1
|
Weidenauer A, Garani R, Lalang N, Watts J, Lepage M, Rusjan PM, Mizrahi R. The Role of Fatty Acid Amide Hydrolase, a Key Regulatory Endocannabinoid Enzyme, in Domain-Specific Cognitive Performance in Psychosis. Schizophr Bull 2024:sbae212. [PMID: 39729518 DOI: 10.1093/schbul/sbae212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2024]
Abstract
BACKGROUND AND HYPOTHESIS Cognitive impairments are particularly disabling for patients with a psychotic disorder and often persist despite optimization of antipsychotic treatment. Thus, motivating an extension of the research focus on the endocannabinoid system. The aim of this study was to evaluate group differences in brain fatty acid amid hydrolase (FAAH), an endocannabinoid enzyme between first-episode psychosis (FEP), individuals with clinical high risk (CHR) for psychosis and healthy controls (HCs). Furthermore, to test the hypothesis that FAAH is linked with cognition using positron emission tomography (PET). STUDY DESIGN We analyzed 80 PET scans with the highly selective FAAH radioligand [11C]CURB, including 30 patients with FEP (6 female), 15 CHR (5 female), and 35 HC (19 female). The Repeatable Battery for the Assessment of Neuropsychological Status (RBANS) and the Berg Card Sorting Test (BCST) were applied to test cognitive performance. STUDY RESULTS There was no difference in FAAH activity between groups (F2, 75 = 0.75, P = .48; Cohen's f = 0.141; small effect). Overall, there was a difference in the association between groups regarding FAAH activity and the domain visuospatial construction (F2, 72 = 4.67, P = .01; Cohen's f = .36; medium effect). Furthermore, across the sample, lower FAAH activity was associated with a higher percentage of perseverative responses (F1, 66 = 5.06, P = .03; Cohen's f = 0.28, medium effect). CONCLUSIONS We report evidence for associations between endocannabinoid alterations in FEP and CHR with specific domains of cognition (visuospatial construction and perseverative response), not overall cognition.
Collapse
Affiliation(s)
- Ana Weidenauer
- Division of General Psychiatry, Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna 1090, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna 1090, Austria
| | - Ranjini Garani
- Clinical and Translational Sciences Lab, Douglas Research Centre, Montreal, Quebec H4H 1R3, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec H3A 1A1, Canada
| | - Nittha Lalang
- Vertex Pharmaceuticals, Boston, MA 02210, United States
| | - Jeremy Watts
- Research Centre, CHU Sainte-Justine, Montreal, Quebec H3T 1C5, Canada
- Department of Psychiatry, Université de Montréal, Montreal, Quebec H3T 1J4, Canada
| | - Martin Lepage
- Douglas Research Centre, Montreal, Quebec H4H 1R3, Canada
- Department of Psychiatry, McGill University, Montreal, Quebec H3A 1A1, Canada
| | - Pablo M Rusjan
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec H3A 1A1, Canada
- Douglas Research Centre, Montreal, Quebec H4H 1R3, Canada
- Department of Psychiatry, McGill University, Montreal, Quebec H3A 1A1, Canada
| | - Romina Mizrahi
- Clinical and Translational Sciences Lab, Douglas Research Centre, Montreal, Quebec H4H 1R3, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec H3A 1A1, Canada
- Douglas Research Centre, Montreal, Quebec H4H 1R3, Canada
- Department of Psychiatry, McGill University, Montreal, Quebec H3A 1A1, Canada
| |
Collapse
|
2
|
Kumar U. Cannabinoids: Role in Neurological Diseases and Psychiatric Disorders. Int J Mol Sci 2024; 26:152. [PMID: 39796008 PMCID: PMC11720483 DOI: 10.3390/ijms26010152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/20/2024] [Accepted: 12/22/2024] [Indexed: 01/13/2025] Open
Abstract
An impact of legalization and decriminalization of marijuana is the gradual increase in the use of cannabis for recreational purposes, which poses a potential threat to society and healthcare systems worldwide. However, the discovery of receptor subtypes, endogenous endocannabinoids, and enzymes involved in synthesis and degradation, as well as pharmacological characterization of receptors, has led to exploration of the use of cannabis in multiple peripheral and central pathological conditions. The role of cannabis in the modulation of crucial events involving perturbed physiological functions and disease progression, including apoptosis, inflammation, oxidative stress, perturbed mitochondrial function, and the impaired immune system, indicates medicinal values. These events are involved in most neurological diseases and prompt the gradual progression of the disease. At present, several synthetic agonists and antagonists, in addition to more than 70 phytocannabinoids, are available with distinct efficacy as a therapeutic alternative in different pathological conditions. The present review aims to describe the use of cannabis in neurological diseases and psychiatric disorders.
Collapse
Affiliation(s)
- Ujendra Kumar
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
3
|
Niu J, Zhong Y, Jin C, Cen P, Wang J, Cui C, Xue L, Cui X, Tian M, Zhang H. Positron Emission Tomography Imaging of Synaptic Dysfunction in Parkinson's Disease. Neurosci Bull 2024; 40:743-758. [PMID: 38483697 PMCID: PMC11178751 DOI: 10.1007/s12264-024-01188-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/09/2023] [Indexed: 06/15/2024] Open
Abstract
Parkinson's disease (PD) is one of the most common neurodegenerative diseases with a complex pathogenesis. Aggregations formed by abnormal deposition of alpha-synuclein (αSyn) lead to synapse dysfunction of the dopamine and non-dopamine systems. The loss of dopaminergic neurons and concomitant alterations in non-dopaminergic function in PD constitute its primary pathological manifestation. Positron emission tomography (PET), as a representative molecular imaging technique, enables the non-invasive visualization, characterization, and quantification of biological processes at cellular and molecular levels. Imaging synaptic function with PET would provide insights into the mechanisms underlying PD and facilitate the optimization of clinical management. In this review, we focus on the synaptic dysfunction associated with the αSyn pathology of PD, summarize various related targets and radiopharmaceuticals, and discuss applications and perspectives of PET imaging of synaptic dysfunction in PD.
Collapse
Affiliation(s)
- Jiaqi Niu
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
- Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, 310009, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, 310009, China
| | - Yan Zhong
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
- Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, 310009, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, 310009, China
| | - Chentao Jin
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
- Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, 310009, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, 310009, China
| | - Peili Cen
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
- Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, 310009, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, 310009, China
| | - Jing Wang
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
- Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, 310009, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, 310009, China
| | - Chunyi Cui
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
- Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, 310009, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, 310009, China
| | - Le Xue
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
- Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, 310009, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, 310009, China
| | - Xingyue Cui
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
- Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, 310009, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, 310009, China
| | - Mei Tian
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China.
- Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, 310009, China.
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, 310009, China.
- Huashan Hospital and Human Phenome Institute, Fudan University, Shanghai, 200040, China.
| | - Hong Zhang
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China.
- Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, 310009, China.
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, 310009, China.
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, 310014, China.
- Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, 310014, China.
| |
Collapse
|
4
|
Richardson B, Clarke C, Blundell J, Bambico FR. Therapeutic-like activity of cannabidiolic acid methyl ester in the MK-801 mouse model of schizophrenia: Role for cannabinoid CB1 and serotonin-1A receptors. Eur J Neurosci 2024; 59:2403-2415. [PMID: 38385841 DOI: 10.1111/ejn.16278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 01/15/2024] [Accepted: 01/27/2024] [Indexed: 02/23/2024]
Abstract
Schizophrenia is a psychotic disorder with an increasing prevalence and incidence over the last two decades. The condition presents with a diverse array of positive, negative, and cognitive impairments. Conventional treatments often yield unsatisfactory outcomes, especially with negative symptoms. We investigated the role of prefrontocortical (PFC) N-methyl-D-aspartate receptors (NMDARs) in the pathophysiology and development of schizophrenia. We explored the potential therapeutic effects of cannabidiolic acid (CBDA) methyl ester (HU-580), an analogue of CBDA known to act as an agonist of the serotonin-1A receptor (5-HT1AR) and an antagonist of cannabinoid type 1 receptor (CB1R). C57BL/6 mice were intraperitoneally administered the NMDAR antagonist, dizocilpine (MK-801, .3 mg/kg) once daily for 17 days. After 7 days, they were concurrently given HU-580 (.01 or .05 μg/kg) for 10 days. Behavioural deficits were assessed at two time points. We conducted enzyme-linked immunosorbent assays to measure the concentration of PFC 5-HT1AR and CB1R. We found that MK-801 effectively induced schizophrenia-related behaviours including hyperactivity, social withdrawal, increased forced swim immobility, and cognitive deficits. We discovered that low-dose HU-580 (.01 μg/kg), but not the high dose (.05 μg/kg), attenuated hyperactivity, forced swim immobility and cognitive deficits, particularly in female mice. Our results revealed that MK-801 downregulated both CB1R and 5-HT1AR, an effect that was blocked by both low- and high-dose HU-580. This study sheds light on the potential antipsychotic properties of HU-580, particularly in the context of NMDAR-induced dysfunction. Our findings could contribute significantly to our understanding of schizophrenia pathophysiology and offer a promising avenue for exploring the therapeutic potential of HU-580 and related compounds in alleviating symptoms.
Collapse
MESH Headings
- Animals
- Schizophrenia/drug therapy
- Schizophrenia/chemically induced
- Schizophrenia/metabolism
- Dizocilpine Maleate/pharmacology
- Receptor, Serotonin, 5-HT1A/metabolism
- Receptor, Serotonin, 5-HT1A/drug effects
- Male
- Mice
- Female
- Receptor, Cannabinoid, CB1/metabolism
- Receptor, Cannabinoid, CB1/agonists
- Mice, Inbred C57BL
- Disease Models, Animal
- Cannabinoids/pharmacology
- Receptors, N-Methyl-D-Aspartate/metabolism
- Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors
- Antipsychotic Agents/pharmacology
Collapse
Affiliation(s)
- Brandon Richardson
- Memorial University of Newfoundland and Labrador, St. John's, Newfoundland, Canada
| | - Courtney Clarke
- Memorial University of Newfoundland and Labrador, St. John's, Newfoundland, Canada
| | - Jacqueline Blundell
- Memorial University of Newfoundland and Labrador, St. John's, Newfoundland, Canada
| | - Francis R Bambico
- Memorial University of Newfoundland and Labrador, St. John's, Newfoundland, Canada
| |
Collapse
|
5
|
Cherry AL, Wheeler MJ, Mathisova K, Di Miceli M. In silico analyses of the involvement of GPR55, CB1R and TRPV1: response to THC, contribution to temporal lobe epilepsy, structural modeling and updated evolution. Front Neuroinform 2024; 18:1294939. [PMID: 38404644 PMCID: PMC10894036 DOI: 10.3389/fninf.2024.1294939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/19/2024] [Indexed: 02/27/2024] Open
Abstract
Introduction The endocannabinoid (eCB) system is named after the discovery that endogenous cannabinoids bind to the same receptors as the phytochemical compounds found in Cannabis. While endogenous cannabinoids include anandamide (AEA) and 2-arachidonoylglycerol (2-AG), exogenous phytocannabinoids include Δ-9 tetrahydrocannabinol (THC) and cannabidiol (CBD). These compounds finely tune neurotransmission following synapse activation, via retrograde signaling that activates cannabinoid receptor 1 (CB1R) and/or transient receptor potential cation channel subfamily V member 1 (TRPV1). Recently, the eCB system has been linked to several neurological diseases, such as neuro-ocular abnormalities, pain insensitivity, migraine, epilepsy, addiction and neurodevelopmental disorders. In the current study, we aim to: (i) highlight a potential link between the eCB system and neurological disorders, (ii) assess if THC exposure alters the expression of eCB-related genes, and (iii) identify evolutionary-conserved residues in CB1R or TRPV1 in light of their function. Methods To address this, we used several bioinformatic approaches, such as transcriptomic (Gene Expression Omnibus), protein-protein (STRING), phylogenic (BLASTP, MEGA) and structural (Phyre2, AutoDock, Vina, PyMol) analyzes. Results Using RNA sequencing datasets, we did not observe any dysregulation of eCB-related transcripts in major depressive disorders, bipolar disorder or schizophrenia in the anterior cingulate cortex, nucleus accumbens or dorsolateral striatum. Following in vivo THC exposure in adolescent mice, GPR55 was significantly upregulated in neurons from the ventral tegmental area, while other transcripts involved in the eCB system were not affected by THC exposure. Our results also suggest that THC likely induces neuroinflammation following in vitro application on mice microglia. Significant downregulation of TPRV1 occurred in the hippocampi of mice in which a model of temporal lobe epilepsy was induced, confirming previous observations. In addition, several transcriptomic dysregulations were observed in neurons of both epileptic mice and humans, which included transcripts involved in neuronal death. When scanning known interactions for transcripts involved in the eCB system (n = 12), we observed branching between the eCB system and neurophysiology, including proteins involved in the dopaminergic system. Our protein phylogenic analyzes revealed that CB1R forms a clade with CB2R, which is distinct from related paralogues such as sphingosine-1-phosphate, receptors, lysophosphatidic acid receptors and melanocortin receptors. As expected, several conserved residues were identified, which are crucial for CB1R receptor function. The anandamide-binding pocket seems to have appeared later in evolution. Similar results were observed for TRPV1, with conserved residues involved in receptor activation. Conclusion The current study found that GPR55 is upregulated in neurons following THC exposure, while TRPV1 is downregulated in temporal lobe epilepsy. Caution is advised when interpreting the present results, as we have employed secondary analyzes. Common ancestors for CB1R and TRPV1 diverged from jawless vertebrates during the late Ordovician, 450 million years ago. Conserved residues are identified, which mediate crucial receptor functions.
Collapse
Affiliation(s)
- Amy L. Cherry
- Worcester Biomedical Research Group, School of Science and the Environment, University of Worcester, Worcester, United Kingdom
| | - Michael J. Wheeler
- Sustainable Environments Research Group, School of Science and the Environment University of Worcester, Worcester, United Kingdom
| | - Karolina Mathisova
- School of Science and the Environment University of Worcester, Worcester, United Kingdom
| | - Mathieu Di Miceli
- Worcester Biomedical Research Group, School of Science and the Environment, University of Worcester, Worcester, United Kingdom
| |
Collapse
|
6
|
Weinstein AM. A brain imaging study of dopamine receptor D 2 availability in cannabis dependent users after recovery from cannabis-induced psychosis. Front Psychiatry 2023; 14:1230760. [PMID: 37965367 PMCID: PMC10641483 DOI: 10.3389/fpsyt.2023.1230760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 10/11/2023] [Indexed: 11/16/2023] Open
Abstract
There is increased risk of psychosis associated with cannabis use disorder and the interaction of THC with dopamine neurotransmission is complex. It is important to investigate the recovery from cannabis-induced psychosis and its effects on the brain's dopamine neurotransmission. This study was to evaluate dopamine receptor D2 availability in the striatum (caudate/putamen) in recently abstinent cannabis dependent users after recovery from psychosis in comparison with abstinent MDMA "ecstasy" abusers and healthy control participants. Participants were eight abstinent ex cannabis-dependent users who were treated for cannabis-induced psychosis with anti-psychotic medication and psychosocial support for 4 months in an inpatient treatment center for drug users. They were compared with nine abstinent ex MDMA "ecstasy" abusers who received medication and psycho-social treatment for 4 months at the same treatment facility and eight healthy control participants. All participants were scanned with bolus and constant infusion of [123I] Iodobenzamide (IBZM) in Single Photon Computed Tomography (SPECT). Cannabis abstinent users who were treated for cannabis-induced psychotic episodes showed no difference in dopamine D2 receptor availability in the caudate compared with abstinent MDMA "ecstasy" abusers and healthy control participants. This finding indicates minimal effects of cannabis-induced psychosis on dopamine reward mechanisms. There is evidence for reduced D2 receptor availability measures in the right putamen (uncorrected) which may indicate a residual effect of anti-psychotic medication.
Collapse
Affiliation(s)
- Aviv M. Weinstein
- Department of Psychology and Behavioral Science, Ariel University, Ariel, Israel
| |
Collapse
|
7
|
Chou S, Fish KN, Lewis DA, Sweet RA. Terminal type-specific cannabinoid CB1 receptor alterations in patients with schizophrenia: A pilot study. Neurobiol Dis 2023; 185:106262. [PMID: 37586566 PMCID: PMC10958392 DOI: 10.1016/j.nbd.2023.106262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 08/11/2023] [Accepted: 08/14/2023] [Indexed: 08/18/2023] Open
Abstract
BACKGROUND Individuals with schizophrenia are at elevated genetic risks for comorbid cannabis use, and often experience exacerbations of cognitive and psychotic symptoms when exposed to cannabis. These findings have led a number of investigators to examine cannabinoid CB1 receptor (CB1R) alterations in schizophrenia, though with conflicting results. We recently demonstrated the presence of CB1R in both excitatory and inhibitory boutons in the human prefrontal cortex, with differential levels of the receptor between bouton types. We hypothesized that the differential enrichment of CB1R between bouton types - a factor previously unaccounted for when examining CB1R changes in schizophrenia - may resolve prior discrepant reports and increase our insight into the effects of CB1R alterations on the pathophysiology of schizophrenia. METHODS Using co-labeling immunohistochemistry and fluorescent microscopy, we examined total CB1R levels and CB1R levels within excitatory (vGlut1-positive) and inhibitory (vGAT-positive) boutons of prefrontal cortex samples from ten pairs of individuals (nine male pairs and one female pair) diagnosed with schizophrenia and non-psychiatric comparisons. RESULTS Significantly higher total CB1R levels were found within samples from individuals with schizophrenia. Terminal type-specific analyses identified significantly higher CB1R levels within excitatory boutons in samples from individuals with schizophrenia relative to comparisons. In contrast, CB1R levels within the subset of inhibitory boutons that normally express high CB1R levels (presumptive cholecystokinin neuron boutons) were lower in samples from individuals with schizophrenia relative to comparison samples. CONCLUSION Given CB1R's role in suppressing neurotransmission upon activation, these results suggest an overall shift in excitatory and inhibitory balance regulation toward a net reduction of excitatory activity in schizophrenia.
Collapse
Affiliation(s)
- Shinnyi Chou
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, United States of America
| | - Kenneth N Fish
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, United States of America
| | - David A Lewis
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, United States of America
| | - Robert A Sweet
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, United States of America.
| |
Collapse
|
8
|
Jiang H, Guo Y, Muzik O. Automated radiosynthesis of [ 18F]FMPEP- d2 for cannabinoid receptor PET imaging. AMERICAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING 2023; 13:171-178. [PMID: 37736496 PMCID: PMC10509289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 07/20/2023] [Indexed: 09/23/2023]
Abstract
The cannabinoid subtype 1 receptor (CB1R) is highly expressed in the central nervous system and abnormalities in regional CB1R density are associated with neurodegenerative disorders. The PET tracer [18F]FMPEP-d2 is an inverse CB1R agonist which was shown to be suitable for non-invasive PET imaging. In this work, we reported the fully automated radiosynthesis of [18F]FMPEP-d2 on a Synthra RNplus research module. In a total synthesis time of 70 min, [18F]FMPEP-d2 was obtained in 2.2 ± 0.1 GBq (n = 3) with excellent radiochemical and chemical purity. Quality control test showed that [18F]FMPEP-d2 product meets all the release criteria for clinical patient use.
Collapse
Affiliation(s)
- Huailei Jiang
- Cyclotron and Radiochemistry Core, Karmanos Cancer Institute Detroit, MI, USA
- PET Center, Karmanos Cancer Institute Detroit, MI, USA
- Department of Oncology, Wayne State University Detroit, MI, USA
| | - Yan Guo
- Cyclotron and Radiochemistry Core, Karmanos Cancer Institute Detroit, MI, USA
- PET Center, Karmanos Cancer Institute Detroit, MI, USA
- Department of Oncology, Wayne State University Detroit, MI, USA
| | - Otto Muzik
- PET Center, Karmanos Cancer Institute Detroit, MI, USA
- Department of Pediatrics and Neurology, Wayne State University Detroit, MI, USA
| |
Collapse
|
9
|
Chou S, Fish KN, Lewis DA, Sweet RA. Terminal type-specific cannabinoid CB1 receptor alterations in patients with schizophrenia: a pilot study. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.11.536217. [PMID: 37090672 PMCID: PMC10120624 DOI: 10.1101/2023.04.11.536217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Background Individuals with schizophrenia are at elevated genetic risks for comorbid cannabis use, and often experience exacerbations of cognitive and psychotic symptoms when exposed to cannabis. These findings have led a number of investigators to examine cannabinoid CB1 receptor (CB1R) alterations in schizophrenia, though with conflicting results. We recently demonstrated the presence of CB1R in both excitatory and inhibitory boutons in the human prefrontal cortex, with differential levels of the receptor between bouton types. We hypothesized that the differential enrichment of CB1R between bouton types - a factor previously unaccounted for when examining CB1R changes in schizophrenia - may resolve prior discrepant reports and increase our insight into the effects of CB1R alterations on the pathophysiology of schizophrenia. Methods Using co-labeling immunohistochemistry and fluorescent microscopy, we examined total CB1R levels and CB1R levels within excitatory (vGlut1-positive) and inhibitory (vGAT-positive) boutons of prefrontal cortex samples from ten pairs of individuals diagnosed with schizophrenia and non-psychiatric comparisons. Results Significantly higher total CB1R levels were found within samples from individuals with schizophrenia. Terminal type-specific analyses identified significantly higher CB1R levels within excitatory boutons in samples from individuals with schizophrenia relative to comparisons. In contrast, CB1R levels within the subset of inhibitory boutons that normally express high CB1R levels (presumptive cholecystokinin neuron boutons) were lower in samples from individuals with schizophrenia relative to comparison samples. Conclusion Given CB1R's role in suppressing neurotransmission upon activation, these results suggest an overall shift in excitatory and inhibitory balance regulation toward a net reduction of excitatory activity in schizophrenia.
Collapse
Affiliation(s)
- Shinnyi Chou
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, 15261
| | - Kenneth N Fish
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, 15261
| | - David A Lewis
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, 15261
| | - Robert A Sweet
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, 15261
| |
Collapse
|
10
|
Pak K, Kantonen T, Pekkarinen L, Nuutila P, Nummenmaa L. Association of CNR1 gene and cannabinoid 1 receptor protein in the human brain. J Neurosci Res 2023; 101:327-337. [PMID: 36440544 PMCID: PMC10100072 DOI: 10.1002/jnr.25149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 11/29/2022]
Abstract
We aimed to integrate genomic mapping from brain mRNA atlas with the protein expression from positron emission tomography (PET) scans of type 1 cannabinoid (CB1) receptor and to compare the predictive power of CB1 receptor with those of other neuroreceptor/transporters using a meta-analysis. Volume of distribution (VT ) from F18-FMPEP-d2 PET scans, CNR1 gene (Cannabinoid receptor 1) expression, and H3-CP55940 binding were calculated and correlation analysis was performed. Between VT of F18-FMPEP-d2 PET scans and CNR1 mRNA expression, moderate strength of correlation was observed (rho = .5067, p = .0337). Strong positive correlation was also found between CNR1 mRNA expression and H3-CP55940 binding (r = .6336, p = .0364), validating the finding between F18-FMPEP-d2 PET scans and CNR1 mRNA. The correlation between VT of F18-FMPEP-d2 PET scans and H3-CP55940 binding was marginally significant (r = .5025, p = .0563). From the meta-analysis, the correlation coefficient between mRNA expression and protein expressions ranged from -.10 to .99, with a pooled effect of .76. In conclusion, we observed the moderate to strong associations between gene and protein expression for CB1 receptor in the human brain, which was validated by autoradiography. We combined the autoradiographic finding with PET of CB1 receptor, producing the density atlas map of CB1 receptor. From the meta-analysis, the moderate to strong correlation was observed between mRNA expression and protein expressions across multiple genes. Further study is needed to investigate the relationship between multiple genes and in vivo proteins to improve and accelerate drug development.
Collapse
Affiliation(s)
- Kyoungjune Pak
- Turku PET Centre, University of Turku, Turku, Finland.,Turku University Hospital, Turku, Finland.,Department of Nuclear Medicine and Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea
| | - Tatu Kantonen
- Turku PET Centre, University of Turku, Turku, Finland.,Turku University Hospital, Turku, Finland.,Clinical Neurosciences, University of Turku, Turku, Finland
| | - Laura Pekkarinen
- Turku PET Centre, University of Turku, Turku, Finland.,Turku University Hospital, Turku, Finland
| | - Pirjo Nuutila
- Turku PET Centre, University of Turku, Turku, Finland.,Turku University Hospital, Turku, Finland.,Department of Endocrinology, Turku University Hospital, Turku, Finland
| | - Lauri Nummenmaa
- Turku PET Centre, University of Turku, Turku, Finland.,Turku University Hospital, Turku, Finland.,Department of Psychology, University of Turku, Turku, Finland
| |
Collapse
|
11
|
Reece AS, Hulse GK. Clinical Epigenomic Explanation of the Epidemiology of Cannabinoid Genotoxicity Manifesting as Transgenerational Teratogenesis, Cancerogenesis and Aging Acceleration. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:3360. [PMID: 36834053 PMCID: PMC9967951 DOI: 10.3390/ijerph20043360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/07/2023] [Accepted: 02/13/2023] [Indexed: 05/16/2023]
Abstract
As global interest in the therapeutic potential of cannabis and its' derivatives for the management of selected diseases increases, it is increasingly imperative that the toxic profile of cannabinoids be thoroughly understood in order to correctly assess the balance between the therapeutic risks and benefits. Modern studies across a number of jurisdictions, including Canada, Australia, the US and Europe have confirmed that some of the most worrying and severe historical reports of both congenital anomalies and cancer induction following cannabis exposure actually underestimate the multisystem thousand megabase-scale transgenerational genetic damage. These findings from teratogenic and carcinogenic literature are supported by recent data showing the accelerated patterns of chronic disease and the advanced DNA methylation epigenomic clock age in cannabis exposed patients. Together, the increased multisystem carcinogenesis, teratogenesis and accelerated aging point strongly to cannabinoid-related genotoxicity being much more clinically significant than it is widely supposed and, thus, of very considerable public health and multigenerational impact. Recently reported longitudinal epigenome-wide association studies elegantly explain many of these observed effects with considerable methodological sophistication, including multiple pathways for the inhibition of the normal chromosomal segregation and DNA repair, the inhibition of the basic epigenetic machinery for DNA methylation and the demethylation and telomerase acceleration of the epigenomic promoter hypermethylation characterizing aging. For cancer, 810 hits were also noted. The types of malignancy which were observed have all been documented epidemiologically. Detailed epigenomic explications of the brain, heart, face, uronephrological, gastrointestinal and limb development were provided, which amply explained the observed teratological patterns, including the inhibition of the key morphogenic gradients. Hence, these major epigenomic insights constituted a powerful new series of arguments which advanced both our understanding of the downstream sequalae of multisystem multigenerational cannabinoid genotoxicity and also, since mechanisms are key to the causal argument, inveighed strongly in favor of the causal nature of the relationship. In this introductory conceptual overview, we present the various aspects of this novel synthetic paradigmatic framework. Such concepts suggest and, indeed, indicate numerous fields for further investigation and basic science research to advance the exploration of many important issues in biology, clinical medicine and population health. Given this, it is imperative we correctly appraise the risk-benefit ratio for each potential cannabis application, considering the potency, severity of disease, stage of human development and duration of use.
Collapse
Affiliation(s)
- Albert Stuart Reece
- Division of Psychiatry, University of Western Australia, Crawley, WA 6009, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia
| | - Gary Kenneth Hulse
- Division of Psychiatry, University of Western Australia, Crawley, WA 6009, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia
| |
Collapse
|
12
|
Royse SK, Lopresti BJ, Mathis CA, Tollefson S, Narendran R. Beyond monoamines: II. Novel applications for PET imaging in psychiatric disorders. J Neurochem 2023; 164:401-443. [PMID: 35716057 DOI: 10.1111/jnc.15657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 11/27/2022]
Abstract
Early applications of positron emission tomography (PET) in psychiatry sought to identify derangements of cerebral blood flow and metabolism. The need for more specific neurochemical imaging probes was soon evident, and these probes initially targeted the sites of action of neuroleptic (dopamine D2 receptors) and psychoactive (serotonin receptors) drugs. For nearly 30 years, the centrality of monoamine dysfunction in psychiatric disorders drove the development of an armamentarium of monoaminergic PET radiopharmaceuticals and imaging methodologies. However, continued investments in monoamine-enhancing drug development realized only modest gains in efficacy and tolerability. As patent protection for many widely prescribed and profitable psychiatric drugs lapsed, drug development pipelines shifted away from monoamines in search of novel targets with the promises of improved efficacy, or abandoned altogether. Over this period, PET radiopharmaceutical development activities closely parallelled drug development priorities, resulting in the development of new PET imaging agents for non-monoamine targets. In part two of this review, we survey clinical research studies using the novel targets and radiotracers described in part one across major psychiatric application areas such as substance use disorders, anxiety disorders, eating disorders, personality disorders, mood disorders, and schizophrenia. Important limitations of the studies described are discussed, as well as key methodologic issues, challenges to the field, and the status of clinical trials seeking to exploit these targets for novel therapeutics.
Collapse
Affiliation(s)
- Sarah K Royse
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Brian J Lopresti
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Chester A Mathis
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Savannah Tollefson
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Rajesh Narendran
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
13
|
Bassir Nia A, Gibson CL, Spriggs SA, Jankowski SE, DeFrancisco D, Swift A, Perkel C, Galynker I, Honrao C, Makriyannis A, Hurd YL. Cannabis use is associated with low plasma endocannabinoid Anandamide in individuals with psychosis. J Psychopharmacol 2023; 37:484-489. [PMID: 36633290 DOI: 10.1177/02698811221148604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND Cannabis use suppresses the endocannabinoid system in healthy individuals. However, the association between cannabis use with the endocannabinoid system is understudied in individuals with psychosis despite the high rate of cannabis use in these individuals. METHODS We enrolled 83 individuals who were admitted to an inpatient psychiatric unit with psychotic presentations, and measured their plasma levels of main endocannabinoids, Anandamide (AEA) and 2-Acylglycerol (2-AG), and endocannabinoid related compounds, Palmitoylethanolamine, and N-oleoylethanolamine. Cannabis use was assessed with urine toxicology and frequency of cannabis use was assessed using self-reported questionnaires. The Positive and Negative Syndrome Scale was used to assess the severity of psychotic symptoms. RESULTS Overall, we had 38 individuals in cannabis positive group (CN+) and 45 individuals in cannabis negative group (CN-). Compared to CN-, CN+ group had lower plasma levels of AEA, which remained significant after controlling for age, gender, race/ethnicity, and use of other drugs. CONCLUSION Cannabis use is associated with low plasma AEA levels in individuals with psychosis, which is in the same line with reported suppressive effects of cannabis on the endocannabinoid system in healthy individuals. Further studies are needed to investigate the clinical significance of this finding.
Collapse
Affiliation(s)
- Anahita Bassir Nia
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Claire L Gibson
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Sharron A Spriggs
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Samantha E Jankowski
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Daniel DeFrancisco
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Amy Swift
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Charles Perkel
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Igor Galynker
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | | | | | - Yasmin L Hurd
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York City, NY, USA.,Addiction Institute at Mount Sinai, New York City, NY, USA
| |
Collapse
|
14
|
CANNABINOIDS AND NEUROINFLAMMATION: THERAPEUTIC IMPLICATIONS. JOURNAL OF AFFECTIVE DISORDERS REPORTS 2023. [DOI: 10.1016/j.jadr.2023.100463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
15
|
D'Souza DC, DiForti M, Ganesh S, George TP, Hall W, Hjorthøj C, Howes O, Keshavan M, Murray RM, Nguyen TB, Pearlson GD, Ranganathan M, Selloni A, Solowij N, Spinazzola E. Consensus paper of the WFSBP task force on cannabis, cannabinoids and psychosis. World J Biol Psychiatry 2022; 23:719-742. [PMID: 35315315 DOI: 10.1080/15622975.2022.2038797] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
OBJECTIVES The liberalisation of cannabis laws, the increasing availability and potency of cannabis has renewed concern about the risk of psychosis with cannabis. METHODS The objective of the WFSBP task force was to review the literature about this relationship. RESULTS Converging lines of evidence suggest that exposure to cannabis increases the risk for psychoses ranging from transient psychotic states to chronic recurrent psychosis. The greater the dose, and the earlier the age of exposure, the greater the risk. For some psychosis outcomes, the evidence supports some of the criteria of causality. However, alternate explanations including reverse causality and confounders cannot be conclusively excluded. Furthermore, cannabis is neither necessary nor sufficient to cause psychosis. More likely it is one of the multiple causal components. In those with established psychosis, cannabis has a negative impact on the course and expression of the illness. Emerging evidence also suggests alterations in the endocannabinoid system in psychotic disorders. CONCLUSIONS Given that exposure to cannabis and cannabinoids is modifiable, delaying or eliminating exposure to cannabis or cannabinoids, could potentially impact the rates of psychosis related to cannabis, especially in those who are at high risk for developing the disorder.
Collapse
Affiliation(s)
- Deepak Cyril D'Souza
- Psychiatry Service, VA Connecticut Healthcare System, West Haven, CT, USA.,Abraham Ribicoff Research Facilities, Connecticut Mental Health Center, New Haven, CT, USA.,Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Marta DiForti
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, King's College London, London, UK.,South London and Maudsley NHS Mental Health Foundation Trust, London, UK
| | - Suhas Ganesh
- Psychiatry Service, VA Connecticut Healthcare System, West Haven, CT, USA.,Abraham Ribicoff Research Facilities, Connecticut Mental Health Center, New Haven, CT, USA.,Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Tony P George
- Addictions Division and Centre for Complex Interventions, Centre for Addiction and Mental Health (CAMH), Toronto, Canada.,Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Wayne Hall
- The National Centre for Youth Substance Use Research, University of Queensland, Brisbane, Australia
| | - Carsten Hjorthøj
- Copenhagen Research Center for Mental Health - CORE, Mental Health Center Copenhagen, Copenhagen University, Copenhagen, Denmark.,Department of Public Health, Section of Epidemiology, University of Copenhagen, Copenhagen, Denmark
| | - Oliver Howes
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.,Institute for Clinical Sciences, Imperial College London, London, UK
| | - Matcheri Keshavan
- Beth Israel Deaconess Medical Center, Massachusetts Mental Health Center, Harvard Medical School, Boston, MA, USA
| | - Robin M Murray
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Timothy B Nguyen
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, King's College London, London, UK.,Institute for Clinical Sciences, Imperial College London, London, UK
| | - Godfrey D Pearlson
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA.,Olin Neuropsychiatry Ctr. Institute of Living, Hartford, CT, USA
| | - Mohini Ranganathan
- Psychiatry Service, VA Connecticut Healthcare System, West Haven, CT, USA.,Abraham Ribicoff Research Facilities, Connecticut Mental Health Center, New Haven, CT, USA.,Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Alex Selloni
- Abraham Ribicoff Research Facilities, Connecticut Mental Health Center, New Haven, CT, USA.,Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Nadia Solowij
- School of Psychology and Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia.,Australian Centre for Cannabinoid Clinical and Research Excellence (ACRE), New Lambton Heights, NSW, Australia
| | - Edoardo Spinazzola
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| |
Collapse
|
16
|
Radhakrishnan R, Worhunsky PD, Zheng MQ, Najafzadeh S, Gallezot JD, Planeta B, Henry S, Nabulsi N, Ranganathan M, Skosnik PD, Pittman B, Cyril D'Souza D, Carson RE, Huang Y, Potenza MN, Matuskey D. Age, gender and body-mass-index relationships with in vivo CB 1 receptor availability in healthy humans measured with [ 11C]OMAR PET. Neuroimage 2022; 264:119674. [PMID: 36243269 DOI: 10.1016/j.neuroimage.2022.119674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 09/07/2022] [Accepted: 10/05/2022] [Indexed: 11/06/2022] Open
Abstract
Brain cannabinoid 1 receptors (CB1Rs) contribute importantly to the regulation of autonomic tone, appetite, mood and cognition. Inconsistent results have been reported from positron emission tomography (PET) studies using different radioligands to examine relationships between age, gender and body mass index (BMI) and CB1R availability in healthy individuals. In this study, we examined these variables in 58 healthy individuals (age range: 18-55 years; 44 male; BMI=27.01±5.56), the largest cohort of subjects studied to date using the CB1R PET ligand [11C]OMAR. There was a significant decline in CB1R availability (VT) with age in the pallidum, cerebellum and posterior cingulate. Adjusting for BMI, age-related decline in VT remained significant in the posterior cingulate among males, and in the cerebellum among women. CB1R availability was higher in women compared to men in the thalamus, pallidum and posterior cingulate. Adjusting for age, CB1R availability negatively correlated with BMI in women but not men. These findings differ from those reported using [11C]OMAR and other radioligands such as [18F]FMPEP-d2 and [18F]MK-9470. Although reasons for these seemingly divergent findings are unclear, the choice of PET radioligand and range of BMI in the current dataset may contribute to the observed differences. This study highlights the need for cross-validation studies using both [11C]OMAR and [18F]FMPEP-d2 within the same cohort of subjects.
Collapse
Affiliation(s)
- Rajiv Radhakrishnan
- Department of Psychiatry, Yale University School of Medicinev, New Haven, CT 06511, United States.
| | - Patrick D Worhunsky
- Department of Psychiatry, Yale University School of Medicinev, New Haven, CT 06511, United States
| | - Ming-Qiang Zheng
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, United States
| | - Soheila Najafzadeh
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, United States
| | - Jean-Dominique Gallezot
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, United States
| | - Beata Planeta
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, United States
| | - Shannan Henry
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, United States
| | - Nabeel Nabulsi
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, United States
| | - Mohini Ranganathan
- Department of Psychiatry, Yale University School of Medicinev, New Haven, CT 06511, United States
| | - Patrick D Skosnik
- Department of Psychiatry, Yale University School of Medicinev, New Haven, CT 06511, United States
| | - Brian Pittman
- Department of Psychiatry, Yale University School of Medicinev, New Haven, CT 06511, United States
| | - Deepak Cyril D'Souza
- Department of Psychiatry, Yale University School of Medicinev, New Haven, CT 06511, United States
| | - Richard E Carson
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, United States
| | - Yiyun Huang
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, United States
| | - Marc N Potenza
- Department of Psychiatry, Yale University School of Medicinev, New Haven, CT 06511, United States; Child Study Center, Yale University School of Medicine, United States; Connecticut Mental Health Center, United States; Department of Neuroscience, Yale University, United States
| | - David Matuskey
- Department of Psychiatry, Yale University School of Medicinev, New Haven, CT 06511, United States; Department of Radiology and Biomedical Imaging, Yale University School of Medicine, United States; Department of Neurology, Yale University School of Medicine, United States
| |
Collapse
|
17
|
Beck K, Arumuham A, Brugger S, McCutcheon RA, Veronese M, Santangelo B, McGinnity CJ, Dunn J, Kaar S, Singh N, Pillinger T, Borgan F, Sementa T, Neji R, Jauhar S, Aigbirhio F, Boros I, Turkheimer F, Hammers A, Lythgoe D, Stone J, Howes OD. The association between N-methyl-d-aspartate receptor availability and glutamate levels: A multi-modal PET-MR brain imaging study in first-episode psychosis and healthy controls. J Psychopharmacol 2022; 36:1051-1060. [PMID: 36120998 DOI: 10.1177/02698811221099643] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
BACKGROUND Evidence from post-mortem studies and in vivo imaging studies suggests there may be reduced N-methyl-d-aspartate receptor (NMDAR) levels in the hippocampus in patients with schizophrenia. Other studies have reported increased glutamate in striatum in schizophrenia patients. It has been hypothesised that NMDAR hypofunction leads to the disinhibition of glutamatergic signalling; however, this has not been tested in vivo. METHODS In this study, we investigated the relationship between hippocampal NMDAR and striatal glutamate using simultaneous positron emission tomography-magnetic resonance (PET-MR) imaging. We recruited 40 volunteers to this cross-sectional study; 21 patients with schizophrenia, all in their first episode of illness, and 19 healthy controls. We measured hippocampal NMDAR availability using the PET ligand [18F]GE179. This was indexed relative to whole brain as the distribution volume ratio (DVR). Striatal glutamatergic indices (glutamate and Glx) were acquired simultaneously, using combined PET-MR proton magnetic resonance spectroscopy (1H-MRS). RESULTS A total of 33 individuals (15 healthy controls, 18 patients) were included in the analyses (mean (SD) age of controls, 27.31 (4.68) years; mean (SD) age of patients, 24.75 (4.33), 27 male and 6 female). We found an inverse relationship between hippocampal DVR and striatal glutamate levels in people with first-episode psychosis (rho = -0.74, p < 0.001) but not in healthy controls (rho = -0.22, p = 0.44). CONCLUSION This study show that lower relative NMDAR availability in the hippocampus may drive increased striatal glutamate levels in patients with schizophrenia. Further work is required to determine whether these findings may yield new targets for drug development in schizophrenia.
Collapse
Affiliation(s)
- Katherine Beck
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, London, UK
- South London and Maudsley NHS Foundation Trust, London, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK
| | - Atheeshaan Arumuham
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, London, UK
- South London and Maudsley NHS Foundation Trust, London, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK
| | - Stefan Brugger
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, UK
| | - Robert A McCutcheon
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, London, UK
- South London and Maudsley NHS Foundation Trust, London, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK
| | - Mattia Veronese
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Barbara Santangelo
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Colm J McGinnity
- King's College London & Guy's and St Thomas' PET Centre, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| | - Joel Dunn
- King's College London & Guy's and St Thomas' PET Centre, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| | - Stephen Kaar
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, London, UK
- South London and Maudsley NHS Foundation Trust, London, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK
| | - Nisha Singh
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Toby Pillinger
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, London, UK
- South London and Maudsley NHS Foundation Trust, London, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK
| | - Faith Borgan
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Teresa Sementa
- King's College London & Guy's and St Thomas' PET Centre, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| | - Radhouene Neji
- King's College London & Guy's and St Thomas' PET Centre, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
- MR Research Collaborations, Siemens Healthcare Limited, Frimley, UK
| | - Sameer Jauhar
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Franklin Aigbirhio
- Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Istvan Boros
- Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Federico Turkheimer
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Alexander Hammers
- King's College London & Guy's and St Thomas' PET Centre, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| | - David Lythgoe
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - James Stone
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Brighton and Sussex Medical School, University of Sussex, Brighton, UK
- Department of Psychiatry, Eastbourne District General Hospital, Sussex Partnership NHS Foundation Trust, Eastbourne, UK
| | - Oliver D Howes
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, London, UK
- South London and Maudsley NHS Foundation Trust, London, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK
| |
Collapse
|
18
|
Ajalin RM, Al-Abdulrasul H, Tuisku JM, Hirvonen JES, Vahlberg T, Lahdenpohja S, Rinne JO, Brück AE. Cannabinoid Receptor Type 1 in Parkinson's Disease: A Positron Emission Tomography Study with [ 18 F]FMPEP-d 2. Mov Disord 2022; 37:1673-1682. [PMID: 35674270 PMCID: PMC9544132 DOI: 10.1002/mds.29117] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/21/2022] [Accepted: 05/13/2022] [Indexed: 11/10/2022] Open
Abstract
Background The endocannabinoid system is a widespread neuromodulatory system affecting several biological functions and processes. High densities of type 1 cannabinoid (CB1) receptors and endocannabinoids are found in basal ganglia, which makes them an interesting target group for drug development in basal ganglia disorders such as Parkinson's disease (PD). Objective The aim of this study was to investigate CB1 receptors in PD with [18F]FMPEP‐d2 positron emission tomography (PET) and the effect of dopaminergic medication on the [18F]FMPEP‐d2 binding. Methods The data consisted of 16 subjects with PD and 10 healthy control subjects (HCs). All participants underwent a [18F]FMPEP‐d2 high‐resolution research tomograph PET examination for the quantitative assessment of cerebral binding to CB1 receptors. To investigate the effect of dopaminergic medication on the [18F]FMPEP‐d2 binding, 15 subjects with PD underwent [18F]FMPEP‐d2 PET twice, both on and off antiparkinsonian medication. Results [18F]FMPEP‐d2 distribution volume was significantly lower in the off scan compared with the on scan in basal ganglia, thalamus, hippocampus, and amygdala (P < 0.05). Distribution volume was lower in subjects with PD off than in HCs globally (P < 0.05), but not higher than in HCs in any brain region. Conclusions Subjects with PD have lower CB1 receptor availability compared with HCs. PD medication increases CB1 receptor toward normal levels. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society
Collapse
Affiliation(s)
- Riikka M Ajalin
- Turku PET Centre, Turku University and Turku University Hospital, Turku, Finland.,Neurocenter, Turku University Hospital and Clinical Neurosciences, University of Turku, Turku, Finland
| | - Haidar Al-Abdulrasul
- Turku PET Centre, Turku University and Turku University Hospital, Turku, Finland.,Department of Neurology, Helsinki University Hospital and Department of Clinical Neurosciences (Neurology), University of Helsinki, Helsinki, Finland
| | - Jouni M Tuisku
- Turku PET Centre, Turku University and Turku University Hospital, Turku, Finland
| | - Jussi E S Hirvonen
- Turku PET Centre, Turku University and Turku University Hospital, Turku, Finland.,Department of Radiology, University of Turku and Turku University Hospital, Turku, Finland
| | - Tero Vahlberg
- Department of Biostatistics, University of Turku, Turku, Finland
| | - Salla Lahdenpohja
- Turku PET Centre, Turku University and Turku University Hospital, Turku, Finland
| | - Juha O Rinne
- Turku PET Centre, Turku University and Turku University Hospital, Turku, Finland.,Neurocenter, Turku University Hospital and Clinical Neurosciences, University of Turku, Turku, Finland
| | - Anna E Brück
- Turku PET Centre, Turku University and Turku University Hospital, Turku, Finland.,Neurocenter, Turku University Hospital and Clinical Neurosciences, University of Turku, Turku, Finland
| |
Collapse
|
19
|
Ceccarini J, Koole M, Van Laere K. Cannabinoid receptor availability modulates the magnitude of dopamine release in vivo in the human reward system: A preliminary multitracer positron emission tomography study. Addict Biol 2022; 27:e13167. [PMID: 35470551 DOI: 10.1111/adb.13167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 02/21/2022] [Accepted: 03/08/2022] [Indexed: 12/01/2022]
Abstract
The established role of dopamine (DA) in the mediation of reward and positive reinforcement, reward processing is strongly influenced by the type 1 cannabinoid receptors (CB1 Rs). Although considerable preclinical evidence has demonstrated several functional CB1 R-DA interactions, the relation between human CB1 R availability, DA release capacity and drug-reinforcing effects has been never investigated so far. Here, we perform a multitracer [18 F]MK-9470 and [18 F]fallypride positron emission tomography (PET) study in 10 healthy male subjects using a placebo-controlled and single-blinded amphetamine (AMPH) (30 mg) administration paradigm to (1) investigate possible functional interactions between CB1 R expression levels and DA release capacity in a normo-DAergic state, relating in vivo AMPH-induced DA release to CB1 R availability, and (2) to test the hypothesis that the influence of striatal DAergic signalling on the positive reinforcing effects of AMPH may be regulated by prefrontal CB1 R levels. Compared with placebo, AMPH significantly reduced [18 F]fallypride binding potential (hence increase DA release; ΔBPND ranging from -6.1% to -9.6%) in both striatal (p < 0.005, corrected for multiple comparisons) and limbic extrastriatal regions (p ≤ 0.04, uncorrected). Subjects who reported a greater dopaminergic response in the putamen also showed higher CB1 R availability in the medial and dorsolateral prefrontal cortex (r = 0.72; p = 0.02), which are regions involved in salience attribution, motivation and decision making. On the other hand, the magnitude of DA release was greater in those subjects with lower CB1 R availability in the anterior cingulate cortex (ACC) (r = -0.66; p = 0.03). Also, the correlation between the DA release in the nucleus accumbens with the subjective AMPH effect liking was mediated through the CB1 R availability in the ACC (c' = -0.76; p = 0.01). Our small preliminary study reports for the first time that the human prefrontal CB1 R availability is a determinant of DA release within both the ventral and dorsal reward corticostriatal circuit, contributing to a number of studies supporting the existence of an interaction between CB1 R and DA receptors at the molecular and behavioural level. These preliminary findings warrant further investigation in pathological conditions characterized by hypo/hyper excitability to DA release such as addiction and schizophrenia.
Collapse
Affiliation(s)
- Jenny Ceccarini
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology KU Leuven Leuven Belgium
| | - Michel Koole
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology KU Leuven Leuven Belgium
| | - Koen Van Laere
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology KU Leuven Leuven Belgium
- Nuclear Medicine University Hospitals Leuven Leuven Belgium
| |
Collapse
|
20
|
Gunasekera B, Diederen K, Bhattacharyya S. Cannabinoids, reward processing, and psychosis. Psychopharmacology (Berl) 2022; 239:1157-1177. [PMID: 33644820 PMCID: PMC9110536 DOI: 10.1007/s00213-021-05801-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 02/10/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND Evidence suggests that an overlap exists between the neurobiology of psychotic disorders and the effects of cannabinoids on neurocognitive and neurochemical substrates involved in reward processing. AIMS We investigate whether the psychotomimetic effects of delta-9-tetrahydrocannabinol (THC) and the antipsychotic potential of cannabidiol (CBD) are underpinned by their effects on the reward system and dopamine. METHODS This narrative review focuses on the overlap between altered dopamine signalling and reward processing induced by cannabinoids, pre-clinically and in humans. A systematic search was conducted of acute cannabinoid drug-challenge studies using neuroimaging in healthy subjects and those with psychosis RESULTS: There is evidence of increased striatal presynaptic dopamine synthesis and release in psychosis, as well as abnormal engagement of the striatum during reward processing. Although, acute THC challenges have elicited a modest effect on striatal dopamine, cannabis users generally indicate impaired presynaptic dopaminergic function. Functional MRI studies have identified that a single dose of THC may modulate regions involved in reward and salience processing such as the striatum, midbrain, insular, and anterior cingulate, with some effects correlating with the severity of THC-induced psychotic symptoms. CBD may modulate brain regions involved in reward/salience processing in an opposite direction to that of THC. CONCLUSIONS There is evidence to suggest modulation of reward processing and its neural substrates by THC and CBD. Whether such effects underlie the psychotomimetic/antipsychotic effects of these cannabinoids remains unclear. Future research should address these unanswered questions to understand the relationship between endocannabinoid dysfunction, reward processing abnormalities, and psychosis.
Collapse
Affiliation(s)
- Brandon Gunasekera
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 16 De Crespigny Park, Box P067, London, SE5 8AF, UK
| | - Kelly Diederen
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 16 De Crespigny Park, Box P067, London, SE5 8AF, UK
| | - Sagnik Bhattacharyya
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 16 De Crespigny Park, Box P067, London, SE5 8AF, UK.
| |
Collapse
|
21
|
Molecular Alterations of the Endocannabinoid System in Psychiatric Disorders. Int J Mol Sci 2022; 23:ijms23094764. [PMID: 35563156 PMCID: PMC9104141 DOI: 10.3390/ijms23094764] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/22/2022] [Accepted: 04/23/2022] [Indexed: 02/07/2023] Open
Abstract
The therapeutic benefits of the current medications for patients with psychiatric disorders contrast with a great variety of adverse effects. The endocannabinoid system (ECS) components have gained high interest as potential new targets for treating psychiatry diseases because of their neuromodulator role, which is essential to understanding the regulation of many brain functions. This article reviewed the molecular alterations in ECS occurring in different psychiatric conditions. The methods used to identify alterations in the ECS were also described. We used a translational approach. The animal models reproducing some behavioral and/or neurochemical aspects of psychiatric disorders and the molecular alterations in clinical studies in post-mortem brain tissue or peripheral tissues were analyzed. This article reviewed the most relevant ECS changes in prevalent psychiatric diseases such as mood disorders, schizophrenia, autism, attentional deficit, eating disorders (ED), and addiction. The review concludes that clinical research studies are urgently needed for two different purposes: (1) To identify alterations of the ECS components potentially useful as new biomarkers relating to a specific disease or condition, and (2) to design new therapeutic targets based on the specific alterations found to improve the pharmacological treatment in psychiatry.
Collapse
|
22
|
Inflammation and Nitro-oxidative Stress as Drivers of Endocannabinoid System Aberrations in Mood Disorders and Schizophrenia. Mol Neurobiol 2022; 59:3485-3503. [PMID: 35347586 DOI: 10.1007/s12035-022-02800-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 03/13/2022] [Indexed: 01/02/2023]
Abstract
The endocannabinoid system (ECS) is composed of the endocannabinoid ligands anandamide (AEA) and 2-arachidonoylgycerol (2-AG), their target cannabinoid receptors (CB1 and CB2) and the enzymes involved in their synthesis and metabolism (N-acyltransferase and fatty acid amide hydrolase (FAAH) in the case of AEA and diacylglycerol lipase (DAGL) and monoacylglycerol lipase (MAGL) in the case of 2-AG). The origins of ECS dysfunction in major neuropsychiatric disorders remain to be determined, and this paper explores the possibility that they may be associated with chronically increased nitro-oxidative stress and activated immune-inflammatory pathways, and it examines the mechanisms which might be involved. Inflammation and nitro-oxidative stress are associated with both increased CB1 expression, via increased activity of the NADPH oxidases NOX4 and NOX1, and increased CNR1 expression and DNA methylation; and CB2 upregulation via increased pro-inflammatory cytokine levels, binding of the transcription factor Nrf2 to an antioxidant response element in the CNR2 promoter region and the action of miR-139. CB1 and CB2 have antagonistic effects on redox signalling, which may result from a miRNA-enabled negative feedback loop. The effects of inflammation and oxidative stress are detailed in respect of AEA and 2-AG levels, via effects on calcium homeostasis and phospholipase A2 activity; on FAAH activity, via nitrosylation/nitration of functional cysteine and/or tyrosine residues; and on 2-AG activity via effects on MGLL expression and MAGL. Finally, based on these detailed molecular neurobiological mechanisms, it is suggested that cannabidiol and dimethyl fumarate may have therapeutic potential for major depressive disorder, bipolar disorder and schizophrenia.
Collapse
|
23
|
Ho W, Kolla NJ. The endocannabinoid system in borderline personality disorder and antisocial personality disorder: A scoping review. BEHAVIORAL SCIENCES & THE LAW 2022; 40:331-350. [PMID: 35575169 DOI: 10.1002/bsl.2576] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 02/06/2022] [Accepted: 03/31/2022] [Indexed: 06/15/2023]
Abstract
Individuals with borderline personality disorder (BPD) or antisocial personality disorder (ASPD) are overrepresented in forensic settings. Yet, despite the burden these disorders place on healthcare and criminal justice systems, there remains a lack of evidence-based pharmacological treatments. Epidemiological data have shown that comorbid cannabis use disorders are common in BPD and ASPD. ∆9 -Tetrahydrocannabinol, the primary psychoactive constituent of cannabis, is an exogenous cannabinoid that stimulates the endocannabinoid system (ECS). Hence, an investigation of the ECS in these conditions is warranted. This scoping review screened 105 records and summarized the extant research on the ECS in ASPD (n = 69) and BPD (n = 61) participants. Preliminary results suggest that alterations of the ECS may be present in these disorders. Although research examining the ECS in personality disorders is still in its infancy, more research is warranted given initial positive findings.
Collapse
Affiliation(s)
- Wilson Ho
- Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Nathan J Kolla
- Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Waypoint Centre for Mental Health Care, Penetanguishene, ON, Canada
- Waypoint/University of Toronto Research Chair in Forensic Mental Health Science, Penetanguishene, ON, Canada
| |
Collapse
|
24
|
Ma L, Wu S, Zhang K, Tian M, Zhang H. Progress on the application of positron emission tomography imaging of cannabinoid type 1 receptor in neuropsychiatric diseases. Zhejiang Da Xue Xue Bao Yi Xue Ban 2021; 50:666-673. [PMID: 34986538 PMCID: PMC8732249 DOI: 10.3724/zdxbyxb-2021-0063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Cannabinoid type 1 receptor (CB1R), as the major member of the endocannabinoid system, is among the most abundant receptors expressed in the central nervous system. CB1R is mainly located on the axon terminals of presynaptic neurons and participate in the modulation of neuronal excitability and synaptic plasticity, playing an important role in the pathogenesis of various neuropsychiatric diseases. In recent years, the consistent development of CB1R radioligands and the maturity of molecular imaging techniques, particularly positron emission tomography (PET) may help to visualize the expression and distribution of CB1R in central nervous system . At present, CB1R PET imaging can effectively evaluate the changes of CB1R levels in neuropsychiatric diseases such as Huntington's disease and schizophrenia, and its correlation with the disease severity, therefore providing new insights for the diagnosis and treatment of neuropsychiatric diseases. This article reviews the application of CB1R PET imaging in Alzheimer's disease, Parkinson's disease, Huntington's disease, schizophrenia, post-traumatic stress disorder, cannabis use disorder and depression.
Collapse
Affiliation(s)
- Lijuan Ma
- 4. College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou 310027, China
| | - Shuang Wu
- 4. College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou 310027, China
| | - Kai Zhang
- 4. College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou 310027, China
| | - Mei Tian
- 4. College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou 310027, China
| | - Hong Zhang
- 4. College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
25
|
Beck K, Arumuham A, Veronese M, Santangelo B, McGinnity CJ, Dunn J, McCutcheon RA, Kaar SJ, Singh N, Pillinger T, Borgan F, Stone J, Jauhar S, Sementa T, Turkheimer F, Hammers A, Howes OD. N-methyl-D-aspartate receptor availability in first-episode psychosis: a PET-MR brain imaging study. Transl Psychiatry 2021; 11:425. [PMID: 34385418 PMCID: PMC8361127 DOI: 10.1038/s41398-021-01540-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/03/2021] [Accepted: 06/28/2021] [Indexed: 02/07/2023] Open
Abstract
N-methyl-D-aspartate receptor (NMDAR) hypofunction is hypothesised to underlie psychosis but this has not been tested early in illness. To address this, we studied 40 volunteers (21 patients with first-episode psychosis and 19 matched healthy controls) using PET imaging with an NMDAR selective ligand, [18F]GE-179, that binds to the ketamine binding site to index its distribution volume ratio (DVR) and volume of distribution (VT). Hippocampal DVR, but not VT, was significantly lower in patients relative to controls (p = 0.02, Cohen's d = 0.81; p = 0.15, Cohen's d = 0.49), and negatively associated with total (rho = -0.47, p = 0.04), depressive (rho = -0.67, p = 0.002), and general symptom severity (rho = -0.74, p < 0.001). Exploratory analyses found no significant differences in other brain regions (anterior cingulate cortex, thalamus, striatum and temporal cortex). These findings are consistent with the NMDAR hypofunction hypothesis and identify the hippocampus as a key locus for relative NMDAR hypofunction, although further studies should test specificity and causality.
Collapse
Affiliation(s)
- Katherine Beck
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, Kings College London, De Crespigny Park, London, SE5 8AF, UK.
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Hammersmith Hospital, London, W12 0NN, UK.
- South London and Maudsley NHS Foundation Trust, London, UK.
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, W12 0NN, UK.
| | - Atheeshaan Arumuham
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, Kings College London, De Crespigny Park, London, SE5 8AF, UK
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Hammersmith Hospital, London, W12 0NN, UK
- South London and Maudsley NHS Foundation Trust, London, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, W12 0NN, UK
| | - Mattia Veronese
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, Kings College London, De Crespigny Park, London, SE5 8AF, UK
- Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Barbara Santangelo
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, Kings College London, De Crespigny Park, London, SE5 8AF, UK
- Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Colm J McGinnity
- King's College London & Guy's and St Thomas' PET Centre, School of Biomedical Engineering & Imaging Sciences, King's College London, St Thomas' Hospital, London, SE1 7EH, UK
| | - Joel Dunn
- King's College London & Guy's and St Thomas' PET Centre, School of Biomedical Engineering & Imaging Sciences, King's College London, St Thomas' Hospital, London, SE1 7EH, UK
| | - Robert A McCutcheon
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, Kings College London, De Crespigny Park, London, SE5 8AF, UK
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Hammersmith Hospital, London, W12 0NN, UK
- South London and Maudsley NHS Foundation Trust, London, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, W12 0NN, UK
| | - Stephen J Kaar
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, Kings College London, De Crespigny Park, London, SE5 8AF, UK
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Hammersmith Hospital, London, W12 0NN, UK
- South London and Maudsley NHS Foundation Trust, London, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, W12 0NN, UK
| | - Nisha Singh
- Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Toby Pillinger
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, Kings College London, De Crespigny Park, London, SE5 8AF, UK
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Hammersmith Hospital, London, W12 0NN, UK
- South London and Maudsley NHS Foundation Trust, London, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, W12 0NN, UK
| | - Faith Borgan
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, Kings College London, De Crespigny Park, London, SE5 8AF, UK
- COMPASS Pathways plc, London, UK
| | - James Stone
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, Kings College London, De Crespigny Park, London, SE5 8AF, UK
- South London and Maudsley NHS Foundation Trust, London, UK
- Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Brighton and Sussex Medical School, University of Sussex, Falmer, Brighton, UK
| | - Sameer Jauhar
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, Kings College London, De Crespigny Park, London, SE5 8AF, UK
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Hammersmith Hospital, London, W12 0NN, UK
- South London and Maudsley NHS Foundation Trust, London, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, W12 0NN, UK
| | - Teresa Sementa
- King's College London & Guy's and St Thomas' PET Centre, School of Biomedical Engineering & Imaging Sciences, King's College London, St Thomas' Hospital, London, SE1 7EH, UK
| | - Federico Turkheimer
- Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Alexander Hammers
- King's College London & Guy's and St Thomas' PET Centre, School of Biomedical Engineering & Imaging Sciences, King's College London, St Thomas' Hospital, London, SE1 7EH, UK
| | - Oliver D Howes
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, Kings College London, De Crespigny Park, London, SE5 8AF, UK.
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Hammersmith Hospital, London, W12 0NN, UK.
- South London and Maudsley NHS Foundation Trust, London, UK.
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, W12 0NN, UK.
| |
Collapse
|
26
|
Borgan F, O'Daly O, Veronese M, Reis Marques T, Laurikainen H, Hietala J, Howes O. The neural and molecular basis of working memory function in psychosis: a multimodal PET-fMRI study. Mol Psychiatry 2021; 26:4464-4474. [PMID: 31801965 PMCID: PMC8550949 DOI: 10.1038/s41380-019-0619-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 11/13/2019] [Accepted: 11/21/2019] [Indexed: 01/10/2023]
Abstract
Working memory (WM) deficits predict clinical and functional outcomes in schizophrenia but are poorly understood and unaddressed by existing treatments. WM encoding and WM retrieval have not been investigated in schizophrenia without the confounds of illness chronicity or the use of antipsychotics and illicit substances. Moreover, it is unclear if WM deficits may be linked to cannabinoid 1 receptor dysfunction in schizophrenia. Sixty-six volunteers (35 controls, 31 drug-free patients with diagnoses of schizophrenia or schizoaffective disorder) completed the Sternberg Item-Recognition paradigm during an fMRI scan. Neural activation during WM encoding and WM retrieval was indexed using the blood-oxygen-level-dependent hemodynamic response. A subset of volunteers (20 controls, 20 drug-free patients) underwent a dynamic PET scan to measure [11C] MePPEP distribution volume (ml/cm3) to index CB1R availability. In a whole-brain analysis, there was a significant main effect of group on task-related BOLD responses in the superior parietal lobule during WM encoding, and the bilateral hippocampus during WM retrieval. Region of interest analyses in volunteers who had PET/fMRI indicated that there was a significant main effect of group on task-related BOLD responses in the right hippocampus, left DLPFC, left ACC during encoding; and in the bilateral hippocampus, striatum, ACC and right DLPFC during retrieval. Striatal CB1R availability was positively associated with mean striatal activation during WM retrieval in male patients (R = 0.5, p = 0.02) but not male controls (R = -0.20, p = 0.53), and this was significantly different between groups, Z = -2.20, p = 0.02. Striatal CB1R may contribute to the pathophysiology of WM deficits in male patients and have implications for drug development in schizophrenia.
Collapse
Affiliation(s)
- Faith Borgan
- Psychosis Studies Department, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, England.
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, England.
| | - Owen O'Daly
- Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, England
| | - Mattia Veronese
- Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, England
| | - Tiago Reis Marques
- Psychosis Studies Department, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, England
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, England
| | - Heikki Laurikainen
- Turku PET Centre, Turku University Hospital, Turku, Finland
- Department of Psychiatry, University of Turku and Turku University Hospital, Turku, Finland
| | - Jarmo Hietala
- Turku PET Centre, Turku University Hospital, Turku, Finland
- Department of Psychiatry, University of Turku and Turku University Hospital, Turku, Finland
| | - Oliver Howes
- Psychosis Studies Department, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, England
- Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, England
| |
Collapse
|
27
|
Onofrychuk TJ, Cai S, McElroy DL, Roebuck AJ, Greba Q, Garai S, Thakur GA, Laprairie RB, Howland JG. Effects of the cannabinoid receptor 1 positive allosteric modulator GAT211 and acute MK-801 on visual attention and impulsivity in rats assessed using the five-choice serial reaction time task. Prog Neuropsychopharmacol Biol Psychiatry 2021; 109:110235. [PMID: 33373679 DOI: 10.1016/j.pnpbp.2020.110235] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 12/07/2020] [Accepted: 12/21/2020] [Indexed: 12/12/2022]
Abstract
Altered interactions between endocannabinoid and glutamate signaling may be involved in the pathophysiology of schizophrenia and acute psychosis. As cognitive disturbances are involved in schizophrenia, increased understanding of the roles of these neurotransmitter systems in cognition may lead to the development of novel therapeutics for disorder. In the present study, we examined the effects of a recently synthesized cannabinoid receptor 1 (CB1R) positive allosteric modulator GAT211 in a rodent model of acute psychosis induced by systemic treatment with MK-801. To assess cognitive function, we used the Five-Choice Serial Reaction Time (5CSRT) task, conducted in touchscreen-equipped operant conditioning chambers. Our measures of primary interest were accuracy - indicative of visual attentional capacity - and the number of premature responses - indicative of impulsivity. We also measured latencies, omissions, and perseverative responding during all test sessions. Thirteen adult male Long Evans rats were trained on the 5CSRT and were then tested using a repeated measures design with acute MK-801 (0 or 0.15 mg/kg, i.p.) and GAT211 (0, 3, or 10 mg/kg, i.p.) administration. Acute MK-801 severely impaired accuracy, increased omissions, and increased the number of premature responses. MK-801 also significantly increased correct response latencies, without significant effects on incorrect or reward correction latencies. GAT211 had no significant effects when administered alone, or in combination with acute MK-801. These data confirm the dramatic effects of acute MK-801 treatment on behavioral measures of attention and impulsivity. Continued investigation of CB1R positive allosteric modulators as potential treatments for the cognitive symptoms of schizophrenia and related disorders should be pursued in other rodent models.
Collapse
Affiliation(s)
- Timothy J Onofrychuk
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Shuang Cai
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Dan L McElroy
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | | | - Quentin Greba
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Sumanta Garai
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, Boston, MA 02115, USA
| | - Ganesh A Thakur
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, Boston, MA 02115, USA
| | - Robert B Laprairie
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - John G Howland
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada.
| |
Collapse
|
28
|
Radhakrishnan R, Ranganathan M, Skosnik PD, D'Souza DC. Exocannabinoids, Endocannabinoids, and Psychosis. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2021; 6:600-602. [PMID: 34099185 DOI: 10.1016/j.bpsc.2021.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 04/25/2021] [Indexed: 10/21/2022]
Affiliation(s)
- Rajiv Radhakrishnan
- Psychiatry Service, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut; Abraham Ribicoff Research Facilities, Connecticut Mental Health Center, New Haven, Connecticut; Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | - Mohini Ranganathan
- Psychiatry Service, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut; Abraham Ribicoff Research Facilities, Connecticut Mental Health Center, New Haven, Connecticut; Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | - Patrick D Skosnik
- Psychiatry Service, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut; Abraham Ribicoff Research Facilities, Connecticut Mental Health Center, New Haven, Connecticut; Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | - Deepak Cyril D'Souza
- Psychiatry Service, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut; Abraham Ribicoff Research Facilities, Connecticut Mental Health Center, New Haven, Connecticut; Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut.
| |
Collapse
|
29
|
Morris G, Walder K, Kloiber S, Amminger P, Berk M, Bortolasci CC, Maes M, Puri BK, Carvalho AF. The endocannabinoidome in neuropsychiatry: Opportunities and potential risks. Pharmacol Res 2021; 170:105729. [PMID: 34119623 DOI: 10.1016/j.phrs.2021.105729] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 05/31/2021] [Accepted: 06/09/2021] [Indexed: 02/08/2023]
Abstract
The endocannabinoid system (ECS) comprises two cognate endocannabinoid receptors referred to as CB1R and CB2R. ECS dysregulation is apparent in neurodegenerative/neuro-psychiatric disorders including but not limited to schizophrenia, major depressive disorder and potentially bipolar disorder. The aim of this paper is to review mechanisms whereby both receptors may interact with neuro-immune and neuro-oxidative pathways, which play a pathophysiological role in these disorders. CB1R is located in the presynaptic terminals of GABAergic, glutamatergic, cholinergic, noradrenergic and serotonergic neurons where it regulates the retrograde suppression of neurotransmission. CB1R plays a key role in long-term depression, and, to a lesser extent, long-term potentiation, thereby modulating synaptic transmission and mediating learning and memory. Optimal CB1R activity plays an essential neuroprotective role by providing a defense against the development of glutamate-mediated excitotoxicity, which is achieved, at least in part, by impeding AMPA-mediated increase in intracellular calcium overload and oxidative stress. Moreover, CB1R activity enables optimal neuron-glial communication and the function of the neurovascular unit. CB2R receptors are detected in peripheral immune cells and also in central nervous system regions including the striatum, basal ganglia, frontal cortex, hippocampus, amygdala as well as the ventral tegmental area. CB2R upregulation inhibits the presynaptic release of glutamate in several brain regions. CB2R activation also decreases neuroinflammation partly by mediating the transition from a predominantly neurotoxic "M1" microglial phenotype to a more neuroprotective "M2" phenotype. CB1R and CB2R are thus novel drug targets for the treatment of neuro-immune and neuro-oxidative disorders including schizophrenia and affective disorders.
Collapse
Affiliation(s)
- Gerwyn Morris
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Ken Walder
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Deakin University, Centre for Molecular and Medical Research, School of Medicine, Geelong, Australia
| | - Stefan Kloiber
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 33 Ursula Franklin Street, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Paul Amminger
- Orygen, Parkville, Victoria, Australia; Centre for Youth Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Michael Berk
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Orygen, The National Centre of Excellence in Youth Mental Health, Centre for Youth Mental Health, Florey Institute for Neuroscience and Mental Health and the Department of Psychiatry, The University of Melbourne, Melbourne, Australia
| | - Chiara C Bortolasci
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Michael Maes
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Department of Psychiatry, Faculty of Medicine, King Chulalongkorn Memorial Hospital, Bangkok, Thailand; Department of Psychiatry, Medical University of Plovdiv, Plovdiv, Bulgaria
| | | | - Andre F Carvalho
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia.
| |
Collapse
|
30
|
Borgan F, Veronese M, Reis Marques T, Lythgoe DJ, Howes O. Association between cannabinoid 1 receptor availability and glutamate levels in healthy controls and drug-free patients with first episode psychosis: a multi-modal PET and 1H-MRS study. Eur Arch Psychiatry Clin Neurosci 2021; 271:677-687. [PMID: 32986150 PMCID: PMC8119269 DOI: 10.1007/s00406-020-01191-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 08/20/2020] [Indexed: 12/16/2022]
Abstract
Cannabinoid 1 receptor and glutamatergic dysfunction have both been implicated in the pathophysiology of schizophrenia. However, it remains unclear if cannabinoid 1 receptor alterations shown in drug-naïve/free patients with first episode psychosis may be linked to glutamatergic alterations in the illness. We aimed to investigate glutamate levels and cannabinoid 1 receptor levels in the same region in patients with first episode psychosis. Forty volunteers (20 healthy volunteers, 20 drug-naïve/free patients with first episode psychosis diagnosed with schizophrenia/schizoaffective disorder) were included in the study. Glutamate levels were measured using proton magnetic resonance spectroscopy. CB1R availability was indexed using the distribution volume (VT (ml/cm3)) of [11C]MePPEP using arterial blood sampling. There were no significant associations between ACC CB1R levels and ACC glutamate levels in controls (R = - 0.24, p = 0.32) or patients (R = - 0.10, p = 0.25). However, ACC glutamate levels were negatively associated with CB1R availability in the striatum (R = - 0.50, p = 0.02) and hippocampus (R = - 0.50, p = 0.042) in controls, but these associations were not observed in patients (p > 0.05). Our findings extend our previous work in an overlapping sample to show, for the first time as far as we're aware, that cannabinoid 1 receptor alterations in the anterior cingulate cortex are shown in the absence of glutamatergic dysfunction in the same region, and indicate potential interactions between glutamatergic signalling in the anterior cingulate cortex and the endocannabinoid system in the striatum and hippocampus.
Collapse
Affiliation(s)
- Faith Borgan
- Psychosis Studies Department, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, England.
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, W12 0NN, UK.
| | - Mattia Veronese
- Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, England
| | - Tiago Reis Marques
- Psychosis Studies Department, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, England
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, W12 0NN, UK
| | - David J Lythgoe
- Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, England
| | - Oliver Howes
- Psychosis Studies Department, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, England
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, W12 0NN, UK
| |
Collapse
|
31
|
Endocannabinoid system in psychotic and mood disorders, a review of human studies. Prog Neuropsychopharmacol Biol Psychiatry 2021; 106:110096. [PMID: 32898588 PMCID: PMC8582009 DOI: 10.1016/j.pnpbp.2020.110096] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/13/2020] [Accepted: 09/01/2020] [Indexed: 12/21/2022]
Abstract
Despite widespread evidence of endocannabinoid system involvement in the pathophysiology of psychiatric disorders, our understanding remains rudimentary. Here we review studies of the endocannabinoid system in humans with psychotic and mood disorders. Postmortem, peripheral, cerebrospinal fluid and in vivo imaging studies provide evidence for the involvement of the endocannabinoid system in psychotic and mood disorders. Psychotic disorders and major depressive disorder exhibit alterations of brain cannabinoid CB1 receptors and peripheral blood endocannabinoids. Further, these changes may be sensitive to treatment status, disease state, and symptom severity. Evidence from psychotic disorder extend to endocannabinoid metabolizing enzymes in the brain and periphery, whereas these lines of evidence remain poorly developed in mood disorders. A paucity of studies examining this system in bipolar disorder represents a notable gap in the literature. Despite a growing body of productive work in this field of research, there is a clear need for investigation beyond the CB1 receptor in order to more fully elucidate the role of the endocannabinoid system in psychotic and mood disorders.
Collapse
|
32
|
Bielawski T, Albrechet-Souza L, Frydecka D. Endocannabinoid system in trauma and psychosis: distant guardian of mental stability. Rev Neurosci 2021; 32:707-722. [PMID: 33656307 DOI: 10.1515/revneuro-2020-0102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 01/08/2021] [Indexed: 11/15/2022]
Abstract
Central endocannabinoid system (eCBS) is a neuromodulatory system that inhibits potentially harmful, excessive synaptic activation. Endocannabinoid receptors are abundant among brain structures pivotal in different mental disorders development (for example, hippocampus, amygdala, medial-prefrontal cortex, hypothalamus). Here, we review eCBS function in etiology of psychosis, emphasizing its role in dealing with environmental pressures such as traumatic life events. Moreover, we explore eCBS as a guard against hypothalamic-pituitary-adrenal axis over-activation, and discuss its possible role in etiology of different psychopathologies. Additionally, we review eCBS function in creating adaptive behavioral patterns, as we explore its involvement in the memory formation process, extinction learning and emotional response. We discuss eCBS in the context of possible biomarkers of trauma, and in preclinical psychiatric conditions, such as at-risk mental states and clinical high risk states for psychosis. Finally, we describe the role of eCBS in the cannabinoid self-medication-theory and extinction learning.
Collapse
Affiliation(s)
- Tomasz Bielawski
- Department of Psychiatry, Wroclaw Medical University, 10 Pasteur Street, 50-367Wroclaw, Poland.,Department of Physiology, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA70112, USA
| | - Lucas Albrechet-Souza
- Department of Physiology, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA70112, USA.,Alcohol & Drug Center of Excellence, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA70112, USA
| | - Dorota Frydecka
- Department of Psychiatry, Wroclaw Medical University, 10 Pasteur Street, 50-367Wroclaw, Poland
| |
Collapse
|
33
|
Lamichhane S, Dickens AM, Sen P, Laurikainen H, Borgan F, Suvisaari J, Hyötyläinen T, Howes O, Hietala J, Orešič M. Association Between Circulating Lipids and Future Weight Gain in Individuals With an At-Risk Mental State and in First-Episode Psychosis. Schizophr Bull 2021; 47:160-169. [PMID: 32609372 PMCID: PMC7825089 DOI: 10.1093/schbul/sbaa087] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Patients with schizophrenia have a lower than average life span, largely due to the increased prevalence of cardiometabolic comorbidities. There is an unmet public health need to identify individuals with psychotic disorders who have a high risk of rapid weight gain and who are at risk of developing metabolic complications. Here, we applied mass spectrometry-based lipidomics in a prospective study comprising 48 healthy controls (CTR), 44 first-episode psychosis (FEP) patients, and 22 individuals at clinical high risk (CHR) for psychosis, from 2 study centers (Turku, Finland and London, UK). Baseline serum samples were analyzed using lipidomics, and body mass index (BMI) was assessed at baseline and after 12 months. We found that baseline triacylglycerols (TGs) with low double-bond counts and carbon numbers were positively associated with the change in BMI at follow-up. In addition, a molecular signature comprised of 2 TGs (TG[48:0] and TG[45:0]) was predictive of weight gain in individuals with a psychotic disorder, with an area under the receiver operating characteristic curve (AUROC) of 0.74 (95% CI: 0.60-0.85). When independently tested in the CHR group, this molecular signature predicted said weight change with AUROC = 0.73 (95% CI: 0.61-0.83). We conclude that molecular lipids may serve as a predictor of weight gain in psychotic disorders in at-risk individuals and may thus provide a useful marker for identifying individuals who are most prone to developing cardiometabolic comorbidities.
Collapse
Affiliation(s)
- Santosh Lamichhane
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Alex M Dickens
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Partho Sen
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Heikki Laurikainen
- Department of Psychiatry, University of Turku, Turku, Finland.,Turku PET Centre, Turku University Hospital, Turku, Finland
| | - Faith Borgan
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.,Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Hammersmith Hospital, Imperial College London, London, UK
| | - Jaana Suvisaari
- Mental Health Unit, National Institute for Health and Welfare, Helsinki, Finland
| | | | - Oliver Howes
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.,Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Hammersmith Hospital, Imperial College London, London, UK
| | - Jarmo Hietala
- Department of Psychiatry, University of Turku, Turku, Finland.,Turku PET Centre, Turku University Hospital, Turku, Finland
| | - Matej Orešič
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland.,School of Medical Sciences, Örebro University, Örebro, Sweden
| |
Collapse
|
34
|
Hou L, Rong J, Haider A, Ogasawara D, Varlow C, Schafroth MA, Mu L, Gan J, Xu H, Fowler CJ, Zhang MR, Vasdev N, Ametamey S, Cravatt BF, Wang L, Liang SH. Positron Emission Tomography Imaging of the Endocannabinoid System: Opportunities and Challenges in Radiotracer Development. J Med Chem 2021; 64:123-149. [PMID: 33379862 PMCID: PMC7877880 DOI: 10.1021/acs.jmedchem.0c01459] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The endocannabinoid system (ECS) is involved in a wide range of biological functions and comprises cannabinoid receptors and enzymes responsible for endocannabinoid synthesis and degradation. Over the past 2 decades, significant advances toward developing drugs and positron emission tomography (PET) tracers targeting different components of the ECS have been made. Herein, we summarized the recent development of PET tracers for imaging cannabinoid receptors 1 (CB1R) and 2 (CB2R) as well as the key enzymes monoacylglycerol lipase (MAGL) and fatty acid amide hydrolase (FAAH), particularly focusing on PET neuroimaging applications. State-of-the-art PET tracers for the ECS will be reviewed including their chemical design, pharmacological properties, radiolabeling, as well as preclinical and human PET imaging. In addition, this review addresses the current challenges for ECS PET biomarker development and highlights the important role of PET ligands to study disease pathophysiology as well as to facilitate drug discovery.
Collapse
Affiliation(s)
- Lu Hou
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, 613 West Huangpu Road, Tianhe District, Guangzhou 510630, China
| | - Jian Rong
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
| | - Ahmed Haider
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
| | - Daisuke Ogasawara
- The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, SR107 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Cassis Varlow
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health & Department of Psychiatry/Institute of Medical Science, University of Toronto, 250 College St., Toronto, M5T 1R8, ON., Canada
| | - Michael A. Schafroth
- The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, SR107 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Linjing Mu
- Center for Radiopharmaceutical Sciences ETH, PSI and USZ, Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 4, CH-8093 Zurich, Switzerland
| | - Jiefeng Gan
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, 613 West Huangpu Road, Tianhe District, Guangzhou 510630, China
| | - Hao Xu
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, 613 West Huangpu Road, Tianhe District, Guangzhou 510630, China
| | - Christopher J. Fowler
- Department of Pharmacology and Clinical Neuroscience, Umeå University, SE-901 87 Umeå, Sweden
| | - Ming-Rong Zhang
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Neil Vasdev
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health & Department of Psychiatry/Institute of Medical Science, University of Toronto, 250 College St., Toronto, M5T 1R8, ON., Canada
| | - Simon Ametamey
- Center for Radiopharmaceutical Sciences ETH, PSI and USZ, Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 4, CH-8093 Zurich, Switzerland
| | - Benjamin F. Cravatt
- The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, SR107 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Lu Wang
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, 613 West Huangpu Road, Tianhe District, Guangzhou 510630, China
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
| | - Steven H. Liang
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
| |
Collapse
|
35
|
Terry GE, Raymont V, Horti AG. PET Imaging of the Endocannabinoid System. PET AND SPECT OF NEUROBIOLOGICAL SYSTEMS 2021:319-426. [DOI: 10.1007/978-3-030-53176-8_12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
36
|
Alves MA, Lamichhane S, Dickens A, McGlinchey A, Ribeiro HC, Sen P, Wei F, Hyötyläinen T, Orešič M. Systems biology approaches to study lipidomes in health and disease. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1866:158857. [PMID: 33278596 DOI: 10.1016/j.bbalip.2020.158857] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/13/2020] [Accepted: 11/27/2020] [Indexed: 12/15/2022]
Abstract
Lipids have many important biological roles, such as energy storage sources, structural components of plasma membranes and as intermediates in metabolic and signaling pathways. Lipid metabolism is under tight homeostatic control, exhibiting spatial and dynamic complexity at multiple levels. Consequently, lipid-related disturbances play important roles in the pathogenesis of most of the common diseases. Lipidomics, defined as the study of lipidomes in biological systems, has emerged as a rapidly-growing field. Due to the chemical and functional diversity of lipids, the application of a systems biology approach is essential if one is to address lipid functionality at different physiological levels. In parallel with analytical advances to measure lipids in biological matrices, the field of computational lipidomics has been rapidly advancing, enabling modeling of lipidomes in their pathway, spatial and dynamic contexts. This review focuses on recent progress in systems biology approaches to study lipids in health and disease, with specific emphasis on methodological advances and biomedical applications.
Collapse
Affiliation(s)
- Marina Amaral Alves
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku 20520, Finland
| | - Santosh Lamichhane
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku 20520, Finland
| | - Alex Dickens
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku 20520, Finland
| | - Aidan McGlinchey
- School of Medical Sciences, Örebro University, 702 81 Örebro, Sweden
| | | | - Partho Sen
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku 20520, Finland; School of Medical Sciences, Örebro University, 702 81 Örebro, Sweden
| | - Fang Wei
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, PR China
| | | | - Matej Orešič
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku 20520, Finland; School of Medical Sciences, Örebro University, 702 81 Örebro, Sweden.
| |
Collapse
|
37
|
Regulation of cannabinoid CB 1 and CB 2 receptors, neuroprotective mTOR and pro-apoptotic JNK1/2 kinases in postmortem prefrontal cortex of subjects with major depressive disorder. J Affect Disord 2020; 276:626-635. [PMID: 32871695 DOI: 10.1016/j.jad.2020.07.074] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 05/26/2020] [Accepted: 07/05/2020] [Indexed: 12/31/2022]
Abstract
BACKGROUND Dysregulations of endocannabinoids and/or cannabinoid (CB) receptors have been implicated in the pathophysiology and treatment of major depressive disorder (MDD). METHODS CB1 and CB2 receptors, neuroprotective mTOR (mechanistic target of rapamycin) and pro-apoptotic JNK1/2 (c-Jun-N-terminal kinases) were quantified by immunoblotting in postmortem prefrontal cortex of MDD and controls, and further compared in antidepressant (AD)-free and AD-treated subjects. Neuroplastic proteins (PSD-95, Arc, spinophilin) were quantified in MDD brains. RESULTS Total cortical CB1 glycosylated (≈54/64 kDa) receptor was increased in MDD (+20%, n=23, p=0.02) when compared with controls (100%, n=19). This CB1 receptor upregulation was quantified in AD-treated (+23%, n=14, p=0.02) but not in AD-free (+14%, n=9, p=0.34) MDD subjects. In the same MDD cortical samples, CB2 glycosylated (≈45 kDa) receptor was unaltered (all MDD: +11%, n=23, p=0.10; AD-free: +12%, n=9, p=0.31; AD-treated: +10%, n=14, p=0.23). In MDD, mTOR activity (p-Ser2448 TOR/t-TOR) was increased (all MDD: +29%, n=18, p=0.002; AD-free: +33%, n=8, p=0.03; AD-treated: +25%, n=10, p=0.04). In contrast, JNK1/2 activity (p-Thr183/Tyr185/t-JNK) was unaltered in MDD subjects. Cortical PSD-95, Arc, and spinophilin contents were unchanged in MDD. LIMITATIONS A relative limited sample size. Some MDD subjects had been treated with a variety of ADs. The results must be understood in the context of suicide victims with MDD. CONCLUSIONS The upregulation of CB1 receptor density, but not that of CB2 receptor, as well as the increased mTOR activity in PFC/BA9 of subjects with MDD (AD-free/treated) support their contributions in the complex pathophysiology of MDD and in the molecular mechanisms of antidepressant drugs.
Collapse
|
38
|
Watts JJ, Jacobson MR, Lalang N, Boileau I, Tyndale RF, Kiang M, Ross RA, Houle S, Wilson AA, Rusjan P, Mizrahi R. Imaging Brain Fatty Acid Amide Hydrolase in Untreated Patients With Psychosis. Biol Psychiatry 2020; 88:727-735. [PMID: 32387132 PMCID: PMC8240477 DOI: 10.1016/j.biopsych.2020.03.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 03/01/2020] [Accepted: 03/04/2020] [Indexed: 10/24/2022]
Abstract
BACKGROUND The brain's endocannabinoid system, the primary target of cannabis, has been implicated in psychosis. The endocannabinoid anandamide is elevated in cerebrospinal fluid of patients with schizophrenia. Fatty acid amide hydrolase (FAAH) controls brain anandamide levels; however, it is unknown if FAAH is altered in vivo in psychosis or related to positive psychotic symptoms. METHODS Twenty-seven patients with schizophrenia spectrum disorders and 36 healthy control subjects completed high-resolution positron emission tomography scans with the novel FAAH radioligand [11C]CURB and structural magnetic resonance imaging. Data were analyzed using the validated irreversible 2-tissue compartment model with a metabolite-corrected arterial input function. RESULTS FAAH did not differ significantly between patients with psychotic disorders and healthy control subjects (F1,62.85 = 0.48, p = .49). In contrast, lower FAAH predicted greater positive psychotic symptom severity, with the strongest effect observed for the positive symptom dimension, which includes suspiciousness, delusions, unusual thought content, and hallucinations (F1,26.69 = 12.42, p = .002; Cohen's f = 0.42, large effect). Shorter duration of illness (F1,26.95 = 13.78, p = .001; Cohen's f = 0.39, medium to large effect) and duration of untreated psychosis predicted lower FAAH (F1,26.95 = 6.03, p = .021, Cohen's f = 0.27, medium effect). These results were not explained by past cannabis exposure or current intake of antipsychotic medications. FAAH exhibited marked differences across brain regions (F7,112.62 = 175.85, p < 1 × 10-56; Cohen's f > 1). Overall, FAAH was higher in female subjects than in male subjects (F1,62.84 = 10.05, p = .002; Cohen's f = 0.37). CONCLUSIONS This first study of brain FAAH in psychosis indicates that FAAH may represent a biomarker of disease state of potential utility for clinical studies targeting psychotic symptoms or as a novel target for interventions to treat psychotic symptoms.
Collapse
Affiliation(s)
- Jeremy J Watts
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada,Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Maya R Jacobson
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada,Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Nittha Lalang
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada,Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Isabelle Boileau
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada,Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario, Canada,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada,Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Rachel F Tyndale
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario, Canada,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada,Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Michael Kiang
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Ruth A Ross
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Sylvain Houle
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada,Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Alan A Wilson
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada,Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Pablo Rusjan
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada,Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario, Canada,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada,Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Romina Mizrahi
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
39
|
Kolla NJ, Mizrahi R, Karas K, Wang C, Bagby RM, McMain S, Simpson AI, Rusjan PM, Tyndale R, Houle S, Boileau I. Elevated fatty acid amide hydrolase in the prefrontal cortex of borderline personality disorder: a [ 11C]CURB positron emission tomography study. Neuropsychopharmacology 2020; 45:1834-1841. [PMID: 32521537 PMCID: PMC7608329 DOI: 10.1038/s41386-020-0731-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 05/27/2020] [Accepted: 06/01/2020] [Indexed: 12/16/2022]
Abstract
Amygdala-prefrontal cortex (PFC) functional impairments have been linked to emotion dysregulation and aggression in borderline personality disorder (BPD). Fatty acid amide hydrolase (FAAH), the major catabolic enzyme for the endocannabinoid anandamide, has been proposed as a key regulator of the amygdala-PFC circuit that subserves emotion regulation. We tested the hypothesis that FAAH levels measured with [11C]CURB positron emission tomography in amygdala and PFC would be elevated in BPD and would relate to hostility and aggression. Twenty BPD patients and 20 healthy controls underwent FAAH genotyping (rs324420) and scanning with [11C]CURB. BPD patients were medication-free and were not experiencing a current major depressive episode. Regional differences in [11C]CURB binding were assessed using multivariate analysis of covariance with PFC and amygdala [11C]CURB binding as dependent variables, diagnosis as a fixed factor, and sex and genotype as covariates. [11C]CURB binding was marginally elevated across the PFC and amygdala in BPD (p = 0.08). In a priori selected PFC, but not amygdala, [11C]CURB binding was significantly higher in BPD (11.0%, p = 0.035 versus 10.6%, p = 0.29). PFC and amygdala [11C]CURB binding was positively correlated with measures of hostility in BPD (r > 0.4; p < 0.04). This study is the first to provide preliminary evidence of elevated PFC FAAH binding in any psychiatric condition. Findings are consistent with the model that lower endocannabinoid tone could perturb PFC circuitry that regulates emotion and aggression. Replication of these findings could encourage testing of FAAH inhibitors as innovative treatments for BPD.
Collapse
Affiliation(s)
- Nathan J. Kolla
- grid.155956.b0000 0000 8793 5925Centre for Addiction and Mental Health (CAMH), Toronto, ON Canada ,grid.155956.b0000 0000 8793 5925Violence Prevention Neurobiological Research Unit, CAMH, Toronto, ON Canada ,grid.17063.330000 0001 2157 2938Department of Psychiatry, University of Toronto, Toronto, ON Canada ,grid.17063.330000 0001 2157 2938Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON Canada ,grid.440060.60000 0004 0459 5734Waypoint Centre for Mental Health Care, Penetanguishene, ON Canada
| | - R. Mizrahi
- grid.155956.b0000 0000 8793 5925Centre for Addiction and Mental Health (CAMH), Toronto, ON Canada ,grid.17063.330000 0001 2157 2938Department of Psychiatry, University of Toronto, Toronto, ON Canada ,grid.17063.330000 0001 2157 2938Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON Canada
| | - K. Karas
- grid.155956.b0000 0000 8793 5925Centre for Addiction and Mental Health (CAMH), Toronto, ON Canada ,grid.155956.b0000 0000 8793 5925Violence Prevention Neurobiological Research Unit, CAMH, Toronto, ON Canada
| | - C. Wang
- grid.155956.b0000 0000 8793 5925Centre for Addiction and Mental Health (CAMH), Toronto, ON Canada ,grid.155956.b0000 0000 8793 5925Violence Prevention Neurobiological Research Unit, CAMH, Toronto, ON Canada
| | - R. M. Bagby
- grid.155956.b0000 0000 8793 5925Centre for Addiction and Mental Health (CAMH), Toronto, ON Canada ,grid.17063.330000 0001 2157 2938Department of Psychiatry, University of Toronto, Toronto, ON Canada
| | - S. McMain
- grid.155956.b0000 0000 8793 5925Centre for Addiction and Mental Health (CAMH), Toronto, ON Canada ,grid.17063.330000 0001 2157 2938Department of Psychiatry, University of Toronto, Toronto, ON Canada
| | - A. I. Simpson
- grid.155956.b0000 0000 8793 5925Centre for Addiction and Mental Health (CAMH), Toronto, ON Canada ,grid.17063.330000 0001 2157 2938Department of Psychiatry, University of Toronto, Toronto, ON Canada
| | - P. M. Rusjan
- grid.155956.b0000 0000 8793 5925Centre for Addiction and Mental Health (CAMH), Toronto, ON Canada ,grid.17063.330000 0001 2157 2938Department of Psychiatry, University of Toronto, Toronto, ON Canada
| | - R. Tyndale
- grid.155956.b0000 0000 8793 5925Centre for Addiction and Mental Health (CAMH), Toronto, ON Canada ,grid.17063.330000 0001 2157 2938Department of Psychiatry, University of Toronto, Toronto, ON Canada ,grid.17063.330000 0001 2157 2938Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON Canada
| | - S. Houle
- grid.155956.b0000 0000 8793 5925Centre for Addiction and Mental Health (CAMH), Toronto, ON Canada ,grid.17063.330000 0001 2157 2938Department of Psychiatry, University of Toronto, Toronto, ON Canada
| | - I. Boileau
- grid.155956.b0000 0000 8793 5925Centre for Addiction and Mental Health (CAMH), Toronto, ON Canada ,grid.17063.330000 0001 2157 2938Department of Psychiatry, University of Toronto, Toronto, ON Canada ,grid.17063.330000 0001 2157 2938Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON Canada
| |
Collapse
|
40
|
Links between central CB1-receptor availability and peripheral endocannabinoids in patients with first episode psychosis. NPJ SCHIZOPHRENIA 2020; 6:21. [PMID: 32848142 PMCID: PMC7450081 DOI: 10.1038/s41537-020-00110-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 07/07/2020] [Indexed: 01/23/2023]
Abstract
There is an established, link between psychosis and metabolic abnormalities, such as altered glucose metabolism and dyslipidemia, which often precede the initiation of antipsychotic treatment. It is known that obesity-associated metabolic disorders are promoted by activation of specific cannabinoid targets (endocannabinoid system (ECS)). Our recent data suggest that there is a change in the circulating lipidome at the onset of first episode psychosis (FEP). With the aim of characterizing the involvement of the central and peripheral ECSs, and their mutual associations; here, we performed a combined neuroimaging and metabolomic study in patients with FEP and healthy controls (HC). Regional brain cannabinoid receptor type 1 (CB1R) availability was quantified in two, independent samples of patients with FEP (n = 20 and n = 8) and HC (n = 20 and n = 10), by applying three-dimensional positron emission tomography, using two radiotracers, [11C]MePPEP and [18F]FMPEP-d2. Ten endogenous cannabinoids or related metabolites were quantified in serum, drawn from these individuals during the same imaging session. Circulating levels of arachidonic acid and oleoylethanolamide (OEA) were reduced in FEP individuals, but not in those who were predominantly medication free. In HC, there was an inverse association between levels of circulating arachidonoyl glycerol, anandamide, OEA, and palmitoyl ethanolamide, and CB1R availability in the posterior cingulate cortex. This phenomenon was, however, not observed in FEP patients. Our data thus provide evidence of cross talk, and dysregulation between peripheral endocannabinoids and central CB1R availability in FEP.
Collapse
|
41
|
The Cannabinoid CB 1 Receptor in Schizophrenia. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2020; 6:646-659. [PMID: 33077399 DOI: 10.1016/j.bpsc.2020.06.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/28/2020] [Accepted: 06/25/2020] [Indexed: 02/07/2023]
Abstract
Converging lines of evidence from epidemiological, preclinical, and experimental studies indicate that the endocannabinoid system may be involved in the pathophysiology of schizophrenia and suggest that the cannabinoid CB1 receptor may be a potential therapeutic target. In view of this, we first provide an overview of the endocannabinoid system and systematically review the evidence for CB1 receptor alterations in animal models of schizophrenia and clinical studies in schizophrenia. MEDLINE, EMBASE, PsycArticles, and PsycINFO were systematically searched from inception until January 7, 2020. Of 1187 articles, 24 were included in the systematic review, including 8 preclinical studies measuring the CB1 receptor in the context of an established animal model of schizophrenia and 16 clinical studies investigating the CB1 receptor in schizophrenia. The majority of preclinical studies (6 of 8) have shown that the CB1 receptor is reduced in the context of animal models of schizophrenia. Moreover, the majority of in vivo clinical imaging studies that used arterial blood sampling to quantify the radiotracer kinetics (3 of 4) have shown reduced CB1 receptor availability in schizophrenia. However, mixed findings have been reported in ex vivo literature, including reports of no change in receptor levels (5 of 11), increased receptor levels (4 of 11), and decreased receptor levels (2 of 11). We review methodological reasons for these discrepancies and review how CB1 receptor dysfunction may contribute to the pathophysiology of schizophrenia, drawing on the role of the receptor in regulating synaptic transmission and synaptic plasticity. We also discuss how the CB1 receptor may be a potential therapeutic target.
Collapse
|
42
|
Lahdenpohja S, Keller T, Forsback S, Viljanen T, Kokkomäki E, Kivelä RV, Bergman J, Solin O, Kirjavainen AK. Automated GMP production and long-term experience in radiosynthesis of CB 1 tracer [ 18 F]FMPEP-d 2. J Labelled Comp Radiopharm 2020; 63:408-418. [PMID: 32374481 DOI: 10.1002/jlcr.3845] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 03/31/2020] [Accepted: 04/28/2020] [Indexed: 11/11/2022]
Abstract
Here, we describe the development of an in-house-built device for the fully automated multistep synthesis of the cannabinoid CB1 receptor imaging tracer (3R,5R)-5-(3-([18 F]fluoromethoxy-d2 )phenyl)-3-(((R)-1-phenylethyl)amino)-1-(4-(trifluoromethyl)phenyl)pyrrolidin-2-one ([18 F]FMPEP-d2 ), following good manufacturing practices. The device is interfaced to a HPLC and a sterile filtration unit in a clean room hot cell. The synthesis involves the nucleophilic 18 F-fluorination of an alkylating agent and its GC purification, the subsequent 18 F-fluoroalkylation of a precursor molecule, the semipreparative HPLC purification of the 18 F-fluoroalkylated product, and its formulation for injection. We have optimized the duration and temperature of the 18 F-fluoroalkylation reaction and addressed the radiochemical stability of the formulated product. During the past 5 years (2013-2018), we have performed a total of 149 syntheses for clinical use with a 90% success rate. The activity yield of the formulated product has been 1.0 ± 0.4 GBq starting from 11 ± 2 GBq and the molar activity 600 ± 300 GBq/μmol at the end of synthesis.
Collapse
Affiliation(s)
- Salla Lahdenpohja
- Radiopharmaceutical Chemistry Laboratory, Turku PET Centre, University of Turku, Turku, Finland
| | - Thomas Keller
- Radiopharmaceutical Chemistry Laboratory, Turku PET Centre, University of Turku, Turku, Finland
| | - Sarita Forsback
- Radiopharmaceutical Chemistry Laboratory, Turku PET Centre, University of Turku, Turku, Finland
- Department of Chemistry, University of Turku, Turku, Finland
| | - Tapio Viljanen
- Radiopharmaceutical Chemistry Laboratory, Turku PET Centre, University of Turku, Turku, Finland
| | - Esa Kokkomäki
- Radiopharmaceutical Chemistry Laboratory, Turku PET Centre, University of Turku, Turku, Finland
| | - Riikka V Kivelä
- Hospital Pharmacy, Turku University Hospital, Turku, Finland
| | - Jörgen Bergman
- Radiopharmaceutical Chemistry Laboratory, Turku PET Centre, University of Turku, Turku, Finland
| | - Olof Solin
- Radiopharmaceutical Chemistry Laboratory, Turku PET Centre, University of Turku, Turku, Finland
- Department of Chemistry, University of Turku, Turku, Finland
- Accelerator Laboratory, Turku PET Centre, Åbo Akademi University, Turku, Finland
| | - Anna K Kirjavainen
- Radiopharmaceutical Chemistry Laboratory, Turku PET Centre, University of Turku, Turku, Finland
| |
Collapse
|
43
|
Lahdenpohja S, Rajala NA, Helin JS, Haaparanta-Solin M, Solin O, López-Picón FR, Kirjavainen AK. Ruthenium-Mediated 18F-Fluorination and Preclinical Evaluation of a New CB 1 Receptor Imaging Agent [ 18F]FPATPP. ACS Chem Neurosci 2020; 11:2009-2018. [PMID: 32479723 PMCID: PMC7497626 DOI: 10.1021/acschemneuro.0c00313] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
![]()
Cannabinoid receptor
1 (CB1R) controls various physiological and pathological conditions,
including memory, motivation, and inflammation, and is thus an interesting
target for positron emission tomography (PET). Herein, we report a
ruthenium-mediated radiolabeling synthesis and preclinical evaluation
of a new CB1R specific radiotracer, [18F]FPATPP. [18F]FPATPP was produced with 16.7 ± 5.7% decay-corrected
radiochemical yield and >95 GBq/μmol molar activity. The
tracer showed high stability, low defluorination, and high specific
binding to CB1Rs in mouse brain.
Collapse
Affiliation(s)
- Salla Lahdenpohja
- Radiopharmaceutical Chemistry Laboratory, Turku PET Centre, University of Turku, Turku, Finland
| | - Noora A. Rajala
- Radiopharmaceutical Chemistry Laboratory, Turku PET Centre, University of Turku, Turku, Finland
| | - Jatta S. Helin
- Preclinical Imaging, Turku PET Centre, University of Turku, Turku, Finland
- MediCity Research Laboratory, University of Turku, Turku, Finland
| | - Merja Haaparanta-Solin
- Preclinical Imaging, Turku PET Centre, University of Turku, Turku, Finland
- MediCity Research Laboratory, University of Turku, Turku, Finland
| | - Olof Solin
- Radiopharmaceutical Chemistry Laboratory, Turku PET Centre, University of Turku, Turku, Finland
- Accelerator Laboratory, Åbo Akademi University, Turku, Finland
- Department of Chemistry, University of Turku, Turku, Finland
| | - Francisco R. López-Picón
- Preclinical Imaging, Turku PET Centre, University of Turku, Turku, Finland
- MediCity Research Laboratory, University of Turku, Turku, Finland
| | - Anna K. Kirjavainen
- Radiopharmaceutical Chemistry Laboratory, Turku PET Centre, University of Turku, Turku, Finland
| |
Collapse
|
44
|
Cannabinoid receptor CNR1 expression and DNA methylation in human prefrontal cortex, hippocampus and caudate in brain development and schizophrenia. Transl Psychiatry 2020; 10:158. [PMID: 32433545 PMCID: PMC7237456 DOI: 10.1038/s41398-020-0832-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/24/2020] [Accepted: 04/30/2020] [Indexed: 12/22/2022] Open
Abstract
Beyond being one the most widely used psychoactive drugs in the world, cannabis has been identified as an environmental risk factor for psychosis. Though the relationship between cannabis use and psychiatric disorders remains controversial, consistent association between early adolescent cannabis use and the subsequent risk of psychosis suggested adolescence may be a particularly vulnerable period. Previous findings on gene by environment interactions indicated that cannabis use may only increase the risk for psychosis in the subjects who have a specific genetic vulnerability. The type 1 cannabinoid receptor (CB1), encoded by the CNR1 gene, is a key component of the endocannabinoid system. As the primary endocannabinoid receptor in the brain, CB1 is the main molecular target of the endocannabinoid ligand, as well as tetrahydrocannabinol (THC), the principal psychoactive ingredient of cannabis. In this study, we have examined mRNA expression and DNA methylation of CNR1 in human prefrontal cortex (PFC), hippocampus, and caudate samples. The expression of CNR1 is higher in fetal PFC and hippocampus, then drops down dramatically after birth. The lifespan trajectory of CNR1 expression in the DLPFC differentially correlated with age by allelic variation at rs4680, a functional polymorphism in the COMT gene. Compared with COMT methionine158 carriers, Caucasian carriers of the COMT valine158 allele have a stronger negative correlation between the expression of CNR1 in DLPFC and age. In contrast, the methylation level of cg02498983, which is negatively correlated with the expression of CNR1 in PFC, showed the strongest positive correlation with age in PFC of Caucasian carriers of COMT valine158. Additionally, we have observed decreased mRNA expression of CNR1 in the DLPFC of patients with schizophrenia. Further analysis revealed a positive eQTL SNP, rs806368, which predicted the expression of a novel transcript of CNR1 in human DLPFC, hippocampus and caudate. This SNP has been associated with addiction and other psychiatric disorders. THC or ethanol are each significantly associated with dysregulated expression of CNR1 in the PFC of patients with affective disorder, and the expression of CNR1 is significantly upregulated in the PFC of schizophrenia patients who completed suicide. Our results support previous studies that have implicated the endocannabinoid system in the pathology of schizophrenia and provided additional insight into the mechanism of increasing risk for schizophrenia in the adolescent cannabis users.
Collapse
|
45
|
Hindley G, Beck K, Borgan F, Ginestet CE, McCutcheon R, Kleinloog D, Ganesh S, Radhakrishnan R, D'Souza DC, Howes OD. Psychiatric symptoms caused by cannabis constituents: a systematic review and meta-analysis. Lancet Psychiatry 2020; 7:344-353. [PMID: 32197092 PMCID: PMC7738353 DOI: 10.1016/s2215-0366(20)30074-2] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/07/2020] [Accepted: 02/07/2020] [Indexed: 01/19/2023]
Abstract
BACKGROUND Approximately 188 million people use cannabis yearly worldwide, and it has recently been legalised in 11 US states, Canada, and Uruguay for recreational use. The potential for increased cannabis use highlights the need to better understand its risks, including the acute induction of psychotic and other psychiatric symptoms. We aimed to investigate the effect of the cannabis constituent Δ9-tetrahydrocannabinol (THC) alone and in combination with cannabidiol (CBD) compared with placebo on psychiatric symptoms in healthy people. METHODS In this systematic review and meta-analysis, we searched MEDLINE, Embase, and PsycINFO for studies published in English between database inception and May 21, 2019, with a within-person, crossover design. Inclusion criteria were studies reporting symptoms using psychiatric scales (the Brief Psychiatric Rating Scale [BPRS] and the Positive and Negative Syndrome Scale [PANSS]) following the acute administration of intravenous, oral, or nasal THC, CBD, and placebo in healthy participants, and presenting data that allowed calculation of standardised mean change (SMC) scores for positive (including delusions and hallucinations), negative (such as blunted affect and amotivation), and general (including depression and anxiety) symptoms. We did a random-effects meta-analysis to assess the main outcomes of the effect sizes for total, positive, and negative PANSS and BPRS scores measured in healthy participants following THC administration versus placebo. Because the number of studies to do a meta-analysis on CBD's moderating effects was insufficient, this outcome was only systematically reviewed. This study is registered with PROSPERO, CRD42019136674. FINDINGS 15 eligible studies involving the acute administration of THC and four studies on CBD plus THC administration were identified. Compared with placebo, THC significantly increased total symptom severity with a large effect size (assessed in nine studies, with ten independent samples, involving 196 participants: SMC 1·10 [95% CI 0·92-1·28], p<0·0001); positive symptom severity (assessed in 14 studies, with 15 independent samples, involving 324 participants: SMC 0·91 [95% CI 0·68-1·14], p<0·0001); and negative symptom severity with a large effect size (assessed in 12 studies, with 13 independent samples, involving 267 participants: SMC 0·78 [95% CI 0·59-0·97], p<0·0001). In the systematic review, of the four studies evaluating CBD's effects on THC-induced symptoms, only one identified a significant reduction in symptoms. INTERPRETATION A single THC administration induces psychotic, negative, and other psychiatric symptoms with large effect sizes. There is no consistent evidence that CBD induces symptoms or moderates the effects of THC. These findings highlight the potential risks associated with the use of cannabis and other cannabinoids that contain THC for recreational or therapeutic purposes. FUNDING UK Medical Research Council, Maudsley Charity, Brain and Behavior Research Foundation, Wellcome Trust, and the UK National Institute for Health Research.
Collapse
Affiliation(s)
- Guy Hindley
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Katherine Beck
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; South London and the Maudsley NHS Foundation Trust, London, UK; MRC London Institute of Medical Sciences, Hammersmith Hospital Campus, London, UK; Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Faith Borgan
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Cedric E Ginestet
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Department of Biostatistics and Health Informatics, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Robert McCutcheon
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Daniel Kleinloog
- Department of Intensive Care Medicine, Leiden University Medical Hospital, Leiden, Netherlands
| | - Suhas Ganesh
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA; Abraham Ribicoff Research Facilities, Connecticut Mental Health Center, New Haven, CT, USA; VA Connecticut Healthcare System, West Haven, CT, USA
| | - Rajiv Radhakrishnan
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA; Abraham Ribicoff Research Facilities, Connecticut Mental Health Center, New Haven, CT, USA; VA Connecticut Healthcare System, West Haven, CT, USA
| | - Deepak Cyril D'Souza
- Abraham Ribicoff Research Facilities, Connecticut Mental Health Center, New Haven, CT, USA; VA Connecticut Healthcare System, West Haven, CT, USA
| | - Oliver D Howes
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; South London and the Maudsley NHS Foundation Trust, London, UK; MRC London Institute of Medical Sciences, Hammersmith Hospital Campus, London, UK; Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK.
| |
Collapse
|
46
|
Navarrete F, García-Gutiérrez MS, Jurado-Barba R, Rubio G, Gasparyan A, Austrich-Olivares A, Manzanares J. Endocannabinoid System Components as Potential Biomarkers in Psychiatry. Front Psychiatry 2020; 11:315. [PMID: 32395111 PMCID: PMC7197485 DOI: 10.3389/fpsyt.2020.00315] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 03/30/2020] [Indexed: 12/19/2022] Open
Abstract
The high heterogeneity of psychiatric disorders leads to a lack of diagnostic precision. Therefore, the search of biomarkers is a fundamental aspect in psychiatry to reach a more personalized medicine. The endocannabinoid system (ECS) has gained increasing interest due to its involvement in many different functional processes in the brain, including the regulation of emotions, motivation, and cognition. This article reviews the role of the main components of the ECS as biomarkers in certain psychiatric disorders. Studies carried out in rodents evaluating the effects of pharmacological and genetic manipulation of cannabinoid receptors or endocannabinoids (eCBs) degrading enzymes were included. Likewise, the ECS-related alterations occurring at the molecular level in animal models reproducing some behavioral and/or neuropathological aspects of psychiatric disorders were reviewed. Furthermore, clinical studies evaluating gene or protein alterations in post-mortem brain tissue or in vivo blood, plasma, and cerebrospinal fluid (CSF) samples were analyzed. Also, the results from neuroimaging studies using positron emission tomography (PET) or functional magnetic resonance (fMRI) were included. This review shows the close involvement of cannabinoid receptor 1 (CB1r) in stress regulation and the development of mood disorders [anxiety, depression, bipolar disorder (BD)], in post-traumatic stress disorder (PTSD), as well as in the etiopathogenesis of schizophrenia, attention deficit hyperactivity disorder (ADHD), or eating disorders (i.e. anorexia and bulimia nervosa). On the other hand, recent results reveal the potential therapeutic action of the endocannabinoid tone manipulation by inhibition of eCBs degrading enzymes, as well as by the modulation of cannabinoid receptor 2 (CB2r) activity on anxiolytic, antidepressive, or antipsychotic associated effects. Further clinical research studies are needed; however, current evidence suggests that the components of the ECS may become promising biomarkers in psychiatry to improve, at least in part, the diagnosis and pharmacological treatment of psychiatric disorders.
Collapse
Affiliation(s)
- Francisco Navarrete
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Alicante, Spain.,Red Temática de Investigación Cooperativa en Salud (RETICS), Red de Trastornos Adictivos, Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain
| | - María Salud García-Gutiérrez
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Alicante, Spain.,Red Temática de Investigación Cooperativa en Salud (RETICS), Red de Trastornos Adictivos, Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain
| | - Rosa Jurado-Barba
- Instituto de Investigación i+12, Hospital Universitario 12 de Octubre, Madrid, Spain.,Servicio de Psiquiatría, Hospital Universitario 12 de Octubre, Madrid, Spain.,Departamento de Psicología, Facultad de Educación y Salud, Universidad Camilo José Cela, Madrid, Spain
| | - Gabriel Rubio
- Red Temática de Investigación Cooperativa en Salud (RETICS), Red de Trastornos Adictivos, Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain.,Instituto de Investigación i+12, Hospital Universitario 12 de Octubre, Madrid, Spain.,Servicio de Psiquiatría, Hospital Universitario 12 de Octubre, Madrid, Spain.,Department of Psychiatry, Complutense University of Madrid, Madrid, Spain
| | - Ani Gasparyan
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Alicante, Spain.,Red Temática de Investigación Cooperativa en Salud (RETICS), Red de Trastornos Adictivos, Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain
| | | | - Jorge Manzanares
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Alicante, Spain.,Red Temática de Investigación Cooperativa en Salud (RETICS), Red de Trastornos Adictivos, Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain
| |
Collapse
|
47
|
Davies C, Bhattacharyya S. Cannabidiol as a potential treatment for psychosis. Ther Adv Psychopharmacol 2019; 9:2045125319881916. [PMID: 31741731 PMCID: PMC6843725 DOI: 10.1177/2045125319881916] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 09/19/2019] [Indexed: 12/22/2022] Open
Abstract
Psychotic disorders such as schizophrenia are heterogeneous and often debilitating conditions that contribute substantially to the global burden of disease. The introduction of dopamine D2 receptor antagonists in the 1950s revolutionised the treatment of psychotic disorders and they remain the mainstay of our treatment arsenal for psychosis. However, traditional antipsychotics are associated with a number of side effects and a significant proportion of patients do not achieve an adequate remission of symptoms. There is therefore a need for novel interventions, particularly those with a non-D2 antagonist mechanism of action. Cannabidiol (CBD), a non-intoxicating constituent of the cannabis plant, has emerged as a potential novel class of antipsychotic with a unique mechanism of action. In this review, we set out the prospects of CBD as a potential novel treatment for psychotic disorders. We first review the evidence from the perspective of preclinical work and human experimental and neuroimaging studies. We then synthesise the current evidence regarding the clinical efficacy of CBD in terms of positive, negative and cognitive symptoms, safety and tolerability, and potential mechanisms by which CBD may have antipsychotic effects.
Collapse
Affiliation(s)
- Cathy Davies
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - Sagnik Bhattacharyya
- Department of Psychosis Studies, 6th Floor, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, 16 De Crespigny Park, London, SE5 8AF, UK
| |
Collapse
|