1
|
Duan R, Hong CG, Wang X, Lu M, Xie H, Liu ZZ. Olfactory mucosa mesenchymal stem cells alleviate pulmonary fibrosis via the immunomodulation and reduction of inflammation. BMC Pulm Med 2024; 24:14. [PMID: 38178092 PMCID: PMC10768423 DOI: 10.1186/s12890-023-02834-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 12/28/2023] [Indexed: 01/06/2024] Open
Abstract
BACKGROUND Pulmonary fibrosis (PF) is a progressive fibrosing interstitial pneumonia that leads to respiratory failure and other complications, which is ultimately fatal. Mesenchymal stem cells (MSCs) transplant is a promising strategy to solve this problem, while the procurement of MSCs from the patient for autotransplant remains a challenge. METHODS Here, we presented olfactory mucosa mesenchymal stem cells (OM-MSCs) from mouse turbinate and determined the preventing efficacy of allotransplant for PF. We demonstrated the antiinflammation and immunomodulatory effects of OM-MSCs. Flow cytometric analysis was used to verify the effect of OM-MSCs on monocyte-derived macrophage populations in the lung. RESULTS Administration of OM-MSCs reduces inflammation, attenuates the matrix metallopeptidase 13 (MMP13) expression level and restores the bleomycin (BLM)-induced pulmonary fibrosis by assessing the architecture of lung, collagen type I; (COL1A1), actin alpha 2, smooth muscle, aorta (ACTA2/α-SMA) and hydroxyproline. This therapeutic effect of OM-MSCs was related to the increase in the ratio of nonclassical monocytes to proinflammatory monocytes in the lung. CONCLUSIONS This study suggests that transplant of OM-MSCs represents an effective and safe treatment for PF.
Collapse
Affiliation(s)
- Ran Duan
- Department of Sports Medicine, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
| | - Chun-Gu Hong
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
| | - Xin Wang
- Department of Sports Medicine, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
| | - Ming Lu
- Department of Neurosurgery, Second affiliated Hospital of Hunan Normal University (921 Hospital of PLA), 410081, Changsha, Hunan, China
| | - Hui Xie
- Department of Sports Medicine, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China.
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China.
| | - Zheng-Zhao Liu
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, 524001, Zhanjiang, Guangdong, China.
| |
Collapse
|
2
|
Ko T, Choi R, Issa K, Gupta R, Llinas E, Morey L, Finlay JB, Goldstein BJ. Polycomb repressive complex 2 regulates basal cell fate during adult olfactory neurogenesis. Stem Cell Reports 2023; 18:2283-2296. [PMID: 37832538 PMCID: PMC10679661 DOI: 10.1016/j.stemcr.2023.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 10/15/2023] Open
Abstract
Adult neurogenesis occurs in the mammalian olfactory epithelium to maintain populations of neurons that are vulnerable to injury yet essential for olfaction. Multipotent olfactory basal stem cells are activated by damage, although mechanisms regulating lineage decisions are not understood. Using mouse lesion models, we focused on defining the role of Polycomb repressive complexes (PRCs) in olfactory neurogenesis. PRC2 has a well-established role in developing tissues, orchestrating transcriptional programs via chromatin modification. PRC2 proteins are expressed in olfactory globose basal cells (GBCs) and nascent neurons. Conditional PRC2 loss perturbs lesion-induced neuron production, accompanied by altered histone modifications and misexpression of lineage-specific transcription factors in GBCs. De-repression of Sox9 in PRC2-mutant GBCs is accompanied by increased Bowman's gland production, defining an unrecognized role for PRC2 in regulating gland versus neuron cell fate. Our findings support a model for PRC2-dependent mechanisms promoting sensory neuronal differentiation in an adult neurogenic niche.
Collapse
Affiliation(s)
- Tiffany Ko
- Department of Neurobiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Rhea Choi
- Department of Head and Neck Surgery & Communication Sciences, Duke University School of Medicine, Durham, NC 27710, USA
| | - Khalil Issa
- Department of Head and Neck Surgery & Communication Sciences, Duke University School of Medicine, Durham, NC 27710, USA
| | - Rupali Gupta
- Department of Head and Neck Surgery & Communication Sciences, Duke University School of Medicine, Durham, NC 27710, USA
| | - Edward Llinas
- Department of Head and Neck Surgery & Communication Sciences, Duke University School of Medicine, Durham, NC 27710, USA
| | - Lluis Morey
- Sylvester Comprehensive Cancer Center and Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - John B Finlay
- Medical Scientist Training Program, Duke University School of Medicine, Durham, NC 27710, USA
| | - Bradley J Goldstein
- Department of Neurobiology, Duke University School of Medicine, Durham, NC 27710, USA; Department of Head and Neck Surgery & Communication Sciences, Duke University School of Medicine, Durham, NC 27710, USA.
| |
Collapse
|
3
|
Finlay JB, Abi Hachem R, Jang DW, Osazuwa-Peters N, Goldstein BJ. Deconstructing Olfactory Epithelium Developmental Pathways in Olfactory Neuroblastoma. CANCER RESEARCH COMMUNICATIONS 2023; 3:980-990. [PMID: 37377616 PMCID: PMC10243222 DOI: 10.1158/2767-9764.crc-23-0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/13/2023] [Accepted: 05/11/2023] [Indexed: 06/29/2023]
Abstract
Olfactory neuroblastoma is a rare tumor arising from the olfactory cleft region of the nasal cavity. Because of the low incidence of this tumor, as well as an absence of established cell lines and murine models, understanding the mechanisms driving olfactory neuroblastoma pathobiology has been challenging. Here, we sought to apply advances from research on the human olfactory epithelial neurogenic niche, along with new biocomputational approaches, to better understand the cellular and molecular factors in low- and high-grade olfactory neuroblastoma and how specific transcriptomic markers may predict prognosis. We analyzed a total of 19 olfactory neuroblastoma samples with available bulk RNA-sequencing and survival data, along with 10 samples from normal olfactory epithelium. A bulk RNA-sequencing deconvolution model identified a significant increase in globose basal cell (GBC) and CD8 T-cell identities in high-grade tumors (GBC from ∼0% to 8%, CD8 T cell from 0.7% to 2.2%), and significant decreases in mature neuronal, Bowman's gland, and olfactory ensheathing programs, in high-grade tumors (mature neuronal from 3.7% to ∼0%, Bowman's gland from 18.6% to 10.5%, olfactory ensheathing from 3.4% to 1.1%). Trajectory analysis identified potential regulatory pathways in proliferative olfactory neuroblastoma cells, including PRC2, which was validated by immunofluorescence staining. Survival analysis guided by gene expression in bulk RNA-sequencing data identified favorable prognostic markers such as SOX9, S100B, and PLP1 expression. Significance Our analyses provide a basis for additional research on olfactory neuroblastoma management, as well as identification of potential new prognostic markers.
Collapse
Affiliation(s)
- John B. Finlay
- Medical Scientist Training Program, Duke University School of Medicine, Durham, North Carolina
- Department of Head and Neck Surgery & Communication Sciences, Duke University, School of Medicine, Durham, North Carolina
- Department of Cell and Molecular Biology, Duke University School of Medicine, Durham, North Carolina
| | - Ralph Abi Hachem
- Department of Head and Neck Surgery & Communication Sciences, Duke University, School of Medicine, Durham, North Carolina
| | - David W. Jang
- Department of Head and Neck Surgery & Communication Sciences, Duke University, School of Medicine, Durham, North Carolina
| | - Nosayaba Osazuwa-Peters
- Department of Head and Neck Surgery & Communication Sciences, Duke University, School of Medicine, Durham, North Carolina
| | - Bradley J. Goldstein
- Department of Head and Neck Surgery & Communication Sciences, Duke University, School of Medicine, Durham, North Carolina
- Department of Cell and Molecular Biology, Duke University School of Medicine, Durham, North Carolina
- Department of Neurobiology, Duke University School of Medicine, Durham, North Carolina
| |
Collapse
|
4
|
Jaloux C, Bonnet M, Vogtensperger M, Witters M, Veran J, Giraudo L, Sabatier F, Michel J, Legré R, Guiraudie-Capraz G, Féron F. Human nasal olfactory stem cells, purified as advanced therapy medicinal products, improve neuronal differentiation. Front Neurosci 2022; 16:1042276. [PMID: 36466172 PMCID: PMC9713000 DOI: 10.3389/fnins.2022.1042276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 11/04/2022] [Indexed: 04/11/2024] Open
Abstract
BACKGROUND Olfactory ecto-mesenchymal stem cells (OE-MSC) are mesenchymal stem cells derived from the lamina propria of the nasal mucosa. They display neurogenic and immunomodulatory properties and were shown to induce recovery in animal models of spinal cord trauma, hearing loss, Parkinsons's disease, amnesia, and peripheral nerve injury. As a step toward clinical practice, we sought to (i) devise a culture protocol that meets the requirements set by human health agencies and (ii) assess the efficacy of stem cells on neuron differentiation. METHODS Nasal olfactory mucosa biopsies from three donors were used to design and validate the good manufacturing process for purifying stem cells. All processes and procedures were performed by expert staff from the cell therapy laboratory of the public hospital of Marseille (AP-HM), according to aseptic handling manipulations. Premises, materials and air were kept clean at all times to avoid cross-contamination, accidents, or even fatalities. Purified stem cells were cultivated for 24 or 48 h and conditioned media were collected before being added to the culture medium of the neuroblastoma cell line Neuro2a. RESULTS Compared to the explant culture-based protocol, enzymatic digestion provides higher cell numbers more rapidly and is less prone to contamination. The use of platelet lysate in place of fetal calf serum is effective in promoting higher cell proliferation (the percentage of CFU-F progenitors is 15.5%), with the optimal percentage of platelet lysate being 10%. Cultured OE-MSCs do not show chromosomal rearrangement and, as expected, express the usual phenotypic markers of mesenchymal stem cells. When incorporated in standard culture medium, the conditioned medium of purified OE-MSCs promotes cell differentiation of Neuro2a neuroblastoma cells. CONCLUSION We developed a safer and more efficient manufacturing process for clinical grade olfactory stem cells. With this protocol, human OE-MSCs will soon be used in a Phase I clinical based on their autologous transplantation in digital nerves with a neglected injury. However, further studies are required to unveil the underlying mechanisms of action.
Collapse
Affiliation(s)
- Charlotte Jaloux
- CNRS, INP, UMR 7051, Institut de Neuropathophysiologie, Equipe Nasal Olfactory Stemness and Epigenesis (NOSE), Aix Marseille University, Marseille, France
- Department of Hand Surgery and Reconstructive Surgery of the Limbs, La Timone University Hospital, Assistance Publique Hôpitaux de Marseille, Marseille, France
| | - Maxime Bonnet
- CNRS, INP, UMR 7051, Institut de Neuropathophysiologie, Equipe Nasal Olfactory Stemness and Epigenesis (NOSE), Aix Marseille University, Marseille, France
- Faculté des Sciences du Sport de Marseille, CNRS, ISM, UMR 7287, Institut des Sciences du Mouvement Etienne-Jules MAREY, Equipe Plasticité des Systèmes Nerveux et Musculaire (PSNM), Parc Scientifique et Technologique de Luminy, Aix Marseille University, Marseille, France
| | - Marie Vogtensperger
- Cell Therapy Department, Hôpital de la Conception, AP-HM, INSERM CIC BT 1409, Marseille, France
| | - Marie Witters
- CNRS, INP, UMR 7051, Institut de Neuropathophysiologie, Equipe Nasal Olfactory Stemness and Epigenesis (NOSE), Aix Marseille University, Marseille, France
- Department of Hand Surgery and Reconstructive Surgery of the Limbs, La Timone University Hospital, Assistance Publique Hôpitaux de Marseille, Marseille, France
| | - Julie Veran
- Cell Therapy Department, Hôpital de la Conception, AP-HM, INSERM CIC BT 1409, Marseille, France
| | - Laurent Giraudo
- Cell Therapy Department, Hôpital de la Conception, AP-HM, INSERM CIC BT 1409, Marseille, France
| | - Florence Sabatier
- Cell Therapy Department, Hôpital de la Conception, AP-HM, INSERM CIC BT 1409, Marseille, France
- Aix-Marseille Université, C2VN, UMR-1263, INSERM, INRA 1260, UFR de Pharmacie, Marseille, France
| | - Justin Michel
- Department of Otorhinolaryngology and Head and Neck Surgery, Assistance Publique des Hôpitaux de Marseille, Institut Universitaire des Systèmes Thermiques Industriels, La Conception University Hospital, Aix Marseille University, Marseille, France
| | - Regis Legré
- Department of Hand Surgery and Reconstructive Surgery of the Limbs, La Timone University Hospital, Assistance Publique Hôpitaux de Marseille, Marseille, France
| | - Gaëlle Guiraudie-Capraz
- CNRS, INP, UMR 7051, Institut de Neuropathophysiologie, Equipe Nasal Olfactory Stemness and Epigenesis (NOSE), Aix Marseille University, Marseille, France
| | - François Féron
- CNRS, INP, UMR 7051, Institut de Neuropathophysiologie, Equipe Nasal Olfactory Stemness and Epigenesis (NOSE), Aix Marseille University, Marseille, France
| |
Collapse
|
5
|
Abstract
SARS-CoV-2, the virus that causes coronavirus disease (COVID)-19, has become a persistent global health threat. Individuals who are symptomatic for COVID-19 frequently exhibit respiratory illness, which is often accompanied by neurological symptoms of anosmia and fatigue. Mounting clinical data also indicate that many COVID-19 patients display long-term neurological disorders postinfection such as cognitive decline, which emphasizes the need to further elucidate the effects of COVID-19 on the central nervous system. In this review article, we summarize an emerging body of literature describing the impact of SARS-CoV-2 infection on central nervous system (CNS) health and highlight important areas of future investigation.
Collapse
Affiliation(s)
- Nick R. Natale
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia Health System, Charlottesville, VA, USA
- Center for Brain Immunology and Glia (BIG), Department of Neuroscience, University of Virginia, Charlottesville, VA, USA
- Neuroscience Graduate Program, University of Virginia, Charlottesville, VA, USA
- Global Biothreats Graduate Training Program, University of Virginia, Charlottesville, VA, USA
| | - John R. Lukens
- Center for Brain Immunology and Glia (BIG), Department of Neuroscience, University of Virginia, Charlottesville, VA, USA
- Neuroscience Graduate Program, University of Virginia, Charlottesville, VA, USA
- Global Biothreats Graduate Training Program, University of Virginia, Charlottesville, VA, USA
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia Health System, Charlottesville, VA, USA
| | - William A. Petri
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia Health System, Charlottesville, VA, USA
- Center for Brain Immunology and Glia (BIG), Department of Neuroscience, University of Virginia, Charlottesville, VA, USA
- Neuroscience Graduate Program, University of Virginia, Charlottesville, VA, USA
- Global Biothreats Graduate Training Program, University of Virginia, Charlottesville, VA, USA
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Pathology, University of Virginia Health System, Charlottesville, VA, USA
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia Health System, Charlottesville, VA, USA
| |
Collapse
|
6
|
Sun S, Lu D, Zhong H, Li C, Yang N, Huang B, Ni S, Li X. Donors for nerve transplantation in craniofacial soft tissue injuries. Front Bioeng Biotechnol 2022; 10:978980. [PMID: 36159691 PMCID: PMC9490317 DOI: 10.3389/fbioe.2022.978980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/16/2022] [Indexed: 11/13/2022] Open
Abstract
Neural tissue is an important soft tissue; for instance, craniofacial nerves govern several aspects of human behavior, including the expression of speech, emotion transmission, sensation, and motor function. Therefore, nerve repair to promote functional recovery after craniofacial soft tissue injuries is indispensable. However, the repair and regeneration of craniofacial nerves are challenging due to their intricate anatomical and physiological characteristics. Currently, nerve transplantation is an irreplaceable treatment for segmental nerve defects. With the development of emerging technologies, transplantation donors have become more diverse. The present article reviews the traditional and emerging alternative materials aimed at advancing cutting-edge research on craniofacial nerve repair and facilitating the transition from the laboratory to the clinic. It also provides a reference for donor selection for nerve repair after clinical craniofacial soft tissue injuries. We found that autografts are still widely accepted as the first options for segmental nerve defects. However, allogeneic composite functional units have a strong advantage for nerve transplantation for nerve defects accompanied by several tissue damages or loss. As an alternative to autografts, decellularized tissue has attracted increasing attention because of its low immunogenicity. Nerve conduits have been developed from traditional autologous tissue to composite conduits based on various synthetic materials, with developments in tissue engineering technology. Nerve conduits have great potential to replace traditional donors because their structures are more consistent with the physiological microenvironment and show self-regulation performance with improvements in 3D technology. New materials, such as hydrogels and nanomaterials, have attracted increasing attention in the biomedical field. Their biocompatibility and stimuli-responsiveness have been gradually explored by researchers in the regeneration and regulation of neural networks.
Collapse
Affiliation(s)
- Sishuai Sun
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Di Lu
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Hanlin Zhong
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Chao Li
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Ning Yang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Bin Huang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Shilei Ni
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
- *Correspondence: Shilei Ni, ; Xingang Li,
| | - Xingang Li
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
- *Correspondence: Shilei Ni, ; Xingang Li,
| |
Collapse
|
7
|
Kocagöz Y, Demirler MC, Eski SE, Güler K, Dokuzluoglu Z, Fuss SH. Disparate progenitor cell populations contribute to maintenance and repair neurogenesis in the zebrafish olfactory epithelium. Cell Tissue Res 2022; 388:331-358. [PMID: 35266039 DOI: 10.1007/s00441-022-03597-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 02/02/2022] [Indexed: 12/25/2022]
Abstract
Olfactory sensory neurons (OSNs) undergo constant turnover under physiological conditions but also regenerate efficiently following tissue injury. Maintenance and repair neurogenesis in the olfactory epithelium (OE) have been attributed to the selective activity of globose (GBCs) and horizontal basal cells (HBCs), respectively. In zebrafish, cells with GBC-like properties are localized to the peripheral margins of the sensory OE and contribute to OSN neurogenesis in the intact OE, while cells that resemble HBCs at the morphological and molecular level are more uniformly distributed. However, the contribution of these cells to the restoration of the injured OE has not been demonstrated. Here, we provide a detailed cellular and molecular analysis of the tissue response to injury and show that a dual progenitor cell system also exists in zebrafish. Zebrafish HBCs respond to the structural damage of the OE and generate a transient population of proliferative neurogenic progenitors that restores OSNs. In contrast, selective ablation of OSNs by axotomy triggers neurogenic GBC proliferation, suggesting that distinct signaling events activate GBC and HBC responses. Molecular analysis of differentially expressed genes in lesioned and regenerating OEs points toward an involvement of the canonical Wnt/β-catenin pathway. Activation of Wnt signaling appears to be sufficient to stimulate mitotic activity, while inhibition significantly reduces, but does not fully eliminate, HBC responses. Zebrafish HBCs are surprisingly active even under physiological conditions with a strong bias toward the zones of constitutive OSN neurogenesis, suggestive of a direct lineage relationship between progenitor cell subtypes.
Collapse
Affiliation(s)
- Yigit Kocagöz
- Department of Molecular Biology and Genetics, Center for Life Sciences and Technologies, Bogazici University, Kuzey Park 319, 34342, Bebek - Istanbul, Turkey
| | - Mehmet Can Demirler
- Department of Molecular Biology and Genetics, Center for Life Sciences and Technologies, Bogazici University, Kuzey Park 319, 34342, Bebek - Istanbul, Turkey
| | - Sema Elif Eski
- Department of Molecular Biology and Genetics, Center for Life Sciences and Technologies, Bogazici University, Kuzey Park 319, 34342, Bebek - Istanbul, Turkey
- Institute of Interdisciplinary Research in Human and Molecular Biology, Free University of Brussels, Campus Erasme, 1070, Brussels, Belgium
| | - Kardelen Güler
- Department of Molecular Biology and Genetics, Center for Life Sciences and Technologies, Bogazici University, Kuzey Park 319, 34342, Bebek - Istanbul, Turkey
| | - Zeynep Dokuzluoglu
- Department of Molecular Biology and Genetics, Center for Life Sciences and Technologies, Bogazici University, Kuzey Park 319, 34342, Bebek - Istanbul, Turkey
| | - Stefan H Fuss
- Department of Molecular Biology and Genetics, Center for Life Sciences and Technologies, Bogazici University, Kuzey Park 319, 34342, Bebek - Istanbul, Turkey.
| |
Collapse
|
8
|
Fitzek M, Patel PK, Solomon PD, Lin B, Hummel T, Schwob JE, Holbrook EH. Integrated age-related immunohistological changes occur in human olfactory epithelium and olfactory bulb. J Comp Neurol 2022; 530:2154-2175. [PMID: 35397118 PMCID: PMC9232960 DOI: 10.1002/cne.25325] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 03/15/2022] [Accepted: 03/21/2022] [Indexed: 12/20/2022]
Abstract
Olfactory epithelium (OE) is capable of lifelong regeneration due to presence of basal progenitor cells that respond to injury or neuronal loss with increased activity. However, this capability diminishes with advancing age and a decrease in odor perception in older individuals is well established. To characterize changes associated with age in the peripheral olfactory system, an in-depth analysis of the OE and its neuronal projections onto the olfactory bulb (OB) as a function of age was performed. Human olfactory tissue autopsy samples from 36 subjects with an average age of 74.1 years were analyzed. Established cell type-specific antibodies were used to identify OE component cells in whole mucosal sheets and epithelial sections as well as glomeruli and periglomerular structures in OB sections. With age, a reduction in OE area occurs across the mucosa progressing in a posterior-dorsal direction. Deterioration of the olfactory system is accompanied with diminution of neuron-containing OE, mature olfactory sensory neurons (OSNs) and OB innervation. On an individual level, the neuronal density within the epithelium appears to predict synapse density within the OB. The innervation of the OB is uneven with higher density at the ventral half that decreases with age as opposed to stable innervation at the dorsal half. Respiratory metaplasia, submucosal cysts, and neuromata, were commonly identified in aged OE. The finding of respiratory metaplasia and aneuronal epithelium with reduction in global basal cells suggests a progression of stem cell quiescence as an underlying pathophysiology of age-related smell loss in humans. KEY POINTS: A gradual loss of olfactory sensory neurons with age in human olfactory epithelium is also reflected in a reduction in glomeruli within the olfactory bulb. This gradual loss of neurons and synaptic connections with age occurs in a specific, spatially inhomogeneous manner. Decreasing mitotically active olfactory epithelium basal cells may contribute to age-related neuronal decline and smell loss in humans.
Collapse
Affiliation(s)
- Mira Fitzek
- Department of Otorhinolaryngology, Smell and Taste Clinic, University of Dresden Medical School, Dresden, Germany.,Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Parthkumar K Patel
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Peter D Solomon
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Brian Lin
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Thomas Hummel
- Department of Otorhinolaryngology, Smell and Taste Clinic, University of Dresden Medical School, Dresden, Germany
| | - James E Schwob
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Eric H Holbrook
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, USA.,Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Massachusetts Eye and Ear, Boston, Massachusetts, USA
| |
Collapse
|
9
|
Patel ZM, Holbrook EH, Turner JH, Adappa ND, Albers MW, Altundag A, Appenzeller S, Costanzo RM, Croy I, Davis GE, Dehgani-Mobaraki P, Doty RL, Duffy VB, Goldstein BJ, Gudis DA, Haehner A, Higgins TS, Hopkins C, Huart C, Hummel T, Jitaroon K, Kern RC, Khanwalkar AR, Kobayashi M, Kondo K, Lane AP, Lechner M, Leopold DA, Levy JM, Marmura MJ, Mclelland L, Miwa T, Moberg PJ, Mueller CA, Nigwekar SU, O'Brien EK, Paunescu TG, Pellegrino R, Philpott C, Pinto JM, Reiter ER, Roalf DR, Rowan NR, Schlosser RJ, Schwob J, Seiden AM, Smith TL, Soler ZM, Sowerby L, Tan BK, Thamboo A, Wrobel B, Yan CH. International consensus statement on allergy and rhinology: Olfaction. Int Forum Allergy Rhinol 2022; 12:327-680. [PMID: 35373533 DOI: 10.1002/alr.22929] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/01/2021] [Accepted: 11/19/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND The literature regarding clinical olfaction, olfactory loss, and olfactory dysfunction has expanded rapidly over the past two decades, with an exponential rise in the past year. There is substantial variability in the quality of this literature and a need to consolidate and critically review the evidence. It is with that aim that we have gathered experts from around the world to produce this International Consensus on Allergy and Rhinology: Olfaction (ICAR:O). METHODS Using previously described methodology, specific topics were developed relating to olfaction. Each topic was assigned a literature review, evidence-based review, or evidence-based review with recommendations format as dictated by available evidence and scope within the ICAR:O document. Following iterative reviews of each topic, the ICAR:O document was integrated and reviewed by all authors for final consensus. RESULTS The ICAR:O document reviews nearly 100 separate topics within the realm of olfaction, including diagnosis, epidemiology, disease burden, diagnosis, testing, etiology, treatment, and associated pathologies. CONCLUSION This critical review of the existing clinical olfaction literature provides much needed insight and clarity into the evaluation, diagnosis, and treatment of patients with olfactory dysfunction, while also clearly delineating gaps in our knowledge and evidence base that we should investigate further.
Collapse
Affiliation(s)
- Zara M Patel
- Otolaryngology, Stanford University School of Medicine, Stanford, California, USA
| | - Eric H Holbrook
- Otolaryngology, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, USA
| | - Justin H Turner
- Otolaryngology, Vanderbilt School of Medicine, Nashville, Tennessee, USA
| | - Nithin D Adappa
- Otolaryngology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Mark W Albers
- Neurology, Harvard Medical School, Boston, Massachusetts, USA
| | - Aytug Altundag
- Otolaryngology, Biruni University School of Medicine, İstanbul, Turkey
| | - Simone Appenzeller
- Rheumatology, School of Medical Sciences, University of Campinas, São Paulo, Brazil
| | - Richard M Costanzo
- Physiology and Biophysics and Otolaryngology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Ilona Croy
- Psychology and Psychosomatic Medicine, TU Dresden, Dresden, Germany
| | - Greg E Davis
- Otolaryngology, Proliance Surgeons, Seattle and Puyallup, Washington, USA
| | - Puya Dehgani-Mobaraki
- Associazione Naso Sano, Umbria Regional Registry of Volunteer Activities, Corciano, Italy
| | - Richard L Doty
- Smell and Taste Center, Otolaryngology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Valerie B Duffy
- Allied Health Sciences, University of Connecticut, Storrs, Connecticut, USA
| | | | - David A Gudis
- Otolaryngology, Columbia University Irving Medical Center, New York, USA
| | - Antje Haehner
- Smell and Taste, Otolaryngology, TU Dresden, Dresden, Germany
| | - Thomas S Higgins
- Otolaryngology, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Claire Hopkins
- Otolaryngology, Guy's and St. Thomas' Hospitals, London Bridge Hospital, London, UK
| | - Caroline Huart
- Otorhinolaryngology, Cliniques universitaires Saint-Luc, Institute of Neuroscience, Université catholgique de Louvain, Brussels, Belgium
| | - Thomas Hummel
- Smell and Taste, Otolaryngology, TU Dresden, Dresden, Germany
| | | | - Robert C Kern
- Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Ashoke R Khanwalkar
- Otolaryngology, Stanford University School of Medicine, Stanford, California, USA
| | - Masayoshi Kobayashi
- Otorhinolaryngology-Head and Neck Surgery, Mie University Graduate School of Medicine, Mie, Japan
| | - Kenji Kondo
- Otolaryngology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Andrew P Lane
- Otolaryngology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Matt Lechner
- Otolaryngology, Barts Health and University College London, London, UK
| | - Donald A Leopold
- Otolaryngology, University of Vermont Medical Center, Burlington, Vermont, USA
| | - Joshua M Levy
- Otolaryngology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Michael J Marmura
- Neurology Thomas Jefferson University School of Medicine, Philadelphia, Pennsylvania, USA
| | - Lisha Mclelland
- Otolaryngology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Takaki Miwa
- Otolaryngology, Kanazawa Medical University, Ishikawa, Japan
| | - Paul J Moberg
- Psychiatry, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | | | - Sagar U Nigwekar
- Division of Nephrology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Erin K O'Brien
- Otolaryngology, Mayo Clinic Rochester, Rochester, Minnesota, USA
| | - Teodor G Paunescu
- Division of Nephrology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | | | - Carl Philpott
- Otolaryngology, University of East Anglia, Norwich, UK
| | - Jayant M Pinto
- Otolaryngology, University of Chicago, Chicago, Illinois, USA
| | - Evan R Reiter
- Otolaryngology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - David R Roalf
- Psychiatry, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Nicholas R Rowan
- Otolaryngology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Rodney J Schlosser
- Otolaryngology, Medical University of South Carolina, Mt Pleasant, South Carolina, USA
| | - James Schwob
- Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Allen M Seiden
- Otolaryngology, University of Cincinnati School of Medicine, Cincinnati, Ohio, USA
| | - Timothy L Smith
- Otolaryngology, Oregon Health and Sciences University, Portland, Oregon, USA
| | - Zachary M Soler
- Otolaryngology, Medical University of South Carolina, Mt Pleasant, South Carolina, USA
| | - Leigh Sowerby
- Otolaryngology, University of Western Ontario, London, Ontario, Canada
| | - Bruce K Tan
- Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Andrew Thamboo
- Otolaryngology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Bozena Wrobel
- Otolaryngology, Keck School of Medicine, USC, Los Angeles, California, USA
| | - Carol H Yan
- Otolaryngology, School of Medicine, UCSD, La Jolla, California, USA
| |
Collapse
|
10
|
Joseph KB, Awadallah N, Delay ER, Delay RJ. Transient Effects of Cyclophosphamide on Basal Cell Proliferation of Olfactory Epithelia. Chem Senses 2021; 45:549-561. [PMID: 32531016 DOI: 10.1093/chemse/bjaa039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cancer is often treated with broad-spectrum cytotoxic drugs that not only eradicate cancerous cells but also have detrimental side effects. One of these side effects, disruption of the olfactory system, impedes a patient's ability to smell, perceive flavor, and ultimately may interfere with their nutritional intake and recovery from cancer. Recent studies reported that the chemotherapy drug, cyclophosphamide (CYP), can damage gustatory epithelia and disrupt cell proliferation in olfactory epithelia. In this study, we asked if CYP altered globose and horizontal basal cell proliferation in the murine main olfactory epithelium (MOE) and vomeronasal organ (VNO). We used antibodies for Ki67, a marker strictly associated with cell proliferation, and Keratin 5, a marker for the cytoskeleton of horizontal basal cells. Our results revealed a significant CYP-induced decrease in the number of proliferative cells in both epithelia, especially globose basal cells in the MOE, within the first 1-2 days postinjection. Recovery of cell renewal was apparent 6 days after injection. The immunohistochemical markers showed significantly higher levels of globose and horizontal basal cell proliferation in CYP-injected mice at 14 and 30 days postinjection compared with control mice. The prolonged proliferative activation of globose and horizontal basal cells suggests that, besides altering proliferation of olfactory epithelia, the epithelial substrate needed for successful cell renewal may be adversely affected by CYP.
Collapse
Affiliation(s)
- Kyle B Joseph
- Department of Biology and Vermont Chemosensory Group, University of Vermont, Burlington, VT, USA.,Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, Philadelphia, PA, USA
| | - Nora Awadallah
- Department of Biology and Vermont Chemosensory Group, University of Vermont, Burlington, VT, USA.,City University of New York (CUNY) Neuroscience Collaborative, CUNY Graduate Center, New York City, NY, USA.,Department of Molecular, Cellular and Biomedical Sciences, The CUNY School of Medicine, City College, The City University of New York, New York City, NY, USA
| | - Eugene R Delay
- Department of Biology and Vermont Chemosensory Group, University of Vermont, Burlington, VT, USA
| | - Rona J Delay
- Department of Biology and Vermont Chemosensory Group, University of Vermont, Burlington, VT, USA
| |
Collapse
|
11
|
Glezer I, Bruni‐Cardoso A, Schechtman D, Malnic B. Viral infection and smell loss: The case of COVID-19. J Neurochem 2021; 157:930-943. [PMID: 32970861 PMCID: PMC7537178 DOI: 10.1111/jnc.15197] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/24/2020] [Accepted: 08/25/2020] [Indexed: 12/19/2022]
Abstract
Olfactory disorders have been increasingly reported in individuals infected with SARS-CoV-2, the virus causing the coronavirus disease 2019 (COVID-19). Losing the sense of smell has a strong impact on the quality of life, since it may lead to malnutrition, weight loss, food poisoning, depression, and exposure to dangerous chemicals. Individuals who suffer from anosmia (inability to smell) also cannot sense the flavor of food, which is a combination of taste and smell. Interestingly, infected individuals have reported sudden loss of smell with no congested nose, as is frequently observed in common colds or other upper respiratory tract infections. These observations suggest that SARS-CoV-2 infection leads to olfactory loss through a distinct mechanism, which is still unclear. This article provides an overview of olfactory loss and the recent findings relating to COVID-19. Possible mechanisms of SARS-CoV-2-induced olfactory loss are also discussed.
Collapse
Affiliation(s)
- Isaias Glezer
- Department of BiochemistryUNIFESPEscola Paulista de MedicinaUniversidade Federal de São PauloRua Tres de MaioSão PauloBrazil
| | | | | | - Bettina Malnic
- Department of BiochemistryUniversity of São PauloSão PauloBrazil
| |
Collapse
|
12
|
Gupta K, Mohanty SK, Mittal A, Kalra S, Kumar S, Mishra T, Ahuja J, Sengupta D, Ahuja G. The Cellular basis of loss of smell in 2019-nCoV-infected individuals. Brief Bioinform 2021; 22:873-881. [PMID: 32810867 PMCID: PMC7462334 DOI: 10.1093/bib/bbaa168] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 06/10/2020] [Accepted: 07/05/2020] [Indexed: 12/28/2022] Open
Abstract
A prominent clinical symptom of 2019-novel coronavirus (nCoV) infection is hyposmia/anosmia (decrease or loss of sense of smell), along with general symptoms such as fatigue, shortness of breath, fever and cough. The identity of the cell lineages that underpin the infection-associated loss of olfaction could be critical for the clinical management of 2019-nCoV-infected individuals. Recent research has confirmed the role of angiotensin-converting enzyme 2 (ACE2) and transmembrane protease serine 2 (TMPRSS2) as key host-specific cellular moieties responsible for the cellular entry of the virus. Accordingly, the ongoing medical examinations and the autopsy reports of the deceased individuals indicate that organs/tissues with high expression levels of ACE2, TMPRSS2 and other putative viral entry-associated genes are most vulnerable to the infection. We studied if anosmia in 2019-nCoV-infected individuals can be explained by the expression patterns associated with these host-specific moieties across the known olfactory epithelial cell types, identified from a recently published single-cell expression study. Our findings underscore selective expression of these viral entry-associated genes in a subset of sustentacular cells (SUSs), Bowman's gland cells (BGCs) and stem cells of the olfactory epithelium. Co-expression analysis of ACE2 and TMPRSS2 and protein-protein interaction among the host and viral proteins elected regulatory cytoskeleton protein-enriched SUSs as the most vulnerable cell type of the olfactory epithelium. Furthermore, expression, structural and docking analyses of ACE2 revealed the potential risk of olfactory dysfunction in four additional mammalian species, revealing an evolutionarily conserved infection susceptibility. In summary, our findings provide a plausible cellular basis for the loss of smell in 2019-nCoV-infected patients.
Collapse
Affiliation(s)
- Krishan Gupta
- Indraprastha Institute of Information Technology, Delhi
| | | | | | | | - Suvendu Kumar
- Indraprastha Institute of Information Technology, Delhi
| | - Tripti Mishra
- Indraprastha Institute of Information Technology, Delhi
| | - Jatin Ahuja
- Indraprastha Institute of Information Technology, Delhi
| | | | - Gaurav Ahuja
- Indraprastha Institute of Information Technology, Delhi
| |
Collapse
|
13
|
Syngeneic Transplantation of Rat Olfactory Stem Cells in a Vein Conduit Improves Facial Movements and Reduces Synkinesis after Facial Nerve Injury. Plast Reconstr Surg 2021; 146:1295-1305. [PMID: 33234960 DOI: 10.1097/prs.0000000000007367] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Posttraumatic facial paralysis is a disabling condition. Current surgical management by faciofacial nerve suture provides limited recovery. To improve the outcome, the authors evaluated an add-on strategy based on a syngeneic transplantation of nasal olfactory stem cells in a rat model of facial nerve injury. The main readouts of the study were the recording of whisking function and buccal synkinesis. METHODS Sixty rats were allocated to three groups. Animals with a 2-mm facial nerve loss were repaired with a femoral vein, filled or not with olfactory stem cells. These two groups were compared to similarly injured rats but with a faciofacial nerve suture. Olfactory stem cells were purified from rat olfactory mucosa. Three months after surgery, facial motor performance was evaluated using video-based motion analysis and electromyography. Synkinesis was assessed by electromyography, using measure of buccal involuntary movements during blink reflex, and double retrograde labeling of regenerating motoneurons. RESULTS The authors' study reveals that olfactory stem cell transplantation induces functional recovery in comparison to nontransplanted and faciofacial nerve suture groups. They significantly increase (1) maximal amplitude of vibrissae protraction and retraction cycles and (2) angular velocity during protraction of vibrissae. They also reduce buccal synkinesis, according to the two techniques used. However, olfactory stem cell transplantation did not improve axonal regrowth of the facial nerve, 3 months after surgery. CONCLUSIONS The authors show here that the adjuvant strategy of syngeneic transplantation of olfactory stem cells improves functional recovery. These promising results open the way for a phase I clinical trial based on the autologous engraftment of olfactory stem cells in patients with a facial nerve paralysis.
Collapse
|
14
|
Kurian SM, Naressi RG, Manoel D, Barwich AS, Malnic B, Saraiva LR. Odor coding in the mammalian olfactory epithelium. Cell Tissue Res 2021; 383:445-456. [PMID: 33409650 PMCID: PMC7873010 DOI: 10.1007/s00441-020-03327-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 10/27/2020] [Indexed: 12/31/2022]
Abstract
Noses are extremely sophisticated chemical detectors allowing animals to use scents to interpret and navigate their environments. Odor detection starts with the activation of odorant receptors (ORs), expressed in mature olfactory sensory neurons (OSNs) populating the olfactory mucosa. Different odorants, or different concentrations of the same odorant, activate unique ensembles of ORs. This mechanism of combinatorial receptor coding provided a possible explanation as to why different odorants are perceived as having distinct odors. Aided by new technologies, several recent studies have found that antagonist interactions also play an important role in the formation of the combinatorial receptor code. These findings mark the start of a new era in the study of odorant-receptor interactions and add a new level of complexity to odor coding in mammals.
Collapse
Affiliation(s)
| | | | | | | | - Bettina Malnic
- Department of Biochemistry, University of São Paulo, São Paulo, Brazil.
| | - Luis R Saraiva
- Sidra Medicine, Doha, Qatar.
- Monell Chemical Senses Center, Philadelphia, USA.
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar.
| |
Collapse
|
15
|
Lemons K, Fu Z, Ogura T, Lin W. TRPM5-expressing Microvillous Cells Regulate Region-specific Cell Proliferation and Apoptosis During Chemical Exposure. Neuroscience 2020; 434:171-190. [PMID: 32224228 DOI: 10.1016/j.neuroscience.2020.03.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 03/19/2020] [Accepted: 03/20/2020] [Indexed: 12/23/2022]
Abstract
The mammalian main olfactory epithelium (MOE) is exposed to a wide spectrum of external chemicals during respiration and relies on adaptive plasticity to maintain its structural and functional integrity. We previously reported that the chemo-responsive and cholinergic transient receptor potential channel M5 (TRPM5)-expressing-microvillous cells (MCs) in the MOE are required for maintaining odor-evoked electrophysiological responses and olfactory-guided behavior during two-week exposure to an inhaled chemical mixture. Here, we investigated the underlying factors by assessing the potential modulatory effects of TRPM5-MCs on MOE morphology and cell proliferation and apoptosis, which are important for MOE maintenance. In the posterior MOE of TRPM5-GFP mice, we found that two-week chemical exposure induced a significant increase in Ki67-expressing proliferating basal stem cells without a significant reduction in the thickness of the whole epithelium or mature olfactory sensory neuron (OSN) layer. This adaptive increase in stem cell proliferation was missing in chemical-exposed transcription factor Skn-1a knockout (Skn-1a-/-) mice lacking TRPM5-MCs. In addition, a greater number of isolated OSNs from chemical-exposed Skn-1a-/- mice displayed unhealthily high levels of resting intracellular Ca2+. Intriguingly, in the anterior MOE where we found a higher density of TRPM5-MCs, chemical-exposed TRPM5-GFP mice exhibited a time-dependent increase in apoptosis and a loss of mature OSNs without a significant increase in proliferation or neurogenesis to compensate for OSN loss. Together, our data suggest that TRPM5-MC-dependent region-specific upregulation of cell proliferation in the majority of the MOE during chemical exposure contributes to the adaptive maintenance of OSNs and olfactory function.
Collapse
Affiliation(s)
- Kayla Lemons
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| | - Ziying Fu
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| | - Tatsuya Ogura
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| | - Weihong Lin
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD 21250, USA.
| |
Collapse
|
16
|
Awadallah N, Proctor K, Joseph KB, Delay ER, Delay RJ. Cyclophosphamide has Long-Term Effects on Proliferation in Olfactory Epithelia. Chem Senses 2020; 45:97-109. [PMID: 31844905 PMCID: PMC7446702 DOI: 10.1093/chemse/bjz075] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Chemotherapy patients often experience chemosensory changes during and after drug therapy. The chemotherapy drug, cyclophosphamide (CYP), has known cytotoxic effects on sensory and proliferating cells of the taste system. Like the taste system, cells in the olfactory epithelia undergo continuous renewal. Therefore, we asked if a single injection of 75 mg/kg CYP would affect cell proliferation in the anterior dorsomedial region of the main olfactory epithelium (MOE) and the vomeronasal organ (VNO) from 0 to 125 days after injection. Both epithelia showed a decrease in Ki67-labeled cells compared to controls at day 1 and no Ki67+ cells at day 2 postinjection. In the sensory layer of the MOE, cell proliferation began to recover 4 days after CYP injection and by 6 days, the rate of proliferation was significantly greater than controls. Ki67+ cells peaked 30 days postinjection, then declined to control levels at day 45. Similar temporal sequences of initial CYP-induced suppression of cell proliferation followed by elevated rates peaking 30-45 days postinjection were seen in the sustentacular layer of the MOE and all 3 areas (sensory, sustentacular, marginal) of the VNO. CYP affected proliferation in the sensory layer of the MOE more than the sustentacular layer and all 3 areas of the VNO. These findings suggest that chemotherapy involving CYP is capable of affecting cell renewal of the olfactory system and likely contributes to clinical loss of function during and after chemotherapy.
Collapse
Affiliation(s)
- Nora Awadallah
- Neuroscience Program, Marsh Life Science, University of Vermont, Burlington, USA
| | - Kara Proctor
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, USA
| | - Kyle B Joseph
- Department of Biology, Marsh Life Science, University of Vermont, Burlington, USA
| | - Eugene R Delay
- Neuroscience Program, Marsh Life Science, University of Vermont, Burlington, USA
- Department of Biology, Marsh Life Science, University of Vermont, Burlington, USA
| | - Rona J Delay
- Neuroscience Program, Marsh Life Science, University of Vermont, Burlington, USA
- Department of Biology, Marsh Life Science, University of Vermont, Burlington, USA
| |
Collapse
|
17
|
Kanninen KM, Lampinen R, Rantanen LM, Odendaal L, Jalava P, Chew S, White AR. Olfactory cell cultures to investigate health effects of air pollution exposure: Implications for neurodegeneration. Neurochem Int 2020; 136:104729. [PMID: 32201281 DOI: 10.1016/j.neuint.2020.104729] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/01/2020] [Accepted: 03/18/2020] [Indexed: 12/18/2022]
Abstract
Air pollution is a major, global public health concern. A growing body of evidence shows that exposure to air pollutants may impair the brain. Living in highly polluted areas has been linked to several neurodegenerative diseases, where exposure to complex mixtures of air pollutants in urban environments may have harmful effects on brain function. These harmful effects are thought to originate from elevated inflammation and oxidative stress. The olfactory epithelium is a key entry site of air pollutants into the brain as the particles are deposited in the upper airways and the nasal region. A potential source of patient-derived cells for study of air pollutant effects is the olfactory mucosa, which constitutes a central part of the olfactory epithelium. This review first summarizes the current literature on the available in vitro models of the olfactory epithelium. It then describes how alterations of the olfactory mucosa are linked to neurodegeneration and discusses potential therapeutic applications of these cells for neurodegenerative diseases. Finally, it reviews the research performed on the effects of air pollutant exposure in cells of the olfactory epithelium. Patient-derived olfactory epithelial models hold great promise for not only elucidating the molecular and cellular pathophysiology of neurodegenerative disorders, but for providing key understanding about air pollutant particle entry and effects at this key brain entry site.
Collapse
Affiliation(s)
- K M Kanninen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Finland
| | - R Lampinen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Finland
| | - L M Rantanen
- Mental Health Program, Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Herston, QLD, 4006, Australia
| | - L Odendaal
- Mental Health Program, Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Herston, QLD, 4006, Australia
| | - P Jalava
- Inhalation Toxicology Laboratory, Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - S Chew
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Finland
| | - A R White
- Mental Health Program, Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Herston, QLD, 4006, Australia.
| |
Collapse
|
18
|
Choi R, Kurtenbach S, Goldstein BJ. Loss of BMI1 in mature olfactory sensory neurons leads to increased olfactory basal cell proliferation. Int Forum Allergy Rhinol 2019; 9:993-999. [PMID: 31251849 DOI: 10.1002/alr.22366] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 05/16/2019] [Accepted: 05/20/2019] [Indexed: 01/26/2023]
Abstract
BACKGROUND Damage to olfactory sensory neurons (OSNs), situated within the neuroepithelium of the olfactory cleft, may be associated with anosmia. Although their direct contact with the nasal airspace make OSNs vulnerable to injury and death, multiple mechanisms maintain epithelium integrity and olfactory function. We hypothesized that BMI1, a polycomb protein found to be enriched in OSNs, may function in neuroprotection. Here, we explored BMI1 function in a mouse model. METHODS Utilizing a mouse genetic approach to delete Bmi1 selectively in mature OSNs, we investigated changes in OE homeostasis by performing immunohistochemical, biochemical, and functional assays. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR), immunostaining, and electro-olfactograms were used to compare gene expression, cell composition, and olfactory function in OSN-specific BMI1 knockout mice (n = 3 to 5) and controls. Chromatin studies were also performed to identify protein-DNA interactions between BMI1 and its target genes (n = 3). RESULTS OSN-specific BMI1 knockout led to increased neuron death and basal cell activation. Chromatin studies suggested a mechanism of increased neurodegeneration due to de-repression of a pro-apoptosis gene, p19ARF. Despite the increased turnover, we found that olfactory neuroepithelium thickness and olfactory function remained intact. Our studies also revealed the presence of additional polycomb group proteins that may compensate for the loss of BMI1 in mature OSNs. CONCLUSION The olfactory neuroepithelium employs multiple mechanisms to maintain epithelial homeostasis. Our findings provide evidence that in a mouse model of BMI1 deletion, the overall integrity and function of the olfactory neuroepithelium are not compromised, despite increased neuronal turnover, reflecting a remarkable reparative capacity to sustain a critical sensory system.
Collapse
Affiliation(s)
- Rhea Choi
- Medical Scientist Training Program, Miller School of Medicine, University of Miami, Miami, FL.,Graduate Program in Neuroscience, Miller School of Medicine, University of Miami, Miami, FL
| | - Sarah Kurtenbach
- Interdisciplinary Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, FL
| | - Bradley J Goldstein
- Graduate Program in Neuroscience, Miller School of Medicine, University of Miami, Miami, FL.,Interdisciplinary Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, FL.,Department of Otolaryngology, Miller School of Medicine, University of Miami, Miami, FL
| |
Collapse
|
19
|
Kurtenbach S, Goss GM, Goncalves S, Choi R, Hare JM, Chaudhari N, Goldstein BJ. Cell-Based Therapy Restores Olfactory Function in an Inducible Model of Hyposmia. Stem Cell Reports 2019; 12:1354-1365. [PMID: 31155504 PMCID: PMC6565856 DOI: 10.1016/j.stemcr.2019.05.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 04/30/2019] [Accepted: 05/02/2019] [Indexed: 12/18/2022] Open
Abstract
Stem cell-based therapies have been proposed as a strategy to replace damaged tissues, especially in the nervous system. A primary sensory modality, olfaction, is impaired in 12% of the US population, but lacks treatment options. We report here the development of a novel mouse model of inducible hyposmia and demonstrate that purified tissue-specific stem cells delivered intranasally engraft to produce olfactory neurons, achieving recovery of function. Adult mice were rendered hyposmic by conditional deletion of the ciliopathy-related IFT88 gene in the olfactory sensory neuron lineage and following experimentally induced olfactory injury, received either vehicle or stem cell infusion intranasally. Engraftment-derived olfactory neurons were identified histologically, and functional improvements were measured via electrophysiology and behavioral assay. We further explored mechanisms in culture that promote expansion of engraftment-competent adult olfactory basal progenitor cells. These findings provide a basis for translational research on propagating adult tissue-specific sensory progenitor cells and testing their therapeutic potential. A novel mouse model of inducible olfactory loss was used to test stem cell therapy Purified adult tissue-specific stem cells can engraft and restore olfaction Culture expansion of engraftment-competent stem cells was examined via RNA-seq
Collapse
Affiliation(s)
- Sarah Kurtenbach
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, 1501 NW 10th Avenue, Biomedical Research Building, Room 809, Miami, FL 33136, USA; Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Garrett M Goss
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, 1501 NW 10th Avenue, Biomedical Research Building, Room 809, Miami, FL 33136, USA; Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Stefania Goncalves
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Rhea Choi
- Medical Scientist Training Program, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Graduate Program in Neurosciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Joshua M Hare
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, 1501 NW 10th Avenue, Biomedical Research Building, Room 809, Miami, FL 33136, USA; Department of Medicine, Division of Cardiology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Nirupa Chaudhari
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Graduate Program in Neurosciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Bradley J Goldstein
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, 1501 NW 10th Avenue, Biomedical Research Building, Room 809, Miami, FL 33136, USA; Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Graduate Program in Neurosciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| |
Collapse
|
20
|
Kim DK, Choi SA, Eun KM, Kim SK, Kim DW, Phi JH. Tumour necrosis factor alpha and interleukin-5 inhibit olfactory regeneration via apoptosis of olfactory sphere cells in mice models of allergic rhinitis. Clin Exp Allergy 2019; 49:1139-1149. [PMID: 30980570 DOI: 10.1111/cea.13401] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 04/02/2019] [Accepted: 04/03/2019] [Indexed: 01/15/2023]
Abstract
BACKGROUND Olfactory dysfunction is frequently experienced by patients with allergic rhinitis. It is thought to result from structural and functional changes occurring in the olfactory mucosa caused by inflammation. However, the current understanding of the pathophysiology of olfactory dysfunction in allergic rhinitis remains unclear. OBJECTIVE To investigate the mechanism by which the olfactory neural cells are damaged in allergic rhinitis. METHODS Olfactory sphere cells (OSCs) were established after dissociation and serial cultures of cells from the mouse olfactory mucosa. Viability and proliferation of OSCs were compared between control and allergic rhinitis mice models, and olfactory stem cell markers were analysed in vivo. To elucidate which cytokines have an inhibitory effect on OSCs, viability and apoptotic markers of OSCs were investigated. RESULTS Olfactory sphere cells were successfully isolated from the olfactory mucosa of mice, and these cells expressed markers of neural stem cells. To investigate the neural differentiation, we performed the immunocytochemical staining and found significantly elevated expressions of Tuji1, GFAP and O4 on OSCs. On the comparison of the characteristics of OSCs between control and allergic rhinitis model, we detected significantly fewer neurospheres, reduced clonogenic capacity and decreased expression of olfactory neural stem cell markers in allergic rhinitis model. When OSCs were treated with several major allergic cytokines were treated on OSCs, only TNF-α showed an inhibitory effect on OSCs. Interestingly, IL-5 had an inhibitory effect on the viability of OSCs in combination with TNF-α, whereas IL-5 alone does not have an effect. Moreover, TNF-α combined with IL-5 significantly increased the apoptotic expression, compared with TNF-α or IL-5 alone. Additionally, allergic rhinitis mice models showed the increased apoptotic expression. CONCLUSION AND CLINICAL RELEVANCE Allergic rhinitis mice models showed lower expression of OSCs, and TNF-α combined with IL-5 had an apoptotic effect on OSCs. Therefore, these cytokines may be therapeutic targets for olfactory dysfunction in patients with allergic rhinitis.
Collapse
Affiliation(s)
- Dong-Kyu Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Chuncheon Sacred Heart Hospital and Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, South Korea
| | - Seung Ah Choi
- Division of Pediatric Neurosurgery, Seoul National University Children's Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Kyoung Mi Eun
- Department of Otorhinolaryngology-Head and Neck Surgery, Boramae Medical Center, Seoul National University College of Medicine, Seoul, South Korea
| | - Seung-Ki Kim
- Division of Pediatric Neurosurgery, Seoul National University Children's Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Dae Woo Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Boramae Medical Center, Seoul National University College of Medicine, Seoul, South Korea
| | - Ji Hoon Phi
- Division of Pediatric Neurosurgery, Seoul National University Children's Hospital, Seoul National University College of Medicine, Seoul, South Korea
| |
Collapse
|
21
|
Goncalves S, Goldstein BJ. Acute N-Acetylcysteine Administration Ameliorates Loss of Olfactory Neurons Following Experimental Injury In Vivo. Anat Rec (Hoboken) 2019; 303:626-633. [PMID: 30632702 DOI: 10.1002/ar.24066] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 05/22/2018] [Accepted: 06/22/2018] [Indexed: 12/23/2022]
Abstract
The olfactory epithelium (OE) is the peripheral organ for the sense of smell, housing primary sensory neurons that project axons from the nose to the brain. Due to the presence of a basal stem cell niche, the adult mammalian OE is a dynamic tissue capable of replacing neurons following their loss. Nonetheless, certain conditions, such as blunt head trauma, can result in persistent olfactory loss, thought to be due to shearing of olfactory nerve filaments at the skull base, degeneration, and failures in proper regeneration/reinnervation. The identification of new treatment strategies aimed at preventing degeneration of olfactory neurons is, therefore, needed. In considering potential therapies, we have focused on N-acetylcysteine (NAC), a glutathione substrate shown to be neuroprotective, with a record of safe clinical use. Here, we have tested the use of NAC in an animal model of olfactory degeneration. Administered acutely, we found that NAC (100 mg/kg, twice daily) resulted in a reduction of olfactory neuronal loss from the OE of the nose following surgical ablation of the olfactory bulb. At 1 week postlesion, we identified 54 ± 8.1 mature neurons per 0.5 mm epithelium in NAC-treated animals vs. 28 ± 4.2 in vehicle-treated controls (P = 0.02). Furthermore, in an olfactory cell culture model, we have identified significant alterations in the expression of several genes involved in oxidative stress pathways following NAC exposure. Our results provide evidence supporting the potential therapeutic utility for NAC acutely following head trauma-induced olfactory loss. Anat Rec, 303:626-633, 2020. © 2019 American Association for Anatomy.
Collapse
Affiliation(s)
- Stefania Goncalves
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Bradley J Goldstein
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.,Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.,Graduate Program in Neurosciences, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| |
Collapse
|
22
|
Abstract
Olfaction plays a critical role in several aspects of life. Olfactory disorders are very common in the general population, and can lead to malnutrition, weight loss, food poisoning, depression, and other disturbances. Odorants are first detected in the upper region of the nose by the main olfactory epithelium (OE). In this region, millions of olfactory sensory neurons (OSNs) interact with odor molecules through the odorant receptors (ORs), which belong to the superfamily of G protein-coupled receptors. The binding of odors to the ORs initiates an electrical signal that travels along the axons to the main olfactory bulb of the brain. The information is then transmitted to other regions of the brain, leading to odorant perception and emotional and behavioral responses. In the OE, OSNs die and are continuously replaced from stem cells localized in the epithelium's basal region. Damage to this epithelium can be caused by multiple factors, leading to anosmia (smell loss). In this chapter, we introduce the basic organization of the OE and focus on the molecular mechanisms involved in odorant perception. We also describe recent experiments that address the mechanisms of OSNs regeneration in response to neuronal injury.
Collapse
Affiliation(s)
- Isaías Glezer
- Department of Biochemistry, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Bettina Malnic
- Department of Biochemistry, Institute of Chemistry, Universidade de São Paulo, São Paulo, Brazil.
| |
Collapse
|
23
|
Salazar I, Sanchez-Quinteiro P, Barrios AW, López Amado M, Vega JA. Anatomy of the olfactory mucosa. HANDBOOK OF CLINICAL NEUROLOGY 2019; 164:47-65. [PMID: 31604563 DOI: 10.1016/b978-0-444-63855-7.00004-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The classic notion that humans are microsmatic animals was born from comparative anatomy studies showing the reduction in the size of both the olfactory bulbs and the limbic brain relative to the whole brain. However, the human olfactory system contains a number of neurons comparable to that of most other mammals, and humans have exquisite olfactory abilities. Major advances in molecular and genetic research have resulted in the identification of extremely large gene families that express receptors for sensing odors. Such advances have led to a renaissance of studies focused on both human and nonhuman aspects of olfactory physiology and function. Evidence that olfactory dysfunction is among the earliest signs of a number of neurodegenerative and neuropsychiatric disorders has led to considerable interest in the use of olfactory epithelial biopsies for potentially identifying such disorders. Moreover, the unique features of the olfactory ensheathing cells have made the olfactory mucosa a promising and unexpected source of cells for treating spinal cord injuries and other neural injuries in which cell guidance is critical. The olfactory system of humans and other primates differs in many ways from that of other species. In this chapter we provide an overview of the anatomy of not only the human olfactory mucosa but of mucosae from a range of mammals from which more detailed information is available. Basic information regarding the general organization of the olfactory mucosa, including its receptor cells and the large number of other cell types critical for their maintenance and function, is provided. Cross-species comparisons are made when appropriate. The polemic issue of the human vomeronasal organ in both the adult and fetus is discussed, along with recent findings regarding olfactory subsystems within the nose of a number of mammals (e.g., the septal organ and Grüneberg ganglion).
Collapse
Affiliation(s)
- Ignacio Salazar
- Department of Anatomy, Animal Production and Veterinary Clinical Sciences, Unit of Anatomy and Embryology, Faculty of Veterinary, University of Santiago de Compostela, Lugo, Spain.
| | - Pablo Sanchez-Quinteiro
- Department of Anatomy, Animal Production and Veterinary Clinical Sciences, Unit of Anatomy and Embryology, Faculty of Veterinary, University of Santiago de Compostela, Lugo, Spain
| | - Arthur W Barrios
- Laboratory of Histology, Embryology and Animal Pathology, Faculty of Veterinary Medicine, University Nacional Mayor of San Marcos, Lima, Peru
| | - Manuel López Amado
- Department of Otorhinolaryngology, University Hospital La Coruña, La Coruña, Spain
| | - José A Vega
- Unit of Anatomy, Department of Morphology and Cell Biology, Faculty of Medicine, University of Oviedo, Oviedo, Spain
| |
Collapse
|
24
|
Noble JC, Meredith D, Lane RP. Frequent and biased odorant receptor (OR) re-selection in an olfactory placode-derived cell line. PLoS One 2018; 13:e0204604. [PMID: 30256852 PMCID: PMC6157871 DOI: 10.1371/journal.pone.0204604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 09/11/2018] [Indexed: 11/18/2022] Open
Abstract
We previously characterized a clonal olfactory placode-derived cell line (OP6) as a model system for studying odorant receptor (OR) choice, where individual OP6 cells, similar to olfactory sensory neurons in vivo, transcribe one allele ("monoallelic") of one OR gene ("monogenic"). The OP6 cell line provides a unique opportunity to investigate intrinsic properties of OR regulation that cannot easily be investigated in vivo. First, whereas OR-expressing cells in vivo are post-mitotic, OP6 cells are immortalized, raising interesting questions about the stability of epigenetic states associated with OR selection/silencing as OP6 cells progress through the cell cycle. Second, OP6 cells have been isolated away from extrinsic developmental cues, and therefore, any long-term OR selection biases are likely to arise from intrinsic epigenetic states that persist in the absence of developmental context. In this study, we investigated OR re-selection frequency and selection biases within clonal OP6 cell populations. We found no evidence of OR stability through the cell cycle: our results were most consistent with OR re-selection events transpiring at least once per cell division, suggesting that chromatin states associated with OR selection in this system might not be maintained in the subsequent generation. In contrast, we found strong evidence for OR selection biases maintained over prolonged culturing across a diverse set of OP6 cell lineages, suggesting the persistence of intrinsic epigenetic states that advantage some OR loci over others. Together, our data suggest that in the absence of instructive cues, intrinsic epigenetic states influencing OR eligibility, but not those determining OR choice, might persist through the cell cycle.
Collapse
Affiliation(s)
- J. C. Noble
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, Connecticut, United States of America
| | - Diane Meredith
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, Connecticut, United States of America
| | - Robert P. Lane
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, Connecticut, United States of America
| |
Collapse
|
25
|
Goldstein BJ, Choi R, Goss GM. Multiple polycomb epigenetic regulatory proteins are active in normal and regenerating adult olfactory epithelium. Laryngoscope Investig Otolaryngol 2018; 3:337-344. [PMID: 30410986 PMCID: PMC6209616 DOI: 10.1002/lio2.180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 05/23/2018] [Accepted: 05/25/2018] [Indexed: 01/23/2023] Open
Abstract
Objectives To investigate epigenetic mechanisms contributing to regulation of cellular renewal and neurogenesis in adult olfactory epithelium (OE). Study Design Prospective basic science study. Methods Olfactory basal cell cultures were prepared from adult mice per established protocols. in vivo studies were performed using the mouse methimazole lesion-regeneration paradigm. Nasal tissue sections were prepared from adult mice 7 days following lesion, or from unlesioned controls. Polycomb proteins were assessed by Western blot from culture or nasal tissue lysates, and by gene expression studies from cultures. In addition, in vivo expression patterns of Polycomb proteins were examined using immunohistochemistry. Chromosome immunoprecipitation (ChIP) was performed to investigate epigenetic modifications and specific chromatin interactions for Polycomb proteins in olfactory basal cells. Results Subunits of Polycomb Repressive Complex 1 (PRC1) and Polycomb Repressive Complex 2 (PRC2) were identified in basal cell cultures and in vivo. In regenerating OE, basal progenitor cells identified by expression of the c-KIT receptor were found to coexpress the PRC2 protein EZH2. Because multiple variants of PRC1 subunits give rise to diverse PRC1 complexes serving different functions, expression of specific PRC1 variants was further examined. We identified PRC1 components including MEL18 (PCGF2) in immature neurons, and confirm BMI1 (PCGF4) expression in mature neurons. Moreover, we identified CBX8 as a neuron-specific PRC1 subunit. ChIP assays from OE cells demonstrated binding of PRC proteins to regulatory regions of specific transcription factors, consistent with PRC-mediated epigenetic silencing mechanisms active in adult OE. Conclusions Multiple Polycomb proteins have cell type-specific expression patterns in the adult OE. Findings presented here, together with evidence from prior studies, suggest that PRC-mediated epigenetic silencing contributes to regulation of cellular renewal and tissue homeostasis in the OE. Efforts to define the mechanisms that regulate repair in the OE are essential for development of new therapeutic strategies for olfactory disorders. Level of Evidence N/A.
Collapse
Affiliation(s)
- Bradley J Goldstein
- Department of Otolaryngology University of Miami Miller School of Medicine Miami Florida U.S.A.,Graduate Program in Neuroscience University of Miami Miller School of Medicine Miami Florida U.S.A.,Interdisciplinary Stem Cell Institute University of Miami Miller School of Medicine Miami Florida U.S.A
| | - Rhea Choi
- Graduate Program in Neuroscience University of Miami Miller School of Medicine Miami Florida U.S.A.,Interdisciplinary Stem Cell Institute University of Miami Miller School of Medicine Miami Florida U.S.A.,Medical Scientist Training Program University of Miami Miller School of Medicine Miami Florida U.S.A
| | - Garrett M Goss
- Department of Otolaryngology University of Miami Miller School of Medicine Miami Florida U.S.A.,Interdisciplinary Stem Cell Institute University of Miami Miller School of Medicine Miami Florida U.S.A
| |
Collapse
|
26
|
Lin B, Srikanth P, Castle AC, Nigwekar S, Malhotra R, Galloway JL, Sykes DB, Rajagopal J. Modulating Cell Fate as a Therapeutic Strategy. Cell Stem Cell 2018; 23:329-341. [PMID: 29910150 PMCID: PMC6128730 DOI: 10.1016/j.stem.2018.05.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In injured tissues, regeneration is often associated with cell fate plasticity, in that cells deviate from their normal lineage paths. It is becoming increasingly clear that this plasticity often creates alternative strategies to restore damaged or lost cells. Alternatively, cell fate plasticity is also part and parcel of pathologic tissue transformations that accompany disease. In this Perspective, we summarize a few illustrative examples of physiologic and aberrant cellular plasticity. Then, we speculate on how one could enhance endogenous plasticity to promote regeneration and reverse pathologic plasticity, perhaps inspiring interest in a new class of therapies targeting cell fate modulation.
Collapse
Affiliation(s)
- Brian Lin
- Center for Regenerative Medicine, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Priya Srikanth
- Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Pathways Program, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Alison C Castle
- Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Pathways Program, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Sagar Nigwekar
- Pathways Program, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Division of Nephrology, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Rajeev Malhotra
- Pathways Program, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Division of Cardiology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Jenna L Galloway
- Center for Regenerative Medicine, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Department of Orthopaedic Surgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - David B Sykes
- Center for Regenerative Medicine, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Jayaraj Rajagopal
- Center for Regenerative Medicine, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Pathways Program, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Pediatric Pulmonary Medicine, Massachusetts General Hospital for Children, Boston, MA 02114, USA.
| |
Collapse
|
27
|
Ramos MF, Baker J, Atzpodien EA, Bach U, Brassard J, Cartwright J, Farman C, Fishman C, Jacobsen M, Junker-Walker U, Kuper F, Moreno MCR, Rittinghausen S, Schafer K, Tanaka K, Teixeira L, Yoshizawa K, Zhang H. Nonproliferative and Proliferative Lesions of the Ratand Mouse Special Sense Organs(Ocular [eye and glands], Olfactory and Otic). J Toxicol Pathol 2018; 31:97S-214S. [PMID: 30158741 PMCID: PMC6108092 DOI: 10.1293/tox.31.97s] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Affiliation(s)
| | - Julia Baker
- Member of eye subgroup
- Charles River Laboratories, Inc., Frederick, MD, USA
| | | | - Ute Bach
- Member of eye subgroup
- Bayer AG, Wuppertal, Germany
| | | | | | | | - Cindy Fishman
- Member of eye subgroup
- Member of glands of the eye subgroup
- GlaxoSmithKline, King of Prussia, PA, USA
| | | | | | - Frieke Kuper
- Member of olfactory subgroup
- Retired; formerly The Netherlands Organization for Applied
Scientific Research (TNO), Zeist, the Netherlands
| | | | | | - Ken Schafer
- Member of eye subgroup
- Member of otic subgroup
- Vet Path Services, Inc., Mason, OH, USA
| | - Kohji Tanaka
- Member of eye subgroup
- Nippon Boehringer Ingelheim, Japan
| | | | | | | |
Collapse
|
28
|
Doyle KL, Cunha C, Hort Y, Tasan R, Sperk G, Shine J, Herzog H. Role of neuropeptide Y (NPY) in the differentiation of Trpm-5-positive olfactory microvillar cells. Neuropeptides 2018. [PMID: 29530408 DOI: 10.1016/j.npep.2018.02.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The mouse olfactory neuroepithelium (ON) is comprised of anatomically distinct populations of cells in separate regions; apical (sustentacular and microvillar), neuronal (olfactory sensory neurons) and basal (horizontal and globose basal cells). The existence of microvillar cells (MVCs) is well documented but their nature and function remains unclear. An important transcription factor for the differentiation of MVCs is Skn-1a, with loss of function of Skn-1a in mice resulting in a complete loss of Trpm-5 expressing MVCs, while olfactory sensory neuron differentiation is normal. Our previous research has shown that neuropeptide Y (NPY) is expressed in MVCs and is important in the neuroproliferation of olfactory precursors. This study showed that following X-ray irradiation of the snout of wildtype mice, which decreases the proliferation of basal precursor cells, the numbers of Trpm-5-positive MVCs is increased at 2 and 5 weeks post-irradiation compared to controls. Skn-1a expression in the ON following X-ray irradiation also increases at 2 weeks post-irradiation in a regionally specific manner matching the expression pattern of Trpm-5-positive MVCs. In parallel, NPYCre knock-in mice were used to examine the expression of Skn-1a following activation of NPY unilaterally in the ON (unilateral nasal irrigation of AAV-NPY-FLEX). These experiments demonstrated that Skn-1a is only expressed when NPY is activated in MVCs. Therefore the expression of NPY is necessary for the transcription factor-mediated differentiation of olfactory MVCs.
Collapse
Affiliation(s)
- Kharen L Doyle
- Garvan Institute of Medical Research, Australia; UNSW Sydney, Australia.
| | - Carla Cunha
- i3S - Instituto de Investigação e Inovação em Saúde, Portugal.
| | - Yvonne Hort
- Garvan Institute of Medical Research, Australia.
| | - Ramon Tasan
- Department of Pharmacology, Medical University of Innsbruck, Austria.
| | - Günther Sperk
- Department of Pharmacology, Medical University of Innsbruck, Austria.
| | - John Shine
- Garvan Institute of Medical Research, Australia; UNSW Sydney, Australia.
| | - Herbert Herzog
- Garvan Institute of Medical Research, Australia; UNSW Sydney, Australia.
| |
Collapse
|
29
|
Sokpor G, Abbas E, Rosenbusch J, Staiger JF, Tuoc T. Transcriptional and Epigenetic Control of Mammalian Olfactory Epithelium Development. Mol Neurobiol 2018. [PMID: 29532253 DOI: 10.1007/s12035-018-0987-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The postnatal mammalian olfactory epithelium (OE) represents a major aspect of the peripheral olfactory system. It is a pseudostratified tissue that originates from the olfactory placode and is composed of diverse cells, some of which are specialized receptor neurons capable of transducing odorant stimuli to afford the perception of smell (olfaction). The OE is known to offer a tractable miniature model for studying the systematic generation of neurons and glia that typify neural tissue development. During OE development, stem/progenitor cells that will become olfactory sensory neurons and/or non-neuronal cell types display fine spatiotemporal expression of neuronal and non-neuronal genes that ensures their proper proliferation, differentiation, survival, and regeneration. Many factors, including transcription and epigenetic factors, have been identified as key regulators of the expression of such requisite genes to permit normal OE morphogenesis. Typically, specific interactive regulatory networks established between transcription and epigenetic factors/cofactors orchestrate histogenesis in the embryonic and adult OE. Hence, investigation of these regulatory networks critical for OE development promises to disclose strategies that may be employed in manipulating the stepwise transition of olfactory precursor cells to become fully differentiated and functional neuronal and non-neuronal cell types. Such strategies potentially offer formidable means of replacing injured or degenerated neural cells as therapeutics for nervous system perturbations. This review recapitulates the developmental cellular diversity of the olfactory neuroepithelium and discusses findings on how the precise and cooperative molecular control by transcriptional and epigenetic machinery is indispensable for OE ontogeny.
Collapse
Affiliation(s)
- Godwin Sokpor
- Institute of Neuroanatomy, University Medical Center, Georg-August-University Goettingen, 37075, Goettingen, Germany
| | - Eman Abbas
- Institute of Neuroanatomy, University Medical Center, Georg-August-University Goettingen, 37075, Goettingen, Germany.,Zoology Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Joachim Rosenbusch
- Institute of Neuroanatomy, University Medical Center, Georg-August-University Goettingen, 37075, Goettingen, Germany
| | - Jochen F Staiger
- Institute of Neuroanatomy, University Medical Center, Georg-August-University Goettingen, 37075, Goettingen, Germany.,DFG Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), 37075, Goettingen, Germany
| | - Tran Tuoc
- Institute of Neuroanatomy, University Medical Center, Georg-August-University Goettingen, 37075, Goettingen, Germany. .,DFG Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), 37075, Goettingen, Germany.
| |
Collapse
|
30
|
Choi R, Goldstein BJ. Olfactory epithelium: Cells, clinical disorders, and insights from an adult stem cell niche. Laryngoscope Investig Otolaryngol 2018; 3:35-42. [PMID: 29492466 PMCID: PMC5824112 DOI: 10.1002/lio2.135] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/11/2017] [Accepted: 12/24/2017] [Indexed: 12/18/2022] Open
Abstract
Disorders causing a loss of the sense of smell remain a therapeutic challenge. Basic research has, however, greatly expanded our knowledge of the organization and function of the olfactory system. This review describes advances in our understanding of the cellular components of the peripheral olfactory system, specifically the olfactory epithelium in the nose. The article discusses recent findings regarding the mechanisms involved in regeneration and cellular renewal from basal stem cells in the adult olfactory epithelium, considering the strategies involved in embryonic olfactory development and insights from research on other stem cell niches. In the context of clinical conditions causing anosmia, the current view of adult olfactory neurogenesis, tissue homeostasis, and failures in these processes is considered, along with current and future treatment strategies. Level of Evidence NA.
Collapse
Affiliation(s)
- Rhea Choi
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of MedicineMiamiFloridaU.S.A
- Program in Neurosciences, University of Miami Miller School of MedicineMiamiFloridaU.S.A
- Medical Scientist Training Program, University of Miami Miller School of MedicineMiamiFloridaU.S.A
| | - Bradley J. Goldstein
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of MedicineMiamiFloridaU.S.A
- Program in Neurosciences, University of Miami Miller School of MedicineMiamiFloridaU.S.A
- Department of OtolaryngologyUniversity of Miami Miller School of MedicineMiamiFloridaU.S.A
| |
Collapse
|
31
|
Hawkins SJ, Weiss L, Offner T, Dittrich K, Hassenklöver T, Manzini I. Functional Reintegration of Sensory Neurons and Transitional Dendritic Reduction of Mitral/Tufted Cells during Injury-Induced Recovery of the Larval Xenopus Olfactory Circuit. Front Cell Neurosci 2017; 11:380. [PMID: 29234276 PMCID: PMC5712363 DOI: 10.3389/fncel.2017.00380] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 11/13/2017] [Indexed: 01/08/2023] Open
Abstract
Understanding the mechanisms involved in maintaining lifelong neurogenesis has a clear biological and clinical interest. In the present study, we performed olfactory nerve transection on larval Xenopus to induce severe damage to the olfactory circuitry. We surveyed the timing of the degeneration, subsequent rewiring and functional regeneration of the olfactory system following injury. A range of structural labeling techniques and functional calcium imaging were performed on both tissue slices and whole brain preparations. Cell death of olfactory receptor neurons and proliferation of stem cells in the olfactory epithelium were immediately increased following lesion. New olfactory receptor neurons repopulated the olfactory epithelium and once again showed functional responses to natural odorants within 1 week after transection. Reinnervation of the olfactory bulb (OB) by newly formed olfactory receptor neuron axons also began at this time. Additionally, we observed a temporary increase in cell death in the OB and a subsequent loss in OB volume. Mitral/tufted cells, the second order neurons of the olfactory system, largely survived, but transiently lost dendritic tuft complexity. The first odorant-induced responses in the OB were observed 3 weeks after nerve transection and the olfactory network showed signs of major recovery, both structurally and functionally, after 7 weeks.
Collapse
Affiliation(s)
- Sara J Hawkins
- Institute of Neurophysiology and Cellular Biophysics, University of Göttingen, Göttingen, Germany.,Institute of Animal Physiology, Department of Animal Physiology and Molecular Biomedicine, Justus Liebig University Giessen, Giessen, Germany
| | - Lukas Weiss
- Institute of Neurophysiology and Cellular Biophysics, University of Göttingen, Göttingen, Germany.,Institute of Animal Physiology, Department of Animal Physiology and Molecular Biomedicine, Justus Liebig University Giessen, Giessen, Germany
| | - Thomas Offner
- Institute of Neurophysiology and Cellular Biophysics, University of Göttingen, Göttingen, Germany.,Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
| | - Katarina Dittrich
- Institute of Neurophysiology and Cellular Biophysics, University of Göttingen, Göttingen, Germany.,Institute of Animal Physiology, Department of Animal Physiology and Molecular Biomedicine, Justus Liebig University Giessen, Giessen, Germany
| | - Thomas Hassenklöver
- Institute of Neurophysiology and Cellular Biophysics, University of Göttingen, Göttingen, Germany.,Institute of Animal Physiology, Department of Animal Physiology and Molecular Biomedicine, Justus Liebig University Giessen, Giessen, Germany.,Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
| | - Ivan Manzini
- Institute of Neurophysiology and Cellular Biophysics, University of Göttingen, Göttingen, Germany.,Institute of Animal Physiology, Department of Animal Physiology and Molecular Biomedicine, Justus Liebig University Giessen, Giessen, Germany.,Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
| |
Collapse
|
32
|
Lin B, Coleman JH, Peterson JN, Zunitch MJ, Jang W, Herrick DB, Schwob JE. Injury Induces Endogenous Reprogramming and Dedifferentiation of Neuronal Progenitors to Multipotency. Cell Stem Cell 2017; 21:761-774.e5. [PMID: 29174332 DOI: 10.1016/j.stem.2017.09.008] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 07/12/2017] [Accepted: 09/12/2017] [Indexed: 02/08/2023]
Abstract
Adult neurogenesis in the olfactory epithelium is often depicted as a unidirectional pathway during homeostasis and repair. We challenge the unidirectionality of this model by showing that epithelial injury unlocks the potential for Ascl1+ progenitors and Neurog1+ specified neuronal precursors to dedifferentiate into multipotent stem/progenitor cells that contribute significantly to tissue regeneration in the murine olfactory epithelium (OE). We characterize these dedifferentiating cells using several lineage-tracing strains and single-cell mRNA-seq, and we show that Sox2 is required for initiating dedifferentiation and that inhibition of Ezh2 promotes multipotent progenitor expansion. These results suggest that the apparent hierarchy of neuronal differentiation is not irreversible and that lineage commitment can be overridden following severe tissue injury. We elucidate a previously unappreciated pathway for endogenous tissue repair by a highly regenerative neuroepithelium and introduce a system to study the mechanisms underlying plasticity in the OE that can be adapted for other tissues.
Collapse
Affiliation(s)
- Brian Lin
- Department of Developmental, Molecular and Chemical Biology, School of Medicine, Tufts University, Boston, MA 02111, USA; Program in Cell, Molecular and Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA 02111, USA
| | - Julie H Coleman
- Department of Developmental, Molecular and Chemical Biology, School of Medicine, Tufts University, Boston, MA 02111, USA; Program in Neuroscience, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA 02111, USA
| | - Jesse N Peterson
- Department of Developmental, Molecular and Chemical Biology, School of Medicine, Tufts University, Boston, MA 02111, USA; Program in Cell, Molecular and Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA 02111, USA
| | - Matthew J Zunitch
- Department of Developmental, Molecular and Chemical Biology, School of Medicine, Tufts University, Boston, MA 02111, USA; Program in Cell, Molecular and Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA 02111, USA
| | - Woochan Jang
- Department of Developmental, Molecular and Chemical Biology, School of Medicine, Tufts University, Boston, MA 02111, USA
| | - Daniel B Herrick
- Department of Developmental, Molecular and Chemical Biology, School of Medicine, Tufts University, Boston, MA 02111, USA; Program in Cell, Molecular and Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA 02111, USA
| | - James E Schwob
- Department of Developmental, Molecular and Chemical Biology, School of Medicine, Tufts University, Boston, MA 02111, USA.
| |
Collapse
|
33
|
Kurtenbach S, Ding W, Goss GM, Hare JM, Goldstein BJ, Shehadeh LA. Differential expression of microRNAs among cell populations in the regenerating adult mouse olfactory epithelium. PLoS One 2017; 12:e0187576. [PMID: 29107942 PMCID: PMC5673187 DOI: 10.1371/journal.pone.0187576] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 10/23/2017] [Indexed: 01/01/2023] Open
Abstract
Despite a robust capacity for adult neurogenesis in the olfactory epithelium (OE), olfactory sensory losses are common. Identification of mechanisms regulating adult OE neurogenesis is, therefore, of interest. MicroRNAs (miRNAs) are broadly important in regulating vertebrate neurodevelopment, and are required in embryonic olfactory differentiation. We report here that a panel of miRNAs is differentially expressed by either progenitor or progeny cells in the regenerating mouse OE. Progenitor cells were purified from lesioned OE based on c-Kit expression, and miRNA expression was assayed in c-Kit (+) and c-Kit (-) cell populations. 28 miRNAs were significantly downregulated by at least 4 fold in the c-Kit (+) fraction, which marks the globose basal progenitor cell population. In addition, 10 miRNAs were upregulated in these basal cells. MiR-486, the most strongly downregulated miRNA identified, was further characterized to verify results. MiR-486 expression was confirmed in the c-Kit (-) OE layers using in situ hybridization. As a functional assay, over-expression of miR-486 in purified c-Kit (+) basal cell cultures resulted in a reduction in neurogenesis, consistent with a possible negative feedback regulatory model. Our data provide new insights regarding miRNA expression and function during adult OE neurogenesis, and identify candidate miRNAs warranting further study.
Collapse
Affiliation(s)
- Sarah Kurtenbach
- Interdisciplinary Stem Cell Institute, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, United States of America
- Department of Otolaryngology, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, United States of America
| | - Wen Ding
- Interdisciplinary Stem Cell Institute, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, United States of America
- Department of Molecular and Cellular Pharmacology, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, United States of America
| | - Garrett M. Goss
- Interdisciplinary Stem Cell Institute, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, United States of America
- Department of Otolaryngology, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, United States of America
| | - Joshua M. Hare
- Interdisciplinary Stem Cell Institute, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, United States of America
- Department of Medicine, Division of Cardiology, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, United States of America
| | - Bradley J. Goldstein
- Interdisciplinary Stem Cell Institute, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, United States of America
- Department of Otolaryngology, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, United States of America
- * E-mail: (BG); (LS)
| | - Lina A. Shehadeh
- Interdisciplinary Stem Cell Institute, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, United States of America
- Department of Medicine, Division of Cardiology, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, United States of America
- Vascular Biology Institute, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, United States of America
- * E-mail: (BG); (LS)
| |
Collapse
|
34
|
A six-gene expression toolbox for the glands, epithelium and chondrocytes in the mouse nasal cavity. Gene Expr Patterns 2017; 27:46-55. [PMID: 29122676 DOI: 10.1016/j.gep.2017.10.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 09/23/2017] [Accepted: 10/17/2017] [Indexed: 12/20/2022]
Abstract
The nose is the central feature of the amniote face. In adults, the nose is a structurally and functionally complex organ that consists of bone, cartilage, glands and ducts. In an ongoing expression screen in our lab, we found several novel markers for specific tissues in the nasal region. Here, using in situ hybridization expression experiments, we report that Alx1, Ap-2β, Crispld1, Eya4, Moxd1, and Penk have tissue specific expression during murine nasal development. At E11.5, we observed that Alx1, Ap-2β, Crispld1, and Eya4 are expressed in the medial and lateral nasal prominences. We found that Moxd1 and Penk are expressed in the lateral nasal prominences. At E15.5, Alx1 is expressed in nasal septum. Ap-2β and Crispld1 are expressed in nasal glands and cartilages. Eya4 is expressed in olfactory epithelium. Intriguingly at E15.5 Moxd1 is expressed in all the nasal cartilage while the expression of Penk is restricted to chondrocytes contributing to the posterior nasal septum. The expression domains reported here suggest that these genes warrant functional studies to determine their role in nasal capsule morphogenesis.
Collapse
|
35
|
Coleman JH, Lin B, Schwob JE. Dissecting LSD1-Dependent Neuronal Maturation in the Olfactory Epithelium. J Comp Neurol 2017; 525:3391-3413. [PMID: 28597915 DOI: 10.1002/cne.24259] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 05/19/2017] [Accepted: 06/02/2017] [Indexed: 12/21/2022]
Abstract
Neurons in the olfactory epithelium (OE) each express a single dominant olfactory receptor (OR) allele from among roughly 1,000 different OR genes. While monogenic and monoallelic OR expression has been appreciated for over two decades, regulators of this process are still being described; most recently, epigenetic modifiers have been of high interest as silent OR genes are decorated with transcriptionally repressive trimethylated histone 3 lysine 9 (H3K9me3) whereas active OR genes are decorated with transcriptionally activating trimethylated histone 3 lysine 4 (H3K4me3). The lysine specific demethylase 1 (LSD1) demethylates at both of these lysine residues and has been shown to disrupt neuronal maturation and OR expression in the developing embryonic OE. Despite the growing literature on LSD1 expression in the OE, a complete characterization of the timing of LSD1 expression relative to neuronal maturation and of the function of LSD1 in the adult OE have yet to be reported. To fill this gap, the present study determined that LSD1 (1) is expressed in early dividing cells before OR expression and neuronal maturation and decreases at the time of OR stabilization; (2) colocalizes with the repressor CoREST (also known as RCOR1) and histone deacetylase 2 in these early dividing cells; and (3) is required for neuronal maturation during a distinct time window between activating reserve stem cells (horizontal basal cells) and Neurogenin1 (+) immediate neuronal precursors. Thus, this study clarifies the role of LSD1 in olfactory neuronal maturation.
Collapse
Affiliation(s)
- Julie H Coleman
- Department of Developmental, Molecular & Chemical Biology, School of Medicine, Tufts University, Boston, Massachusetts.,Program in Neuroscience, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, Massachusetts
| | - Brian Lin
- Department of Developmental, Molecular & Chemical Biology, School of Medicine, Tufts University, Boston, Massachusetts.,Program in Cell, Molecular & Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, Massachusetts
| | - James E Schwob
- Department of Developmental, Molecular & Chemical Biology, School of Medicine, Tufts University, Boston, Massachusetts
| |
Collapse
|
36
|
Notch1 maintains dormancy of olfactory horizontal basal cells, a reserve neural stem cell. Proc Natl Acad Sci U S A 2017. [PMID: 28637720 DOI: 10.1073/pnas.1701333114] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The remarkable capacity of the adult olfactory epithelium (OE) to regenerate fully both neurosensory and nonneuronal cell types after severe epithelial injury depends on life-long persistence of two stem cell populations: the horizontal basal cells (HBCs), which are quiescent and held in reserve, and mitotically active globose basal cells. It has recently been demonstrated that down-regulation of the ΔN form of the transcription factor p63 is both necessary and sufficient to release HBCs from dormancy. However, the mechanisms by which p63 is down-regulated after acute OE injury remain unknown. To identify the cellular source of potential signaling mechanisms, we assessed HBC activation after neuron-only and sustentacular cell death. We found that ablation of sustentacular cells is sufficient for HBC activation to multipotency. By expression analysis, next-generation sequencing, and immunohistochemical examination, down-regulation of Notch pathway signaling is coincident with HBC activation. Therefore, using HBC-specific conditional knockout of Notch receptors and overexpression of N1ICD, we show that Notch signaling maintains p63 levels and HBC dormancy, in contrast to its suppression of p63 expression in other tissues. Additionally, Notch1, but not Notch2, is required to maintain HBC dormancy after selective neuronal degeneration. Taken together, our data indicate that the activation of HBCs observed after tissue injury or sustentacular cell ablation is caused by the reduction/elimination of Notch signaling on HBCs; elimination of Jagged1 expressed by sustentacular cells may be the ligand responsible.
Collapse
|
37
|
Minovi A, Aguado A, Brunert D, Kurtenbach S, Dazert S, Hatt H, Conrad H. Isolation, culture optimization and functional characterization of stem cell neurospheres from mouse neonatal olfactory bulb and epithelium. Eur Arch Otorhinolaryngol 2017; 274:3071-3085. [PMID: 28478501 DOI: 10.1007/s00405-017-4590-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 04/25/2017] [Indexed: 10/19/2022]
Abstract
The olfactory epithelium contains basal cells with stem cell characteristics, which have the capacity to differentiate throughout life into olfactory receptor neurons (ORNs). Here we investigate the in vitro characteristics of stem cells taken from the olfactory bulb (OB) and the olfactory epithelium (OE) of neonatal TIS21 knock-in mice. The major aim of the study was the generation of olfactory neurospheres (ONS) derived from OB and OE of neonatal mice as a tool to further analyze the elementary processes of ORN development. Our data showed that the presence of epidermal growth factor (EGF) and fibroblast growth factor (FGF) leads to a significant increase in number of ONS derived from OB but not from OE. The differentiation of ONSs led to the formation of different neuronal cell types, in particular to bipolar-shaped cells as well as putative pyramidal-neurons, astrocytes and oligodendrocytes. Immunohistochemical staining confirmed the presence of astrocytes and neurons in both types of ONSs. In order to investigate the functionality of the neurons we performed calcium imaging and patch-clamp experiments. Calcium imaging experiments revealed that the application of high potassium concentration provokes calcium transients. No excitable properties, neither sodium currents nor action potentials, were observed for the bipolar-shaped cells derived from OB and OE neurospheres, which means that these types of cells morphologically defined as putative neuronal cells, were not physiologically active. Interestingly, patch-clamp recordings performed in the pyramidal-shaped cells of OB neurospheres showed sodium and potassium currents as well as action potentials. Our study will help to establish further models in the field of olfactology.
Collapse
Affiliation(s)
- Amir Minovi
- Department of Otorhinolaryngology, Head and Neck Surgery, St. Elisabeth Hospital, Ruhr-University Bochum, Bleichstr. 15, 44787, Bochum, Germany.
| | - Ainhara Aguado
- Department of Otorhinolaryngology, Head and Neck Surgery, St. Elisabeth Hospital, Ruhr-University Bochum, Bleichstr. 15, 44787, Bochum, Germany.,Department of Cell Physiology, Ruhr-University Bochum, Universitätstrasse 150, 44801, Bochum, Germany
| | - Daniela Brunert
- Department of Chemosensation, Institute for Biology II, RWTH Aachen University, 52074, Aachen, Germany
| | - Stefan Kurtenbach
- Department of Cell Physiology, Ruhr-University Bochum, Universitätstrasse 150, 44801, Bochum, Germany
| | - Stefan Dazert
- Department of Otorhinolaryngology, Head and Neck Surgery, St. Elisabeth Hospital, Ruhr-University Bochum, Bleichstr. 15, 44787, Bochum, Germany
| | - Hanns Hatt
- Department of Cell Physiology, Ruhr-University Bochum, Universitätstrasse 150, 44801, Bochum, Germany
| | - Heike Conrad
- Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
| |
Collapse
|
38
|
Exfoliated Human Olfactory Neuroepithelium: A Source of Neural Progenitor Cells. Mol Neurobiol 2017; 55:2516-2523. [PMID: 28391555 DOI: 10.1007/s12035-017-0500-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 03/16/2017] [Indexed: 10/19/2022]
Abstract
Neural progenitor cells (NPC) contained in the human adult olfactory neuroepithelium (ONE) possess an undifferentiated state, the capability of self-renewal, the ability to generate neural and glial cells as well as being kept as neurospheres in cell culture conditions. Recently, NPC have been isolated from human or animal models using high-risk surgical methods. Therefore, it was necessary to improve methodologies to obtain and maintain human NPC as well as to achieve better knowledge of brain disorders. In this study, we propose the establishment and characterization of NPC cultures derived from the human olfactory neuroepithelium, using non-invasive procedures. Twenty-two healthy individuals (29.7 ± 4.5 years of age) were subjected to nasal exfoliation. Cells were recovered and kept as neurospheres under serum-free conditions. The neural progenitor origin of these neurospheres was determined by immunocytochemistry and qPCR. Their ability for self-renewal and multipotency was analyzed by clonogenic and differentiation assays, respectively. In the cultures, the ONE cells preserved the phenotype of the neurospheres. The expression levels of Nestin, Musashi, Sox2, and βIII-tubulin demonstrated the neural origin of the neurospheres; 48% of the cells separated could generate neurospheres, determining that they retained their self-renewal capacity. Neurospheres were differentiated in the absence of growth factors (EGF and FGF), and their multipotency ability was maintained as well. We were also able to isolate and grow human neural progenitor cells (neurospheres) through nasal exfoliates (non-invasive method) of the ONE from healthy adults, which is an extremely important contribution for the study of brain disorders and for the development of new therapies.
Collapse
|
39
|
Meyer A, Wree A, Günther R, Holzmann C, Schmitt O, Rolfs A, Witt M. Increased Regenerative Capacity of the Olfactory Epithelium in Niemann-Pick Disease Type C1. Int J Mol Sci 2017; 18:ijms18040777. [PMID: 28383485 PMCID: PMC5412361 DOI: 10.3390/ijms18040777] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 03/19/2017] [Accepted: 03/20/2017] [Indexed: 11/28/2022] Open
Abstract
Niemann–Pick disease type C1 (NPC1) is a fatal neurovisceral lysosomal lipid storage disorder. The mutation of the NPC1 protein affects the homeostasis and transport of cholesterol and glycosphingolipids from late endosomes/lysosomes to the endoplasmic reticulum resulting in progressive neurodegeneration. Since olfactory impairment is one of the earliest symptoms in many neurodegenerative disorders, we focused on alterations of the olfactory epithelium in an NPC1 mouse model. Previous findings revealed severe morphological and immunohistochemical alterations in the olfactory system of NPC1−/− mutant mice compared with healthy controls (NPC1+/+). Based on immunohistochemical evaluation of the olfactory epithelium, we analyzed the impact of neurodegeneration in the olfactory epithelium of NPC1−/− mice and observed considerable loss of mature olfactory receptor neurons as well as an increased number of proliferating and apoptotic cells. Additionally, after administration of two different therapy approaches using either a combination of miglustat, 2-hydroxypropyl-β-cyclodextrin (HPβCD) and allopregnanolone or a monotherapy with HPβCD, we recorded a remarkable reduction of morphological damages in NPC1−/− mice and an up to four-fold increase of proliferating cells within the olfactory epithelium. Numbers of mature olfactory receptor neurons doubled after both therapy approaches. Interestingly, we also observed therapy-induced alterations in treated NPC1+/+ controls. Thus, olfactory testing may provide useful information to monitor pharmacologic treatment approaches in human NPC1.
Collapse
Affiliation(s)
- Anja Meyer
- Institute of Anatomy, University of Rostock, 18057 Rostock, Germany.
| | - Andreas Wree
- Institute of Anatomy, University of Rostock, 18057 Rostock, Germany.
| | - René Günther
- Institute of Anatomy, University of Rostock, 18057 Rostock, Germany.
| | - Carsten Holzmann
- Institute of Medical Genetics, Rostock University Medical Center, 18057 Rostock, Germany.
| | - Oliver Schmitt
- Institute of Anatomy, University of Rostock, 18057 Rostock, Germany.
| | - Arndt Rolfs
- Albrecht-Kossel Institute for Neuroregeneration, Rostock University Medical Center, 18147 Rostock, Germany.
| | - Martin Witt
- Institute of Anatomy, University of Rostock, 18057 Rostock, Germany.
| |
Collapse
|
40
|
Boudjarane MA, Grandgeorge M, Marianowski R, Misery L, Lemonnier É. Perception of odors and tastes in autism spectrum disorders: A systematic review of assessments. Autism Res 2017; 10:1045-1057. [PMID: 28371114 DOI: 10.1002/aur.1760] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 01/09/2017] [Accepted: 01/13/2017] [Indexed: 11/11/2022]
Abstract
Olfaction and gustation are major sensory functions implied in processing environmental stimuli. Some evidences suggest that loss of olfactory function is an early biomarker for neurodegenerative disorders and atypical processing of odor and taste stimuli is present in several neurodevelopmental disorders, notably in Autism Spectrum Disorders (ASD). In this paper, we conducted a systematic review investigating the assessments of olfaction and gustation with psychophysics methods in individuals with ASD. Pubmed, PMC and Sciencedirect were scrutinized for relevant literature published from 1970 to 2015. In this review, fourteen papers met our inclusion criteria. They were analyzed critically in order to evaluate the occurrence of olfactory and gustatory dysfunction in ASD, as well as to report the methods used to assess olfaction and gustation in such conditions. Regarding to these two senses, the overall number of studies is low. Most of studies show significant difference regarding to odor or taste identification but not for detection threshold. Overall, odor rating through pleasantness, intensity and familiarity do not differ significantly between control and individuals with ASD. The current evidences can suggest the presence of olfactory and gustatory dysfunction in ASD. Therefore, our analysis show a heterogeneity of findings. This is due to several methodological limitations such as the tools used or population studied. Understanding these disorders could help to shed light on other atypical behavior in this population such as feeding or social behavior. Autism Res 2017, 0: 000-000. © 2017 International Society for Autism Research, Wiley Periodicals, Inc. Autism Res 2017, 10: 1045-1057. © 2017 International Society for Autism Research, Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Mohamed A Boudjarane
- Laboratory of Neurosciences of Brest (EA4685), University of Western Brittany, Brest, France
| | - Marine Grandgeorge
- Laboratory of Neurosciences of Brest (EA4685), University of Western Brittany, Brest, France.,UMR-CNRS 6552, Animal and Human Ethology University of Rennes 1-CNRS, Rennes Cedex, France
| | - Rémi Marianowski
- Laboratory of Neurosciences of Brest (EA4685), University of Western Brittany, Brest, France.,Department of ENT, University Hospital of Brest, Brest Cedex, France
| | - Laurent Misery
- Laboratory of Neurosciences of Brest (EA4685), University of Western Brittany, Brest, France.,Department of Dermatology, University Hospital of Brest, Brest Cedex, France
| | - Éric Lemonnier
- Laboratory of Neurosciences of Brest (EA4685), University of Western Brittany, Brest, France.,University Hospital of Limoges, Expert Center of Autism Limousin, Limoges Cedex, France (É.L.)
| |
Collapse
|
41
|
Abstract
Spinal cord injury (SCI) is a devastating condition with loss of motor and sensory functions below the injury level. Cell based therapies are experimented in pre-clinical studies around the world. Neural stem cells are located intra-cranially in subventricular zone and hippocampus which are highly invasive sources. The olfactory epithelium is a neurogenic tissue where neurogenesis takes place throughout the adult life by a population of stem/progenitor cells. Easily accessible olfactory neuroepithelial stem/progenitor cells are an attractive cell source for transplantation in SCI. Globose basal cells (GBCs) were isolated from rat olfactory epithelium, characterized by flow cytometry and immunohistochemically. These cells were further studied for neurosphere formation and neuronal induction. T10 laminectomy was done to create drop-weight SCI in rats. On the 9th day following SCI, 5 × 105 cells were transplanted into injured rat spinal cord. The outcome of transplantation was assessed by the Basso, Beattie and Bresnahan (BBB) locomotor rating scale, motor evoked potential and histological observation. GBCs expressed neural stem cell markers nestin, SOX2, NCAM and also mesenchymal stem cell markers (CD29, CD54, CD90, CD73, CD105). These cells formed neurosphere, a culture characteristics of NSCs and on induction, differentiated cells expressed neuronal markers βIII tubulin, microtubule-associated protein 2, neuronal nuclei, and neurofilament. GBCs transplanted rats exhibited hindlimb motor recovery as confirmed by BBB score and gastrocnemius muscle electromyography amplitude was increased compared to controls. Green fluorescent protein labelled GBCs survived around the injury epicenter and differentiated into βIII tubulin-immunoreactive neuron-like cells. GBCs could be an alternative to NSCs from an accessible source for autologous neurotransplantation after SCI without ethical issues.
Collapse
Affiliation(s)
- Durai Murugan Muniswami
- Department of Physical Medicine & Rehabilitation, Christian Medical College, Vellore, Tamil Nadu, India
| | | | - George Tharion
- Department of Physical Medicine & Rehabilitation, Christian Medical College, Vellore, Tamil Nadu, India
| |
Collapse
|
42
|
Weng PL, Vinjamuri M, Ovitt CE. Ascl3 transcription factor marks a distinct progenitor lineage for non-neuronal support cells in the olfactory epithelium. Sci Rep 2016; 6:38199. [PMID: 27910949 PMCID: PMC5133605 DOI: 10.1038/srep38199] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 11/04/2016] [Indexed: 12/30/2022] Open
Abstract
The olfactory epithelium (OE) is composed of olfactory sensory neurons (OSNs), sustentacular supporting cells, and several types of non-neuronal cells. Stem and progenitor cells are located basally, and are the source of all cell types needed to maintain OE homeostasis. Here, we report that Ascl3, a basic helix-loop-helix transcription factor, is expressed in the developing OE. Lineage tracing experiments demonstrate that the non-neuronal microvillar cells and Bowman's glands are exclusively derived from Ascl3+ progenitor cells in the OE during development. Following chemically-induced injury, Ascl3 expression is activated in a subset of horizontal basal cells (HBCs), which repopulate all microvillar cells and Bowman's glands during OE regeneration. After ablation of Ascl3-expressing cells, the OE can regenerate, but lacks the non-neuronal microvillar and Bowman's gland support cells. These results demonstrate that Ascl3 marks progenitors that are lineage-committed strictly to microvillar cells and Bowman's glands, and highlight the requirement for these cell types to support OE homeostasis.
Collapse
Affiliation(s)
- Pei-Lun Weng
- Department of Pathology and Laboratory Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, 14642, USA
| | - Mridula Vinjamuri
- Center for Oral Biology and Department of Biomedical Genetics, University of Rochester School of Medicine and Dentistry, Rochester, New York, 14642, USA
| | - Catherine E. Ovitt
- Center for Oral Biology and Department of Biomedical Genetics, University of Rochester School of Medicine and Dentistry, Rochester, New York, 14642, USA
| |
Collapse
|
43
|
Silveira-Moriyama L, Glass P, Rajan S, Carvalho R, Reis F, Penatti CAA, Muio V. The Hitchhiker's guide to the rhinencephalon. ARQUIVOS DE NEURO-PSIQUIATRIA 2016; 74:329-36. [PMID: 27097007 DOI: 10.1590/0004-282x20160043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Accepted: 01/07/2016] [Indexed: 05/11/2023]
Abstract
Pathology of the rhinencephalon has been a subject of interest in the fields of neurodegenerative diseases, trauma, epilepsy and other neurological conditions. Most of what is known about the human rhinencephalon comes from comparative anatomy studies in other mammals and histological studies in primates. Functional imaging studies can provide new and important insight into the function of the rhinencephalon in humans but have limited spatial resolution, limiting its contribution to the study of the anatomy of the human rhinencephalon. In this study we aim to provide a brief and objective review of the anatomy of this important and often overlooked area of the nervous system.
Collapse
Affiliation(s)
| | - Philip Glass
- Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Suraj Rajan
- The Clinical Neuroscience Institute, Premier Health Miami Valley Hospital, Dayton, OH, USA
| | | | - Fabiano Reis
- Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | | | - Valeria Muio
- Universidade Nove de Julho, Sao Paulo, SP, Brazil
| |
Collapse
|
44
|
Schwob JE, Jang W, Holbrook EH, Lin B, Herrick DB, Peterson JN, Hewitt Coleman J. Stem and progenitor cells of the mammalian olfactory epithelium: Taking poietic license. J Comp Neurol 2016; 525:1034-1054. [PMID: 27560601 DOI: 10.1002/cne.24105] [Citation(s) in RCA: 168] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 08/17/2016] [Accepted: 08/19/2016] [Indexed: 12/15/2022]
Abstract
The capacity of the olfactory epithelium (OE) for lifelong neurogenesis and regeneration depends on the persistence of neurocompetent stem cells, which self-renew as well as generating all of the cell types found within the nasal epithelium. This Review focuses on the types of stem and progenitor cells in the epithelium and their regulation. Both horizontal basal cells (HBCs) and some among the population of globose basal cells (GBCs) are stem cells, but the two types plays vastly different roles. The GBC population includes the basal cells that proliferate in the uninjured OE and is heterogeneous with respect to transcription factor expression. From upstream in the hierarchy to downstream, GBCs encompass 1) Sox2+ /Pax6+ stem-like cells that are totipotent and self-renew over the long term, 2) Ascl1+ transit-amplifying progenitors with a limited capacity for expansive proliferation, and 3) Neurog1+ /NeuroD1+ immediate precursor cells that make neurons directly. In contrast, the normally quiescent HBCs are activated to multipotency and proliferate when sustentacular cells are killed, but not when only OSNs die, indicating that HBCs are reserve stem cells that respond to severe epithelial injury. The master regulator of HBC activation is the ΔN isoform of the transcription factor p63; eliminating ΔNp63 unleashes HBC multipotency. Notch signaling, via Jagged1 ligand on Sus cells and Notch1 and Notch2 receptors on HBCs, is likely to play a major role in setting the level of p63 expression. Thus, ΔNp63 becomes a potential therapeutic target for reversing the neurogenic exhaustion characteristic of the aged OE. J. Comp. Neurol. 525:1034-1054, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- James E Schwob
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, 02132
| | - Woochan Jang
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, 02132
| | - Eric H Holbrook
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, 02132
| | - Brian Lin
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, 02132
| | - Daniel B Herrick
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, 02132
| | - Jesse N Peterson
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, 02132
| | - Julie Hewitt Coleman
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, 02132
| |
Collapse
|
45
|
Williams CR, MacDonald JW, Bammler TK, Paulsen MH, Simpson CD, Gallagher EP. From the Cover: Cadmium Exposure Differentially Alters Odorant-Driven Behaviors and Expression of Olfactory Receptors in Juvenile Coho Salmon (Oncorhynchus kisutch). Toxicol Sci 2016; 154:267-277. [PMID: 27621283 DOI: 10.1093/toxsci/kfw172] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Salmon exposed to waterborne metals can experience olfactory impairment leading to disrupted chemosensation. In the current study, we investigated the effects of cadmium (Cd) on salmon olfactory function by modeling an exposure scenario where juvenile salmon transiently migrate through a polluted waterway. Coho were exposed to environmentally relevant concentrations of waterborne Cd (2 and 30 µg/L) for 48 h and (0.3 and 2 μg/L) for 16 days, followed by a 16-day depuration associated with outmigration. Cadmium exposures inhibited behavioral responses towards L-cysteine and conspecific odorants, with effects persisting following the depuration. Behavioral alterations following the 30 µg/L exposure were associated with increased olfactory epithelial gene expression of metallothionein (mt1a) and heme oxygenase (hmox1); reduced expression of olfactory signal transduction (OST) molecules; and reduced expression of mRNAs encoding major coho odorant receptors (ORs). Salmon OR array analysis indicated that Cd preferentially impacted expression of OST and OR markers for ciliated olfactory sensory neurons (OSNs) relative to microvillus OSNs, suggesting a differential sensitivity of these two major OSN populations. Behavioral alterations on exposure to 0.3 and 2 µg/L Cd were associated with increased mt1a, but not with major histological or OR molecular changes, likely indicating disrupted OST as a major mechanism underlying the behavioral dysfunction at the low-level Cd exposures. Laser-ablation mass spectrometry analysis revealed that the OSN injury and behavioral dysfunction was associated with significant Cd bioaccumulation within the olfactory sensory epithelium. In summary, low-level Cd exposures associated with polluted waterways can induce differential and persistent olfactory dysfunction in juvenile coho salmon.
Collapse
Affiliation(s)
- Chase R Williams
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington 98105
| | - James W MacDonald
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington 98105
| | - Theo K Bammler
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington 98105
| | - Michael H Paulsen
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington 98105
| | - Christopher D Simpson
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington 98105
| | - Evan P Gallagher
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington 98105
| |
Collapse
|
46
|
Bachmann C, Nguyen H, Rosenbusch J, Pham L, Rabe T, Patwa M, Sokpor G, Seong RH, Ashery-Padan R, Mansouri A, Stoykova A, Staiger JF, Tuoc T. mSWI/SNF (BAF) Complexes Are Indispensable for the Neurogenesis and Development of Embryonic Olfactory Epithelium. PLoS Genet 2016; 12:e1006274. [PMID: 27611684 PMCID: PMC5017785 DOI: 10.1371/journal.pgen.1006274] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Accepted: 08/03/2016] [Indexed: 01/06/2023] Open
Abstract
Neurogenesis is a key developmental event through which neurons are generated from neural stem/progenitor cells. Chromatin remodeling BAF (mSWI/SNF) complexes have been reported to play essential roles in the neurogenesis of the central nervous system. However, whether BAF complexes are required for neuron generation in the olfactory system is unknown. Here, we identified onscBAF and ornBAF complexes, which are specifically present in olfactory neural stem cells (oNSCs) and olfactory receptor neurons (ORNs), respectively. We demonstrated that BAF155 subunit is highly expressed in both oNSCs and ORNs, whereas high expression of BAF170 subunit is observed only in ORNs. We report that conditional deletion of BAF155, a core subunit in both onscBAF and ornBAF complexes, causes impaired proliferation of oNSCs as well as defective maturation and axonogenesis of ORNs in the developing olfactory epithelium (OE), while the high expression of BAF170 is important for maturation of ORNs. Interestingly, in the absence of BAF complexes in BAF155/BAF170 double-conditional knockout mice (dcKO), OE is not specified. Mechanistically, BAF complex is required for normal activation of Pax6-dependent transcriptional activity in stem cells/progenitors of the OE. Our findings unveil a novel mechanism mediated by the mSWI/SNF complex in OE neurogenesis and development.
Collapse
Affiliation(s)
| | - Huong Nguyen
- University Medical Center, Georg-August-University, Goettingen, Germany
| | | | - Linh Pham
- University Medical Center, Georg-August-University, Goettingen, Germany
| | - Tamara Rabe
- Max-Planck-Institute for Biophysical Chemistry, Goettingen, Germany
| | - Megha Patwa
- University Medical Center, Georg-August-University, Goettingen, Germany
| | - Godwin Sokpor
- University Medical Center, Georg-August-University, Goettingen, Germany
| | - Rho H. Seong
- Department of Biological Sciences, Institute of Molecular Biology and Genetics, Seoul National University, Seoul, Korea
| | - Ruth Ashery-Padan
- Sackler Faculty of Medicine, Department of Human Molecular Genetics and Biochemistry, Tel Aviv University, Tel Aviv, Israel
| | - Ahmed Mansouri
- Max-Planck-Institute for Biophysical Chemistry, Goettingen, Germany
- DFG Center for Nanoscale Microscopy & Molecular Physiology of the Brain (CNMPB), Goettingen, Germany
| | - Anastassia Stoykova
- Max-Planck-Institute for Biophysical Chemistry, Goettingen, Germany
- DFG Center for Nanoscale Microscopy & Molecular Physiology of the Brain (CNMPB), Goettingen, Germany
| | - Jochen F. Staiger
- University Medical Center, Georg-August-University, Goettingen, Germany
- DFG Center for Nanoscale Microscopy & Molecular Physiology of the Brain (CNMPB), Goettingen, Germany
| | - Tran Tuoc
- University Medical Center, Georg-August-University, Goettingen, Germany
- DFG Center for Nanoscale Microscopy & Molecular Physiology of the Brain (CNMPB), Goettingen, Germany
| |
Collapse
|
47
|
Im S, Moon C. Transcriptional regulatory network during development in the olfactory epithelium. BMB Rep 2016; 48:599-608. [PMID: 26303973 PMCID: PMC4911201 DOI: 10.5483/bmbrep.2015.48.11.177] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Indexed: 12/22/2022] Open
Abstract
Regeneration, a process of reconstitution of the entire tissue, occurs throughout life in the olfactory epithelium (OE). Regeneration of OE consists of several stages: proliferation of progenitors, cell fate determination between neuronal and non-neuronal lineages, their differentiation and maturation. How the differentiated cell types that comprise the OE are regenerated, is one of the central questions in olfactory developmental neurobiology. The past decade has witnessed considerable progress regarding the regulation of transcription factors (TFs) involved in the remarkable regenerative potential of OE. Here, we review current state of knowledge of the transcriptional regulatory networks that are powerful modulators of the acquisition and maintenance of developmental stages during regeneration in the OE. Advance in our understanding of regeneration will not only shed light on the basic principles of adult plasticity of cell identity, but may also lead to new approaches for using stem cells and reprogramming after injury or degenerative neurological diseases.
Collapse
Affiliation(s)
- SeungYeong Im
- Department of Brain & Cognitive Sciences, Graduate School, Daegu Gyeungbuk Institute of Science and Technology, Daegu 42988, Korea
| | - Cheil Moon
- Department of Brain & Cognitive Sciences, Graduate School, Daegu Gyeungbuk Institute of Science and Technology, Daegu 42988, Korea
| |
Collapse
|
48
|
Parrilla M, Chang I, Degl'Innocenti A, Omura M. Expression of homeobox genes in the mouse olfactory epithelium. J Comp Neurol 2016; 524:2713-39. [PMID: 27243442 DOI: 10.1002/cne.24051] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 12/16/2015] [Accepted: 05/25/2016] [Indexed: 01/22/2023]
Abstract
Homeobox genes constitute a large family of genes widely studied because of their role in the establishment of the body pattern. However, they are also involved in many other events during development and adulthood. The main olfactory epithelium (MOE) is an excellent model to study neurogenesis in the adult nervous system. Analyses of homeobox genes during development show that some of these genes are involved in the formation and establishment of cell diversity in the MOE. Moreover, the mechanisms of expression of odorant receptors (ORs) constitute one of the biggest enigmas in the field. Analyses of OR promoters revealed the presence of homeodomain binding sites in their sequences. Here we characterize the expression patterns of a set of 49 homeobox genes in the MOE with in situ hybridization. We found that seven of them (Dlx3, Dlx5, Dlx6, Msx1, Meis1, Isl1, and Pitx1) are zonally expressed. The homeobox gene Emx1 is expressed in three guanylate cyclase(+) populations, two located in the MOE and the third one in an olfactory subsystem known as Grüneberg ganglion located at the entrance of the nasal cavity. The homeobox gene Tshz1 is expressed in a unique patchy pattern across the MOE. Our findings provide new insights to guide functional studies that aim to understand the complexity of transcription factor expression and gene regulation in the MOE. J. Comp. Neurol. 524:2713-2739, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Marta Parrilla
- Max Planck Institut für Biophysik, Frankfurt am Main, Germany
| | - Isabelle Chang
- Max Planck Institut für Biophysik, Frankfurt am Main, Germany
| | - Andrea Degl'Innocenti
- Max Planck Institut für Biophysik, Frankfurt am Main, Germany.,Unità di Biologia Cellulare e dello Sviluppo, Dipartimento di Biologia, Università di Pisa, Pisa, Italy
| | - Masayo Omura
- Max Planck Institut für Biophysik, Frankfurt am Main, Germany
| |
Collapse
|
49
|
Sox2 and Pax6 Play Counteracting Roles in Regulating Neurogenesis within the Murine Olfactory Epithelium. PLoS One 2016; 11:e0155167. [PMID: 27171428 PMCID: PMC4865097 DOI: 10.1371/journal.pone.0155167] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 04/25/2016] [Indexed: 12/13/2022] Open
Abstract
In the adult olfactory epithelium, the transcription factors Pax6 and Sox2 are co-expressed in sustentacular cells, horizontal basal cells (HBCs), and less-differentiated globose basal cells (GBCs)–both multipotent and transit amplifying categories—but are absent from immediate neuronal precursor GBCs and olfactory sensory neurons (OSNs). We used retroviral-vector transduction to over-express Pax6 and Sox2 individually and together during post-lesion recovery to determine how they regulate neuronal differentiation. Both Pax6 and Sox2, separately and together, can suppress the production of OSNs, as fewer clones contain neurons than with empty vector (EV), although this effect is not absolute. In this regard, Pax6 has the strongest effect when acting alone. In clones where neurons form, Pax6 reduces neuron numbers by comparison with EV, while Sox2 expands their numbers. Co-transduction with Pax6 and Sox2 produces an intermediate result. The increased production of OSNs driven by Sox2 is due to the expansion of neuronal progenitors, since proliferation and the numbers of Ascl1, Neurog1, and NeuroD1-expressing GBCs are increased. Conversely, Pax6 seems to accelerate neuronal differentiation, since Ascl1 labeling is reduced, while Neurog1- and NeuroD1-labeled GBCs are enriched. As a complement to the over-expression experiments, elimination of Sox2 in spared cells of floxed Sox2 mice, by retroviral Cre or by K5-driven CreERT2, reduces the production of OSNs and non-neuronal cells during OE regeneration. These data suggest that Pax6 and Sox2 have counteracting roles in regulating neurogenesis, in which Pax6 accelerates neuronal production, while Sox2 retards it and expands the pool of neuronal progenitors.
Collapse
|
50
|
Goncalves S, Goldstein BJ. Pathophysiology of Olfactory Disorders and Potential Treatment Strategies. CURRENT OTORHINOLARYNGOLOGY REPORTS 2016; 4:115-121. [PMID: 27529054 DOI: 10.1007/s40136-016-0113-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Olfactory disorders have been regarded in the past with a sense of therapeutic nihilism. However, there have been remarkable advances in chemosensory research over the past several years. The clinical importance of olfactory disorders is well established, and entities such as presbyosmia have gained considerable broad attention. Powerful basic science experimental approaches have revealed aspects of olfactory neuron physiology, olfactory tissue maintenance and regeneration that provide new potential therapeutic targets for certain forms of olfactory dysfunction. Although many recent advances remain in pre-clinical stages, there is considerable reason for optimism regarding future approaches for treatment of patients with olfactory loss.
Collapse
Affiliation(s)
- Stefania Goncalves
- Department of Otolaryngology and Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL
| | - Bradley J Goldstein
- Department of Otolaryngology and Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL
| |
Collapse
|