1
|
Shah R, Amador C, Chun ST, Ghiam S, Saghizadeh M, Kramerov AA, Ljubimov AV. Non-canonical Wnt signaling in the eye. Prog Retin Eye Res 2023; 95:101149. [PMID: 36443219 PMCID: PMC10209355 DOI: 10.1016/j.preteyeres.2022.101149] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 11/12/2022] [Accepted: 11/17/2022] [Indexed: 11/27/2022]
Abstract
Wnt signaling comprises a group of complex signal transduction pathways that play critical roles in cell proliferation, differentiation, and apoptosis during development, as well as in stem cell maintenance and adult tissue homeostasis. Wnt pathways are classified into two major groups, canonical (β-catenin-dependent) or non-canonical (β-catenin-independent). Most previous studies in the eye have focused on canonical Wnt signaling, and the role of non-canonical signaling remains poorly understood. Additionally, the crosstalk between canonical and non-canonical Wnt signaling in the eye has hardly been explored. In this review, we present an overview of available data on ocular non-canonical Wnt signaling, including developmental and functional aspects in different eye compartments. We also discuss important changes of this signaling in various ocular conditions, such as keratoconus, aniridia-related keratopathy, diabetes, age-related macular degeneration, optic nerve damage, pathological angiogenesis, and abnormalities in the trabecular meshwork and conjunctival cells, and limbal stem cell deficiency.
Collapse
Affiliation(s)
- Ruchi Shah
- Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Regenerative Medicine Institute Eye Program, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Cynthia Amador
- Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Regenerative Medicine Institute Eye Program, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Steven T Chun
- Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Regenerative Medicine Institute Eye Program, Cedars-Sinai Medical Center, Los Angeles, CA, USA; University of California Los Angeles, Los Angeles, CA, USA
| | - Sean Ghiam
- Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Regenerative Medicine Institute Eye Program, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Sackler School of Medicine, New York State/American Program of Tel Aviv University, Tel Aviv, Israel
| | - Mehrnoosh Saghizadeh
- Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Regenerative Medicine Institute Eye Program, Cedars-Sinai Medical Center, Los Angeles, CA, USA; David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Andrei A Kramerov
- Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Regenerative Medicine Institute Eye Program, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Alexander V Ljubimov
- Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Regenerative Medicine Institute Eye Program, Cedars-Sinai Medical Center, Los Angeles, CA, USA; David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA; Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
2
|
Steinfeld J, Steinfeld I, Bausch A, Coronato N, Hampel ML, Depner H, Layer PG, Vogel-Höpker A. BMP-induced reprogramming of the neural retina into retinal pigment epithelium requires Wnt signalling. Biol Open 2017; 6:979-992. [PMID: 28546339 PMCID: PMC5550904 DOI: 10.1242/bio.018739] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 05/21/2017] [Indexed: 12/13/2022] Open
Abstract
In vertebrates, the retinal pigment epithelium (RPE) and photoreceptors of the neural retina (NR) comprise a functional unit required for vision. During vertebrate eye development, a conversion of the RPE into NR can be induced by growth factors in vivo at optic cup stages, but the reverse process, the conversion of NR tissue into RPE, has not been reported. Here, we show that bone morphogenetic protein (BMP) signalling can reprogram the NR into RPE at optic cup stages in chick. Shortly after BMP application, expression of Microphthalmia-associated transcription factor (Mitf) is induced in the NR and selective cell death on the basal side of the NR induces an RPE-like morphology. The newly induced RPE differentiates and expresses Melanosomalmatrix protein 115 (Mmp115) and RPE65. BMP-induced Wnt2b expression is observed in regions of the NR that become pigmented. Loss of function studies show that conversion of the NR into RPE requires both BMP and Wnt signalling. Simultaneous to the appearance of ectopic RPE tissue, BMP application reprogrammed the proximal RPE into multi-layered retinal tissue. The newly induced NR expresses visual segment homeobox-containing gene (Vsx2), and the ganglion and photoreceptor cell markers Brn3α and Visinin are detected. Our results show that high BMP concentrations are required to induce the conversion of NR into RPE, while low BMP concentrations can still induce transdifferentiation of the RPE into NR. This knowledge may contribute to the development of efficient standardized protocols for RPE and NR generation for cell replacement therapies.
Collapse
Affiliation(s)
- Jörg Steinfeld
- Fachbereich Biologie, Abteilung Stammzell- und Entwicklungsbiologie, Schnittspahnstraße 13, Darmstadt 64287, Germany
| | - Ichie Steinfeld
- Fachbereich Biologie, Abteilung Stammzell- und Entwicklungsbiologie, Schnittspahnstraße 13, Darmstadt 64287, Germany
| | - Alexander Bausch
- Fachbereich Biologie, Abteilung Stammzell- und Entwicklungsbiologie, Schnittspahnstraße 13, Darmstadt 64287, Germany
| | - Nicola Coronato
- Fachbereich Biologie, Abteilung Stammzell- und Entwicklungsbiologie, Schnittspahnstraße 13, Darmstadt 64287, Germany
| | - Meggi-Lee Hampel
- Fachbereich Biologie, Abteilung Stammzell- und Entwicklungsbiologie, Schnittspahnstraße 13, Darmstadt 64287, Germany
| | - Heike Depner
- Fachbereich Biologie, Abteilung Stammzell- und Entwicklungsbiologie, Schnittspahnstraße 13, Darmstadt 64287, Germany
| | - Paul G Layer
- Fachbereich Biologie, Abteilung Stammzell- und Entwicklungsbiologie, Schnittspahnstraße 13, Darmstadt 64287, Germany
| | - Astrid Vogel-Höpker
- Fachbereich Biologie, Abteilung Stammzell- und Entwicklungsbiologie, Schnittspahnstraße 13, Darmstadt 64287, Germany
| |
Collapse
|
3
|
Eckei G, Böing M, Brand-Saberi B, Morosan-Puopolo G. Expression Pattern of Axin2 During Chicken Development. PLoS One 2016; 11:e0163610. [PMID: 27680024 PMCID: PMC5040342 DOI: 10.1371/journal.pone.0163610] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Accepted: 09/12/2016] [Indexed: 11/18/2022] Open
Abstract
Canonical Wnt-signalling is well understood and has been extensively described in many developmental processes. The regulation of this signalling pathway is of outstanding relevance for proper development of the vertebrate and invertebrate embryo. Axin2 provides a negative-feedback-loop in the canonical Wnt-pathway, being a target gene and a negative regulator. Here we provide a detailed analysis of the expression pattern in the development of the chicken embryo. By performing in-situ hybridization on chicken embryos from stage HH 04+ to HH 32 we detected a temporally and spatially restricted dynamic expression of Axin2. In particular, data about the expression of Axin2 mRNA in early embryogenesis, somites, neural tube, limbs, kidney and eyes was obtained.
Collapse
Affiliation(s)
- Gesa Eckei
- Department of Anatomy and Molecular Embryology, Ruhr-University of Bochum, Bochum, Germany
| | - Marion Böing
- Department of Anatomy and Molecular Embryology, Ruhr-University of Bochum, Bochum, Germany
| | - Beate Brand-Saberi
- Department of Anatomy and Molecular Embryology, Ruhr-University of Bochum, Bochum, Germany
| | - Gabriela Morosan-Puopolo
- Department of Anatomy and Molecular Embryology, Ruhr-University of Bochum, Bochum, Germany
- * E-mail:
| |
Collapse
|
4
|
Zhang Y, Chen Y, Ni W, Guo L, Lu X, Liu L, Li W, Sun S, Wang L, Li H. Dynamic expression of Lgr6 in the developing and mature mouse cochlea. Front Cell Neurosci 2015; 9:165. [PMID: 26029045 PMCID: PMC4428082 DOI: 10.3389/fncel.2015.00165] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 04/14/2015] [Indexed: 11/13/2022] Open
Abstract
The Wnt/β-catenin signaling pathway plays important roles in mammalian inner ear development. Lgr5, one of the downstream target genes of the Wnt/β-catenin signaling pathway, has been reported to be a marker for inner ear hair cell progenitors. Lgr6 shares approximately 50% sequence homology with Lgr5 and has been identified as a stem cell marker in several organs. However, the detailed expression profiles of Lgr6 have not yet been investigated in the mouse inner ear. Here, we first used Lgr6-EGFP-Ires-CreERT2 mice to examine the spatiotemporal expression of Lgr6 protein in the cochlear duct during embryonic and postnatal development. Lgr6-EGFP was first observed in one row of prosensory cells in the middle and basal turn at embryonic day 15.5 (E15.5). From E18.5 to postnatal day 3 (P3), the expression of Lgr6-EGFP was restricted to the inner pillar cells (IPCs). From P7 to P15, the Lgr6-EGFP expression level gradually decreased in the IPCs and gradually increased in the inner border cells (IBCs). At P20, Lgr6-EGFP was only expressed in the IBCs, and by P30 Lgr6-EGFP expression had completely disappeared. Next, we demonstrated that Wnt/β-catenin signaling is required to maintain the Lgr6-EGFP expression in vitro. Finally, we demonstrated that the Lgr6-EGFP-positive cells isolated by flow cytometry could differentiate into myosin 7a-positive hair cells after 10 days in-culture, and this suggests that the Lgr6-positive cells might serve as the hair cell progenitor cells in the cochlea.
Collapse
Affiliation(s)
- Yanping Zhang
- Research Center, Affiliated Eye and ENT Hospital of Fudan University Shanghai, China ; Key Laboratory of Hearing Medicine, Ministry of Health, Affiliated Eye and ENT Hospital of Fudan University Shanghai, China ; Institutes of Biomedical Sciences, Fudan University Shanghai, China
| | - Yan Chen
- Research Center, Affiliated Eye and ENT Hospital of Fudan University Shanghai, China ; Key Laboratory of Hearing Medicine, Ministry of Health, Affiliated Eye and ENT Hospital of Fudan University Shanghai, China
| | - Wenli Ni
- Department of Otorhinolaryngology, Affiliated Eye and ENT Hospital of Fudan University Shanghai, China
| | - Luo Guo
- Research Center, Affiliated Eye and ENT Hospital of Fudan University Shanghai, China ; Key Laboratory of Hearing Medicine, Ministry of Health, Affiliated Eye and ENT Hospital of Fudan University Shanghai, China
| | - Xiaoling Lu
- Department of Otorhinolaryngology, Affiliated Eye and ENT Hospital of Fudan University Shanghai, China
| | - Liman Liu
- Key Laboratory of Hearing Medicine, Ministry of Health, Affiliated Eye and ENT Hospital of Fudan University Shanghai, China
| | - Wen Li
- Research Center, Affiliated Eye and ENT Hospital of Fudan University Shanghai, China ; Key Laboratory of Hearing Medicine, Ministry of Health, Affiliated Eye and ENT Hospital of Fudan University Shanghai, China
| | - Shan Sun
- Research Center, Affiliated Eye and ENT Hospital of Fudan University Shanghai, China ; Key Laboratory of Hearing Medicine, Ministry of Health, Affiliated Eye and ENT Hospital of Fudan University Shanghai, China
| | - Lei Wang
- Institutes of Biomedical Sciences, Fudan University Shanghai, China
| | - Huawei Li
- Key Laboratory of Hearing Medicine, Ministry of Health, Affiliated Eye and ENT Hospital of Fudan University Shanghai, China ; Department of Otorhinolaryngology, Affiliated Eye and ENT Hospital of Fudan University Shanghai, China ; The State Key Laboratory of Medical Neurobiology, The Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University Shanghai, China
| |
Collapse
|
5
|
Lieven O, Dronka J, Burmühl S, Rüther U. Differential binding of Lef1 and Msx1/2 transcription factors to Dkk1 CNEs correlates with reporter gene expression in vivo. PLoS One 2014; 9:e115442. [PMID: 25545010 PMCID: PMC4278905 DOI: 10.1371/journal.pone.0115442] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 11/24/2014] [Indexed: 11/24/2022] Open
Abstract
Besides the active Wnt signalling itself, the extracellular inhibition by Dkk1 is important for various embryonic developmental processes, such as optic vesicle differentiation and facial outgrowth. Although a feedback crosstalk of the active Wnt/β-catenin signaling and Dkk1 regulation has been suggested, the control of Dkk1 transcription by the Tcf/Lef1 mediated Wnt signalling and its connection to additional signalling factors has not been elucidated in vivo. Here, we used a combination of transgenic mouse approaches and biochemical analyses to unravel the direct Dkk1 transcriptional regulation via Tcf/Lefs. By using site directed mutagenesis, we tested several conserved Tcf/Lef1 binding sites within Dkk1 conserved non-coding elements (CNEs) and found that these are required for tissue specific reporter expression. In addition a conserved Msx1/2 binding site is required for retinal reporter expression and Msx2 but not Msx1 binds its conserved binding site within CNE195 in the optic cups. Within craniofacial expression domains, Lef1 interferes with Dkk1 directly via two conserved Tcf/Lef1 binding sites in the craniofacial enhancer CNE114, both of which are required for the general craniofacial Dkk1 reporter activation. Furthermore, these Tcf/Lef1 sites are commonly bound in the whisker hair bud mesenchyme but specifically Tcf/Lef1 (no. 2) is required for mandibular activation and repression of maxillar Dkk1 activation. Lastly, we tested the Tcf/Lef1 binding capacities of the Dkk1 promoter and found that although Lef1 binds the Dkk1 promoter, these sites are not sufficient for tissue specific Dkk1 activation. Together, we here present the importance of conserved Tcf/Lef1 and Msx1/2 sites that are required for differential Dkk1 transcriptional reporter activation in vivo. This requirement directly correlates with Lef1 and Msx1/2 interaction with these genomic loci.
Collapse
Affiliation(s)
- Oliver Lieven
- The Danish Stem Cell Center, University of Copenhagen, Blegdamsvej 3B, Building 6, 4th floor, DK-2200, Copenhagen N, Denmark
- * E-mail:
| | - Julia Dronka
- Institute for Animal Developmental and Molecular Biology, Heinrich-Heine-University, Universitätsstr. 1, Building 26.13.00, D-40225, Düsseldorf, Germany
| | - Stephan Burmühl
- Institute for Animal Developmental and Molecular Biology, Heinrich-Heine-University, Universitätsstr. 1, Building 26.13.00, D-40225, Düsseldorf, Germany
| | - Ulrich Rüther
- Institute for Animal Developmental and Molecular Biology, Heinrich-Heine-University, Universitätsstr. 1, Building 26.13.00, D-40225, Düsseldorf, Germany
| |
Collapse
|
6
|
β-Catenin inactivation is a pre-requisite for chick retina regeneration. PLoS One 2014; 9:e101748. [PMID: 25003522 PMCID: PMC4086939 DOI: 10.1371/journal.pone.0101748] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 06/11/2014] [Indexed: 11/19/2022] Open
Abstract
In the present study we explored the role of β-catenin in mediating chick retina regeneration. The chick can regenerate its retina by activating stem/progenitor cells present in the ciliary margin (CM) of the eye or via transdifferentiation of the retinal pigmented epithelium (RPE). Both modes require fibroblast growth factor 2 (FGF2). We observed, by immunohistochemistry, dynamic changes of nuclear β-catenin in the CM and RPE after injury (retinectomy). β-catenin nuclear accumulation was transiently lost in cells of the CM in response to injury alone, while the loss of nuclear β-catenin was maintained as long as FGF2 was present. However, nuclear β-catenin positive cells remained in the RPE in response to injury and were BrdU-/p27+, suggesting that nuclear β-catenin prevents those cells from entering the cell cycle. If FGF2 is present, the RPE undergoes dedifferentiation and proliferation concomitant with loss of nuclear β-catenin. Moreover, retinectomy followed by disruption of active β-catenin by using a signaling inhibitor (XAV939) or over-expressing a dominant negative form of Lef-1 induces regeneration from both the CM and RPE in the absence of FGF2. Our results imply that β-catenin protects cells of the CM and RPE from entering the cell cycle in the developing eye, and specifically for the RPE during injury. Thus inactivation of β-catenin is a pre-requisite for chick retina regeneration.
Collapse
|
7
|
Fotaki V, Smith R, Pratt T, Price DJ. Foxg1 is required to limit the formation of ciliary margin tissue and Wnt/β-catenin signalling in the developing nasal retina of the mouse. Dev Biol 2013; 380:299-313. [PMID: 23624311 PMCID: PMC3722486 DOI: 10.1016/j.ydbio.2013.04.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Revised: 04/15/2013] [Accepted: 04/16/2013] [Indexed: 12/23/2022]
Abstract
The ciliary margin (CM) develops in the peripheral retina and gives rise to the iris and the ciliary body. The Wnt/β-catenin signalling pathway has been implicated in ciliary margin development. Here, we tested the hypothesis that in the developing mouse retina Foxg1 is responsible for suppressing the Wnt/β-catenin pathway and restricting CM development. We showed that there is excess CM tissue in Foxg1−/− null embryos and this expansion is more pronounced in the nasal retina where Foxg1 normally shows its highest expression levels. Results on expression of a reporter allele for Wnt/β-catenin signalling and of Lef1, a target of Wnt/β-catenin signalling, displayed significant upregulation of this pathway in Foxg1−/− nulls at embryonic days 12.5 and 14.5. Interestingly, this upregulation was observed specifically in the nasal retina, where normally very few Wnt-responsive cells are observed. These results indicate a suppressive role of Foxg1 on this signalling pathway. Our results reveal a new role of Foxg1 in limiting CM development in the nasal peripheral retina and add a new molecular player in the developmental network involved in CM specification. Foxg1 is expressed in a nasal-high to temporal-low gradient in developing retina. Ciliary margin expansion is observed nasally in the Foxg1−/− mutant retina. Wnt/β-catenin signalling is upregulated in the Foxg1−/− peripheral retina nasally. A new role of Foxg1 in controlling ciliary margin development is proposed.
Collapse
Affiliation(s)
- Vassiliki Fotaki
- University of Edinburgh, Centre for Integrative Physiology, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK.
| | | | | | | |
Collapse
|
8
|
Lovicu FJ, McAvoy JW, de Iongh RU. Understanding the role of growth factors in embryonic development: insights from the lens. Philos Trans R Soc Lond B Biol Sci 2011; 366:1204-18. [PMID: 21402581 PMCID: PMC3061110 DOI: 10.1098/rstb.2010.0339] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Growth factors play key roles in influencing cell fate and behaviour during development. The epithelial cells and fibre cells that arise from the lens vesicle during lens morphogenesis are bathed by aqueous and vitreous, respectively. Vitreous has been shown to generate a high level of fibroblast growth factor (FGF) signalling that is required for secondary lens fibre differentiation. However, studies also show that FGF signalling is not sufficient and roles have been identified for transforming growth factor-β and Wnt/Frizzled families in regulating aspects of fibre differentiation. In the case of the epithelium, key roles for Wnt/β-catenin and Notch signalling have been demonstrated in embryonic development, but it is not known if other factors are required for its formation and maintenance. This review provides an overview of current knowledge about growth factor regulation of differentiation and maintenance of lens cells. It also highlights areas that warrant future study.
Collapse
Affiliation(s)
- F. J. Lovicu
- Discipline of Anatomy and Histology, Bosch Institute, University of Sydney, NSW 2006, Australia
- Save Sight Institute, University of Sydney, Sydney, NSW 2001, Australia
- Vision Cooperative Research Centre, Sydney, Australia
| | - J. W. McAvoy
- Save Sight Institute, University of Sydney, Sydney, NSW 2001, Australia
- Vision Cooperative Research Centre, Sydney, Australia
| | - R. U. de Iongh
- Anatomy and Cell Biology, University of Melbourne, Victoria 3010, Australia
| |
Collapse
|
9
|
Lieven O, Rüther U. The Dkk1 dose is critical for eye development. Dev Biol 2011; 355:124-37. [PMID: 21539829 DOI: 10.1016/j.ydbio.2011.04.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2010] [Revised: 03/25/2011] [Accepted: 04/18/2011] [Indexed: 10/18/2022]
Abstract
During mammalian ocular development, several signaling pathways control the spatiotemporal highly defined realization of the three-dimensional eye architecture. Given the complexity of these inductive signals, the developing eye is a sensitive organ for several diseases. In this study, we investigated a Dkk1+/- haploinsufficiency during eye development, resulting in coloboma and anterior eye defects, two common developmental eye disorders. Dkk1 impacts eye development from a defined developmental time point on, and is critical for lens separation from the surface ectoderm via β-catenin mediated Pdgfrα and E-cadherin expression. Dkk1 does not impact the dorso ventral retina patterning in general but is critical for Shh dependent Pax2 extension into the midline region. The described results also indicate that the retinal Dkk1 dose is critical for important steps during eye development, such as optic fissure closure and cornea formation. Further analysis of the relationship between Dkk1 and Shh signaling revealed that Dkk1 and Shh coordinatively control anterior head formation and eye induction. During eye development itself, retinal Dkk1 activation is depending on cilia mediated Gli3 regulation. Therefore, our data essentially improve the knowledge of coloboma and anterior eye defects, which are common human eye developmental defects.
Collapse
Affiliation(s)
- Oliver Lieven
- Institute for Animal Developmental, Molecular Biology, Heinrich-Heine-University, Düsseldorf, Germany.
| | | |
Collapse
|
10
|
Chai R, Xia A, Wang T, Jan TA, Hayashi T, Bermingham-McDonogh O, Cheng AGL. Dynamic expression of Lgr5, a Wnt target gene, in the developing and mature mouse cochlea. J Assoc Res Otolaryngol 2011; 12:455-69. [PMID: 21472479 DOI: 10.1007/s10162-011-0267-2] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Accepted: 03/17/2011] [Indexed: 12/11/2022] Open
Abstract
The Wnt signaling pathway is a recurring theme in tissue development and homeostasis. Its specific roles during inner ear development are just emerging, but few studies have characterized Wnt target genes. Lgr5, a member of the G protein-coupled receptor family, is a Wnt target in the gastrointestinal and integumentary systems. Although its function is unknown, its deficiency leads to perinatal lethality due to gastrointestinal distension. In this study, we used a knock-in reporter mouse to examine the spatiotemporal expression of Lgr5 in the cochlear duct during embryonic and postnatal periods. In the embryonic day 15.5 (E15.5) cochlear duct, Lgr5-EGFP is expressed in the floor epithelium and overlapped with the prosensory markers Sox2, Jagged1, and p27(Kip1). Nascent hair cells and supporting cells in the apical turn of the E18.5 cochlear duct express Lgr5-EGFP, which becomes downregulated in hair cells and subsets of supporting cells in more mature stages. In situ hybridization experiments validated the reporter expression, which gradually decreases until the second postnatal week. Only the third row of Deiters' cells expresses Lgr5-EGFP in the mature organ of Corti. Normal cochlear development was observed in Lgr5(EGFP/EGFP) and Lgr5(EGFP/+) mice, which exhibited normal auditory thresholds. The expression pattern of Lgr5 contrasts with another Wnt target gene, Axin2, a feedback inhibitor of the Wnt pathway. Robust Axin2 expression was found in cells surrounding the embryonic cochlear duct and becomes restricted to tympanic border cells below the basilar membrane in the postnatal cochlea. Both Lgr5 and Axin2 act as Wnt targets in the cochlea because purified Wnt3a promoted and Wnt antagonist suppressed their expression. Their differential expression among cell populations highlights the dynamic but complex distribution of Wnt-activated cells in and around the embryonic and postnatal cochlea.
Collapse
Affiliation(s)
- Renjie Chai
- Department of Otolaryngology-Head and Neck Surgery, Stanford University, CA 94305, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Martinez G, de Iongh R. The lens epithelium in ocular health and disease. Int J Biochem Cell Biol 2010; 42:1945-63. [PMID: 20883819 DOI: 10.1016/j.biocel.2010.09.012] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Revised: 09/19/2010] [Accepted: 09/20/2010] [Indexed: 01/11/2023]
|
12
|
Lad EM, Cheshier SH, Kalani MYS. Wnt-signaling in retinal development and disease. Stem Cells Dev 2010; 18:7-16. [PMID: 18690791 DOI: 10.1089/scd.2008.0169] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The Wnt-signaling pathway is a known regulator of stem cell maintenance, cellular proliferation and differentiation, and cancer development in various tissues. Wnt proteins play a central role during various stages of retinal development; retinal field establishment, retinal and hyaloid vasculogenesis, cornea and lens development, eye field formation, and maintenance of retinal stem cell and neuronal specification in many species are Wnt-regulated processes. Uncontrolled Wnt signaling may cause retinal diseases such as familial exudative vitroretinopathy, retinitis pigmentosa, and Norrie's disease, further underscoring the importance of the Wnt-signaling pathway in the retina. This review summarizes major developments and discoveries regarding the role of the Wnt-signaling pathway as it pertains to retinal development and disease.
Collapse
Affiliation(s)
- Eleonora M Lad
- Department of Ophthalmology, Stanford University School of Medicine, Stanford, California 94305, USA
| | | | | |
Collapse
|
13
|
Sánchez-Sánchez AV, Camp E, Leal-Tassias A, Mullor JL. Wnt signaling has different temporal roles during retinal development. Dev Dyn 2010; 239:297-310. [PMID: 20014102 DOI: 10.1002/dvdy.22168] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Differentiation of neural retinal precursor (NRP) cells in vertebrates follows an established order of cell-fate determination associated with exit from the cell cycle. Wnt signaling regulates cell cycle in colon carcinoma cells and has been implicated in different aspects of retinal development in various species. To better understand the biological roles of Wnt in the developing retina, we have used a transgenic and pharmacological approach to manipulate the Wnt signaling pathway during retinal development in medaka embryos. With the use of both approaches, we observed that during the early phase of retinal development Wnt signaling regulated cell cycle progression, proliferation, apoptosis, and differentiation of NRP cells. However, during later phases of retinal development, proliferation and apoptosis were not affected by manipulation of Wnt signaling. Instead, Wnt regulated Vsx1 expression, but not the expression of other retinal cell markers tested. Thus, the response of NRP cells to Wnt signaling is stage-dependent.
Collapse
Affiliation(s)
- Ana V Sánchez-Sánchez
- Department of Regenerative Medicine, Centro de Investigación Príncipe Felipe, Valencia 46012, Spain
| | | | | | | |
Collapse
|
14
|
Trimarchi JM, Cho SH, Cepko CL. Identification of genes expressed preferentially in the developing peripheral margin of the optic cup. Dev Dyn 2009; 238:2327-9. [PMID: 19449303 PMCID: PMC2916742 DOI: 10.1002/dvdy.21973] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Specification of the peripheral optic cup by Wnt signaling is critical for formation of the ciliary body/iris. Identification of marker genes for this region during development provides a starting point for functional analyses. During transcriptional profiling of single cells from the developing eye, two cells were identified that expressed genes not found in most other single cell profiles. In situ hybridizations demonstrated that many of these genes were expressed in the peripheral optic cup in both early mouse and chicken development, and in the ciliary body/iris at subsequent developmental stages. These analyses indicate that the two cells probably originated from the developing ciliary body/iris. Changes in expression of these genes were assayed in embryonic chicken retinas when canonical Wnt signaling was ectopically activated by CA-beta-catenin. Twelve ciliary body/iris genes were identified as upregulated following induction, suggesting they are excellent candidates for downstream effectors of Wnt signaling in the optic cup.
Collapse
Affiliation(s)
- Jeffrey M Trimarchi
- Department of Genetics and Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
15
|
Quinlan R, Graf M, Mason I, Lumsden A, Kiecker C. Complex and dynamic patterns of Wnt pathway gene expression in the developing chick forebrain. Neural Dev 2009; 4:35. [PMID: 19732418 PMCID: PMC2757023 DOI: 10.1186/1749-8104-4-35] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Accepted: 09/04/2009] [Indexed: 01/07/2023] Open
Abstract
Background Wnt signalling regulates multiple aspects of brain development in vertebrate embryos. A large number of Wnts are expressed in the embryonic forebrain; however, it is poorly understood which specific Wnt performs which function and how they interact. Wnts are able to activate different intracellular pathways, but which of these pathways become activated in different brain subdivisions also remains enigmatic. Results We have compiled the first comprehensive spatiotemporal atlas of Wnt pathway gene expression at critical stages of forebrain regionalisation in the chick embryo and found that most of these genes are expressed in strikingly dynamic and complex patterns. Several expression domains do not respect proposed compartment boundaries in the developing forebrain, suggesting that areal identities are more dynamic than previously thought. Using an in ovo electroporation approach, we show that Wnt4 expression in the thalamus is negatively regulated by Sonic hedgehog (Shh) signalling from the zona limitans intrathalamica (ZLI), a known organising centre of forebrain development. Conclusion The forebrain is exposed to a multitude of Wnts and Wnt inhibitors that are expressed in a highly dynamic and complex fashion, precluding simple correlative conclusions about their respective functions or signalling mechanisms. In various biological systems, Wnts are antagonised by Shh signalling. By demonstrating that Wnt4 expression in the thalamus is repressed by Shh from the ZLI we reveal an additional level of interaction between these two pathways and provide an example for the cross-regulation between patterning centres during forebrain regionalisation.
Collapse
Affiliation(s)
- Robyn Quinlan
- MRC Centre for Developmental Neurobiology, New Hunt's House, Guy's Hospital Campus, King's College, London SE1 1UL, UK.
| | | | | | | | | |
Collapse
|
16
|
Geetha-Loganathan P, Nimmagadda S, Antoni L, Fu K, Whiting CJ, Francis-West P, Richman JM. Expression of WNT signalling pathway genes during chicken craniofacial development. Dev Dyn 2009; 238:1150-65. [PMID: 19334275 DOI: 10.1002/dvdy.21934] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
A comprehensive expression analysis of WNT signalling pathway genes during several stages of chicken facial development was performed. Thirty genes were surveyed including: WNT1, 2B, 3A, 4, 5A, 5B, 6, 7A, 7B, 8B, 8C, 9A, 9B, 11, 11B, 16, CTNNB1, LEF1, FRZB1, DKK1, DKK2, FZD1-8, FZD10. The strictly canonical WNTs (2B, 7A, 9B, and 16) in addition to WNT4 WNT6 (both canonical and non-canonical) are epithelially expressed, whereas WNT5A, 5B, 11 are limited to the mesenchyme. WNT16 is limited to the invaginating nasal pit, respiratory epithelium, and lip fusion zone. Antagonists DKK1 and FRZB1 are expressed in the fusing primary palate but then are decreased at stage 28 when fusion is beginning. This suggests that canonical WNT signalling may be active during lip fusion. Mediators of canonical signalling, CTNNB1, LEF1, and the majority of the FZD genes are expressed ubiquitously. These data show that activation of the canonical WNT pathway is feasible in all regions of the face; however, the localization of ligands and antagonists confers specificity.
Collapse
Affiliation(s)
- Poongodi Geetha-Loganathan
- Department of Oral Health Sciences, Life Sciences Institute, The University of British Columbia, Vancouver BC, Canada
| | | | | | | | | | | | | |
Collapse
|
17
|
Fujimura N, Taketo MM, Mori M, Korinek V, Kozmik Z. Spatial and temporal regulation of Wnt/beta-catenin signaling is essential for development of the retinal pigment epithelium. Dev Biol 2009; 334:31-45. [PMID: 19596317 DOI: 10.1016/j.ydbio.2009.07.002] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2009] [Revised: 06/30/2009] [Accepted: 07/01/2009] [Indexed: 12/23/2022]
Abstract
Wnt/beta-catenin signaling is highly active in the dorsal retinal pigment epithelium (RPE) during eye development. To study the role of Wnt/beta-catenin signaling in the RPE development we used a conditional Cre/loxP system in mice to inactivate or ectopically activate Wnt/beta-catenin signaling in the RPE. Inactivation of Wnt/beta-catenin signaling results in transdifferentiation of RPE to neural retina (NR) as documented by downregulation of RPE-specific markers Mitf and Otx2 and ectopic expression of NR-specific markers Chx10 and Rx, respectively. In contrast, ectopic activation of Wnt/beta-catenin signaling results in the disruption of the RPE patterning, indicating that precise spatial and temporal regulation of Wnt/beta-catenin signaling is required for normal RPE development. Using chromatin immunoprecipitation (ChIP) and reporter gene assays we provide evidence that Otx2 and RPE-specific isoform of Mitf, Mitf-H, are direct transcriptional targets of Wnt/beta-catenin signaling. Combined, our data suggest that Wnt/beta-catenin signaling plays an essential role in development of RPE by maintaining or inducing expression of Mitf and Otx2.
Collapse
Affiliation(s)
- Naoko Fujimura
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Videnska 1083, 142 20 Prague 4, Czech Republic
| | | | | | | | | |
Collapse
|
18
|
Kubo F, Nakagawa S. Hairy1 acts as a node downstream of Wnt signaling to maintain retinal stem cell-like progenitor cells in the chick ciliary marginal zone. Development 2009; 136:1823-33. [DOI: 10.1242/dev.029272] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In the vertebrate retina, stem cell-like progenitor cells are maintained in a distinct region called the ciliary marginal zone (CMZ). Canonical Wnt signaling regulates the maintenance of the progenitor cells in the CMZ. However, its downstream molecular mechanisms have remained largely unclear. Here, we show that chick Hairy1, an established Notch signaling effector,mediates the Wnt-dependent maintenance of CMZ progenitor cells in chicken. Interestingly, unlike other developmental contexts in which Hes gene expression is regulated by Notch signaling, Hairy1 expression in the CMZ is regulated by Wnt signaling. Hairy1 is necessary and sufficient for the expression of a set of molecular markers characteristic of the CMZ, and Wnt2b fails to induce CMZ markers when Hairy1 activity is inhibited. Furthermore,microarray analysis identifies multiple Wnt-responsive transcription factors that activate Hairy1 expression. We thus propose that Hairy1 functions as a node downstream of Wnt signaling to maintain progenitor cells in the chick CMZ.
Collapse
Affiliation(s)
- Fumi Kubo
- RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198,Japan
| | - Shinichi Nakagawa
- RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198,Japan
| |
Collapse
|
19
|
Liu W, Li L, Li G, Garritano F, Shanske A, Frenz DA. Coordinated molecular control of otic capsule differentiation: functional role of Wnt5a signaling and opposition by sfrp3 activity. Growth Factors 2008; 26:343-54. [PMID: 18991062 DOI: 10.1080/08977190802442013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Wnt proteins constitute one of the major families of secreted ligands that function in developmental signaling, however, little is known of the role of Wnt5a during inner ear development. It is hypothesized that Wnt5a acts as a mediator of chondrogenesis in the developing otic capsule, a cartilaginous structure that surrounds the developing inner ear and presages the formation of the endochondral bony labyrinth. We report the pattern of expression of Wnt5a protein and mRNA in the developing mouse inner ear using immunohistochemistry, whole-mount in situ hybridization and RT-PCR, and the ability of exogenous Wnt5a to stimulate otic capsule chondrogenesis when added to high-density cultures of periotic mesenchyme containing otic epithelium (periotic mesenchyme + otic epithelium), a well-established model of otic capsule formation. We show that in the presence of secreted frizzled related protein 3 (sfrp3), a Wnt antagonist expressed in the developing inner ear, or Wnt5a-specific antisense oligonucleotide, which diminishes endogenous Wnt5a, otic capsule chondrogenesis is suppressed in culture. We determined by histological analysis and aggrecan immunoreactivity that chondrogenic differentiation is disturbed in Wnt5a null embryos, and provide evidence that the periotic mesenchyme + otic epithelium harvested from Wnt5a null mice is compromised in its ability to differentiate into cartilage when interacted in culture. We propose a model whereby sfrp3 and Wnt5a act antagonistically to ensure appropriate patterns of chondrogenesis and provide coordinated control of otic capsule formation. Our findings support Wnt5a and sfrp3 as regulators of otic capsule formation in the developing mouse inner ear.
Collapse
Affiliation(s)
- Wei Liu
- Department of Otorhinolaryngology-Head & Neck Surgery, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | | | | | |
Collapse
|
20
|
Sienknecht UJ, Fekete DM. Comprehensive Wnt-related gene expression during cochlear duct development in chicken. J Comp Neurol 2008; 510:378-95. [PMID: 18671253 DOI: 10.1002/cne.21791] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The avian cochlear duct houses both a vestibular and auditory sensory organ (the lagena macula and basilar papilla, respectively), which each have a distinct structure and function. Comparative mRNA in situ hybridization mapping conducted over the time course of chicken cochlear duct development reveals that Wnt-related gene expression is concomitant with various developmental processes such as regionalization, convergent extension of the cochlear duct, cell fate specification, synaptogenesis, and the establishment of planar cell polarity. Wnts mostly originate from nonsensory tissue domains, whereas the sensory primordia preferentially transcribe Frizzled receptors, suggesting that paracrine Wnt signaling predominates in the cochlear duct. Superimposed over this is the strong expression of two secreted Frizzled-related Wnt inhibitors that tend to show complementary expression patterns. Frzb (SFRP3) is confined to the nonsensory cochlear duct and the lagena macula, whereas SFRP2 is maintained in the basilar papilla along with Fzd10 and Wnt7b. Flanking the basilar papilla are Wnt7a, Wnt9a, Wnt11, and SFRP2 on the neural side and Wnt5a, Wnt5b, and Wnt7a on the abneural side. The lateral nonsensory cochlear duct continuously expresses Frzb and temporarily expresses Wnt6 and SFRP1. Characteristic for the entire lagena is the expression of Frzb; in the lagena macula are Fzd1, Fzd7, and Wnt7b, and in the nonsensory tissues are Wnt4 and Wnt5a. Auditory hair cells preferentially express Fzd2 and Fzd9, whereas the main receptors expressed in vestibular hair cells are Fzd1 and Fzd7, in addition to Fzd2 and Fzd9.
Collapse
Affiliation(s)
- Ulrike J Sienknecht
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907, USA
| | | |
Collapse
|
21
|
Cain S, Martinez G, Kokkinos MI, Turner K, Richardson RJ, Abud HE, Huelsken J, Robinson ML, de Iongh RU. Differential requirement for beta-catenin in epithelial and fiber cells during lens development. Dev Biol 2008; 321:420-33. [PMID: 18652817 DOI: 10.1016/j.ydbio.2008.07.002] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2007] [Revised: 06/27/2008] [Accepted: 07/01/2008] [Indexed: 11/18/2022]
Abstract
Recent studies implicate Wnt/beta-catenin signaling in lens differentiation (Stump, R. J., et al., 2003. A role for Wnt/beta-catenin signaling in lens epithelial differentiation. Dev Biol;259:48-61). Beta-catenin is a component of adherens junctions and functions as a transcriptional activator in canonical Wnt signaling. We investigated the effects of Cre/LoxP-mediated deletion of beta-catenin during lens development using two Cre lines that specifically deleted beta-catenin in whole lens or only in differentiated fibers, from E13.5. We found that beta-catenin was required in lens epithelium and during early fiber differentiation but appeared to be redundant in differentiated fiber cells. Complete loss of beta-catenin resulted in an abnormal and deficient epithelial layer with loss of E-cadherin and Pax6 expression as well as abnormal expression of c-Maf and p57(kip2) but not Prox1. There was also disrupted fiber cell differentiation, characterized by poor cell elongation, decreased beta-crystallin expression, epithelial cell cycle arrest at G(1)-S transition and premature cell cycle exit. Despite cell cycle arrest there was no induction of apoptosis. Mutant fiber cells displayed altered apical-basal polarity as evidenced by altered distribution of the tight junction protein, ZO1, disruption of apical actin filaments and abnormal deposition of extracellular matrix, resulting in a deficient lens capsule. Loss of beta-catenin also affected the formation of adhesion junctions as evidenced by dissociation of N-cadherin and F-actin localization in differentiating fiber cells. However, loss of beta-catenin from terminally differentiating fibers had no apparent effects on adhesion junctions between adjacent embryonic fibers. These data indicate that beta-catenin plays distinct functions during lens fiber differentiation and is involved in both Wnt signaling and adhesion-related mechanisms that regulate lens epithelium and early fiber differentiation.
Collapse
Affiliation(s)
- Sarah Cain
- Ocular Development Laboratory, Anatomy and Cell Biology Department, University of Melbourne, Victoria 3010, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
In the vertebrate retina, stem cells with prolonged proliferative capacities reside in the most peripheral region, the ciliary marginal zone (CMZ), and they persist even after the functional eye has formed. These stem cells contribute to the formation of the retinal structures during the postnatal period in vivo, or can expand as neurospheres in vitro. Despite the wealth of anatomical descriptions of the characteristics of CMZ cells, molecular mechanisms for their specification or maintenance have long been uncharacterized. Recent studies provide evidence that certain secreted signaling molecules act as key regulators at multiple steps during these processes. In this review, we discuss the molecular basis for the regulation of retinal stem cells and their related cell types, especially focusing on the role of Wnt signaling.
Collapse
Affiliation(s)
- Fumi Kubo
- RIKEN Frontier Research System, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
| | | |
Collapse
|
23
|
Hayashi T, Mizuno N, Kondoh H. Determinative roles of FGF and Wnt signals in iris-derived lens regeneration in newt eye. Dev Growth Differ 2008; 50:279-87. [DOI: 10.1111/j.1440-169x.2008.01005.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
24
|
Davis-Silberman N, Ashery-Padan R. Iris development in vertebrates; genetic and molecular considerations. Brain Res 2008; 1192:17-28. [PMID: 17466284 DOI: 10.1016/j.brainres.2007.03.043] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2007] [Revised: 03/11/2007] [Accepted: 03/16/2007] [Indexed: 10/23/2022]
Abstract
The iris plays a key role in visual function. It regulates the amount of light entering the eye and falling on the retina and also operates in focal adjustment of closer objects. The iris is involved in circulation of the aqueous humor and hence functions in regulation of intraocular pressure. Intriguingly, iris pigmented cells possess the ability to transdifferentiate into different ocular cell types of retinal pigmented epithelium, photoreceptors and lens cells. Thus, the iris is considered a potential source for cell-replacement therapies. During embryogenesis, the iris arises from both the optic cup and the periocular mesenchyme. Its interesting mode of development includes specification of the peripheral optic cup to a non-neuronal fate, migration of cells from the surrounding periocular mesenchyme and an atypical formation of smooth muscles from the neuroectoderm. This manner of development raises some interesting general topics concerning the early patterning of the neuroectoderm, the specification and differentiation of diverse cell types and the interactions between intrinsic and extrinsic factors in the process of organogenesis. In this review, we discuss iris anatomy and development, describe major pathologies of the iris and their molecular etiology and finally summarize the recent findings on genes and signaling pathways that are involved in iris development.
Collapse
Affiliation(s)
- Noa Davis-Silberman
- Sackler Faculty of Medicine, Department of Human Molecular Genetics and Biochemistry, Tel Aviv University, Ramat Aviv 69978, Tel Aviv, Israel
| | | |
Collapse
|
25
|
Müller F, Rohrer H, Vogel-Höpker A. Bone morphogenetic proteins specify the retinal pigment epithelium in the chick embryo. Development 2007; 134:3483-93. [PMID: 17728349 DOI: 10.1242/dev.02884] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
In vertebrates, the neuroepithelium of the optic vesicle is initially multipotential, co-expressing a number of transcription factors that are involved in retinal pigment epithelium (RPE) and neural retina (NR)development. Subsequently, extrinsic signals emanating from the surrounding tissues induce the separation of the optic vesicle into three domains: the optic stalk/nerve, the NR and the RPE. Here, we show that bone morphogenetic proteins (BMPs) are sufficient and essential for RPE development in vivo. Bmp4 and Bmp7 are expressed in the surface ectoderm overlying the optic vesicle, the surrounding mesenchyme and/or presumptive RPE during the initial stages of eye development. During the initial stages of chick eye development the microphthalmia-associated transcription factor(Mitf), important for RPE development, is expressed in the optic primordium that is covered by the BMP-expressing surface ectoderm. Following BMP application, the optic neuroepithelium, including the presumptive optic stalk/nerve and NR domain, develop into RPE as assessed by the expression of Otx2, Mitf, Wnt2b and the pigmented cell marker MMP115. By contrast, interfering with BMP signalling prevents RPE development in the outer layer of the optic cup and induces NR-specific gene expression (e.g. Chx10). Our results show that BMPs are sufficient and essential for RPE development during optic vesicle stages. We propose a model in which the BMP-expressing surface ectoderm initiates RPE specification by inducing Mitf expression in the underlying neuroepithelium of the optic vesicle.
Collapse
Affiliation(s)
- Frank Müller
- Max-Planck-Institute for Brain Research, Department of Neurochemistry, Deutschordenstr. 46, 60528 Frankfurt/M., Germany
| | | | | |
Collapse
|
26
|
Liu H, Xu S, Wang Y, Mazerolle C, Thurig S, Coles BLK, Ren JC, Taketo MM, van der Kooy D, Wallace VA. Ciliary margin transdifferentiation from neural retina is controlled by canonical Wnt signaling. Dev Biol 2007; 308:54-67. [PMID: 17574231 DOI: 10.1016/j.ydbio.2007.04.052] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2006] [Revised: 04/09/2007] [Accepted: 04/30/2007] [Indexed: 11/30/2022]
Abstract
The epithelial layers of the ciliary body (CB) and iris are non-neural structures that differentiate from the anterior region of the eyecup, the ciliary margin (CM). We show here that activation of the canonical Wnt signaling pathway is sufficient and necessary for the normal development of anterior eye structures. Pharmacological activation of beta-catenin signaling with lithium (Li(+)) treatment in retinal explants in vitro induced the ectopic expression of the CM markers Otx1 and Msx1. Cre-mediated stabilization of beta-catenin expression in the peripheral retina in vivo induced a cell autonomous upregulation of CM markers at the expense of neural retina (NR) markers and inhibited neurogenesis. Consistent with a cell autonomous conversion to peripheral eye fates, the proliferation index in the region of the retina that expressed stabilized beta-catenin was identical to the wild-type CM and there was an expansion of CB-like structures at later stages. Conversely, Cre-mediated inactivation of beta-catenin reduced CM marker expression as well as the size of the CM and CB/iris. Aberrant CB development in both mouse models was also associated with a reduction in the number of retinal stem cells in vitro. In summary, activation of canonical Wnt signaling is sufficient to promote the development of peripheral eyecup fates at the expense of the NR and is also required for the normal development of anterior eyecup structures.
Collapse
Affiliation(s)
- Hong Liu
- Molecular Medicine Program, Ottawa Health Research Institute, 501 Smyth Road, Ottawa, Ontario, Canada K1H 8L6
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Dias da Silva MR, Tiffin N, Mima T, Mikawa T, Hyer J. FGF-mediated induction of ciliary body tissue in the chick eye. Dev Biol 2007; 304:272-85. [PMID: 17275804 PMCID: PMC1863121 DOI: 10.1016/j.ydbio.2006.12.033] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2005] [Revised: 12/13/2006] [Accepted: 12/14/2006] [Indexed: 11/26/2022]
Abstract
Upon morphogenesis, the simple neuroepithelium of the optic vesicle gives rise to four basic tissues in the vertebrate optic cup: pigmented epithelium, sensory neural retina, secretory ciliary body and muscular iris. Pigmented epithelium and neural retina are established through interactions with specific environments and signals: periocular mesenchyme/BMP specifies pigmented epithelium and surface ectoderm/FGF specifies neural retina. The anterior portions (iris and ciliary body) are specified through interactions with lens although the molecular mechanisms of induction have not been deciphered. As lens is a source of FGF, we examined whether this factor was involved in inducing ciliary body. We forced the pigmented epithelium of the embryonic chick eye to express FGF4. Infected cells and their immediate neighbors were transformed into neural retina. At a distance from the FGF signal, the tissue transitioned back into pigmented epithelium. Ciliary body tissue was found in the transitioning zone. The ectopic ciliary body was never in contact with the lens tissue. In order to assess the contribution of the lens on the specification of normal ciliary body, we created optic cups in which the lens had been removed while still pre-lens ectoderm. Ciliary body tissue was identified in the anterior portion of lens-less optic cups. We propose that the ciliary body may be specified at optic vesicle stages, at the same developmental stage when the neural retina and pigmented epithelium are specified and we present a model as to how this could be accomplished through overlapping BMP and FGF signals.
Collapse
Affiliation(s)
- Magnus R Dias da Silva
- Department of Neurosurgery, Box 0520, University of California, San Francisco, CA 94143, USA
| | | | | | | | | |
Collapse
|
28
|
Yamaguchi K, Parish J, Akita K, Francis-West P. Developmental expression of the chick four-jointed homologue. Dev Dyn 2007; 235:3085-91. [PMID: 16958101 DOI: 10.1002/dvdy.20946] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Four-jointed is a type II transmembrane protein that is thought to be cleaved to give rise to a secreted protein. In Drosophila, four-jointed controls outgrowth, vein patterning, and bristle polarity in the developing limb together with the polarity of the ommatidia in the developing eye. In Drosophila and mice, Fj is regulated by notch signaling. Here, we have determined the expression of the chick four-jointed (fjx) homologue during embryonic development. We show that fjx is expressed in the limb bud; facial primordia; the proliferating zone of the lens, feather buds, the neural tube; and neural crest derivatives such as the dorsal root ganglia. Analysis of the fjx expression in the developing limb bud showed that initially fjx is expressed throughout the limb bud, but as the limb develops, highest levels of fjx transcripts are found distally. However, by stage 27, fjx expression is predominantly found in the central core of the limb bud. Finally, fjx expression becomes confined to the developing tendons, ligaments, articular cartilage, and arteries but not the veins. Comparison with scleraxis (scx), a marker of tendons and ligaments, revealed that they are coexpressed in the majority of tendons but that fjx is expressed after scx, when the tendons have begun to differentiate. These data suggest that fjx has two roles during limb development: the first controlling outgrowth and the second tissue differentiation.
Collapse
Affiliation(s)
- Kumiko Yamaguchi
- Department of Craniofacial Development, King's College London, Guy's Tower, London Bridge, London, United Kingdom
| | | | | | | |
Collapse
|
29
|
Hayashi T, Mizuno N, Takada R, Takada S, Kondoh H. Determinative role of Wnt signals in dorsal iris-derived lens regeneration in newt eye. Mech Dev 2006; 123:793-800. [PMID: 17030116 DOI: 10.1016/j.mod.2006.08.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2006] [Revised: 08/24/2006] [Accepted: 08/27/2006] [Indexed: 10/24/2022]
Abstract
We have previously shown that lens regeneration from the pigmented epithelium of the dorsal iris in the adult newt eye proceeds in two steps after lens removal or intraocular FGF2 injection. The FGF2-dependent proliferation of iris pigmented epithelium and activation of early lens genes that occur over the entire circumference of the iris comprise the first step, while subsequent dorsally confined lens development marks the second step. Here, we investigated the expression of Wnt and Wnt receptor Frizzled genes in lens-regenerating iris tissues. Wnt2b and Frizzled4 were activated only in the dorsal half of the iris in synchrony with the occurrence of the second step, whereas Wnt5a and Frizzled2 were activated in both halves throughout the period of the first and second steps. Cultured explants of the iris-derived pigmented epithelium in the presence of FGF2 underwent dorsal-specific lens development fully recapitulating the in vivo lens regeneration process. Under these conditions, Wnt inhibitors Dkk1, which specifically inhibits the canonical signal pathway, and/or sFRP1 repressed the lens development, while exogenous Wnt3a, which generally activates the canonical pathway like Wnt2b, stimulated lens development from the dorsal iris epithelium and even caused lens development from the ventral iris epithelium, albeit at a reduced rate. Wnt5a did not elicit lens development from the ventral epithelium. These observations indicate that dorsal-specific activation of Wnt2b determines the dorsally limited development of lens from the iris pigmented epithelium.
Collapse
Affiliation(s)
- Toshinori Hayashi
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita-shi, Osaka 565-0871, Japan
| | | | | | | | | |
Collapse
|
30
|
Cho SH, Cepko CL. Wnt2b/β-catenin-mediated canonical Wnt signaling determines the peripheral fates of the chick eye. Development 2006; 133:3167-77. [PMID: 16854977 DOI: 10.1242/dev.02474] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Wnt signaling orchestrates multiple aspects of central nervous system development, including cell proliferation and cell fate choices. In this study, we used gene transfer to activate or inhibit canonical Wnt signaling in vivo in the developing eye. We found that the expression of Wnt2b or constitutively active (CA) β-catenin inhibited retinal progenitor gene(RPG) expression and the differentiation of retinal neurons. In addition, Wnt signal activation in the central retina was sufficient to induce the expression of markers of the ciliary body and iris, two tissues derived from the peripheral optic cup (OC). The expression of a dominant-negative (DN)allele of Lef1, or of a Lef1-engrailed fusion protein, led to the inhibition of expression of peripheral genes and iris hypoplasia, suggesting that canonical Wnt signaling is required for peripheral eye development. We propose that canonical Wnt signaling in the developing optic vesicle (OV) and OC plays a crucial role in determining the identity of the ciliary body and iris. Because wingless (wg) plays a similar role in the induction of peripheral eye tissues of Drosophila, these findings indicate a possible conservation of the process that patterns the photoreceptive and support structures of the eye.
Collapse
Affiliation(s)
- Seo-Hee Cho
- Department of Genetics and Howard Hughes Medical Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | | |
Collapse
|
31
|
Ober EA, Verkade H, Field HA, Stainier DYR. Mesodermal Wnt2b signalling positively regulates liver specification. Nature 2006; 442:688-91. [PMID: 16799568 DOI: 10.1038/nature04888] [Citation(s) in RCA: 268] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2006] [Accepted: 05/15/2006] [Indexed: 11/09/2022]
Abstract
Endodermal organs such as the lung, liver and pancreas emerge at precise locations along the primitive gut tube. Although several signalling pathways have been implicated in liver formation, so far no single gene has been identified that exclusively regulates liver specification. In zebrafish, the onset of liver specification is marked by the localized endodermal expression of hhex and prox1 at 22 hours post fertilization. Here we used a screen for mutations affecting endodermal organ morphogenesis to identify a unique phenotype: prometheus (prt) mutants exhibit profound, though transient, defects in liver specification. Positional cloning reveals that prt encodes a previously unidentified Wnt2b homologue. prt/wnt2bb is expressed in restricted bilateral domains in the lateral plate mesoderm directly adjacent to the liver-forming endoderm. Mosaic analyses show the requirement for Prt/Wnt2bb in the lateral plate mesoderm, in agreement with the inductive properties of Wnt signalling. Taken together, these data reveal an unexpected positive role for Wnt signalling in liver specification, and indicate a possible common theme for the localized formation of endodermal organs along the gut tube.
Collapse
Affiliation(s)
- Elke A Ober
- Department of Biochemistry and Biophysics, Programs in Developmental Biology, Genetics and Human Genetics, and the Liver Center, University of California, San Francisco, 1550 Fourth Street, San Francisco, California 94143, USA.
| | | | | | | |
Collapse
|
32
|
Eisenberg LM, Eisenberg CA. Wnt signal transduction and the formation of the myocardium. Dev Biol 2006; 293:305-15. [PMID: 16563368 DOI: 10.1016/j.ydbio.2006.02.014] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2005] [Revised: 12/21/2005] [Accepted: 02/07/2006] [Indexed: 10/24/2022]
Abstract
Soon after fertilization, vertebrate embryos grow very rapidly. Thus, early in gestation, a sizeable yet underdeveloped organism requires circulating blood. This need dictates the early appearance of a contractile heart, which is the first functional organ in both the avian and mammalian embryo. The heart arises from paired mesodermal regions within the anterior half of the embryo. As development proceeds, these bilateral precardiac fields merge at the midline to give rise to the primary heart tube. How specific areas of nondifferentiated mesoderm organize into myocardial tissue has been a question that has long intrigued developmental biologists. In recent years, the regulation of Wnt signal transduction has been implicated as an important event that initiates cardiac development. While initial reports in Drosophila and the bird had implicated Wnt proteins as promoters of cardiac tissue formation, subsequent findings that the WNT inhibitors Dkk1 and crescent possess cardiac-inducing activities led to the contrary hypothesis that WNTs actively inhibit cardiogenesis. This seeming contradiction has been resolved, in part, by more recent information indicating that Wnts stimulate multiple signal transduction pathways. In this review, we will examine what is presently known about the importance of regulated Wnt activity for the formation of the heart and the development of the myocardium and discuss this information in context of the emerging complexity of Wnt signal transduction.
Collapse
Affiliation(s)
- Leonard M Eisenberg
- Department of Cell Biology and Anatomy, Medical University of South Carolina, Charleston, SC 29425, USA.
| | | |
Collapse
|
33
|
Fokina VM, Frolova EI. Expression patterns of Wnt genes during development of an anterior part of the chicken eye. Dev Dyn 2006; 235:496-505. [PMID: 16258938 PMCID: PMC2655638 DOI: 10.1002/dvdy.20621] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
To address the roles of Wnts in the development of the anterior eye, we used a chicken model to perform comprehensive expression analysis of all Wnt genes during anterior eye development. In analyzing the available genomic sequences, we found that the chicken genome encodes 18 Wnt proteins that are homologous to corresponding human and mouse proteins. The mRNA sequences for 12 chicken Wnt genes are available in GenBank, and mRNAs for six other Wnt genes (Wnt2, Wnt5b, Wnt7b, Wnt8b, Wnt9b, and Wnt16) were identified and cloned based on the homology to the genes from other species. In addition, we found that chicken Wnt3a and Wnt7b genes encode two alternative mRNA isoforms containing different first exons. Following in situ hybridization, we found that out of 18 Wnt genes, 11 genes were expressed in the anterior eye, exhibiting distinct temporal-spatial patterns. Several Wnts were expressed in the lens, including Wnt2 and Wnt2b in the anterior epithelium and Wnt5a, Wnt5b, Wnt7a, and Wnt7b in the differentiating lens fiber cells. In the cornea, we detected Wnt3a, Wnt6, and Wnt9b in the ocular surface ectoderm, including the corneal epithelium, and Wnt9a in the corneal endothelium from the onset of its differentiation. In the optic cup, Wnt2, Wnt2b, and Wnt9a were localized in the rim of the optic cup (presumptive iris), while Wnt5a and Wnt16 were detected in the ciliary epithelium/iris zone of the differentiated optic cup, and Wnt6 was expressed in the iridial mesenchyme. These data suggest that Wnt signaling might play important roles in anterior eye development.
Collapse
Affiliation(s)
- Valentina M. Fokina
- Department of Human Biological Chemistry and Genetics, University of Texas Medical Branch, Galveston, Texas 77555-10191
| | - Elena I. Frolova
- Department of Human Biological Chemistry and Genetics, University of Texas Medical Branch, Galveston, Texas 77555-10191
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas 77555-10191
- Corresponding author: Elena I Frolova, Department of Human Biological Chemistry and Genetics, University of Texas Medical Branch, 301 University Blvd., Galveston, TX77555-1072. Phone:(409)772-2373. Fax: (409)772-8028. E-mail:
| |
Collapse
|
34
|
Struewing IT, Toborek A, Mao CD. Mitochondrial and nuclear forms of Wnt13 are generated via alternative promoters, alternative RNA splicing, and alternative translation start sites. J Biol Chem 2006; 281:7282-93. [PMID: 16407296 DOI: 10.1074/jbc.m511182200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Wnt proteins play a key role in cell survival, cell proliferation, and cell fate during development. In endothelial cells, we identified the expression of Wnt13A, Wnt13B, and Wnt13C mRNAs, which are generated by alternative promoters and alternative RNA splicing. Wnt13A and Wnt13B proteins differ only in their N-terminal sequences. Wnt13A, a typical Wnt, is N-glycosylated and localized in the endoplasmic reticulum, with only a small fraction being secreted. Wnt13B proteins appear as a protein doublet, L-Wnt13B and S-Wnt13B, which are neither N-glycosylated nor secreted. Wnt13B proteins localized mainly to mitochondria, as demonstrated using detection in mitochondria enriched fractions and colocalization with Mitotracker and HSP60. A nuclear localization was also observed in 20% of Wnt13B-expressing cells. Both the N-terminal hydrophobic stretch (residues 1-17) and alpha-helix (residues 26-50) were the main determinants for Wnt13B mitochondrial targeting. Serial deletions of Wnt13B N-terminal sequences abolished its association with mitochondria and favored instead a nuclear localization. The production of S-Wnt13B was independent of the mitochondrial targeting but dependent on an alternative translation start corresponding to Met(74) in L-Wnt13B. The same translation start is used in Wnt13C mRNA to encode a protein undistinguishable from S-Wnt13B. S-Wnt13B when expressed alone localized to the nucleus like Wnt13C, whereas L-Wnt13B localized to mitochondria. Wnt13 nuclear forms increased the beta-catenin/T-cell factor activity in HEK293 cells and increased apoptosis in bovine aortic endothelial cells. Altogether our results demonstrate that, in addition to alternative promoters and RNA splicing, an alternative translation start in Wnt13B and Wnt13C mRNAs increases the complexity of both human wnt13 expression and functions.
Collapse
MESH Headings
- Alternative Splicing
- Amino Acid Sequence
- Animals
- Aorta/metabolism
- Apoptosis
- Blotting, Western
- Cattle
- Cell Line
- Cell Nucleus/metabolism
- Chaperonin 60/chemistry
- DNA Primers/chemistry
- Endothelial Cells/metabolism
- Endothelium, Vascular/metabolism
- Gene Deletion
- Glycoproteins/chemistry
- Glycoproteins/metabolism
- Glycosylation
- Humans
- Immunoprecipitation
- Interleukin-8/metabolism
- Microscopy, Confocal
- Microscopy, Fluorescence
- Mitochondria/metabolism
- Models, Genetic
- Molecular Sequence Data
- Mutation
- Polymerase Chain Reaction
- Promoter Regions, Genetic
- Protein Biosynthesis
- Protein Isoforms
- Protein Processing, Post-Translational
- Protein Structure, Tertiary
- RNA/chemistry
- RNA, Messenger/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Sequence Homology, Amino Acid
- T-Lymphocytes/metabolism
- Transfection
- Wnt Proteins/chemistry
- Wnt Proteins/metabolism
Collapse
Affiliation(s)
- Ian T Struewing
- Graduate Center for Nutritional Sciences, University of Kentucky, 900 Limestone Street, Lexington, KY 40536, USA
| | | | | |
Collapse
|
35
|
Das AV, Zhao X, James J, Kim M, Cowan KH, Ahmad I. Neural stem cells in the adult ciliary epithelium express GFAP and are regulated by Wnt signaling. Biochem Biophys Res Commun 2006; 339:708-16. [PMID: 16332461 DOI: 10.1016/j.bbrc.2005.11.064] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2005] [Accepted: 11/09/2005] [Indexed: 12/28/2022]
Abstract
The identification of neural stem cells with retinal potential in the ciliary epithelium (CE) of the adult mammals is of considerable interest because of their potential for replacing or rescuing degenerating retinal neurons in disease or injury. The evaluation of such a potential requires characterization of these cells with regard to their phenotypic properties, potential, and regulatory mechanisms. Here, we demonstrate that rat CE stem cells/progenitors in neurosphere culture display astrocytic nature in terms of expressing glial intermediate neurofilament protein, GFAP. The GFAP-expressing CE stem cells/progenitors form neurospheres in proliferating conditions and generate neurons when shifted to differentiating conditions. These cells express components of the canonical Wnt pathway and its activation promotes their proliferation. Furthermore, we demonstrate that the activation of the canonical Wnt pathway influences neuronal differentiation of CE stem cells/progenitors in a context dependent manner. Our observations suggest that CE stem cells/progenitors share phenotypic properties and regulatory mechanism(s) with neural stem cells elsewhere in the adult CNS.
Collapse
Affiliation(s)
- Ani V Das
- Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE 68198-5840, USA
| | | | | | | | | | | |
Collapse
|
36
|
Das AV, Edakkot S, Thoreson WB, James J, Bhattacharya S, Ahmad I. Membrane properties of retinal stem cells/progenitors. Prog Retin Eye Res 2005; 24:663-81. [PMID: 15939659 DOI: 10.1016/j.preteyeres.2005.04.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The membrane properties of cells help integrate extrinsic information relayed through growth factors, chemokines, extracellular matrix, gap junctions and neurotransmitters towards modulating cell-intrinsic properties, which in turn determine whether cells remain quiescent, proliferate, differentiate, establish contact with other cells or remove themselves by activating programmed cell death. This review highlights some of the membrane properties of early and late retinal stem cells/progenitors, which are likely to be helpful in the identification and enrichment of these cells and in understanding mechanisms underlying their maintenance and differentiation. Understanding of membrane properties of retinal stem cells/progenitors is essential for the successful formulation of approaches to treat retinal degeneration and diseases by cell therapy.
Collapse
Affiliation(s)
- Ani V Das
- Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE 68198-7691, USA
| | | | | | | | | | | |
Collapse
|
37
|
Van Raay TJ, Vetter ML. Wnt/frizzled signaling during vertebrate retinal development. Dev Neurosci 2005; 26:352-8. [PMID: 15855764 DOI: 10.1159/000082277] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2004] [Accepted: 06/02/2004] [Indexed: 12/27/2022] Open
Abstract
Multiple signaling pathways are known to be involved in regulating development of the vertebrate neural retina. Recent publications have demonstrated that Wnt/Frizzled (Fz) signaling components are expressed in the developing retina and may play a fundamental role in retinogenesis. In this review, we summarize Wnt/Fz expression patterns in the developing vertebrate retina, mainly from chick and mouse, and compare them with Wnt/beta-catenin reporter activity. Consistent with the dynamic expression patterns of Wnt pathway components, evidence suggests that Wnt/Fz signaling has multiple roles during retinal development.
Collapse
Affiliation(s)
- Terence J Van Raay
- Department of Neurobiology and Anatomy, University of Utah, 20 North 1900 East, Salt Lake City, UT 84132, USA
| | | |
Collapse
|
38
|
Hyer J. Looking at an oft-overlooked part of the eye: a new perspective on ciliary body development in chick. Dev Neurosci 2005; 26:456-65. [PMID: 15855774 DOI: 10.1159/000082287] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2004] [Accepted: 09/13/2004] [Indexed: 11/19/2022] Open
Abstract
The ciliary body is an essential tissue for the development and homeostasis of the vertebrate eye. Embryonically, the epithelial portion of the ciliary body derives from the neuroepithelium of the optic cup, however, it differentiates into a secretory tissue and produces an aqueous humor that sustains the lens and cornea, and maintains the requisite pressure within the orb. The unique differentiation of this portion of the optic cup is little understood. This article reviews what is known about the development of the ciliary body and presents some preliminary findings that may lead to a new model for the formation of the ciliary body.
Collapse
Affiliation(s)
- Jeanette Hyer
- Department of Neurosurgical Research, Box 0520, University of California, San Francisco, CA 94143, USA.
| |
Collapse
|
39
|
Kubo F, Takeichi M, Nakagawa S. Wnt2b inhibits differentiation of retinal progenitor cells in the absence of Notch activity by downregulating the expression of proneural genes. Development 2005; 132:2759-70. [PMID: 15901663 DOI: 10.1242/dev.01856] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
During the development of the central nervous system, cell proliferation and differentiation are precisely regulated. In the vertebrate eye, progenitor cells located in the marginal-most region of the neural retina continue to proliferate for a much longer period compared to the ones in the central retina, thus showing stem-cell-like properties. Wnt2b is expressed in the anterior rim of the optic vesicles, and has been shown to control differentiation of the progenitor cells in the marginal retina. In this paper,we show that stable overexpression of Wnt2b in retinal explants inhibited cellular differentiation and induced continuous growth of the tissue. Notably,Wnt2b maintained the undifferentiated progenitor cells in the explants even under the conditions where Notch signaling was blocked. Wnt2b downregulated the expression of multiple proneural bHLH genes as well as Notch. In addition,expression of Cath5 under the control of an exogenous promoter suppressed the negative effect of Wnt2b on neuronal differentiation. Importantly, Wnt2b inhibited neuronal differentiation independently of cell cycle progression. We propose that Wnt2b maintains the naive state of marginal progenitor cells by attenuating the expression of both proneural and neurogenic genes, thus preventing those cells from launching out into the differentiation cascade regulated by proneural genes and Notch.
Collapse
Affiliation(s)
- Fumi Kubo
- RIKEN Center for Developmental Biology, 2-2-3 Minatojima Minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | | | | |
Collapse
|
40
|
Cornesse Y, Pieler T, Hollemann T. Olfactory and lens placode formation is controlled by the hedgehog-interacting protein (Xhip) in Xenopus. Dev Biol 2005; 277:296-315. [PMID: 15617676 DOI: 10.1016/j.ydbio.2004.09.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2004] [Revised: 09/08/2004] [Accepted: 09/09/2004] [Indexed: 11/16/2022]
Abstract
The integration of multiple signaling pathways is a key issue in several aspects of embryonic development. In this context, extracellular inhibitors of secreted growth factors play an important role, which is to antagonize specifically the activity of the corresponding signaling molecule. We provide evidence that the Hedgehog-interacting protein (Hip) from Xenopus, previously described as a Hedgehog-specific antagonist in the mouse, interferes with Wnt-8 and eFgf/Fgf-8 signaling pathways as well. To address the function of Hip during early embryonic development, we performed gain- and loss-of-function studies in the frog. Overexpression of Xhip or mHip1 resulted in a dramatic increase of retinal structures and larger olfactory placodes primarily at the expense of other brain tissues. Furthermore, loss of Xhip function resulted in a suppression of olfactory and lens placode formation. Therefore, the localized expression of Xhip may counteract certain overlapping signaling activities, which inhibit the induction of distinct sensory placodes.
Collapse
Affiliation(s)
- Yvonne Cornesse
- Department of Developmental Biochemistry, Institute of Biochemistry and Molecular Cell Biology, Georg-August-University of Göttingen, D-37077 Göttingen, Germany
| | | | | |
Collapse
|
41
|
Vergara MN, Arsenijevic Y, Del Rio-Tsonis K. CNS regeneration: A morphogen's tale. ACTA ACUST UNITED AC 2005; 64:491-507. [PMID: 16041757 DOI: 10.1002/neu.20158] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Tissue regeneration will soon become an avenue for repair of damaged or diseased tissues as stem cell niches have been found in almost every organ of the vertebrate body including the CNS. In addition, different animals display an array of regenerative capabilities that are currently being researched to dissect the molecular mechanisms involved. This review concentrates on the different ways in which CNS tissues such as brain, spinal cord and retina can regenerate or display neurogenic potential and how these abilities are modulated by morphogens.
Collapse
|
42
|
Spence JR, Madhavan M, Ewing JD, Jones DK, Lehman BM, Del Rio-Tsonis K. The hedgehog pathway is a modulator of retina regeneration. Development 2004; 131:4607-21. [PMID: 15342484 DOI: 10.1242/dev.01298] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The embryonic chick has the ability to regenerate its retina after it has been completely removed. Here, we provide a detailed characterization of retina regeneration in the embryonic chick at the cellular level. Retina regeneration can occur in two distinct manners. The first is via transdifferentiation, which is induced by members of the Fibroblast growth factor (Fgf) family. The second type of retinal regeneration occurs from the anterior margin of the eye, near the ciliary body (CB) and ciliary marginal zone (CMZ). We show that regeneration from the CB/CMZ is the result of proliferating stem/progenitor cells. This type of regeneration is also stimulated by Fgf2, but we show that it can be activated by Sonic hedgehog(Shh) overexpression when no ectopic Fgf2 is present. Shh-stimulated activation of CB/CMZ regeneration is inhibited by the Fgf receptor (Fgfr)antagonist, PD173074. This indicates that Shh-induced regeneration acts through the Fgf signaling pathway. In addition, we show that the hedgehog (Hh)pathway plays a role in maintenance of the retina pigmented epithelium (RPE),as ectopic Shh expression inhibits transdifferentiation and Hh inhibition increases the transdifferentiation domain. Ectopic Shh expression in the regenerating retina also results in a decrease in the number of ganglion cells present and an increase in apoptosis mostly in the presumptive ganglion cell layer (GCL). However, Hh inhibition increases the number of ganglion cells but does not have an effect on cell death. Taken together, our results suggest that the hedgehog pathway is an important modulator of retina regeneration.
Collapse
Affiliation(s)
- Jason R Spence
- Department of Zoology, Miami University, Oxford, Ohio 45056, USA
| | | | | | | | | | | |
Collapse
|
43
|
Ang SJ, Stump RJW, Lovicu FJ, McAvoy JW. Spatial and temporal expression of Wnt and Dickkopf genes during murine lens development. Gene Expr Patterns 2004; 4:289-95. [PMID: 15053977 DOI: 10.1016/j.modgep.2003.11.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2003] [Revised: 10/30/2003] [Accepted: 11/07/2003] [Indexed: 10/26/2022]
Abstract
Recent studies indicate a role for Wnt signalling in regulating lens cell differentiation (Stump et al., 2003). To further our understanding of this, we investigated the expression patterns of Wnts and Wnt signalling regulators, the Dickkopfs (Dkks), during murine lens development. In situ hybridisation showed that Wnt5a, Wnt5b, Wnt7a, Wnt7b, Wnt8a and Wnt8b genes are expressed throughout the early lens primordia. At embryonic day 14.5 (E14.5), Wnt5a, Wnt5b, Wnt7a, Wnt8a and Wnt8b are reduced in the primary fibres, whereas Wnt7b remains strongly expressed. This trend persists up to E15.5. At later embryonic stages, Wnt expression is predominantly localised to the epithelium and elongating cells at the lens equator. As fibre differentiation progresses, Wnt expression becomes undetectable in the cells of the lens cortex. The one exception is Wnt7b, which continues to be weakly expressed in cortical fibres. This pattern of expression continues through to early postnatal stages. However, by postnatal day 21 (P21), expression of all Wnts is distinctly weaker in the central lens epithelium compared with the equatorial region. This is most notable for Wnt5a, which is barely detectable in the central lens epithelium at P21. Dkk1, Dkk2 and Dkk3 have similar patterns of expression to each other and to the majority of the Wnts during lens development. This study shows that multiple Wnt and Dkk genes are expressed during lens development. Expression is predominantly in the epithelial compartment but is also associated, particularly in the case of Wnt7b, with early events in fibre differentiation.
Collapse
Affiliation(s)
- S J Ang
- Save Sight Institute, The University of Sydney, GPO Box 4337, Sydney Eye Hospital, Sydney, NSW 2006, Australia
| | | | | | | |
Collapse
|
44
|
Abstract
Wnt signaling is implicated in many developmental processes, including cell fate changes. Several members of the Wnt family, as well as other molecules involved in Wnt signaling, including Frizzled receptors, LDL-related protein co-receptors, members of the Dishevelled and Dickkopf families, are known to be expressed in the lens during embryonic or postembryonic development. However, the function of Wnt signaling in lens fiber differentiation remains unknown. Here, we show that GSK-3β kinase is inactivated and thatβ-catenin accumulates during the early stages of lens fiber cell differentiation. In an explant culture system, Wnt conditioned medium (CM)induced the accumulation of β-crystallin, a marker of fiber cell differentiation, without changing cell shape. In contrast, epithelial cells stimulated with Wnt after priming with FGF elongated, accumulatedβ-crystallin, aquaporin-0, p57kip2, and altered their expression of cadherins. Treatment with lithium, which stabilizes β-catenin, induced the accumulation of β-crystallin, but explants treated with lithium after FGF priming did not elongate as they did after Wnt application. These results show that Wnts promote the morphological aspects of fiber cell differentiation in a process that requires FGF signaling, but is independent ofβ-catenin. Wnt signaling may play an important role in lens epithelial-to-fiber differentiation.
Collapse
Affiliation(s)
- Jungmook Lyu
- Department of Ophthalmology and Visual Science, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | | |
Collapse
|
45
|
Ahmad I, Das AV, James J, Bhattacharya S, Zhao X. Neural stem cells in the mammalian eye: types and regulation. Semin Cell Dev Biol 2004; 15:53-62. [PMID: 15036208 DOI: 10.1016/j.semcdb.2003.09.003] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Neural stem cells/progenitors that give rise to neurons and glia have been identified in different regions of the brain, including the embryonic retina. Recently, such cells have been reported to be present, in a mitotically quiescent state, in the ciliary epithelium of the adult mammalian eye. The retinal and ciliary epithelium stem cells/progenitors appear to share similar signaling pathways that are emerging as important regulators of stem cells in general. Yet, they are different in certain respects, such as in the potential to self-renew. These two neural stem cell/progenitor populations not only will serve as models for investigating stem cell biology but also will help explain the relationships between embryonic and adult neural stem cells/progenitors.
Collapse
Affiliation(s)
- Iqbal Ahmad
- Department of Ophthalmology, 11715 Lied Transplantation Center, University of Nebraska Medical Center, Omaha, NE 68198-7691, USA.
| | | | | | | | | |
Collapse
|
46
|
Abstract
Formation of the vertebrate visual system involves complex interplays of cell-extrinsic cues and cell-intrinsic determinants. Studies in several vertebrate species demonstrate that multiple classes of signaling molecules participate in pattern formation of the eye and neurogenesis of the retina. Certain signals, such as hedgehog, BMP, and FGF molecules, are repeatedly deployed at varying concentration thresholds and in different cellular contexts. Accumulating evidence reveals a striking conservation of molecular mechanisms regulating the neurogenic process between Drosophila and vertebrate retinas. The remaining challenge is to understand how these well-characterized signaling pathways are activated and integrated to impact eye morphogenesis and retinal progenitor cell fate determination.
Collapse
Affiliation(s)
- Xian-Jie Yang
- Department of Ophthalmology, Jules Stein Eye Institute, Molecular Biology Institute, University of California, 100 Stein Plaza, Los Angeles, CA 90095, USA.
| |
Collapse
|
47
|
Chapman SC, Brown R, Lees L, Schoenwolf GC, Lumsden A. Expression analysis of chick Wnt and frizzled genes and selected inhibitors in early chick patterning. Dev Dyn 2004; 229:668-76. [PMID: 14991722 DOI: 10.1002/dvdy.10491] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Wnt signaling is an important component in patterning the early embryo and specifically the neural plate. Studies in Xenopus, mouse, and zebrafish have shown that signaling by members of the Wnt family of secreted signaling factors, their Frizzled receptors and several inhibitors (sFRP1, sFRP2, sFRP3/Frzb1, Crescent/Frzb2, Dkk1, and Cerberus) are involved. However, very little is known about the expression of genes in the Wnt signaling pathway during early anterior neural patterning in chick. We have performed an expression analysis at neural plate stages of several Wnts, Frizzled genes, and Wnt signaling pathway inhibitors using in situ hybridization. The gene expression patterns of these markers are extremely dynamic. We have identified two candidate molecules for anterior patterning of the neural plate, Wnt1 and Wnt8b, which are expressed in the rostral ectoderm at these stages. Further functional studies on the roles of these markers are underway.
Collapse
Affiliation(s)
- Susan C Chapman
- MRC Centre for Developmental Neurobiology, Kings College London, New Hunts House, Guy's Hospital, London, United Kingdom.
| | | | | | | | | |
Collapse
|
48
|
Robertson CP, Braun MM, Roelink H. Sonic hedgehog patterning in chick neural plate is antagonized by a Wnt3-like signal. Dev Dyn 2004; 229:510-9. [PMID: 14991707 DOI: 10.1002/dvdy.10501] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Sonic hedgehog (Shh) patterns the dorsal-ventral axis of the neural tube by promoting the differentiation of ventral neural cell types while suppressing dorsal neural fates. Other signals impinge upon the Shh response, biasing the differentiation of a cell. Three dorsally expressed transforming Wnts, of which the most broadly expressed is Wnt3, may be among the signals that influence the Shh response. We demonstrate that activation of Wnt signaling results in an inhibition of the Shh response in neural tissue. Additionally, we show that the expression pattern of chick Wnt3 is consistent with a role in neural patterning. These results indicate that differentiating neural tube cells, besides integrating signals from Hedgehogs and BMPs, may also incorporate a Wnt response to make cell fate decisions.
Collapse
Affiliation(s)
- Christie P Robertson
- Department of Biological Structure, Program in Neurobiology and Behavior, and Center for Developmental Biology, University of Washington, Seattle, Washington 98195, USA
| | | | | |
Collapse
|
49
|
Braun MM, Etheridge A, Bernard A, Robertson CP, Roelink H. Wnt signaling is required at distinct stages of development for the induction of the posterior forebrain. Development 2003; 130:5579-87. [PMID: 14522868 DOI: 10.1242/dev.00685] [Citation(s) in RCA: 149] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
One of the earliest manifestations of anteroposterior pattering in the developing brain is the restricted expression of Six3 and Irx3 in the anterior and posterior forebrain, respectively. Consistent with the role of Wnts as posteriorizing agents in neural tissue, we found that Wnt signaling was sufficient to induce Irx3 and repress Six3 expression in forebrain explants. The position of the zona limitans intrathalamica (zli), a boundary-cell population that develops between the ventral (vT) and dorsal thalamus (dT), is predicted by the apposition of Six3 and Irx3 expression domains. The expression patterns of several inductive molecules are limited by the zli, including Wnt3, which is expressed posterior to the zli in the dT. Wnt3 and Wnt3a were sufficient to induce the dT marker Gbx2 exclusively in explants isolated posterior to the presumptive zli. Blocking the Wnt response allowed the induction of the vT-specific marker Dlx2 in prospective dT tissue. Misexpression of Six3 in the dT induced Dlx2 expression and inhibited the expression of both Gbx2 and Wnt3. These results demonstrate a dual role for Wnt signaling in forebrain development. First, Wnts directed the initial expression of Irx3 and repression of Six3 in the forebrain, delineating posterior and anterior forebrain domains. Later, continued Wnt signaling resulted in the induction of dT specific markers, but only in tissues that expressed Irx3.
Collapse
Affiliation(s)
- Michelle M Braun
- Program in Neurobiology and Behavior, Department of Biological Structure, Box 357420, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | |
Collapse
|
50
|
Stevens CB, Davies AL, Battista S, Lewis JH, Fekete DM. Forced activation of Wnt signaling alters morphogenesis and sensory organ identity in the chicken inner ear. Dev Biol 2003; 261:149-64. [PMID: 12941626 DOI: 10.1016/s0012-1606(03)00297-5] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Components of the Wnt signaling pathway are expressed in the developing inner ear. To explore their role in ear patterning, we used retroviral gene transfer to force the expression of an activated form of beta-catenin that should constitutively activate targets of the canonical Wnt signaling pathway. At embryonic day 9 (E9) and beyond, morphological defects were apparent in the otic capsule and the membranous labyrinth, including ectopic and fused sensory patches. Most notably, the basilar papilla, an auditory organ, contained infected sensory patches with a vestibular phenotype. Vestibular identity was based on: (1) stereociliary bundle morphology; (2) spacing of hair cells and supporting cells; (3) the presence of otoliths; (4) immunolabeling indicative of vestibular supporting cells; and (5) expression of Msx1, a marker of certain vestibular sensory organs. Retrovirus-mediated misexpression of Wnt3a also gave rise to ectopic vestibular patches in the cochlear duct. In situ hybridization revealed that genes for three Frizzled receptors, c-Fz1, c-Fz7, and c-Fz10, are expressed in and adjacent to sensory primordia, while Wnt4 is expressed in adjacent, nonsensory regions of the cochlear duct. We hypothesize that Wnt/beta-catenin signaling specifies otic epithelium as macular and helps to define and maintain sensory/nonsensory boundaries in the cochlear duct.
Collapse
Affiliation(s)
- Craig B Stevens
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907-1392, USA
| | | | | | | | | |
Collapse
|