1
|
Bergman PJ. Cancer Immunotherapy. Vet Clin North Am Small Anim Pract 2024; 54:441-468. [PMID: 38158304 DOI: 10.1016/j.cvsm.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
The enhanced understanding of immunology experienced over the last 5 decades afforded through the tools of molecular biology has recently translated into cancer immunotherapy becoming one of the most exciting and rapidly expanding fields. Human cancer immunotherapy is now recognized as one of the pillars of treatment alongside surgery, radiation, and chemotherapy. The field of veterinary cancer immunotherapy has also rapidly advanced in the last decade with a handful of commercially available products and a plethora of investigational cancer immunotherapies, which will hopefully expand our veterinary oncology treatment toolkit over time.
Collapse
Affiliation(s)
- Philip J Bergman
- Clinical Studies, VCA; Katonah Bedford Veterinary Center, Bedford Hills, NY, USA; Memorial Sloan-Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
2
|
Nguyen TTK, Pham KY, Yook S. Engineered therapeutic proteins for sustained-release drug delivery systems. Acta Biomater 2023; 171:131-154. [PMID: 37717712 DOI: 10.1016/j.actbio.2023.09.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 09/04/2023] [Accepted: 09/12/2023] [Indexed: 09/19/2023]
Abstract
Proteins play a vital role in diverse biological processes in the human body, and protein therapeutics have been applied to treat different diseases such as cancers, genetic disorders, autoimmunity, and inflammation. Protein therapeutics have demonstrated their advantages, such as specific pharmaceutical effects, low toxicity, and strong solubility. However, several disadvantages arise in clinical applications, including short half-life, immunogenicity, and low permeation, leading to reduced drug effectiveness. The structure of protein therapeutics can be modified to increase molecular size, leading to prolonged stability and increased plasma half-life. Notably, the controlled-release delivery systems for the sustained release of protein drugs and preserving the stability of cargo proteins are envisioned as a potential approach to overcome these challenges. In this review, we summarize recent research progress related to structural modifications (PEGylation, glycosylation, poly amino acid modification, and molecular biology-based strategies) and promising long-term delivery systems, such as polymer-based systems (injectable gel/implants, microparticles, nanoparticles, micro/nanogels, functional polymers), lipid-based systems (liposomes, solid lipid nanoparticles, nanostructured lipid carriers), and inorganic nanoparticles exploited for protein therapeutics. STATEMENT OF SIGNIFICANCE: In this review, we highlight recent advances concerning modifying proteins directly to enhance their stability and functionality and discuss state-of-the-art methods for the delivery and controlled long-term release of active protein therapeutics to their target site. In terms of drug modifications, four widely used strategies, including PEGylation, poly amino acid modification, glycosylation, and genetic, are discussed. As for drug delivery systems, we emphasize recent progress relating to polymer-based systems, lipid-based systems developed, and inorganic nanoparticles for protein sustained-release delivery. This review points out the areas requiring focused research attention before the full potential of protein therapeutics for human health and disease can be realized.
Collapse
Affiliation(s)
- Thoa Thi Kim Nguyen
- College of Pharmacy, Keimyung University, 1095 Dalgubeol-daero, Dalseo-Gu, Daegu 42601, Republic of Korea
| | - Khang-Yen Pham
- College of Pharmacy, Keimyung University, 1095 Dalgubeol-daero, Dalseo-Gu, Daegu 42601, Republic of Korea.
| | - Simmyung Yook
- College of Pharmacy, Keimyung University, 1095 Dalgubeol-daero, Dalseo-Gu, Daegu 42601, Republic of Korea; School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea; Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
3
|
Brady RV, Thamm DH. Tumor-associated macrophages: Prognostic and therapeutic targets for cancer in humans and dogs. Front Immunol 2023; 14:1176807. [PMID: 37090720 PMCID: PMC10113558 DOI: 10.3389/fimmu.2023.1176807] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 03/24/2023] [Indexed: 04/08/2023] Open
Abstract
Macrophages are ancient, phagocytic immune cells thought to have their origins 500 million years ago in metazoan phylogeny. The understanding of macrophages has evolved to encompass their foundational roles in development, homeostasis, tissue repair, inflammation, and immunity. Notably, macrophages display high plasticity in response to environmental cues, capable of a strikingly wide variety of dynamic gene signatures and phenotypes. Macrophages are also involved in many pathological states including neural disease, asthma, liver disease, heart disease, cancer, and others. In cancer, most tumor-associated immune cells are macrophages, coined tumor-associated macrophages (TAMs). While some TAMs can display anti-tumor properties such as phagocytizing tumor cells and orchestrating an immune response, most macrophages in the tumor microenvironment are immunosuppressive and pro-tumorigenic. Macrophages have been implicated in all stages of cancer. Therefore, interest in manipulating macrophages as a therapeutic strategy against cancer developed as early as the 1970s. Companion dogs are a strong comparative immuno-oncology model for people due to documented similarities in the immune system and spontaneous cancers between the species. Data from clinical trials in humans and dogs can be leveraged to further scientific advancements that benefit both species. This review aims to provide a summary of the current state of knowledge on macrophages in general, and an in-depth review of macrophages as a therapeutic strategy against cancer in humans and companion dogs.
Collapse
Affiliation(s)
- Rachel V. Brady
- Cell and Molecular Biology Graduate Program, Colorado State University, Fort Collins, CO, United States
| | - Douglas H. Thamm
- Cell and Molecular Biology Graduate Program, Colorado State University, Fort Collins, CO, United States
- Flint Animal Cancer Center, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
4
|
Bhuimali M, Munshi S, Hapa K, Kadu PK, Kale PP. Evaluation of liposomes for targeted drug delivery in lung cancer treatment. INT J POLYM MATER PO 2023. [DOI: 10.1080/00914037.2022.2163639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Mitali Bhuimali
- SVKM’S Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| | - Sunya Munshi
- SVKM’S Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| | - Kunali Hapa
- SVKM’S Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| | - Pramod K. Kadu
- Department of Pharmaceutics, SVKM’S Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| | - Pravin P. Kale
- Department of Pharmacology, SVKM’S Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| |
Collapse
|
5
|
Sapino S, Chindamo G, Chirio D, Morel S, Peira E, Vercelli C, Gallarate M. Nanocarriers in Veterinary Medicine: A Challenge for Improving Osteosarcoma Conventional Treatments. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4501. [PMID: 36558354 PMCID: PMC9785518 DOI: 10.3390/nano12244501] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/13/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
In recent years, several nanocarrier-based drug delivery systems, such as polymeric nanoparticles, solid lipid nanoparticles, metallic nanoparticles, liposomes, and others, have been explored to target and treat a wide variety of diseases. Their employment has brought many benefits, not only to human medicine but also to veterinary medicine, albeit at a slower rate. Soon, the use of nanocarriers could revolutionize the animal health sector, and many veterinary therapies will be more effective as a result. The purpose of this review is to offer an overview of the main applications of nanocarriers in the veterinary field, from supplements for animal health and reproduction to nanovaccines and nanotherapies. Among the major pathologies that can affect animals, special attention is given to canine osteosarcoma (OSA): a comparison with human OSA is provided and the main treatment options are reviewed emphasizing the benefits that nanocarriers could bring in the treatment of this widespread disease.
Collapse
Affiliation(s)
- Simona Sapino
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, 10125 Torino, Italy
| | - Giulia Chindamo
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, 10125 Torino, Italy
| | - Daniela Chirio
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, 10125 Torino, Italy
| | - Silvia Morel
- Dipartimento di Scienze del Farmaco, Università del Piemonte Orientale A. Avogadro, 28100 Novara, Italy
| | - Elena Peira
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, 10125 Torino, Italy
| | - Cristina Vercelli
- Dipartimento di Scienze Veterinarie, Università degli Studi di Torino, 10095 Grugliasco, Italy
| | - Marina Gallarate
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, 10125 Torino, Italy
| |
Collapse
|
6
|
Leong EWX, Ge R. Lipid Nanoparticles as Delivery Vehicles for Inhaled Therapeutics. Biomedicines 2022; 10:2179. [PMID: 36140280 PMCID: PMC9496059 DOI: 10.3390/biomedicines10092179] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/30/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
Lipid nanoparticles (LNPs) have emerged as a powerful non-viral carrier for drug delivery. With the prevalence of respiratory diseases, particularly highlighted by the current COVID-19 pandemic, investigations into applying LNPs to deliver inhaled therapeutics directly to the lungs are underway. The progress in LNP development as well as the recent pre-clinical studies in three main classes of inhaled encapsulated drugs: small molecules, nucleic acids and proteins/peptides will be discussed. The advantages of the pulmonary drug delivery system such as reducing systemic toxicity and enabling higher local drug concentration in the lungs are evaluated together with the challenges and design considerations for improved formulations. This review provides a perspective on the future prospects of LNP-mediated delivery of inhaled therapeutics for respiratory diseases.
Collapse
Affiliation(s)
| | - Ruowen Ge
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117558, Singapore
| |
Collapse
|
7
|
Liu Y, Sukumar UK, Jugniot N, Seetharam SM, Rengaramachandran A, Sadeghipour N, Mukherjee P, Krishnan A, Massoud TF, Paulmurugan R. Inhaled Gold Nano-star Carriers for Targeted Delivery of Triple Suicide Gene Therapy and Therapeutic MicroRNAs to Lung Metastases: Development and Validation in a Small Animal Model. ADVANCED THERAPEUTICS 2022; 5:2200018. [PMID: 36212523 PMCID: PMC9543365 DOI: 10.1002/adtp.202200018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Pulmonary metastases pose significant treatment challenges for many cancers, including triple-negative breast cancer (TNBC). We developed and tested a novel suicide gene and therapeutic microRNAs (miRs) combination therapy against lung metastases in vivo in mouse models after intranasal delivery using nontoxic gold nanoparticles (AuNPs) formulated to carry these molecular therapeutics. We used AuNPs coated with chitosan-β-cyclodextrin (CS-CD) and functionalized with a urokinase plasminogen activator (uPA) peptide to carry triple cancer suicide genes (thymidine kinase-p53-nitroreductase: TK-p53-NTR) plus therapeutic miRNAs (antimiR-21, antimiR-10b and miR-100). We synthesized three AuNPs: 20nm nanodots (AuND), and 20nm or 50nm nanostars (AuNS), then surface coated these with CS-CD using a microfluidic-optimized method. We sequentially coated the resulting positively charged AuNP-CS-CD core with synthetic miRNAs followed by TK-p53-NTR via electrostatic interactions, and added uPA peptide through CD-adamantane host-guest chemistry. A comparison of transfection efficiencies for different AuNPs showed that the 50nm AuNS allowed ∼4.16-fold higher gene transfection than other NPs. The intranasal delivery of uPA-AuNS-TK-p53-NTR-microRNAs NPs (pAuNS@TK-p53-NTR-miRs) in mice predominantly accumulated in lungs and facilitated ganciclovir and CB1954 prodrug-mediated gene therapy against TNBC lung metastases. This new nanosystem may serve as an adaptable-across-cancer-type, facile, and clinically scalable platform to allow future inhalational suicide gene-miR combination therapy for patients harboring pulmonary metastases.
Collapse
Affiliation(s)
- Yi Liu
- Molecular Imaging Program at Stanford, Department of Radiology, School of Medicine, Stanford University, CA
| | - Uday Kumar Sukumar
- Molecular Imaging Program at Stanford, Department of Radiology, School of Medicine, Stanford University, CA
| | - Natacha Jugniot
- Molecular Imaging Program at Stanford, Department of Radiology, School of Medicine, Stanford University, CA
| | | | - Adith Rengaramachandran
- Molecular Imaging Program at Stanford, Department of Radiology, School of Medicine, Stanford University, CA
| | - Negar Sadeghipour
- Molecular Imaging Program at Stanford, Department of Radiology, School of Medicine, Stanford University, CA
| | | | - Anandi Krishnan
- Department of Pathology, School of Medicine, Stanford University, CA
| | - Tarik F. Massoud
- Molecular Imaging Program at Stanford, Department of Radiology, School of Medicine, Stanford University, CA
| | - Ramasamy Paulmurugan
- Molecular Imaging Program at Stanford, Department of Radiology, School of Medicine, Stanford University, CA
| |
Collapse
|
8
|
Rebhun RB, York D, Cruz SM, Judge SJ, Razmara AM, Farley LE, Brady RV, Johnson EG, Burton JH, Willcox J, Wittenburg LA, Woolard K, Dunai C, Stewart SL, Sparger EE, Withers SS, Gingrich AA, Skorupski KA, Al-Nadaf S, LeJeune AT, Culp WT, Murphy WJ, Kent MS, Canter RJ. Inhaled recombinant human IL-15 in dogs with naturally occurring pulmonary metastases from osteosarcoma or melanoma: a phase 1 study of clinical activity and correlates of response. J Immunother Cancer 2022; 10:e004493. [PMID: 35680383 PMCID: PMC9174838 DOI: 10.1136/jitc-2022-004493] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/03/2022] [Indexed: 01/04/2023] Open
Abstract
PURPOSE Although recombinant human interleukin-15 (rhIL-15) has generated much excitement as an immunotherapeutic agent for cancer, activity in human clinical trials has been modest to date, in part due to the risks of toxicity with significant dose escalation. Since pulmonary metastases are a major site of distant failure in human and dog cancers, we sought to investigate inhaled rhIL-15 in dogs with naturally occurring lung metastases from osteosarcoma (OSA) or melanoma. We hypothesized a favorable benefit/risk profile given the concentrated delivery to the lungs with decreased systemic exposure. EXPERIMENTAL DESIGN We performed a phase I trial of inhaled rhIL-15 in dogs with gross pulmonary metastases using a traditional 3+3 cohort design. A starting dose of 10 µg twice daily × 14 days was used based on human, non-human primate, and murine studies. Safety, dose-limiting toxicities (DLT), and maximum tolerated dose (MTD) were the primary objectives, while response rates, progression-free and overall survival (OS), and pharmacokinetic and immune correlative analyses were secondary. RESULTS From October 2018 to December 2020, we enrolled 21 dogs with 18 dogs reaching the 28-day response assessment to be evaluable. At dose level 5 (70 μg), we observed two DLTs, thereby establishing 50 µg twice daily × 14 days as the MTD and recommended phase 2 dose. Among 18 evaluable dogs, we observed one complete response >1 year, one partial response with resolution of multiple target lesions, and five stable disease for an overall clinical benefit rate of 39%. Plasma rhIL-15 quantitation revealed detectable and sustained rhIL-15 concentrations between 1-hour and 6 hour postnebulization. Decreased pretreatment lymphocyte counts were significantly associated with clinical benefit. Cytotoxicity assays of banked peripheral blood mononuclear cells revealed significant increases in peak cytotoxicity against canine melanoma and OSA targets that correlated with OS. CONCLUSIONS In this first-in-dog clinical trial of inhaled rhIL-15 in dogs with advanced metastatic disease, we observed promising clinical activity when administered as a monotherapy for only 14 days. These data have significant clinical and biological implications for both dogs and humans with refractory lung metastases and support exploration of combinatorial therapies using inhaled rhIL-15.
Collapse
Affiliation(s)
- Robert B Rebhun
- Department of Surgical and Radiological Sciences, University of California, Davis, California, USA
| | - Daniel York
- Department of Surgical and Radiological Sciences, University of California, Davis, California, USA
| | - Sylvia Margret Cruz
- Division of Surgical Oncology, Department of Surgery, University of California Davis Medical Center, Sacramento, California, USA
| | - Sean J Judge
- Division of Surgical Oncology, Department of Surgery, University of California Davis Medical Center, Sacramento, California, USA
| | - Aryana M Razmara
- Division of Surgical Oncology, Department of Surgery, University of California Davis Medical Center, Sacramento, California, USA
| | - Lauren E Farley
- Division of Surgical Oncology, Department of Surgery, University of California Davis Medical Center, Sacramento, California, USA
| | - Rachel V Brady
- College of Veterinary Medicine, Colorado State University, Fort Collins, Colorado, USA
| | - Eric G Johnson
- Department of Surgical and Radiological Sciences, University of California, Davis, California, USA
| | - Jenna H Burton
- Department of Clinical Sciences, Colorado State University College of Veterinary Medicine, Fort Collins, Colorado, USA
| | - Jennifer Willcox
- Department of Surgical and Radiological Sciences, University of California, Davis, California, USA
| | - Luke A Wittenburg
- Department of Surgical and Radiological Sciences, University of California, Davis, California, USA
| | - Kevin Woolard
- Department of Pathology, University of California, Davis, California, USA
| | - Cordelia Dunai
- Department of Dermatology, University of California, Davis, California, USA
| | - Susan L Stewart
- Department of Public Health Sciences, University of California, Davis, California, USA
| | - Ellen E Sparger
- Department of Medicine and Epidemiology, University of California, Davis, California, USA
| | - Sita S Withers
- Department of Veterinary Clinical Sciences, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Alicia A Gingrich
- Division of Surgical Oncology, Department of Surgery, University of California Davis Medical Center, Sacramento, California, USA
| | - Katherine A Skorupski
- Department of Surgical and Radiological Sciences, University of California, Davis, California, USA
| | - Sami Al-Nadaf
- Department of Surgical and Radiological Sciences, University of California, Davis, California, USA
| | - Amandine T LeJeune
- Department of Surgical and Radiological Sciences, University of California, Davis, California, USA
| | - William Tn Culp
- Department of Surgical and Radiological Sciences, University of California, Davis, California, USA
| | - William J Murphy
- Department of Dermatology, University of California Davis Medical Center, Sacramento, California, USA
- Division of Hematology and Oncology, Department of Medicine, University of California Davis Medical Center, Sacramento, California, USA
| | - Michael S Kent
- Department of Surgical and Radiological Sciences, University of California, Davis, California, USA
| | - Robert J Canter
- Division of Surgical Oncology, Department of Surgery, University of California, Davis, California, USA
| |
Collapse
|
9
|
Von Rueden SK, Fan TM. Cancer-Immunity Cycle and Therapeutic Interventions- Opportunities for Including Pet Dogs With Cancer. Front Oncol 2021; 11:773420. [PMID: 34869014 PMCID: PMC8639699 DOI: 10.3389/fonc.2021.773420] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 11/01/2021] [Indexed: 12/22/2022] Open
Abstract
The tumor-immune interplay represents a dynamic series of events executed by cellular and soluble participants that either promote or inhibit successful tumor formation and growth. Throughout a tumor’s development and progression, the host organism’s immune system reacts by generating anti-cancer defenses through various incremental and combinatorial mechanisms, and this reactive orchestration is termed the cancer-immunity cycle. Success or failure of the cancer-immunity cycle dictates the fate of both host and tumor as winner or loser. Insights into how the tumor and host immune system continuously adapt to each other throughout the lifecycle of the tumor is necessary to rationally develop new effective immunotherapies. Additionally, the evolving nature of the cancer-immunity cycle necessitates therapeutic agility, requiring real-time serial assessment of immunobiologic markers that permits tailoring of therapies to the everchanging tumor immune microenvironment. In order to accelerate advances in the field of immuno-oncology, this review summarizes the steps comprising the cancer-immunity cycle, and underscores key breakpoints in the cycle that either favor cancer regression or progression, as well as shaping of the tumor microenvironment and associated immune phenotypes. Furthermore, specific large animal models of spontaneous cancers that are deemed immunogenic will be reviewed and proposed as unique resources for validating investigational immunotherapeutic protocols that are informed by the cancer-immunity cycle. Collectively, this review will provide a progressive look into the dynamic interplay between tumor and host immune responses and raise awareness for how large animal models can be included for developing combinatorial and sequenced immunotherapies to maximizing favorable treatment outcomes.
Collapse
Affiliation(s)
- Samantha K Von Rueden
- Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| | - Timothy M Fan
- Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Champaign, IL, United States.,Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
10
|
Dias JNR, André AS, Aguiar SI, Gil S, Tavares L, Aires-da-Silva F. Immunotherapeutic Strategies for Canine Lymphoma: Changing the Odds Against Non-Hodgkin Lymphoma. Front Vet Sci 2021; 8:621758. [PMID: 34513964 PMCID: PMC8427286 DOI: 10.3389/fvets.2021.621758] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 07/27/2021] [Indexed: 12/13/2022] Open
Abstract
The new era of immune-oncology has brought complexities and challenges that emphasize the need to identify new strategies and models to develop successful and cost-effective therapies. The inclusion of a canine model in the drug development of cancer immunotherapies is being widely recognized as a valid solution to overcome several hurdles associated with conventional preclinical models. Driven by the success of immunotherapies in the treatment of human non-Hodgkin lymphoma (NHL) and by the remarkable similarities of canine NHL to its human counterpart, canine NHL has been one of the main focus of comparative research. Under the present review, we summarize a general overview of the challenges and prospects of today's cancer immunotherapies and the role that comparative medicine might play in solving the limitations brought by this rapidly expanding field. The state of art of both human and canine NHL and the rationale behind the use of the canine model to bridge the translational gap between murine preclinical studies and human clinical trials are addressed. Finally, a review of currently available immunotherapies for canine NHL is described, highlighting the potential of these therapeutic options.
Collapse
Affiliation(s)
| | | | | | | | | | - Frederico Aires-da-Silva
- Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, Lisbon, Portugal
| |
Collapse
|
11
|
Ponkshe P, Feng S, Tan C. Inhalable liposomes for treating lung diseases: clinical development and challenges. Biomed Mater 2021; 16. [PMID: 34134097 DOI: 10.1088/1748-605x/ac0c0c] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 06/16/2021] [Indexed: 12/15/2022]
Abstract
Inhalation delivery of liposomal drugs has distinct advantages for the treatment of pulmonary diseases. Inhalable liposomes of several drugs are currently undergoing clinical trials for a range of indications in the lungs. Herein, general principles of pulmonary delivery as well as the clinical development of inhalable liposomal drugs are reviewed.
Collapse
Affiliation(s)
- Pranav Ponkshe
- Department of Pharmaceutics and Drug Delivery, University of Mississippi School of Pharmacy, University, Mississippi 38655, The United States
| | - Sheng Feng
- Department of Pharmaceutics and Drug Delivery, University of Mississippi School of Pharmacy, University, Mississippi 38655, The United States
| | - Chalet Tan
- Department of Pharmaceutics and Drug Delivery, University of Mississippi School of Pharmacy, University, Mississippi 38655, The United States
| |
Collapse
|
12
|
Mason NJ. Comparative Immunology and Immunotherapy of Canine Osteosarcoma. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1258:199-221. [PMID: 32767244 DOI: 10.1007/978-3-030-43085-6_14] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Approximately 800 people are diagnosed with osteosarcoma (OSA) per year in the USA. Although 70% of patients with localized OSA are cured with multiagent chemotherapy and surgical resection, the prognosis for patients with metastatic or relapsed disease is guarded. The small number of patients diagnosed annually contributes to an incomplete understanding of disease pathogenesis, and challenges in performing appropriately powered clinical trials and detecting correlative biomarkers of response. While mouse models of OSA are becoming increasingly sophisticated, they generally fail to accurately recapitulate tumor heterogeneity, tumor microenvironment (TME), systemic immune dysfunction, and the clinical features of tumor recurrence, metastases, and chemoresistance, which influence outcome. Pet dogs spontaneously develop OSA with an incidence that is 30-50 times higher than humans. Canine OSA parallels the human disease in its clinical presentation, biological behavior, genetic complexity, and therapeutic management. However, despite therapy, most dogs die from metastatic disease within 1 year of diagnosis. Since OSA occurs in immune-competent dogs, immune factors that sculpt tumor immunogenicity and influence responses to immune modulation are in effect. In both species, immune modulation has shown beneficial effects on patient outcome and work is now underway to identify the most effective immunotherapies, combination of immunotherapies, and correlative biomarkers that will further improve clinical response. In this chapter, the immune landscape of canine OSA and the immunotherapeutic strategies used to modulate antitumor immunity in dogs with the disease will be reviewed. From this immunological viewpoint, the value of employing dogs with spontaneous OSA to accelerate and inform the translation of immunotherapies into the human clinic will be underscored.
Collapse
Affiliation(s)
- Nicola J Mason
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA. .,Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA. .,Parker Institute for Cancer Immunotherapy, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
13
|
Liang W, Pan HW, Vllasaliu D, Lam JKW. Pulmonary Delivery of Biological Drugs. Pharmaceutics 2020; 12:E1025. [PMID: 33114726 PMCID: PMC7693150 DOI: 10.3390/pharmaceutics12111025] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/13/2020] [Accepted: 10/20/2020] [Indexed: 12/19/2022] Open
Abstract
In the last decade, biological drugs have rapidly proliferated and have now become an important therapeutic modality. This is because of their high potency, high specificity and desirable safety profile. The majority of biological drugs are peptide- and protein-based therapeutics with poor oral bioavailability. They are normally administered by parenteral injection (with a very few exceptions). Pulmonary delivery is an attractive non-invasive alternative route of administration for local and systemic delivery of biologics with immense potential to treat various diseases, including diabetes, cystic fibrosis, respiratory viral infection and asthma, etc. The massive surface area and extensive vascularisation in the lungs enable rapid absorption and fast onset of action. Despite the benefits of pulmonary delivery, development of inhalable biological drug is a challenging task. There are various anatomical, physiological and immunological barriers that affect the therapeutic efficacy of inhaled formulations. This review assesses the characteristics of biological drugs and the barriers to pulmonary drug delivery. The main challenges in the formulation and inhalation devices are discussed, together with the possible strategies that can be applied to address these challenges. Current clinical developments in inhaled biological drugs for both local and systemic applications are also discussed to provide an insight for further research.
Collapse
Affiliation(s)
- Wanling Liang
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong, China; (H.W.P.); (J.K.W.L.)
| | - Harry W. Pan
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong, China; (H.W.P.); (J.K.W.L.)
| | - Driton Vllasaliu
- School of Cancer and Pharmaceutical Sciences, King’s College London, 150 Stamford Street, London SE1 9NH, UK;
| | - Jenny K. W. Lam
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong, China; (H.W.P.); (J.K.W.L.)
| |
Collapse
|
14
|
Shen AM, Minko T. Pharmacokinetics of inhaled nanotherapeutics for pulmonary delivery. J Control Release 2020; 326:222-244. [PMID: 32681948 PMCID: PMC7501141 DOI: 10.1016/j.jconrel.2020.07.011] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 06/25/2020] [Accepted: 07/10/2020] [Indexed: 10/23/2022]
Abstract
Pulmonary delivery of lipid-based nanotherapeutics by inhalation presents an advantageous alternative to oral and intravenous routes of administration that avoids enzymatic degradation in gastrointestinal tract and hepatic first pass metabolism and also limits off-target adverse side effects upon heathy tissues. For lung-related indications, inhalation provides localized delivery in order to enhance therapeutic efficacy at the site of action. Optimization of physicochemical properties, selected drug and inhalation format can greatly influence the pharmacokinetic behavior of inhaled nanoparticle systems and their payloads. The present review analyzes a wide range of nanoparticle systems, their formulations and consequent effect on pharmacokinetic distribution of delivered active components after inhalation.
Collapse
Affiliation(s)
- Andrew M Shen
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA
| | - Tamara Minko
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA; Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA; Environmental and Occupational Health Science Institute, Piscataway, NJ 08854, USA.
| |
Collapse
|
15
|
Flesner BK, Wood GW, Gayheart-Walsten P, Sonderegger FL, Henry CJ, Tate DJ, Bechtel SM, Donnelly LL, Johnson GC, Kim DY, Wahaus TA, Bryan JN, Reyes N. Autologous cancer cell vaccination, adoptive T-cell transfer, and interleukin-2 administration results in long-term survival for companion dogs with osteosarcoma. J Vet Intern Med 2020; 34:2056-2067. [PMID: 32649801 PMCID: PMC7517513 DOI: 10.1111/jvim.15852] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 06/26/2020] [Accepted: 06/26/2020] [Indexed: 12/17/2022] Open
Abstract
Background Osteosarcoma (OSA) in dogs is an aggressive bone tumor with frequent chemotherapy failure and translational relevance for human health. Hypothesis/Objectives We hypothesized that dogs with OSA could be treated safely by ex vivo activated T‐cells that were generated by autologous cancer vaccination and supported by interleukin‐2 (IL‐2) treatment with survival more than twice that reported for amputation alone. Animals Osteosarcoma‐bearing dogs (n = 14) were enrolled in a single‐arm prospective trial after complete staging before amputation. Four healthy dogs also were treated in a safety study. Methods Autologous cancer cell vaccinations were administered intradermally and dogs underwent leukapheresis. Mononuclear cell products were stimulated ex vivo with a T‐cell‐activating agent. Activated product was transfused and 5 SC IL‐2 injections were administered q48h. Dogs were monitored for metastasis by thoracic radiography every 3 months. Results Autologous cancer cell vaccine and activated cellular therapy (ACT) products were successfully generated. Toxicity was minimal after premedicants were instituted before ACT. With premedication, all toxicities were grade I/II. Median disease‐free interval for all dogs was 213 days. One dog developed cutaneous metastasis but then experienced spontaneous complete remission. Median survival time for all dogs was 415 days. Five dogs survived >730 days. Conclusions and Clinical Importance This immunotherapy protocol without cytotoxic chemotherapy is safe and tolerable. Compared to historical amputation reports, survival was notably prolonged in this group of patients. Additional prospective studies are warranted to elucidate active immunologic mechanisms and further improve disease response and survival.
Collapse
Affiliation(s)
- Brian K Flesner
- University of Missouri, College of Veterinary Medicine, Columbia, Missouri, USA
| | | | | | | | - Carolyn J Henry
- University of Missouri, College of Veterinary Medicine, Columbia, Missouri, USA
| | - Deborah J Tate
- University of Missouri, College of Veterinary Medicine, Columbia, Missouri, USA
| | - Sandra M Bechtel
- University of Missouri, College of Veterinary Medicine, Columbia, Missouri, USA
| | - Lindsay L Donnelly
- University of Missouri, College of Veterinary Medicine, Columbia, Missouri, USA
| | - Gayle C Johnson
- University of Missouri, College of Veterinary Medicine, Columbia, Missouri, USA
| | - Dae Young Kim
- University of Missouri, College of Veterinary Medicine, Columbia, Missouri, USA
| | | | - Jeffrey N Bryan
- University of Missouri, College of Veterinary Medicine, Columbia, Missouri, USA
| | - Noe Reyes
- Elias Animal Health, Olathe, Kansas, USA
| |
Collapse
|
16
|
Atherton MJ, Lenz JA, Mason NJ. Sarcomas-A barren immunological wasteland or field of opportunity for immunotherapy? Vet Comp Oncol 2020; 18:447-470. [PMID: 32246517 DOI: 10.1111/vco.12595] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/13/2020] [Accepted: 03/24/2020] [Indexed: 12/11/2022]
Abstract
Key advances in our understanding of immunobiology and the immunosuppressive mechanisms of the tumour microenvironment have led to significant breakthroughs in manipulating the immune system to successfully treat cancer. Remarkable therapeutic responses have occurred with tumours that carry a high mutational burden. In these cases, pre-existing tumour-specific T cells can be rejuvenated via checkpoint inhibition to eliminate tumours. Furthermore, durable remissions have been achieved in haematological malignancies following adoptive transfer of T cells that specifically target cell surface proteins where expression is restricted to the malignancy's cell of origin. Soft tissue sarcomas and bone sarcomas have a paucity of non-synonymous somatic mutations and do not commonly express known, targetable, tumour-specific antigens. Historically, soft tissue sarcomas have been considered immunologically 'cold' and as such, unlikely candidates for immune therapy. Here, we review the immune landscape of canine and feline sarcomas and the immunotherapeutic strategies that have been employed in veterinary clinical trials to improve patient outcome. We also provide insight into immunotherapeutic approaches being used to treat human sarcomas. Together, current data indicates that, rather than a barren immunological wasteland, sarcomas represent a field of opportunities for immunotherapies. Furthermore, we and others would suggest that strategic combinations of immunotherapeutic approaches may hold promise for more effective treatments for high grade soft tissue sarcomas and bone sarcomas.
Collapse
Affiliation(s)
- Matthew J Atherton
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jennifer A Lenz
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Nicola J Mason
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Parker Institute for Cancer Immunotherapy, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
17
|
Moncalvo F, Martinez Espinoza MI, Cellesi F. Nanosized Delivery Systems for Therapeutic Proteins: Clinically Validated Technologies and Advanced Development Strategies. Front Bioeng Biotechnol 2020; 8:89. [PMID: 32117952 PMCID: PMC7033645 DOI: 10.3389/fbioe.2020.00089] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 01/30/2020] [Indexed: 12/18/2022] Open
Abstract
The impact of protein therapeutics in healthcare is steadily increasing, due to advancements in the field of biotechnology and a deeper understanding of several pathologies. However, their safety and efficacy are often limited by instability, short half-life and immunogenicity. Nanodelivery systems are currently being investigated for overcoming these limitations and include covalent attachment of biocompatible polymers (PEG and other synthetic or naturally derived macromolecules) as well as protein nanoencapsulation in colloidal systems (liposomes and other lipid or polymeric nanocarriers). Such strategies have the potential to develop next-generation protein therapeutics. Herein, we review recent research progresses on these nanodelivery approaches, as well as future directions and challenges.
Collapse
Affiliation(s)
| | | | - Francesco Cellesi
- Dipartimento di Chimica, Materiali e Ingegneria Chimica “G. Natta”, Politecnico di Milano, Milan, Italy
| |
Collapse
|
18
|
Fan TM, Roberts RD, Lizardo MM. Understanding and Modeling Metastasis Biology to Improve Therapeutic Strategies for Combating Osteosarcoma Progression. Front Oncol 2020; 10:13. [PMID: 32082995 PMCID: PMC7006476 DOI: 10.3389/fonc.2020.00013] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 01/07/2020] [Indexed: 12/12/2022] Open
Abstract
Osteosarcoma is a malignant primary tumor of bone, arising from transformed progenitor cells with osteoblastic differentiation and osteoid production. While categorized as a rare tumor, most patients diagnosed with osteosarcoma are adolescents in their second decade of life and underscores the potential for life changing consequences in this vulnerable population. In the setting of localized disease, conventional treatment for osteosarcoma affords a cure rate approaching 70%; however, survival for patients suffering from metastatic disease remain disappointing with only 20% of individuals being alive past 5 years post-diagnosis. In patients with incurable disease, pulmonary metastases remain the leading cause for osteosarcoma-associated mortality; yet identifying new strategies for combating metastatic progression remains at a scientific and clinical impasse, with no significant advancements for the past four decades. While there is resonating clinical urgency for newer and more effective treatment options for managing osteosarcoma metastases, the discovery of druggable targets and development of innovative therapies for inhibiting metastatic progression will require a deeper and more detailed understanding of osteosarcoma metastasis biology. Toward the goal of illuminating the processes involved in cancer metastasis, a convergent science approach inclusive of diverse disciplines spanning the biology and physical science domains can offer novel and synergistic perspectives, inventive, and sophisticated model systems, and disruptive experimental approaches that can accelerate the discovery and characterization of key processes operative during metastatic progression. Through the lens of trans-disciplinary research, the field of comparative oncology is uniquely positioned to advance new discoveries in metastasis biology toward impactful clinical translation through the inclusion of pet dogs diagnosed with metastatic osteosarcoma. Given the spontaneous course of osteosarcoma development in the context of real-time tumor microenvironmental cues and immune mechanisms, pet dogs are distinctively valuable in translational modeling given their faithful recapitulation of metastatic disease progression as occurs in humans. Pet dogs can be leveraged for the exploration of novel therapies that exploit tumor cell vulnerabilities, perturb local microenvironmental cues, and amplify immunologic recognition. In this capacity, pet dogs can serve as valuable corroborative models for realizing the science and best clinical practices necessary for understanding and combating osteosarcoma metastases.
Collapse
Affiliation(s)
- Timothy M Fan
- Comparative Oncology Research Laboratory, Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Ryan D Roberts
- Center for Childhood Cancer and Blood Disorders, Abigail Wexner Research Institute at Nationwide Children's Hospital, The James Comprehensive Cancer Center at The Ohio State University, Columbus, OH, United States
| | - Michael M Lizardo
- Poul Sorensen Laboratory, Department of Molecular Oncology, BC Cancer, Part of the Provincial Health Services Authority in British Columbia, Vancouver, BC, Canada
| |
Collapse
|
19
|
Thamm DH. Canine Cancer: Strategies in Experimental Therapeutics. Front Oncol 2019; 9:1257. [PMID: 31803625 PMCID: PMC6873901 DOI: 10.3389/fonc.2019.01257] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 10/31/2019] [Indexed: 12/13/2022] Open
Abstract
Cancer is the most common cause of death in adult dogs. Many features of spontaneously developing tumors in pet dogs contribute to their potential utility as a human disease model. These include similar environmental exposures, similar clonal evolution as it applies to important factors such as immune avoidance, a favorable body size for imaging and serial biopsy, and a relatively contracted time course of disease progression, which makes evaluation of temporal endpoints such as progression free or overall survival feasible in a comparatively short time frame. These criteria have been leveraged to evaluate novel local therapies, demonstrate proof of tumor target inhibition or tumor localization, evaluate potential antimetastatic approaches, and assess the efficacy, safety and immune effects of a variety of immune-based therapeutics. Some of these canine proof of concept studies have been instrumental in informing subsequent human clinical trials. This review will cover key aspects of clinical trials in dogs with spontaneous neoplasia, with examples of how these studies have contributed to human cancer therapeutic development.
Collapse
Affiliation(s)
- Douglas H Thamm
- Flint Animal Cancer Center, Colorado State University, Fort Collins, CO, United States.,Cell and Molecular Biology Graduate Program, Colorado State University, Fort Collins, CO, United States.,University of Colorado Cancer Center, Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
20
|
Overgaard NH, Fan TM, Schachtschneider KM, Principe DR, Schook LB, Jungersen G. Of Mice, Dogs, Pigs, and Men: Choosing the Appropriate Model for Immuno-Oncology Research. ILAR J 2019; 59:247-262. [PMID: 30476148 DOI: 10.1093/ilar/ily014] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 07/30/2018] [Indexed: 02/06/2023] Open
Abstract
The immune system plays dual roles in response to cancer. The host immune system protects against tumor formation via immunosurveillance; however, recognition of the tumor by immune cells also induces sculpting mechanisms leading to a Darwinian selection of tumor cell variants with reduced immunogenicity. Cancer immunoediting is the concept used to describe the complex interplay between tumor cells and the immune system. This concept, commonly referred to as the three E's, is encompassed by 3 distinct phases of elimination, equilibrium, and escape. Despite impressive results in the clinic, cancer immunotherapy still has room for improvement as many patients remain unresponsive to therapy. Moreover, many of the preclinical results obtained in the widely used mouse models of cancer are lost in translation to human patients. To improve the success rate of immuno-oncology research and preclinical testing of immune-based anticancer therapies, using alternative animal models more closely related to humans is a promising approach. Here, we describe 2 of the major alternative model systems: canine (spontaneous) and porcine (experimental) cancer models. Although dogs display a high rate of spontaneous tumor formation, an increased number of genetically modified porcine models exist. We suggest that the optimal immuno-oncology model may depend on the stage of cancer immunoediting in question. In particular, the spontaneous canine tumor models provide a unique platform for evaluating therapies aimed at the escape phase of cancer, while genetically engineered swine allow for elucidation of tumor-immune cell interactions especially during the phases of elimination and equilibrium.
Collapse
Affiliation(s)
- Nana H Overgaard
- Department of Micro- and Nanotechnology, Technical University of Denmark, Kgs Lyngby, Denmark
| | - Timothy M Fan
- Department of Veterinary Clinical Medicine, University of Illinois, Urbana-Champaign, Illinois
| | | | - Daniel R Principe
- Medical Scientist Training Program, University of Illinois College of Medicine, Chicago, Illinois
| | - Lawrence B Schook
- Department of Radiology, University of Illinois, Chicago, Illinois.,Department of Animal Sciences, University of Illinois, Urbana-Champaign, Illinois
| | - Gregers Jungersen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| |
Collapse
|
21
|
Gingrich AA, Modiano JF, Canter RJ. Characterization and Potential Applications of Dog Natural Killer Cells in Cancer Immunotherapy. J Clin Med 2019; 8:jcm8111802. [PMID: 31717876 PMCID: PMC6912828 DOI: 10.3390/jcm8111802] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 10/16/2019] [Accepted: 10/24/2019] [Indexed: 12/22/2022] Open
Abstract
Natural killer (NK) cells of the innate immune system are a key focus of research within the field of immuno-oncology based on their ability to recognize and eliminate malignant cells without prior sensitization or priming. However, barriers have arisen in the effective translation of NK cells to the clinic, in part because of critical species differences between mice and humans. Companion animals, especially dogs, are valuable species for overcoming many of these barriers, as dogs develop spontaneous tumors in the setting of an intact immune system, and the genetic and epigenetic factors that underlie oncogenesis appear to be similar between dogs and humans. Here, we summarize the current state of knowledge for dog NK cells, including cell surface marker phenotype, key NK genes and genetic regulation, similarities and differences of dog NK cells to other mammals, especially human and mouse, expression of canonical inhibitory and activating receptors, ex vivo expansion techniques, and current and future clinical applications. While dog NK cells are not as well described as those in humans and mice, the knowledge of the field is increasing and clinical applications in dogs can potentially advance the field of human NK biology and therapy. Better characterization is needed to truly understand the similarities and differences of dog NK cells with mouse and human. This will allow for the canine model to speed clinical translation of NK immunotherapy studies and overcome key barriers in the optimization of NK cancer immunotherapy, including trafficking, longevity, and maximal in vivo support.
Collapse
Affiliation(s)
- Alicia A. Gingrich
- Department of Surgery, University of California Davis, 2221 Stockton Blvd, Sacramento, CA 95817, USA;
| | - Jaime F. Modiano
- Animal Cancer Care and Research Program, College of Veterinary Medicine and Masonic Cancer Center, University of Minnesota, 1365 Gortner Ave, St. Paul, MN 55108, USA;
| | - Robert J. Canter
- Department of Surgery, University of California Davis, 2221 Stockton Blvd, Sacramento, CA 95817, USA;
- Correspondence:
| |
Collapse
|
22
|
Abstract
The enhanced understanding of immunology experienced over the last 4 decades afforded through the tools of molecular biology has recently translated into cancer immunotherapy becoming one of the most exciting and rapidly expanding fields. Human cancer immunotherapy is now recognized as one of the pillars of treatment alongside surgery, radiation, and chemotherapy. The field of veterinary cancer immunotherapy has also rapidly advanced in the last decade with a handful of commercially available products and a plethora of investigational cancer immunotherapies that will hopefully expand the veterinary oncology treatment toolkit over time.
Collapse
|
23
|
Wang Z, Wang Z, Li B, Wang S, Chen T, Ye Z. Innate Immune Cells: A Potential and Promising Cell Population for Treating Osteosarcoma. Front Immunol 2019; 10:1114. [PMID: 31156651 PMCID: PMC6531991 DOI: 10.3389/fimmu.2019.01114] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Accepted: 05/01/2019] [Indexed: 12/13/2022] Open
Abstract
Advanced, recurrent, or metastasized osteosarcomas remain challenging to cure or even alleviate. Therefore, the development of novel therapeutic strategies is urgently needed. Cancer immunotherapy has greatly improved in recent years, with options including adoptive cellular therapy, vaccination, and checkpoint inhibitors. As such, immunotherapy is becoming a potential strategy for the treatment of osteosarcoma. Innate immunocytes, the first line of defense in the immune system and the bridge to adaptive immunity, are one of the vital effector cell subpopulations in cancer immunotherapy. Innate immune cell-based therapy has shown potent antitumor activity against hematologic malignancies and some solid tumors, including osteosarcoma. Importantly, some immune checkpoints are expressed on both innate and adaptive immune cells, modulating their functions in tumor immunity. Therefore, blocking or activating immune checkpoint-mediated downstream signaling pathways can improve the therapeutic effects of innate immune cell-based therapy. In this review, we summarize the current status and future prospects of innate immune cell-based therapy for the treatment of osteosarcoma, with a focus on the potential synergistic effects of combination therapy involving innate immunotherapy and immune checkpoint inhibitors/oncolytic viruses.
Collapse
Affiliation(s)
- Zenan Wang
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Orthopedic Research, Zhejiang University, Hangzhou, China
| | - Zhan Wang
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Orthopedic Research, Zhejiang University, Hangzhou, China
| | - Binghao Li
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Orthopedic Research, Zhejiang University, Hangzhou, China
| | - Shengdong Wang
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Orthopedic Research, Zhejiang University, Hangzhou, China
| | - Tao Chen
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Orthopedic Research, Zhejiang University, Hangzhou, China
| | - Zhaoming Ye
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Orthopedic Research, Zhejiang University, Hangzhou, China
| |
Collapse
|
24
|
Mazza PPA, Buccianti A, Savorelli A. Grasping at straws: a re-evaluation of sweepstakes colonisation of islands by mammals. Biol Rev Camb Philos Soc 2019; 94:1364-1380. [PMID: 30864268 DOI: 10.1111/brv.12506] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 02/13/2019] [Accepted: 02/15/2019] [Indexed: 11/28/2022]
Abstract
Natural rafting is an easy, non-evidence-based solution often used to explain the presence of a variety of species on isolated islands. The question arises as to whether this solution is based on solid scientific grounds. It is a plausible colonisation route only if intricate networks of variables are considered and many different conditions satisfied. This review provides a descriptive account of some of the most critical issues underlying the theory of natural rafting that should be addressed by its supporters. These include: (i) biological variables; (ii) characteristics of the vessels; and (iii) physical variables. Natural rafting may explain the dispersal of poikilotherms with low metabolic rates and low resource requirements that could withstand trans-oceanic crossings, but explaining the transport of homeothermic terrestrial mammals to oceanic islands is more problematic. Drifting at sea exposes organisms to high concentrations of salt, high temperature and humidity excursions, starvation, and above all to dehydration. A sufficiently large group of healthy reproductive individuals of the two sexes should either be transported together, or be able to reassemble after separate crossings, to prevent inbreeding, genetic drift and ultimately extinction. Any vessels of flotsam occupied must minimally provide the animals they transport with sufficient provisions to survive the journey, offer minimum friction and drag through water, and be transported by appropriately directed, sustained, high-speed currents. Thus, a 'sweepstakes colonisation' event would be the result of a lucky combination of all, or at least the majority, of these factors. Some cases throw doubt on the use of a natural rafting model to explain known animal colonisations, with one of the most striking examples being Madagascar. This island is far from the nearest mainland coasts and the sea currents in the Mozambique Channel are directed towards Africa rather than Madagascar, yet, the island was colonised by terrestrial mammals (e.g. extinct hippopotamuses, lemurs, carnivores, rodents and tenrecs) unable to swim and to survive long journeys at sea. In order to assess the feasibility of the natural rafting model in a case such as Madagascar, tests were performed using three variables for which enough information could be obtained from the literature: length of survival without food, survival without water, and sea current speed. The distributions of these variables appear to be log-normal and multiplicative, or follow a power-law, rather than being Gaussian. The tests suggest that a distributional analysis is a more suitable approach than the use of geometric probability to calculate the probabilities associated with the examined data. Such non-linear and self-organising systems may reach a critical point governed by different competing factors. Mammals with high survival requirements, such as lemurs and hippopotamuses, thus may have a virtually zero probability of reaching distant islands by natural rafting. Our results raise doubts as to the validity of a natural rafting model, and we urge a rethinking of the modes in which numerous islands were colonised by land mammals and a careful revision of past geological and phylogeographic work.
Collapse
Affiliation(s)
- Paul P A Mazza
- Department of Earth Sciences, University of Florence, Via La Pira 4, Florence, Italy
| | - Antonella Buccianti
- Department of Earth Sciences, University of Florence, Via La Pira 4, Florence, Italy
| | - Andrea Savorelli
- Department of Earth Sciences, University of Florence, Via La Pira 4, Florence, Italy
| |
Collapse
|
25
|
Fan TM, Selting KA. Exploring the Potential Utility of Pet Dogs With Cancer for Studying Radiation-Induced Immunogenic Cell Death Strategies. Front Oncol 2019; 8:680. [PMID: 30697532 PMCID: PMC6340932 DOI: 10.3389/fonc.2018.00680] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 12/27/2018] [Indexed: 01/21/2023] Open
Abstract
Radiotherapy serves as a foundational pillar for the therapeutic management of diverse solid tumors through the generation of lethal DNA damage and induction of cell death. While the direct cytotoxic effects of radiation therapy remain a cornerstone for cancer management, in the era of immunooncology there is renewed and focused interest in exploiting the indirect bystander activities of radiation, termed abscopal effects. In radioimmunobiologic terms, abscopal effects describe the radiotherapy-induced regression of cancerous lesions distant from the primary site of radiation delivery and rely upon the induction of immunogenic cell death and consequent systemic anticancer immune activation. Despite the promise of radiation therapy for awaking potent anticancer immune responses, the purposeful harnessing of abscopal effects with radiotherapy remain clinically elusive. In part, failure to fully leverage and clinically implement the promise of radiation-induced abscopal effects stems from limitations associated with existing conventional tumor models which inadequately recapitulate the complexity of malignant transformation and the dynamic nature of tumor immune surveillance. To supplement this existing gap in modeling systems, pet dogs diagnosed with solid tumors including melanoma and osteosarcoma, which are both metastatic and immunogenic in nature, could potentially serve as unique resources for exploring the fundamental underpinnings required for maximizing radiation-induced abscopal effects. Given the spontaneous course of cancer development in the context of operative immune mechanisms, pet dogs treated with radiotherapy for metastatic solid tumors might be leveraged as valuable model systems for realizing the science and best clinical practices necessary to generate potent abscopal effects with anti-metastatic immune activities.
Collapse
Affiliation(s)
- Timothy M Fan
- Comparative Oncology Research Laboratory, Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois at Urbana-Champaign Urbana, IL, United States
| | - Kimberly A Selting
- Comparative Oncology Research Laboratory, Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois at Urbana-Champaign Urbana, IL, United States
| |
Collapse
|
26
|
Reinero C. Interstitial lung diseases in dogs and cats part II: Known cause and other discrete forms. Vet J 2018; 243:55-64. [PMID: 30606440 DOI: 10.1016/j.tvjl.2018.11.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 11/12/2018] [Accepted: 11/15/2018] [Indexed: 12/19/2022]
Abstract
In addition to idiopathic interstitial pneumonias, interstitial lung diseases (ILDs) can occur secondary to known causes or be classified as discrete syndromes. Also known as diffuse parenchymal lung diseases, the ILDs represent a heterogenous group of non-infectious, non-neoplastic disorders characterized by varied patterns of inflammation and fibrosis. Characteristically associated with the true interstitium (i.e. the anatomic space lined by alveolar epithelial cells and capillary endothelial cells and the loose-binding connective tissue), it is important to understand ILDs are associated with pathology of the distal lung parenchyma and thus lesions can be bronchiolocentric or resemble alveolar filling disorders. Injury to the distal lung can occur via inhalation or hematogenous routes. This review will build on a proposed classification scheme adapted from human medicine to describe known cause and discrete forms of ILDs in dogs and cats.
Collapse
Affiliation(s)
- Carol Reinero
- Department of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
27
|
Withers SS, Skorupski KA, York D, Choi JW, Woolard KD, Laufer-Amorim R, Sparger EE, Rodriguez CO, McSorley SJ, Monjazeb AM, Murphy WJ, Canter RJ, Rebhun RB. Association of macrophage and lymphocyte infiltration with outcome in canine osteosarcoma. Vet Comp Oncol 2018; 17:49-60. [PMID: 30156029 DOI: 10.1111/vco.12444] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 08/20/2018] [Accepted: 08/21/2018] [Indexed: 12/29/2022]
Abstract
Immunotherapeutic strategies have shown promise for the treatment of canine osteosarcoma (cOSA). Very little is known about the immune microenvironment within cOSA, however, limiting our ability to identify potential immune targets and biomarkers of therapeutic response. We therefore prospectively assessed the disease-free interval (DFI) and overall survival time (ST) of 30 dogs with cOSA treated with amputation and six doses of adjuvant carboplatin. We then quantified lymphocytic (CD3+, FOXP3+) and macrophage (CD204+) infiltrates within the primary tumours of this cohort using immunohistochemistry, and evaluated their association with outcome. Overall, the median DFI and ST were 392 and 455 days, respectively. The median number of CD3+ and FOXP3+ infiltrates were 45.8 cells/mm2 (4.6-607.6 cells/mm2 ) and 8.5 mm2 (0-163.1 cells/mm2 ), respectively. The median area of CD204+ macrophages was 4.7% (1.3%-23.3%), and dogs with tumours containing greater than 4.7% CD204+ macrophages experienced a significantly longer DFI (P = 0.016). Interestingly, a significantly lower percentage of CD204+ macrophages was detected in cOSA arising from the proximal humerus compared to other appendicular bone locations (P = 0.016). Lymphocytic infiltrates did not appear to correlate with outcome in cOSA. Overall, our findings suggest that macrophages may play a role in inhibiting cOSA progression, as has been suggested in human osteosarcoma.
Collapse
Affiliation(s)
- Sita S Withers
- The Comparative Oncology Laboratory and Center for Companion Animal Health, Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California-Davis, Davis, California
| | - Katherine A Skorupski
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California-Davis, Davis, California
| | - Daniel York
- The Comparative Oncology Laboratory and Center for Companion Animal Health, Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California-Davis, Davis, California
| | - Jin W Choi
- Center for Comparative Medicine, Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California-Davis, Davis, California
| | - Kevin D Woolard
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California-Davis, Davis, California
| | - Renee Laufer-Amorim
- Department of Veterinary Clinics, School of Veterinary Medicine and Animal Science, Sao Paulo State University (UNESP), Botucatu, Brazil
| | - Ellen E Sparger
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California-Davis, Davis, California
| | | | - Stephen J McSorley
- Center for Comparative Medicine, Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California-Davis, Davis, California
| | - Arta M Monjazeb
- Comprehensive Cancer Center, Department of Radiation Oncology, School of Medicine, University of California-Davis, Sacramento, California
| | - William J Murphy
- Department of Dermatology, School of Medicine, University of California-Davis, Sacramento, California
| | - Robert J Canter
- Comprehensive Cancer Center, Department of Surgery, School of Medicine, University of California-Davis, Sacramento, California
| | - Robert B Rebhun
- The Comparative Oncology Laboratory and Center for Companion Animal Health, Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California-Davis, Davis, California
| |
Collapse
|
28
|
Abstract
Pet dogs are becoming increasingly recognized as a population with the potential to inform medical research through their treatment for a variety of maladies by veterinary health professionals. This is the basis of the One Health initiative, supporting the idea of collaboration between human and animal health researchers and clinicians to study spontaneous disease processes and treatment in animals to inform human health. Cancer is a major health burden in pet dogs, accounting for approximately 30% of deaths across breeds. As such, pet dogs with cancer are becoming increasingly recognized as a resource for studying the pharmacology and therapeutic potential of anticancer drugs and therapies under development. This was recently highlighted by a National Academy of Medicine Workshop on Comparative Oncology that took place in mid-2015 (http://www.nap.edu/21830). One component of cancer burden in dogs is their significantly higher incidence of sarcomas as compared to humans. This increased incidence led to canine osteosarcoma being an important component in the development of surgical approaches for osteosarcoma in children. Included in this review of sarcomas in dogs is a description of the incidence, pathology, molecular characteristics and previous translational therapeutic studies associated with these tumors. An understanding of the patho-physiological and molecular characteristics of these naturally occurring canine sarcomas holds great promise for effective incorporation into drug development schemas, for evaluation of target modulation or other pharmacodynamic measures associated with therapeutic response. These data could serve to supplement other preclinical data and bolster clinical investigations in tumor types for which there is a paucity of human patients for clinical trials.
Collapse
Affiliation(s)
- Daniel L Gustafson
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA; Flint Animal Cancer Center, Colorado State University, Fort Collins, CO 80523, USA; University of Colorado Cancer Center, Anschutz Medical Campus, Aurora, CO 80045, USA.
| | - Dawn L Duval
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA; Flint Animal Cancer Center, Colorado State University, Fort Collins, CO 80523, USA; University of Colorado Cancer Center, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Daniel P Regan
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA; Flint Animal Cancer Center, Colorado State University, Fort Collins, CO 80523, USA; University of Colorado Cancer Center, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Douglas H Thamm
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA; Flint Animal Cancer Center, Colorado State University, Fort Collins, CO 80523, USA; University of Colorado Cancer Center, Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
29
|
|
30
|
Canter RJ, Grossenbacher SK, Foltz JA, Sturgill IR, Park JS, Luna JI, Kent MS, Culp WTN, Chen M, Modiano JF, Monjazeb AM, Lee DA, Murphy WJ. Radiotherapy enhances natural killer cell cytotoxicity and localization in pre-clinical canine sarcomas and first-in-dog clinical trial. J Immunother Cancer 2017; 5:98. [PMID: 29254507 PMCID: PMC5735903 DOI: 10.1186/s40425-017-0305-7] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 11/13/2017] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND We have previously shown that radiotherapy (RT) augments natural killer (NK) functions in pre-clinical models of human and mouse cancers, including sarcomas. Since dogs are an excellent outbred model for immunotherapy studies, we sought to assess RT plus local autologous NK transfer in canine sarcomas. METHODS Dog NK cells (CD5dim, NKp46+) were isolated from PBMCs and expanded with irradiated K562-C9-mIL21 feeder cells and 100 IU/mL recombinant human IL-2. NK homing and cytotoxicity ± RT were evaluated using canine osteosarcoma tumor lines and dog patient-derived xenografts (PDX). In a first-in-dog clinical trial for spontaneous osteosarcoma, we evaluated RT and intra-tumoral autologous NK transfer. RESULTS After 14 days, mean NK expansion and yield were 19.0-fold (±8.6) and 258.9(±76.1) ×106 cells, respectively. Post-RT, NK cytotoxicity increased in a dose-dependent fashion in vitro reaching ~ 80% at effector:target ratios of ≥10:1 (P < 0.001). In dog PDX models, allogeneic NK cells were cytotoxic in ex vivo killing assays and produced significant PDX tumor growth delay (P < 0.01) in vivo. After focal RT and intravenous NK transfer, we also observed significantly increased NK homing to tumors in vivo. Of 10 dogs with spontaneous osteosarcoma treated with focal RT and autologous NK transfer, 5 remain metastasis-free at the 6-month primary endpoint with resolution of suspicious pulmonary nodules in one patient. We also observed increased activation of circulating NK cells after treatment and persistence of labelled NK cells in vivo. CONCLUSIONS NK cell homing and cytotoxicity are increased following RT in canine models of sarcoma. Results from a first-in-dog clinical trial are promising, including possible abscopal effects.
Collapse
Affiliation(s)
- Robert J Canter
- Department of Surgery, Division of Surgical Oncology, University of California Davis Medical Center, Sacramento, CA, 95817, USA. .,Department of Surgery, Division of Surgical Oncology, UC Davis School of Medicine, 4501 X Street, Suite 3010, Sacramento, CA, 95817, USA.
| | - Steven K Grossenbacher
- Laboratory of Cancer Immunology, Department of Dermatology, University of California Davis Medical Center, Sacramento, CA, 95817, USA
| | - Jennifer A Foltz
- Nationwide Children's Hospital, Center for Childhood Cancer & Blood Diseases, 700 Children's Drive, Columbus, OH, 43205, USA
| | - Ian R Sturgill
- Laboratory of Cancer Immunology, Department of Dermatology, University of California Davis Medical Center, Sacramento, CA, 95817, USA
| | - Jiwon S Park
- Department of Surgery, University of California Davis Medical Center, Sacramento, CA, 95817, USA
| | - Jesus I Luna
- Laboratory of Cancer Immunology, Department of Dermatology, University of California Davis Medical Center, Sacramento, CA, 95817, USA
| | - Michael S Kent
- The Center for Companion Animal Health, Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California-Davis, Davis, CA, 95616, USA
| | - William T N Culp
- The Center for Companion Animal Health, Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California-Davis, Davis, CA, 95616, USA
| | - Mingyi Chen
- Department of Pathology and Laboratory Medicine, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Jaime F Modiano
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Animal Cancer Care and Research Center, Center for Immunology, Masonic Cancer Center, and Stem Cell Institute, University of Minnesota, St. Paul, MN, 55108, USA
| | - Arta M Monjazeb
- Department of Radiation Oncology, University of California Davis Medical Center, Sacramento, CA, 95817, USA
| | - Dean A Lee
- Nationwide Children's Hospital, Center for Childhood Cancer & Blood Diseases, 700 Children's Drive, Columbus, OH, 43205, USA
| | - William J Murphy
- Departments of Dermatology and Internal Medicine, University of California Davis Medical Center, Sacramento, CA, 95817, USA
| |
Collapse
|
31
|
The Use of Liposomes and Nanoparticles as Drug Delivery Systems to Improve Cancer Treatment in Dogs and Cats. Molecules 2017; 22:molecules22122167. [PMID: 29215573 PMCID: PMC6149801 DOI: 10.3390/molecules22122167] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 11/27/2017] [Accepted: 11/28/2017] [Indexed: 12/11/2022] Open
Abstract
Background: Cancer remains a leading cause of death in companion animals. In human medicine, liposomes and nanoparticles have been extensively investigated as drug delivery systems (DDS) for anticancer agents due to their ability to target cancerous cells and reduce the negative side effects of free cytostatic drugs. In this review, the authors discuss the results of clinical trials using liposomes and polymer-based nanoparticles as DDS to improve cancer treatment in dogs and cats, indicating which ones seem worth further evaluation. The authors then overview ongoing animal cancer clinical trials, evaluating nano-DDS registered on the American Veterinary Medical Association Animal Health Studies Database. Finally, the authors indicate the nano-drugs that require further in vivo evaluation based on the encouraging results obtained from in vitro studies. Conclusions: Liposomes have been the most investigated nano-DDS in veterinary medicine. The lack of cardiotoxicity of the commercially available liposomal doxorubicin (Doxil/Caelyx) suggests it should be used in dogs with cardiac disorders, rather than using free doxorubicin. Cisplatin-incorporated hyaluronic acid nanoparticles, nanocrystals of cisplatin, and paclitaxel are the most promising nano-drugs for potent applications in treating various canine cancers (e.g. oral melanoma, oral sarcoma, and anal gland adenocarcinoma) and their translation into the treatment of human diseases.
Collapse
|
32
|
Pulmonary delivery of nanoparticle chemotherapy for the treatment of lung cancers: challenges and opportunities. Acta Pharmacol Sin 2017; 38:782-797. [PMID: 28504252 DOI: 10.1038/aps.2017.34] [Citation(s) in RCA: 169] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Accepted: 02/04/2017] [Indexed: 12/11/2022] Open
Abstract
Lung cancer is the second most prevalent and the deadliest among all cancer types. Chemotherapy is recommended for lung cancers to control tumor growth and to prolong patient survival. Systemic chemotherapy typically has very limited efficacy as well as severe systemic adverse effects, which are often attributed to the distribution of anticancer drugs to non-targeted sites. In contrast, inhalation routes permit the delivery of drugs directly to the lungs providing high local concentrations that may enhance the anti-tumor effect while alleviating systemic adverse effects. Preliminary studies in animals and humans have suggested that most inhaled chemotherapies are tolerable with manageable pulmonary adverse effects, including cough and bronchospasm. Promoting the deposition of anticancer drugs in tumorous cells and minimizing access to healthy lung cells can further augment the efficacy and reduce the risk of local toxicities caused by inhaled chemotherapy. Sustained release and tumor localization characteristics make nanoparticle formulations a promising candidate for the inhaled delivery of chemotherapeutic agents against lung cancers. However, the physiology of respiratory tracts and lung clearance mechanisms present key barriers for the effective deposition and retention of inhaled nanoparticle formulations in the lungs. Recent research has focused on the development of novel formulations to maximize lung deposition and to minimize pulmonary clearance of inhaled nanoparticles. This article systematically reviews the challenges and opportunities for the pulmonary delivery of nanoparticle formulations for the treatment of lung cancers.
Collapse
|
33
|
Dhupkar P, Gordon N. Interleukin-2: Old and New Approaches to Enhance Immune-Therapeutic Efficacy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 995:33-51. [PMID: 28321811 DOI: 10.1007/978-3-319-53156-4_2] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Interleukin-2 (IL-2) is a very well-known cytokine that has been studied for the past 35 years. It plays a major role in the growth and proliferation of many immune cells such NK and T cells. It is an important immunotherapy cytokine for the treatment of various diseases including cancer. Systemic delivery of IL-2 has shown clinical benefit in renal cell carcinoma and melanoma patients. However, its use has been limited by the numerous toxicities encountered with the systemic delivery. Intravenous IL-2 causes the well-known "capillary leak syndrome," or the leakage of fluid from the circulatory system to the interstitial space resulting in hypotension (low blood pressure), edema, and dyspnea that can lead to circulatory shock and eventually cardiopulmonary collapse and multiple organ failure. Due to the toxicities associated with systemic IL-2, an aerosolized delivery approach has been developed, which enables localized delivery and a higher local immune cell activation. Since proteins are absorbed via pulmonary lymphatics, after aerosol deposition in the lung, aerosol delivery provides a means to more specifically target IL-2 to the local immune system in the lungs with less systemic effects. Its benefits have extended to diseases other than cancer. Delivery of IL-2 via aerosol or as nebulized IL-2 liposomes has been previously shown to have less toxicity and higher efficacy against sarcoma lung metastases. Dogs with cancer provided a highly relevant means to determine biodistribution of aerosolized IL-2 and IL-2 liposomes. However, efficacy of single-agent IL-2 is limited. As in general, for most immune-therapies, its effect is more beneficial in the face of minimal residual disease. To overcome this limitation, combination therapies using aerosol IL-2 with adoptive transfer of T cells or NK cells have emerged.Using a human osteosarcoma (OS) mouse model, we have demonstrated the efficacy of single-agent aerosol IL-2 and combination therapy aerosol IL-2 and NK cells or aerosol IL-2 and interleukin 11 receptor alpha-directed chimeric antigen receptor-T cells (IL-11 receptor α CAR-T cells) against OS pulmonary metastases. Combination therapy resulted in a better therapeutic effect. A Phase-I trial of aerosol IL-2 was done in Europe and proved to be safe. Others and our preclinical studies provided the basis for the development of a Phase-I aerosol IL-2 trial in our institution to include younger patients with lung metastases. OS, our disease of interest, has a peak incidence in the adolescent and young adult years. Our goal is to complete this trial in the next 2 years.In this chapter, we summarize the different effects of IL-2 and cover the advantages of the aerosol delivery route for diseases of the lung with an emphasis on some of our most recent work using combination therapy aerosol IL-2 and NK cells for the treatment of OS lung metastases.
Collapse
Affiliation(s)
- Pooja Dhupkar
- Department of Pediatrics-Research, The Children's Cancer Hospital, University of Texas M.D. Anderson Cancer Center, 7777 Knight Road, Houston, TX, 77030, USA
- Experimental Therapeutics Academic Program, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Nancy Gordon
- Department of Pediatrics-Research, The Children's Cancer Hospital, University of Texas M.D. Anderson Cancer Center, 7777 Knight Road, Houston, TX, 77030, USA.
| |
Collapse
|
34
|
Park JS, Withers SS, Modiano JF, Kent MS, Chen M, Luna JI, Culp WTN, Sparger EE, Rebhun RB, Monjazeb AM, Murphy WJ, Canter RJ. Canine cancer immunotherapy studies: linking mouse and human. J Immunother Cancer 2016; 4:97. [PMID: 28031824 PMCID: PMC5171656 DOI: 10.1186/s40425-016-0200-7] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 12/01/2016] [Indexed: 12/11/2022] Open
Abstract
Despite recent major clinical breakthroughs in human cancer immunotherapy including the use of checkpoint inhibitors and engineered T cells, important challenges remain, including determining the sub-populations of patients who will respond and who will experience at times significant toxicities. Although advances in cancer immunotherapy depend on preclinical testing, the majority of in-vivo testing currently relies on genetically identical inbred mouse models which, while offering critical insights regarding efficacy and mechanism of action, also vastly underrepresent the heterogeneity and complex interplay of human immune cells and cancers. Additionally, laboratory mice uncommonly develop spontaneous tumors, are housed under specific-pathogen free conditions which markedly impacts immune development, and incompletely model key aspects of the tumor/immune microenvironment. The canine model represents a powerful tool in cancer immunotherapy research as an important link between murine models and human clinical studies. Dogs represent an attractive outbred combination of companion animals that experience spontaneous cancer development in the setting of an intact immune system. This allows for study of complex immune interactions during the course of treatment while also directly addressing long-term efficacy and toxicity of cancer immunotherapies. However, immune dissection requires access to robust and validated immune assays and reagents as well as appropriate numbers for statistical evaluation. Canine studies will need further optimization of these important mechanistic tools for this model to fulfill its promise as a model for immunotherapy. This review aims to discuss the canine model in the context of existing preclinical cancer immunotherapy models to evaluate both its advantages and limitations, as well as highlighting its growth as a powerful tool in the burgeoning field of both human and veterinary immunotherapy.
Collapse
Affiliation(s)
- Jiwon S Park
- Department of Surgery, University of California Davis Medical Center, Sacramento, CA 95817 USA
| | - Sita S Withers
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California-Davis, Davis, CA 95616 USA
| | - Jaime F Modiano
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Animal Cancer Care and Research Center, Center for Immunology, Masonic Cancer Center, and Stem Cell Institute, University of Minnesota, St. Paul, MN 55108 USA
| | - Michael S Kent
- The Center for Companion Animal Health, Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California-Davis, Davis, CA 95616, USA
| | - Mingyi Chen
- Department of Pathology and Laboratory Medicine, University of California Davis Medical Center, Sacramento, CA 95817 USA
| | - Jesus I Luna
- Laboratory of Cancer Immunology, Department of Dermatology, University of California Davis Medical Center, Sacramento, CA 95817 USA
| | - William T N Culp
- The Center for Companion Animal Health, Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California-Davis, Davis, CA 95616, USA
| | - Ellen E Sparger
- Department of Veterinary Medicine and Epidemiology, School of Veterinary Medicine, University of California Davis, Davis, CA 95616 USA
| | - Robert B Rebhun
- The Center for Companion Animal Health, Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California-Davis, Davis, CA 95616, USA
| | - Arta M Monjazeb
- Department of Radiation Oncology, University of California Davis Medical Center, Sacramento, CA 95817 USA
| | - William J Murphy
- Dermatology and Internal Medicine, University of California Davis Medical Center, Sacramento, CA 95817 USA.,Department of Dermatology, Department of Internal Medicine, Division of Hematology/Oncology, School of Medicine, University of California, Davis, USA
| | - Robert J Canter
- Department of Surgery, Division of Surgical Oncology, University of California Davis Medical Center, Sacramento, CA 95817 USA
| |
Collapse
|
35
|
Rudokas M, Najlah M, Alhnan MA, Elhissi A. Liposome Delivery Systems for Inhalation: A Critical Review Highlighting Formulation Issues and Anticancer Applications. Med Princ Pract 2016; 25 Suppl 2:60-72. [PMID: 26938856 PMCID: PMC5588529 DOI: 10.1159/000445116] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 03/01/2016] [Indexed: 12/18/2022] Open
Abstract
This is a critical review on research conducted in the field of pulmonary delivery of liposomes. Issues relating to the mechanism of nebulisation and liposome composition were appraised and correlated with literature reports of liposome formulations used in clinical trials to understand the role of liposome size and composition on therapeutic outcome. A major highlight was liposome inhalation for the treatment of lung cancers. Many in vivo studies that explored the potential of liposomes as anticancer carrier systems were evaluated, including animal studies and clinical trials. Liposomes can entrap anticancer drugs and localise their action in the lung following pulmonary delivery. The safety of inhaled liposomes incorporating anticancer drugs depends on the anticancer agent used and the amount of drug delivered to the target cancer in the lung. The difficulty of efficient targeting of liposomal anticancer aerosols to the cancerous tissues within the lung may result in low doses reaching the target site. Overall, following the success of liposomes as inhalable carriers in the treatment of lung infections, it is expected that more focus from research and development will be given to designing inhalable liposome carriers for the treatment of other lung diseases, including pulmonary cancers. The successful development of anticancer liposomes for inhalation may depend on the future development of effective aerosolisation devices and better targeted liposomes to maximise the benefit of therapy and reduce the potential for local and systemic adverse effects.
Collapse
Affiliation(s)
- Mindaugas Rudokas
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston
| | - Mohammad Najlah
- Faculty of Medical Science, Anglia Ruskin University, Chelmsford, UK
| | - Mohamed Albed Alhnan
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston
| | - Abdelbary Elhissi
- Pharmaceutical Sciences Section, College of Pharmacy, Qatar University, Doha, Qatar
- *Dr. Abdelbary Elhissi, Pharmaceutical Sciences Section, College of Pharmacy, Qatar University, PO Box 2713, Doha (Qatar), E-Mail
| |
Collapse
|
36
|
Regan D, Dow S. Manipulation of Innate Immunity for Cancer Therapy in Dogs. Vet Sci 2015; 2:423-439. [PMID: 29061951 PMCID: PMC5644648 DOI: 10.3390/vetsci2040423] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 11/20/2015] [Accepted: 11/23/2015] [Indexed: 12/23/2022] Open
Abstract
Over the last one to two decades, the field of cancer immunotherapy has rapidly progressed from early preclinical studies to a successful clinical reality and fourth major pillar of human cancer therapy. While current excitement in the field of immunotherapy is being driven by several major breakthroughs including immune checkpoint inhibitors and adoptive cell therapies, these advances stem from a foundation of pivotal studies demonstrating the immune systems role in tumor control and eradication. The following will be a succinct review on veterinary cancer immunotherapy as it pertains to manipulation of the innate immune system to control tumor growth and metastasis. In addition, we will provide an update on recent progress in our understanding of the innate immune system in veterinary tumor immunology, and how these gains may lead to novel therapies for the treatment of cancer in companion animals.
Collapse
Affiliation(s)
- Daniel Regan
- Flint Animal Cancer Center, Department of Clinical Sciences, Colorado State University, Ft. Collins, CO 80525, USA.
- The Center for Immune and Regenerative Medicine, Department of Clinical Sciences, Colorado State University, Ft. Collins, CO 80525, USA.
| | - Steven Dow
- Flint Animal Cancer Center, Department of Clinical Sciences, Colorado State University, Ft. Collins, CO 80525, USA.
- The Center for Immune and Regenerative Medicine, Department of Clinical Sciences, Colorado State University, Ft. Collins, CO 80525, USA.
| |
Collapse
|
37
|
Garrastazu Pereira G, Lawson AJ, Buttini F, Sonvico F. Loco-regional administration of nanomedicines for the treatment of lung cancer. Drug Deliv 2015; 23:2881-2896. [PMID: 26585837 DOI: 10.3109/10717544.2015.1114047] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Lung cancer poses one of the most significant challenges to modern medicine, killing thousands every year. Current therapy involves surgical resection supplemented with chemotherapy and radiotherapy due to high rates of relapse. Shortcomings of currently available chemotherapy protocols include unacceptably high levels of systemic toxicity and low accumulation of drug at the tumor site. Loco-regional delivery of nanocarriers loaded with anticancer agents has the potential to significantly increase efficacy, while minimizing systemic toxicity to anticancer agents. Local drug administration at the tumor site using nanoparticulate drug delivery systems can reduce systemic toxicities observed with intravenously administered anticancer drugs. In addition, this approach presents an opportunity for sustained delivery of anticancer drug over an extended period of time. Herein, the progress in the development of locally administered nanomedicines for the treatment of lung cancer is reviewed. Administration by inhalation, intratumoral injection and means of direct in situ application are discussed, the benefits and drawbacks of each modality are explored.
Collapse
Affiliation(s)
| | - Amanda Jane Lawson
- a Graduate School of Health, University of Technology Sydney , Sydney , Australia and
| | | | - Fabio Sonvico
- b Department of Pharmacy , University of Parma , Parma , Italy
| |
Collapse
|
38
|
Lin TY, Rodriguez CO, Li Y. Nanomedicine in veterinary oncology. Vet J 2015; 205:189-97. [DOI: 10.1016/j.tvjl.2015.02.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 02/09/2015] [Accepted: 02/11/2015] [Indexed: 11/15/2022]
|
39
|
Rosière R, Gelbcke M, Mathieu V, Van Antwerpen P, Amighi K, Wauthoz N. New dry powders for inhalation containing temozolomide-based nanomicelles for improved lung cancer therapy. Int J Oncol 2015. [PMID: 26201404 DOI: 10.3892/ijo.2015.3092] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Besides the numerous advantages of a chemotherapy administered by the inhalation route for lung cancer therapy, dry powder for inhalation (DPI) offers many advantages compared to other techniques and seems to be a technique that is well-adapted to an anticancer treatment. DPI formulations were developed using the cytotoxic drug temozolomide and a new folate-grafted self-assembling copolymer, a conjugate of three components, folate-polyethylene glycol-hydrophobically-modified dextran (F-PEG-HMD). F-PEG-HMD was synthesized using carbodiimide-mediated coupling chemistry in three main steps. F-PEG-HMD was characterized by 1H-NMR, mass spectrometry and thermal analysis. F-PEG-HMD presented a critical micellar concentration in water of 4x10-7 M. F-PEG-HMD nanomicelles were characterized by a trimodal particle size distribution with Z-average diameter of 83±1 nm in water. Temozolomide-loaded nanomicelles were prepared by solubilization of F-PEG-HMD in the presence of temozolomide. Temozolomide solubility in water was increased in the presence of F-PEG-HMD (2-fold increase in molar solubility) which could potentially lead to increased local concentrations in the tumor site. The temozolomide-loaded F-PEG-HMD nanomicelles were characterized by a Z-average diameter of ~50 to ~60 nm, depending on the F-PEG-HMD concentration used. The nanomicelles were then spray-dried to produce dry powders. Temozolomide remained stable during all the formulation steps, confirmed by similar in vitro anticancer properties for the DPI formulations and a raw temozolomide solution. Two of the developed DPI formulations were characterized by good aerodynamic properties (with a fine particle fraction of up to 50%) and were able to release the F-PEG-HMD nanomicelles quickly in aqueous media. Moreover, in vitro, the two DPI formulations showed wide pulmonary deposition in the lower respiratory tract where adenocarcinomas are more often found. The present study, therefore, shows that F-PEG-HMD-based dry powders for inhalation could constitute an interesting drug delivery system able to release nanomicelles that are useful in adenocarcinomas that overexpress folate receptors.
Collapse
Affiliation(s)
- Rémi Rosière
- Laboratory of Pharmaceutics and Biopharmaceutics, Faculty of Pharmacy, Université Libre de Bruxelles (ULB), B-1050 Brussels, Belgium
| | - Michel Gelbcke
- Laboratory of Therapeutic Chemistry, Faculty of Pharmacy, Université Libre de Bruxelles (ULB), B-1050 Brussels, Belgium
| | - Véronique Mathieu
- Laboratory of Cancerology and Experimental Toxicology, Faculty of Pharmacy, Université Libre de Bruxelles (ULB), B-1050 Brussels, Belgium
| | - Pierre Van Antwerpen
- Laboratory of Therapeutic Chemistry, Faculty of Pharmacy, Université Libre de Bruxelles (ULB), B-1050 Brussels, Belgium
| | - Karim Amighi
- Laboratory of Pharmaceutics and Biopharmaceutics, Faculty of Pharmacy, Université Libre de Bruxelles (ULB), B-1050 Brussels, Belgium
| | - Nathalie Wauthoz
- Laboratory of Pharmaceutics and Biopharmaceutics, Faculty of Pharmacy, Université Libre de Bruxelles (ULB), B-1050 Brussels, Belgium
| |
Collapse
|
40
|
Paoloni M, Mazcko C, Selting K, Lana S, Barber L, Phillips J, Skorupski K, Vail D, Wilson H, Biller B, Avery A, Kiupel M, LeBlanc A, Bernhardt A, Brunkhorst B, Tighe R, Khanna C. Defining the Pharmacodynamic Profile and Therapeutic Index of NHS-IL12 Immunocytokine in Dogs with Malignant Melanoma. PLoS One 2015; 10:e0129954. [PMID: 26091536 PMCID: PMC4474860 DOI: 10.1371/journal.pone.0129954] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 05/14/2015] [Indexed: 11/18/2022] Open
Abstract
Background Interleukin (IL)-12 is a pro-inflammatory cytokine that mediates T-helper type 1 responses and cytotoxic T-cell activation, contributing to its utility as anti-cancer agent. Systemic administration of IL-12 often results in unacceptable toxicity; therefore, strategies to direct delivery of IL-12 to tumors are under investigation. The objective of this study was to assist the preclinical development of NHS-IL12, an immunocytokine consisting of an antibody, which targets necrotic tumor regions, linked to IL-12. Specifically this study sought to evaluate the safety, serum pharmacokinetics, anti-tumor activity, and immune modulation of NHS-IL12 in dogs with naturally occurring cancers. Methodology/Principal Findings A rapid dose-escalation study of NHS-IL12 administered subcutaneously to dogs with melanoma was conducted through the Comparative Oncology Trials Consortium (COTC). Eleven dogs were enrolled in four dose-escalation cohorts; thereafter, an additional seven dogs were treated at the defined tolerable dose of 0.8 mg/m2. The expanded cohort at this fixed dose (ten dogs in total) was accrued for further pharmacokinetics and pharmacodynamics assessment. NHS-IL12 levels, serum cytokine concentrations, and peripheral blood mononuclear cell characterization (post-treatment) and draining lymph node immune profiling, and tumor biopsies (pre- and post-treatment) were collected. Adverse events included thrombocytopenia, liver enzymopathies, fever, and vasculitis. Correlation between interferon (IFN)-γ induction, adverse events, and NHS-IL12 exposure (maximum concentration and area under the concentration-time curve) were dose-dependent. Serum IL-10 levels and intratumoral CD8+ populations increased after treatment. Partial responses, according to Response Evaluation Criteria in Solid Tumors (RECIST) criteria, were observed in two dogs treated with NHS-IL12 0.8 mg/m2 and 1.6 mg/m2. Conclusions/Significance NHS-IL12 was administered safely to dogs with melanoma and both immunologic and clinical activity was observed. This study successfully defined a narrow therapeutic window for systemic delivery of NHS-IL12 via the subcutaneous route. Results will inform the design and implementation of first-in-human clinical trials of NHS-IL12 in cancer patients.
Collapse
Affiliation(s)
- Melissa Paoloni
- Comparative Oncology Program, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Christina Mazcko
- Comparative Oncology Program, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Kimberly Selting
- College of Veterinary Medicine, University of Missouri-Columbia, Columbia, Missouri, United States of America
| | - Susan Lana
- College of Veterinary Medicine and Biological Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Lisa Barber
- School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts, United States of America
| | - Jeffrey Phillips
- College of Veterinary Medicine, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Katherine Skorupski
- School of Veterinary Medicine, University of California Davis, Davis, California, United States of America
| | - David Vail
- School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Heather Wilson
- College of Veterinary Medicine, Texas A&M University, College Station, Texas, United States of America
| | - Barbara Biller
- College of Veterinary Medicine and Biological Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Anne Avery
- College of Veterinary Medicine and Biological Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Matti Kiupel
- College of Veterinary Medicine, Michigan State University, East Lansing, Michigan, United States of America
| | - Amy LeBlanc
- Comparative Oncology Program, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Anna Bernhardt
- EMD-Serono Research and Development Institute, Billerica, Massachusetts, United States of America
| | - Beatrice Brunkhorst
- EMD-Serono Research and Development Institute, Billerica, Massachusetts, United States of America
| | - Robert Tighe
- EMD-Serono Research and Development Institute, Billerica, Massachusetts, United States of America
| | - Chand Khanna
- Comparative Oncology Program, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
41
|
Wycislo KL, Fan TM. The immunotherapy of canine osteosarcoma: a historical and systematic review. J Vet Intern Med 2015; 29:759-69. [PMID: 25929293 PMCID: PMC4895426 DOI: 10.1111/jvim.12603] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 02/15/2015] [Accepted: 03/24/2015] [Indexed: 11/29/2022] Open
Abstract
Osteosarcoma is a malignant mesenchymal neoplasm that accounts for the majority of primary bone tumors in dogs and shares biological and clinical similarities with osteosarcoma in humans. Despite dose intensification with conventional cytotoxic therapies, survival times for dogs and humans diagnosed with high‐grade osteosarcoma have not changed in the past 20 years, with the principal cause of mortality being the development of pulmonary metastases. Given the therapeutic plateau reached for delaying metastatic progression with cytotoxic agents, exploration of alterative adjuvant therapies for improving management of osteosarcoma micrometastases is clinically justified. Evidence suggests that osteosarcoma is an immunogenic tumor, and development of immunotherapies for the treatment of microscopic lung metastases might improve long‐term outcomes. In this review, the history and foundational knowledge of immune interactions to canine osteosarcoma are highlighted. In parallel, immunotherapeutic strategies that have been explored for the treatment of canine osteosarcoma are summarized. With a greater understanding and awareness for how the immune system might be redirected toward combating osteosarcoma metastases, the rational development of diverse immune strategies for managing osteosarcoma holds substantial promise for transforming the therapeutic landscape and improving disease management in both dogs and human beings.
Collapse
Affiliation(s)
- K L Wycislo
- Department of Pathobiology, University of Illinois, Urbana, IL, 61802.,Veterinary Diagnostic Laboratory, University of Illinois, Urbana, IL, 61802
| | - T M Fan
- Department of Veterinary Clinical Medicine, University of Illinois, Urbana, IL, 61802
| |
Collapse
|
42
|
Killick DR, Stell AJ, Catchpole B. Immunotherapy for canine cancer--is it time to go back to the future? J Small Anim Pract 2015; 56:229-41. [PMID: 25704119 DOI: 10.1111/jsap.12336] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 12/04/2014] [Accepted: 12/17/2014] [Indexed: 12/19/2022]
Abstract
Over the last 50 years, the significance of the immune system in the development and control of cancer has been much debated. However, recent discoveries provide evidence for a role of immunological mechanisms in the detection and destruction of cancer cells. Forty years ago veterinary oncologists were already investigating the feasibility of treating neoplasia by enhancing anticancer immunity. Unfortunately, this research was hindered by lack of a detailed understanding of cancer immunology, this limited the specificity and success of these early approaches. The great forward strides made in our understanding of onco-immunology in recent years have provided the impetus for a resurgence of interest in anticancer immunotherapy for canine patients. In this article both these initial trials and the exciting novel immunotherapeutics currently in development are reviewed.
Collapse
Affiliation(s)
- D R Killick
- School of Veterinary Science, University of Liverpool, Neston, CH64 7TE
| | | | | |
Collapse
|
43
|
Witting M, Obst K, Friess W, Hedtrich S. Recent advances in topical delivery of proteins and peptides mediated by soft matter nanocarriers. Biotechnol Adv 2015; 33:1355-69. [PMID: 25687276 DOI: 10.1016/j.biotechadv.2015.01.010] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 01/27/2015] [Accepted: 01/27/2015] [Indexed: 11/19/2022]
Abstract
Proteins and peptides are increasingly important therapeutics for the treatment of severe and complex diseases like cancer or autoimmune diseases due to their high specificity and potency. Their unique structure and labile physicochemical properties, however, require special attention in the production and formulation process as well as during administration. Aside from conventional systemic injections, the topical application of proteins and peptides is an appealing alternative due to its non-invasive nature and thus high acceptance by patients. For this approach, soft matter nanocarriers are interesting delivery systems which offer beneficial properties such as high biocompatibility, easiness of modifications, as well as targeted drug delivery and release. This review aims to highlight and discuss technological developments in the field of soft matter nanocarriers for the delivery of proteins and peptides via the skin, the eye, the nose, and the lung, and to provide insights in advantages, limitations, and practicability of recent advances.
Collapse
Affiliation(s)
- Madeleine Witting
- Department of Pharmaceutical Sciences, Ludwig-Maximilians-Universität, Munich, Germany
| | - Katja Obst
- Institute for Pharmaceutical Sciences, Freie Universität Berlin, Germany
| | - Wolfgang Friess
- Department of Pharmaceutical Sciences, Ludwig-Maximilians-Universität, Munich, Germany
| | - Sarah Hedtrich
- Institute for Pharmaceutical Sciences, Freie Universität Berlin, Germany.
| |
Collapse
|
44
|
Fenger JM, London CA, Kisseberth WC. Canine osteosarcoma: a naturally occurring disease to inform pediatric oncology. ILAR J 2015; 55:69-85. [PMID: 24936031 DOI: 10.1093/ilar/ilu009] [Citation(s) in RCA: 163] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Osteosarcoma (OSA) is the most common form of malignant bone cancer in children and dogs, although the disease occurs in dogs approximately 10 times more frequently than in people. Multidrug chemotherapy and aggressive surgical techniques have improved survival; however, new therapies for OSA are critical, as little improvement in survival times has been achieved in either dogs or people over the past 15 years, even with significant efforts directed at the incorporation of novel therapeutic approaches. Both clinical and molecular evidence suggests that human and canine OSA share many key features, including tumor location, presence of microscopic metastatic disease at diagnosis, development of chemotherapy-resistant metastases, and altered expression/activation of several proteins (e.g. Met, ezrin, phosphatase and tensin homolog, signal transducer and activator of transcription 3), and p53 mutations, among others. Additionally, canine and pediatric OSA exhibit overlapping transcriptional profiles and shared DNA copy number aberrations, supporting the notion that these diseases are similar at the molecular level. This review will discuss the similarities between pediatric and canine OSA with regard to histology, biologic behavior, and molecular genetic alterations that indicate canine OSA is a relevant, spontaneous, large animal model of the pediatric disease and outline how the study of naturally occurring OSA in dogs will offer additional insights into the biology and future treatment of this disease in both children and dogs.
Collapse
|
45
|
Cipolla D, Shekunov B, Blanchard J, Hickey A. Lipid-based carriers for pulmonary products: preclinical development and case studies in humans. Adv Drug Deliv Rev 2014; 75:53-80. [PMID: 24819218 DOI: 10.1016/j.addr.2014.05.001] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Revised: 04/16/2014] [Accepted: 05/01/2014] [Indexed: 12/31/2022]
Abstract
A number of lipid-based technologies have been applied to pharmaceuticals to modify their drug release characteristics, and additionally, to improve the drug loading for poorly soluble drugs. These technologies, including solid-state lipid microparticles, many of which are porous in nature, liposomes, solid lipid nanoparticles and nanostructured lipid carriers, are increasingly being developed for inhalation applications. This article provides a review of the rationale for the use of these technologies in the pulmonary delivery of drugs, and summarizes the manufacturing processes and their limitations, the in vitro and in vivo performance of these systems, the safety of these lipid-based systems in the lung, and their promise for commercialization.
Collapse
Affiliation(s)
- David Cipolla
- Aradigm Corporation, 3929 Point Eden Way, Hayward, CA 94545, USA.
| | - Boris Shekunov
- Shire Corporation, 725 Chesterbrook Blvd, Wayne, PA 19087, USA
| | - Jim Blanchard
- Aradigm Corporation, 3929 Point Eden Way, Hayward, CA 94545, USA
| | - Anthony Hickey
- RTI International, 3040 Cornwallis Road, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
46
|
Abstract
Tumor immunology and immunotherapy is one of the most exciting and rapidly expanding fields. The immune system is divided into 2 primary components: the innate immune response and the highly specific, but more slowly developing, adaptive or acquired immune response. Immune responses are separated by whether they are induced by exposure to a foreign antigen (active response) or transferred through serum or lymphocytes from an immunized individual (passive response). The ideal cancer immunotherapy agent should discriminate between cancer and normal cells (specificity), be potent enough to kill small or large numbers of tumor cells (sensitivity), and prevent recurrence of a tumor (durability).
Collapse
Affiliation(s)
- Philip J Bergman
- Clinical Studies, VCA, 546 Bedford Road, Bedford Hills, New York, NY 10507, USA; Department of Molecular Pharmacology & Chemistry, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
47
|
Guma SR, Lee DA, Gordon N, Hughes D, Stewart J, Lien Wang W, Kleinerman ES, Kleinerman ES. Natural killer cell therapy and aerosol interleukin-2 for the treatment of osteosarcoma lung metastasis. Pediatr Blood Cancer 2014; 61:618-26. [PMID: 24136885 PMCID: PMC4154381 DOI: 10.1002/pbc.24801] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 09/12/2013] [Indexed: 12/21/2022]
Abstract
BACKGROUND Survival of patients with osteosarcoma lung metastases has not improved in 20 years. We evaluated the efficacy of combining natural killer (NK) cells with aerosol interleukin-2 (IL-2) to achieve organ-specific NK cell migration and expansion in the metastatic organ, and to decrease toxicity associated with systemic IL-2. PROCEDURE Five human osteosarcoma cell lines and 103 patient samples (47 primary and 56 metastatic) were analyzed for NKG2D ligand (NKG2DL) expression. Therapeutic efficacy of aerosol IL-2 + NK cells was evaluated in vivo compared with aerosol IL-2 alone and NK cells without aerosol IL-2. RESULTS Osteosarcoma cell lines and patient samples expressed various levels of NKG2DL. NK-mediated killing was NKG2DL-dependent and correlated with expression levels. Aerosol IL-2 increased NK cell numbers in the lung and within metastatic nodules but not in other organs. Therapeutic efficacy, as judged by tumor number, size, and quantification of apoptosis, was also increased compared with NK cells or aerosol IL-2 alone. There were no IL-2-associated systemic toxicities. CONCLUSION Aerosol IL-2 augmented the efficacy of NK cell therapy against osteosarcoma lung metastasis, without inducing systemic toxicity. Our data suggest that lung-targeted IL-2 delivery circumvents toxicities induced by systemic administration. Combining aerosol IL-2 with NK cell infusions, may be a potential new therapeutic approach for patients with osteosarcoma lung metastasis.
Collapse
Affiliation(s)
- Sergei R. Guma
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Dean A. Lee
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Nancy Gordon
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Dennis Hughes
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - John Stewart
- Division of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Wei Lien Wang
- Division of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Eugenie S. Kleinerman
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | |
Collapse
|
48
|
Kumar A, Chen F, Mozhi A, Zhang X, Zhao Y, Xue X, Hao Y, Zhang X, Wang PC, Liang XJ. Innovative pharmaceutical development based on unique properties of nanoscale delivery formulation. NANOSCALE 2013; 5:8307-8325. [PMID: 23860639 PMCID: PMC3934102 DOI: 10.1039/c3nr01525d] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The advent of nanotechnology has reignited interest in the field of pharmaceutical science for the development of nanomedicine. Nanomedicinal formulations are nanometer-sized carrier materials designed for increasing the drug tissue bioavailability, thereby improving the treatment of systemically applied chemotherapeutic drugs. Nanomedicine is a new approach to deliver the pharmaceuticals through different routes of administration with safer and more effective therapies compared to conventional methods. To date, various kinds of nanomaterials have been developed over the years to make delivery systems more effective for the treatment of various diseases. Even though nanomaterials have significant advantages due to their unique nanoscale properties, there are still significant challenges in the improvement and development of nanoformulations with composites and other materials. Here in this review, we highlight the nanomedicinal formulations aiming to improve the balance between the efficacy and the toxicity of therapeutic interventions through different routes of administration and how to design nanomedicine for safer and more effective ways to improve the treatment quality. We also emphasize the environmental and health prospects of nanomaterials for human health care.
Collapse
Affiliation(s)
- Anil Kumar
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Chinese Academy of Sciences, No. 11, First North Road, Beijing100190, P. R. China
- University of Chinese Academy of Science, Beijing, P. R. China
| | - Fei Chen
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Chinese Academy of Sciences, No. 11, First North Road, Beijing100190, P. R. China
- University of Chinese Academy of Science, Beijing, P. R. China
| | - Anbu Mozhi
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Chinese Academy of Sciences, No. 11, First North Road, Beijing100190, P. R. China
- University of Chinese Academy of Science, Beijing, P. R. China
| | - Xu Zhang
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Chinese Academy of Sciences, No. 11, First North Road, Beijing100190, P. R. China
| | - Yuanyuan Zhao
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Chinese Academy of Sciences, No. 11, First North Road, Beijing100190, P. R. China
| | - Xiangdong Xue
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Chinese Academy of Sciences, No. 11, First North Road, Beijing100190, P. R. China
- University of Chinese Academy of Science, Beijing, P. R. China
| | - Yanli Hao
- Department of Pharmacology and Pharmaceutical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Xiaoning Zhang
- Department of Pharmacology and Pharmaceutical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Paul C. Wang
- Laboratory of Molecular Imaging, Department of Radiology, Howard University, Washington DC 20060, USA
| | - Xing-Jie Liang
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Chinese Academy of Sciences, No. 11, First North Road, Beijing100190, P. R. China
| |
Collapse
|
49
|
Haagsman AN, Witkamp ACS, Sjollema BE, Kik MJL, Kirpensteijn J. The effect of interleukin-2 on canine peripheral nerve sheath tumours after marginal surgical excision: a double-blind randomized study. BMC Vet Res 2013; 9:155. [PMID: 23927575 PMCID: PMC3751239 DOI: 10.1186/1746-6148-9-155] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 07/31/2013] [Indexed: 11/10/2022] Open
Abstract
Background The objective of this study was to evaluate the effect on outcomes of intraoperative recombinant human interleukin-2 injection after surgical resection of peripheral nerve sheath tumours. In this double-blind trial, 40 patients due to undergo surgical excision (<5 mm margins) of presumed peripheral nerve sheath tumours were randomized to receive intraoperative injection of interleukin-2 or placebo into the wound bed. Results There were no significant differences in any variable investigated or in median survival between the two groups. The median recurrence free interval was 874 days (range 48–2141 days), The recurrence-free interval and overall survival time were significantly longer in dogs that undergone the primary surgery by a specialist-certified surgeon compared to a referring veterinarian regardless of whether additional adjunct therapy was given. Conclusion Overall, marginal excision of peripheral nerve sheath tumours in dogs resulted in a long survival time, but adjuvant treatment with recombinant human interleukin-2 (rhIL-2) did not provide a survival advantage.
Collapse
|
50
|
Sfondrini L, Sommariva M, Tortoreto M, Meini A, Piconese S, Calvaruso M, Van Rooijen N, Bonecchi R, Zaffaroni N, Colombo MP, Tagliabue E, Balsari A. Anti-tumor activity of CpG-ODN aerosol in mouse lung metastases. Int J Cancer 2013; 133:383-93. [PMID: 23319306 DOI: 10.1002/ijc.28028] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Accepted: 12/20/2012] [Indexed: 01/16/2023]
Abstract
Studies in preclinical models have demonstrated the superior anti-tumor effect of CpG oligodeoxynucleotides (CpG-ODN) when administered at the tumor site rather than systemically. We evaluated the effect of aerosolized CpG-ODN on lung metastases in mice injected with immunogenic N202.1A mammary carcinoma cells or weakly immunogenic B16 melanoma cells. Upon reaching the bronchoalveolar space, aerosolized CpG-ODN activated a local immune response, as indicated by production of IL-12p40, IFN-γ and IL-1β and by recruitment and maturation of DC cells in bronchoalveolar lavage fluid of mice. Treatment with aerosolized CpG-ODN induced an expansion of CD4+ cells in lung and was more efficacious than systemic i.p. administration against experimental lung metastases of immunogenic N202.1A mammary carcinoma cells, whereas only i.p. delivery of CpG-ODN provided anti-tumor activity, which correlated with NK cell expansion in the lung, against lung metastases of the poorly immunogenic B16 melanoma. The inefficacy of aerosol therapy to induce NK expansion was related to the presence of immunosuppressive macrophages in B16 tumor-bearing lungs, as mice depleted of these cells by clodronate treatment responded to aerosol CpG-ODN through expansion of the NK cell population and significantly reduced numbers of lung metastases. Our results indicate that tumor immunogenicity and the tumor-induced immunosuppressive environment are critical factors to the success of CpG therapy in the lung, and point to the value of routine sampling of the lung immune environment in defining an optimal immunotherapeutic strategy.
Collapse
Affiliation(s)
- Lucia Sfondrini
- Dipartimento di Scienze Biomediche per Salute, Università degli Studi di Milano, Milan, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|