1
|
Wang B, Zhang X, Chen H, Koh A, Zhao C, Chen Y. A Review of Intraocular Biomolecules in Retinal Vein Occlusion: Toward Potential Biomarkers for Companion Diagnostics. Front Pharmacol 2022; 13:859951. [PMID: 35559255 PMCID: PMC9086509 DOI: 10.3389/fphar.2022.859951] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/25/2022] [Indexed: 12/04/2022] Open
Abstract
Retinal vein occlusion (RVO) is one of the most common retinal vascular diseases. The pathogenesis of RVO is multifactorial and involves a complex interplay among a variety of vascular and inflammatory mediators. Many cytokines, chemokines, growth factors, and cell adhesion molecules have been reported to be implicated. Treatments for RVO are directed at the management of underlying risk factors and vision-threatening complications, including macula edema (ME) and neovascularization. Intravitreal anti-VEGF agents are currently considered as the first-line treatment for ME secondary to RVO (RVO-ME), but a substantial proportion of patients responded insufficiently to anti-VEGF agents. Since RVO-ME refractory to anti-VEGF agents generally responds to corticosteroids and its visual outcome is negatively correlated to disease duration, prediction of treatment response at baseline in RVO-ME may significantly improve both cost-effectiveness and visual prognosis. Several bioactive molecules in the aqueous humor were found to be associated with disease status in RVO. This review aims to present a comprehensive review of intraocular biomolecules reported in RVO, including VEGF, IL-6, IL-8, MCP-1, sICAM-1, IL-12, IL-13, sVEGFR-1, sVEGFR-2, PDGF-AA, etc., highlighting their association with disease severity and/or phenotype, and their potential roles in prognostic prediction and treatment selection. Some of these molecules may serve as biomarkers for aqueous humor-based companion diagnostics for the treatment of RVO in the future.
Collapse
Affiliation(s)
- Bingjie Wang
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
- School of Medicine, Tsinghua University, Beijing, China
| | - Xiao Zhang
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of Ocular Fundus Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Huan Chen
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of Ocular Fundus Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Adrian Koh
- Eye & Retina Surgeons, Camden Medical Centre, Singapore, Singapore
| | - Chan Zhao
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of Ocular Fundus Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Youxin Chen
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of Ocular Fundus Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
2
|
Chen SN, Lam CK, Wan YW, Gao S, Malak OA, Zhao SR, Lombardi R, Ambardekar AV, Bristow MR, Cleveland J, Gigli M, Sinagra G, Graw S, Taylor MR, Wu JC, Mestroni L. Activation of PDGFRA signaling contributes to filamin C-related arrhythmogenic cardiomyopathy. SCIENCE ADVANCES 2022; 8:eabk0052. [PMID: 35196083 PMCID: PMC8865769 DOI: 10.1126/sciadv.abk0052] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 12/25/2021] [Indexed: 05/07/2023]
Abstract
FLNC truncating mutations (FLNCtv) are prevalent causes of inherited dilated cardiomyopathy (DCM), with a high risk of developing arrhythmogenic cardiomyopathy. We investigated the molecular mechanisms of mutant FLNC in the pathogenesis of arrhythmogenic DCM (a-DCM) using patient-specific induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs). We demonstrated that iPSC-CMs from two patients with different FLNCtv mutations displayed arrhythmias and impaired contraction. FLNC ablation induced a similar phenotype, suggesting that FLNCtv are loss-of-function mutations. Coimmunoprecipitation and proteomic analysis identified β-catenin (CTNNB1) as a downstream target. FLNC deficiency induced nuclear translocation of CTNNB1 and subsequently activated the platelet-derived growth factor receptor alpha (PDGFRA) pathway, which were also observed in human hearts with a-DCM and FLNCtv. Treatment with the PDGFRA inhibitor, crenolanib, improved contractile function of patient iPSC-CMs. Collectively, our findings suggest that PDGFRA signaling is implicated in the pathogenesis, and inhibition of this pathway is a potential therapeutic strategy in FLNC-related cardiomyopathies.
Collapse
Affiliation(s)
- Suet Nee Chen
- University of Colorado Cardiovascular Institute, University of Colorado Anschutz Medical Aurora, CO, USA
| | - Chi Keung Lam
- Stanford Cardiovascular Institute, Stanford, CA, USA
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Biological Sciences, University of Delaware, Newark, DE, USA
| | - Ying-Wooi Wan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Shanshan Gao
- University of Colorado Cardiovascular Institute, University of Colorado Anschutz Medical Aurora, CO, USA
| | - Olfat A. Malak
- Stanford Cardiovascular Institute, Stanford, CA, USA
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Shane Rui Zhao
- Stanford Cardiovascular Institute, Stanford, CA, USA
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Raffaella Lombardi
- University of Colorado Cardiovascular Institute, University of Colorado Anschutz Medical Aurora, CO, USA
- Department of Advanced Biomedical Sciences University of Naples “Federico II”, Naples, Italy
| | - Amrut V. Ambardekar
- University of Colorado Cardiovascular Institute, University of Colorado Anschutz Medical Aurora, CO, USA
| | - Michael R. Bristow
- University of Colorado Cardiovascular Institute, University of Colorado Anschutz Medical Aurora, CO, USA
| | - Joseph Cleveland
- University of Colorado Cardiovascular Institute, University of Colorado Anschutz Medical Aurora, CO, USA
| | - Marta Gigli
- Cardiovascular Department, Azienda Sanitaria-Universitaria Giuliano Isontina (ASUGI), Trieste, Italy
| | - Gianfranco Sinagra
- Cardiovascular Department, Azienda Sanitaria-Universitaria Giuliano Isontina (ASUGI), Trieste, Italy
| | - Sharon Graw
- University of Colorado Cardiovascular Institute, University of Colorado Anschutz Medical Aurora, CO, USA
| | - Matthew R.G. Taylor
- University of Colorado Cardiovascular Institute, University of Colorado Anschutz Medical Aurora, CO, USA
| | - Joseph C. Wu
- Stanford Cardiovascular Institute, Stanford, CA, USA
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Luisa Mestroni
- University of Colorado Cardiovascular Institute, University of Colorado Anschutz Medical Aurora, CO, USA
| |
Collapse
|
3
|
Effects of ranibizumab on growth factors and mediators of inflammation in the aqueous humor of patients with diabetic macular edema. Graefes Arch Clin Exp Ophthalmol 2021; 259:2597-2603. [PMID: 33772356 DOI: 10.1007/s00417-021-05154-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 01/15/2021] [Accepted: 03/09/2021] [Indexed: 01/22/2023] Open
Abstract
PURPOSE The study aims to investigate changes in the aqueous humor levels of 8 growth factors and inflammatory mediators after intravitreal ranibizumab injection (IRI) and the relationship between these substances and functional-morphological parameters in patients with diabetic macular edema (DME). METHODS We recruited 25 patients with DME who were scheduled to receive 2 doses of IRI at monthly intervals. At baseline and 1 month after IRI, we measured aqueous levels of vascular endothelial growth factor (VEGF), placental growth factor (PlGF), monocyte chemoattractant protein 1 (MCP-1), soluble intercellular adhesion molecule-1 (sICAM-1), platelet-derived growth factor (PDGF)-AA, interleukin (IL)-6, IL-8, and interferon-gamma inducible protein 10 (IP-10) by the suspension array method. Central macular edema (CMT) or macular volume (MV) was examined by optical coherence tomography before and 1 month after IRI, and the improvement of macular edema was evaluated by calculating the percent change of CMT or MV. RESULTS Aqueous humor levels of VEGF, PlGF, PDGF-AA, and IP-10 were significantly decreased 1 month after IRI (P < 0.001, P = 0.002, P = 0.002, and P = 0.005, respectively). In addition, the baseline aqueous humor levels of PlGF, MCP-1, and IL-6 were significantly correlated with the improvement in best corrected visual acuity (P = 0.036, P = 0.024, and P = 0.049, respectively). The baseline aqueous humor level of sICAM-1 was significantly negatively correlated with the change in CMT (P = 0.005), and the baseline aqueous humor levels of VEGF and PlGF were significantly correlated with the change in MV (P = 0.020 and P = 0.003, respectively). Furthermore, the percentage reduction in VEGF after IRI was significantly correlated with the change in MV (P = 0.037). CONCLUSIONS Our findings suggest that the change in aqueous humor levels of VEGF, PlGF, and ICAM-1 in DME may not only be an anatomic response but also a potential therapeutic target. CLINICAL TRIAL REGISTRATION This study was registered in the University Hospital Medical Information Network (UMIN) clinical trial registry. The registration number is UMIN000030301.
Collapse
|
4
|
Involvement of Cytokines in the Pathogenesis of Diabetic Macular Edema. Int J Mol Sci 2021; 22:ijms22073427. [PMID: 33810434 PMCID: PMC8036935 DOI: 10.3390/ijms22073427] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 03/23/2021] [Indexed: 02/06/2023] Open
Abstract
Diabetic macular edema (DME) is a critical complication of diabetic retinopathy, a condition that arises from the breakdown of the blood–retinal barrier and the consequent increase in vascular permeability. Over the years, attempts have been made to treat DME by various approaches, including laser photocoagulation, steroid triamcinolone acetonide, and vitrectomy. However, treatment was unsatisfactory until research identified vascular endothelial growth factor (VEGF) as a factor in the pathogenesis of DME. Intraocular anti-VEGF agents show good efficacy in DME. Nevertheless, in some patients the condition recurs or becomes resistant to treatment, suggesting that other factors may be involved. Because inflammation and retinal hypoxia are seen in DME, research has examined the potential role of cytokines and other inflammatory mediators. In this review, we provide an overview of this research and describe feedback mechanisms that may represent a target for novel treatments.
Collapse
|
5
|
Cytokines and Pathogenesis of Central Retinal Vein Occlusion. J Clin Med 2020; 9:jcm9113457. [PMID: 33121094 PMCID: PMC7692731 DOI: 10.3390/jcm9113457] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/26/2020] [Accepted: 10/26/2020] [Indexed: 12/23/2022] Open
Abstract
Central retinal vein occlusion (CRVO) causes macular edema and subsequent vision loss and is common in people with diseases such as arteriosclerosis and hypertension. Various treatments for CRVO-associated macular edema have been trialed, including laser photocoagulation, with unsatisfactory results. However, when the important pathogenic role of vascular endothelial growth factor (VEGF) in macular edema was identified, the treatment of CRVO was revolutionized by anti-VEGF therapy. However, despite the success of intraocular injection of anti-VEGF agents in many patients with CRVO, some patients continue to suffer from refractory or recurring edema. In addition, the expression of inflammatory cytokines increases over time, causing more severe inflammation and a condition that is increasingly resistant to anti-VEGF therapy. This indicates that the pathogenesis of macular edema in CRVO is more complex than originally thought and may involve factors or cytokines associated with inflammation and ischemia other than VEGF. CRVO is also associated with leukocyte abnormalities and a gradual reduction in retinal blood flow velocity, which increase the likelihood of it developing from the nonischemic type into the more severe ischemic type; in turn, this results in excessive VEGF expression and subsequent neovascular glaucoma. Here, we review the role of different factors and cytokines involved in CRVO pathogenesis and propose a mechanism that holds promise for the development of novel therapies.
Collapse
|
6
|
Liu W, Cui Y, Wei J, Sun J, Zheng L, Xie J. Gap junction-mediated cell-to-cell communication in oral development and oral diseases: a concise review of research progress. Int J Oral Sci 2020; 12:17. [PMID: 32532966 PMCID: PMC7293327 DOI: 10.1038/s41368-020-0086-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 04/30/2020] [Accepted: 05/19/2020] [Indexed: 02/05/2023] Open
Abstract
Homoeostasis depends on the close connection and intimate molecular exchange between extracellular, intracellular and intercellular networks. Intercellular communication is largely mediated by gap junctions (GJs), a type of specialized membrane contact composed of variable number of channels that enable direct communication between cells by allowing small molecules to pass directly into the cytoplasm of neighbouring cells. Although considerable evidence indicates that gap junctions contribute to the functions of many organs, such as the bone, intestine, kidney, heart, brain and nerve, less is known about their role in oral development and disease. In this review, the current progress in understanding the background of connexins and the functions of gap junctions in oral development and diseases is discussed. The homoeostasis of tooth and periodontal tissues, normal tooth and maxillofacial development, saliva secretion and the integrity of the oral mucosa depend on the proper function of gap junctions. Knowledge of this pattern of cell-cell communication is required for a better understanding of oral diseases. With the ever-increasing understanding of connexins in oral diseases, therapeutic strategies could be developed to target these membrane channels in various oral diseases and maxillofacial dysplasia.
Collapse
Affiliation(s)
- Wenjing Liu
- State Key Laboratory of Oral Diseases & National Clinical Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yujia Cui
- State Key Laboratory of Oral Diseases & National Clinical Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jieya Wei
- State Key Laboratory of Oral Diseases & National Clinical Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jianxun Sun
- State Key Laboratory of Oral Diseases & National Clinical Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Liwei Zheng
- State Key Laboratory of Oral Diseases & National Clinical Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jing Xie
- State Key Laboratory of Oral Diseases & National Clinical Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
7
|
Noma H, Yasuda K, Shimura M. Change of cytokines after intravitreal ranibizumab in patients with recurrent branch retinal vein occlusion and macular edema. Eur J Ophthalmol 2019; 31:204-210. [PMID: 31690095 DOI: 10.1177/1120672119885054] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
PURPOSE To investigate the relations of vascular endothelial growth factor, growth factors, soluble vascular endothelial growth factor receptors, and inflammatory factors to recurrence of macular edema after anti-vascular endothelial growth factor therapy in patients with branch retinal vein occlusion. METHODS This study retrospectively investigated 17 patients with branch retinal vein occlusion who received intravitreal ranibizumab injection three times within 6 months for recurrent macular edema. Aqueous humor samples were obtained from these patients at every recurrence. Levels of soluble vascular endothelial growth factor receptor-1, soluble vascular endothelial growth factor receptor-2, vascular endothelial growth factor, placental growth factor, platelet-derived growth factor-AA, soluble intercellular adhesion molecule-1, monocyte chemoattractant protein-1, interleukin-6, interleukin-8, interleukin-12(p70), and interleukin-13 were measured by the suspension array method. Aqueous flare values were measured with a laser flare meter and central macular thickness was determined by optical coherence tomography. RESULTS Mean best-corrected visual acuity and central macular thickness improved significantly over time after intravitreal ranibizumab injection, but the aqueous flare value at recurrence after intravitreal ranibizumab injection showed no significant change compared with baseline. Aqueous humor levels of soluble vascular endothelial growth factor receptor-1, soluble vascular endothelial growth factor receptor-2, vascular endothelial growth factor, platelet-derived growth factor-AA, monocyte chemoattractant protein-1, and interleukin-8 decreased significantly over time after intravitreal ranibizumab injection. However, there were no significant changes of the other five factors/cytokines (placental growth factor, soluble intercellular adhesion molecule-1, interleukin-6, interleukin-12, and interleukin-13) at recurrence after intravitreal ranibizumab injection compared with baseline. CONCLUSION These findings suggest that persistent inflammation may influence the recurrence of macular edema in branch retinal vein occlusion patients, and that adding steroid therapy might be an effective strategy for preventing recurrence.
Collapse
Affiliation(s)
- Hidetaka Noma
- Department of Ophthalmology, Hachioji Medical Center, Tokyo Medical University, Tokyo, Japan
| | - Kanako Yasuda
- Department of Ophthalmology, Hachioji Medical Center, Tokyo Medical University, Tokyo, Japan
| | - Masahiko Shimura
- Department of Ophthalmology, Hachioji Medical Center, Tokyo Medical University, Tokyo, Japan
| |
Collapse
|
8
|
Matsushima R, Noma H, Yasuda K, Goto H, Shimura M. Role of Cytokines in Ranibizumab Therapy for Macular Edema in Patients with Central Retinal Vein Occlusion. J Ocul Pharmacol Ther 2019; 35:407-412. [DOI: 10.1089/jop.2019.0011] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Ryosuke Matsushima
- Department of Ophthalmology, Hachioji Medical Center, Tokyo Medical University, Hachioji, Tokyo, Japan
| | - Hidetaka Noma
- Department of Ophthalmology, Hachioji Medical Center, Tokyo Medical University, Hachioji, Tokyo, Japan
| | - Kanako Yasuda
- Department of Ophthalmology, Hachioji Medical Center, Tokyo Medical University, Hachioji, Tokyo, Japan
| | - Hiroshi Goto
- Department of Ophthalmology, Tokyo Medical University, Shinjuku-ku, Tokyo, Japan
| | - Masahiko Shimura
- Department of Ophthalmology, Hachioji Medical Center, Tokyo Medical University, Hachioji, Tokyo, Japan
| |
Collapse
|
9
|
Abstract
Purpose of Review Considerable progress has been made in the field of stem cell research; nonetheless, the use of stem cells for regenerative medicine therapies, for either endogenous tissue repair or cellular grafts post injury, remains a challenge. To better understand how to maintain stem cell potential in vivo and promote differentiation ex vivo, it is fundamentally important to elucidate the interactions between stem cells and their surrounding partners within their distinct niches. Recent Findings Among the vast array of proteins depicted as mediators for cell-to-cell interactions, connexin-comprised gap junctions play pivotal roles in the regulation of stem cell fate both in vivo and in vitro. Summary This review summarizes and illustrates the current knowledge regarding the multifaceted roles of Cx43, specifically, in various stem cell niches.
Collapse
Affiliation(s)
- Nafiisha Genet
- Department of Medicine, Genetics and Biomedical Engineering, Yale Cardiovascular Research Center, Vascular Biology Therapeutics Program, New Haven, USA.,2Yale Stem Cell Center Yale University School of Medicine, 300 George St, New Haven, CT 06511 USA
| | - Neha Bhatt
- Department of Medicine, Genetics and Biomedical Engineering, Yale Cardiovascular Research Center, Vascular Biology Therapeutics Program, New Haven, USA.,2Yale Stem Cell Center Yale University School of Medicine, 300 George St, New Haven, CT 06511 USA
| | - Antonin Bourdieu
- Department of Medicine, Genetics and Biomedical Engineering, Yale Cardiovascular Research Center, Vascular Biology Therapeutics Program, New Haven, USA.,2Yale Stem Cell Center Yale University School of Medicine, 300 George St, New Haven, CT 06511 USA
| | - Karen K Hirschi
- Department of Medicine, Genetics and Biomedical Engineering, Yale Cardiovascular Research Center, Vascular Biology Therapeutics Program, New Haven, USA.,2Yale Stem Cell Center Yale University School of Medicine, 300 George St, New Haven, CT 06511 USA
| |
Collapse
|
10
|
Leithe E, Mesnil M, Aasen T. The connexin 43 C-terminus: A tail of many tales. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1860:48-64. [PMID: 28526583 DOI: 10.1016/j.bbamem.2017.05.008] [Citation(s) in RCA: 142] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 05/10/2017] [Accepted: 05/12/2017] [Indexed: 10/19/2022]
Abstract
Connexins are chordate gap junction channel proteins that, by enabling direct communication between the cytosols of adjacent cells, create a unique cell signalling network. Gap junctional intercellular communication (GJIC) has important roles in controlling cell growth and differentiation and in tissue development and homeostasis. Moreover, several non-canonical connexin functions unrelated to GJIC have been discovered. Of the 21 members of the human connexin family, connexin 43 (Cx43) is the most widely expressed and studied. The long cytosolic C-terminus (CT) of Cx43 is subject to extensive post-translational modifications that modulate its intracellular trafficking and gap junction channel gating. Moreover, the Cx43 CT contains multiple domains involved in protein interactions that permit crosstalk between Cx43 and cytoskeletal and regulatory proteins. These domains endow Cx43 with the capacity to affect cell growth and differentiation independently of GJIC. Here, we review the current understanding of the regulation and unique functions of the Cx43 CT, both as an essential component of full-length Cx43 and as an independent signalling hub. We highlight the complex regulatory and signalling networks controlled by the Cx43 CT, including the extensive protein interactome that underlies both gap junction channel-dependent and -independent functions. We discuss these data in relation to the recent discovery of the direct translation of specific truncated forms of Cx43. This article is part of a Special Issue entitled: Gap Junction Proteins edited by Jean Claude Herve.
Collapse
Affiliation(s)
- Edward Leithe
- Department of Molecular Oncology, Institute for Cancer Research, University of Oslo, NO-0424 Oslo, Norway; Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, NO-0424 Oslo, Norway
| | - Marc Mesnil
- STIM Laboratory ERL 7368 CNRS - Faculté des Sciences Fondamentales et Appliquées, Université de Poitiers, Poitiers 86073, France
| | - Trond Aasen
- Translational Molecular Pathology, Vall d'Hebron Institute of Research (VHIR), Autonomous University of Barcelona, CIBERONC, 08035 Barcelona, Spain.
| |
Collapse
|
11
|
Bai X, Huang L, Hu K, Qu F. Inhibited proliferation of human umbilical artery smooth muscle cells by xanthinol nicotinate. Med Biol Eng Comput 2016; 54:891-8. [PMID: 26718554 DOI: 10.1007/s11517-015-1438-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Accepted: 12/12/2015] [Indexed: 11/26/2022]
Abstract
Vascular smooth muscle cell proliferation is a key event in the development of hypertension, instant restenosis and other cardiac disorders. Inhibition of this proliferation could lead to better prevention and treatment of these diseases. This study was designed to investigate the effects and mechanisms of different concentrations of xanthinol nicotinate (XN) on human umbilical artery smooth muscle cell (HUASMC) proliferation in vitro. HUASMCs were cultured by the tissue adherent method, passaged three times, and then identified by immunohistochemistry. HUASMCs were then treated with different concentrations of XN (0, 2.76, 27.6 or 276 µM), and a 3-(4,5-dimethylthiazol-2yl)-2, 5-diphenyltetrazolium bromide (MTT) assay was used to detect the inhibition of HUASMC proliferation. The levels of platelet-derived growth factor receptor (PDGFR) mRNA and protein (PDGFR-β) were detected on the cell membrane of these treated HUASMCs using RT-PCR and Western blot analysis, respectively. After culturing and passaging three times, 90 % of the cultured cells were identified as HUASMCs by immunohistochemistry. HUASMC proliferation was inhibited by XN in a dose-dependent manner (P < 0.05). Furthermore, XN dose-dependently decreased the PDGFR mRNA and PDGFR-β levels on the cell membranes of HUASMCs (P < 0.05). Thus, the results suggest that XN could become a potent therapeutic agent for regulating VSMC-associated vascular disease such as cardiovascular disease and restenosis after angioplasty.
Collapse
Affiliation(s)
- Xiaodan Bai
- Department of Pharmacy, The Second Affiliated Hospital of Harbin Medical University, 148 Baojian Road, Harbin, 150086, Heilongjiang Province, China
- Department of Pharmacy, Harbin Traditional Chinese Medical Hospital, 270 Jianguo Street, Daoli District, Harbin, 150076, Heilongjiang Province, China
| | - Lijun Huang
- Department of Pharmacy, The Second Affiliated Hospital of Harbin Medical University, 148 Baojian Road, Harbin, 150086, Heilongjiang Province, China
| | - Kejie Hu
- Department of Pharmacy, The Second Affiliated Hospital of Harbin Medical University, 148 Baojian Road, Harbin, 150086, Heilongjiang Province, China
- Department of Nephrology, The Second Affiliated Hospital of Harbin Medical University, 148 Baojian Road, Harbin, 150086, Heilongjiang Province, China
| | - Fujun Qu
- Department of Pharmacy, The Second Affiliated Hospital of Harbin Medical University, 148 Baojian Road, Harbin, 150086, Heilongjiang Province, China.
| |
Collapse
|
12
|
Kurtenbach S, Kurtenbach S, Zoidl G. Gap junction modulation and its implications for heart function. Front Physiol 2014; 5:82. [PMID: 24578694 PMCID: PMC3936571 DOI: 10.3389/fphys.2014.00082] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 02/10/2014] [Indexed: 01/04/2023] Open
Abstract
Gap junction communication (GJC) mediated by connexins is critical for heart function. To gain insight into the causal relationship of molecular mechanisms of disease pathology, it is important to understand which mechanisms contribute to impairment of gap junctional communication. Here, we present an update on the known modulators of connexins, including various interaction partners, kinases, and signaling cascades. This gap junction network (GJN) can serve as a blueprint for data mining approaches exploring the growing number of publicly available data sets from experimental and clinical studies.
Collapse
Affiliation(s)
- Stefan Kurtenbach
- Department of Psychology, Faculty of Health, York University Toronto, ON, Canada
| | - Sarah Kurtenbach
- Department of Psychology, Faculty of Health, York University Toronto, ON, Canada
| | - Georg Zoidl
- Department of Psychology, Faculty of Health, York University Toronto, ON, Canada ; Department of Biology, Faculty of Science, York University Toronto, ON, Canada ; Center for Vision Research, York University Toronto, ON, Canada
| |
Collapse
|
13
|
Shen W, Li L, Song B, Li W, Zhou Z, Guo R. Platelet-derived growth factor-BB increases expression of connexin 43 in an extracellular-regulated protein kinase-dependent manner in bladder smooth muscle cells. Int J Urol 2012; 20:123-30. [DOI: 10.1111/j.1442-2042.2012.03192.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 09/17/2012] [Indexed: 11/28/2022]
Affiliation(s)
- Wenhao Shen
- Urological Institution of the People's Liberation Army; First Affiliated Hospital of Third Military Medical University; Chongqing
| | - Longkun Li
- Urological Institution of the People's Liberation Army; First Affiliated Hospital of Third Military Medical University; Chongqing
| | - Bo Song
- Urological Institution of the People's Liberation Army; First Affiliated Hospital of Third Military Medical University; Chongqing
| | - Weibing Li
- Urological Institution of the People's Liberation Army; First Affiliated Hospital of Third Military Medical University; Chongqing
| | - Zhansong Zhou
- Urological Institution of the People's Liberation Army; First Affiliated Hospital of Third Military Medical University; Chongqing
| | - Ruiwei Guo
- Department of Cardiology; Kunming General Hospital of Chengdu Army; Kunming; China
| |
Collapse
|
14
|
Márquez-Rosado L, Singh D, Rincón-Arano H, Solan JL, Lampe PD. CASK (LIN2) interacts with Cx43 in wounded skin and their coexpression affects cell migration. J Cell Sci 2012; 125:695-702. [PMID: 22389404 DOI: 10.1242/jcs.084400] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Vertebrate gap junctions are composed of proteins from the connexin family. Co-immunoprecipitation, in vitro binding and far western experiments demonstrate that mammalian CASK (also known as LIN2) directly interacts with Cx43. Immunoprecipitation studies indicate that the CASK mainly interacts with the hypophosphorylated form of Cx43. Functional co-regulation of these proteins was found in MDCK cells migrating into a scratch wound, where expression of either protein individually inhibits migration but their coexpression abrogates this inhibitory effect. Immunofluorescence shows colocalization of Cx43 and CASK in mouse brain astrocytes and in response to wounding in human foreskin. During wounding, CASK is mobilized to the plasma membrane where it colocalizes with Cx43 and CADM1 1 hour after skin explant wounding. Together, these studies indicate that CASK interaction with Cx43 occurs relatively early in the connexin life cycle and imply a plasma membrane targeting role for the interaction that apparently affects cellular processes including cellular migration and wound healing.
Collapse
Affiliation(s)
- Lucrecia Márquez-Rosado
- Molecular Diagnostics Program, Human Biology and Public Health Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA 98109, USA
| | | | | | | | | |
Collapse
|
15
|
Schalper KA, Riquelme MA, Brañes MC, Martínez AD, Vega JL, Berthoud VM, Bennett MVL, Sáez JC. Modulation of gap junction channels and hemichannels by growth factors. MOLECULAR BIOSYSTEMS 2012; 8:685-98. [PMID: 22218428 DOI: 10.1039/c1mb05294b] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Gap junction hemichannels and cell-cell channels have roles in coordinating numerous cellular processes, due to their permeability to extra and intracellular signaling molecules. Another mechanism of cellular coordination is provided by a vast array of growth factors that interact with relatively selective cell membrane receptors. These receptors can affect cellular transduction pathways, including alteration of intracellular concentration of free Ca(2+) and free radicals and activation of protein kinases or phosphatases. Connexin and pannexin based channels constitute recently described targets of growth factor signal transduction pathways, but little is known regarding the effects of growth factor signaling on pannexin based channels. The effects of growth factors on these two channel types seem to depend on the cell type, cell stage and connexin and pannexin isoform expressed. The functional state of hemichannels and gap junction channels are affected in opposite directions by FGF-1 via protein kinase-dependent mechanisms. These changes are largely explained by channels insertion in or withdrawal from the cell membrane, but changes in open probability might also occur due to changes in phosphorylation and redox state of channel subunits. The functional consequence of variation in cell-cell communication via these membrane channels is implicated in disease as well as normal cellular responses.
Collapse
Affiliation(s)
- Kurt A Schalper
- Clínica Alemana de Santiago, Universidad del Desarrollo, Santiago, Chile
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Dunn CA, Su V, Lau AF, Lampe PD. Activation of Akt, not connexin 43 protein ubiquitination, regulates gap junction stability. J Biol Chem 2011; 287:2600-7. [PMID: 22139843 DOI: 10.1074/jbc.m111.276261] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The pore-forming gap junctional protein connexin 43 (Cx43) has a short (1-3 h) half-life in cells in tissue culture and in whole tissues. Although critical for cellular function in all tissues, the process of gap junction turnover is not well understood because treatment of cells with a proteasomal inhibitor results in larger gap junctions but little change in total Cx43 protein whereas lysosomal inhibitors increase total, mostly nonjunctional Cx43. To better understand turnover and identify potential sites of Cx43 ubiquitination, we prepared constructs of Cx43 with different lysines converted to arginines. However, when transfected into cells, a mutant version of Cx43 with all lysines converted to arginines behaved similarly to wild type in the presence of proteasomal and lysosomal inhibitors, indicating that ubiquitination of Cx43 did not appear to be playing a role in gap junction stability. Through the use of inhibitors and dominant negative constructs, we found that Akt (protein kinase B) activity controlled gap junction stability and was necessary to form larger stable gap junctions. Akt activation was increased upon proteasomal inhibition and resulted in phosphorylation of Cx43 at Akt phosphorylation consensus sites. Thus, we conclude that Cx43 ubiquitination is not necessary for the regulation of Cx43 turnover; rather, Akt activity, probably through direct phosphorylation of Cx43, controls gap junction stability. This linkage of a kinase involved in controlling cell survival and growth to gap junction stability may mechanistically explain how gap junctions and Akt play similar regulatory roles.
Collapse
Affiliation(s)
- Clarence A Dunn
- Molecular Diagnostics Program, Human Biology and Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | | | | | | |
Collapse
|
17
|
Yin X, Liu J, Jiang JX. Lens fiber connexin turnover and caspase-3-mediated cleavage are regulated alternately by phosphorylation. ACTA ACUST UNITED AC 2008; 15:1-11. [PMID: 18649174 DOI: 10.1080/15419060802253663] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Lens connexins are phosphorylated in vivo; however, the function and regulation of the phosphorylation remain largely unknown. We have previously identified an in vivo phosphorylation site, Ser(364), at the COOH terminus of lens connexin (Cx) Cx45.6 and phosphorylation appears to regulate connexin protein turnover. To assess the specific mechanism of Ser(364) phosphorylation in Cx45.6, exogenous wild type and Ser(364) mutant Cx45.6 were expressed in primary lens cultures through retroviral infection. Cx45.6 turnover was attenuated primarily by proteasomal inhibitors and to a lesser extent by lysosomal inhibitors. Furthermore, the level of Cx45.6 protein in ubiquitin co-expressed cells was significantly reduced as compared to the cells expressing Cx45.6 alone. Moreover, overexpression of ubiquitin led to a more significant decrease in wild type Cx45.6 than Cx45.6(S364A), a mutant deficient of phosphorylation site at Ser(364), although we did not detect any difference in the levels of ubiquitination between wild type and mutant Cx45.6. Interestingly, the mutant mimicking constitutive phosphorylation, Cx45.6(S364D), partially prevented the cleavage of Cx45.6 by caspase-3. Together, our data suggest that phosphorylation of Cx45.6 at Ser(364) appears to stimulate Cx45.6 turnover primarily through proteasome pathway and this phosphorylation inhibits the cleavage of Cx45.6 by caspase-3. These findings provide further insights into regulatory mechanism of the specific phosphorylation of connexins in the lens.
Collapse
Affiliation(s)
- Xinye Yin
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, Texas, USA
| | | | | |
Collapse
|
18
|
Solan JL, Marquez-Rosado L, Sorgen PL, Thornton PJ, Gafken PR, Lampe PD. Phosphorylation at S365 is a gatekeeper event that changes the structure of Cx43 and prevents down-regulation by PKC. ACTA ACUST UNITED AC 2008; 179:1301-9. [PMID: 18086922 PMCID: PMC2140020 DOI: 10.1083/jcb.200707060] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Phosphorylation at unspecified sites is known to regulate the life cycle (assembly, gating, and turnover) of the gap junction protein, Cx43. In this paper, we show that Cx43 is phosphorylated on S365 in cultured cells and heart tissue. Nuclear magnetic resonance structural studies of the C-terminal region of Cx43 with an S365D mutation indicate that it forms a different stable conformation than unphosphorylated wild-type Cx43. Immunolabeling with an antibody specific for Cx43 phosphorylated at S365 shows staining on gap junction structures in heart tissue that is lost upon hypoxia when Cx43 is no longer specifically localized to the intercalated disk. Efficient phosphorylation at S368, an important Cx43 channel regulatory event that increases during ischemia or PKC activation, depends on S365 being unphosphorylated. Thus, phosphorylation at S365 can serve a “gatekeeper” function that may represent a mechanism to protect cells from ischemia and phorbol ester-induced down-regulation of channel conductance.
Collapse
Affiliation(s)
- Joell L Solan
- Molecular Diagnostics Program and 2Proteomics Shared Resource, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | | | | | | | | | | |
Collapse
|
19
|
Leithe E, Rivedal E. Ubiquitination of gap junction proteins. J Membr Biol 2007; 217:43-51. [PMID: 17657522 DOI: 10.1007/s00232-007-9050-z] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2007] [Accepted: 05/14/2007] [Indexed: 12/01/2022]
Abstract
Gap junctions are plasma membrane domains containing arrays of channels that exchange ions and small molecules between neighboring cells. Gap junctional intercellular communication enables cells to directly cooperate both electrically and metabolically. Several lines of evidence indicate that gap junctions are important in regulating cell growth and differentiation and for maintaining tissue homeostasis. Gap junction channels consist of a family of transmembrane proteins called connexins. Gap junctions are dynamic structures, and connexins have a high turnover rate in most tissues. Connexin43 (Cx43), the best-studied connexin isoform, has a half-life of 1.5-5 h; and its degradation involves both the lysosomal and proteasomal systems. Increasing evidence suggests that ubiquitin is important in the regulation of Cx43 endocytosis. Ubiquitination of Cx43 is thought to occur at the plasma membrane and has been shown to be regulated by protein kinase C and the mitogen-activated protein kinase pathway. Cx43 binds to the E3 ubiquitin ligase Nedd4, in a process modulated by Cx43 phosphorylation. The interaction between Nedd4 and Cx43 is mediated by the WW domains of Nedd4 and involves a proline-rich sequence conforming to a PY (XPPXY) consensus motif in the C terminus of Cx43. In addition to the PY motif, an overlapping tyrosine-based sorting signal conforming to the consensus of an YXXphi motif is involved in Cx43 endocytosis, indicating that endocytosis of gap junctions involves both ubiquitin-dependent and -independent pathways. Here, we discuss current knowledge on the ubiquitination of connexins.
Collapse
Affiliation(s)
- Edward Leithe
- Department of Cancer Prevention, Institute for Cancer Research, Rikshospitalet-Radiumhospitalet Medical Center, 0310, Oslo, Norway.
| | | |
Collapse
|
20
|
Alvarez RH, Kantarjian HM, Cortes JE. Biology of platelet-derived growth factor and its involvement in disease. Mayo Clin Proc 2006; 81:1241-57. [PMID: 16970222 DOI: 10.4065/81.9.1241] [Citation(s) in RCA: 249] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Platelet-derived growth factor (PDGF) is mainly believed to be an important mitogen for connective tissue, especially for fibroblasts that serve in wound healing. However, PDGF also has important roles during embryonal development, and its overexpression has been linked to different types of fibrotic disorders and malignancies. Platelet-derived growth factor is synthesized by many different cell types, and its expression is broad. Its synthesis is in response to external stimuli, such as exposure to low oxygen tension, thrombin, or stimulation by other cytokines and growth factors. In addition, PDGF may function in autocrine stimulation of tumor cells, regulation of interstitial fluid pressure, and angiogenesis. Recently, several drugs were developed that are potent inhibitors of the tyrosine kinase activity of PDGF receptors. Thus, it is important to understand the physiology of PDGF and its receptors and the role of PDGF in different diseases. This review summarizes the physiologic activity of PDGF, the expression of PDGF during embryonal development, and the roles of PDGF expression in nonmalignant disease and in different tumors.
Collapse
Affiliation(s)
- Ricardo H Alvarez
- Department of Internal Medicine, The University of Texas at Houston Medical School, Houston, USA
| | | | | |
Collapse
|
21
|
Lin H, Ogawa K, Imanaga I, Tribulova N. Remodeling of connexin 43 in the diabetic rat heart. Mol Cell Biochem 2006; 290:69-78. [PMID: 16633735 DOI: 10.1007/s11010-006-9166-y] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2005] [Accepted: 02/22/2006] [Indexed: 10/24/2022]
Abstract
In the Streptozotocin-induced diabetic rat heart, a decrease in the conductivity and suppression of electrical cell-to-cell coupling were observed. To clarify this mechanism, the present study was performed to investigate alterations of the gap junction connexin 43 (Cx43) using immunoblotting, immunohistochemistry, electron-microscopic analyses. An enhanced activation of PKCepsilon, an augmentation of PKCepsilon-mediated phosphorylation of Cx43, a decrease in the total amount of Cx43, a reduction in the area of immunoreactive particles for Cx43 at the intercalated disk, distribution of Cx43 to cell periphery or cytoplasm and the internalization approximately annular profiles of the gap junction were all characteristically recognized in the diabetic heart. Such abnormalities in the expression of Cx43 were alleviated by treatment with either lysosomal (NH(4)Cl, Leupeptin) or proteasomal inhibitor (ALLN). These results suggest that the PKCepsilon-mediated hyperphosphorylation of Cx43 makes Cx43 vulnerable to proteolytic degradation and that a decrease in the conductivity in the diabetic heart is also caused by a decrease in the number of gap junction channels due to an acceleration of the proteolytic degradation of Cx43. The remodeling of Cx43 induced by the activation of PKCepsilon may therefore contribute to the formation of the arrhythmogenic substrate in the diabetic heart. The cardioprotective effect of the remodeling of Cx43 by PKCepsilon is discussed.
Collapse
Affiliation(s)
- Hai Lin
- Department of Physiology, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | | | | | | |
Collapse
|
22
|
Cushing P, Bhalla R, Johnson AM, Rushlow WJ, Meakin SO, Belliveau DJ. Nerve growth factor increases connexin43 phosphorylation and gap junctional intercellular communication. J Neurosci Res 2006; 82:788-801. [PMID: 16302187 DOI: 10.1002/jnr.20689] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The function of gap junctions is regulated by the phosphorylation state of their connexin subunits. Numerous growth factors are known to regulate connexin phosphorylation; however, the effect of nerve growth factor on gap junction function is not understood. The phosphorylation of connexin subunits is a key event during many aspects of the lifecycle of a connexin, including open/close states, assembly/trafficking, and degradation, and thus affects the functionality of the channel. PC12 cells infected with connexin43 (Cx43) retrovirus were used as a neuronal model to characterize the signal transduction pathways activated by nerve growth factor (NGF) that potentially affect the functional state of Cx43. Immunoblot analysis demonstrated that Cx43 and the mitogen-activated protein kinase (MAPK), ERK-1/2, were phosphorylated in response to TrkA activation via NGF and that phosphorylation could be prevented by treatment with the MEK-1/2 inhibitor U0126. The effects of NGF on gap junction intercellular communication were examined by monitoring fluorescence recovery after photobleaching PC12-Cx43 cells preloaded with calcein. Fluorescence recovery in the photobleached area increased after NGF treatment and decreased when pretreated with the MEK-1/2 inhibitor U0126. These data are the first to show a direct signaling link between neurotrophins and the phosphorylation of connexin proteins through the MAPK pathway resulting in increased gap junctional intercellular communication. Neurotrophic regulation of connexin activity provides a novel mechanism of regulating intercellular communication between neurons during nervous system development and repair.
Collapse
Affiliation(s)
- Paul Cushing
- Department of Anatomy and Cell Biology, Faculty of Medicine and Dentistry, The University of Western Ontario, London, Canada
| | | | | | | | | | | |
Collapse
|
23
|
Yao J, Kitamura M, Zhu Y, Meng Y, Kasai A, Hiramatsu N, Morioka T, Takeda M, Oite T. Synergistic effects of PDGF-BB and cAMP-elevating agents on expression of connexin43 in mesangial cells. Am J Physiol Renal Physiol 2005; 290:F1083-93. [PMID: 16263806 DOI: 10.1152/ajprenal.00134.2005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The gap junction plays an important role in the regulation of cell growth, migration, and differentiation. Platelet-derived growth factor (PDGF) is reported to be a potent inhibitor of gap junctional intercellular communication (GJIC). Short-term exposure of cells to PDGF causes rapid and transient disruption of GJIC without altering connexin43 (Cx43) protein level. In this study, we investigated long-term effects of PDGF-BB on Cx43 expression in mesangial cells (MCs). Exposure of MCs to PDGF-BB affected neither the Cx43 protein level nor GJIC. However, in the presence of cAMP-elevating agents, PDGF-BB dramatically increased the expression of Cx43, which was accompanied by obviously augmented membrane distribution of Cx43 and functional GJIC. The increased expression of Cx43 was closely correlated with reduction in alpha-actin, a dedifferentiation marker of MCs. The effect of PDGF on Cx43 was largely prevented by inhibitors of phosphatidylinositol 3'-kinase or mitogen-activated protein kinase, but not by inhibition of protein kinase C. Exposure of MCs to PDGF-BB caused elevation in intracellular cAMP, and it was abolished by indomethacin, a cyclooxygenase inhibitor. However, indomethacin did not affect the synergistic effect. In addition, PDGF-BB also did not affect the degradation of Cx43. With the use of MCs transfected with a Cx43 promoter-luciferase vector, cooperative activation of Cx43 promoter by PDGF and cAMP was found. Together, our data reveal, for the first time, unexpected synergy between PDGF-BB and cAMP-elevating agents in the induction of Cx43 and MC differentiation. Regulation of GJIC could be an important mechanism via which PDGF modulates MC phenotypes.
Collapse
Affiliation(s)
- Jian Yao
- Dept. of Molecular Signaling, Interdisciplinary Graduate School of Medicine and Engineering, Univ. of Yamanashi, Tamaho, Yamanashi 409-3898, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Rivedal E, Leithe E. Connexin43 synthesis, phosphorylation, and degradation in regulation of transient inhibition of gap junction intercellular communication by the phorbol ester TPA in rat liver epithelial cells. Exp Cell Res 2005; 302:143-52. [PMID: 15561096 DOI: 10.1016/j.yexcr.2004.09.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2004] [Revised: 09/09/2004] [Indexed: 11/27/2022]
Abstract
The tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA) induces transient inhibition of gap junction intercellular communication (GJIC) in several cell types. The initial block in GJIC has been attributed to protein kinase C (PKC) mediated phosphorylation of connexin gap junction proteins, including connexin43 (Cx43). Restoration of GJIC, associated with normalization of the Cx43 phosphorylation status, has been ascribed to different events, including dephosphorylation of Cx43 and de novo synthesis of Cx43 or other, non-gap junctional, proteins. The data presented suggest that restoration of GJIC during continuous TPA exposure in normal and transformed rat liver epithelial cells is dependent on synthesis of Cx43 protein, as well as the transport of already synthesized Cx43 from intracellular pools to the plasma membrane. Reactivation of inactivated Cx43 by dephosphorylation does not appear to be involved in the recovery of GJIC. Both PKC and MAP kinase is involved in TPA-induced degradation of Cx43 and inhibition of GJIC. We show that coincubation of TPA with the protein synthesis inhibitor cycloheximide or the transcription inhibitor actinomycin D results in synergistic enhancement of the level of activated ERK1/2. Together, the present data highlight Cx43 degradation and synthesis as critical determinants in TPA-induced modifications of cell-cell communication via gap junctions.
Collapse
Affiliation(s)
- Edgar Rivedal
- Institute for Cancer Research, The Norwegian Radium Hospital, Montebello, N-0310 Oslo, Norway
| | | |
Collapse
|
25
|
Lampe PD, Lau AF. The effects of connexin phosphorylation on gap junctional communication. Int J Biochem Cell Biol 2004; 36:1171-86. [PMID: 15109565 PMCID: PMC2878204 DOI: 10.1016/s1357-2725(03)00264-4] [Citation(s) in RCA: 459] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2003] [Accepted: 07/10/2003] [Indexed: 11/25/2022]
Abstract
Gap junctions are specialized membrane domains composed of collections of channels that directly connect neighboring cells providing for the cell-to-cell diffusion of small molecules, including ions, amino acids, nucleotides, and second messengers. Vertebrate gap junctions are composed of proteins encoded by the "connexin" gene family. In most cases examined, connexins are modified post-translationally by phosphorylation. Phosphorylation has been implicated in the regulation of gap junctional communication at several stages of the connexin "lifecycle", such as the trafficking, assembly/disassembly, degradation, as well as, the gating of gap junction channels. Since connexin43 (Cx43) is widely expressed in tissues and cell lines, we understand the most about how it is regulated, and thus, connexin43 phosphorylation is a major focus of this review. Recent reports utilizing new methodologies combined with the latest genome information have shown that activation of several kinases including protein kinase A, protein kinase C, p34(cdc2)/cyclin B kinase, casein kinase 1, mitogen-activated protein (MAP) kinase and pp60(src) kinase can lead to phosphorylation at 12 of the 21 serine and two of the six tyrosine residues in the C-terminal region of connexin43. In several cases, use of site-directed mutants of these sites have shown that these specific phosphorylation events can be linked to changes in gap junctional communication.
Collapse
Affiliation(s)
- Paul D Lampe
- Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North DE-320, Box 19024, Seattle, WA 98109, USA.
| | | |
Collapse
|
26
|
Brück P, Wassmann B, Lopez ER, Hoelzer D, Ottmann OG. Development of hygromas or severe edema during treatment with the tyrosine kinase inhibitor STI571 is not associated with platelet-derived growth factor receptor (PDGFR) gene polymorphisms. Leuk Res 2004; 28:1153-7. [PMID: 15380338 DOI: 10.1016/j.leukres.2004.03.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2004] [Accepted: 03/12/2004] [Indexed: 10/26/2022]
Abstract
STI571 is active against Bcr/Abl-, c-kit- and platelet-derived growth factor receptor (PDGFR)-driven malignancies. Mild to moderate edema is common, whereas severe edema, body cavity effusions and subdural hygromas are rarely observed. These effects have been suggested to involve inhibition of PDGFR signaling, but predisposing factors are unknown. We examined SNPs in the PDGFR alpha and beta gene regions in STI571-treated patients with and without life-threatening edema or cerebral hygromas, and in healthy volunteers. By RFLP analysis of 15 SNPs, the frequencies of genotypes did not differ between the three groups. SNPs of PDGFR genes do not appear to play a role in patient's susceptibility to clinically severe edema formation during treatment with STI571.
Collapse
Affiliation(s)
- Patrick Brück
- Department of Hematology and Oncology, Medizinische Klinik III, Johann Wolfgang Goethe-University, Theodor-Stern-Kai 7, 60590 Frankfurt a.M., Germany.
| | | | | | | | | |
Collapse
|
27
|
Brandner JM, Houdek P, Hüsing B, Kaiser C, Moll I. Connexins 26, 30, and 43: Differences Among Spontaneous, Chronic, and Accelerated Human Wound Healing. J Invest Dermatol 2004; 122:1310-20. [PMID: 15140236 DOI: 10.1111/j.0022-202x.2004.22529.x] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Gap junctions (GJ) are known to be involved in spontaneous wound healing in rodent skin. We analyzed the staining patterns of the GJ proteins Cx26, Cx30, and Cx43 in human cutaneous wound healing and compared ex vivo spontaneous wound healing to non-healing wounds (chronic leg ulcers) and to ex vivo accelerated wound healing after transplantation of cultured keratinocytes. We demonstrate a loss of Cx43 staining at the wound margins during initial wound healing and after transplantation of keratinocytes. In contrast, Cx43 remains present at the margins of most non-healing wounds. We show a subsequent induction of Cx26 and Cx30 near the wound margins in spontaneous wound healing and-even earlier-after the transplantation of keratinocytes. The cells at the wound margins remain negative until the commencement of epidermal regeneration. Cx26/30 are present at the wound margins of most non-healing wounds. Cx stainings are absent in the transplanted keratinocytes during early wound healing, but there is a subsequent induction. Our results suggest that the downregulation of Cx43 is an important event in human wound healing. We discuss the assumption that direct cell-cell communication via GJ contribute to the acceleration of wound healing after the transplantation of keratinocytes.
Collapse
Affiliation(s)
- Johanna M Brandner
- Department of Dermatology and Venerology, University Hospital Hamburg-Eppendorf, Hamburg, Germany.
| | | | | | | | | |
Collapse
|
28
|
Ogawa T, Hayashi T, Kyoizumi S, Kusunoki Y, Nakachi K, MacPhee DG, Trosko JE, Kataoka K, Yorioka N. Anisomycin downregulates gap-junctional intercellular communication via the p38 MAP-kinase pathway. J Cell Sci 2004; 117:2087-96. [PMID: 15054109 DOI: 10.1242/jcs.01056] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Phosphorylation of connexin 43 (Cx43) molecules (e.g. by extracellular signal-regulated kinase) leads to reductions in gap-junctional intercellular communication (GJIC). GJIC levels also appear to be lower in the presence of p38 mitogen-activated protein (MAP) kinase, for unknown reasons. In this study, we used assays of the recovery of fluorescence by photobleached WB-F344 cells to demonstrate that GJIC levels are decreased by anisomycin [a protein synthesis inhibitor as well as an activator of p38 MAP kinase and c-Jun N-terminal kinases (JNK)] as a result of time-dependent depletion of the phosphorylated forms of Cx43. Using immunohistochemistry, we also detected far less of the Cx43 proteins at cell borders. These findings agree with the photobleaching assay results. Moreover, prior treatment with SB203580 (a specific inhibitor of p38 MAP kinase) appeared to be effective in preventing the loss of phosphorylated forms of Cx43 and the loss of Cx43 proteins at cell borders. Total protein labelling with [35S]-methionine and [32P]-orthophosphates labelling of Cx43 showed that anisomycin enhanced the phosphorylation level of Cx43 along with inhibition of protein synthesis. SB203580 prevented the former but not the latter. The effect of anisomycin on GJIC was not dependent on the inhibition of protein synthesis because the addition of SB203580 completely maintained the level of GJIC without restoring protein synthesis. The Cx43 phosphorylation level increased by anisomycin treatment, whereas the amount of phosphorylated forms of Cx43 decreased, suggesting that activation of Cx43 phosphorylation might lead to the loss of Cx43. These results suggest that activation of p38 MAP kinase leads to reduction in the levels of phosphorylated forms of Cx43, possibly owing to accelerated degradation, and that these losses might be responsible for the reduction in numbers of gap junctions and in GJIC.
Collapse
Affiliation(s)
- Takahiko Ogawa
- Department of Radiobiology and Molecular Epidemiology, Radiation Effects Research Foundation, Hiroshima, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Saez JC, Berthoud VM, Branes MC, Martinez AD, Beyer EC. Plasma membrane channels formed by connexins: their regulation and functions. Physiol Rev 2003; 83:1359-400. [PMID: 14506308 DOI: 10.1152/physrev.00007.2003] [Citation(s) in RCA: 881] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Members of the connexin gene family are integral membrane proteins that form hexamers called connexons. Most cells express two or more connexins. Open connexons found at the nonjunctional plasma membrane connect the cell interior with the extracellular milieu. They have been implicated in physiological functions including paracrine intercellular signaling and in induction of cell death under pathological conditions. Gap junction channels are formed by docking of two connexons and are found at cell-cell appositions. Gap junction channels are responsible for direct intercellular transfer of ions and small molecules including propagation of inositol trisphosphate-dependent calcium waves. They are involved in coordinating the electrical and metabolic responses of heterogeneous cells. New approaches have expanded our knowledge of channel structure and connexin biochemistry (e.g., protein trafficking/assembly, phosphorylation, and interactions with other connexins or other proteins). The physiological role of gap junctions in several tissues has been elucidated by the discovery of mutant connexins associated with genetic diseases and by the generation of mice with targeted ablation of specific connexin genes. The observed phenotypes range from specific tissue dysfunction to embryonic lethality.
Collapse
Affiliation(s)
- Juan C Saez
- Departamento de Ciencias Fisiológicas, Pontificia Universidad Católica de Chile, Alameda 340, Santiago, Chile.
| | | | | | | | | |
Collapse
|
30
|
Ma XD, Ma X, Sui YF, Wang WL, Wang CM. Signal transduction of gap junctional genes, connexin32, connexin43 in human hepatocarcinogenesis. World J Gastroenterol 2003; 9:946-50. [PMID: 12717835 PMCID: PMC4611402 DOI: 10.3748/wjg.v9.i5.946] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2002] [Revised: 06/23/2002] [Accepted: 07/15/2002] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate gap junctional intercellular communication (GJIC) in hepatocellular carcinoma cell lines, and signal transduction mechanism of gap junction genes connexin32(cx32),connexin43(cx43) in human hepatocarcinogenesis. METHODS Scarped loading and dye transfer (SLDT) was employed with Lucifer Yellow (LY) to detect GJIC function in hepatocellular carcinoma cell lines HHCC, SMMC-7721 and normal control liver cell line QZG. After Fluo-3AM loading, laser scanning confocal microscope (LSCM) was used to measure concentrations of intracellular calcium (Ca(2+))i in the cells. The phosphorylation on tyrosine of connexin proteins was examined by immunoblot. RESULTS SLDT showed that ability of GJIC function was higher in QZG cell than that in HHCC and SMMC-7721 cell lines. By laser scanning confocal microscopy, concentrations of intracellular free calcium (Ca(2+))i was much higher in QZG cell line (108.37 nmol/L) than those in HHCC (35.13 nmol/L) and SMMC-7721 (47.08 nmol/L) cells. Western blot suggested that only QZG cells had unphosphorylated tyrosine in Cx32 protein of 32 ku and Cx43 protein of 43 ku; SMMC-7721 cells showed phosphorylated tyrosine Cx43 protein. CONCLUSION The results indicated that carcinogenesis and development of human hepatocellular carcinoma related with the abnormal expression of cx genes and disorder of its signal transduction pathway, such as decrease of (Ca(2+))i, post-translation phosphorylation on tyrosine of Cx proteins which led to a dramatic disruption of GJIC.
Collapse
Affiliation(s)
- Xiang-Dong Ma
- Department of Obstetrics and Gynecology, Xijing Hospital, Fourth Military Medical University, 17 Changle Xilu, Xi'an 710033, Shaanxi Province, China.
| | | | | | | | | |
Collapse
|
31
|
Silverstein DM, Thornhill BA, Leung JC, Vehaskari VM, Craver RD, Trachtman HA, Chevalier RL. Expression of connexins in the normal and obstructed developing kidney. Pediatr Nephrol 2003; 18:216-24. [PMID: 12644912 DOI: 10.1007/s00467-002-1065-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2002] [Revised: 10/15/2002] [Accepted: 10/15/2002] [Indexed: 10/25/2022]
Abstract
Connections between cells are achieved by proteins called connexins that comprise the gap junction. Connexins play a major role in organ development. Our reverse transcription-polymerase chain reaction (RT-PCR) studies demonstrate that Cx30, Cx36, Cx37, Cx40, Cx45, Cx46, and Cx50 are expressed in the kidney. Quantitative RT-PCR indicates that Cx37, Cx45, and Cx46 are preferentially expressed during early renal development. We also explored the expression of connexins in neonatal unilateral ureteral obstruction (UUO). After 12 days of neonatal UUO, the renal mRNA expression of Cx30, Cx37, and Cx40 was significantly elevated. In contrast, there was no change in connexin renal mRNA levels in adult UUO. We conclude that multiple connexins are expressed in the rat kidney and several are aberrantly expressed in neonatal UUO.
Collapse
Affiliation(s)
- Douglas M Silverstein
- Division of Nephrology, Department of Pediatrics, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA.
| | | | | | | | | | | | | |
Collapse
|
32
|
Lidington D, Tyml K, Ouellette Y. Lipopolysaccharide-induced reductions in cellular coupling correlate with tyrosine phosphorylation of connexin 43. J Cell Physiol 2002; 193:373-9. [PMID: 12384989 DOI: 10.1002/jcp.10179] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
We have previously shown in cultured rat microvascular endothelial cells (RMEC) that lipopolysaccharide (LPS) stimulates a protein tyrosine kinase (PTK)-dependent reduction in cellular coupling. We hypothesized that connexin 43 (Cx43) becomes phosphorylated following exposure to LPS. Cx43 was immunoprecipitated from control and LPS-treated RMEC monolayers. Tyrosine phosphorylation of Cx43, detected by immunoblot, was found only in the LPS treatment. To verify these results, Cx43 was radiolabeled with [(32)P]-orthophosphate. Radiolabeled Cx43 exhibited a slight increase in phosphorylation in response to LPS; phosphoamino acid analysis displayed equivalent amounts of phosphoserine in control and LPS treatments, but detected phosphotyrosine only in the LPS treatment. The PTK inhibitors PP-2 (10 nM) and geldanamycin (200 nM) were found to block the response to LPS in terms of Cx43 tyrosine phosphorylation and cellular coupling. The phosphatase inhibitor BpV (1 microM) accentuated the effect of LPS, while the putative phosphatase activator C(6)-ceramide prevented it. When measuring cell communication, phosphatase inhibition also blocked the reversal of the LPS response following LPS washout. We conclude that Cx43 is tyrosine phosphorylated following exposure to LPS and suggest that the LPS-induced increase in intercellular resistance may be mediated by tyrosine phosphorylation of this connexin. Altering tyrosine kinase and phosphatase activities can modulate the LPS-induced tyrosine phosphorylation of Cx43 and reductions in cellular coupling.
Collapse
Affiliation(s)
- Darcy Lidington
- Child Health Research Institute, University of Western Ontario, London, Ontario, Canada
| | | | | |
Collapse
|
33
|
Zhang YW, Yao XS, Murota S, Morita I. Inhibitory effects of eicosapentaenoic acid (EPA) on the hypoxia/reoxygenation-induced tyrosine kinase activation in cultured human umbilical vein endothelial cells. Prostaglandins Leukot Essent Fatty Acids 2002; 67:253-61. [PMID: 12401440 DOI: 10.1054/plef.2002.0427] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We have previously reported that the n-3 polyunsaturated fatty acid eicosapentaenoic acid (EPA) inhibited the abnormal gap junctional intercellular communication (GJIC) induced by hypoxia/reoxygenation (H/R) via suppressing tyrosine kinase (TK) activation (Zhang et al., Prostaglandins Leukot Essent Fatty Acids, 1999; 61: 33-40). However, the mechanisms by which EPA-inhibited TK activation remained unidentified. In this study we investigated whether reactive oxygen species (ROS) and growth factor-receptor systems would contribute to the H/R-induced TK activation or not. The results showed that H/R-induced ROS production, which reached the peak after 30 min of reoxygenation. Pretreatment with 10 microM EPA significantly inhibited this ROS production. However, the TK inhibitor genistein (10 microM) failed to inhibit the generation of ROS, although it completely inhibited TK activation. On the other hand, the ROS inhibitor DMSO (0.5% v/v) showed little effect on TK activation while it significantly blocked ROS production. Further EPA and genistein, but not DMSO and superoxide dismutase (SOD, 300 U/ml), prevented cells from GJIC injury induced by H/R. Moreover, EPA protected against VEGF-induced reduction in GJIC and phosphorylation of connexin 43. These data suggest that growth factor, but not ROS, might be involved in the EPA-inhibited TK activation induced by H/R.
Collapse
Affiliation(s)
- Y W Zhang
- Section of Cellular Physiological Chemistry, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | | | | | | |
Collapse
|
34
|
Yin X, Gu S, Jiang JX. The development-associated cleavage of lens connexin 45.6 by caspase-3-like protease is regulated by casein kinase II-mediated phosphorylation. J Biol Chem 2001; 276:34567-72. [PMID: 11448971 DOI: 10.1074/jbc.m106073200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Gap junctions are important in maintaining lens transparency and metabolic homeostasis. In this paper, we report that the gap junction-forming protein, connexin (Cx) 45.6, was specifically truncated during lens development and that the majority of the truncated fragments were located in the differentiated lens fibers. When isolated lens membranes were treated by caspase-3, the truncated fragments of Cx45.6 were reproduced, and this truncation occurred at the COOH terminus of Cx45.6. Moreover, when primary lens cells were treated with apoptosis-inducing reagents, Cx45.6 was cleaved similarly as the in vitro treatment by caspase-3, and this cleavage was blocked by a caspase-3 inhibitor. These results suggest that caspase-3 is responsible for the development-associated cleavage of Cx45.6. The cleavage site of Cx45.6 was identified between amino acid residues Glu(367) and Gly(368). We have shown previously that Ser(363) is an in vivo phosphorylated site by casein kinase II, and this specific phosphorylation leads to a rapid turnover of Cx45.6. Interestingly, we found here that when Ser(363) was phosphorylated by casein kinase II, the cleavage of Cx45.6 catalyzed by caspase-3 was inhibited. This study, for the first time, demonstrates that a connexin can be a direct target of an apoptotic protease and that cleavage by caspase-3-like protease leads to the development-associated truncation of a lens connexin. Finally, caspase-3-mediated cleavage can be regulated by casein kinase II-mediated phosphorylation, suggesting that Cx45.6 turnover and specific cleavage by caspase-3-like protease is alternatively modulated.
Collapse
Affiliation(s)
- X Yin
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, Texas 78229-3900, USA
| | | | | |
Collapse
|
35
|
Lauf U, Lopez P, Falk MM. Expression of fluorescently tagged connexins: a novel approach to rescue function of oligomeric DsRed-tagged proteins. FEBS Lett 2001; 498:11-5. [PMID: 11389889 DOI: 10.1016/s0014-5793(01)02462-0] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A novel, brilliantly red fluorescent protein, DsRed has become available recently opening up a wide variety of experimental opportunities for double labeling and fluorescence resonance electron transfer experiments in combination with green fluorescent protein (GFP). Unlike in the case of GFP, proteins tagged with DsRed were often found to aggregate within the cell. Here we report a simple method that allows rescuing the function of an oligomeric protein tagged with DsRed. We demonstrate the feasibility of this approach on the subunit proteins of an oligomeric membrane channel, gap junction connexins. Additionally, DsRed fluorescence was easily detected 12-16 h post transfection, much earlier than previously reported, and could readily be differentiated from co-expressed GFP. Thus, this approach can eliminate the major drawbacks of this highly attractive autofluorescent protein.
Collapse
Affiliation(s)
- U Lauf
- Department of Cell Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
36
|
Huang RP, Peng A, Golard A, Hossain MZ, Huang R, Liu YG, Boynton AL. Hydrogen peroxide promotes transformation of rat liver non-neoplastic epithelial cells through activation of epidermal growth factor receptor. Mol Carcinog 2001; 30:209-17. [PMID: 11346883 DOI: 10.1002/mc.1030] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Previous studies demonstrated that hydrogen peroxide (H(2)O(2)) is a tumor promoter in the rat liver epithelial cell line T51B. We investigated the pathway linking H(2)O(2) to tumor promotion. H(2)O(2) can directly induce tyrosine phosphorylation of epidermal growth factor receptor (EGFR). H(2)O(2) and epidermal growth factor exerted similar effects on the induction of early growth response genes, disruption of gap junction communication, triggering of calcium inflow, and promotion of transformation. Furthermore, the effect of H(2)O(2) on tumor promotion was blocked by abrogation of EGFR activation. Our results suggested that tumor promotion by H(2)O(2) is mediated mainly through activation of EGFR in T51B cells.
Collapse
Affiliation(s)
- R P Huang
- Division of Research, Department of Gynecology and Obstetrics, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Huang RP, Hossain MZ, Huang R, Gano J, Fan Y, Boynton AL. Connexin 43 (cx43) enhances chemotherapy-induced apoptosis in human glioblastoma cells. Int J Cancer 2001. [DOI: 10.1002/1097-0215(200102)9999:9999<::aid-ijc1165>3.0.co;2-g] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
38
|
Ostman A, Heldin CH. Involvement of platelet-derived growth factor in disease: development of specific antagonists. Adv Cancer Res 2001; 80:1-38. [PMID: 11034538 DOI: 10.1016/s0065-230x(01)80010-5] [Citation(s) in RCA: 151] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Platelet-derived growth factor (PDGF) is a family of dimeric isoforms that stimulates, e.g., growth, chemotaxis and cell shape changes of various connective tissue cell types and certain other cells. The cellular effects of PDGF isoforms are exerted through binding to two structurally related tyrosine kinase receptors. Ligand binding induces receptor dimerization and autophosphorylation. This enables a number of SH2 domain containing signal transduction molecules to bind to the receptors, thereby initiating various signaling pathways. PDGF isoforms have important roles during the embryonic development, particularly in the formation of connective tissue in various organs. In the adult, PDGF stimulates wound healing. Overactivity of PDGF has been implicated in certain disorders, including fibrotic conditions, atherosclerosis, and malignancies. Different kinds of PDGF antagonists are currently being developed and evaluated in different animal disease models, as well as in clinical trials.
Collapse
Affiliation(s)
- A Ostman
- Ludwig Institute for Cancer Research, Biomedical Center, Uppsala, Sweden
| | | |
Collapse
|
39
|
Abstract
Gap junctions are a unique type of intercellular junction found in most animal cell types. Gap junctions permit the intercellular passage of small molecules and have been implicated in diverse biological processes, such as development, cellular metabolism, and cellular growth control. In vertebrates, gap junctions are composed of proteins from the "connexin" gene family. The majority of connexins are modified posttranslationally by phosphorylation, primarily on serine amino acids; however, phosphotyrosine has also been detected in connexin from cells coexpressing nonreceptor tyrosine protein kinases. Connexins are targeted by numerous protein kinases, of which some have been identified: protein kinase C, mitogen-activated protein kinase, and the v-Src tyrosine protein kinase. Phosphorylation has been implicated in the regulation of a broad variety of connexin processes, such as the trafficking, assembly/disassembly, degradation, as well as the gating of gap junction channels. This review examines the consequences of connexin phosphorylation for the regulation of gap junctional communication.
Collapse
Affiliation(s)
- P D Lampe
- Fred Hutchinson Research Center, Seattle, Washington 98109, USA
| | | |
Collapse
|
40
|
Yao J, Morioka T, Oite T. PDGF regulates gap junction communication and connexin43 phosphorylation by PI 3-kinase in mesangial cells. Kidney Int 2000; 57:1915-26. [PMID: 10792610 DOI: 10.1046/j.1523-1755.2000.00041.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
BACKGROUND Gap junctional intercellular communication (GJIC) plays an important role in the regulation of cell growth, migration, and differentiation. Ultrastructural and histochemical studies indicate the existence of a high density of gap junctions among mesangial cells (MCs), but little is known about their regulation. Because of the close link between growth and GJIC, we examined how platelet-derived growth factor (PDGF) may affect GJIC in cultured MCs. METHODS MCs were exposed to PDGF in the presence or absence of phosphatidylinositol 3' kinase (PI3K) inhibitors, and GJIC was evaluated by the transfer of Lucifer yellow. The gap junction protein connexin43 (Cx43) was examined by immunohistochemistry, immunoprecipitation, and Western blot. RESULTS The addition of PDGF into MC culture caused a rapid and transient inhibition of GJIC, with maximal inhibition (80%) occurring 15 minutes after PDGF exposure and returning to control levels after 90 minutes. This action of PDGF could be largely prevented by pretreatment of MCs with the PI3K inhibitor LY294002. Immunochemical staining showed that PDGF did not alter the localization and distribution of Cx43. Immunoprecipitation studies demonstrated that PDGF induced a rapid and transient increase of tyrosine phosphorylation of Cx43 protein, which was dose dependent and in accordance with the time course of the disruption of GJIC. PDGF also elicited activation of extracellular signal-regulated kinase (ERK). Using two structurally unrelated PI3K inhibitors, wortmanin and LY294002, both tyrosine phosphorylation of Cx43 and activation of ERK stimulated by PDGF were largely blocked. CONCLUSION These results suggest that PDGF abrogates GJIC function in MCs via the PI3K-dependent signaling pathway. Disruption of GJIC by PDGF could be one mechanism by which PDGF modulates MC behavior. Participation of PI3K in the regulation of GJIC demonstrates the complex coordination of molecular events that accompany MC mitogenesis.
Collapse
Affiliation(s)
- J Yao
- Department of Cellular Physiology, Institute of Nephrology, Niigata University School of Medicine, Niigata, Japan
| | | | | |
Collapse
|
41
|
Yin X, Jedrzejewski PT, Jiang JX. Casein kinase II phosphorylates lens connexin 45.6 and is involved in its degradation. J Biol Chem 2000; 275:6850-6. [PMID: 10702244 DOI: 10.1074/jbc.275.10.6850] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Connexin (Cx) 45.6, an avian counterpart of rodent Cx50, is phosphorylated in vivo, but the sites and function of the phosphorylation have not been elucidated. Our peptide mapping experiments showed that the Ser(363) site in the carboxyl (COOH) terminus of Cx45.6 was phosphorylated and that this site is within casein kinase (CK) II consensus sequence, although showing some similarity to CKI sequence. The peptide containing Ser(363) could be phosphorylated in vitro by CKII, but not by CKI. Furthermore, CKII phosphorylated Cx45.6 in embryonic lens membrane and the fusion protein containing the COOH terminus of Cx45.6. Two-dimensional peptide mapping experiments showed that one of the Cx45.6 peptides phosphorylated in vivo migrated to the same spot as one of those phosphorylated by CKII in vitro. Furthermore, CKII activity could be detected in lens lysates. To assess the function of this phosphorylation event, exogenous wild type and mutant Cx45.6 (Ser(363) --> Ala) were expressed in lens primary cultures by retroviral infection. The mutant Cx45.6 was shown to be more stable having a longer half-life compared with wild type Cx45.6. Together, the evidence suggests that CKII is likely a kinase responsible for the Ser(363) phosphorylation, leading to the destablization and degradation of Cx45.6. The connexin degradation induced by phosphorylation has a broad functional significance in the regulation of gap junctions in vivo.
Collapse
Affiliation(s)
- X Yin
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, Texas 78284-7760, USA
| | | | | |
Collapse
|
42
|
Doble BW, Ping P, Kardami E. The epsilon subtype of protein kinase C is required for cardiomyocyte connexin-43 phosphorylation. Circ Res 2000; 86:293-301. [PMID: 10679481 DOI: 10.1161/01.res.86.3.293] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Gap junctions (GJs), composed of connexins, are intercellular channels ensuring electric and metabolic coupling between cardiomyocytes. We have shown previously that an endogenous mitogenic and cardioprotective protein, fibroblast growth factor-2 (FGF-2), decreases cardiomyocyte GJ permeability by stimulating phosphorylation of connexin-43 (Cx43). Identifying the kinase(s) phosphorylating cardiac Cx43 may thus provide a way of modulating cardiac intercellular communication. Because FGF-2 activates receptors linked to protein kinase C (PKC) and mitogen-activated protein kinase, we first investigated participation of these enzymatic systems in Cx43 phosphorylation. The inhibitor PD98059 blocked activation of mitogen-activated protein kinase, but it did not prevent the FGF-2 effects on GJs. In contrast, the PKC inhibitor chelerythrine blocked the effects of FGF-2 on Cx43 phosphorylation and permeability. Because the epsilon-isoform of PKC localizes to plasma membrane sites, we examined whether it is directly involved in the FGF-2-induced Cx43 phosphorylation. In nonstimulated myocytes, PKCepsilon displayed a discontinuous pattern of localization at intercellular contact sites and partial colocalization with Cx43. Treatment with FGF-2 or phorbol 12-myristate 13-acetate induced a more continuous pattern of PKCepsilon distribution, whereas the anti-Cx43 staining appeared to overlap extensively with that of PKCepsilon. In immunoprecipitation experiments using specific anti-Cx43 antibodies, PKCepsilon but not PKCalpha coprecipitated with Cx43. FGF-2 increased levels of coprecipitated PKCepsilon, suggesting increased association between PKCepsilon and Cx43 on stimulation. Transient gene transfer and overexpression of cDNAs coding for truncated or mutated dominant-negative forms of PKCepsilon decreased cardiomyocyte Cx43 phosphorylation significantly. We conclude that PKC mediates the FGF-2-induced effects on cardiac GJs and that PKCepsilon likely interacts with and phosphorylates cardiac Cx43 at sites of intercellular contact.
Collapse
Affiliation(s)
- B W Doble
- Institute of Cardiovascular Sciences, University of Manitoba, St. Boniface General Hospital Research Centre, Winnipeg, Manitoba, Canada
| | | | | |
Collapse
|
43
|
Abstract
Platelet-derived growth factor (PDGF) is a major mitogen for connective tissue cells and certain other cell types. It is a dimeric molecule consisting of disulfide-bonded, structurally similar A- and B-polypeptide chains, which combine to homo- and heterodimers. The PDGF isoforms exert their cellular effects by binding to and activating two structurally related protein tyrosine kinase receptors, denoted the alpha-receptor and the beta-receptor. Activation of PDGF receptors leads to stimulation of cell growth, but also to changes in cell shape and motility; PDGF induces reorganization of the actin filament system and stimulates chemotaxis, i.e., a directed cell movement toward a gradient of PDGF. In vivo, PDGF has important roles during the embryonic development as well as during wound healing. Moreover, overactivity of PDGF has been implicated in several pathological conditions. The sis oncogene of simian sarcoma virus (SSV) is related to the B-chain of PDGF, and SSV transformation involves autocrine stimulation by a PDGF-like molecule. Similarly, overproduction of PDGF may be involved in autocrine and paracrine growth stimulation of human tumors. Overactivity of PDGF has, in addition, been implicated in nonmalignant conditions characterized by an increased cell proliferation, such as atherosclerosis and fibrotic conditions. This review discusses structural and functional properties of PDGF and PDGF receptors, the mechanism whereby PDGF exerts its cellular effects, and the role of PDGF in normal and diseased tissues.
Collapse
Affiliation(s)
- C H Heldin
- Ludwig Institute for Cancer Research, Biomedical Center, and Department of Pathology, University Hospital, Uppsala, Sweden.
| | | |
Collapse
|
44
|
Zhang YW, Morita I, Nishida M, Murota SI. Involvement of tyrosine kinase in the hypoxia/reoxygenation-induced gap junctional intercellular communication abnormality in cultured human umbilical vein endothelial cells. J Cell Physiol 1999; 180:305-13. [PMID: 10430170 DOI: 10.1002/(sici)1097-4652(199909)180:3<305::aid-jcp1>3.0.co;2-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Vascular endothelial cells (EC), communicating with one another across gap junctions, are usually made dysfunctional by hypoxia and reoxygenation (H/R); however, very limited information exists regarding the effects of H/R on the endothelial gap junctions. We investigated whether H/R interferes with endothelial gap junctional intercellular communication (GJIC). After human umbilical vein EC had grown to confluence, they were exposed to hypoxia (pO2 < 0.1%) for 12-16 h and then returned to normal atmospheric conditions for reoxygenation. At 0-, 2-, 4-, 6-h reoxygenation, GJIC was detected by means of a fluorescence recovery after a photobleaching technique. The results demonstrated that a GJIC reduction (about 20% less than that under normoxia) was induced after 2 h of reoxygenation; after 4 h of reoxygenation, it began to recover (to about 10% less than that under normoxia); and after 6 h of reoxygenation, GJIC was restored to the normal level. Calphostin C (1 x 10(-7) mol/l), a specific protein kinase C inhibitor, partially inhibited the reduction in GJIC (resulting in a level about 10% less than that under normoxia), whereas the tyrosine kinase inhibitor genistein (10 micromol/L) completely blocked the reduction in GJIC. Vanadate (1.5 mmol/l), a tyrosine phosphatase inhibitor, amplified the inhibitory effect of H/R on GJIC (to about 40% less than that under normoxia). Immunofluorescence and immunoprecipitation showed that 2-h reoxygenation significantly stimulated tyrosine protein phosphorylation, and this phosphorylation event was obviously enhanced by vanadate. The results of Western blotting showed that the gap junctional protein connexin 43 (Cx43) was phosphorylated by H/R; moreover, immunoprecipitation demonstrated that 2-h reoxygenation induced a prominent increase of tyrosine phosphorylation of Cx43 compared with that under normoxia. These data indicate that H/R induces a transient endothelial GJIC dysfunction through the activation of tyrosine kinase and phosphorylation of tyrosine residues of Cx43.
Collapse
Affiliation(s)
- Y W Zhang
- Department of Physiological Chemistry, Graduate School, Tokyo Medical and Dental University, Japan
| | | | | | | |
Collapse
|
45
|
McDonough WS, Johansson A, Joffee H, Giese A, Berens ME. Gap junction intercellular communication in gliomas is inversely related to cell motility. Int J Dev Neurosci 1999; 17:601-11. [PMID: 10571421 DOI: 10.1016/s0736-5748(99)00024-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Gliomas are lethal because of local invasion into brain parenchyma. Glioma cells were isolated from different regions (white matter, gray matter and tumor core) of a glioma-bearing dog brain. Individual clonal cell lines were established from each area, and characterized for growth, migration and gap junctions. The regional clonal cell lines differed in rates and preferred substrate for migration. Cell lines generated from invaded white matter showed stimulated migration on collagen and variable migration on merosin, whereas migration of cell lines derived from invaded gray matter showed the reciprocal responses: stimulation on merosin and inhibition on collagen. Gap junctional communication showed significant degrees of variation between the different clones. A direct inverse relationship between the number of cells demonstrating gap junctional communication and migration rate of cells away from multicellular spheroids was evident. Glioma cells which have a reduced capacity to connect to each other have an accelerated migration rate onto autologous, glioma-derived matrix. These results suggest that invasive glioma cells suppress autologous cell-to-cell cohesion, partly evident as reduced formation of gap junctions. In addition, glioma cells were stimulated to migrate in a dose-dependant manner in response to epidermal growth factor (EGF) coincident with the reduction of Cx43 levels and increased serine phosphorylation. We speculate that in order for glioma cells to invade locally into brain parenchyma they must first detach from neighboring cells ("let go...let's go" paradigm of invasion).
Collapse
Affiliation(s)
- W S McDonough
- Neuro-Oncology Laboratory, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ 85013-4496, USA
| | | | | | | | | |
Collapse
|
46
|
Abstract
This paper highlights several key issues, ideas, and findings that significantly contribute to our understanding of the organization, communication, and molecular machinery of the liver. The functional anatomy of the liver has been studied in several ways that have revealed the extent of the biliary tree within the hepatic parenchyma, including identification of the canals of Hering as their most distal ramification. The canals of Hering are also considered as the potential residence of hepatic progenitor cells. Hepatocytes can "communicate" with each other via gap junctions, but might also deliver hormones and nucleotides downstream to cholangiocytes. The interaction of inflammatory cells and inflammatory mediators with hepatocytes is of particular importance in transplant immunology, infection, inflammation, viral hepatitis, and fibrogenesis. The role of these mediators as well as certain "toxic" bile acids in apoptosis has become clearer with the discovery of the mitochondrial permeability transition. Moreover, ursodeoxycholic acid can reduce apoptosis by minimizing the mitochondrial permeability transition. Two new nuclear hormone receptors, PXR and SXR, have been identified. These are both activated by a variety of chemically distinct ligands, whose final common goal is the activation of cytochrome P450-containing drug-metabolizing enzymes. Thus, these two receptors are critical to the body's ability to metabolize a variety of compounds properly. Additional insight into the role of cytokines and cytokine receptors in liver regeneration is presented. Finally, in vivo gene therapy of liver-expressed genes by chimeric oligonucleotides appears quite promising as a means of correcting single nucleotide gene defects.
Collapse
Affiliation(s)
- S J Karpen
- Yale University School of Medicine, New Haven, Connecticut, USA
| | | |
Collapse
|
47
|
Verrecchia F, Duthe F, Duval S, Duchatelle I, Sarrouilhe D, Herve JC. ATP counteracts the rundown of gap junctional channels of rat ventricular myocytes by promoting protein phosphorylation. J Physiol 1999; 516 ( Pt 2):447-59. [PMID: 10087344 PMCID: PMC2269282 DOI: 10.1111/j.1469-7793.1999.0447v.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
1. The degree of cell-to-cell coupling between ventricular myocytes of neonatal rats appeared well preserved when studied in the perforated version of the patch clamp technique or, in double whole-cell conditions, when ATP was present in the patch pipette solution. In contrast, when ATP was omitted, the amplitude of junctional current rapidly declined (rundown). 2. To examine the mechanism(s) of ATP action, an 'internal perfusion technique' was adapted to dual patch clamp conditions, and reintroduction of ATP partially reversed the rundown of junctional channels. 3. Cell-to-cell communication was not preserved by a non-hydrolysable ATP analogue (5'-adenylimidodiphosphate, AMP-PNP), indicating that the effect most probably did not involve direct interaction of ATP with the channel-forming proteins. 4. An ATP analogue supporting protein phosphorylation but not active transport processes (adenosine 5'-O-(3-thiotriphosphate), ATPgammaS) maintained normal intercellular communication, suggesting that the effect was due to kinase activity rather than to altered intracellular Ca2+. 5. A broad spectrum inhibitor of endogenous serine/threonine protein kinases (H7) reversibly reduced the intercellular coupling. A non-specific exogenous protein phosphatase (alkaline phosphatase) mimicked the effects of ATP deprivation. The non-specific inhibition of endogenous protein phosphatases resulted in the preservation of substantial cell-to-cell communication in ATP-free conditions. 6. The activity of gap junctional channels appears to require both the presence of ATP and protein kinase activity to counteract the tonic activity of endogenous phosphatase(s).
Collapse
Affiliation(s)
- F Verrecchia
- Physiologie Cellulaire, UMR CNRS 6558, Universite de Poitiers, 40 Avenue du R. Pineau, 86022 Poitiers, France
| | | | | | | | | | | |
Collapse
|
48
|
Hossain MZ, Jagdale AB, Ao P, Kazlauskas A, Boynton AL. Disruption of gap junctional communication by the platelet-derived growth factor is mediated via multiple signaling pathways. J Biol Chem 1999; 274:10489-96. [PMID: 10187840 DOI: 10.1074/jbc.274.15.10489] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The platelet-derived growth factor (PDGF) mediates its cellular functions via activation of its receptor tyrosine kinase followed by the recruitment and activation of several signaling molecules. These signaling molecules then initiate specific signaling cascades, finally resulting in distinct physiological effects. To delineate the PDGF signaling pathway responsible for the disruption of gap junctional communication (GJC), wild-type PDGF receptor beta (PDGFRbeta) and a series of PDGFRbeta mutants were expressed in T51B rat liver epithelial cells. In cells expressing wild-type PDGFRbeta, PDGF induced disruption of GJC and phosphorylation of a gap junctional protein, connexin-43 (Cx43), which required activation of mitogen-activated protein kinase, although involvement of additional factors was also evident. In the F5 mutant lacking binding sites for phosphatidylinositol 3-kinase, GTPase-activating protein, SHP-2, and phospholipase Cgamma1 (PLCgamma1), PDGF induced mitogen-activated protein kinase, but failed to affect GJC or Cx43, indicating involvement of additional signals presumably initiated by one or more of the mutated binding sites. Examination of the single-site mutants revealed that PDGF effects were not mediated via a single signaling component. This was confirmed by the "add-back" mutants, which showed that restoration of either SHP-2 or PLCgamma1 binding was sufficient to propagate the GJC inhibitory actions of PDGF. Further analysis showed that activation of PLCgamma1 is involved in Cx43 phosphorylation, which surprisingly failed to correlate with GJC blockade. The results of our study demonstrate that PDGF-induced disruption of GJC can be mediated by multiple signaling pathways and requires participation of multiple components.
Collapse
Affiliation(s)
- M Z Hossain
- Molecular Medicine, Northwest Hospital, Seattle, Washington 98125, USA.
| | | | | | | | | |
Collapse
|
49
|
Hossain MZ, Jagdale AB, Ao P, Boynton AL. Mitogen-activated protein kinase and phosphorylation of connexin43 are not sufficient for the disruption of gap junctional communication by platelet-derived growth factor and tetradecanoylphorbol acetate. J Cell Physiol 1999; 179:87-96. [PMID: 10082136 DOI: 10.1002/(sici)1097-4652(199904)179:1<87::aid-jcp11>3.0.co;2-k] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Disruption of gap junctional communication (GJC) by various compounds, including growth factors and tumor promoters, is believed to be modulated by the phosphorylation of a gap junctional protein, connexin43 (Cx43). We have previously demonstrated a platelet-derived growth factor (PDGF)-induced blockade of GJC and phosphorylation of Cx43 in T51B rat liver epithelial cells expressing wild-type PDGF receptor beta (PDGFr beta). Both of these actions of PDGF required participation of protein kinase C (PKC) and mitogen-activated protein kinase (MAPK). Similar requirements of MAPK were suggested in the modulation of GJC by other agents, including epidermal growth factor (EGF) and lysophosphatidic acid (LPA). Since many of these agents activate additional protein kinases, our present study examined whether activation of MAPK was sufficient for Cx43 phosphorylation and GJC blockade. By utilizing a variety of MAPK activators, we now show that activation of MAPK is not always associated with either Cx43 phosphorylation or disruption of GJC, which suggests a requirement for additional factors. Furthermore, pretreatment with hydrogen peroxide (H2O2), a potent MAPK activator but inefficient GJC/Cx43 modulator, abrogated PDGF- or TPA-induced disruption of GJC. While a 5 min H2O2 pretreatment abolished both PDGF- and TPA-induced Cx43 phosphorylation and GJC blockade, a simultaneous H2O2 treatment interfered only with GJC closure but not with the phosphorylation of Cx43 induced by PDGF and TPA. This finding indicates that, in addition to the Cx43 phosphorylation step, inhibition of GJC requires interaction with other components. H2O2-mediated abrogation of PDGF/TPA signaling can be neutralized by the antioxidant N-acetylcysteine (NAC) or by the tyrosine kinase inhibitor genistein. Taken together, our results suggest that disruption of GJC is not solely mediated by either activated MAPK or Cx43 phosphorylation but requires the participation of additional kinases and regulatory components. This complex mode of regulation is perhaps essential for the proposed functional role of GJC.
Collapse
Affiliation(s)
- M Z Hossain
- Molecular Medicine, Northwest Hospital, Seattle, Washington 98125, USA.
| | | | | | | |
Collapse
|
50
|
Zhou L, Kasperek EM, Nicholson BJ. Dissection of the molecular basis of pp60(v-src) induced gating of connexin 43 gap junction channels. J Biophys Biochem Cytol 1999; 144:1033-45. [PMID: 10085299 PMCID: PMC2148195 DOI: 10.1083/jcb.144.5.1033] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Suppression of gap-junctional communication by various protein kinases, growth factors, and oncogenes frequently correlates with enhanced mitogenesis. The oncogene v-src appears to cause acute closure of gap junction channels. Tyr265 in the COOH-terminal tail of connexin 43 (Cx43) has been implicated as a potential target of v-src, although v-src action has also been associated with changes in serine phosphorylation. We have investigated the mechanism of this acute regulation through mutagenesis of Cx43 expressed in Xenopus laevis oocyte pairs. Truncations of the COOH-terminal domain led to an almost complete loss of response of Cx43 to v-src, but this was restored by coexpression of the independent COOH-terminal polypeptide. This suggests a ball and chain gating mechanism, similar to the mechanism proposed for pH gating of Cx43, and K+ channel inactivation. Surprisingly, we found that v-src mediated gating of Cx43 did not require the tyrosine site, but did seem to depend on the presence of two potential SH3 binding domains and the mitogen-activated protein (MAP) kinase phosphorylation sites within them. Further point mutagenesis and pharmacological studies in normal rat kidney (NRK) cells implicated MAP kinase in the gating response to v-src, while the stable binding of v-src to Cx43 (in part mediated by SH3 domains) did not correlate with its ability to mediate channel closure. This suggests a common link between closure of gap junctions by v-src and other mitogens, such as EGF and lysophosphatidic acid (LPA).
Collapse
Affiliation(s)
- L Zhou
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York 14260, USA
| | | | | |
Collapse
|