1
|
Bod R, Tóth K, Essam N, Tóth EZ, Erõss L, Entz L, Bagó AG, Fabó D, Ulbert I, Wittner L. Synaptic alterations and neuronal firing in human epileptic neocortical excitatory networks. Front Synaptic Neurosci 2023; 15:1233569. [PMID: 37635750 PMCID: PMC10450510 DOI: 10.3389/fnsyn.2023.1233569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 07/25/2023] [Indexed: 08/29/2023] Open
Abstract
Epilepsy is a prevalent neurological condition, with underlying neuronal mechanisms involving hyperexcitability and hypersynchrony. Imbalance between excitatory and inhibitory circuits, as well as histological reorganization are relatively well-documented in animal models or even in the human hippocampus, but less is known about human neocortical epileptic activity. Our knowledge about changes in the excitatory signaling is especially scarce, compared to that about the inhibitory cell population. This study investigated the firing properties of single neurons in the human neocortex in vitro, during pharmacological blockade of glutamate receptors, and additionally evaluated anatomical changes in the excitatory circuit in tissue samples from epileptic and non-epileptic patients. Both epileptic and non-epileptic tissues exhibited spontaneous population activity (SPA), NMDA receptor antagonization reduced SPA recurrence only in epileptic tissue, whereas further blockade of AMPA/kainate receptors reversibly abolished SPA emergence regardless of epilepsy. Firing rates did not significantly change in excitatory principal cells and inhibitory interneurons during pharmacological experiments. Granular layer (L4) neurons showed an increased firing rate in epileptic compared to non-epileptic tissue. The burstiness of neurons remained unchanged, except for that of inhibitory cells in epileptic recordings, which decreased during blockade of glutamate receptors. Crosscorrelograms computed from single neuron discharge revealed both mono- and polysynaptic connections, particularly involving intrinsically bursting principal cells. Histological investigations found similar densities of SMI-32-immunopositive long-range projecting pyramidal cells in both groups, and shorter excitatory synaptic active zones with a higher proportion of perforated synapses in the epileptic group. These findings provide insights into epileptic modifications from the perspective of the excitatory system and highlight discrete alterations in firing patterns and synaptic structure. Our data suggest that NMDA-dependent glutamatergic signaling, as well as the excitatory synaptic machinery are perturbed in epilepsy, which might contribute to epileptic activity in the human neocortex.
Collapse
Affiliation(s)
- Réka Bod
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Eötvös Loránd Research Network, Budapest, Hungary
- Semmelweis University Doctoral School, Budapest, Hungary
| | - Kinga Tóth
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Eötvös Loránd Research Network, Budapest, Hungary
| | - Nour Essam
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Eötvös Loránd Research Network, Budapest, Hungary
| | - Estilla Zsófia Tóth
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Eötvös Loránd Research Network, Budapest, Hungary
- Semmelweis University Doctoral School, Budapest, Hungary
| | - Loránd Erõss
- National Institute of Mental Health, Neurology and Neurosurgery, Budapest, Hungary
| | - László Entz
- National Institute of Mental Health, Neurology and Neurosurgery, Budapest, Hungary
| | - Attila G. Bagó
- National Institute of Mental Health, Neurology and Neurosurgery, Budapest, Hungary
| | - Dániel Fabó
- National Institute of Mental Health, Neurology and Neurosurgery, Budapest, Hungary
| | - István Ulbert
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Eötvös Loránd Research Network, Budapest, Hungary
- Semmelweis University Doctoral School, Budapest, Hungary
- National Institute of Mental Health, Neurology and Neurosurgery, Budapest, Hungary
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - Lucia Wittner
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Eötvös Loránd Research Network, Budapest, Hungary
- Semmelweis University Doctoral School, Budapest, Hungary
- National Institute of Mental Health, Neurology and Neurosurgery, Budapest, Hungary
| |
Collapse
|
2
|
Rigby M, Grillo FW, Compans B, Neves G, Gallinaro J, Nashashibi S, Horton S, Pereira Machado PM, Carbajal MA, Vizcay-Barrena G, Levet F, Sibarita JB, Kirkland A, Fleck RA, Clopath C, Burrone J. Multi-synaptic boutons are a feature of CA1 hippocampal connections in the stratum oriens. Cell Rep 2023; 42:112397. [PMID: 37074915 PMCID: PMC10695768 DOI: 10.1016/j.celrep.2023.112397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 01/21/2023] [Accepted: 03/30/2023] [Indexed: 04/20/2023] Open
Abstract
Excitatory synapses are typically described as single synaptic boutons (SSBs), where one presynaptic bouton contacts a single postsynaptic spine. Using serial section block-face scanning electron microscopy, we found that this textbook definition of the synapse does not fully apply to the CA1 region of the hippocampus. Roughly half of all excitatory synapses in the stratum oriens involved multi-synaptic boutons (MSBs), where a single presynaptic bouton containing multiple active zones contacted many postsynaptic spines (from 2 to 7) on the basal dendrites of different cells. The fraction of MSBs increased during development (from postnatal day 22 [P22] to P100) and decreased with distance from the soma. Curiously, synaptic properties such as active zone (AZ) or postsynaptic density (PSD) size exhibited less within-MSB variation when compared with neighboring SSBs, features that were confirmed by super-resolution light microscopy. Computer simulations suggest that these properties favor synchronous activity in CA1 networks.
Collapse
Affiliation(s)
- Mark Rigby
- MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK; Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
| | - Federico W Grillo
- MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK; Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
| | - Benjamin Compans
- MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK; Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
| | - Guilherme Neves
- MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK; Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK; The Rosalind Franklin Institute, Harwell Campus, Didcot OX11 0FA, UK
| | - Julia Gallinaro
- Bioengineering Department, Imperial College London, London, UK
| | - Sophie Nashashibi
- MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK; Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
| | - Sally Horton
- MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK; Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
| | - Pedro M Pereira Machado
- Centre for Ultrastructural Imaging (CUI), Kings College London, New Hunts House, Guys Hospital Campus, London SE1 1UL, UK
| | - Maria Alejandra Carbajal
- Centre for Ultrastructural Imaging (CUI), Kings College London, New Hunts House, Guys Hospital Campus, London SE1 1UL, UK
| | - Gema Vizcay-Barrena
- Centre for Ultrastructural Imaging (CUI), Kings College London, New Hunts House, Guys Hospital Campus, London SE1 1UL, UK
| | - Florian Levet
- University Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, 33000 Bordeaux, France; University Bordeaux, CNRS, INSERM, Bordeaux Imaging Center, BIC, UAR3420, US 4, 33000 Bordeaux, France
| | - Jean-Baptiste Sibarita
- University Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, 33000 Bordeaux, France
| | - Angus Kirkland
- The Rosalind Franklin Institute, Harwell Campus, Didcot OX11 0FA, UK
| | - Roland A Fleck
- Centre for Ultrastructural Imaging (CUI), Kings College London, New Hunts House, Guys Hospital Campus, London SE1 1UL, UK
| | - Claudia Clopath
- Bioengineering Department, Imperial College London, London, UK
| | - Juan Burrone
- MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK; Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK.
| |
Collapse
|
3
|
Kunadia A, Aughtman S, Hoffmann M, Rossi F. Superlative Artistic Abilities in a Patient With Post-traumatic Brain Injury. Cureus 2021; 13:e16697. [PMID: 34462704 PMCID: PMC8389864 DOI: 10.7759/cureus.16697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 07/28/2021] [Indexed: 12/05/2022] Open
Abstract
This case describes a patient who exhibits newfound superlative abilities in painting, music, philosophy, culinary, and performing arts after a traumatic brain injury (TBI) involving the frontal and temporal lobes. Such a dramatic change in de novo artistic behavior after brain injury is rare but has been reported in other patients with frontotemporal dementia, as well as other neurological diseases. Previous studies have shown that mild frontal cortical dysfunction likely plays a role in facilitating creative endeavors and that artistic circuitry is distributed throughout the brain. The neuronal reorganization which occurs after injuries enhances synapse formation and neural plasticity, which may contribute to the acceleration of artistic output after brain injury. This is likely an underdiagnosed phenomenon and a deeper understanding is required to allow clinicians to more effectively recognize and nurture newfound creativity in the setting of brain damage.
Collapse
Affiliation(s)
- Anuj Kunadia
- Internal Medicine, University of Central Florida College of Medicine, Orlando, USA
| | - Shelby Aughtman
- Internal Medicine, University of Central Florida College of Medicine, Orlando, USA
| | - Michael Hoffmann
- Internal Medicine and Neurology, University of Central Florida College of Medicine, Orlando, USA
| | - Fabian Rossi
- Clinical Neurophysiology Laboratory, Orlando Veterans Affairs Medical Center, Orlando, USA
| |
Collapse
|
4
|
Abstract
Stroke is a debilitating disease. Current effective therapies for stroke recovery are limited to neurorehabilitation. Most stroke recovery occurs in a limited and early time window. Many of the mechanisms of spontaneous recovery after stroke parallel mechanisms of normal learning and memory. While various efforts are in place to identify potential drug targets, an emerging approach is to understand biological correlates between learning and stroke recovery. This review assesses parallels between biological changes at the molecular, structural, and functional levels during learning and recovery after stroke, with a focus on drug and cellular targets for therapeutics.
Collapse
Affiliation(s)
- Mary Teena Joy
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - S. Thomas Carmichael
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| |
Collapse
|
5
|
Wilkins KB, Yao J, Owen M, Karbasforoushan H, Carmona C, Dewald JPA. Limited capacity for ipsilateral secondary motor areas to support hand function post-stroke. J Physiol 2020; 598:2153-2167. [PMID: 32144937 DOI: 10.1113/jp279377] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 02/21/2020] [Indexed: 12/31/2022] Open
Abstract
KEY POINTS Ipsilateral-projecting corticobulbar pathways, originating primarily from secondary motor areas, innervate the proximal and even distal portions, although they branch more extensively at the spinal cord. It is currently unclear to what extent these ipsilateral secondary motor areas and subsequent cortical projections may contribute to hand function following stroke-induced damage to one hemisphere. In the present study, we provide both structural and functional evidence indicating that individuals increasingly rely on ipsilateral secondary motor areas, although at the detriment of hand function. Increased activity in ipsilateral secondary motor areas was associated with increased involuntary coupling between shoulder abduction and finger flexion, most probably as a result of the low resolution of these pathways, making it increasingly difficult to open the hand. These findings suggest that, although ipsilateral secondary motor areas may support proximal movements, they do not have the capacity to support distal hand function, particularly for hand opening. ABSTRACT Recent findings have shown connections of ipsilateral cortico-reticulospinal tract (CRST), predominantly originating from secondary motor areas to not only proximal, but also distal muscles of the arm. Following a unilateral stroke, CRST from the ipsilateral side remains intact and thus has been proposed as a possible backup system for post-stroke rehabilitation even for the hand. We argue that, although CRST from ipsilateral secondary motor areas can provide control for proximal joints, it is insufficient to control either hand or coordinated shoulder and hand movements as a result of its extensive spinal branching compared to contralateral corticospinal tract. To address this issue, we combined magnetic resonance imaging, high-density EEG, and robotics in 17 individuals with severe chronic hemiparetic stroke and 12 age-matched controls. We tested for changes in structural morphometry of the sensorimotor cortex and found that individuals with stroke demonstrated higher grey matter density in secondary motor areas ipsilateral to the paretic arm compared to controls. We then measured cortical activity when participants were attempting to generate hand opening either supported on a table or when lifting against a shoulder abduction load. The addition of shoulder abduction during hand opening increased reliance on ipsilateral secondary motor areas in stroke, but not controls. Crucially, the increased use of ipsilateral secondary motor areas was associated with decreased hand opening ability when lifting the arm as a result of involuntary coupling between the shoulder and wrist/finger flexors. Taken together, this evidence implicates a compensatory role for ipsilateral (i.e. contralesional) secondary motor areas post-stroke, although with no apparent capacity to support hand function.
Collapse
Affiliation(s)
- Kevin B Wilkins
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, 645 N Michigan Ave, Suite 1100, Chicago, IL, USA.,Northwestern University Interdepartmental Neuroscience, Northwestern University, 320 E. Superior St, Chicago, IL, USA
| | - Jun Yao
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, 645 N Michigan Ave, Suite 1100, Chicago, IL, USA.,Northwestern University Interdepartmental Neuroscience, Northwestern University, 320 E. Superior St, Chicago, IL, USA.,Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, USA
| | - Meriel Owen
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, 645 N Michigan Ave, Suite 1100, Chicago, IL, USA.,Northwestern University Interdepartmental Neuroscience, Northwestern University, 320 E. Superior St, Chicago, IL, USA
| | - Haleh Karbasforoushan
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, 645 N Michigan Ave, Suite 1100, Chicago, IL, USA.,Northwestern University Interdepartmental Neuroscience, Northwestern University, 320 E. Superior St, Chicago, IL, USA
| | - Carolina Carmona
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, 645 N Michigan Ave, Suite 1100, Chicago, IL, USA
| | - Julius P A Dewald
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, 645 N Michigan Ave, Suite 1100, Chicago, IL, USA.,Northwestern University Interdepartmental Neuroscience, Northwestern University, 320 E. Superior St, Chicago, IL, USA.,Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, USA.,Department of Physical Medicine and Rehabilitation, Northwestern University, 345 East Superior Street, Chicago, IL, USA
| |
Collapse
|
6
|
Characterization of Multiple Synaptic Boutons in Cerebral Motor Cortex in Physiological and Pathological Condition: Acrobatic Motor Training Model and Traumatic Brain Injury Model. Appl Microsc 2018. [DOI: 10.9729/am.2018.48.4.102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
7
|
Doty RL, Tourbier I, Neff JK, Silas J, Turetsky B, Moberg P, Kim T, Pluta J, French J, Sharan AD, Sperling MJ, Mirza N, Risser A, Baltuch G, Detre JA. Influences of temporal lobe epilepsy and temporal lobe resection on olfaction. J Neurol 2018; 265:1654-1665. [PMID: 29767353 PMCID: PMC6239967 DOI: 10.1007/s00415-018-8891-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 04/26/2018] [Accepted: 04/27/2018] [Indexed: 10/16/2022]
Abstract
Although temporal lobe epilepsy (TLE) and resection (TLR) impact olfactory eloquent brain structures, their influences on olfaction remain enigmatic. We sought to more definitively assess the influences of TLE and TLR on olfaction using three well-validated olfactory tests and measuring the tests' associations with the volume of numerous temporal lobe brain structures. The University of Pennsylvania Smell Identification Test and an odor detection threshold test were administered to 71 TLE patients and 71 age- and sex-matched controls; 69 TLE patients and controls received an odor discrimination/memory test. Fifty-seven patients and 57 controls were tested on odor identification and threshold before and after TLR; 27 patients and 27 controls were similarly tested for odor detection/discrimination. Scores were compared using analysis of variance and correlated with pre- and post-operative volumes of the target brain structures. TLE was associated with bilateral deficits in all test measures. TLR further decreased function on the side ipsilateral to resection. The hippocampus and other structures were smaller on the focus side of the TLE subjects. Although post-operative volumetric decreases were evident in most measured brain structures, modest contralateral volumetric increases were observed in some cases. No meaningful correlations were evident pre- or post-operatively between the olfactory test scores and the structural volumes. In conclusion, we demonstrate that smell dysfunction is clearly a key element of both TLE and TLR, impacting odor identification, detection, and discrimination/memory. Whether our novel finding of significant post-operative increases in the volume of brain structures contralateral to the resection side reflects plasticity and compensatory processes requires further study.
Collapse
Affiliation(s)
- Richard L Doty
- Smell and Taste Center, Perelman School of Medicine, Hospital of the University of Pennsylvania, 5 Ravdin Pavilion, 3400 Spruce Street, Philadelphia, PA, 19104-4283, USA.
- Department of Otorhinolaryngology, Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Isabelle Tourbier
- Smell and Taste Center, Perelman School of Medicine, Hospital of the University of Pennsylvania, 5 Ravdin Pavilion, 3400 Spruce Street, Philadelphia, PA, 19104-4283, USA
- Department of Otorhinolaryngology, Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jessica K Neff
- Smell and Taste Center, Perelman School of Medicine, Hospital of the University of Pennsylvania, 5 Ravdin Pavilion, 3400 Spruce Street, Philadelphia, PA, 19104-4283, USA
- Department of Otorhinolaryngology, Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jonathan Silas
- Smell and Taste Center, Perelman School of Medicine, Hospital of the University of Pennsylvania, 5 Ravdin Pavilion, 3400 Spruce Street, Philadelphia, PA, 19104-4283, USA
- Department of Psychology, Middlesex University, London, UK
| | - Bruce Turetsky
- Smell and Taste Center, Perelman School of Medicine, Hospital of the University of Pennsylvania, 5 Ravdin Pavilion, 3400 Spruce Street, Philadelphia, PA, 19104-4283, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Paul Moberg
- Smell and Taste Center, Perelman School of Medicine, Hospital of the University of Pennsylvania, 5 Ravdin Pavilion, 3400 Spruce Street, Philadelphia, PA, 19104-4283, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Taehoon Kim
- Smell and Taste Center, Perelman School of Medicine, Hospital of the University of Pennsylvania, 5 Ravdin Pavilion, 3400 Spruce Street, Philadelphia, PA, 19104-4283, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - John Pluta
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jaqueline French
- Department of Neurology, New York University Langone Medical Center, New York, NY, 10016, USA
| | - Ashwini D Sharan
- Department of Neurosurgery, Thomas Jefferson University Hospital, Philadelphia, PA, USA
| | - Michael J Sperling
- Department of Neurology, Thomas Jefferson University Hospital, Philadelphia, PA, USA
| | - Natasha Mirza
- Smell and Taste Center, Perelman School of Medicine, Hospital of the University of Pennsylvania, 5 Ravdin Pavilion, 3400 Spruce Street, Philadelphia, PA, 19104-4283, USA
- Department of Otorhinolaryngology, Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Anthony Risser
- Smell and Taste Center, Perelman School of Medicine, Hospital of the University of Pennsylvania, 5 Ravdin Pavilion, 3400 Spruce Street, Philadelphia, PA, 19104-4283, USA
| | - Gordon Baltuch
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - John A Detre
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
8
|
Talman WT, Dragon DN, Lin LH. Reduced responses to glutamate receptor agonists follow loss of astrocytes and astroglial glutamate markers in the nucleus tractus solitarii. Physiol Rep 2017; 5:5/5/e13158. [PMID: 28270593 PMCID: PMC5350171 DOI: 10.14814/phy2.13158] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Accepted: 01/18/2017] [Indexed: 02/01/2023] Open
Abstract
Saporin (SAP) or SAP conjugates injected into the nucleus tractus solitarii (NTS) of rats kill astrocytes. When injected in its unconjugated form, SAP produces no demonstrable loss of or damage to local neurons. However bilateral injections of SAP significantly attenuate responses to activation of baroreceptor reflexes that are mediated by transmission of signals through glutamate receptors in the NTS We tested the hypothesis that SAP would reduce cardiovascular responses to activation of NTS glutamate receptors despite its recognized ability to spare local neurons while killing local astrocytes. In animals treated with SAP and SAP conjugates or, as a control, with the toxin 6-hydroxydopamine (6-OHDA), we sought to determine if dose-related changes of arterial pressure (AP) or heart rate (HR) in response to injection into NTS of N-methyl-d-aspartate (NMDA) or α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) were attenuated. Also we quantified changes in immunoreactivity (IR) for EAAT2, EAAC1, and VGluT2 in NTS after SAP and SAP conjugates. Our earlier studies showed that IR for NMDA and AMPA receptors was not changed after injection of SAP We found that EAAT2 and EAAC1, both found in astrocytes, were reduced by SAP or its conjugates but not by 6-OHDA In contrast, VGluT2-IR was increased by SAP or conjugates but not by 6-OHDA AP and HR responses to NMDA and AMPA were attenuated after SAP and SAP conjugate injection but not after 6-OHDA Results of this study are consistent with others that have shown interactions between astroglia and neurons in synaptic transmission mediated by glutamate receptor activation in the NTS.
Collapse
Affiliation(s)
- William T Talman
- Laboratory of Neurobiology, Department of Neurology, Carver College of Medicine, Iowa City, Iowa .,Department of Veterans Affairs Health Care System, Iowa City, Iowa
| | - Deidre Nitschke Dragon
- Laboratory of Neurobiology, Department of Neurology, Carver College of Medicine, Iowa City, Iowa.,Department of Veterans Affairs Health Care System, Iowa City, Iowa
| | - Li-Hsien Lin
- Laboratory of Neurobiology, Department of Neurology, Carver College of Medicine, Iowa City, Iowa.,Department of Veterans Affairs Health Care System, Iowa City, Iowa
| |
Collapse
|
9
|
Abstract
Stroke instigates a dynamic process of repair and remodelling of remaining neural circuits, and this process is shaped by behavioural experiences. The onset of motor disability simultaneously creates a powerful incentive to develop new, compensatory ways of performing daily activities. Compensatory movement strategies that are developed in response to motor impairments can be a dominant force in shaping post-stroke neural remodelling responses and can have mixed effects on functional outcome. The possibility of selectively harnessing the effects of compensatory behaviour on neural reorganization is still an insufficiently explored route for optimizing functional outcome after stroke.
Collapse
Affiliation(s)
- Theresa A Jones
- Department of Psychology and Institute for Neuroscience, University of Texas at Austin, Texas 78712, USA
| |
Collapse
|
10
|
Hylin MJ, Kerr AL, Holden R. Understanding the Mechanisms of Recovery and/or Compensation following Injury. Neural Plast 2017; 2017:7125057. [PMID: 28512585 PMCID: PMC5415868 DOI: 10.1155/2017/7125057] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 02/24/2017] [Accepted: 03/26/2017] [Indexed: 11/30/2022] Open
Abstract
Injury due to stroke and traumatic brain injury result in significant long-term effects upon behavioral functioning. One central question to rehabilitation research is whether the nature of behavioral improvement observed is due to recovery or the development of compensatory mechanisms. The nature of functional improvement can be viewed from the perspective of behavioral changes or changes in neuroanatomical plasticity that follows. Research suggests that these changes correspond to each other in a bidirectional manner. Mechanisms surrounding phenomena like neural plasticity may offer an opportunity to explain how variables such as experience can impact improvement and influence the definition of recovery. What is more, the intensity of the rehabilitative experiences may influence the ability to recover function and support functional improvement of behavior. All of this impacts how researchers, clinicians, and medical professionals utilize rehabilitation.
Collapse
Affiliation(s)
- Michael J. Hylin
- Neurotrauma and Rehabilitation Laboratory, Department of Psychology, Southern Illinois University, Carbondale, IL, USA
| | - Abigail L. Kerr
- Department of Psychology, Illinois Wesleyan University, Bloomington, IL, USA
| | - Ryan Holden
- Neurotrauma and Rehabilitation Laboratory, Department of Psychology, Southern Illinois University, Carbondale, IL, USA
| |
Collapse
|
11
|
Stokowska A, Atkins AL, Morán J, Pekny T, Bulmer L, Pascoe MC, Barnum SR, Wetsel RA, Nilsson JA, Dragunow M, Pekna M. Complement peptide C3a stimulates neural plasticity after experimental brain ischaemia. Brain 2016; 140:353-369. [PMID: 27956400 DOI: 10.1093/brain/aww314] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 10/19/2016] [Accepted: 10/20/2016] [Indexed: 11/12/2022] Open
Abstract
Ischaemic stroke induces endogenous repair processes that include proliferation and differentiation of neural stem cells and extensive rewiring of the remaining neural connections, yet about 50% of stroke survivors live with severe long-term disability. There is an unmet need for drug therapies to improve recovery by promoting brain plasticity in the subacute to chronic phase after ischaemic stroke. We previously showed that complement-derived peptide C3a regulates neural progenitor cell migration and differentiation in vitro and that C3a receptor signalling stimulates neurogenesis in unchallenged adult mice. To determine the role of C3a-C3a receptor signalling in ischaemia-induced neural plasticity, we subjected C3a receptor-deficient mice, GFAP-C3a transgenic mice expressing biologically active C3a in the central nervous system, and their respective wild-type controls to photothrombotic stroke. We found that C3a overexpression increased, whereas C3a receptor deficiency decreased post-stroke expression of GAP43 (P < 0.01), a marker of axonal sprouting and plasticity, in the peri-infarct cortex. To verify the translational potential of these findings, we used a pharmacological approach. Daily intranasal treatment of wild-type mice with C3a beginning 7 days after stroke induction robustly increased synaptic density (P < 0.01) and expression of GAP43 in peri-infarct cortex (P < 0.05). Importantly, the C3a treatment led to faster and more complete recovery of forepaw motor function (P < 0.05). We conclude that C3a-C3a receptor signalling stimulates post-ischaemic neural plasticity and intranasal treatment with C3a receptor agonists is an attractive approach to improve functional recovery after ischaemic brain injury.
Collapse
Affiliation(s)
- Anna Stokowska
- Center for Brain Repair and Rehabilitation, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Alison L Atkins
- Center for Brain Repair and Rehabilitation, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Javier Morán
- Center for Brain Repair and Rehabilitation, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Tulen Pekny
- Center for Brain Repair and Rehabilitation, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Linda Bulmer
- Center for Brain Repair and Rehabilitation, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Michaela C Pascoe
- Center for Brain Repair and Rehabilitation, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Scott R Barnum
- Department of Microbiology, University of Alabama, Birmingham, Alabama, USA
| | - Rick A Wetsel
- Research Center for Immunology and Autoimmune Diseases, Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas-Houston, Houston, Texas, USA
| | - Jonas A Nilsson
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Mike Dragunow
- Department of Pharmacology and Centre for Brain Research, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Marcela Pekna
- Center for Brain Repair and Rehabilitation, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden .,Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia.,Hunter Medical Research Institute, University of Newcastle, New South Wales, Australia
| |
Collapse
|
12
|
Umarova RM, Nitschke K, Kaller CP, Klöppel S, Beume L, Mader I, Martin M, Hennig J, Weiller C. Predictors and signatures of recovery from neglect in acute stroke. Ann Neurol 2016; 79:673-86. [DOI: 10.1002/ana.24614] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 12/30/2015] [Accepted: 02/08/2016] [Indexed: 01/11/2023]
Affiliation(s)
- Roza M. Umarova
- Department of Neurology; University Medical Center Freiburg; Freiburg Germany
- Freiburg Brain Imaging; University Medical Center Freiburg; Freiburg Germany
- BrainLinks-BrainTools Cluster of Excellence; University of Freiburg; Freiburg Germany
| | - Kai Nitschke
- Department of Neurology; University Medical Center Freiburg; Freiburg Germany
- Freiburg Brain Imaging; University Medical Center Freiburg; Freiburg Germany
- BrainLinks-BrainTools Cluster of Excellence; University of Freiburg; Freiburg Germany
| | - Christoph P. Kaller
- Department of Neurology; University Medical Center Freiburg; Freiburg Germany
- Freiburg Brain Imaging; University Medical Center Freiburg; Freiburg Germany
- BrainLinks-BrainTools Cluster of Excellence; University of Freiburg; Freiburg Germany
| | - Stefan Klöppel
- Department of Neurology; University Medical Center Freiburg; Freiburg Germany
- Freiburg Brain Imaging; University Medical Center Freiburg; Freiburg Germany
- BrainLinks-BrainTools Cluster of Excellence; University of Freiburg; Freiburg Germany
- Department of Psychiatry; University Medical Center Freiburg; Freiburg Germany
| | - Lena Beume
- Department of Neurology; University Medical Center Freiburg; Freiburg Germany
- Freiburg Brain Imaging; University Medical Center Freiburg; Freiburg Germany
- BrainLinks-BrainTools Cluster of Excellence; University of Freiburg; Freiburg Germany
| | - Irina Mader
- Freiburg Brain Imaging; University Medical Center Freiburg; Freiburg Germany
- Department of Neuroradiology; University Medical Center Freiburg; Freiburg Germany
| | - Markus Martin
- Department of Neurology; University Medical Center Freiburg; Freiburg Germany
- Freiburg Brain Imaging; University Medical Center Freiburg; Freiburg Germany
- BrainLinks-BrainTools Cluster of Excellence; University of Freiburg; Freiburg Germany
| | - Jürgen Hennig
- Freiburg Brain Imaging; University Medical Center Freiburg; Freiburg Germany
- BrainLinks-BrainTools Cluster of Excellence; University of Freiburg; Freiburg Germany
- Medical Physics, Department of Radiology; University Medical Center Freiburg; Freiburg Germany
| | - Cornelius Weiller
- Department of Neurology; University Medical Center Freiburg; Freiburg Germany
- Freiburg Brain Imaging; University Medical Center Freiburg; Freiburg Germany
- BrainLinks-BrainTools Cluster of Excellence; University of Freiburg; Freiburg Germany
| |
Collapse
|
13
|
Jones TA, Adkins DL. Motor System Reorganization After Stroke: Stimulating and Training Toward Perfection. Physiology (Bethesda) 2015; 30:358-70. [PMID: 26328881 PMCID: PMC4556825 DOI: 10.1152/physiol.00014.2015] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Stroke instigates regenerative responses that reorganize connectivity patterns among surviving neurons. The new connectivity patterns can be suboptimal for behavioral function. This review summarizes current knowledge on post-stroke motor system reorganization and emerging strategies for shaping it with manipulations of behavior and cortical activity to improve functional outcome.
Collapse
Affiliation(s)
- Theresa A Jones
- Psychology Department, Neuroscience Institute, University of Texas at Austin, Austin, Texas; and
| | - DeAnna L Adkins
- Neurosciences Department, and Health Sciences & Research Department, Colleges of Medicine & Health Professions, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
14
|
Neuman KM, Molina-Campos E, Musial TF, Price AL, Oh KJ, Wolke ML, Buss EW, Scheff SW, Mufson EJ, Nicholson DA. Evidence for Alzheimer's disease-linked synapse loss and compensation in mouse and human hippocampal CA1 pyramidal neurons. Brain Struct Funct 2014; 220:3143-65. [PMID: 25031178 DOI: 10.1007/s00429-014-0848-z] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2013] [Accepted: 07/09/2014] [Indexed: 12/17/2022]
Abstract
Alzheimer's disease (AD) is associated with alterations in the distribution, number, and size of inputs to hippocampal neurons. Some of these changes are thought to be neurodegenerative, whereas others are conceptualized as compensatory, plasticity-like responses, wherein the remaining inputs reactively innervate vulnerable dendritic regions. Here, we provide evidence that the axospinous synapses of human AD cases and mice harboring AD-linked genetic mutations (the 5XFAD line) exhibit both, in the form of synapse loss and compensatory changes in the synapses that remain. Using array tomography, quantitative conventional electron microscopy, immunogold electron microscopy for AMPARs, and whole-cell patch-clamp physiology, we find that hippocampal CA1 pyramidal neurons in transgenic mice are host to an age-related synapse loss in their distal dendrites, and that the remaining synapses express more AMPA-type glutamate receptors. Moreover, the number of axonal boutons that synapse with multiple spines is significantly reduced in the transgenic mice. Through serial section electron microscopic analyses of human hippocampal tissue, we further show that putative compensatory changes in synapse strength are also detectable in axospinous synapses of proximal and distal dendrites in human AD cases, and that their multiple synapse boutons may be more powerful than those in non-cognitively impaired human cases. Such findings are consistent with the notion that the pathophysiology of AD is a multivariate product of both neurodegenerative and neuroplastic processes, which may produce adaptive and/or maladaptive responses in hippocampal synaptic strength and plasticity.
Collapse
Affiliation(s)
- Krystina M Neuman
- Department of Neurological Sciences, Rush University Medical Center, 1653 West Harrison Street, Chicago, IL, 60612, USA
| | - Elizabeth Molina-Campos
- Department of Neurological Sciences, Rush University Medical Center, 1653 West Harrison Street, Chicago, IL, 60612, USA
| | - Timothy F Musial
- Department of Neurological Sciences, Rush University Medical Center, 1653 West Harrison Street, Chicago, IL, 60612, USA
| | - Andrea L Price
- Department of Neurological Sciences, Rush University Medical Center, 1653 West Harrison Street, Chicago, IL, 60612, USA
| | - Kwang-Jin Oh
- Department of Neurological Sciences, Rush University Medical Center, 1653 West Harrison Street, Chicago, IL, 60612, USA
| | - Malerie L Wolke
- Department of Neurological Sciences, Rush University Medical Center, 1653 West Harrison Street, Chicago, IL, 60612, USA
| | - Eric W Buss
- Department of Neurological Sciences, Rush University Medical Center, 1653 West Harrison Street, Chicago, IL, 60612, USA
| | - Stephen W Scheff
- Sanders Brown Center on Aging, University of Kentucky, Lexington, KY, 40536, USA
| | - Elliott J Mufson
- Department of Neurological Sciences, Rush University Medical Center, 1653 West Harrison Street, Chicago, IL, 60612, USA
| | - Daniel A Nicholson
- Department of Neurological Sciences, Rush University Medical Center, 1653 West Harrison Street, Chicago, IL, 60612, USA.
| |
Collapse
|
15
|
Clarke J, Langdon KD, Corbett D. Early poststroke experience differentially alters periinfarct layer II and III cortex. J Cereb Blood Flow Metab 2014; 34:630-7. [PMID: 24398938 PMCID: PMC3982081 DOI: 10.1038/jcbfm.2013.237] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 12/05/2013] [Accepted: 12/09/2013] [Indexed: 01/26/2023]
Abstract
Early poststroke rehabilitation effectively improves recovery of function, likely by engaging multiple plasticity processes through use-dependent activation of neural circuits. The loci of such neuroplastic reorganization have not been examined during the initial phase of behavioral recovery. In the current study, we sought to evaluate sub-components of rehabilitation and to identify brain sites first engaged by early rehabilitation. Rats were subjected to endothelin-1 ischemia and placed in either enriched environment (EE), daily reach training (RT), combination of enriched environment and reach training (ER), or standard housing (ST) starting 7 days post ischemia. Functional and histopathological assessments were made after 2, 5, and 10 days of treatment. Animals exposed to 10 days of ER treatment exhibited significantly more use-dependent neuronal activity (FosB/ΔFosB expression) in perilesional cortex than those exposed to EE, RT, or ST treatments. Similar trends were observed in both perilesional striatum and contralesional forelimb motor cortex. This use-dependent plasticity was not explained by differences in neuronal death, inflammation, or lesion volume. The increased activity likely contributes to the neuroplastic changes and functional recovery observed after extended periods of rehabilitation. Importantly, EE or RT alone did not lead to enhanced activity suggesting that combination therapy is necessary to promote maximum recovery.
Collapse
Affiliation(s)
- Jared Clarke
- 1] BioMedical Sciences, Faculty of Medicine, Memorial University, St John's, Newfoundland and Labrador, Canada [2] Heart and Stroke Foundation Centre for Stroke Recovery, Ottawa, Ontario, Canada
| | - Kristopher D Langdon
- 1] BioMedical Sciences, Faculty of Medicine, Memorial University, St John's, Newfoundland and Labrador, Canada [2] Heart and Stroke Foundation Centre for Stroke Recovery, Ottawa, Ontario, Canada
| | - Dale Corbett
- 1] BioMedical Sciences, Faculty of Medicine, Memorial University, St John's, Newfoundland and Labrador, Canada [2] Heart and Stroke Foundation Centre for Stroke Recovery, Ottawa, Ontario, Canada [3] Department of Cellular & Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada [4] Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
16
|
Umarova RM, Reisert M, Beier TU, Kiselev VG, Klöppel S, Kaller CP, Glauche V, Mader I, Beume L, Hennig J, Weiller C. Attention-network specific alterations of structural connectivity in the undamaged white matter in acute neglect. Hum Brain Mapp 2014; 35:4678-92. [PMID: 24668692 DOI: 10.1002/hbm.22503] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2013] [Revised: 01/30/2014] [Accepted: 02/22/2014] [Indexed: 11/10/2022] Open
Abstract
Visual neglect results from dysfunction within the spatial attention network. The structural connectivity in undamaged brain tissue in neglect has barely been investigated until now. In the present study, we explored the microstructural white matter characteristics of the contralesional hemisphere in relation to neglect severity and recovery in acute stroke patients. We compared age-matched healthy subjects and three groups of acute stroke patients (9 ± 0.5 days after stroke): (i) patients with nonrecovered neglect (n = 12); (ii) patients with rapid recovery from initial neglect (within the first week post-stroke, n = 7), (iii) stroke patients without neglect (n = 17). We analyzed the differences between groups in grey and white matter density and fractional anisotropy (FA) and used fiber tracking to identify the affected fibers. Patients with nonrecovered neglect differed from those with rapid recovery by FA-reduction in the left inferior parietal lobe. Fibers passing through this region connect the left-hemispheric analogues of the ventral attention system. Compared with healthy subjects, neglect patients with persisting neglect had FA-reduction in the left superior parietal lobe, optic radiation, and left corpus callosum/cingulum. Fibers passing through these regions connect centers of the left dorsal attention system. FA-reduction in the identified regions correlated with neglect severity. The study shows for the first time white matter changes within the spatial attention system remote from the lesion and correlating with the extent and persistence of neglect. The data support the concept of neglect as disintegration within the whole attention system and illustrate the dynamics of structural-functional correlates in acute stroke.
Collapse
Affiliation(s)
- Roza M Umarova
- Department of Neurology, University Medical Centre Freiburg, Freiburg, Germany; Freiburg Brain Imaging, University Medical Centre Freiburg, Freiburg, Germany; BrainLinks-BrainTools Cluster of Excellence, University of, Freiburg, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Kerr AL, Wolke ML, Bell JA, Jones TA. Post-stroke protection from maladaptive effects of learning with the non-paretic forelimb by bimanual home cage experience in C57BL/6 mice. Behav Brain Res 2013; 252:180-7. [PMID: 23756140 DOI: 10.1016/j.bbr.2013.05.062] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 05/29/2013] [Accepted: 05/31/2013] [Indexed: 01/24/2023]
Abstract
Behavioral experience, in the form of skilled limb use, has been found to impact the structure and function of the central nervous system, affecting post-stroke behavioral outcome in both adaptive and maladaptive ways. Learning to rely on the less-affected, or non-paretic, body side is common following stroke in both humans and rodent models. In rats, it has been observed that skilled learning with the non-paretic forelimb following ischemic insult leads to impaired or delayed functional recovery of the paretic limb. Here we used a mouse model of focal motor cortical ischemic injury to examine the effects of non-paretic limb training following unilateral stroke. In addition, we exposed some mice to increased bimanual experience in the home cage following stroke to investigate the impact of coordinated dexterous limb use on the non-paretic limb training effect. Our results confirmed that skilled learning with the non-paretic limb impaired functional recovery following stroke in C56BL/6 mice, as it does in rats. Further, this effect was avoided when the skill learning of the non-paretic limb was coupled with increased dexterous use of both forelimbs in the home cage. These findings further establish the mouse as an appropriate model in which to study the neural mechanisms of recovery following stroke and extend previous findings to suggest that the dexterous coordinated use of the paretic and non-paretic limb can promote functional outcome following injury.
Collapse
Affiliation(s)
- Abigail L Kerr
- University of Texas at Austin, Psychology Department, 1 University Station, A8000, Austin, TX 78712, USA.
| | | | | | | |
Collapse
|
18
|
Kozlowski DA, Leasure JL, Schallert T. The Control of Movement Following Traumatic Brain Injury. Compr Physiol 2013; 3:121-39. [DOI: 10.1002/cphy.c110005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
19
|
Multiple spine boutons are formed after long-lasting LTP in the awake rat. Brain Struct Funct 2012; 219:407-14. [PMID: 23224218 DOI: 10.1007/s00429-012-0488-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 11/16/2012] [Indexed: 01/25/2023]
Abstract
The formation of multiple spine boutons (MSBs) has been associated with cognitive abilities including hippocampal-dependent associative learning and memory. Data obtained from cultured hippocampal slices suggest that the long-term maintenance of synaptic plasticity requires the formation of new synaptic contacts on pre-existing synapses. This postulate however, has never been tested in the awake, freely moving animals. In the current study, we induced long-term potentiation (LTP) in the dentate gyrus (DG) of awake adult rats and performed 3-D reconstructions of electron micrographs from thin sections of both axonal boutons and dendritic spines, 24 h post-induction. The specificity of the observed changes was demonstrated by comparison with animals in which long-term depression (LTD) had been induced, or with animals in which LTP was blocked by an N-methyl-D-aspartate (NMDA) antagonist. Our data demonstrate that whilst the number of boutons remains unchanged, there is a marked increase in the number of synapses per bouton 24 h after the induction of LTP. Further, we demonstrate that this increase is specific to mushroom spines and not attributable to their division. The present investigation thus fills the gap existing between behavioural and in vitro studies on the role of MSB formation in synaptic plasticity and cognitive abilities.
Collapse
|
20
|
Jones TA, Liput DJ, Maresh EL, Donlan N, Parikh TJ, Marlowe D, Kozlowski DA. Use-dependent dendritic regrowth is limited after unilateral controlled cortical impact to the forelimb sensorimotor cortex. J Neurotrauma 2012; 29:1455-68. [PMID: 22352953 PMCID: PMC5749646 DOI: 10.1089/neu.2011.2207] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Compensatory neural plasticity occurs in both hemispheres following unilateral cortical damage incurred by seizures, stroke, and focal lesions. Plasticity is thought to play a role in recovery of function, and is important for the utility of rehabilitation strategies. Such effects have not been well described in models of traumatic brain injury (TBI). We examined changes in immunoreactivity for neural structural and plasticity-relevant proteins in the area surrounding a controlled cortical impact (CCI) to the forelimb sensorimotor cortex (FL-SMC), and in the contralateral homotopic cortex over time (3-28 days). CCI resulted in considerable motor deficits in the forelimb contralateral to injury, and increased reliance on the ipsilateral forelimb. The density of dendritic processes, visualized with immunostaining for microtubule-associated protein-2 (MAP-2), were bilaterally decreased at all time points. Synaptophysin (SYN) immunoreactivity increased transiently in the injured hemisphere, but this reflected an atypical labeling pattern, and it was unchanged in the contralateral hemisphere compared to uninjured controls. The lack of compensatory neuronal structural plasticity in the contralateral homotopic cortex, despite behavioral asymmetries, is in contrast to previous findings in stroke models. In the cortex surrounding the injury (but not the contralateral cortex), decreases in dendrites were accompanied by neurodegeneration, as indicated by Fluoro-Jade B (FJB) staining, and increased expression of the growth-inhibitory protein Nogo-A. These studies indicate that, following unilateral CCI, the cortex undergoes neuronal structural degradation in both hemispheres out to 28 days post-injury, which may be indicative of compromised compensatory plasticity. This is likely to be an important consideration in designing therapeutic strategies aimed at enhancing plasticity following TBI.
Collapse
Affiliation(s)
- Theresa A. Jones
- University of Texas at Austin, Department of Psychology and Institute for Neuroscience, Austin, Texas
| | - Daniel J. Liput
- DePaul University, Department of Biological Sciences, Chicago, Illinois
| | - Erin L. Maresh
- University of Texas at Austin, Department of Psychology and Institute for Neuroscience, Austin, Texas
| | - Nicole Donlan
- University of Texas at Austin, Department of Psychology and Institute for Neuroscience, Austin, Texas
| | - Toral J. Parikh
- University of Texas at Austin, Department of Psychology and Institute for Neuroscience, Austin, Texas
| | - Dana Marlowe
- DePaul University, Department of Biological Sciences, Chicago, Illinois
| | | |
Collapse
|
21
|
Galvez R, Nicholson DA, Disterhoft JF. Physiological and anatomical studies of associative learning: Convergence with learning studies of W.T. Greenough. Dev Psychobiol 2011; 53:489-504. [PMID: 21678397 PMCID: PMC3632307 DOI: 10.1002/dev.20554] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The quest to understand how the brain is able to store information for later retrieval has been pursued by many scientists through the years. Although many have made very significant contributions to the field and our current understanding of the process, few have played as pivotal a role in advancing our understanding as William T. Greenough. The current report will utilize associative learning, a training paradigm that has greatly assisted in our understanding of memory consolidation, to demonstrate how findings emerging from the Greenough laboratory helped to not only shape our current understanding of learning induced anatomical plasticity, but to also launch future analyses into the molecular players involved in this process, especially the Fragile X Mental Retardation Protein.
Collapse
Affiliation(s)
- Roberto Galvez
- Department of Psychology, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, USA
| | | | | |
Collapse
|
22
|
Jones TA, Jefferson SC. Reflections of experience-expectant development in repair of the adult damaged brain. Dev Psychobiol 2011; 53:466-75. [PMID: 21678394 PMCID: PMC6645382 DOI: 10.1002/dev.20557] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Behavioral experience has long been known to influence functional outcome after brain injury, but only recently has its pervasive role in the reorganization of the adult brain after damage become appreciated. We briefly review findings from animal models on the role of experience in shaping neuronal events after stroke-like injury. Experience-dependent neural plasticity can be enhanced or impaired by brain damage, depending upon injury parameters and timing. The neuronal growth response to some experiences is heightened due to interactions with denervation-induced plasticity. This includes compensatory behavioral strategies developed in response to functional impairments. Early behavioral experiences can constrain later experience-dependent plasticity, leading to suboptimal functional outcome. Time dependencies and facets of neural growth patterns are reminiscent of experience-expectant processes that shape brain development. As with sensitive periods in brain development, this process may establish behavioral patterns early after brain injury which are relatively resistant to later change.
Collapse
Affiliation(s)
- Theresa A Jones
- Psychology Department and Neuroscience Institute, University of Texas at Austin, USA.
| | | |
Collapse
|
23
|
Karl J, Alaverdashvili M, Cross A, Whishaw I. Thinning, movement, and volume loss of residual cortical tissue occurs after stroke in the adult rat as identified by histological and magnetic resonance imaging analysis. Neuroscience 2010; 170:123-37. [DOI: 10.1016/j.neuroscience.2010.06.054] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Revised: 06/03/2010] [Accepted: 06/23/2010] [Indexed: 11/28/2022]
|
24
|
Kim SY, Jones TA. Lesion size-dependent synaptic and astrocytic responses in cortex contralateral to infarcts in middle-aged rats. Synapse 2010; 64:659-71. [PMID: 20336630 PMCID: PMC2904857 DOI: 10.1002/syn.20777] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
In young adult rats, unilateral lesions of the sensorimotor cortex lead to neuronal structural plasticity and synaptogenesis in the contralateral motor cortex, which is connected to the lesion site by transcallosal fibers. The contralesional neural plasticity varies with lesion size and results from the convergence of denervation-induced reactive plasticity and behavioral asymmetries. It was unknown whether similar effects occur in older animals. Furthermore, the coordination of synaptic responses with that of perisynaptic astrocytes had not been investigated. In this study, middle-aged rats (14-16 months old) were given sham-operations or unilateral ischemic lesions of the sensorimotor cortex. Fifty days later, numerical densities of neurons and synapses and morphological characteristics of astrocytic processes in layer V of the contralesional motor cortex were measured using stereological light and electron microscopy methods. Lesions resulted in behavioral asymmetries, but no significant synapse addition in the contralesional motor cortex. Synapse number per neuron was negatively correlated with lesion size and reduced opposite larger lesions compared with smaller ones. Astrocytic changes were also lesion size-dependent. Astrocytic hypertrophy was observed only after smaller lesions and was associated with greater coverage and greater numbers of synapses. These findings are consistent with those in younger rats indicating an inverse relationship between lesion size and adaptive neuronal restructuring in denervated cortex. However, they indicate that the synaptogenic reaction to this lesion is relatively limited in older animals. Finally, the results indicate that structural plasticity of perisynaptic astrocytes parallels, and could play a role in shaping, synaptic responses to postischemic denervation.
Collapse
Affiliation(s)
- Soo Young Kim
- Institute for Neuroscience, University of Texas at Austin, TX, USA
| | - Theresa A. Jones
- Institute for Neuroscience, University of Texas at Austin, TX, USA
- Department of Psychology, University of Texas at Austin, TX, USA
| |
Collapse
|
25
|
Zörner B, Schwab ME. Anti-Nogo on the go: from animal models to a clinical trial. Ann N Y Acad Sci 2010; 1198 Suppl 1:E22-34. [DOI: 10.1111/j.1749-6632.2010.05566.x] [Citation(s) in RCA: 147] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
26
|
Otani T, Maejima H, Tobimatsu Y, Shimada N, Toriyama M, Deie M. Synaptogenesis in the Contralateral Primary Motor Area after Focal Brain Infarction in Rats. J Phys Ther Sci 2010. [DOI: 10.1589/jpts.22.69] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Takuya Otani
- Graduate School of Health Sciences, Hiroshima University
| | | | | | - Noboru Shimada
- Graduate School of Health Sciences, Hiroshima University
| | | | - Masataka Deie
- Graduate School of Health Sciences, Hiroshima University
| |
Collapse
|
27
|
Popov VI, Stewart MG. Complexity of contacts between synaptic boutons and dendritic spines in adult rat hippocampus: Three-dimensional reconstructions from serial ultrathin sections in vivo. Synapse 2009; 63:369-77. [DOI: 10.1002/syn.20613] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
28
|
Nicholson DA, Geinisman Y. Axospinous synaptic subtype-specific differences in structure, size, ionotropic receptor expression, and connectivity in apical dendritic regions of rat hippocampal CA1 pyramidal neurons. J Comp Neurol 2009; 512:399-418. [PMID: 19006199 DOI: 10.1002/cne.21896] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The morphology of axospinous synapses and their parent spines varies widely. Additionally, many of these synapses are contacted by multiple synapse boutons (MSBs) and show substantial variability in receptor expression. The two major axospinous synaptic subtypes are perforated and nonperforated, but there are several subcategories within these two classes. The present study used serial section electron microscopy to determine whether perforated and nonperforated synaptic subtypes differed with regard to their distribution, size, receptor expression, and connectivity to MSBs in three apical dendritic regions of rat hippocampal area CA1: the proximal and distal thirds of stratum radiatum, and the stratum lacunosum-moleculare. All synaptic subtypes were present throughout the apical dendritic regions, but there were several subclass-specific differences. First, segmented, completely partitioned synapses changed in number, proportion, and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptor expression with distance from the soma beyond that found within other perforated synaptic subtypes. Second, atypically large, nonperforated synapses showed N-methyl-D-aspartate (NMDA) receptor immunoreactivity identical to that of perforated synapses, levels of AMPA receptor expression intermediate to that of nonperforated and perforated synapses, and perforated synapse-like changes in structure with distance from the soma. Finally, MSB connectivity was highest in the proximal stratum radiatum, but only for those MSBs composed of nonperforated synapses. The immunogold data suggest that most MSBs would not generate simultaneous depolarizations in multiple neurons or spines, however, because the vast majority of MSBs are comprised of two synapses with abnormally low levels of receptor expression, or involve one synapse with a high level of receptor expression and another with only a low level.
Collapse
Affiliation(s)
- Daniel A Nicholson
- Department of Cell and Molecular Biology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA.
| | | |
Collapse
|
29
|
Maggiolini E, Viaro R, Franchi G. Suppression of activity in the forelimb motor cortex temporarily enlarges forelimb representation in the homotopic cortex in adult rats. Eur J Neurosci 2008; 27:2733-46. [PMID: 18547253 DOI: 10.1111/j.1460-9568.2008.06248.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
After forelimb motor cortex (FMC) damage, the unaffected homotopic motor cortex showed plastic changes. The present experiments were designed to clarify the electrophysiological nature of these interhemispheric effects. To this end, the output reorganization of the FMC was investigated after homotopic area activity was suppressed in adult rats. FMC output was compared after lidocaine-induced inactivation (L-group) or quinolinic acid-induced lesion (Q-group) of the contralateral homotopic cortex. In the Q-group of animals, FMC mapping was performed, respectively, 3 days (Q3D group) and 2 weeks (Q2W group) after cortical lesion. In each animal, FMC output was assessed by mapping movements induced by intracortical microstimulation (ICMS) in both hemispheres (hemisphere ipsilateral and contralateral to injections). The findings demonstrated that in the L-group, the size of forelimb representation was 42.2% higher than in the control group (P < 0.0001). The percentage of dual forelimb-vibrissa movement sites significantly increased over the controls (P < 0.0005). The dual-movement sites occupied a strip of the map along the rostrocaudal border between the forelimb and vibrissa representations. This form of interhemispheric diaschisis had completely reversed, with the recovery of the baseline map, 3 days after the lesion in the contralateral FMC. This restored forelimb map showed no ICMS-induced changes 2 weeks after the lesion in the contralateral FMC. The present results suggest that the FMCs in the two hemispheres interact continuously through predominantly inhibitory influences that preserve the forelimb representation and the border vs. vibrissa representation.
Collapse
Affiliation(s)
- Emma Maggiolini
- Dipartimento di Scienze Biomediche e Terapie Avanzate, Sezione di Fisiologia umana e Istituto Nazionale di Neuroscienze, Università di Ferrara, 44100 Ferrara, Italy
| | | | | |
Collapse
|
30
|
Adkins DL, Hsu JE, Jones TA. Motor cortical stimulation promotes synaptic plasticity and behavioral improvements following sensorimotor cortex lesions. Exp Neurol 2008; 212:14-28. [PMID: 18448100 PMCID: PMC3018150 DOI: 10.1016/j.expneurol.2008.01.031] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2007] [Revised: 01/16/2008] [Accepted: 01/29/2008] [Indexed: 11/21/2022]
Abstract
Cortical stimulation (CS) as a means to modulate regional activity and excitability in cortex is emerging as a promising approach for facilitating rehabilitative interventions after brain damage, including stroke. In this study, we investigated whether CS-induced functional improvements are linked with synaptic plasticity in peri-infarct cortex and vary with the severity of impairments. Adult rats that were proficient in skilled reaching received subtotal unilateral ischemic sensorimotor cortex (SMC) lesions and implantation of chronic epidural electrodes over remaining motor cortex. Based on the initial magnitude of reaching deficits, rats were divided into severely and moderately impaired subgroups. Beginning two weeks post-surgery, rats received 100 Hz cathodal CS at 50% of movement thresholds or no-stimulation control procedures (NoCS) during 18 days of rehabilitative training on a reaching task. Stereological electron microscopy methods were used to quantify axodendritic synapse subtypes in motor cortical layer V underlying the electrode. In moderately, but not severely impaired rats, CS significantly enhanced recovery of reaching success. Sensitive movement analyses revealed that CS partially normalized reaching movements in both impairment subgroups compared to NoCS. Additionally, both CS subgroups had significantly greater density of axodendritic synapses and moderately impaired CS rats had increases in presumed efficacious synapse subtypes (perforated and multiple synapses) in stimulated cortex compared to NoCS. Synaptic density was positively correlated with post-rehabilitation reaching success. In addition to providing further support that CS can promote functional recovery, these findings suggest that CS-induced functional improvements may be mediated by synaptic structural plasticity in stimulated cortex.
Collapse
Affiliation(s)
- DeAnna L Adkins
- Institute for Neuroscience, University of Texas at Austin, TX 78712, USA.
| | | | | |
Collapse
|
31
|
D-JNKi, a peptide inhibitor of c-Jun N-terminal kinase, promotes functional recovery after transient focal cerebral ischemia in rats. Neuroscience 2008; 152:308-20. [DOI: 10.1016/j.neuroscience.2007.12.036] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2007] [Revised: 11/19/2007] [Accepted: 12/20/2007] [Indexed: 01/13/2023]
|
32
|
Allred RP, Jones TA. Experience--a double edged sword for restorative neural plasticity after brain damage. FUTURE NEUROLOGY 2008; 3:189-198. [PMID: 19718283 DOI: 10.2217/14796708.3.2.189] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
During the time period following damage, the brain undergoes widespread reorganizational processes. Manipulations of behavioral experience can be potent therapeutic interventions for shaping this reorganization and enhancing long-term functional outcome. Recovery of function is a major concern for survivors of central nervous system damage and management of post-injury rehabilitation is increasingly becoming a topic of chief importance. Animal research, the focus of this review, suggests that, in the absence of behavioral manipulations, the brain is unlikely to realize its full potential for supporting function. However, experiences also have the capacity to be maladaptive for brain and behavioral function. From a treatment perspective, it may be unwise to adopt the canon of "first, do no harm" because maladaptive experiences include behaviors that individuals learn to do on their own. A better understanding of how behavioral experience interacts with brain reorganization could result in rehabilitative therapies, individually tailored and optimized for functional outcome.
Collapse
Affiliation(s)
- Rachel P Allred
- Psychology Department, University of Texas at Austin, Austin, TX 78712, USA
| | | |
Collapse
|
33
|
Allred RP, Jones TA. Maladaptive effects of learning with the less-affected forelimb after focal cortical infarcts in rats. Exp Neurol 2008; 210:172-81. [PMID: 18054917 PMCID: PMC2733868 DOI: 10.1016/j.expneurol.2007.10.010] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2007] [Revised: 10/16/2007] [Accepted: 10/23/2007] [Indexed: 11/21/2022]
Abstract
It is common following stroke to focus early rehabilitation efforts on developing compensatory use of the less-affected body side. Here we used a rat model of focal cortical infarct to examine how motor skill acquisition with the less-affected ("intact") forelimb influences sensorimotor function of the infarct-impaired forelimb and neural activity in peri-infarct cortex. Rats proficient in skilled reaching with one forelimb were given focal ischemic lesions in the contralateral sensorimotor cortex (SMC). Recovery in this forelimb was tested following a period of reach training focused on the intact forelimb or control procedures. Quantitative measures of the cumulatively expressed transcription factor, FosB/DeltaFosB, were used to assay intact forelimb training effects on neuronal activity in remaining SMC of the infarcted hemisphere. Intact forelimb training worsened behavioral recovery in the impaired forelimb following unilateral focal ischemia. Furthermore, it decreased neuronal FosB/DeltaFosB expression in layer II/III of peri-infarct SMC. These effects were not found in sham-operated rats trained sequentially with both forelimbs or in animals receiving bilateral forelimb training after unilateral infarcts. Thus, focused use of the intact forelimb has detrimental effects on recovery of impaired forelimb function following a focal ischemic injury and this is linked to reduced neuronal activation in remaining cortex. These results suggest that peri-infarct cortex becomes vulnerable to early post-stroke experience with the less-affected forelimb and that this experience may drive neural plasticity here in a direction that is maladaptive for functional outcome.
Collapse
Affiliation(s)
- Rachel P Allred
- Psychology Department, University of Texas at Austin, Austin, TX 78712, USA.
| | | |
Collapse
|
34
|
Whishaw IQ, Alaverdashvili M, Kolb B. The problem of relating plasticity and skilled reaching after motor cortex stroke in the rat. Behav Brain Res 2008; 192:124-36. [PMID: 18282620 DOI: 10.1016/j.bbr.2007.12.026] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2007] [Revised: 12/20/2007] [Accepted: 12/22/2007] [Indexed: 11/17/2022]
Abstract
The plasticity of the nervous system is illustrated in the many new neuronal connections that are formed during the acquisition of behavioral skills, loss of function after brain injury, and subsequent recovery of function. The present review describes the acquisition of skilled reaching, the act of reaching for food with a forelimb, and the changes that take place in skilled reaching following motor cortex stroke. The review then discusses the difficulty in associating plastic changes with specific aspects of behavioral change. Skilled reaching behavior is complex and consists of a number of oppositions (stimulus response relationships), between the rat and the food target, a number of forelimb gestures (non-weight supporting movements), which are performed to obtain food, and a complex series of segmental movements (of the limb, head, and trunk), all of which influence the success of the act. Measures of these four aspects of skilled reaching behavior following motor cortex stroke reveal that there are a number of learned changes that take place at different times, including learned nonuse, learned bad-use, and forgetting. The widespread dendritic proliferation, axonal growth, and synaptic formation that take place both before and after stroke are difficult to precisely relate to these behavioral changes. Whereas plasticity is usually proposed to be associated with improved performance it is suggested that future work should attempt to better relate plastic changes to the details of behavioral changes.
Collapse
Affiliation(s)
- Ian Q Whishaw
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada.
| | | | | |
Collapse
|
35
|
Maldonado MA, Allred RP, Felthauser EL, Jones TA. Motor skill training, but not voluntary exercise, improves skilled reaching after unilateral ischemic lesions of the sensorimotor cortex in rats. Neurorehabil Neural Repair 2007; 22:250-61. [PMID: 18073324 DOI: 10.1177/1545968307308551] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
BACKGROUND AND PURPOSE Exercise and rehabilitative training each have been implicated in the promotion of restorative neural plasticity after cerebral injury. Because motor skill training induces synaptic plasticity and exercise increases plasticity-related proteins, we asked if exercise could improve the efficacy of training on a skilled motor task after focal cortical lesions. METHODS Female young and middle-aged rats were trained on the single-pellet retrieval task and received unilateral ischemic sensorimotor cortex lesions contralateral to the trained limb. Rats then received both, either, or neither voluntary running and/or rehabilitative training for 5 weeks beginning 5 days postlesion. Motor skill training consisted of daily practice of the impaired forelimb in a tray-reaching task. Exercised rats had free access to running wheels for 6 h/day. Reaching function was periodically probed using the single-pellet retrieval task. RESULTS In young adults, motor skill training significantly enhanced skilled reaching recovery compared to controls. However, exercise did not significantly enhance performance when administered alone or in combination with skill training. There was also no major benefit of exercise in older rats. Additionally, there were no effects of exercise in a measure of coordinated forelimb placement (the foot-fault test) or in immunocytochemical measures of several plasticity-related proteins in the motor cortex. CONCLUSIONS In young and middle-aged animals, exercise did not improve motor skill training efficacy following ischemic lesions. Practicing motor skills more effectively improved recovery of these skills than did exercise. It remains possible that an alternative manner of administering exercise would be more effective.
Collapse
Affiliation(s)
- Monica A Maldonado
- Institute for Neuroscience, University of Texas at Austin, Austin, Texas, USA
| | | | | | | |
Collapse
|
36
|
Maggiolini E, Veronesi C, Franchi G. Plastic changes in the vibrissa motor cortex in adult rats after output suppression in the homotopic cortex. Eur J Neurosci 2007; 25:3678-90. [PMID: 17610587 DOI: 10.1111/j.1460-9568.2007.05622.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
After motor cortex damage, the unaffected homotopic cortex shows changes in motor output. The present experiments were designed to clarify the nature of these interhemispheric effects. We investigate the vibrissa motor cortex (VMC) output after activity suppression of the homotopic area in adult rats. Comparison was made of VMC output after lidocaine inactivation (L-group) or quinolinic acid lesion (Q-group) of the homotopic cortex. In the Q-group, VMC mapping was performed 3 days (Q3Ds group), 2 weeks (Q2Ws group) and 4 weeks (Q4Ws group) after cortical lesion. In each animal, VMC output was assessed by mapping movements induced by intracortical microstimulation (ICMS) in both hemispheres (hemisphere ipsilateral and contralateral to injections). Findings demonstrated that, in the L-group, the size of vibrissal representation was 39.5% smaller and thresholds required to evoke vibrissa movement were 46.3% higher than those in the Control group. There was an increase in the percentage of ineffective sites within the medial part of the VMC and an increase in the percentage of forelimb sites within the lateral part. Both the Q3Ds group and the L-group led to a similar VMC reorganization (Q3Ds vs. L-group, P > 0.05). In the Q2Ws group the VMC representation showed improvement in size (83.4% recovery compared with controls). The VMC showed recovery to normal output at 4 weeks after lesion (Control vs. Q4Ws group, P > 0.05). These results suggest that the VMC of the two hemispheres continuously interact through excitatory influences, preserving the normal output and inhibitory influences defining the border with the forelimb representation.
Collapse
Affiliation(s)
- Emma Maggiolini
- Dipartimento di Scienze Biomediche e Terapie Avanzate, Sezione di Fisiologia Umana e Centro di Neuroscienze, Università di Ferrara, 44100 Ferrara, Italy
| | | | | |
Collapse
|
37
|
Sahoo PK, Mathai KI, Ramdas GV, Swamy MN. The pathophysiology of post traumatic epilepsy. INDIAN JOURNAL OF NEUROTRAUMA 2007. [DOI: 10.1016/s0973-0508(07)80004-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
38
|
Alvarado JC, Fuentes-Santamaria V, Franklin SR, Brunso-Bechtold JK, Henkel CK. Synaptophysin and insulin-like growth factor-1 immunostaining in the central nucleus of the inferior colliculus in adult ferrets following unilateral cochlear removal: a densitometric analysis. Synapse 2007; 61:288-302. [PMID: 17318882 DOI: 10.1002/syn.20373] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In the present study, unilateral cochlear ablations were performed in adult ferrets to evaluate possible time-dependent modifications of synaptophysin and insulin-like growth factor-1 (IGF-1) in the central nucleus of the inferior colliculus (CNIC). Using densitometric analysis, synaptophysin and IGF-1 immunostaining were assessed at 1 (PA1) and 90 (PA90) days after cochlear ablation. The results demonstrated that 1 day after the lesion there was an increase in the levels of synaptophysin immunostaining bilaterally in the CNIC compared to control animals. That increase was no longer present at 90 days after the ablation. Overall levels of IGF-1 immunostaining at PA1 were increased significantly within neurons and neuropil. However, at PA90, only IGF-1 immunostaining contralateral to the lesion was elevated compared to control animals, although elevation was less than that observed at PA1. These results suggest that cochlear ablation appears to affect synaptophysin and IGF-1 protein levels bilaterally in the CNIC.
Collapse
Affiliation(s)
- Juan Carlos Alvarado
- Department of Neurobiology and Anatomy, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA.
| | | | | | | | | |
Collapse
|
39
|
Newton IG, Forbes ME, Linville MC, Pang H, Tucker EM, Riddle DR, Brunso-Bechtold JK. Effects of aging and caloric restriction on dentate gyrus synapses and glutamate receptor subunits. Neurobiol Aging 2007; 29:1308-18. [PMID: 17433502 PMCID: PMC2805132 DOI: 10.1016/j.neurobiolaging.2007.03.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2006] [Revised: 02/19/2007] [Accepted: 03/06/2007] [Indexed: 12/25/2022]
Abstract
Caloric restriction (CR) attenuates aging-related degenerative processes throughout the body. It is less clear, however, whether CR has a similar effect in the brain, particularly in the hippocampus, an area important for learning and memory processes that often are compromised in aging. In order to evaluate the effect of CR on synapses across lifespan, we quantified synapses stereologically in the middle molecular layer of the dentate gyrus (DG) of young, middle aged and old Fischer 344 x Brown Norway rats fed ad libitum (AL) or a CR diet from 4 months of age. The results indicate that synapses are maintained across lifespan in both AL and CR rats. In light of this stability, we addressed whether aging and CR influence neurotransmitter receptor levels by measuring subunits of NMDA (NR1, NR2A and NR2B) and AMPA (GluR1, GluR2) receptors in the DG of a second cohort of AL and CR rats across lifespan. The results reveal that the NR1 and GluR1 subunits decline with age in AL, but not CR rats. The absence of an aging-related decline in these subunits in CR rats, however, does not arise from increased levels in old CR rats. Instead, it is due to subunit decreases in young CR rats to levels that are sustained in CR rats throughout lifespan, but that are reached in AL rats only in old age.
Collapse
Affiliation(s)
- Isabel G. Newton
- Department of Neurobiology and Anatomy, Medical Center Boulevard, Wake Forest University School of Medicine, Winston-Salem, NC 27157-1010, USA
| | - M. Elizabeth Forbes
- Department of Neurobiology and Anatomy, Medical Center Boulevard, Wake Forest University School of Medicine, Winston-Salem, NC 27157-1010, USA
| | - M. Constance Linville
- Department of Neurobiology and Anatomy, Medical Center Boulevard, Wake Forest University School of Medicine, Winston-Salem, NC 27157-1010, USA
| | - Hui Pang
- Department of Neurobiology and Anatomy, Medical Center Boulevard, Wake Forest University School of Medicine, Winston-Salem, NC 27157-1010, USA
| | - Elizabeth M. Tucker
- Department of Neurobiology and Anatomy, Medical Center Boulevard, Wake Forest University School of Medicine, Winston-Salem, NC 27157-1010, USA
| | - David R. Riddle
- Department of Neurobiology and Anatomy, Medical Center Boulevard, Wake Forest University School of Medicine, Winston-Salem, NC 27157-1010, USA
- Neuroscience Program, Medical Center Boulevard, Wake Forest University School of Medicine, Winston-Salem, NC 27157-1010, USA
- Roena Kulynych Center for Memory and Cognition Research, Medical Center Boulevard, Wake Forest University School of Medicine, Winston-Salem, NC 27157-1010, USA
| | - Judy K. Brunso-Bechtold
- Department of Neurobiology and Anatomy, Medical Center Boulevard, Wake Forest University School of Medicine, Winston-Salem, NC 27157-1010, USA
- Neuroscience Program, Medical Center Boulevard, Wake Forest University School of Medicine, Winston-Salem, NC 27157-1010, USA
- Roena Kulynych Center for Memory and Cognition Research, Medical Center Boulevard, Wake Forest University School of Medicine, Winston-Salem, NC 27157-1010, USA
- Corresponding Author/ Address for Proofs: Judy K. Brunso-Bechtold Department of Neurobiology and Anatomy, Medical Center Boulevard, Wake Forest University School of Medicine, Winston-Salem, NC 27157-1010, USA Telephone: (336)716-4386, fax: (336)716-4534,
| |
Collapse
|
40
|
Shi L, Adams MM, Linville MC, Newton IG, Forbes ME, Long AB, Riddle DR, Brunso-Bechtold JK. Caloric restriction eliminates the aging-related decline in NMDA and AMPA receptor subunits in the rat hippocampus and induces homeostasis. Exp Neurol 2007; 206:70-9. [PMID: 17490652 PMCID: PMC2805133 DOI: 10.1016/j.expneurol.2007.03.026] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2007] [Revised: 03/26/2007] [Accepted: 03/29/2007] [Indexed: 01/10/2023]
Abstract
Caloric restriction (CR) extends life span and ameliorates the aging-related decline in hippocampal-dependent cognitive function. In the present study, we compared subunit levels of NMDA and AMPA types of the glutamate receptor and quantified total synapses and multiple spine bouton (MSB) synapses in hippocampal CA1 from young (10 months), middle-aged (18 months), and old (29 months) Fischer 344xBrown Norway rats that were ad libitum (AL) fed or caloric restricted (CR) from 4 months of age. Each of these parameters has been reported to be a potential contributor to hippocampal function. Western blot analysis revealed that NMDA and AMPA receptor subunits in AL animals decrease between young and middle age to levels that are present at old age. Interestingly, young CR animals have significantly lower levels of glutamate receptor subunits than young AL animals and those lower levels are maintained across life span. In contrast, stereological quantification indicated that total synapses and MSB synapses are stable across life span in both AL and CR rats. These results indicate significant aging-related losses of hippocampal glutamate receptor subunits in AL rats that are consistent with altered synaptic function. CR eliminates that aging-related decline by inducing stable NMDA and AMPA receptor subunit levels.
Collapse
Affiliation(s)
- Lei Shi
- Department of Neurobiology and Anatomy, Wake Forest University Health Sciences, Medical Center Boulevard, Winston-Salem, NC 27157-1010, USA.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Derksen MJ, Ward NL, Hartle KD, Ivanco TL. MAP2 and synaptophysin protein expression following motor learning suggests dynamic regulation and distinct alterations coinciding with synaptogenesis. Neurobiol Learn Mem 2007; 87:404-15. [PMID: 17141532 DOI: 10.1016/j.nlm.2006.10.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2006] [Revised: 10/08/2006] [Accepted: 10/20/2006] [Indexed: 10/23/2022]
Abstract
Learning a new motor skill can induce neuronal plasticity in rats. Within motor cortex, learning-induced plasticity includes dendritic reorganization, synaptogenesis, and changes in synapse morphology. Behavioral studies have demonstrated that learning requires protein synthesis. It is likely that some of the proteins synthesized during learning are involved in, or the result of, learning-induced structural plasticity. We predicted the expression of proteins involved in neural plasticity would be altered in a learning dependent fashion. Long-Evans rats were trained on a series of motor tasks that varied in complexity, so that the effects of activity could be teased apart from the effects of learning. The motor cortices were examined for MAP2 and synaptophysin protein using Western blotting and immunohistochemistry. Western blotting revealed that expression of MAP2 was not detectably influenced by learning, whereas synaptophysin expression increased on day 1, 3, and 5 of complex motor skill learning. Expression of MAP2 does not seem to indicate difficulty of task or duration of training time, whereas increases in synaptophysin expression, which appear diffusely across the cortex, seem to be correlated with the first 5 days of motor skill learning. Similar findings with GAP-43 suggest the change in synaptophysin may coincide with synapse formation. Immunohistochemistry did not reveal any localized changes in protein expression. These data indicate a difference in learning-induced expression in the mammalian brain compared to reports in the literature, which have often focused on stimulation to induce alterations in protein expression.
Collapse
|
42
|
Kim BG, Dai HN, McAtee M, Vicini S, Bregman BS. Labeling of dendritic spines with the carbocyanine dye DiI for confocal microscopic imaging in lightly fixed cortical slices. J Neurosci Methods 2007; 162:237-43. [PMID: 17346799 PMCID: PMC2692721 DOI: 10.1016/j.jneumeth.2007.01.016] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2006] [Revised: 01/23/2007] [Accepted: 01/23/2007] [Indexed: 10/23/2022]
Abstract
Visualization of dendritic spines is an important tool for researches on structural synaptic plasticity. Fluorescent labeling of the dendrites and spines followed by confocal microscopy permits imaging a large population of dendritic spines with a higher resolution. We sought to establish an optimal protocol to label neurons in cortical slices with the carbocyanine dye DiI for confocal microscopic imaging of dendritic spines. DiI finely labeled dendrites and spines in slices prefixed (by cardiac perfusion) with 1.5% paraformaldehyde to the similar extent that could be achieved in live preparation. In contrast, fixation with 4% paraformaldehyde severely compromised dye diffusion. Confocal microscopy showed that structural integrity of dendrites and spines was preserved much better in lightly (1.5%) fixed slices than those prepared without fixation. Quantitative measurement revealed that spine density was lower in live slices than that counted in lightly fixed slices, suggesting that fixation is necessary for an adequate evaluation of spine density. The quality of confocal microscopic images obtained from lightly fixed slices allowed us to observe distinctive morphologies such as branched spines and dendritic filopodium, which may be indicative of structural changes at synapses. This method will thus be useful for studying structural synaptic plasticity.
Collapse
Affiliation(s)
- Byung G. Kim
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC, 20007
- Brain Disease Research Center, Ajou University School of Medicine, Suwon, 443-721, Republic of Korea
| | - Hai-Ning Dai
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC, 20007
| | - Marietta McAtee
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC, 20007
| | - Stefano Vicini
- Department of Physiology & Biophysics, Georgetown University Medical Center, Washington, DC, 20007
| | - Barbara S. Bregman
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC, 20007
- Address correspondence to: Dr. Barbara S. Bregman, Department of Neuroscience, NRB Rm EP-04, Georgetown University Medical Center, 3970 Reservoir Rd., NW, Washington, DC 20007, (202)-687-1452 (office), (202)-687-0617 (fax),
| |
Collapse
|
43
|
|
44
|
Adkins DL, Boychuk J, Remple MS, Kleim JA. Motor training induces experience-specific patterns of plasticity across motor cortex and spinal cord. J Appl Physiol (1985) 2006; 101:1776-82. [PMID: 16959909 DOI: 10.1152/japplphysiol.00515.2006] [Citation(s) in RCA: 358] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The motor cortex and spinal cord possess the remarkable ability to alter structure and function in response to differential motor training. Here we review the evidence that the corticospinal system is not only plastic but that the nature and locus of this plasticity is dictated by the specifics of the motor experience. Skill training induces synaptogenesis, synaptic potentiation, and reorganization of movement representations within motor cortex. Endurance training induces angiogenesis in motor cortex, but it does not alter motor map organization or synapse number. Strength training alters spinal motoneuron excitability and induces synaptogenesis within spinal cord, but it does not alter motor map organization. All three training experiences induce changes in spinal reflexes that are dependent on the specific behavioral demands of the task. These results demonstrate that the acquisition of skilled movement induces a reorganization of neural circuitry within motor cortex that supports the production and refinement of skilled movement sequences. We present data that suggest increases in strength may be mediated by an increased capacity for activation and/or recruitment of spinal motoneurons while the increased metabolic demands associated with endurance training induce cortical angiogenesis. Together these results show the robust pattern of anatomic and physiological plasticity that occurs within the corticospinal system in response to differential motor experience. The consequences of such distributed, experience-specific plasticity for the encoding of motor experience by the motor system are discussed.
Collapse
Affiliation(s)
- DeAnna L Adkins
- Brain Rehabilitation Research Center, Malcom Randall Veterans Affairs Hospital, Gainesville, FL, USA
| | | | | | | |
Collapse
|
45
|
Maier IC, Schwab ME. Sprouting, regeneration and circuit formation in the injured spinal cord: factors and activity. Philos Trans R Soc Lond B Biol Sci 2006; 361:1611-34. [PMID: 16939978 PMCID: PMC1664674 DOI: 10.1098/rstb.2006.1890] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Central nervous system (CNS) injuries are particularly traumatic, owing to the limited capabilities of the mammalian CNS for repair. Nevertheless, functional recovery is observed in patients and experimental animals, but the degree of recovery is variable. We review the crucial characteristics of mammalian spinal cord function, tract development, injury and the current experimental therapeutic approaches for repair. Regenerative or compensatory growth of neurites and the formation of new, functional circuits require spontaneous and experimental reactivation of developmental mechanisms, suppression of the growth-inhibitory properties of the adult CNS tissue and specific targeted activation of new connections by rehabilitative training.
Collapse
Affiliation(s)
- Irin C Maier
- Brain Research Institute, University and ETH Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.
| | | |
Collapse
|
46
|
Abstract
Recognition that the entire central nervous system (CNS) is highly plastic, and that it changes continually throughout life, is a relatively new development. Until very recently, neuroscience has been dominated by the belief that the nervous system is hardwired and changes at only a few selected sites and by only a few mechanisms. Thus, it is particularly remarkable that Sir John Eccles, almost from the start of his long career nearly 80 years ago, focused repeatedly and productively on plasticity of many different kinds and in many different locations. He began with muscles, exploring their developmental plasticity and the functional effects of the level of motor unit activity and of cross-reinnervation. He moved into the spinal cord to study the effects of axotomy on motoneuron properties and the immediate and persistent functional effects of repetitive afferent stimulation. In work that combined these two areas, Eccles explored the influences of motoneurons and their muscle fibers on one another. He studied extensively simple spinal reflexes, especially stretch reflexes, exploring plasticity in these reflex pathways during development and in response to experimental manipulations of activity and innervation. In subsequent decades, Eccles focused on plasticity at central synapses in hippocampus, cerebellum, and neocortex. His endeavors extended from the plasticity associated with CNS lesions to the mechanisms responsible for the most complex and as yet mysterious products of neuronal plasticity, the substrates underlying learning and memory. At multiple levels, Eccles' work anticipated and helped shape present-day hypotheses and experiments. He provided novel observations that introduced new problems, and he produced insights that continue to be the foundation of ongoing basic and clinical research. This article reviews Eccles' experimental and theoretical contributions and their relationships to current endeavors and concepts. It emphasizes aspects of his contributions that are less well known at present and yet are directly relevant to contemporary issues.
Collapse
Affiliation(s)
- Jonathan R Wolpaw
- Laboratory of Nervous System Disorders, Wadsworth Center, New York State Department of Health and State University of New York, Albany, 12201, USA.
| | | |
Collapse
|
47
|
Papathanasiou ES, Peachey NS, Goto Y, Neafsey EJ, Castro AJ, Kartje GL. Visual cortical plasticity following unilateral sensorimotor cortical lesions in the neonatal rat. Exp Neurol 2006; 199:122-9. [PMID: 16690056 DOI: 10.1016/j.expneurol.2006.02.115] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2006] [Revised: 02/20/2006] [Accepted: 02/21/2006] [Indexed: 01/28/2023]
Abstract
Previous work has shown that unilateral sensorimotor cortex (SMC) lesions in newborn rats resulted in an apparent shift of the motor cortex map in the spared hemisphere, particularly of the hindlimb cortex. In view of such findings, the present study was initiated to determine if the visual cortex located both ipsilateral and contralateral to neonatal SMC, or contralateral to occipital cortical (OC) lesions, would show similar remodeling. Visual evoked potentials (VEPs) were used to map the visual cortex electrophysiologically. The results show an expansion of the visual cortex, in both the contralateral and ipsilateral hemisphere, into normally motor cortical areas in adult animals that had sustained unilateral neonatal unilateral SMC lesions. In contrast, similar changes were not seen within the spared visual cortex after unilateral occipital cortical lesions, suggesting that the shift in the visual map was specifically in response to the SMC lesion and was not a generalized response to neonatal cortical damage. Histological analysis showed a functional expansion in the rostral boundary of visual cortex with no corresponding cytoarchitectural alterations.
Collapse
Affiliation(s)
- Eleftherios S Papathanasiou
- Department of Clinical Neurophysiology, The Cyprus Institute of Neurology and Genetics, 6 International Airport Avenue, PO Box 23462, Nicosia, Cyprus.
| | | | | | | | | | | |
Collapse
|
48
|
Briones TL, Woods J, Wadowska M, Rogozinska M, Nguyen M. Astrocytic changes in the hippocampus and functional recovery after cerebral ischemia are facilitated by rehabilitation training. Behav Brain Res 2006; 171:17-25. [PMID: 16621046 DOI: 10.1016/j.bbr.2006.03.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2005] [Revised: 03/05/2006] [Accepted: 03/09/2006] [Indexed: 12/26/2022]
Abstract
In this study we examined whether astrocytic and basic fibroblast growth factor changes after cerebral ischemia can be influenced by rehabilitation training and if these changes are associated with functional improvement. After receiving either ischemia or sham surgery, male adult Wistar rats were assigned to one of two rehabilitation training group: complex environment housing (EC) or paired housing as controls (CON). Rats were tested in the water maze after 14 days of rehabilitation training. Results showed increased expression of reactive astrocytes (GFAP) in all ischemic animals and in the sham EC rats with a significant overall increased seen in the ischemia EC housed animals. The pattern of basic fibroblast growth factor (FGF-2) expression seen was somewhat similar to that of GFAP. Behavioral data showed that even though all animals learned to perform the water maze task over time, the ischemia CON rats took longer to learn the task while all the ischemia EC animals performed as well as the sham groups. Regression analysis showed that increased GFAP was able to explain some of the variances in the behavioral parameters in the water maze of the ischemia EC rats suggesting that the activation of astrocytes in this group probably mediated enhanced functional recovery. Lastly, it is possible that the favorable effect of astrocyte activation after cerebral ischemia was mediated by FGF-2.
Collapse
Affiliation(s)
- Teresita L Briones
- Department of Medical-Surgical Nursing, University of Illinois, Chicago, 60612, USA.
| | | | | | | | | |
Collapse
|
49
|
Shanina EV, Schallert T, Witte OW, Redecker C. Behavioral recovery from unilateral photothrombotic infarcts of the forelimb sensorimotor cortex in rats: Role of the contralateral cortex. Neuroscience 2006; 139:1495-506. [PMID: 16516395 DOI: 10.1016/j.neuroscience.2006.01.016] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2005] [Revised: 01/05/2006] [Accepted: 01/23/2006] [Indexed: 10/25/2022]
Abstract
During sensorimotor recovery following stroke ipsi- and contralesional alterations in brain function have been characterized in patients as well as animal models of focal ischemia, but the contribution of these bilateral processes to the functional improvement is only poorly understood. Here we examined the role of the homotopic contralateral cortex for sensorimotor recovery after focal ischemic infarcts at different time periods after the insult. One group of animals received a unilateral single photothrombotic infarct in the forelimb sensorimotor cortex, while four additional groups received a second lesion in the contralateral homotopic cortex either immediately or 2 days, 7 days, or 10 days after the first infarct. The time course of functional recovery of the impaired forelimbs was assessed using different sensorimotor scores: forelimb-activity during exploratory behavior and frequency of forelimb-sliding in the glass cylinder as well as forelimb misplacement during grid walking. Focal infarcts in the forelimb sensorimotor cortex area significantly impaired the function of the contralateral forelimb in these different behavioral tests. The subsequent damage of the contralateral homotopic forelimb sensorimotor cortex only affected the forelimb opposite to the new lesion but did not reinstate the original deficit. The time course of sensorimotor recovery after bilateral sequential cortical infarcts did not significantly differ from animals with unilateral single lesions. These data indicate that following small ischemic cortical infarcts in the forelimb sensorimotor cortex the contralateral cortex homotopic to the lesion plays only a minor role for functional recovery.
Collapse
Affiliation(s)
- E V Shanina
- Department of Neurology, Friedrich-Schiller-University, Jena, Germany
| | | | | | | |
Collapse
|
50
|
Hsu JE, Jones TA. Time-sensitive enhancement of motor learning with the less-affected forelimb after unilateral sensorimotor cortex lesions in rats. Eur J Neurosci 2005; 22:2069-80. [PMID: 16262644 DOI: 10.1111/j.1460-9568.2005.04370.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Unilateral damage to the forelimb region of the sensorimotor cortex (FLsmc) results in time-dependent changes in neuronal activity, structure and connectivity in the contralateral motor cortex of adult rats. These changes have been linked to facilitation of motor skill learning in the less-affected/ipsilesional forelimb, which is likely to promote its use in the development of behavioral compensation. The goal of this study was to determine whether an early post-lesion-sensitive time period exists for this enhanced learning and whether it is linked to synaptogenesis in the contralesional motor cortex. Rats were trained for 21 days on a skilled reaching task with the ipsilesional forelimb beginning 4 or 25 days after unilateral ischemic (endothelin-1-induced) FLsmc lesions or sham operations. As found previously, reaching performance was significantly enhanced in rats trained early post-lesion compared with sham-operates. In rats trained later post-lesion, performance was neither significantly different from time-matched sham-operates nor strikingly different from animals trained earlier post-lesion. In layer V of the contralesional motor cortex, stereological methods for light and electron microscopy revealed significantly more total, multisynaptic bouton and perforated synapses per neuron compared with sham-operates, but there were no significant differences between early- and late-trained lesion groups. Thus, there appears to be a sensitive time window for the maximal expression of the enhanced learning capacity of the less-affected forelimb but this window is broadly, rather than sharply, defined. These results indicate that relatively long-lasting lesion-induced neuronal changes are likely to underlie the facilitation of learning with the less-affected forelimb.
Collapse
Affiliation(s)
- J Edward Hsu
- Institute for Neuroscience, The University of Texas at Austin, TX 78712, USA
| | | |
Collapse
|