. China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032P. R. China
| | - Bo Yu
- Department of Medical OncologyFudan University Shanghai Cancer CenterShanghai200032P. R. China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032P. R. China
| | - Chenchen Wang
- Department of Medical OncologyFudan University Shanghai Cancer CenterShanghai200032P. R. China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032P. R. China
| | - Mingzhu Huang
- Department of Medical OncologyFudan University Shanghai Cancer CenterShanghai200032P. R. China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032P. R. China
| | - Qingjian Chen
- Department of OncologyShanghai General HospitalShanghai Jiaotong University School of MedicineShanghai200800P. R. China
| | - Zhe Zhang
- Department of Medical OncologyFudan University Shanghai Cancer CenterShanghai200032P. R. China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032P. R. China
| | - Zhiyu Chen
- Department of Medical OncologyFudan University Shanghai Cancer CenterShanghai200032P. R. China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032P. R. China
| | - Haoyu Sun
- Department of Medical OncologyFudan University Shanghai Cancer CenterShanghai200032P. R. China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032P. R. China
- Department of ImmunologySchool of Basic Medical SciencesFudan UniversityShanghai200032China
| | - Cheng Zhou
- Department of Radiation OncologyNanfang HospitalSouthern Medical UniversityGuangzhou510515P. R. China
| | - Shuguang Tan
- The Second Affiliated HospitalZhejiang University School of MedicineHangzhou310009China
| | - Yuxuan Zheng
- Human Phenome InstituteMinhang HosptialFudan UniversityShanghai201203P. R. China
| | - Hongxia Wang
- Department of Medical OncologyFudan University Shanghai Cancer CenterShanghai200032P. R. China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032P. R. China
| |
Collapse
|
10
|
Chen W, Yang K, Liu X, Cheng X, Zhu D, Yang Z, Chen Y. A novel peptide RR-171 derived from human umbilical cord serum induces apoptosis and pyroptosis in pancreatic cancer cells. Sci Rep 2025; 15:12819. [PMID: 40229415 PMCID: PMC11997120 DOI: 10.1038/s41598-025-96465-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 03/28/2025] [Indexed: 04/16/2025] Open
Abstract
Human umbilical cord serum is full of molecules that play vital roles in foetal development. This study aimed to explore the effects of RR-171, a novel peptide derived from umbilical cord serum, on pancreatic cancer cells and to elucidate its mechanisms. The anti-pancreatic cancer properties of RR-171 were detected by a cell counting kit-8, colony formation, flow cytometry, LDH release and EdU incorporation assays. RNA sequencing and gene enrichment analysis were applied to identify the differentially expressed genes and enriched pathways. Western blotting analysis was used to detect the expression of proteins. A subcutaneous xenograft model was used to examine the effect of RR-171 on pancreatic cancer cells in vivo. The results demonstrated that RR-171 inhibited the viability, proliferation and colony formation of pancreatic cancer cells in a dose-dependent manner. Gene enrichment analysis revealed that RR-171 inhibits the Wnt signaling pathway. Moreover, RR-171 significantly induced apoptosis and pyroptosis in pancreatic cancer cells in a dose-dependent manner. Z-VAD-FMK partly reversed the proapoptotic effect of RR-171, and VX-765 partly reversed the pro-pyroptotic effect of RR-171. Finally, RR-171 inhibited the growth of pancreatic cancer cells in a subcutaneous xenograft mice model and suppressed the expression of Ki-67 and PCNA in tumors. In conclusion, RR-171 induces apoptosis and pyroptosis through multiple pathways and inhibits pancreatic cancer growth, suggesting that RR-171 might be a potential agent for the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Weigang Chen
- Department of Hepatobiliary Surgery, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China
- Department of General Surgery, Air Force Hospital of Western Theater Command, Chengdu, 610021, China
| | - Kai Yang
- Department of Hepatobiliary Surgery, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Xinyu Liu
- Department of Hepatobiliary Surgery, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Xin Cheng
- Department of Hepatobiliary Surgery, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Donglie Zhu
- Department of Hand and Foot surgery, The Air Force Hospital of Northern Theater of People's Liberation Army of China, Shenyang, 110041, China
| | - Zelong Yang
- Department of Hepatobiliary Surgery, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Yong Chen
- Department of Hepatobiliary Surgery, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China.
| |
Collapse
|
11
|
Guan X, Shen Y, Zhao C, Li X, Li X, Lu D, Wang L, Liu L, Wu S, Huang B, Guo L, Xu H. Cascade-Responsive Nanoprodrug Disrupts Immune-Fibroblast Communications for Potentiated Cancer Mechanoimmunotherapy. Adv Healthc Mater 2025; 14:e2500176. [PMID: 40079115 DOI: 10.1002/adhm.202500176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 03/02/2025] [Indexed: 03/14/2025]
Abstract
The abnormal tumor mechanical microenvironment due to specific cancer-associated fibroblasts (CAFs) subset and low tumor immunogenicity caused by inefficient conversion of active chemotherapeutic agents are two key obstacles that impede patients with desmoplastic tumors from achieving stable and complete immune responses. Herein, it is demonstrated that FAP-α+CAFs-induced stromal stiffness accelerated tumor progression by precluding cytotoxic T lymphocytes. Subsequently, a cascade-responsive nanoprodrug capable of re-educating FAP-α+CAFs and amplifying tumor immunogenicity for potentiated cancer mechanoimmunotherapy is ingeniously designed. Benefiting from the active targeted release of angiotensin II receptor antagonist (losartan) guided by FAP-α cleavable peptide and the efficient conversion of topoisomerase I inhibitor (7-Ethyl-10-hydroxycamptothecin) prodrug under high glutathione/esterase within tumor cells, this regimen created an immune-activated landscape that retarded primary tumor growth and counteracted resistance to immune checkpoint inhibitor in mice with triple-negative breast cancer. This nanoprodrug-assisted mechanoimmunotherapy can serve as a universal strategy for conferring efficient tumoricidal immunity in "immune excluded" desmoplastic tumor interventions.
Collapse
Affiliation(s)
- Xin Guan
- Department of Ultrasound, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, 361000, P. R. China
| | - Yuting Shen
- Department of Ultrasound, Institiute of Ultrasound in Medicine and Engineering, Zhongshan Hospital, Fudan University, Shanghai, 200032, P. R. China
| | - Chongke Zhao
- Department of Ultrasound, Institiute of Ultrasound in Medicine and Engineering, Zhongshan Hospital, Fudan University, Shanghai, 200032, P. R. China
| | - Xiao Li
- Department of Ultrasound, Institiute of Ultrasound in Medicine and Engineering, Zhongshan Hospital, Fudan University, Shanghai, 200032, P. R. China
| | - Xiaolong Li
- Department of Ultrasound, Institiute of Ultrasound in Medicine and Engineering, Zhongshan Hospital, Fudan University, Shanghai, 200032, P. R. China
| | - Dan Lu
- Department of Ultrasound, Institiute of Ultrasound in Medicine and Engineering, Zhongshan Hospital, Fudan University, Shanghai, 200032, P. R. China
| | - Lifan Wang
- Department of Ultrasound, Institiute of Ultrasound in Medicine and Engineering, Zhongshan Hospital, Fudan University, Shanghai, 200032, P. R. China
| | - Linna Liu
- Department of Ultrasound, Institiute of Ultrasound in Medicine and Engineering, Zhongshan Hospital, Fudan University, Shanghai, 200032, P. R. China
| | - Shengbo Wu
- Department of Ultrasound, Zhejiang Hospital, Hangzhou, 310013, P. R. China
| | - Bin Huang
- Department of Ultrasound, Zhejiang Hospital, Hangzhou, 310013, P. R. China
| | - Lehang Guo
- Department of Medical Ultrasound and Center of Minimally Invasive Treatment for Tumor, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, P. R. China
| | - Huixiong Xu
- Department of Ultrasound, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, 361000, P. R. China
| |
Collapse
|
12
|
Underwood PW, Leuschner T, Ejaz A, Dillhoff M, Tsai S, Pawlik TM, Manne A, Krishna SG, Miller ED, Ahmad S, Cloyd JM. Textbook Neoadjuvant Experience: Defining a Novel Composite Outcomes Measure for Patients with Pancreatic Cancer Undergoing Neoadjuvant Therapy. J Am Coll Surg 2025; 240:539-548. [PMID: 39803957 DOI: 10.1097/xcs.0000000000001277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
BACKGROUND Neoadjuvant therapy (NT) is increasingly used for patients with pancreatic ductal adenocarcinoma (PDAC). Disease progression, toxicity, and failure to undergo surgical resection are common during NT, yet little research has focused on efforts to optimize care delivery. We sought to define and validate a novel composite outcomes metric that characterizes the successful delivery of NT. STUDY DESIGN All patients with localized PDAC receiving NT in an intention-to-treat fashion between 2018 and 2023 were retrospectively evaluated. A textbook neoadjuvant experience (TNE) was defined as the absence of mortality, disease progression, or hospital admission during NT as well as the completion of all intended NT and successful surgical resection. RESULTS Among 306 patients with localized PDAC, the median age was 66 years and 58.5% were men. Overall, only 85 (28%) experienced a TNE which was more common among patients with potentially resectable (45 of 96, 47%) than borderline resectable (33 of 112, 29%) or locally advanced (7 of 98, 7%) disease. Patients with a TNE experienced greater overall survival than those individuals without a TNE (median not reached vs 16.4 months [95% CI 14.9 to 17.9 months], p < 0.001). On multivariable Cox regression analysis, a TNE was the strongest predictor of improved overall survival (hazard ratio 0.33, 95% CI 0.20 to 0.54, p < 0.001). CONCLUSIONS A TNE is infrequently achieved among patients with PDAC undergoing NT but is significantly associated with improved long-term outcomes. Future research aimed at optimizing outcomes of NT delivery should incorporate this novel composite metric that may more accurately reflect patient and provider expectations of treatment.
Collapse
Affiliation(s)
- Patrick W Underwood
- From the Division of Surgical Oncology, Department of Surgery, The Ohio State University, Columbus, OH (Underwood, Leuschner, Dillhoff, Tsai, Pawlik, Cloyd)
| | - Thomas Leuschner
- From the Division of Surgical Oncology, Department of Surgery, The Ohio State University, Columbus, OH (Underwood, Leuschner, Dillhoff, Tsai, Pawlik, Cloyd)
| | - Aslam Ejaz
- Division of Surgical Oncology Department of Surgery, University of Illinois-Chicago, Chicago, IL (Ejaz)
| | - Mary Dillhoff
- From the Division of Surgical Oncology, Department of Surgery, The Ohio State University, Columbus, OH (Underwood, Leuschner, Dillhoff, Tsai, Pawlik, Cloyd)
| | - Susan Tsai
- From the Division of Surgical Oncology, Department of Surgery, The Ohio State University, Columbus, OH (Underwood, Leuschner, Dillhoff, Tsai, Pawlik, Cloyd)
| | - Timothy M Pawlik
- From the Division of Surgical Oncology, Department of Surgery, The Ohio State University, Columbus, OH (Underwood, Leuschner, Dillhoff, Tsai, Pawlik, Cloyd)
| | - Ashish Manne
- Division of Medical Oncology, Department of Medicine, The Ohio State University, Columbus, OH (Manne)
| | - Somashekar G Krishna
- Division of Gastroenterology, Department of Medicine, The Ohio State University, Columbus, OH (Krishna)
| | - Eric D Miller
- Department of Radiation Oncology, The Ohio State University, Columbus, OH (Miller)
| | - Syed Ahmad
- Department of Surgery, University of Cincinnati, Cincinnati, OH (Ahmad)
| | - Jordan M Cloyd
- From the Division of Surgical Oncology, Department of Surgery, The Ohio State University, Columbus, OH (Underwood, Leuschner, Dillhoff, Tsai, Pawlik, Cloyd)
| |
Collapse
|
13
|
Ramesh RPG, Yasmin H, Ponnachan P, Al-Ramadi B, Kishore U, Joseph AM. Phenotypic heterogeneity and tumor immune microenvironment directed therapeutic strategies in pancreatic ductal adenocarcinoma. Front Immunol 2025; 16:1573522. [PMID: 40230862 PMCID: PMC11994623 DOI: 10.3389/fimmu.2025.1573522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Accepted: 03/04/2025] [Indexed: 04/16/2025] Open
Abstract
Pancreatic cancer is an aggressive tumor with high metastatic potential which leads to decreased survival rate and resistance to chemotherapy and immunotherapy. Nearly 90% of pancreatic cancer comprises pancreatic ductal adenocarcinoma (PDAC). About 80% of diagnoses takes place at the advanced metastatic stage when it is unresectable, which renders chemotherapy regimens ineffective. There is also a dearth of specific biomarkers for early-stage detection. Advances in next generation sequencing and single cell profiling have identified molecular alterations and signatures that play a role in PDAC progression and subtype plasticity. Most chemotherapy regimens have shown only modest survival benefits, and therefore, translational approaches for immunotherapies and combination therapies are urgently required. In this review, we have examined the immunosuppressive and dense stromal network of tumor immune microenvironment with various metabolic and transcriptional changes that underlie the pro-tumorigenic properties in PDAC in terms of phenotypic heterogeneity, plasticity and subtype co-existence. Moreover, the stromal heterogeneity as well as genetic and epigenetic changes that impact PDAC development is discussed. We also review the PDAC interaction with sequestered cellular and humoral components present in the tumor immune microenvironment that modify the outcome of chemotherapy and radiation therapy. Finally, we discuss different therapeutic interventions targeting the tumor immune microenvironment aimed at better prognosis and improved survival in PDAC.
Collapse
Affiliation(s)
- Remya P. G. Ramesh
- Department of Veterinary Medicine, UAE University, Al Ain, United Arab Emirates
| | - Hadida Yasmin
- Immunology and Cell Biology Laboratory, Department of Zoology, Cooch Behar Panchanan Barma University, Cooch Behar, West Bengal, India
| | - Pretty Ponnachan
- Department of Veterinary Medicine, UAE University, Al Ain, United Arab Emirates
| | - Basel Al-Ramadi
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Uday Kishore
- Department of Veterinary Medicine, UAE University, Al Ain, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Ann Mary Joseph
- Department of Veterinary Medicine, UAE University, Al Ain, United Arab Emirates
| |
Collapse
|
14
|
Zhao Y, Tan HL, Chua DW, Goh BKP, Koh YX. Surgery and neoadjuvant therapy in locally advanced pancreatic cancer: an umbrella review of survival, resection outcomes, and cost-effectiveness. Gland Surg 2025; 14:529-542. [PMID: 40256480 PMCID: PMC12004333 DOI: 10.21037/gs-24-421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 03/04/2025] [Indexed: 04/22/2025]
Abstract
Background Pancreatic ductal adenocarcinoma (PDAC) is an aggressive malignancy with a poor prognosis, particularly for patients with locally advanced pancreatic cancer (LAPC). Neoadjuvant therapy (NAT) has emerged as a promising strategy to improve resectability and survival outcomes in LAPC. This umbrella review aimed to synthesize the available evidence on the effectiveness of NAT and surgical interventions in LAPC, focusing on resection and R0 resection rates and overall survival (OS). Methods This study was registered with PROSPERO (CRD42024565454). A comprehensive literature search was conducted in June 2024 across four databases. Studies reporting on NAT and/or surgery in LAPC were selected, and the methodological quality of each meta-analysis was assessed using the A Measurement Tool to Assess Systematic Reviews 2 (AMSTAR-2) tool. A cost-effectiveness analysis (CEA) was performed comparing FOLFIRINOX (leucovorin calcium, fluorouracil, irinotecan, and oxaliplatin) and gemcitabine/nab-paclitaxel as NAT regimens. Results Nine systematic reviews with meta-analyses published between 2014 and 2023 were included. They covered a variety of treatment strategies, including NAT followed by resection, induction therapy comparing FOLFIRINOX versus gemcitabine/nab-paclitaxel, and different surgical techniques. FOLFIRINOX demonstrated significantly higher R0 resection rates [risk ratio (RR): 0.77, 95% confidence interval (CI): 0.60-0.97, P<0.05] and improved OS compared to gemcitabine/nab-paclitaxel [hazard ratio (HR): 0.68, 95% CI: 0.46-0.99, P<0.05]. Surgical resection following NAT was associated with significantly better survival outcomes than induction therapy alone or palliative treatments. The CEA revealed that FOLFIRINOX, despite its higher cost, yielded an incremental OS benefit of 5.19 months and maintained a 60-63% probability of being cost-effective within a willingness-to-pay (WTP) threshold of $150,000 per additional month of OS gained. Conclusions This review highlights the superior efficacy of FOLFIRINOX as a NAT regimen for LAPC, particularly in increasing resectability and R0 resection rates. Combining NAT with surgery offers significant survival benefits, making this strategy a standard of care for eligible LAPC patients.
Collapse
Affiliation(s)
- Yun Zhao
- Department of Hepatopancreatobiliary and Transplant Surgery, Singapore General Hospital and National Cancer Centre Singapore, Singapore, Singapore
| | - Hwee Leong Tan
- Department of Hepatopancreatobiliary and Transplant Surgery, Singapore General Hospital and National Cancer Centre Singapore, Singapore, Singapore
- Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Darren Weiquan Chua
- Department of Hepatopancreatobiliary and Transplant Surgery, Singapore General Hospital and National Cancer Centre Singapore, Singapore, Singapore
- Duke-National University of Singapore Medical School, Singapore, Singapore
- Liver Transplant Service, SingHealth Duke-National University of Singapore Transplant Centre, Singapore, Singapore
| | - Brian Kim Poh Goh
- Department of Hepatopancreatobiliary and Transplant Surgery, Singapore General Hospital and National Cancer Centre Singapore, Singapore, Singapore
- Duke-National University of Singapore Medical School, Singapore, Singapore
- Liver Transplant Service, SingHealth Duke-National University of Singapore Transplant Centre, Singapore, Singapore
| | - Ye Xin Koh
- Department of Hepatopancreatobiliary and Transplant Surgery, Singapore General Hospital and National Cancer Centre Singapore, Singapore, Singapore
- Duke-National University of Singapore Medical School, Singapore, Singapore
- Liver Transplant Service, SingHealth Duke-National University of Singapore Transplant Centre, Singapore, Singapore
| |
Collapse
|
15
|
Jia H, Chen X, Zhang L, Chen M. Cancer associated fibroblasts in cancer development and therapy. J Hematol Oncol 2025; 18:36. [PMID: 40156055 PMCID: PMC11954198 DOI: 10.1186/s13045-025-01688-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 03/12/2025] [Indexed: 04/01/2025] Open
Abstract
Cancer-associated fibroblasts (CAFs) are key players in cancer development and therapy, and they exhibit multifaceted roles in the tumor microenvironment (TME). From their diverse cellular origins, CAFs undergo phenotypic and functional transformation upon interacting with tumor cells and their presence can adversely influence treatment outcomes and the severity of the cancer. Emerging evidence from single-cell RNA sequencing (scRNA-seq) studies have highlighted the heterogeneity and plasticity of CAFs, with subtypes identifiable through distinct gene expression profiles and functional properties. CAFs influence cancer development through multiple mechanisms, including regulation of extracellular matrix (ECM) remodeling, direct promotion of tumor growth through provision of metabolic support, promoting epithelial-mesenchymal transition (EMT) to enhance cancer invasiveness and growth, as well as stimulating cancer stem cell properties within the tumor. Moreover, CAFs can induce an immunosuppressive TME and contribute to therapeutic resistance. In this review, we summarize the fundamental knowledge and recent advances regarding CAFs, focusing on their sophisticated roles in cancer development and potential as therapeutic targets. We discuss various strategies to target CAFs, including ECM modulation, direct elimination, interruption of CAF-TME crosstalk, and CAF normalization, as approaches to developing more effective treatments. An improved understanding of the complex interplay between CAFs and TME is crucial for developing new and effective targeted therapies for cancer.
Collapse
Affiliation(s)
- Hongyuan Jia
- Department of Radiation Oncology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, China
| | - Xingmin Chen
- Department of Radiation Oncology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, China
| | - Linling Zhang
- Department of Respiratory and Critical Care, Chengdu Third People's Hospital, Chengdu, China
| | - Meihua Chen
- Department of Radiation Oncology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
16
|
Geboers B, Timmer F, Vos D, Scheffer H, Bakker J, Ruarus A, Vroomen L, Stam A, Lougheed S, Schouten E, Puijk R, van den Tol P, Lagerwaard F, de Vries J, Bruynzeel A, Meijerink M, de Gruijl T. Systemic immunomodulation by irreversible electroporation versus stereotactic ablative body radiotherapy in locally advanced pancreatic cancer: the CROSSFIRE trial. J Immunother Cancer 2025; 13:e010222. [PMID: 40139834 PMCID: PMC11950998 DOI: 10.1136/jitc-2024-010222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 01/28/2025] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND Irreversible electroporation (IRE) and stereotactic ablative body radiotherapy (SABR) are cytoreductive therapies for locally advanced pancreatic cancer (LAPC). Both may signify immunogenic cell death. We aimed to compare systemic immune responses between the treatments. METHODS As part of the randomized phase II CROSSFIRE trial (NCT02791503), comparing the oncological efficacy of IRE to SABR in patients with LAPC, pre- and post-treatment (2 weeks and 3 months) peripheral blood samples were collected. Frequency and activation status of lymphocytic and myeloid subsets were determined using flow cytometry. T cell responses to pancreatic cancer associated with Wilms tumor-1 (WT-1) and survivin tumor antigens were determined by interferon-γ enzyme-linked immunospot assay. RESULTS In total, 20 IRE and 20 SABR-treated participants were analyzed (20 men; median age 65 (IQR 55-70)). IRE induced immediate decreases in systemic regulatory T cell (Treg) and conventional type-1 dendritic cell rates, coinciding with CD4+/CD8+ T cell activation by upregulation of PD-1, which was associated with improved overall survival (OS). SABR similarly induced immediate CD4+/CD8+ T cell activation by upregulation of Ki67 and CD25 but resulted in asynchronously delayed Treg downregulation. SABR also induced a durable increase in CD4+ EM T cells, associated with improved OS. Ablation-induced WT-1 or survivin-specific T cell responses were observed in 9/16 (56%) immune competent participants (IRE n=5, SABR n=4) and were associated with longer OS. CONCLUSION Distinct immune stimulatory responses associated with improved OS, suggest that SABR might benefit from combined Treg depletion strategies while IRE could benefit from PD-1 checkpoint inhibition. TRIAL REGISTRATION NUMBER The trial was registered on clinical trials.gov (NCT02791503).
Collapse
Affiliation(s)
- Bart Geboers
- Department of Radiology and Nuclear Medicine, Amsterdam UMC (location VUmc), Amsterdam, The Netherlands
- Cancer Centre Amsterdam, Amsterdam, The Netherlands
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- Department of Medical Imaging, Prince of Wales Hospital, Sydney, New South Wales, Australia
| | - Florentine Timmer
- Department of Radiology and Nuclear Medicine, Amsterdam UMC (location VUmc), Amsterdam, The Netherlands
- Cancer Centre Amsterdam, Amsterdam, The Netherlands
| | - Danielle Vos
- Department of Radiology and Nuclear Medicine, Amsterdam UMC (location VUmc), Amsterdam, The Netherlands
- Cancer Centre Amsterdam, Amsterdam, The Netherlands
| | - Hester Scheffer
- Department of Radiology, Noord West Ziekenhuis Groep, Alkmaar, The Netherlands
| | - Joyce Bakker
- Cancer Centre Amsterdam, Amsterdam, The Netherlands
- Department of Medical Oncology, Amsterdam UMC (location VUmc), Amsterdam, The Netherlands
| | - Alette Ruarus
- Department of Radiology and Nuclear Medicine, Amsterdam UMC (location VUmc), Amsterdam, The Netherlands
- Cancer Centre Amsterdam, Amsterdam, The Netherlands
| | - Laurien Vroomen
- Department of Radiology and Nuclear Medicine, Amsterdam UMC (location VUmc), Amsterdam, The Netherlands
- Cancer Centre Amsterdam, Amsterdam, The Netherlands
| | | | | | - Evelien Schouten
- Department of Radiotherapy, Antoni van Leeuwenhoek Hospital - Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Robbert Puijk
- Department of Radiology and Nuclear Medicine, Amsterdam UMC (location VUmc), Amsterdam, The Netherlands
- Department of Radiology and Nuclear Medicine, OLVG, Amsterdam, The Netherlands
| | | | - Frank Lagerwaard
- Department of Radiation Oncology, Amsterdam UMC (location VUmc), Amsterdam, The Netherlands
| | - Jan de Vries
- Department of Radiology and Nuclear Medicine, OLVG, Amsterdam, The Netherlands
| | - Anna Bruynzeel
- Department of Radiation Oncology, Amsterdam UMC (location VUmc), Amsterdam, The Netherlands
| | - Martijn Meijerink
- Department of Radiology and Nuclear Medicine, Amsterdam UMC (location VUmc), Amsterdam, The Netherlands
- Cancer Centre Amsterdam, Amsterdam, The Netherlands
| | - Tanja de Gruijl
- Cancer Centre Amsterdam, Amsterdam, The Netherlands
- Department of Medical Oncology, Amsterdam UMC (location VUmc), Amsterdam, The Netherlands
| |
Collapse
|
17
|
Angeli S, Neophytou C, Kalli M, Stylianopoulos T, Mpekris F. The mechanopathology of the tumor microenvironment: detection techniques, molecular mechanisms and therapeutic opportunities. Front Cell Dev Biol 2025; 13:1564626. [PMID: 40171226 PMCID: PMC11958720 DOI: 10.3389/fcell.2025.1564626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 02/27/2025] [Indexed: 04/03/2025] Open
Abstract
The mechanical properties of the tumor microenvironment (TME) undergo significant changes during tumor growth, primarily driven by alterations in extracellular (ECM) stiffness and tumor viscoelasticity. These mechanical changes not only promote tumor progression but also hinder therapeutic efficacy by impairing drug delivery and activating mechanotransduction pathways that regulate crucial cellular processes such as migration, proliferation, and resistance to therapy. In this review, we examine the mechanisms through which tumor cells sense and transmit mechanical signals to maintain homeostasis in the biomechanically altered TME. We explore current computational modelling strategies for mechanotransduction pathways, highlighting the need for developing models that incorporate additional components of the mechanosignaling machinery. Furthermore, we review available methods for measuring the mechanical properties of tumors in clinical settings and strategies aiming at restoring the TME and blocking deregulated mechanotransduction pathways. Finally, we propose that proper characterization and a deeper understanding of the mechanical landscape of the TME, both at the tissue and cellular levels, are essential for developing therapeutic strategies that account for the influence of mechanical forces on treatment efficacy.
Collapse
Affiliation(s)
| | | | | | | | - Fotios Mpekris
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus
| |
Collapse
|
18
|
Lee CM, Wadsworth BJ, Urban R, Clark MA, Shi R, Sit D, Hamilton SN, Bennewith KL. Antihypertensive drugs and survival outcomes in oropharyngeal squamous cell carcinoma patients. J Natl Cancer Inst 2025:djaf056. [PMID: 40179132 DOI: 10.1093/jnci/djaf056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 10/17/2024] [Accepted: 02/24/2025] [Indexed: 04/05/2025] Open
Abstract
BACKGROUND Radiation therapy is commonly used to treat head and neck cancer patients, and response may be improved by combining radiation with preexisting medications. Based on recent preclinical and retrospective patient data, we hypothesized that antihypertensive drugs may improve radiotherapy outcomes. METHODS Retrospective analyses were conducted on 1077 oropharyngeal squamous cell carcinoma and 608 nasopharyngeal carcinoma patients, all of whom received radiation therapy. Univariate and multivariate analyses were conducted to assess overall survival, disease-specific survival, and locoregional control for cancer patients taking angiotensin receptor blockers (ARBs), angiotensin-converting enzyme inhibitors, calcium channel blockers, or beta blockers compared with propensity score-matched groups of patients not taking these medications. RESULTS Oropharyngeal squamous cell carcinoma patients taking antihypertensive medications were statistically older and had higher Charlson Comorbidity Indices at diagnosis. However, these patients had statistically significant improved overall survival, disease-specific survival, and locoregional control compared with propensity score-matched oropharyngeal squamous cell carcinoma patients who were not taking antihypertensive medications, with ARB users showing the greatest improvements. Antihypertensive drugs did not affect outcomes in the nasopharyngeal carcinoma patient cohort. CONCLUSION The use of antihypertensive medications, and particularly ARBs, was associated with improved outcomes in oropharyngeal squamous cell carcinoma patients who had more advanced age and higher Charlson Comorbidity Indices at diagnosis. This study supports future prospective testing of ARBs in conjunction with radiation therapy in this group of higher risk oropharyngeal squamous cell carcinoma patients. Additionally, this study illustrates the need to use propensity score matching to identify patient subgroups that may benefit from a given treatment in retrospective analyses.
Collapse
Affiliation(s)
- Che-Min Lee
- Integrative Oncology Department, BC Cancer, Vancouver, BC, Canada
- Interdisciplinary Oncology Program, University of British Columbia, Vancouver, BC, Canada
| | | | - Ryan Urban
- Radiation Oncology Department, BC Cancer, Vancouver, BC, Canada
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Meredith A Clark
- Integrative Oncology Department, BC Cancer, Vancouver, BC, Canada
- Interdisciplinary Oncology Program, University of British Columbia, Vancouver, BC, Canada
| | - Rocky Shi
- Integrative Oncology Department, BC Cancer, Vancouver, BC, Canada
- Interdisciplinary Oncology Program, University of British Columbia, Vancouver, BC, Canada
| | - Daegan Sit
- Radiation Oncology Department, BC Cancer, Vancouver, BC, Canada
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Sarah N Hamilton
- Radiation Oncology Department, BC Cancer, Vancouver, BC, Canada
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Kevin L Bennewith
- Integrative Oncology Department, BC Cancer, Vancouver, BC, Canada
- Interdisciplinary Oncology Program, University of British Columbia, Vancouver, BC, Canada
- Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
19
|
Zhang Y, Fu Q, Sun W, Yue Q, He P, Niu D, Zhang M. Mechanical forces in the tumor microenvironment: roles, pathways, and therapeutic approaches. J Transl Med 2025; 23:313. [PMID: 40075523 PMCID: PMC11899831 DOI: 10.1186/s12967-025-06306-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 02/23/2025] [Indexed: 03/14/2025] Open
Abstract
Tumors often exhibit greater stiffness compared to normal tissues, primarily due to increased deposition within the tumor stroma. Collagen, proteoglycans, laminin, and fibronectin are key components of the extracellular matrix (ECM), interacting to facilitate ECM assembly. Enhanced fiber density and cross-linking within the ECM result in elevated matrix stiffness and interstitial fluid pressure, subjecting tumors to significant physical stress during growth. This mechanical stress is transduced intracellularly via integrins, the Rho signaling pathway, and the Hippo signaling pathway, thereby promoting tumor invasion. Additionally, mechanical pressure fosters glycolysis in tumor cells, boosting energy production to support metastasis. Mechanical cues also regulate macrophage polarization, maintaining an inflammatory microenvironment conducive to tumor survival. In summary, mechanical signals within tumors play a crucial role in tumor growth and invasion. Understanding these signals and their involvement in tumor progression is essential for advancing our knowledge of tumor biology and enhancing therapeutic approaches.
Collapse
Affiliation(s)
- Yanli Zhang
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, 712082, Shaanxi Province, China.
| | - Qi Fu
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, 712082, Shaanxi Province, China
| | - Wenyue Sun
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, 712082, Shaanxi Province, China
| | - Qiujuan Yue
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, 712082, Shaanxi Province, China
| | - Ping He
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, 712082, Shaanxi Province, China
| | - Dong Niu
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Min Zhang
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, 712082, Shaanxi Province, China.
| |
Collapse
|
20
|
Yamazaki M, Ishimoto T. Targeting Cancer-Associated Fibroblasts: Eliminate or Reprogram? Cancer Sci 2025; 116:613-621. [PMID: 39745128 PMCID: PMC11875776 DOI: 10.1111/cas.16443] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/08/2024] [Accepted: 12/20/2024] [Indexed: 03/05/2025] Open
Abstract
Cancer-associated fibroblasts (CAFs) are key components of the tumor microenvironment (TME). Given their various roles in tumor progression and treatment resistance, CAFs are promising therapeutic targets in cancer. The elimination of tumor-promoting CAFs has been investigated in various animal models to determine whether it effectively suppresses tumor growth. Based on recent evidence, several simple strategies have been proposed to eliminate tumor-promoting CAFs and attenuate these features. In addition, attention has focused on the critical role that CAFs play in the immunosuppressive TME. Therefore, the functional reprogramming of CAFs in combination with immune checkpoint inhibitors has also been investigated as a possible therapeutic approach. However, although potential targets in CAFs have been widely characterized, the plasticity and heterogeneity of CAFs complicate the understanding of their properties and present difficulties for clinical application. Moreover, the identification of tumor-suppressive CAFs highlights the necessity for the development of therapeutic approaches that can distinguish and switch between tumor-promoting and tumor-suppressive CAFs in an appropriate manner. In this review, we introduce the origins and diversity of CAFs, their role in cancer, and current therapeutic strategies aimed at targeting CAFs, including ongoing clinical evaluations.
Collapse
Affiliation(s)
- Masaya Yamazaki
- Division of CarcinogenesisThe Cancer Institute, Japanese Foundation for Cancer ResearchTokyoJapan
| | - Takatsugu Ishimoto
- Division of CarcinogenesisThe Cancer Institute, Japanese Foundation for Cancer ResearchTokyoJapan
- International Research Center of Medical Sciences (IRCMS)Kumamoto UniversityKumamotoJapan
| |
Collapse
|
21
|
Dolskii A, dos Santos SAA, Andrake M, Franco-Barraza J, Dunbrack RL, Cukierman E. Exploring the potential role of palladin in modulating human CAF/ECM functional units. Cytoskeleton (Hoboken) 2025; 82:175-185. [PMID: 39239855 PMCID: PMC11882928 DOI: 10.1002/cm.21926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 08/24/2024] [Accepted: 08/27/2024] [Indexed: 09/07/2024]
Abstract
Fibroblasts, crucial for maintaining tissue homeostasis, significantly shape the tumor microenvironment (TME). In pancreatic cancer, a highly aggressive malignancy, cancer-associated fibroblast (CAF)/extracellular matrix (ECM) units dominate the TME, influencing tumor initiation, progression, and treatment responses. Palladin, an actin-associated protein, is vital for fibroblast structural integrity and activation, playing a key role in CAF/ECM functionality. Palladin interacts with cytoskeletal proteins such as alpha-actinin (α-Act) and can therefore regulate other proteins like syndecans, modulating cytoskeletal features, cell adhesion, integrin recycling, and signaling. In this review, we propose that targeting the palladin/α-Act/syndecan interaction network could modulate CAF/ECM units, potentially shifting the TME from a tumor-promoting to a tumor-suppressive state. In silico data and reported studies to suggest that stabilizing palladin-α-Act interactions, via excess palladin, influences syndecan functions; potentially modulating integrin endocytosis via syndecan engagement with protein kinase C alpha as opposed to syndecan binding to α-Act. This mechanism can then affect the distribution of active α5β1-integrin between the plasma membrane and known intracellular vesicular compartments, thereby influencing the tumor-suppressive versus tumor-promoting functions of CAF/ECM units. Understanding these interactions offers likely future therapeutic avenues for stroma normalization in pancreatic and other cancers, aiming to inhibit tumor progression and improve future treatment outcomes.
Collapse
Affiliation(s)
| | | | - Mark Andrake
- Cancer Signaling and Microenvironment, Marvin and Concetta Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, Lewis Katz School of Medicine, Temple Health, Philadelphia, PA
| | - Janusz Franco-Barraza
- Cancer Signaling and Microenvironment, Marvin and Concetta Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, Lewis Katz School of Medicine, Temple Health, Philadelphia, PA
| | - Roland L. Dunbrack
- Cancer Signaling and Microenvironment, Marvin and Concetta Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, Lewis Katz School of Medicine, Temple Health, Philadelphia, PA
| | - Edna Cukierman
- Cancer Signaling and Microenvironment, Marvin and Concetta Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, Lewis Katz School of Medicine, Temple Health, Philadelphia, PA
| |
Collapse
|
22
|
Schafthuizen L, van 't Land FR, Dijk MV, Moskie M, van Rosmalen J, van Eijck CHJ. Quality of Life in Patients with Locally Advanced Pancreatic Cancer During Stereotactic Radiotherapy Combined with Heat-Killed Mycobacterium Obuense Vaccination. J Palliat Med 2025; 28:351-357. [PMID: 39888694 DOI: 10.1089/jpm.2024.0160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2025] Open
Abstract
Background: New treatment options for patients with locally advanced pancreatic cancer (LAPC) have proven to be safe but, in addition, may have an effect on the patient's quality of life. Objectives: To evaluate the effect of stereotactic body radiotherapy (SBRT) combined with intradermal heat-killed mycobacterium obuense (IMM-101) vaccination on health-related quality of life (HRQoL), pain, and sleep, in patients with LAPC. Design: Prospective cohort study. Setting/Participants: In total, 42 Dutch patients with LAPC were included after completion of at least four cycles of (m) leucovorin calcium (folinic acid), fluorouracil, irinotecan hydrochloride, and oxaliplatin (FOLFIRINOX). Measurements: Quality of life was assessed with the EORTC QLQ-C30. Patients completed the Richard Campbell Sleep Questionnaire (RCSQ) for five consecutive nights and wore simultaneously a GENEActiv tri-axial accelerometer, which registered sleep duration and sleep efficiency. The Numeric Rating Scale was used to assess pain intensity during treatment. Data were collected at the baseline visit [i.e., at inclusion in the study after (m)FOLFIRINOX treatment] and at week 8 (i.e., 6 weeks after start date of SBRT and after four IMM-101 vaccinations). Results: Univariable linear mixed model analysis revealed significant improvement for EORTC QLQ-C30 items "cognitive functioning" and "emotional functioning." Outcomes on RCSQ subscales and "RCSQ total score" did not significantly change. In the multivariable model, with "Global HRQoL scale" and "RCSQ total score" as outcomes, we did not find a significant change during treatment. Conclusion: In this prospective cohort study, we found that SBRT combined with IMM-101, in patients with LAPC, is well tolerated and does not negatively affect HRQoL, sleep quality, and pain.
Collapse
Affiliation(s)
- Laura Schafthuizen
- Department of Internal Medicine, Section Nursing Science, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Freek R van 't Land
- Department of Surgery, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Monique van Dijk
- Department of Internal Medicine, Section Nursing Science, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Miranda Moskie
- Department of Surgery, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Joost van Rosmalen
- Department of Biostatistics, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Casper H J van Eijck
- Department of Surgery, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
23
|
Lin Y, Liao Y, Shen J. Angiotensin system inhibitors improve survival in patients undergoing pancreatic cancer resection: a meta-analysis of real-world evidence. Expert Rev Anticancer Ther 2025:1-8. [PMID: 39910780 DOI: 10.1080/14737140.2025.2464208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 01/15/2025] [Accepted: 02/02/2025] [Indexed: 02/07/2025]
Abstract
BACKGROUND The role of angiotensin system inhibitors (ASIs) in modifying the prognosis for patients undergoing pancreatic cancer resection is not yet definitively established. This meta-analysis endeavors to consolidate existing real-world data to provide a robust, evidence-based assessment of their impact on clinical outcomes. METHODS A meticulous search strategy was devised and executed across PubMed, Embase, and Web of Science databases to retrieve all relevant studies evaluating the prognostic impact of ASIs in patients who have undergone resection for pancreatic cancer. Studies comparing survival outcomes between ASI users and non-users were included in the meta-analysis. Publication bias was assessed using funnel plotand Egger's test. Sensitivity analysis employing the leave-one-out approach was conducted to ensure the robustness and reliability of the pooled estimate. RESULTS Seven studies encompassing 8,549 patients were analyzed. The utilization of ASIs was significantly associated with improved overall survival (HR: 0.78; 95%CI: 0.68-0.89) in patients undergoing pancreatic cancer resection. Sensitivity analysis further validated the consistency and stability of the pooled result. CONCLUSION Current clinical evidence suggests that ASIs are associated with improved prognosis in patients who have undergone pancreatic cancer resection. These findings highlight the potential of ASIs as a beneficial adjunctive therapy in the management of resected pancreatic cancer, warranting their consideration in clinical management protocols. REGISTRATION PROSPERO (identifier: CRD42024580624).
Collapse
Affiliation(s)
- Yuxuan Lin
- Department of Pharmacy, Guangxi Hospital Division of The First Affiliated Hospital, Sun Yat-sen University, Nanning, Guangxi, PR China
| | - Yonghe Liao
- College of Pharmaceutical Science, Guangxi Medical University, Nanning, Guangxi, PR China
| | - Jinhai Shen
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, PR China
- Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing, Jiangsu, PR China
| |
Collapse
|
24
|
Cheng PSW, Zaccaria M, Biffi G. Functional heterogeneity of fibroblasts in primary tumors and metastases. Trends Cancer 2025; 11:135-153. [PMID: 39674792 DOI: 10.1016/j.trecan.2024.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/29/2024] [Accepted: 11/18/2024] [Indexed: 12/16/2024]
Abstract
Cancer-associated fibroblasts (CAFs) are abundant components of the tumor microenvironment (TME) of most solid malignancies and have emerged as key regulators of cancer progression and therapy response. Although recent technological advances have uncovered substantial CAF molecular heterogeneity at the single-cell level, defining functional roles for most described CAF populations remains challenging. With the aim of bridging CAF molecular and functional heterogeneity, this review focuses on recently identified functional interactions of CAF subtypes with malignant cells, immune cells, and other stromal cells in primary tumors and metastases. Dissecting the heterogeneous functional crosstalk of specific CAF populations with other components is starting to uncover candidate combinatorial strategies for therapeutically targeting the TME and cancer progression.
Collapse
Affiliation(s)
- Priscilla S W Cheng
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, CB2 0RE, UK
| | - Marta Zaccaria
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, CB2 0RE, UK
| | - Giulia Biffi
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, CB2 0RE, UK.
| |
Collapse
|
25
|
Cloyd JM, Sarna A, Arango MJ, Bates SE, Bhutani MS, Bloomston M, Chung V, Dotan E, Ferrone CR, Gambino PF, Goenka AH, Goodman KA, Hall WA, He J, Hogg ME, Jayaraman S, Kambadakone A, Katz MHG, Khorana AA, Ko AH, Koay EJ, Kooby DA, Krishna SG, Larsson LK, Lee RT, Maitra A, Massarweh NN, Mikhail S, Muzaffar M, O’Reilly EM, Palta M, Petzel MQB, Philip PA, Reyngold M, Santa Mina D, Sohal DPS, Sundaresan TK, Tsai S, Turner KL, Vreeland TJ, Walston S, Washington MK, Williams TM, Wo JY, Snyder RA. Best Practices for Delivering Neoadjuvant Therapy in Pancreatic Ductal Adenocarcinoma. JAMA Surg 2025; 160:172-180. [PMID: 39630427 PMCID: PMC11618571 DOI: 10.1001/jamasurg.2024.5191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 09/01/2024] [Indexed: 12/08/2024]
Abstract
Importance Neoadjuvant therapy (NT) is an increasingly used treatment strategy for patients with localized pancreatic ductal adenocarcinoma (PDAC). Little research has been conducted on cancer care delivery during NT, and the standards for optimal delivery of NT have not been defined. Objective To develop consensus best practices for delivering NT to patients with localized PDAC. Design, Setting, and Participants This study used a modified Delphi approach consisting of 2 rounds of voting, and a series of virtual conferences (from October to December 2023) to reach expert consensus on candidate best practice statements generated from a systematic review of the literature and expert opinion. An interdisciplinary panel was formed including 47 North American experts from surgical, medical, and radiation oncology, radiology, pathology, gastroenterology, integrative oncology, anesthesia, pharmacy, nursing, cancer care delivery research, and nutrition as well as patient and caregiver stakeholders. Main Outcome and Measures Statements that reached 75% agreement or greater were included in final consensus statements. Results Of the 47 participating panel members, 27 (57.64%) were male, and the mean (SD) age was 47.6 (8.2) years. Physicians reported completing training a mean (SD) 14.6 (8.6) years prior and seeing a mean (SD) 110.6 (38.4) patients with PDAC annually; 35 (77.7%) were in academic practice. Final consensus was reached on 82 best practices for delivering NT. Of these, 38 statements focused on pre-NT practices, including diagnosis and staging (n = 15), evaluation and optimization (n = 20), and decision-making (n = 3); 29 statements defined best practices during NT, including initiation (n = 3), delivery of therapy (n = 8), restaging practices (n = 12), and management of complications during NT (n = 6); and 15 best practices were identified to guide treatment post-NT, focusing on surgery (n = 7), pathology (n = 4), and follow-up (n = 3). Conclusions Using a modified Delphi consensus technique, best practice guidelines were developed focusing on the optimal standards for delivering NT to patients with localized PDAC. Given the prognostic importance of completing multimodality therapy, efforts to standardize and optimize the delivery of NT represent an immediate opportunity to decrease care variation and improve outcomes for patients with PDAC. Future research should focus on validating and implementing best practice standards into clinical practice.
Collapse
Affiliation(s)
- Jordan M. Cloyd
- Division of Surgical Oncology, The Ohio State University Wexner Medical Center, Columbus
| | - Angela Sarna
- Division of Surgical Oncology, The Ohio State University Wexner Medical Center, Columbus
| | | | - Susan E. Bates
- Columbia University Irving Medical Center, New York, New York
| | | | | | | | - Efrat Dotan
- Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | | | | | | | | | | | - Jin He
- Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | - Shiva Jayaraman
- St Joseph’s Health Centre Toronto, University of Toronto, Toronto, Ontario, Canada
| | | | | | - Alok A. Khorana
- Cleveland Clinic and Case Comprehensive Cancer Center, Cleveland, Ohio
| | | | - Eugene J. Koay
- The University of Texas MD Anderson Cancer Center, Houston
| | | | | | | | | | - Anirban Maitra
- The University of Texas MD Anderson Cancer Center, Houston
| | | | - Sameh Mikhail
- Zangmeister Center, American Oncology Network, Columbus, Ohio
| | | | | | | | | | | | | | - Daniel Santa Mina
- St Joseph’s Health Centre Toronto, University of Toronto, Toronto, Ontario, Canada
| | | | | | - Susan Tsai
- Division of Surgical Oncology, The Ohio State University Wexner Medical Center, Columbus
| | | | | | - Steve Walston
- The Ohio State University Wexner Medical Center, Wooster
| | | | | | | | | |
Collapse
|
26
|
Zhu Y, Chen J, Chen C, Tang R, Xu J, Shi S, Yu X. Deciphering mechanical cues in the microenvironment: from non-malignant settings to tumor progression. Biomark Res 2025; 13:11. [PMID: 39849659 PMCID: PMC11755887 DOI: 10.1186/s40364-025-00727-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 01/05/2025] [Indexed: 01/25/2025] Open
Abstract
The tumor microenvironment functions as a dynamic and intricate ecosystem, comprising a diverse array of cellular and non-cellular components that precisely orchestrate pivotal tumor behaviors, including invasion, metastasis, and drug resistance. While unraveling the intricate interplay between the tumor microenvironment and tumor behaviors represents a tremendous challenge, recent research illuminates a crucial biological phenomenon known as cellular mechanotransduction. Within the microenvironment, mechanical cues like tensile stress, shear stress, and stiffness play a pivotal role by activating mechanosensitive effectors such as PIEZO proteins, integrins, and Yes-associated protein. This activation initiates cascades of intrinsic signaling pathways, effectively linking the physical properties of tissues to their physiological and pathophysiological processes like morphogenesis, regeneration, and immunity. This mechanistic insight offers a novel perspective on how the mechanical cues within the tumor microenvironment impact tumor behaviors. While the intricacies of the mechanical tumor microenvironment are yet to be fully elucidated, it exhibits distinct physical attributes from non-malignant tissues, including elevated solid stresses, interstitial hypertension, augmented matrix stiffness, and enhanced viscoelasticity. These traits exert notable influences on tumor progression and treatment responses, enriching our comprehension of the multifaceted nature of the microenvironment. Through this innovative review, we aim to provide a new lens to decipher the mechanical attributes within the tumor microenvironment from non-malignant contexts, broadening our knowledge on how these factors promote or inhibit tumor behaviors, and thus offering valuable insights to identify potential targets for anti-tumor strategies.
Collapse
Affiliation(s)
- Yicheng Zhu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Shanghai Key Laboratory of Precision Medicine for Pancreatic Cancer, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Jiaoshun Chen
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Shanghai Key Laboratory of Precision Medicine for Pancreatic Cancer, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Chen Chen
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Shanghai Key Laboratory of Precision Medicine for Pancreatic Cancer, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Rong Tang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Shanghai Key Laboratory of Precision Medicine for Pancreatic Cancer, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Jin Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Shanghai Key Laboratory of Precision Medicine for Pancreatic Cancer, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Si Shi
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.
- Shanghai Key Laboratory of Precision Medicine for Pancreatic Cancer, Shanghai, 200032, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.
- Shanghai Key Laboratory of Precision Medicine for Pancreatic Cancer, Shanghai, 200032, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
27
|
Nia HT, Munn LL, Jain RK. Probing the physical hallmarks of cancer. Nat Methods 2025:10.1038/s41592-024-02564-4. [PMID: 39815103 DOI: 10.1038/s41592-024-02564-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 11/11/2024] [Indexed: 01/18/2025]
Abstract
The physical microenvironment plays a crucial role in tumor development, progression, metastasis and treatment. Recently, we proposed four physical hallmarks of cancer, with distinct origins and consequences, to characterize abnormalities in the physical tumor microenvironment: (1) elevated compressive-tensile solid stresses, (2) elevated interstitial fluid pressure and the resulting interstitial fluid flow, (3) altered material properties (for example, increased tissue stiffness) and (4) altered physical micro-architecture. As this emerging field of physical oncology is being advanced by tumor biologists, cell and developmental biologists, engineers, physicists and oncologists, there is a critical need for model systems and measurement tools to mechanistically probe these physical hallmarks. Here, after briefly defining these physical hallmarks, we discuss the tools and model systems available for probing each hallmark in vitro, ex vivo, in vivo and in clinical settings. We finally review the unmet needs for mechanistic probing of the physical hallmarks of tumors and discuss the challenges and unanswered questions associated with each hallmark.
Collapse
Affiliation(s)
- Hadi T Nia
- Department of Biomedical Engineering, Boston University, Boston, MA, USA.
| | - Lance L Munn
- Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| | - Rakesh K Jain
- Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
28
|
Glaviano A, Lau HSH, Carter LM, Lee EHC, Lam HY, Okina E, Tan DJJ, Tan W, Ang HL, Carbone D, Yee MYH, Shanmugam MK, Huang XZ, Sethi G, Tan TZ, Lim LHK, Huang RYJ, Ungefroren H, Giovannetti E, Tang DG, Bruno TC, Luo P, Andersen MH, Qian BZ, Ishihara J, Radisky DC, Elias S, Yadav S, Kim M, Robert C, Diana P, Schalper KA, Shi T, Merghoub T, Krebs S, Kusumbe AP, Davids MS, Brown JR, Kumar AP. Harnessing the tumor microenvironment: targeted cancer therapies through modulation of epithelial-mesenchymal transition. J Hematol Oncol 2025; 18:6. [PMID: 39806516 PMCID: PMC11733683 DOI: 10.1186/s13045-024-01634-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 11/11/2024] [Indexed: 01/16/2025] Open
Abstract
The tumor microenvironment (TME) is integral to cancer progression, impacting metastasis and treatment response. It consists of diverse cell types, extracellular matrix components, and signaling molecules that interact to promote tumor growth and therapeutic resistance. Elucidating the intricate interactions between cancer cells and the TME is crucial in understanding cancer progression and therapeutic challenges. A critical process induced by TME signaling is the epithelial-mesenchymal transition (EMT), wherein epithelial cells acquire mesenchymal traits, which enhance their motility and invasiveness and promote metastasis and cancer progression. By targeting various components of the TME, novel investigational strategies aim to disrupt the TME's contribution to the EMT, thereby improving treatment efficacy, addressing therapeutic resistance, and offering a nuanced approach to cancer therapy. This review scrutinizes the key players in the TME and the TME's contribution to the EMT, emphasizing avenues to therapeutically disrupt the interactions between the various TME components. Moreover, the article discusses the TME's implications for resistance mechanisms and highlights the current therapeutic strategies toward TME modulation along with potential caveats.
Collapse
Affiliation(s)
- Antonino Glaviano
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90123, Palermo, Italy
| | - Hannah Si-Hui Lau
- Division of Cellular and Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre Singapore, Singapore, 169610, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Lukas M Carter
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - E Hui Clarissa Lee
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Hiu Yan Lam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Elena Okina
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Donavan Jia Jie Tan
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
- School of Chemical and Life Sciences, Singapore Polytechnic, Singapore, 139651, Singapore
| | - Wency Tan
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
- School of Chemical and Life Sciences, Singapore Polytechnic, Singapore, 139651, Singapore
| | - Hui Li Ang
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Daniela Carbone
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90123, Palermo, Italy
| | - Michelle Yi-Hui Yee
- Division of Cellular and Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre Singapore, Singapore, 169610, Singapore
| | - Muthu K Shanmugam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Xiao Zi Huang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Tuan Zea Tan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
| | - Lina H K Lim
- Division of Cellular and Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre Singapore, Singapore, 169610, Singapore
- Immunology Program, Life Sciences Institute, National University of Singapore, Singapore, 117456, Singapore
- Immunology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Ruby Yun-Ju Huang
- School of Medicine and Graduate Institute of Oncology, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan
- Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117456, Singapore
| | - Hendrik Ungefroren
- First Department of Medicine, University Hospital Schleswig-Holstein (UKSH), Campus Lübeck, 23538, Lübeck, Germany
| | - Elisa Giovannetti
- Department of Medical Oncology, Cancer Center Amsterdam, UMC, Vrije Universiteit, HV Amsterdam, 1081, Amsterdam, The Netherlands
- Cancer Pharmacology Lab, Fondazione Pisana Per La Scienza, 56017, San Giuliano, Italy
| | - Dean G Tang
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
- Experimental Therapeutics (ET) Graduate Program, University at Buffalo & Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Tullia C Bruno
- Department of Immunology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Mads Hald Andersen
- National Center for Cancer Immune Therapy, Department of Oncology, Herlev and Gentofte Hospital, Herlev, Denmark
| | - Bin-Zhi Qian
- Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, The Human Phenome Institute, Zhangjiang-Fudan International Innovation Center, Fudan University, Shanghai, China
| | - Jun Ishihara
- Department of Bioengineering, Imperial College London, London, W12 0BZ, UK
| | - Derek C Radisky
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Salem Elias
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Saurabh Yadav
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Minah Kim
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Caroline Robert
- Department of Cancer Medicine, Inserm U981, Gustave Roussy Cancer Center, Université Paris-Saclay, Villejuif, France
- Faculty of Medicine, University Paris-Saclay, Kremlin Bicêtre, Paris, France
| | - Patrizia Diana
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90123, Palermo, Italy
| | - Kurt A Schalper
- Department of Pathology, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Tao Shi
- Swim Across America and Ludwig Collaborative Laboratory, Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Taha Merghoub
- Swim Across America and Ludwig Collaborative Laboratory, Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Department of Medicine, Parker Institute for Cancer Immunotherapy, Weill Cornell Medicine, New York, NY, USA
| | - Simone Krebs
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Anjali P Kusumbe
- Tissue and Tumor Microenvironment Group, MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Matthew S Davids
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Jennifer R Brown
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore.
| |
Collapse
|
29
|
Fanijavadi S, Thomassen M, Jensen LH. Targeting Triple NK Cell Suppression Mechanisms: A Comprehensive Review of Biomarkers in Pancreatic Cancer Therapy. Int J Mol Sci 2025; 26:515. [PMID: 39859231 PMCID: PMC11765000 DOI: 10.3390/ijms26020515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/04/2025] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive cancer with poor outcomes due to frequent recurrence, metastasis, and resistance to treatment. A major contributor to this resistance is the tumor's ability to suppress natural killer (NK) cells, which are key players in the immune system's fight against cancer. In PDAC, the tumor microenvironment (TME) creates conditions that impair NK cell function, including reduced proliferation, weakened cytotoxicity, and limited tumor infiltration. This review examines how interactions between tumor-derived factors, NK cells, and the TME contribute to tumor progression and treatment resistance. To address these challenges, we propose a new "Triple NK Cell Biomarker Approach". This strategy focuses on identifying biomarkers from three critical areas: tumor characteristics, TME factors, and NK cell suppression mechanisms. This approach could guide personalized treatments to enhance NK cell activity. Additionally, we highlight the potential of combining NK cell-based therapies with conventional treatments and repurposed drugs to improve outcomes for PDAC patients. While progress has been made, more research is needed to better understand NK cell dysfunction and develop effective therapies to overcome these barriers.
Collapse
Affiliation(s)
- Sara Fanijavadi
- Cancer Polyclinic, Levanger Hospital, 7601 Levanger, Norway
- Department of Oncology, Vejle Hospital, University Hospital of Southern Denmark, 7100 Vejle, Denmark;
| | - Mads Thomassen
- Department of Clinical Genetics, Odense University Hospital, 5000 Odense, Denmark;
- Department of Clinical Research, University of Southern Denmark, 5230 Odense, Denmark
| | - Lars Henrik Jensen
- Department of Oncology, Vejle Hospital, University Hospital of Southern Denmark, 7100 Vejle, Denmark;
- Department of Oncology, Institute of Regional Health Research, University of Southern Denmark, 7100 Vejle, Denmark
| |
Collapse
|
30
|
Kanungo A, Mohanty C, Acharya S. Smart Cancer Nanomedicine for Synergetic Therapy. Curr Med Chem 2025; 32:286-300. [PMID: 38860907 DOI: 10.2174/0109298673300897240602130258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/06/2024] [Accepted: 05/09/2024] [Indexed: 06/12/2024]
Abstract
Cancer is the second leading cause of death. Notwithstanding endeavors to comprehend tumor causes and therapeutic modalities, no noteworthy advancements in cancer therapy have been identified. Nanomedicine has drawn interest for its diagnostic potential because of its ability to deliver therapeutic agents specifically to tumors with little adverse effects. Nanomedicines have become prevalent in the treatment of cancer. Here, we present four strategic suggestions for improvement in the functionality and use of nanomedicine. (1) Smart drug selection is a prerequisite for both medicinal and commercial achievement. Allocating resources to the advancement of modular (pro)drugs and nanocarrier design ought to consider the role of opportunistic decisions depending on drug availability. (2) Stimuli-responsive nanomedicine for cancer therapy is being designed to release medications at particular locations precisely. (3) The cornerstone of clinical cancer treatment is combination therapy. Nanomedicines should be included more frequently in multimodal combination therapy regimens since they complement pharmacological and physical co-treatments. (4) Regulation by the immune system is transforming cancer therapy. Nanomedicines can improve the effectiveness of the immune system and control the behavior of anticancer immunity. These four approaches, both separately and particularly in combination, will accelerate and promote the creation of effective cancer nanomedicine treatments.
Collapse
Affiliation(s)
- Anwesha Kanungo
- School of Applied Sciences, Kalinga Institute of Industrial Technology, Bhubaneswar, 751024, Odisha, India
| | - Chandana Mohanty
- School of Applied Sciences, Kalinga Institute of Industrial Technology, Bhubaneswar, 751024, Odisha, India
| | - Sarbari Acharya
- School of Applied Sciences, Kalinga Institute of Industrial Technology, Bhubaneswar, 751024, Odisha, India
| |
Collapse
|
31
|
Cassani M, Fernandes S, Pagliari S, Cavalieri F, Caruso F, Forte G. Unraveling the Role of the Tumor Extracellular Matrix to Inform Nanoparticle Design for Nanomedicine. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2409898. [PMID: 39629891 PMCID: PMC11727388 DOI: 10.1002/advs.202409898] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/01/2024] [Indexed: 01/14/2025]
Abstract
The extracellular matrix (ECM)-and its mechanobiology-regulates key cellular functions that drive tumor growth and development. Accordingly, mechanotherapy is emerging as an effective approach to treat fibrotic diseases such as cancer. Through restoring the ECM to healthy-like conditions, this treatment aims to improve tissue perfusion, facilitating the delivery of chemotherapies. In particular, the manipulation of ECM is gaining interest as a valuable strategy for developing innovative treatments based on nanoparticles (NPs). However, further progress is required; for instance, it is known that the presence of a dense ECM, which hampers the penetration of NPs, primarily impacts the efficacy of nanomedicines. Furthermore, most 2D in vitro studies fail to recapitulate the physiological deposition of matrix components. To address these issues, a comprehensive understanding of the interactions between the ECM and NPs is needed. This review focuses on the main features of the ECM and its complex interplay with NPs. Recent advances in mechanotherapy are discussed and insights are offered into how its combination with nanomedicine can help improve nanomaterials design and advance their clinical translation.
Collapse
Affiliation(s)
- Marco Cassani
- International Clinical Research CenterSt. Anne's University HospitalBrno60200Czech Republic
- Department of Chemical EngineeringThe University of MelbourneParkvilleVictoria3010Australia
| | - Soraia Fernandes
- Department of Chemical EngineeringThe University of MelbourneParkvilleVictoria3010Australia
- School of ScienceRMIT UniversityMelbourneVictoria3000Australia
| | - Stefania Pagliari
- International Clinical Research CenterSt. Anne's University HospitalBrno60200Czech Republic
- School of Cardiovascular and Metabolic Medicine & SciencesKing's College LondonLondonWC2R 2LSUK
| | - Francesca Cavalieri
- School of ScienceRMIT UniversityMelbourneVictoria3000Australia
- Dipartimento di Scienze e Tecnologie ChimicheUniversita di Roma “Tor Vergata”Via della Ricerca Scientifica 1Rome00133Italy
| | - Frank Caruso
- Department of Chemical EngineeringThe University of MelbourneParkvilleVictoria3010Australia
| | - Giancarlo Forte
- International Clinical Research CenterSt. Anne's University HospitalBrno60200Czech Republic
- School of Cardiovascular and Metabolic Medicine & SciencesKing's College LondonLondonWC2R 2LSUK
| |
Collapse
|
32
|
Datta M, Via LE, Dartois V, Xu L, Barry CE, Jain RK. Leveraging insights from cancer to improve tuberculosis therapy. Trends Mol Med 2025; 31:11-20. [PMID: 39142973 PMCID: PMC11717643 DOI: 10.1016/j.molmed.2024.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/21/2024] [Accepted: 07/24/2024] [Indexed: 08/16/2024]
Abstract
Exploring and exploiting the microenvironmental similarities between pulmonary tuberculosis (TB) granulomas and malignant tumors has revealed new strategies for more efficacious host-directed therapies (HDTs). This opinion article discusses a paradigm shift in TB therapeutic development, drawing on critical insights from oncology. We summarize recent efforts to characterize and overcome key shared features between tumors and granulomas, including excessive fibrosis, abnormal angiogenesis, hypoxia and necrosis, and immunosuppression. We provide specific examples of cancer therapy application to TB to overcome these microenvironmental abnormalities, including matrix-targeting therapies, antiangiogenic agents, and immune-stimulatory drugs. Finally, we propose a new framework for combining HDTs with anti-TB agents to maximize therapeutic delivery and efficacy while reducing treatment dosages, duration, and harmful side effects to benefit TB patients.
Collapse
Affiliation(s)
- Meenal Datta
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Laura E Via
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Véronique Dartois
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA; Hackensack Meridian School of Medicine, Hackensack Meridian Health, Nutley, NJ 07110, USA
| | - Lei Xu
- Edwin L. Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Clifton E Barry
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA.
| | - Rakesh K Jain
- Edwin L. Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
33
|
Dong Y, Lu M, Yin Y, Wang C, Dai N. Tumor Biomechanics-Inspired Future Medicine. Cancers (Basel) 2024; 16:4107. [PMID: 39682291 DOI: 10.3390/cancers16234107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/04/2024] [Accepted: 12/06/2024] [Indexed: 12/18/2024] Open
Abstract
Malignant tumors pose a significant global health challenge, severely threatening human health. Statistics from the World Health Organization indicate that, in 2022, there were nearly 20 million new cancer cases and 9.7 million cancer-related deaths. Therefore, it is urgently necessary to study the pathogenesis of cancer and explore effective diagnostic and treatment strategies. In recent years, research has highlighted the importance of mechanical cues in tumors, which have become a new hallmark of cancer and a key factor in regulating tumor behavior. This suggests that studying the mechanical properties of tumors may open potential new avenues for understanding the pathogenesis, diagnosis, and therapeutic intervention of cancer. This review summarizes the mechanical characteristics of tumors and the development of tumor diagnostics and treatments targeting specific mechanical factors. Finally, we propose new ideas and insights for the application of mechanomedicine in cancer diagnosis and treatment in the future.
Collapse
Affiliation(s)
- Yuqing Dong
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, China
| | - Mengnan Lu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, China
| | - Yuting Yin
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, China
| | - Cong Wang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, China
| | - Ningman Dai
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
34
|
Feng X, Cao F, Wu X, Xie W, Wang P, Jiang H. Targeting extracellular matrix stiffness for cancer therapy. Front Immunol 2024; 15:1467602. [PMID: 39697341 PMCID: PMC11653020 DOI: 10.3389/fimmu.2024.1467602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 11/06/2024] [Indexed: 12/20/2024] Open
Abstract
The physical characteristics of the tumor microenvironment (TME) include solid stress, interstitial fluid pressure, tissue stiffness and microarchitecture. Among them, abnormal changes in tissue stiffness hinder drug delivery, inhibit infiltration of immune killer cells to the tumor site, and contribute to tumor resistance to immunotherapy. Therefore, targeting tissue stiffness to increase the infiltration of drugs and immune cells can offer a powerful support and opportunities to improve the immunotherapy efficacy in solid tumors. In this review, we discuss the mechanical properties of tumors, the impact of a stiff TME on tumor cells and immune cells, and the strategies to modulate tumor mechanics.
Collapse
Affiliation(s)
- Xiuqin Feng
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Fujun Cao
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiangji Wu
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Wenyan Xie
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ping Wang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hong Jiang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Pancreatic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
35
|
Ziaziaris WA, Lim CSH, Sioson L, Gill AJ, Samra JS, Sahni S, Mittal A. Gene Expression Profiling of Pancreatic Ductal Adenocarcinoma Arising From Intraductal Papillary Mucinous Neoplasms of the Pancreas. Cancer Med 2024; 13:e70499. [PMID: 39660530 PMCID: PMC11632396 DOI: 10.1002/cam4.70499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 11/08/2024] [Accepted: 12/01/2024] [Indexed: 12/12/2024] Open
Abstract
INTRODUCTION Intraductal papillary mucinous neoplasms (IPMNs) are diverse premalignant tumors of the pancreas. They progress stepwise from adenoma to carcinoma and offer an opportunity for intervention prior to malignant transformation into pancreatic ductal adenocarcinoma (PDAC). The current study aimed to identify differentially expressed genes (DEGs) in invasive PDAC-associated IPMN vs. noninvasive IPMN to understand the potential molecular changes involved in malignant transformation of IPMN into PDAC. MATERIALS AND METHODS Archived tissue and data from 12 patients with histologically proven invasive PDAC arising from IPMN specimens were assessed. Gene expression analysis was performed on RNA extracted from macro-dissected tissue specimens using the NanoString nCounter PanCancer Progression assay. Statistical and pathway analysis was performed using SPSS v28 and Ingenuity Pathway Analysis, respectively. RESULTS A total of 159 genes had significantly (p < 0.05, q < 0.05) different expression in PDAC arising from IPMN compared with that from IPMN alone (91 overexpressed and 68 underexpressed). Interestingly, 14 of top 10 over- and underexpressed genes were predicted to translate secretory proteins, with SignalP scores approaching 1. A number of differential canonical pathways (e.g., LXR/RXR activation pathway, glycolysis I gluconeogenesis I, and hepatic fibrosis) and potential upstream regulators (e.g., TGFB1, THBS2, etc.) were also identified. CONCLUSION A differential gene expression profile between PDAC arising from IPMN and IPMN alone was identified. Pathway analysis identified potential mechanisms involved in malignant transformation of IPMN to PDAC.
Collapse
Affiliation(s)
- William A. Ziaziaris
- Department of Upper Gastrointestinal SurgeryRoyal North Shore HospitalSydneyAustralia
- Faculty of Medical and HealthThe University of SydneySydneyAustralia
| | - Christopher S. H. Lim
- Department of Upper Gastrointestinal SurgeryRoyal North Shore HospitalSydneyAustralia
| | - Loretta Sioson
- NSW Health Pathology, Department of Anatomical PathologyRoyal North Shore HospitalSydneyAustralia
| | - Anthony J. Gill
- Faculty of Medical and HealthThe University of SydneySydneyAustralia
- NSW Health Pathology, Department of Anatomical PathologyRoyal North Shore HospitalSydneyAustralia
| | - Jaswinder S. Samra
- Department of Upper Gastrointestinal SurgeryRoyal North Shore HospitalSydneyAustralia
- Faculty of Medical and HealthThe University of SydneySydneyAustralia
- Australian Pancreatic CentreSydneyAustralia
| | - Sumit Sahni
- Faculty of Medical and HealthThe University of SydneySydneyAustralia
- Australian Pancreatic CentreSydneyAustralia
- Kolling Institute of Medical ResearchThe University of SydneySydneyAustralia
| | - Anubhav Mittal
- Department of Upper Gastrointestinal SurgeryRoyal North Shore HospitalSydneyAustralia
- Faculty of Medical and HealthThe University of SydneySydneyAustralia
- Australian Pancreatic CentreSydneyAustralia
- School of MedicineThe University of Notre DameSydneyAustralia
| |
Collapse
|
36
|
Kalli M, Mpekris F, Charalambous A, Michael C, Stylianou C, Voutouri C, Hadjigeorgiou AG, Papoui A, Martin JD, Stylianopoulos T. Mechanical forces inducing oxaliplatin resistance in pancreatic cancer can be targeted by autophagy inhibition. Commun Biol 2024; 7:1581. [PMID: 39604540 PMCID: PMC11603328 DOI: 10.1038/s42003-024-07268-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024] Open
Abstract
Pancreatic cancer remains one of the most lethal malignancies, with limited treatment options and poor prognosis. A common characteristic among pancreatic cancer patients is the biomechanically altered tumor microenvironment (TME), which among others is responsible for the elevated mechanical stresses in the tumor interior. Although significant research has elucidated the effect of mechanical stress on cancer cell proliferation and migration, it has not yet been investigated how it could affect cancer cell drug sensitivity. Here, we demonstrated that mechanical stress triggers autophagy activation, correlated with increased resistance to oxaliplatin treatment in pancreatic cancer cells. Our results demonstrate that inhibition of autophagy using hydroxychloroquine (HCQ) enhanced the oxaliplatin-induced apoptotic cell death in pancreatic cancer cells exposed to mechanical stress. The combined treatment of HCQ with losartan, a known modulator of mechanical abnormalities in tumors, synergistically enhanced the therapeutic efficacy of oxaliplatin in murine pancreatic tumor models. Furthermore, our study revealed that the use of HCQ enhanced the efficacy of losartan to alleviate mechanical stress levels and restore blood vessel integrity beyond its role in autophagy modulation. These findings underscore the potential of co-targeting mechanical stresses and autophagy as a promising therapeutic strategy to overcome drug resistance and increase chemotherapy efficacy.
Collapse
Affiliation(s)
- Maria Kalli
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus.
| | - Fotios Mpekris
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus
| | - Antonia Charalambous
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus
| | - Christina Michael
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus
| | - Chrystalla Stylianou
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus
| | - Chrysovalantis Voutouri
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus
| | - Andreas G Hadjigeorgiou
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus
| | - Antonia Papoui
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus
| | | | - Triantafyllos Stylianopoulos
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus.
| |
Collapse
|
37
|
Kluz N, Kraj L, Chmiel P, Przybyłkowski AM, Wyrwicz L, Stec R, Szymański Ł. Correlation Between Antihypertensive Drugs and Survival Among Patients with Pancreatic Ductal Adenocarcinoma. Cancers (Basel) 2024; 16:3945. [PMID: 39682132 DOI: 10.3390/cancers16233945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/22/2024] [Accepted: 11/23/2024] [Indexed: 12/18/2024] Open
Abstract
There is a growing prevalence of pancreatic cancer, accompanied by accelerated disease progression and diminished survival rates. Radical resection with clear margins remains the sole viable option for achieving a long-term cure in patients. In cases of advanced, unresectable, and metastatic disease, chemotherapy based on leucovorin, 5-fluorouracil, irinotecan, oxaliplatin, gemcitabine, or nab-paclitaxel represents the cornerstone of the treatment. Considering the limited treatment options available following initial therapy, the strategy of repurposing commonly prescribed drugs such as antihypertensives into anti-cancer therapies in palliative treatment represents a promising avenue for enhancing survival in patients with pancreatic ductal adenocarcinoma. The repurposing of existing drugs is typically a more cost-effective and expedient strategy than the development of new ones. The potential for antihypertensive drugs to be employed as adjunctive therapies could facilitate a more comprehensive treatment approach by targeting multiple pathways involved in cancer progression and acquired resistance to treatment. Antihypertensive medications, particularly those belonging to the pharmacological classes of angiotensin-converting enzyme inhibitors, angiotensin II receptor blockers, and calcium channel blockers, are commonly prescribed and have well-established safety profiles, particularly among patients with pancreatic cancer who are affected by multiple comorbidities. Therefore, we emphasize the preclinical and clinical evidence supporting the use of antihypertensive agents in the treatment of pancreatic cancer, emphasizing their beneficial chemosensitizing effects.
Collapse
Affiliation(s)
- Natalia Kluz
- Department of Gastroenterology and Internal Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Leszek Kraj
- Department of Oncology, Medical University of Warsaw, 02-091 Warsaw, Poland
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, 05-552 Garbatka, Poland
| | - Paulina Chmiel
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, 05-552 Garbatka, Poland
| | - Adam M Przybyłkowski
- Department of Gastroenterology and Internal Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Lucjan Wyrwicz
- Department of Oncology and Radiotherapy, Maria Sklodowska-Curie National Cancer Research Institute, 02-781 Warsaw, Poland
| | - Rafał Stec
- Department of Oncology, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Łukasz Szymański
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, 05-552 Garbatka, Poland
| |
Collapse
|
38
|
Pang N, Yang Z, Zhang W, Du Y, Zhang L, Li X, Peng Y, Qi X. Cancer-associated fibroblasts barrier breaking via TGF-β blockade paved way for docetaxel micelles delivery to treat pancreatic cancer. Int J Pharm 2024; 665:124706. [PMID: 39277152 DOI: 10.1016/j.ijpharm.2024.124706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/31/2024] [Accepted: 09/10/2024] [Indexed: 09/17/2024]
Abstract
TGF-β is a crucial regulator in tumor microenvironment (TME), especially for myofibroblastic cancer-associated fibroblasts (myCAFs). The myCAFs can be motivated by TGF-β signaling to erect pro-tumor TME, meanwhile, myCAFs overexpress TGF-β to mediate the crosstalk between tumor and stromal cells. The blockade of TGF-β can break cancer-associated fibroblasts barrier, consequently opening the access for drugs into tumor. The TGF-β is a promising target in anti-tumor therapy. Herein, we introduced a two-stage combination therapy (TC-Therapy), including TGF-β receptor I inhibitor SB525334 (SB) and cytotoxicity agent docetaxel micelle (DTX-M). We found that SB and DTX-M synergistically inhibited myCAFs proliferation and elevated p53 protein expression in BxPC-3/3T3 mixed cells. Gene and protein tests demonstrated that SB cut off TGF-β signaling via receptor blockade and it did not arouse TGF-β legend compensated internal autocrine. On the contrary, two agents combined decreased TGF-β secretion and inhibited myCAFs viability marked by α-SMA and FAPα. TC-Therapy was applied in BxPc-3/3T3 mixed tumor-bearing mice model. After TC-Therapy, the α-SMA+/ FAPα+ myCAFs faded increasingly and collagenous fibers mainly secreted by myCAFs decreased dramatically as well. More than that, the myCAFs barrier breaking helped to normalize micro-vessels and paved way for micelle penetration. The TGF-β protein level of TC-Therapy in TME was much lower than that of simplex DTX-M, which might account for TME restoration. In conclusion, TGF-β inhibitor acted as the pioneer before nano chemotherapeutic agents. The TC-Therapy of TGF-β signaling inhibition and anti-tumor agent DTX-M is a promising regimen without arising metastasis risk to treat pancreatic cancer. The therapeutic regimen focused on TGF-β related myCAFs reminds clinicians to have a comprehensive understanding of pancreatic cancer.
Collapse
Affiliation(s)
- Ning Pang
- Department of Pharmacy, Peking University Third Hospital, Beijing 100191, China
| | - Zhenzhen Yang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Wenjie Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yitian Du
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Lu Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xin Li
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yiwei Peng
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xianrong Qi
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
| |
Collapse
|
39
|
Bryant JM, Nakashima J, Khatri VM, Sinnamon AJ, Denbo JW, Hodul P, Malafa M, Hoffe S, Frakes JM. The Evolving Role of Neoadjuvant Radiation Therapy in Pancreatic Adenocarcinoma. J Clin Med 2024; 13:6800. [PMID: 39597944 PMCID: PMC11594810 DOI: 10.3390/jcm13226800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 11/04/2024] [Accepted: 11/07/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND/OBJECTIVES Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest cancers. Surgical resection is the most reliable chance for cure, but high rates of positive margins and local failure persist. Neoadjuvant therapies (NAT), including chemotherapy and radiation therapy (RT), are being explored to improve surgical outcomes, particularly in borderline resectable (BRPC) and locally advanced pancreatic cancer (LAPC). This review aims to summarize the current landscape and future directions for neoadjuvant RT (NART) in PDAC. METHODS The review includes a detailed analysis of past and ongoing clinical trials investigating various NART approaches in PDAC, with an emphasis on different RT techniques, fractionation schemes, and their integration into multimodal treatment strategies. RESULTS Early evidence suggests that NART can improve resection margins and local control. However, recent trials, including the Alliance A021501 and LAP-07 trials, have failed to demonstrate significant survival benefits with the addition of RT to NAT. Nevertheless, nuances in trial design and execution continue to keep the question of NART open. Newer approaches, such as stereotactic magnetic resonance-guided adaptive radiation therapy (SMART), show promise in improving local control and survival, but further phase 3 trials are needed. CONCLUSIONS While NART has shown potential in improving local control in PDAC, its impact on overall survival remains unclear. Ongoing trials, particularly those utilizing advanced techniques like SMART, are critical in defining the role of RT in the neoadjuvant setting for PDAC. Collaboration across multidisciplinary teams is essential to optimize treatment strategies and trial outcomes.
Collapse
Affiliation(s)
- John Michael Bryant
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Justyn Nakashima
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Vaseem M. Khatri
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Andrew J. Sinnamon
- Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Jason W. Denbo
- Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Pamela Hodul
- Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Mokenge Malafa
- Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Sarah Hoffe
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
- Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Jessica M. Frakes
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| |
Collapse
|
40
|
Charalambous A, Mpekris F, Panagi M, Voutouri C, Michael C, Gabizon AA, Stylianopoulos T. Tumor Microenvironment Reprogramming Improves Nanomedicine-Based Chemo-Immunotherapy in Sarcomas. Mol Cancer Ther 2024; 23:1555-1567. [PMID: 38940284 DOI: 10.1158/1535-7163.mct-23-0772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 04/16/2024] [Accepted: 06/18/2024] [Indexed: 06/29/2024]
Abstract
Sarcomas are a heterogeneous group of rare cancers that originate in soft tissues or bones. Their complexity and tendency for metastases make treatment challenging, highlighting the need for new therapeutic approaches to improve patient survival. The difficulties in treating these cancers primarily stem from abnormalities within the tumor microenvironment (TME), which leads to reduced blood flow and oxygen levels in tumors. Consequently, this hampers the effective delivery of drugs to tumors and diminishes treatment efficacy despite higher toxic doses of chemotherapy. In this study, we tested the mechanotherapeutic ketotifen combined with either pegylated liposomal doxorubicin (PLD) or pegylated liposomal coencapsulated alendronate-doxorubicin (PLAD) plus anti-programmed cell death protein 1 antibody in mouse models of fibrosarcoma and osteosarcoma. We found that ketotifen successfully reprogrammed the TME by reducing tumor stiffness and increasing perfusion, proven by changes measured by shear-wave elastography and contrast-enhanced ultrasound, respectively, and enhanced the therapeutic efficacy of our nanomedicine-based chemo-immunotherapy protocols. Furthermore, we observed a trend toward improved antitumor responses when nano-chemotherapy is given alongside anti-programmed cell death protein 1 and when the immunomodulator alendronate was present in the treatment. We next investigated the mechanisms of action of this combination. Ketotifen combined with nanomedicine-based chemo-immunotherapy increased T-cell infiltration, specifically cytotoxic CD8+ T cells and CD4+ T helper cells, and decreased the number of regulatory T cells. In addition, the combination also altered the polarization of tumor-associated macrophages, favoring the M1 immune-supportive phenotype over the M2 immunosuppressive phenotype. Collectively, our findings provide evidence that ketotifen-induced TME reprogramming can improve the efficacy of nanomedicine-based chemo-immunotherapy in sarcomas.
Collapse
Affiliation(s)
- Antonia Charalambous
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus
| | - Fotios Mpekris
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus
| | - Myrofora Panagi
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus
| | - Chrysovalantis Voutouri
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus
| | - Christina Michael
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus
| | - Alberto A Gabizon
- Nano-Oncology Research Center, Department of Medical Oncology, Shaare Zedek Medical Center, Jerusalem, Israel
- Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Triantafyllos Stylianopoulos
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus
| |
Collapse
|
41
|
Shah A, Ganguly K, Rauth S, Sheree SS, Khan I, Ganti AK, Ponnusamy MP, Kumar S, Jain M, Batra SK. Unveiling the resistance to therapies in pancreatic ductal adenocarcinoma. Drug Resist Updat 2024; 77:101146. [PMID: 39243602 PMCID: PMC11770815 DOI: 10.1016/j.drup.2024.101146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/15/2024] [Accepted: 08/23/2024] [Indexed: 09/09/2024]
Abstract
Despite the ongoing advances in interventional strategies (surgery, chemotherapy, radiotherapy, and immunotherapy) for managing pancreatic ductal adenocarcinoma (PDAC), the development of therapy refractory phenotypes remains a significant challenge. Resistance to various therapeutic modalities in PDAC emanates from a combination of inherent and acquired factors and is attributable to cancer cell-intrinsic and -extrinsic mechanisms. The critical determinants of therapy resistance include oncogenic signaling and epigenetic modifications that drive cancer cell stemness and metabolic adaptations, CAF-mediated stromagenesis that results in ECM deposition altered mechanotransduction, and secretome and immune evasion. We reviewed the current understanding of these multifaceted mechanisms operating in the PDAC microenvironment, influencing the response to chemotherapy, radiotherapy, and immunotherapy regimens. We then describe how the lessons learned from these studies can guide us to discover novel therapeutic regimens to prevent, delay, or revert resistance and achieve durable clinical responses.
Collapse
Affiliation(s)
- Ashu Shah
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Koelina Ganguly
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Sanchita Rauth
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Shamema S Sheree
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Imran Khan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Apar K Ganti
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA; Division of Oncology-hematology, Department of Internal Medicine, VA Nebraska Western Iowa Health Care System and University of Nebraska Medical Center, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Moorthy P Ponnusamy
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha 68198-5870, USA
| | - Sushil Kumar
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Maneesh Jain
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha 68198-5870, USA.
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha 68198-5870, USA.
| |
Collapse
|
42
|
Suto H, Nagao M, Matsukawa H, Fuke T, Ando Y, Oshima M, Takahashi S, Shibata T, Kamada H, Kobara H, Okuyama H, Hirao T, Kumamoto K, Okano K. Relationships between postoperative recurrences and standardized uptake value on 18F-fluorodeoxyglucose-positron emission tomography in patients with resectable and borderline resectable pancreatic ductal adenocarcinoma who underwent curative pancreatic resection after neoadjuvant chemoradiotherapy. Pancreatology 2024; 24:1133-1140. [PMID: 39160121 DOI: 10.1016/j.pan.2024.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 08/07/2024] [Accepted: 08/12/2024] [Indexed: 08/21/2024]
Abstract
BACKGROUND This study aimed to examine postoperative recurrence after curative pancreatic resection following neoadjuvant chemoradiotherapy (NACRT) in patients with resectable (R-) and borderline resectable (BR-) pancreatic ductal adenocarcinoma (PDAC), focusing on its relationship with the standardized uptake value (SUV) on 18F-fluorodeoxyglucose-positron emission tomography (FDG-PET). METHOD The postoperative initial recurrence patterns were examined in patients with R- and BR-PDAC who underwent NACRT followed by curative pancreatic resection. Data collected from three prospective clinical trials were retrospectively analysed. RESULTS After a median follow-up of 29 months, 91 (60 %) of 151 patients experienced postoperative recurrence. The median recurrence-free survival (RFS) for all patients was 18 months. The sites of first recurrence were lung-only in 24 (26 %) patients, liver-only in 23 (25 %), local-only in 11 (12 %), peritoneum-only in 10 (11 %), other single site in 5 (5 %), and multiple sites in 19 (21 %) patients. Multivariate analysis identified the maximum standardized uptake value (SUVmax) on FDG-PET at diagnoses ≥5.40 (hazard ratio [HR], 1.62; 95 % confidence interval [CI], 1.01-2.61; p = 0.045) and node-positive pathology (HR, 2.01; 95 % CI, 1.32-3.08; p = 0.001) as significant predictors of RFS. Furthermore, the SUVmax at initial diagnosis and after NACRT correlated with liver metastasis. CONCLUSION R- and BR-PDACs with high SUV on FDG-PET at diagnosis are risk factors for postoperative recurrence. Among patients who undergo surgery after NACRT, those with a high SUVmax at diagnosis or post-NACRT require careful attention for postoperative liver recurrence.
Collapse
Affiliation(s)
- Hironobu Suto
- Department of Gastroenterological Surgery, Faculty of Medicine, Kagawa University, Kagawa, Japan.
| | - Mina Nagao
- Department of Gastroenterological Surgery, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Hiroyuki Matsukawa
- Department of Gastroenterological Surgery, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Takuro Fuke
- Department of Gastroenterological Surgery, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Yasuhisa Ando
- Department of Gastroenterological Surgery, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Minoru Oshima
- Department of Gastroenterological Surgery, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Shigeo Takahashi
- Department of Radiation Oncology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Toru Shibata
- Department of Radiation Oncology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Hideki Kamada
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Hideki Kobara
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Hiroyuki Okuyama
- Department of Clinical Oncology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Tomohiro Hirao
- Department of Public Health, Kagawa University, Kagawa, Japan
| | - Kensuke Kumamoto
- Department of Gastroenterological Surgery, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Keiichi Okano
- Department of Gastroenterological Surgery, Faculty of Medicine, Kagawa University, Kagawa, Japan
| |
Collapse
|
43
|
Linke JA, Munn LL, Jain RK. Compressive stresses in cancer: characterization and implications for tumour progression and treatment. Nat Rev Cancer 2024; 24:768-791. [PMID: 39390249 DOI: 10.1038/s41568-024-00745-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/20/2024] [Indexed: 10/12/2024]
Abstract
Beyond their many well-established biological aberrations, solid tumours create an abnormal physical microenvironment that fuels cancer progression and confers treatment resistance. Mechanical forces impact tumours across a range of biological sizes and timescales, from rapid events at the molecular level involved in their sensing and transmission, to slower and larger-scale events, including clonal selection, epigenetic changes, cell invasion, metastasis and immune response. Owing to challenges with studying these dynamic stimuli in biological systems, the mechanistic understanding of the effects and pathways triggered by abnormally elevated mechanical forces remains elusive, despite clear correlations with cancer pathophysiology, aggressiveness and therapeutic resistance. In this Review, we examine the emerging and diverse roles of physical forces in solid tumours and provide a comprehensive framework for understanding solid stress mechanobiology. We first review the physiological importance of mechanical forces, especially compressive stresses, and discuss their defining characteristics, biological context and relative magnitudes. We then explain how abnormal compressive stresses emerge in tumours and describe the experimental challenges in investigating these mechanically induced processes. Finally, we discuss the clinical translation of mechanotherapeutics that alleviate solid stresses and their potential to synergize with chemotherapy, radiotherapy and immunotherapies.
Collapse
Affiliation(s)
- Julia A Linke
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Lance L Munn
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| | - Rakesh K Jain
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
44
|
Zhang R, Yin H, Yang M, Liu J, Zhen D, Zhang Z. Advanced progress of the relationship between renin-angiotensin-aldosterone system inhibitors and cancers. J Hypertens 2024; 42:1862-1873. [PMID: 39248142 DOI: 10.1097/hjh.0000000000003836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 07/29/2024] [Indexed: 09/10/2024]
Abstract
Hypertension and cancers are the most common causes of death in humans, as well as common co-diseases among elderly population. Studies have shown that hypertension is associated with carcinogenesis. The renin-angiotensin-aldosterone system (RAAS) is a crucial regulatory system of blood pressure, fluid, and electrolyte homeostasis, which plays an essential role in the pathogenesis of hypertension, whose mechanism is relatively clear. Studies have indicated that RAAS also widely exists in cancer tissues of different systems, which can affect the risk of cancers by stimulating cancer angiogenesis, participating in cancer-related oxidative stress, and regulating cancer-related immunity. Therefore, inhibiting RAAS activity seems beneficial to decreasing the risk of cancers. As one of the most commonly used antihypertensive drugs, RAAS inhibitors have been widely used in clinical practice. However, the conclusions of clinical studies on the relationship between RAAS inhibitors and cancers are not entirely consistent, which has been widely concerned by clinicians. The latest findings suggest that while RAAS inhibitors may reduce the risk of digestive cancers, respiratory cancers, urological cancers, gynecological cancers, and skin cancers, ACEIs may increase the risk of lung cancer, endometrial cancer, basal cell carcinoma, and squamous cell carcinoma. This article comprehensively reviews animal experiments, clinical studies, and meta-analyses on the relationship between RAAS inhibitors and cancers, to provide references for related studies in the future.
Collapse
Affiliation(s)
- Ruixing Zhang
- The First Clinical Medical College, Lanzhou University
- Department of Heart Center
| | - Hongtao Yin
- Department of Endocrinology, The First Hospital of Lanzhou University, Chengguan District, Lanzhou, Gansu, China
| | - Mengdi Yang
- The First Clinical Medical College, Lanzhou University
| | - Jinjin Liu
- Department of Endocrinology, The First Hospital of Lanzhou University, Chengguan District, Lanzhou, Gansu, China
| | - Donghu Zhen
- Department of Endocrinology, The First Hospital of Lanzhou University, Chengguan District, Lanzhou, Gansu, China
| | | |
Collapse
|
45
|
Okano N, Kawai M, Ueno M, Yu X, Inoue Y, Takahashi S, Wang W, Takahashi H, Okamura Y, Morinaga S, Matsumoto I, Shimizu Y, Yoshida K, Yamamoto T, Ohtsuka M, Inokawa Y, Nara S, Tamura J, Shinoda S, Yamamoto K, Yamaue H, Furuse J, PC‐CURE‐1 study group. Outcomes of patients with initially unresectable pancreatic cancer who underwent conversion surgery after FOLFIRINOX or gemcitabine plus nab-paclitaxel chemotherapy: A multicenter retrospective cohort study (PC-CURE-1). JOURNAL OF HEPATO-BILIARY-PANCREATIC SCIENCES 2024; 31:816-829. [PMID: 39150050 PMCID: PMC11589395 DOI: 10.1002/jhbp.12066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
BACKGROUND The efficacy and safety of conversion surgery (CS) after FOLFIRINOX or gemcitabine plus nab-paclitaxel (GnP) chemotherapy in patients with initially unresectable pancreatic cancer (PC) remains unclear. METHODS This multicenter retrospective cohort study enrolled patients, between 2014 and 2018, with initially locally advanced or metastatic PC who were considered candidates for CS following FOLFIRINOX or GnP chemotherapy. They were classified into surgery (207 patients [194 resection and 13 exploratory laparotomy only]) and continued chemotherapy (10 patients, control) groups. The primary endpoint was overall survival (OS) from the day of diagnosis of potentially curative resection on imaging studies, with an expected hazard ratio (HR) of 0.7. RESULTS OS in the surgery group was longer than that in the control group (HR, 0.47; 95% confidence interval [CI]: 0.24-0.93). The median OS was 34.4 (95% CI: 27.9-43.4) and 19.8 (95% CI: 14.9-31.1) months in the surgery and control groups, respectively. The Clavien-Dindo grade ≥ IIIa postoperative complication and in-hospital mortality rates were 19.6% and 0.5%, respectively. Multivariate analysis revealed that preoperative chemotherapy duration was not associated with OS. CONCLUSIONS CS, following a favorable response to FOLFIRINOX or GnP chemotherapy, improved initially unresectable PC prognosis (specifically, OS), regardless of the chemotherapy duration.
Collapse
Affiliation(s)
- Naohiro Okano
- Department of Medical OncologyKyorin University Faculty of MedicineTokyoJapan
| | - Manabu Kawai
- Second Department of SurgeryWakayama Medical University School of MedicineWakayamaJapan
| | - Makoto Ueno
- Department of GastroenterologyKanagawa Cancer CenterYokohamaJapan
| | - Xianjun Yu
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghaiChina
| | - Yosuke Inoue
- Division of Hepatobiliary and Pancreatic SurgeryCancer Institute Hospital, Japanese Foundation for Cancer ResearchTokyoJapan
| | - Shinichiro Takahashi
- Department of Hepatobiliary and Pancreatic SurgeryNational Cancer Center Hospital EastKashiwaJapan
| | - Wenquan Wang
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghaiChina
| | - Hidenori Takahashi
- Department of Gastroenterological SurgeryOsaka International Cancer InstituteOsakaJapan
| | - Yukiyasu Okamura
- Division of Hepato‐Biliary‐Pancreatic SurgeryShizuoka Cancer Center HospitalShizuokaJapan
| | - Soichiro Morinaga
- Department of Hepato‐Biliary and Pancreatic SurgeryKanagawa Cancer CenterYokohamaJapan
| | - Ippei Matsumoto
- Department of SurgeryKindai University Faculty of MedicineOsakasayamaJapan
| | - Yasuhiro Shimizu
- Department of Gastroenterological SurgeryAichi Cancer Center HospitalNagoyaJapan
| | - Kazuhiro Yoshida
- Department of Surgical OncologyGifu University Graduate School of MedicineGifuJapan
| | | | - Masayuki Ohtsuka
- Department of General Surgery, Graduate School of MedicineChiba UniversityChibaJapan
| | - Yoshikuni Inokawa
- Department of Gastroenterological SurgeryNagoya University Graduate School of MedicineNagoyaJapan
| | - Satoshi Nara
- Department of Hepatobiliary and Pancreatic SurgeryNational Cancer Center HospitalTokyoJapan
| | - Jun Tamura
- Department of BiostatisticsYokohama City University School of MedicineYokohamaJapan
| | - Satoru Shinoda
- Department of BiostatisticsYokohama City University School of MedicineYokohamaJapan
| | - Kouji Yamamoto
- Department of BiostatisticsYokohama City University School of MedicineYokohamaJapan
| | - Hiroki Yamaue
- Second Department of SurgeryWakayama Medical University School of MedicineWakayamaJapan
| | - Junji Furuse
- Department of Medical OncologyKyorin University Faculty of MedicineTokyoJapan
- Department of GastroenterologyKanagawa Cancer CenterYokohamaJapan
| | | |
Collapse
|
46
|
Voutouri C, Englezos D, Zamboglou C, Strouthos I, Papanastasiou G, Stylianopoulos T. A convolutional attention model for predicting response to chemo-immunotherapy from ultrasound elastography in mouse tumor models. COMMUNICATIONS MEDICINE 2024; 4:203. [PMID: 39420199 PMCID: PMC11487255 DOI: 10.1038/s43856-024-00634-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 10/09/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND In the era of personalized cancer treatment, understanding the intrinsic heterogeneity of tumors is crucial. Despite some patients responding favorably to a particular treatment, others may not benefit, leading to the varied efficacy observed in standard therapies. This study focuses on the prediction of tumor response to chemo-immunotherapy, exploring the potential of tumor mechanics and medical imaging as predictive biomarkers. We have extensively studied "desmoplastic" tumors, characterized by a dense and very stiff stroma, which presents a substantial challenge for treatment. The increased stiffness of such tumors can be restored through pharmacological intervention with mechanotherapeutics. METHODS We developed a deep learning methodology based on shear wave elastography (SWE) images, which involved a convolutional neural network (CNN) model enhanced with attention modules. The model was developed and evaluated as a predictive biomarker in the setting of detecting responsive, stable, and non-responsive tumors to chemotherapy, immunotherapy, or the combination, following mechanotherapeutics administration. A dataset of 1365 SWE images was obtained from 630 tumors from our previous experiments and used to train and successfully evaluate our methodology. SWE in combination with deep learning models, has demonstrated promising results in disease diagnosis and tumor classification but their potential for predicting tumor response prior to therapy is not yet fully realized. RESULTS We present strong evidence that integrating SWE-derived biomarkers with automatic tumor segmentation algorithms enables accurate tumor detection and prediction of therapeutic outcomes. CONCLUSIONS This approach can enhance personalized cancer treatment by providing non-invasive, reliable predictions of therapeutic outcomes.
Collapse
Affiliation(s)
- Chrysovalantis Voutouri
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus.
| | - Demetris Englezos
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus
| | - Constantinos Zamboglou
- Department of Radiation Oncology, University of Freiburg - Medical Center, Freiburg, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg, Freiburg, Germany
- Department of Radiation Oncology, German Oncology Center, European University Cyprus, Limassol, Cyprus
| | - Iosif Strouthos
- Department of Radiation Oncology, German Oncology Center, European University Cyprus, Limassol, Cyprus
| | - Giorgos Papanastasiou
- Archimedes Unit, Athena Research Centre, Athens, Greece
- School of Computer Science and Electronic Engineering University of Essex, Wivenhoe Park, UK
| | - Triantafyllos Stylianopoulos
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus.
| |
Collapse
|
47
|
Soydan L, Atalay HÖ, Torun M, Arar M, Canpolat K. Prediction of R0 Resectability in Pancreatic Adenocarcinoma by MRI Using NCCN Criteria. Indian J Surg 2024. [DOI: 10.1007/s12262-024-04170-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 10/05/2024] [Indexed: 11/29/2024] Open
|
48
|
Wang J, Yang J, Narang A, He J, Wolfgang C, Li K, Zheng L. Consensus, debate, and prospective on pancreatic cancer treatments. J Hematol Oncol 2024; 17:92. [PMID: 39390609 PMCID: PMC11468220 DOI: 10.1186/s13045-024-01613-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 09/25/2024] [Indexed: 10/12/2024] Open
Abstract
Pancreatic cancer remains one of the most aggressive solid tumors. As a systemic disease, despite the improvement of multi-modality treatment strategies, the prognosis of pancreatic cancer was not improved dramatically. For resectable or borderline resectable patients, the surgical strategy centered on improving R0 resection rate is consensus; however, the role of neoadjuvant therapy in resectable patients and the optimal neoadjuvant therapy of chemotherapy with or without radiotherapy in borderline resectable patients were debated. Postoperative adjuvant chemotherapy of gemcitabine/capecitabine or mFOLFIRINOX is recommended regardless of the margin status. Chemotherapy as the first-line treatment strategy for advanced or metastatic patients included FOLFIRINOX, gemcitabine/nab-paclitaxel, or NALIRIFOX regimens whereas 5-FU plus liposomal irinotecan was the only standard of care second-line therapy. Immunotherapy is an innovative therapy although anti-PD-1 antibody is currently the only agent approved by for MSI-H, dMMR, or TMB-high solid tumors, which represent a very small subset of pancreatic cancers. Combination strategies to increase the immunogenicity and to overcome the immunosuppressive tumor microenvironment may sensitize pancreatic cancer to immunotherapy. Targeted therapies represented by PARP and KRAS inhibitors are also under investigation, showing benefits in improving progression-free survival and objective response rate. This review discusses the current treatment modalities and highlights innovative therapies for pancreatic cancer.
Collapse
Affiliation(s)
- Junke Wang
- Division of Biliary Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, 1650 Orleans St, Baltimore, MD, 21287, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Jie Yang
- Division of Pancreatic Surgery, Department of General Surgery, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu, 610041, Sichuan, China
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Amol Narang
- Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, 1650 Orleans St, Baltimore, MD, 21287, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Jin He
- Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, 1650 Orleans St, Baltimore, MD, 21287, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Christopher Wolfgang
- Department of Surgery, New York University School of Medicine and NYU-Langone Medical Center, New York, NY, USA
| | - Keyu Li
- Division of Pancreatic Surgery, Department of General Surgery, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu, 610041, Sichuan, China.
- Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, 1650 Orleans St, Baltimore, MD, 21287, USA.
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
| | - Lei Zheng
- Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, 1650 Orleans St, Baltimore, MD, 21287, USA.
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
- The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
- The Multidisciplinary Gastrointestinal Cancer Laboratories Program, the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
| |
Collapse
|
49
|
Skelton WP, Masur J, Thomas J, Fallah P, Jain RK, Ravi P, Mantia C, McGregor BA, Nuzzo PV, Adib E, Zarif TE, Preston MA, Clinton TN, Li R, Steele GS, Kassouf W, Freeman D, Pond GR, Jain RK, Sonpavde GP. Impact of Angiotensin Converting Enzyme Inhibitors on Pathologic Complete Response With Neoadjuvant Chemotherapy for Muscle Invasive Bladder Cancer. Clin Genitourin Cancer 2024; 22:102143. [PMID: 39032202 DOI: 10.1016/j.clgc.2024.102143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/12/2024] [Accepted: 06/15/2024] [Indexed: 07/22/2024]
Abstract
INTRODUCTION The renin-angiotensin system (RAS) has been demonstrated to modulate cell proliferation, desmoplasia, angiogenesis and immunosuppression. We examined the association of RAS inhibitors (RASi)-namely angiotensin converting enzyme inhibitors (ACEi) and angiotensin receptor blockers (ARB)-with neoadjuvant chemotherapy (NAC) for muscle-invasive bladder cancer (MIBC) preceding radical cystectomy (RC). PATIENTS AND METHODS We retrospectively investigated concurrent RASi use with NAC prior to RC in 302 patients with MIBC from 3 academic institutions. Outcomes included pathologic complete response (pCR) and overall survival (OS). Pathologic features, performance status (PS), clinical stage, type/number of cycles of NAC, and toxicities were collected. RESULTS Overall pCR rate was 26.2% and 5-year OS was 62%. Concurrent ACEi intake with NAC approached significance for association with pCR (odds ratio [OR] = 1.71; 95% CI, 0.94-3.11; P = .077). Patients with cT3/4N0-N1 disease receiving ACEi had higher pCR rates (30.8% vs. 17.7%, P = .056) than those not on ACEi. Female sex had a statistically significant favorable interaction for pCR with ACEi intake (P = .044). ACEi intake was not associated with OS, while pCR, PS and lower clinical stage were significantly associated with improved OS. CONCLUSION ACEi intake is potentially associated with increased pCR in patients with MIBC receiving NAC prior to RC, and this association is more pronounced in patients with higher clinical stage of disease at the initiation of therapy and female sex. Our data suggest the potential relevance of the RAS as a therapeutic target in aggressive MIBC.
Collapse
Affiliation(s)
- William Paul Skelton
- University of Virginia Comprehensive Cancer Center, Department of Oncology, Charlottesville, VA; H. Lee Moffitt Cancer Center and Research Institute, Department of Oncology, Tampa, FL
| | - Jack Masur
- University of Virginia Comprehensive Cancer Center, Department of Oncology, Charlottesville, VA
| | - Jonathan Thomas
- Dana-Farber Cancer Institute, Department of Oncology, Boston, MA
| | - Parvaneh Fallah
- McGill University, Department of Oncology, Montreal, Quebec, Canada
| | - Rohit K Jain
- H. Lee Moffitt Cancer Center and Research Institute, Department of Oncology, Tampa, FL
| | - Praful Ravi
- Dana-Farber Cancer Institute, Department of Oncology, Boston, MA
| | - Charlene Mantia
- Dana-Farber Cancer Institute, Department of Oncology, Boston, MA
| | | | | | - Elio Adib
- Dana-Farber Cancer Institute, Department of Oncology, Boston, MA
| | - Talal El Zarif
- Dana-Farber Cancer Institute, Department of Oncology, Boston, MA
| | - Mark A Preston
- Brigham and Women's Hospital, Department of Oncology, Boston, MA
| | | | - Roger Li
- H. Lee Moffitt Cancer Center and Research Institute, Department of Oncology, Tampa, FL
| | - Graeme S Steele
- Brigham and Women's Hospital, Department of Oncology, Boston, MA
| | - Wassim Kassouf
- McGill University, Department of Oncology, Montreal, Quebec, Canada
| | - Dory Freeman
- Dana-Farber Cancer Institute, Department of Oncology, Boston, MA
| | | | - Rakesh K Jain
- Massachusetts General Hospital, Department of Oncology, Boston, MA
| | - Guru P Sonpavde
- Dana-Farber Cancer Institute, Department of Oncology, Boston, MA; AdventHealth Cancer Institute and the University of Central Florida, Department of Oncology, Orlando, FL.
| |
Collapse
|
50
|
Kraj L, Chmiel P, Śliwczyński A, Szymański Ł, Woźniak K, Słodkowski M, Stokłosa T, Wyrwicz L. Synergistic effects of calcium channel blockers and renin-angiotensin inhibitors with gemcitabine-based chemotherapy on the survival of patients with pancreatic cancer. J Cancer Res Clin Oncol 2024; 150:434. [PMID: 39340700 PMCID: PMC11438632 DOI: 10.1007/s00432-024-05962-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024]
Abstract
PURPOSE Pancreatic cancer remains a significant public health challenge, with poor long-term outcomes due to the lack of effective treatment options. Repurposing commonly used clinical drugs, such as ACE inhibitors, ARBs, CCBs, and metformin, may enhance the efficacy of chemotherapy and offer a promising therapeutic strategy for improving patient outcomes. METHODS A retrospective analysis of concomitant treatment with ACE-Is, ARBs, CCBs, and metformin alongside gemcitabine chemotherapy in patients with pancreatic cancer was conducted. Treatment responses were evaluated, with overall survival (OS) estimated using the Kaplan-Meier method. Additionally, the Cox proportional hazards model was employed to assess the impact of these specific agents on patient survival. RESULTS 4628 patients with various stages of pancreatic cancer were identified in the database between 2007 and 2016. The estimated overall survival (OS) in the analyzed group was 6.9 months (95% CI 6.4-7). The use of any of the analyzed drugs was associated with a significant improvement in mOS of 7.5 months (95% CI 6.8-7.8) vs. 6.7 months (95% CI 6.4-7.0) for patients who did not have additional treatment (p < 0.0001). ARBs, ACE-Is, CCBs, and metformin varied in their effectiveness in prolonging mOS among patients. The longest mOS of 8.9 months (95% CI 7.7-11.6) was observed in patients receiving additional therapy with ARBs, while the shortest mOS of 7.7 months (95% CI 6.5-8.9) was achieved by patients receiving metformin. In the adjusted Cox analysis, metformin was associated with a significantly weaker effect on mOS (p = 0.029). A particularly interesting trend in prolonging 5-year survival was demonstrated by ARBs and CCBs with 14.1% (95% CI 9-22%) and 14.8% (95% CI 11.1-19.6%), respectively, compared to patients not taking these drugs, who achieved a 5-year OS of 3.8% (95% CI 3.2-4.4%). CONCLUSION Our results demonstrate a significant positive impact of ARBs, ACE inhibitors, and CCBs on survival in patients with pancreatic cancer treated with gemcitabine. The addition of these inexpensive and relatively safe drugs in patients with additional comorbidities may represent a potential therapeutic option in this indication. However, prospective clinical trials to evaluate the optimal patient population and further studies to determine the potential impact of these agents on chemotherapy are necessary.
Collapse
Affiliation(s)
- Leszek Kraj
- Department of Oncology, Medical University of Warsaw, 02-091, Warsaw, Poland.
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, 05-552, Garbatka, Poland.
| | - Paulina Chmiel
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, 05-552, Garbatka, Poland
| | - Andrzej Śliwczyński
- National Medical Institute of the Ministry of Interior and Administration, Warsaw, Poland
| | - Łukasz Szymański
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, 05-552, Garbatka, Poland
| | - Krzysztof Woźniak
- Department of Oncology, Medical University of Warsaw, 02-091, Warsaw, Poland
| | - Maciej Słodkowski
- Department of General, Gastroenterological and Oncological Surgery, Medical University of Warsaw, 02097, Warsaw, Poland
| | - Tomasz Stokłosa
- Department of Tumor Biology, Genetics Medical University of Warsaw, Warsaw, Poland
| | - Lucjan Wyrwicz
- Department of Oncology, Radiotherapy Maria Sklodowska-Curie National Cancer Research Institute, Warsaw, Poland
| |
Collapse
|