1
|
Buzoianu-Anguiano V, Arriero-Cabañero A, Fernández-Mayoralas A, Torres-Llacsa M, Doncel-Pérez E. Axonal Growth and Fasciculation of Spinal Neurons Promoted by Aldynoglia in Alkaline Fibrin Hydrogel: Influence of Tol-51 Sulfoglycolipid. Int J Mol Sci 2024; 25:9173. [PMID: 39273121 PMCID: PMC11395328 DOI: 10.3390/ijms25179173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/13/2024] [Accepted: 08/20/2024] [Indexed: 09/15/2024] Open
Abstract
Traumatic spinal cord injury (tSCI) has complex pathophysiological events that begin after the initial trauma. One such event is fibroglial scar formation by fibroblasts and reactive astrocytes. A strong inhibition of axonal growth is caused by the activated astroglial cells as a component of fibroglial scarring through the production of inhibitory molecules, such as chondroitin sulfate proteoglycans or myelin-associated proteins. Here, we used neural precursor cells (aldynoglia) as promoters of axonal growth and a fibrin hydrogel gelled under alkaline conditions to support and guide neuronal cell growth, respectively. We added Tol-51 sulfoglycolipid as a synthetic inhibitor of astrocyte and microglia in order to test its effect on the axonal growth-promoting function of aldynoglia precursor cells. We obtained an increase in GFAP expression corresponding to the expected glial phenotype for aldynoglia cells cultured in alkaline fibrin. In co-cultures of dorsal root ganglia (DRG) and aldynoglia, the axonal growth promotion of DRG neurons by aldynoglia was not affected. We observed that the neural precursor cells first clustered together and then formed niches from which aldynoglia cells grew and connected to groups of adjacent cells. We conclude that the combination of alkaline fibrin with synthetic sulfoglycolipid Tol-51 increased cell adhesion, cell migration, fasciculation, and axonal growth capacity, promoted by aldynoglia cells. There was no negative effect on the behavior of aldynoglia cells after the addition of sulfoglycolipid Tol-51, suggesting that a combination of aldynoglia plus alkaline fibrin and Tol-51 compound could be useful as a therapeutic strategy for tSCI repair.
Collapse
Affiliation(s)
| | | | - Alfonso Fernández-Mayoralas
- Departamento de Química Bio-Orgánica, Instituto de Química Orgánica General (IQOG-CSIC), CSIC, 28006 Madrid, Spain
| | - Mabel Torres-Llacsa
- Hospital Nacional de Parapléjicos, Servicio de Salud de Castilla La Mancha, 45071 Toledo, Spain
| | - Ernesto Doncel-Pérez
- Hospital Nacional de Parapléjicos, Servicio de Salud de Castilla La Mancha, 45071 Toledo, Spain
| |
Collapse
|
2
|
Arriero-Cabañero A, García-Vences E, Sánchez-Torres S, Aristizabal-Hernandez S, García-Rama C, Pérez-Rizo E, Fernández-Mayoralas A, Grijalva I, Buzoianu-Anguiano V, Doncel-Pérez E, Mey J. Transplantation of Predegenerated Peripheral Nerves after Complete Spinal Cord Transection in Rats: Effect of Neural Precursor Cells and Pharmacological Treatment with the Sulfoglycolipid Tol-51. Cells 2024; 13:1324. [PMID: 39195214 DOI: 10.3390/cells13161324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/02/2024] [Accepted: 08/06/2024] [Indexed: 08/29/2024] Open
Abstract
Following spinal cord injury (SCI), the regenerative capacity of the central nervous system (CNS) is severely limited by the failure of axonal regeneration. The regeneration of CNS axons has been shown to occur by grafting predegenerated peripheral nerves (PPNs) and to be promoted by the transplantation of neural precursor cells (NPCs). The introduction of a combinatorial treatment of PPNs and NPCs after SCI has to address the additional problem of glial scar formation, which prevents regenerating axons from leaving the implant and making functional connections. Previously, we discovered that the synthetic sulfoglycolipid Tol-51 inhibits astrogliosis. The objective was to evaluate axonal regeneration and locomotor function improvement after SCI in rats treated with a combination of PPN, NPC, and Tol-51. One month after SCI, the scar tissue was removed and replaced with segments of PPN or PPN+Tol-51; PPN+NPC+Tol-51. The transplantation of a PPN segment favors regenerative axonal growth; in combination with Tol-51 and NPC, 30% of the labeled descending corticospinal axons were able to grow through the PPN and penetrate the caudal spinal cord. The animals treated with PPN showed significantly better motor function. Our data demonstrate that PPN implants plus NPC and Tol-51 allow successful axonal regeneration in the CNS.
Collapse
Affiliation(s)
| | - Elisa García-Vences
- Facultad de Ciencias de la Salud, Centro de Investigación en Ciencias de la Salud (CICSA), Universidad Anáhuac México Norte, Huixquilucan 52786, Mexico
- Secretaría de la Defensa Nacional, Escuela Militar de Graduados en Sanidad, Ciudad de Méxcio 11200, Mexico
| | - Stephanie Sánchez-Torres
- Instituto Mexicano del Seguro Social, Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI. Av. Cuauhtémoc 330, Col. Doctores, Mexico City 06720, Mexico
| | | | - Concepción García-Rama
- Laboratorio de Regeneración Neural, Hospital Nacional de Parapléjicos, 45071 Toledo, Spain
| | - Enrique Pérez-Rizo
- Unidad de Ingeniería y Evaluación Motora del Hospital Nacional de Parapléjicos, 45071 Toledo, Spain
| | | | - Israel Grijalva
- Instituto Mexicano del Seguro Social, Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI. Av. Cuauhtémoc 330, Col. Doctores, Mexico City 06720, Mexico
| | | | - Ernesto Doncel-Pérez
- Laboratorio de Regeneración Neural, Hospital Nacional de Parapléjicos, 45071 Toledo, Spain
| | - Jörg Mey
- Laboratorio de Regeneración Neural, Hospital Nacional de Parapléjicos, 45071 Toledo, Spain
- EURON Graduate School of Neuroscience, 6229ER Maastricht, The Netherlands
| |
Collapse
|
3
|
Liao JX, Zhu FQ, Liu YY, Liu SC, Liu ZX, Zhang WJ. The role of olfactory ensheathing cells in the repair of nerve injury. Eur J Pharmacol 2024; 966:176346. [PMID: 38246329 DOI: 10.1016/j.ejphar.2024.176346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 01/23/2024]
Abstract
Cell transplantation has brought about a breakthrough in the treatment of nerve injuries, and the efficacy of cell transplantation compared to drug and surgical therapies is very exciting. In terms of transplantation targets, the classic cells include neural stem cells (NSCs) and Schwann cells, while a class of cells that can exist and renew throughout the life of the nervous system - olfactory ensheathing cells (OECs) - has recently been discovered in the olfactory system. OECs not only encircle the olfactory nerves but also act as macrophages and play an innate immune role. OECs can also undergo reprogramming to transform into neurons and survive and mature after transplantation. Currently, many studies have confirmed the repairing effect of OECs after transplantation into injured nerves, and safe and effective results have been obtained in clinical trials. However, the specific repair mechanism of OECs among them is not quite clear. For this purpose, we focus here on the repair mechanisms of OECs, which are summarized as follows: neuroprotection, secretion of bioactive factors, limitation of inflammation and immune regulation, promotion of myelin and axonal regeneration, and promotion of vascular proliferation. In addition, integrating the aspects of harvesting, purification, and prognosis, we found that OECs may be more suitable for transplantation than NSCs and Schwann cells, but this does not completely discard the value of these classical cells. Overall, OECs are considered to be one of the most promising transplantation targets for the treatment of nerve injury disorders.
Collapse
Affiliation(s)
- Jun-Xiang Liao
- The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province, 343000, China
| | - Fu-Qi Zhu
- The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province, 343000, China
| | - Yi-Yi Liu
- The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province, 343000, China
| | - Si-Cheng Liu
- The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province, 343000, China
| | - Zeng-Xu Liu
- School of Basic Medicine, Nanchang University, Nanchang City, Jiangxi province, 343000, China
| | - Wen-Jun Zhang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province, 343000, China.
| |
Collapse
|
4
|
Bautista-González S, Carrillo González NJ, Campos-Ordoñez T, Acosta Elías MA, Pedroza-Montero MR, Beas-Zárate C, Gudiño-Cabrera G. Raman spectroscopy to assess the differentiation of bone marrow mesenchymal stem cells into a glial phenotype. Regen Ther 2023; 24:528-535. [PMID: 37841662 PMCID: PMC10570561 DOI: 10.1016/j.reth.2023.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 08/25/2023] [Accepted: 09/28/2023] [Indexed: 10/17/2023] Open
Abstract
Background Mesenchymal stem cells (MSCs) are multipotent precursor cells with the ability to self-renew and differentiate into multiple cell linage, including the Schwann-like fate that promotes regeneration after lesion. Raman spectroscopy provides a precise characterization of the osteogenic, adipogenic, hepatogenic and myogenic differentiation of MSCs. However, the differentiation of bone marrow mesenchymal stem cells (BMSCs) towards a glial phenotype (Schwann-like cells) has not been characterized before using Raman spectroscopy. Method We evaluated three conditions: 1) cell culture from rat bone marrow undifferentiated (uBMSCs), and two conditions of differentiation; 2) cells exposed to olfactory ensheathing cells-conditioned medium (dBMSCs) and 3) cells obtained from olfactory bulb (OECs). uBMSCs phenotyping was confirmed by morphology, immunocytochemistry and flow cytometry using antibodies of cell surface: CD90 and CD73. Glial phenotype of dBMSCs and OECs were verified by morphology and immunocytochemistry using markers of Schwann-like cells and OECs such as GFAP, p75 NTR and O4. Then, the Principal Component Analysis (PCA) of Raman spectroscopy was performed to discriminate components from the high wavenumber region between undifferentiated and glial-differentiated cells. Raman bands at the fingerprint region also were used to analyze the differentiation between conditions. Results Differences between Raman spectra from uBMSC and glial phenotype groups were noted at multiple Raman shift values. A significant decrease in the concentration of all major cellular components, including nucleic acids, proteins, and lipids were found in the glial phenotype groups. PCA analysis confirmed that the highest spectral variations between groups came from the high wavenumber region observed in undifferentiated cells and contributed with the discrimination between glial phenotype groups. Conclusion These findings support the use of Raman spectroscopy for the characterization of uBMSCs and its differentiation in the glial phenotype.
Collapse
Affiliation(s)
- Sulei Bautista-González
- Laboratorio de Desarrollo y Regeneración Neural, Departamento de Biología Celular y Molecular, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Zapopan, Jalisco, Mexico
| | - Nidia Jannette Carrillo González
- Laboratorio de Desarrollo y Regeneración Neural, Departamento de Biología Celular y Molecular, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Zapopan, Jalisco, Mexico
| | - Tania Campos-Ordoñez
- Laboratorio de Desarrollo y Regeneración Neural, Departamento de Biología Celular y Molecular, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Zapopan, Jalisco, Mexico
| | - Mónica Alessandra Acosta Elías
- Laboratorio de Biofísica Médica, Departamento de Investigación en Física, Universidad de Sonora, Hermosillo, Sonora, México
| | - Martín Rafael Pedroza-Montero
- Laboratorio de Biofísica Médica, Departamento de Investigación en Física, Universidad de Sonora, Hermosillo, Sonora, México
| | - Carlos Beas-Zárate
- Laboratorio de Desarrollo y Regeneración Neural, Departamento de Biología Celular y Molecular, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Zapopan, Jalisco, Mexico
| | - Graciela Gudiño-Cabrera
- Laboratorio de Desarrollo y Regeneración Neural, Departamento de Biología Celular y Molecular, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Zapopan, Jalisco, Mexico
| |
Collapse
|
5
|
Elyasigorji Z, Mobasheri H, Dini L. Static magnetic field modulates olfactory ensheathing cell's morphology, division, and migration activities, a biophysical approach to regeneration. J Tissue Eng Regen Med 2022; 16:665-679. [PMID: 35470546 DOI: 10.1002/term.3307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/30/2022] [Accepted: 04/11/2022] [Indexed: 11/08/2022]
Abstract
The moderate static magnetic fields (SMFs) have been used here as a non-invasive tool to study their manipulative effects on the olfactory ensheathing cells (OECs) activity, growth, morphology, and migration in culture. The OECs are involved in the regeneration of primary olfactory sensory neurons and migration into the central nervous system to repair axons damaged by infection, injury, etc., that play a pivotal role in complementary regenerative medicine. Here, OECs were isolated from the olfactory bulb and cultured to confluence. An in vitro wound healing model was formed and exposed to either parallel (PaSMF) or perpendicular (PeSMF) SMF at intensities of 30, 50, and 70 mT, and cells' morphology, podia formation, proliferation, and migration were studied by time-lapse recording. The SMFs were not cytotoxic at the intensity and exposure time applied here. The exposure of cells to 70 mT PaSMF and PeSMF increased the formation of lamellipodia and filopodia, cell migration speed, and direction of the scratch forefront cells, significantly. Treatment of cells with 70 mT PaSMF and PeSMF increased cell divisions, while 30 mT PaSMF decreased it. SMF effects on OECs division, motility, migratory direction, and velocity indicate its effect on various aspects of cell physiology and signaling at atomic and molecular levels, and have a role in tissue regeneration that involves microtubules and actin filaments formation and rearrangements. Thus, the exposure of OECs with moderate SMF might be considered a promising noninvasive approach to remotely manipulate normal and stem cell activities for therapeutic regenerative purposes in various tissues including the central nervous system.
Collapse
Affiliation(s)
- Zahra Elyasigorji
- Laboratory of Membrane Biophysics and Macromolecules, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.,Iranian Biological Resource Center (IBRC), ACECR, Human and Animal Cell Bank, Tehran, Iran
| | - Hamid Mobasheri
- Laboratory of Membrane Biophysics and Macromolecules, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.,Institute of Biomaterials of University of Tehran and Tehran University of Medical Science (IBUTUM), Tehran, Iran
| | - Luciana Dini
- Department of Biology and Biotechnology C. Darwin, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
6
|
Buzoianu-Anguiano V, Torres-Llacsa M, Doncel-Pérez E. Role of Aldynoglia Cells in Neuroinflammatory and Neuroimmune Responses after Spinal Cord Injury. Cells 2021; 10:2783. [PMID: 34685763 PMCID: PMC8534338 DOI: 10.3390/cells10102783] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/07/2021] [Accepted: 10/12/2021] [Indexed: 11/16/2022] Open
Abstract
Aldynoglia are growth-promoting cells with a morphology similar to radial glia and share properties and markers with astrocytes and Schwann cells. They are distributed in several locations throughout the adult central nervous system, where the cells of the aldynoglia interact and respond to the signals of the immune cells. After spinal cord injury (SCI), the functions of resident aldynoglia, identified as ependymocytes, tanycytes, and ependymal stem cells (EpSCs) of the spinal cord are crucial for the regeneration of spinal neural tissue. These glial cells facilitate axonal regrowth and remyelination of injured axons. Here, we review the influence of M1 or M2 macrophage/microglia subpopulations on the fate of EpSCs during neuroinflammation and immune responses in the acute, subacute, and chronic phases after SCI.
Collapse
Affiliation(s)
| | - Mabel Torres-Llacsa
- Servicio de Radiología, Hospital Nacional de Parapléjicos, SESCAM, 45071 Toledo, Spain;
| | - Ernesto Doncel-Pérez
- Grupo de Química Neuro-Regenerativa, Hospital Nacional de Parapléjicos, SESCAM, 45071 Toledo, Spain;
| |
Collapse
|
7
|
Manzini I, Schild D, Di Natale C. Principles of odor coding in vertebrates and artificial chemosensory systems. Physiol Rev 2021; 102:61-154. [PMID: 34254835 DOI: 10.1152/physrev.00036.2020] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The biological olfactory system is the sensory system responsible for the detection of the chemical composition of the environment. Several attempts to mimic biological olfactory systems have led to various artificial olfactory systems using different technical approaches. Here we provide a parallel description of biological olfactory systems and their technical counterparts. We start with a presentation of the input to the systems, the stimuli, and treat the interface between the external world and the environment where receptor neurons or artificial chemosensors reside. We then delineate the functions of receptor neurons and chemosensors as well as their overall I-O relationships. Up to this point, our account of the systems goes along similar lines. The next processing steps differ considerably: while in biology the processing step following the receptor neurons is the "integration" and "processing" of receptor neuron outputs in the olfactory bulb, this step has various realizations in electronic noses. For a long period of time, the signal processing stages beyond the olfactory bulb, i.e., the higher olfactory centers were little studied. Only recently there has been a marked growth of studies tackling the information processing in these centers. In electronic noses, a third stage of processing has virtually never been considered. In this review, we provide an up-to-date overview of the current knowledge of both fields and, for the first time, attempt to tie them together. We hope it will be a breeding ground for better information, communication, and data exchange between very related but so far little connected fields.
Collapse
Affiliation(s)
- Ivan Manzini
- Animal Physiology and Molecular Biomedicine, Justus-Liebig-University Gießen, Gießen, Germany
| | - Detlev Schild
- Institute of Neurophysiology and Cellular Biophysics, University Medical Center, University of Göttingen, Göttingen, Germany
| | - Corrado Di Natale
- Department of Electronic Engineering, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
8
|
Castaño O, López-Mengual A, Reginensi D, Matamoros-Angles A, Engel E, Del Rio JA. Chemotactic TEG3 Cells' Guiding Platforms Based on PLA Fibers Functionalized With the SDF-1α/CXCL12 Chemokine for Neural Regeneration Therapy. Front Bioeng Biotechnol 2021; 9:627805. [PMID: 33829009 PMCID: PMC8019790 DOI: 10.3389/fbioe.2021.627805] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 03/01/2021] [Indexed: 12/14/2022] Open
Abstract
(Following spinal cord injury, olfactory ensheathing cell (OEC) transplantation is a promising therapeutic approach in promoting functional improvement. Some studies report that the migratory properties of OECs are compromised by inhibitory molecules and potentiated by chemical concentration differences. Here we compare the attachment, morphology, and directionality of an OEC-derived cell line, TEG3 cells, seeded on functionalized nanoscale meshes of Poly(l/dl-lactic acid; PLA) nanofibers. The size of the nanofibers has a strong effect on TEG3 cell adhesion and migration, with the PLA nanofibers having a 950 nm diameter being the ones that show the best results. TEG3 cells are capable of adopting a bipolar morphology on 950 nm fiber surfaces, as well as a highly dynamic behavior in migratory terms. Finally, we observe that functionalized nanofibers, with a chemical concentration increment of SDF-1α/CXCL12, strongly enhance the migratory characteristics of TEG3 cells over inhibitory substrates.
Collapse
Affiliation(s)
- Oscar Castaño
- Electronics and Biomedical Engineering, Universitat de Barcelona, Barcelona, Spain.,Biomaterials for Regenerative Therapies, Institute of Bioengineering of Catalonia, Parc Cientific de Barcelona, Barcelona, Spain.,CIBER en Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Madrid, Spain.,Bioelectronics Unit and Nanobioeneering Laboratory, Institute for Nanoscience and Nanotechnology of the University of Barcelona, Barcelona, Spain
| | - Ana López-Mengual
- Molecular and Cellular Neurobiotechnology, Institute of Bioengineering of Catalonia, Parc Cientific de Barcelona, Barcelona, Spain.,Department of Cell Biology, Physiology and Immunology, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Barcelona, Spain.,Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| | - Diego Reginensi
- School of Medicine, Universidad de Panamá, Panama City, Panama.,Biomedical Engineering Program, Universidad Latina de Panamá, Panama City, Panama
| | - Andreu Matamoros-Angles
- Molecular and Cellular Neurobiotechnology, Institute of Bioengineering of Catalonia, Parc Cientific de Barcelona, Barcelona, Spain.,Department of Cell Biology, Physiology and Immunology, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Barcelona, Spain.,Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| | - Elisabeth Engel
- Biomaterials for Regenerative Therapies, Institute of Bioengineering of Catalonia, Parc Cientific de Barcelona, Barcelona, Spain.,CIBER en Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Madrid, Spain.,IMEM-BRT Group, Department of Materials Science, EEBE, Technical University of Catalonia (UPC), Barcelona, Spain
| | - José Antonio Del Rio
- Molecular and Cellular Neurobiotechnology, Institute of Bioengineering of Catalonia, Parc Cientific de Barcelona, Barcelona, Spain.,Department of Cell Biology, Physiology and Immunology, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Barcelona, Spain.,Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| |
Collapse
|
9
|
Pinet-Charvet C, Fleurot R, Derouin-Tochon F, de Graaf S, Druart X, Tsikis G, Taragnat C, Teixeira-Gomes AP, Labas V, Moreau T, Cayla X, Duittoz AH. Beta-nerve growth factor stimulates spontaneous electrical activity of in vitro embryonic mouse GnRH neurons through a P75 mediated-mechanism. Sci Rep 2020; 10:10654. [PMID: 32606357 PMCID: PMC7326925 DOI: 10.1038/s41598-020-67665-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 06/11/2020] [Indexed: 02/04/2023] Open
Abstract
The control of ovulation helps guarantee the success of reproduction and as such, contributes to the fitness of a species. In mammals, two types of ovulation are observed: induced and spontaneous ovulation. Recent work on camelids, that are induced ovulators, highlighted the role of a factor present in seminal plasma, beta Nerve Growth Factor (β-NGF), as the factor that triggers ovulation in a GnRH dependent manner. In the present work, we characterized alpaca β-NGF (aβ-NGF) and its 3D structure and compared it with human recombinant β-NGF (hβ-NGF). We showed that the β-NGF enriched fraction of alpaca semen and the human recombinant protein, both stimulated spontaneous electrical activity of primary GnRH neurons derived from mouse embryonic olfactory placodes. This effect was dose-dependent and mediated by p75 receptor signaling. P75 receptors were found expressed in vitro by olfactory ensheathing cells (OEC) in close association with GnRH neurons and in vivo by tanycytes in close vicinity to GnRH fibers in adult mouse. Altogether, these results suggested that β-NGF induced ovulation through an increase in GnRH secretion provoked by a glial dependent P75 mediated mechanism.
Collapse
Affiliation(s)
- Caroline Pinet-Charvet
- Physiologie de la Reproduction et des Comportements (PRC) UMR7247 INRA, CNRS, Centre INRA Val de Loire, Université de Tours, IFCE, 37380, Nouzilly, France
- Physiologie de la Reproduction et des Comportements (PRC), ComUE Centre-Val de Loire, Centre INRA Val de Loire, Université de Poitiers, 37380, Nouzilly, France
| | - Renaud Fleurot
- Physiologie de la Reproduction et des Comportements (PRC) UMR7247 INRA, CNRS, Centre INRA Val de Loire, Université de Tours, IFCE, 37380, Nouzilly, France
| | - Flavie Derouin-Tochon
- Physiologie de la Reproduction et des Comportements (PRC) UMR7247 INRA, CNRS, Centre INRA Val de Loire, Université de Tours, IFCE, 37380, Nouzilly, France
| | - Simon de Graaf
- Faculty of Science, School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Xavier Druart
- Physiologie de la Reproduction et des Comportements (PRC) UMR7247 INRA, CNRS, Centre INRA Val de Loire, Université de Tours, IFCE, 37380, Nouzilly, France
| | - Guillaume Tsikis
- Physiologie de la Reproduction et des Comportements (PRC) UMR7247 INRA, CNRS, Centre INRA Val de Loire, Université de Tours, IFCE, 37380, Nouzilly, France
| | - Catherine Taragnat
- Physiologie de la Reproduction et des Comportements (PRC) UMR7247 INRA, CNRS, Centre INRA Val de Loire, Université de Tours, IFCE, 37380, Nouzilly, France
| | - Ana-Paula Teixeira-Gomes
- Infectiologie et Santé Publique (ISP) UMR1282, INRA, Centre INRA Val de Loire, Université de Tours, 37380, Nouzilly, France
| | - Valérie Labas
- Physiologie de la Reproduction et des Comportements (PRC) UMR7247 INRA, CNRS, Centre INRA Val de Loire, Université de Tours, IFCE, 37380, Nouzilly, France
| | - Thierry Moreau
- Biologie des Oiseaux et Aviculture (BOA) UMR Centre INRA Val de Loire, 37380, Nouzilly, France
| | - Xavier Cayla
- Physiologie de la Reproduction et des Comportements (PRC) UMR7247 INRA, CNRS, Centre INRA Val de Loire, Université de Tours, IFCE, 37380, Nouzilly, France
| | - Anne H Duittoz
- Physiologie de la Reproduction et des Comportements (PRC) UMR7247 INRA, CNRS, Centre INRA Val de Loire, Université de Tours, IFCE, 37380, Nouzilly, France.
| |
Collapse
|
10
|
Carvalho LA, Teng J, Fleming RL, Tabet EI, Zinter M, de Melo Reis RA, Tannous BA. Olfactory Ensheathing Cells: A Trojan Horse for Glioma Gene Therapy. J Natl Cancer Inst 2020; 111:283-291. [PMID: 30257000 DOI: 10.1093/jnci/djy138] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 04/18/2018] [Accepted: 07/10/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The olfactory ensheathing cells (OECs) migrate from the peripheral nervous system to the central nervous system (CNS), a critical process for the development of the olfactory system and axonal extension after injury in neural regeneration. Because of their ability to migrate to the injury site and anti-inflammatory properties, OECs were tested against different neurological pathologies, but were never studied in the context of cancer. Here, we evaluated OEC tropism to gliomas and their potential as a "Trojan horse" to deliver therapeutic transgenes through the nasal pathway, their natural route to CNS. METHODS OECs were purified from the mouse olfactory bulb and engineered to express a fusion protein between cytosine deaminase and uracil phosphoribosyltransferase (CU), which convert the prodrug 5-fluorocytosine (5-FC) into cytotoxic metabolite 5-fluorouracil, leading to a bystander killing of tumor cells. These cells were injected into the nasal cavity of mice bearing glioblastoma tumors and OEC-mediated gene therapy was monitored by bioluminescence imaging and confirmed with survival and ex vivo histological analysis. All statistical tests were two-sided. RESULTS OECs migrated from the nasal pathway to the primary glioma site, tracked infiltrative glioma stemlike cells, and delivered therapeutic transgene, leading to a slower tumor growth and increased mice survival. At day 28, bioluminescence imaging revealed that mice treated with a single injection of OEC-expressing CU and 5-FC had tumor-associated photons (mean [SD]) of 1.08E + 08 [9.7E + 07] vs 4.1E + 08 [2.3E + 08] for control group (P < .001), with a median survival of 41 days vs 34 days, respectively (ratio = 0.8293, 95% confidence interval = 0.4323 to 1.226, P < .001) (n = 9 mice per group). CONCLUSIONS We show for the first time that autologous transplantation of OECs can target and deliver therapeutic transgenes to brain tumors upon intranasal delivery, the natural route of OECs to the CNS, which could be extended to other types of cancer.
Collapse
Affiliation(s)
- Litia A Carvalho
- Experimental Therapeutics and Molecular Imaging Laboratory, Department of Neurology, Neuro-Oncology Division, Massachusetts General Hospital, Boston, MA.,Neuroscience Program, Harvard Medical School, Boston, MA
| | - Jian Teng
- Experimental Therapeutics and Molecular Imaging Laboratory, Department of Neurology, Neuro-Oncology Division, Massachusetts General Hospital, Boston, MA.,Neuroscience Program, Harvard Medical School, Boston, MA
| | - Renata L Fleming
- Experimental Therapeutics and Molecular Imaging Laboratory, Department of Neurology, Neuro-Oncology Division, Massachusetts General Hospital, Boston, MA.,Neuroscience Program, Harvard Medical School, Boston, MA
| | - Elie I Tabet
- Experimental Therapeutics and Molecular Imaging Laboratory, Department of Neurology, Neuro-Oncology Division, Massachusetts General Hospital, Boston, MA.,Neuroscience Program, Harvard Medical School, Boston, MA
| | - Max Zinter
- Experimental Therapeutics and Molecular Imaging Laboratory, Department of Neurology, Neuro-Oncology Division, Massachusetts General Hospital, Boston, MA.,Neuroscience Program, Harvard Medical School, Boston, MA
| | - Ricardo A de Melo Reis
- Laboratory of Neurochemistry, Institute of Biophysics Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bakhos A Tannous
- Experimental Therapeutics and Molecular Imaging Laboratory, Department of Neurology, Neuro-Oncology Division, Massachusetts General Hospital, Boston, MA.,Neuroscience Program, Harvard Medical School, Boston, MA
| |
Collapse
|
11
|
Direct neuronal reprogramming of olfactory ensheathing cells for CNS repair. Cell Death Dis 2019; 10:646. [PMID: 31501413 PMCID: PMC6733847 DOI: 10.1038/s41419-019-1887-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 07/26/2019] [Accepted: 08/11/2019] [Indexed: 12/12/2022]
Abstract
Direct conversion of readily available non-neural cells from patients into induced neurons holds great promise for neurological disease modeling and cell-based therapy. Olfactory ensheathing cells (OECs) is a unique population of glia in olfactory nervous system. Based on the regeneration-promoting properties and the relative clinical accessibility, OECs are attracting increasing attention from neuroscientists as potential therapeutic agents for use in neural repair. Here, we report that OECs can be directly, rapidly and efficiently reprogrammed into neuronal cells by the single transcription factor Neurogenin 2 (NGN2). These induced cells exhibit typical neuronal morphologies, express multiple neuron-specific markers, produce action potentials, and form functional synapses. Genome-wide RNA-sequencing analysis shows that the transcriptome profile of OECs is effectively reprogrammed towards that of neuronal lineage. Importantly, these OEC-derived induced neurons survive and mature after transplantation into adult mouse spinal cords. Taken together, our study provides a direct and efficient strategy to quickly obtain neuronal cells from adult OECs, suggestive of promising potential for personalized disease modeling and cell replacement-mediated therapeutic approaches to neurological disorders.
Collapse
|
12
|
Mi R, Tammia M, Shinn D, Li Y, Martin R, Mao HQ, Höke A. Oligodendrocyte precursors gain Schwann cell-like phenotype and remyelinate axons upon engraftment into peripheral nerves. J Tissue Eng Regen Med 2019; 13:1854-1860. [PMID: 31306565 DOI: 10.1002/term.2935] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 06/12/2019] [Accepted: 07/11/2019] [Indexed: 11/08/2022]
Abstract
The ability to treat large peripheral nerve injuries may be greatly advanced if an accessible source of human myelinating cells is identified, as it overcomes one of the major limitations of acellular or synthetic nerve guides compared with autografts, the gold standard for large defect repair. Methods to derive oligodendrocyte precursor cells (OPCs) from human pluripotent stem cells have advanced to the point where they have been shown capable of myelination and are being evaluated in clinical trials. Here, we test the hypothesis that OPCs can survive and remyelinate axons in the peripheral nervous system during a repair process. Using freshly isolated OPCs from mouse post-natal brains, we engrafted these OPCs into the tibial nerve immediately after it being subjected to cryolesioning. At 1-month postengraftment, we found numerous graft-derived cells that survived in this environment, and many transplanted cells expressed Schwann cell markers such as periaxin and S100β coexpressed with myelin basic protein, whereas oligodendrocyte markers O4 and Olig2 were virtually absent. Our results demonstrate that OPCs can survive in a peripheral nervous system micro-environment and undergo niche-dependent transdifferentiation into Schwann cell-like cells as has previously been observed in central nervous system focal demyelination models, suggesting that OPCs constitute an accessible source of cells for peripheral nerve cell therapies.
Collapse
Affiliation(s)
- Ruifa Mi
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Markus Tammia
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Materials Science and Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA.,Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA
| | - Daniel Shinn
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ying Li
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Russell Martin
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Materials Science and Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA.,Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA
| | - Hai-Quan Mao
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Materials Science and Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA.,Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA
| | - Ahmet Höke
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
13
|
Carvalho LA, Tannous BA. Olfactory ensheathing cells travel their natural nasal pathway to deliver therapeutics to brain tumors. Oncotarget 2019; 10:4351-4353. [PMID: 31320988 PMCID: PMC6633892 DOI: 10.18632/oncotarget.27043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 06/10/2019] [Indexed: 11/25/2022] Open
Affiliation(s)
- Litia A Carvalho
- Experimental Therapeutics and Molecular Imaging Laboratory, Department of Neurology, Neuro-Oncology Division, Massachusetts General Hospital, Boston, MA, USA; Neuroscience Program, Harvard Medical School, Boston, MA, USA
| | - Bakhos A Tannous
- Experimental Therapeutics and Molecular Imaging Laboratory, Department of Neurology, Neuro-Oncology Division, Massachusetts General Hospital, Boston, MA, USA; Neuroscience Program, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
14
|
Becker K, Cana A, Baumgärtner W, Spitzbarth I. p75 Neurotrophin Receptor: A Double-Edged Sword in Pathology and Regeneration of the Central Nervous System. Vet Pathol 2018; 55:786-801. [PMID: 29940812 DOI: 10.1177/0300985818781930] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The low-affinity nerve growth factor receptor p75NTR is a major neurotrophin receptor involved in manifold and pleiotropic functions in the developing and adult central nervous system (CNS). Although known for decades, its entire functions are far from being fully elucidated. Depending on the complex interactions with other receptors and on the cellular context, p75NTR is capable of performing contradictory tasks such as mediating cell death as well as cell survival. In parallel, as a prototype marker for certain differentiation stages of Schwann cells and related CNS aldynoglial cells, p75NTR has recently gained increasing notice as a marker for cells with proposed regenerative potential in CNS diseases, such as demyelinating disease and traumatic CNS injury. Besides its pivotal role as a marker for transplantation candidate cells, recent studies in canine neuroinflammatory CNS conditions also highlight a spontaneous endogenous occurrence of p75NTR-positive glia, which potentially play a role in Schwann cell-mediated CNS remyelination. The aim of the present communication is to review the pleiotropic functions of p75NTR in the CNS with a special emphasis on its role as an immunohistochemical marker in neuropathology. Following a brief illustration of the expression of p75NTR in neurogenesis and in developed neuronal populations, the implications of p75NTR expression in astrocytes, oligodendrocytes, and microglia are addressed. A special focus is put on the role of p75NTR as a cell marker for specific differentiation stages of Schwann cells and a regeneration-promoting CNS population, collectively referred to as aldynoglia.
Collapse
Affiliation(s)
- Kathrin Becker
- 1 Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Armend Cana
- 1 Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany.,2 Center for Systems Neuroscience, Hannover, Germany
| | - Wolfgang Baumgärtner
- 1 Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany.,2 Center for Systems Neuroscience, Hannover, Germany
| | - Ingo Spitzbarth
- 1 Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany.,2 Center for Systems Neuroscience, Hannover, Germany
| |
Collapse
|
15
|
Canine dorsal root ganglia satellite glial cells represent an exceptional cell population with astrocytic and oligodendrocytic properties. Sci Rep 2017; 7:13915. [PMID: 29066783 PMCID: PMC5654978 DOI: 10.1038/s41598-017-14246-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 10/06/2017] [Indexed: 12/21/2022] Open
Abstract
Dogs can be used as a translational animal model to close the gap between basic discoveries in rodents and clinical trials in humans. The present study compared the species-specific properties of satellite glial cells (SGCs) of canine and murine dorsal root ganglia (DRG) in situ and in vitro using light microscopy, electron microscopy, and immunostainings. The in situ expression of CNPase, GFAP, and glutamine synthetase (GS) has also been investigated in simian SGCs. In situ, most canine SGCs (>80%) expressed the neural progenitor cell markers nestin and Sox2. CNPase and GFAP were found in most canine and simian but not murine SGCs. GS was detected in 94% of simian and 71% of murine SGCs, whereas only 44% of canine SGCs expressed GS. In vitro, most canine (>84%) and murine (>96%) SGCs expressed CNPase, whereas GFAP expression was differentially affected by culture conditions and varied between 10% and 40%. However, GFAP expression was induced by bone morphogenetic protein 4 in SGCs of both species. Interestingly, canine SGCs also stimulated neurite formation of DRG neurons. These findings indicate that SGCs represent an exceptional, intermediate glial cell population with phenotypical characteristics of oligodendrocytes and astrocytes and might possess intrinsic regenerative capabilities in vivo.
Collapse
|
16
|
Anna Z, Katarzyna JW, Joanna C, Barczewska M, Joanna W, Wojciech M. Therapeutic Potential of Olfactory Ensheathing Cells and Mesenchymal Stem Cells in Spinal Cord Injuries. Stem Cells Int 2017; 2017:3978595. [PMID: 28298927 PMCID: PMC5337375 DOI: 10.1155/2017/3978595] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 11/27/2016] [Accepted: 12/25/2016] [Indexed: 12/19/2022] Open
Abstract
Spinal cord injury (SCI) is a devastating neurological condition that affects individuals worldwide, significantly reducing quality of life, for both patients and their families. In recent years there has been a growing interest in cell therapy potential in the context of spinal cord injuries. The present review aims to discuss and compare the restorative approaches based on the current knowledge, available spinal cord restorative cell therapies, and use of selected cell types. However, treatment options for spinal cord injury are limited, but rehabilitation and experimental technologies have been found to help maintain or improve remaining nerve function in some cases. Mesenchymal stem cells as well as olfactory ensheathing cells seem to show therapeutic impact on damaged spinal cord and might be useful in neuroregeneration. Recent research in animal models and first human trials give patients with spinal cord injuries hope for recovery.
Collapse
Affiliation(s)
- Zadroga Anna
- Department of Pathophysiology, Faculty of Medical Sciences, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Jezierska-Woźniak Katarzyna
- Department of Neurology and Neurosurgery, Faculty of Medical Sciences, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Czarzasta Joanna
- Department of Pathophysiology, Faculty of Medical Sciences, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Monika Barczewska
- Department of Neurology and Neurosurgery, Faculty of Medical Sciences, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Wojtkiewicz Joanna
- Department of Pathophysiology, Faculty of Medical Sciences, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
- Laboratory for Regenerative Medicine, Faculty of Medical Sciences, University of Warmia and Mazury, Olsztyn, Poland
- Foundation for the Nerve Cells Regeneration, Olsztyn, Poland
| | - Maksymowicz Wojciech
- Department of Neurology and Neurosurgery, Faculty of Medical Sciences, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| |
Collapse
|
17
|
Spitzbarth I, Lempp C, Kegler K, Ulrich R, Kalkuhl A, Deschl U, Baumgärtner W, Seehusen F. Immunohistochemical and transcriptome analyses indicate complex breakdown of axonal transport mechanisms in canine distemper leukoencephalitis. Brain Behav 2016; 6:e00472. [PMID: 27247850 PMCID: PMC4864272 DOI: 10.1002/brb3.472] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 02/24/2016] [Accepted: 03/11/2016] [Indexed: 12/03/2022] Open
Abstract
INTRODUCTION CDV-DL (Canine distemper virus-induced demyelinating leukoencephalitis) represents a spontaneously occurring animal model for demyelinating disorders. Axonopathy represents a key pathomechanism in this disease; however, its underlying pathogenesis has not been addressed in detail so far. This study aimed at the characterization of axonal cytoskeletal, transport, and potential regenerative changes with a parallel focus upon Schwann cell remyelination. METHODS Immunohistochemistry of canine cerebellar tissue as well as a comparative analysis of genes from an independent microarray study were performed. RESULTS Increased axonal immunoreactivity for nonphosphorylated neurofilament was followed by loss of cytoskeletal and motor proteins. Interestingly, a subset of genes encoding for neurofilament subunits and motor proteins was up-regulated in the chronic stage compared to dogs with subacute CDV-DL. However, immunohistochemically, hints for axonal regeneration were restricted to up-regulated axonal positivity of hypoxia-inducible factor 1 alpha, while growth-associated protein 43, erythropoietin and its receptor were not or even down-regulated. Periaxin-positive structures, indicative of Schwann cell remyelination, were only detected within few advanced lesions. CONCLUSIONS The present findings demonstrate a complex sequence of axonal cytoskeletal breakdown mechanisms. Moreover, though sparse, this is the first report of Schwann cell remyelination in CDV-DL. Facilitation of these very limited endogenous regenerative responses represents an important topic for future research.
Collapse
Affiliation(s)
- Ingo Spitzbarth
- Department of Pathology University of Veterinary Medicine Hannover Foundation Bünteweg 17 30559 Hannover Germany; Center for Systems Neuroscience Bünteweg 2 30559 Hannover Germany
| | - Charlotte Lempp
- Department of Pathology University of Veterinary Medicine Hannover Foundation Bünteweg 17 30559 Hannover Germany
| | - Kristel Kegler
- Department of Pathology University of Veterinary Medicine Hannover Foundation Bünteweg 17 30559 Hannover Germany; Center for Systems Neuroscience Bünteweg 2 30559 Hannover Germany
| | - Reiner Ulrich
- Department of Pathology University of Veterinary Medicine Hannover Foundation Bünteweg 17 30559 Hannover Germany; Center for Systems Neuroscience Bünteweg 2 30559 Hannover Germany
| | - Arno Kalkuhl
- Department of Non-Clinical Drug Safety Boehringer Ingelheim Pharma GmbH & Co KG Biberach (Riß) Germany
| | - Ulrich Deschl
- Department of Non-Clinical Drug Safety Boehringer Ingelheim Pharma GmbH & Co KG Biberach (Riß) Germany
| | - Wolfgang Baumgärtner
- Department of Pathology University of Veterinary Medicine Hannover Foundation Bünteweg 17 30559 Hannover Germany; Center for Systems Neuroscience Bünteweg 2 30559 Hannover Germany
| | - Frauke Seehusen
- Department of Pathology University of Veterinary Medicine Hannover Foundation Bünteweg 17 30559 Hannover Germany
| |
Collapse
|
18
|
Ge L, Liu K, Liu Z, Lu M. Co-transplantation of autologous OM-MSCs and OM-OECs: a novel approach for spinal cord injury. Rev Neurosci 2016; 27:259-70. [PMID: 26574889 DOI: 10.1515/revneuro-2015-0030] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 10/09/2015] [Indexed: 11/15/2022]
Abstract
AbstractSpinal cord injury (SCI) is a disastrous injury that leads to motor and sensory dysfunctions in patients. In recent years, co-transplantation has become an increasingly used therapeutic treatment for patients with SCI. Both mesenchymal stem cells (MSCs) and olfactory-ensheathing cells (OECs) have been adopted to ameliorate SCI, with promising outcomes. Remarkable effects on the rehabilitation of patients with SCI have been achieved using MSCs. Olfactory mucosa (OM) MSCs from human OM are one of the most ideal cell resources for auto-transplantation in clinical application owing to their a high proliferation rate and multipotent capability. In addition, OECs derived from OM have been used to improve functional recovery of SCI and resulted in promising functional recovery in years. Accordingly, co-transplantation of OM-MSCs coupled with OM-OECs has been adopted to improve the recovery of SCI. Here we reviewed the reported applications of OM-MSCs and OM-OECs for SCI treatment and proposed that a novel combined strategy using both autologous OM-MSCs and OM-OECs would achieve a better approach for the treatment of SCI.
Collapse
Affiliation(s)
| | | | - Zhonghua Liu
- 2College of Life Sciences, Hunan Normal University, Changsha 410008, P.R. China
| | - Ming Lu
- 1Department of Neurosurgery, Second Affiliated Hospital of Hunan Normal University (163 Hospital of PLA), Changsha 410003, P.R. China
| |
Collapse
|
19
|
Kegler K, Spitzbarth I, Imbschweiler I, Wewetzer K, Baumgärtner W, Seehusen F. Contribution of Schwann Cells to Remyelination in a Naturally Occurring Canine Model of CNS Neuroinflammation. PLoS One 2015. [PMID: 26196511 PMCID: PMC4510361 DOI: 10.1371/journal.pone.0133916] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Gliogenesis under pathophysiological conditions is of particular clinical relevance since it may provide evidence for regeneration promoting cells recruitable for therapeutic purposes. There is evidence that neurotrophin receptor p75 (p75NTR)-expressing cells emerge in the lesioned CNS. However, the phenotype and identity of these cells, and signals triggering their in situ generation under normal conditions and certain pathological situations has remained enigmatic. In the present study, we used a spontaneous, idiopathic and inflammatory CNS condition in dogs with prominent lympho-histiocytic infiltration as a model to study the phenotype of Schwann cells and their relation to Schwann cell remyelination within the CNS. Furthermore, the phenotype of p75NTR-expressing cells within the injured CNS was compared to their counter-part in control sciatic nerve and after peripheral nerve injury. In addition, organotypic slice cultures were used to further elucidate the origin of p75NTR-positive cells. In cerebral and cerebellar white and grey matter lesions as well as in the brain stem, p75NTR-positive cells co-expressed the transcription factor Sox2, but not GAP-43, GFAP, Egr2/Krox20, periaxin and PDGFR-α. Interestingly, and contrary to the findings in control sciatic nerves, p75NTR-expressing cells only co-localized with Sox2 in degenerative neuropathy, thus suggesting that such cells might represent dedifferentiated Schwann cells both in the injured CNS and PNS. Moreover, effective Schwann cell remyelination represented by periaxin- and P0-positive mature myelinating Schwann cells, was strikingly associated with the presence of p75NTR/Sox2-expressing Schwann cells. Intriguingly, the emergence of dedifferentiated Schwann cells was not affected by astrocytes, and a macrophage-dominated inflammatory response provided an adequate environment for Schwann cells plasticity within the injured CNS. Furthermore, axonal damage was reduced in brain stem areas with p75NTR/Sox2-positive cells. This study provides novel insights into the involvement of Schwann cells in CNS remyelination under natural occurring CNS inflammation. Targeting p75NTR/Sox2-expressing Schwann cells to enhance their differentiation into competent remyelinating cells appears to be a promising therapeutic approach for inflammatory/demyelinating CNS diseases.
Collapse
Affiliation(s)
- Kristel Kegler
- Department of Pathology, University of Veterinary Medicine, Hannover, Germany
- Center of Systems Neuroscience, Hannover, Germany
| | - Ingo Spitzbarth
- Department of Pathology, University of Veterinary Medicine, Hannover, Germany
- Center of Systems Neuroscience, Hannover, Germany
| | - Ilka Imbschweiler
- Department of Pathology, University of Veterinary Medicine, Hannover, Germany
| | - Konstantin Wewetzer
- Center of Systems Neuroscience, Hannover, Germany
- Department of Functional and Applied Anatomy, Center of Anatomy, Hannover Medical School, Hannover, Germany
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine, Hannover, Germany
- Center of Systems Neuroscience, Hannover, Germany
- * E-mail:
| | - Frauke Seehusen
- Department of Pathology, University of Veterinary Medicine, Hannover, Germany
| |
Collapse
|
20
|
Wang S, Lu J, Li YA, Zhou H, Ni WF, Zhang XL, Zhu SP, Chen BB, Xu H, Wang XY, Xiao J, Huang H, Chi YL, Xu HZ. Autologous Olfactory Lamina Propria Transplantation for Chronic Spinal Cord Injury: Three-Year Follow-Up Outcomes From a Prospective Double-Blinded Clinical Trial. Cell Transplant 2015; 25:141-57. [PMID: 25924918 DOI: 10.3727/096368915x688065] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
We did a clinical trial to determine whether olfactory mucosa lamina propria (OLP) transplants promote regeneration and functional recovery in chronic human spinal cord injury (SCI). The trial randomized 12 subjects to OLP transplants (n = 8) or control sham surgery (n = 4). The subjects received magnetic resonance imaging (MRI), electromyography (EMG), urodynamic study (UDS), American Spinal Injury Association impairment scale (AIS), and other functional assessments. OLP-transplanted subjects recovered more motor, sensory, and bladder function compared to sham-operated subjects. At 3 years after OLP transplant, one patient improved from AIS A to C and another recovered from AIS A to B, two recovered more than three segmental sensory levels, two had less spasticity, two had altered H-reflexes and SSEP, two regained bladder and anorectal sensation and had improved bladder compliance on UDS. OLP-treated patients had partial or complete tissue bridges at the injury site compared to cavitary gaps in sham-operated patients. The limited recovery suggests that OLP transplants alone do not have significant benefits but may provide a rationale for larger randomized trials or combination therapies.
Collapse
Affiliation(s)
- Sheng Wang
- Department of Spinal Surgery, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Chou RH, Lu CY, Fan JR, Yu YL, Shyu WC. The potential therapeutic applications of olfactory ensheathing cells in regenerative medicine. Cell Transplant 2015; 23:567-71. [PMID: 24816451 DOI: 10.3727/096368914x678508] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Olfactory ensheathing cells (OECs) are unique glia cells restricted to the primary olfactory system including the olfactory mucosa, olfactory nerve, and the outer nerve layer of the olfactory bulb. OECs guide growing olfactory axons from the neurons of the nasal cavity olfactory mucosa to the olfactory bulb to connect both the peripheral nervous system (PNS) and central nervous system (CNS). Based on these specialized abilities of OECs, transplantation of OECs to injury sites has been widely investigated for their potential therapeutic applications in neural repair in different injuries. In this article, we reviewed the properties of OECs and their roles in olfactory regeneration and in treatment of different injuries including spinal cord injury, PNS injury, and stroke and neurodegenerative diseases.
Collapse
Affiliation(s)
- Ruey-Hwang Chou
- Graduate Institute of Cancer Biology, Center for Molecular Medicine, China Medical University, Taichung, Taiwan
| | | | | | | | | | | |
Collapse
|
22
|
Spitzbarth I, Cana A, Hahn K, Hansmann F, Baumgärtner W. Associated occurrence of p75 neurotrophin receptor expressing aldynoglia and microglia/macrophages in long term organotypic murine brain slice cultures. Brain Res 2014; 1595:29-42. [PMID: 25446435 DOI: 10.1016/j.brainres.2014.11.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 11/03/2014] [Accepted: 11/07/2014] [Indexed: 11/17/2022]
Abstract
Growth-promoting aldynoglia, characterized by the expression of the prototype immature Schwann cell marker p75 neurotrophin receptor (NTR) have been shown to occur in some demyelinating diseases. However, the mechanisms determining the emergence and fate of such cells are largely unknown. This study aimed at the identification of such cells and potential triggering factors using an in vitro slice culture approach. Organotypic cerebrum and brain stem slices of adult mice were cultivated for up to 18 days in vitro. Immunohistochemistry for the detection of p75(NTR), CD107b, periaxin, growth associated protein (GAP)-43, and glial fibrillary acidic protein (GFAP) was performed. The results for p75(NTR) were substantiated by the use of in situ hybridization. Cultivation was associated with a progressively increasing spontaneous occurrence of bi- to multipolar p75(NTR)-positive, but periaxin-negative glia, indicative of aldynoglial Schwann cell like cells. Similar cells stained intensely positive for GAP-43, a marker for non-myelinating Schwann cells. The number of p75(NTR) positive glia did not correlate with GFAP expression, but showed a strong correlation with a remarkable spontaneous response of CD107b positive phagocytic microglia/macrophages. Moreover, aldynoglial p75(NTR) immunoreactivity negatively correlated to neuronal p75(NTR) expression, which was lost during culturing. The present results demonstrate that the cultivation of organotypic murine brain slices is accompanied by a spontaneous response of both microglia/macrophages and p75(NTR) positive cells, suggestive of Schwann cell like aldynoglia. The findings highlights the role of microglia/macrophages, which seem to be an important triggering factor, facilitating the occurrence of this unique type of macroglia.
Collapse
Affiliation(s)
- I Spitzbarth
- Department of Pathology, University of Veterinary Medicine, Buenteweg 17, D-30559 Hannover, Germany; Center for Systems Neuroscience, Hannover, Germany.
| | - A Cana
- Department of Pathology, University of Veterinary Medicine, Buenteweg 17, D-30559 Hannover, Germany; Center for Systems Neuroscience, Hannover, Germany
| | - K Hahn
- Department of Pathology, University of Veterinary Medicine, Buenteweg 17, D-30559 Hannover, Germany; Center for Systems Neuroscience, Hannover, Germany
| | - F Hansmann
- Department of Pathology, University of Veterinary Medicine, Buenteweg 17, D-30559 Hannover, Germany; Center for Systems Neuroscience, Hannover, Germany
| | - W Baumgärtner
- Department of Pathology, University of Veterinary Medicine, Buenteweg 17, D-30559 Hannover, Germany; Center for Systems Neuroscience, Hannover, Germany
| |
Collapse
|
23
|
Liu W, Zheng Q, Wang Y, Han X, Yuan L, Zhao M. Transplantation of olfactory ensheathing cells attenuates acute carbon monoxide poisoning-induced brain damages in rats. Neurochem Res 2014; 40:70-80. [PMID: 25370793 DOI: 10.1007/s11064-014-1467-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 10/22/2014] [Accepted: 10/27/2014] [Indexed: 02/02/2023]
Abstract
In this study, the therapeutic effect of olfactory ensheathing cells (OEC) transplantation on brain damage was evaluated on acute carbon monoxide (CO) poisoning rat model. Two weeks after primary culture, OECs were microinjected into hippocampus of CO poisoning rats. Survival of OECs in the host was observed and quantified. OECs survived at 2 weeks, but surviving cell number was found sharply decreased at 6 weeks and reduced to less than 10(3) at 8 weeks after transplantation. At 2 weeks after transplantation, motor function test and cerebral edema assay were performed and followed by pathological examination including hematoxylin and eosin and immunohistochemistry staining to observe the neuron injury and synapsin I and growth associated protein-43 (GAP-43) expression. Furthermore, biomarkers of oxidative stress and apoptosis related proteins in the hippocampus were detected. The results showed that CO exposure led to neurological dysfunction and cerebral edema in rats. After OEC transplantation, neurological function was significantly improved and the cerebral edema was alleviated. In addition, the numbers of neurons and Nissl bodies were increased and synapsin I and GAP-43 protein expressions were upregulated in the hippocampus. Compared with CO poisoned rats, superoxide dismutase activity and glutathione content were both increased and methane dicarboxylic aldehyde level was decreased in the hippocampus of OEC transplanted rats. Moreover, OEC transplantation reduced apoptosis induced by CO exposure. The Bcl-2 expression was significantly upregulated and Bax expression was significantly downregulated. The activity of caspase-3 and the cleaved-poly ADP-ribose polymerase expression were decreased. Taken together, our data suggest that OEC attenuates brain damages induced by acute CO poisoning within 2 weeks after transplantation.
Collapse
Affiliation(s)
- Wei Liu
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, 36 Sanhao Street, Shenyang, 110004, People's Republic of China
| | | | | | | | | | | |
Collapse
|
24
|
Wang YC, Xia QJ, Ba YC, Wang TY, LiN N, Zou Y, Shang FF, Zhou XF, Wang TH, Fu XM, Qi JG. Transplantation of olfactory ensheathing cells promotes the recovery of neurological functions in rats with traumatic brain injury associated with downregulation of Bad. Cytotherapy 2014; 16:1000-10. [DOI: 10.1016/j.jcyt.2013.12.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 12/07/2013] [Accepted: 12/26/2013] [Indexed: 10/25/2022]
|
25
|
Transcriptional profiling predicts overwhelming homology of schwann cells, olfactory ensheathing cells, and schwann cell-like glia. Glia 2014; 62:1559-81. [DOI: 10.1002/glia.22700] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 05/15/2014] [Accepted: 05/16/2014] [Indexed: 01/26/2023]
|
26
|
Carvalho LA, Vitorino LC, Guimarães RPM, Allodi S, de Melo Reis RA, Cavalcante LA. Selective stimulatory action of olfactory ensheathing glia-conditioned medium on oligodendroglial differentiation, with additional reference to signaling mechanisms. Biochem Biophys Res Commun 2014; 449:338-43. [PMID: 24853803 DOI: 10.1016/j.bbrc.2014.05.051] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 05/13/2014] [Indexed: 12/14/2022]
Abstract
We examined the effects of conditioned medium from olfactory ensheathing glia (OEGCM) on the differentiation of oligodendrocytes in mixed cultures of early postnatal hippocampi. Differentiation was judged from the numerical density (ND) of cells immunoreactive to 2'3' cyclic nucleotide 3'phosphodiesterase (CNPase) and O4 antibodies. NDs increased according to inverted-U dose-response curves, particularly for CNPase+ cells (9-fold at optimal dilution) and these changes were blocked by inhibitors of ERK1, p38-MAPK, and PI3K. Our results raise the possibility that OEG secreted factor(s) may counteract demyelination induced by trauma, neurodegenerative diseases, and advanced age, and should stimulate novel methods to deliver these factors and/or potentiating chemicals.
Collapse
Affiliation(s)
- Litia A Carvalho
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373, Ilha do Fundão, 21949-902 Rio de Janeiro, Brazil; Programa de Pós-Graduação em Ciências Biológicas (Fisiologia), Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373, Ilha do Fundão, 21949-902 Rio de Janeiro, Brazil; Programa de Pós-Graduação em Ciências Biológicas (Biofísica), Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373, Ilha do Fundão, 21949-902 Rio de Janeiro, Brazil
| | - Louise C Vitorino
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373, Ilha do Fundão, 21949-902 Rio de Janeiro, Brazil; Programa de Pós-Graduação em Ciências Biológicas (Biofísica), Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373, Ilha do Fundão, 21949-902 Rio de Janeiro, Brazil
| | - Roberta P M Guimarães
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373, Ilha do Fundão, 21949-902 Rio de Janeiro, Brazil; Programa de Pós-Graduação em Ciências Biológicas (Biofísica), Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373, Ilha do Fundão, 21949-902 Rio de Janeiro, Brazil
| | - Silvana Allodi
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373, Ilha do Fundão, 21949-902 Rio de Janeiro, Brazil; Programa de Pós-Graduação em Ciências Biológicas (Fisiologia), Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373, Ilha do Fundão, 21949-902 Rio de Janeiro, Brazil; Programa de Pós-Graduação em Ciências Biológicas (Biofísica), Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373, Ilha do Fundão, 21949-902 Rio de Janeiro, Brazil
| | - Ricardo A de Melo Reis
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373, Ilha do Fundão, 21949-902 Rio de Janeiro, Brazil; Programa de Pós-Graduação em Ciências Biológicas (Fisiologia), Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373, Ilha do Fundão, 21949-902 Rio de Janeiro, Brazil; Programa de Pós-Graduação em Ciências Biológicas (Biofísica), Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373, Ilha do Fundão, 21949-902 Rio de Janeiro, Brazil
| | - Leny A Cavalcante
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373, Ilha do Fundão, 21949-902 Rio de Janeiro, Brazil; Programa de Pós-Graduação em Ciências Biológicas (Fisiologia), Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373, Ilha do Fundão, 21949-902 Rio de Janeiro, Brazil.
| |
Collapse
|
27
|
Kegler K, Imbschweiler I, Ulrich R, Kovermann P, Fahlke C, Deschl U, Kalkuhl A, Baumgärnter W, Wewetzer K. CNS Schwann cells display oligodendrocyte precursor-like potassium channel activation and antigenic expression in vitro. J Neural Transm (Vienna) 2014; 121:569-81. [PMID: 24487976 DOI: 10.1007/s00702-014-1163-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 01/18/2014] [Indexed: 12/14/2022]
Abstract
Central nervous system (CNS) injury triggers production of myelinating Schwann cells from endogenous oligodendrocyte precursors (OLPs). These CNS Schwann cells may be attractive candidates for novel therapeutic strategies aiming to promote endogenous CNS repair. However, CNS Schwann cells have been so far mainly characterized in situ regarding morphology and marker expression, and it has remained enigmatic whether they display functional properties distinct from peripheral nervous system (PNS) Schwann cells. Potassium channels (K+) have been implicated in progenitor and glial cell proliferation after injury and may, therefore, represent a suitable pharmacological target. In the present study, we focused on the function and expression of voltage-gated K+ channels Kv(1-12) and accessory β-subunits in purified adult canine CNS and PNS Schwann cell cultures using electrophysiology and microarray analysis and characterized their antigenic phenotype. We show here that K+ channels differed significantly in both cell types. While CNS Schwann cells displayed prominent K D-mediated K+ currents, PNS Schwann cells elicited K(D-) and K(A-type) K+ currents. Inhibition of K+ currents by TEA and Ba2+ was more effective in CNS Schwann cells. These functional differences were not paralleled by differential mRNA expression of Kv(1-12) and accessory β-subunits. However, O4/A2B5 and GFAP expressions were significantly higher and lower, respectively, in CNS than in PNS Schwann cells. Taken together, this is the first evidence that CNS Schwann cells display specific properties not shared by their peripheral counterpart. Both Kv currents and increased O4/A2B5 expression were reminiscent of OLPs suggesting that CNS Schwann cells retain OLP features during maturation.
Collapse
Affiliation(s)
- Kristel Kegler
- Department of Pathology, University of Veterinary Medicine, Bünteweg 17, 30559, Hannover, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
He BR, Xie ST, Wu MM, Hao DJ, Yang H. Phagocytic Removal of Neuronal Debris by Olfactory Ensheathing Cells Enhances Neuronal Survival and Neurite Outgrowth via p38MAPK Activity. Mol Neurobiol 2013; 49:1501-12. [DOI: 10.1007/s12035-013-8588-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 11/05/2013] [Indexed: 01/23/2023]
|
29
|
Crawford A, Chambers C, Franklin R. Remyelination: The True Regeneration of the Central Nervous System. J Comp Pathol 2013; 149:242-54. [DOI: 10.1016/j.jcpa.2013.05.004] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2013] [Revised: 04/09/2013] [Accepted: 05/11/2013] [Indexed: 11/25/2022]
|
30
|
Su Z, Chen J, Qiu Y, Yuan Y, Zhu F, Zhu Y, Liu X, Pu Y, He C. Olfactory ensheathing cells: the primary innate immunocytes in the olfactory pathway to engulf apoptotic olfactory nerve debris. Glia 2013; 61:490-503. [PMID: 23339073 DOI: 10.1002/glia.22450] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 11/09/2012] [Indexed: 11/11/2022]
Abstract
The olfactory system is an unusual tissue in which olfactory receptor neurons (ORNs) are continuously replaced throughout the life of mammals. Clearance of the apoptotic ORNs corpses is a fundamental process serving important functions in the regulation of olfactory nerve turnover and regeneration. However, little is known about the underlying mechanisms. Olfactory ensheathing cells (OECs) are a unique type of glial cells that wrap olfactory axons and support their continual regeneration from the olfactory epithelium to the bulb. In the present study, OECs were identified to exist in two different states, resting and reactive, in which resting OECs could be activated by LPS stimulation and functioned as phagocytes for cleaning apoptotic ORNs corpses. Confocal analysis revealed that dead ORNs debris were engulfed by OECs and co-localized with lysosome associated membrane protein 1. Moreover, phosphatidylserine (PS) receptor was identified to express on OECs, which allowed OECs to recognize apoptotic ORNs by binding to PS. Importantly, engulfment of olfactory nerve debris by OECs was found in olfactory mucosa under normal turnover and was significantly increased in the animal model of olfactory bulbectomy, while little phagocytosis by Iba-1-positive microglia/macrophages was observed. Together, these results implicate OEC as a primary innate immunocyte in the olfactory pathway, and suggest a cellular and molecular mechanism by which ORNs corpses are removed during olfactory nerve turnover and regeneration.
Collapse
Affiliation(s)
- Zhida Su
- Institute of Neuroscience and Key Laboratory of Molecular Neurobiology of Ministry of Education, Neuroscience Research Center of Changzheng Hospital, Second Military Medical University, Shanghai, China
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Muñetón-Gómez VC, Doncel-Pérez E, Fernandez AP, Serrano J, Pozo-Rodrigálvarez A, Vellosillo-Huerta L, Taylor JS, Cardona-Gómez GP, Nieto-Sampedro M, Martínez-Murillo R. Neural differentiation of transplanted neural stem cells in a rat model of striatal lacunar infarction: light and electron microscopic observations. Front Cell Neurosci 2012; 6:30. [PMID: 22876219 PMCID: PMC3410634 DOI: 10.3389/fncel.2012.00030] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Accepted: 07/12/2012] [Indexed: 12/14/2022] Open
Abstract
The increased risk and prevalence of lacunar stroke and Parkinson's disease (PD) makes the search for better experimental models an important requirement for translational research. In this study we assess ischemic damage of the nigrostriatal pathway in a model of lacunar stroke evoked by damaging the perforating arteries in the territory of the substantia nigra (SN) of the rat after stereotaxic administration of endothelin-1 (ET-1), a potent vasoconstrictor peptide. We hypothesized that transplantation of neural stem cells (NSCs) with the capacity of differentiating into diverse cell types such as neurons and glia, but with limited proliferation potential, would constitute an alternative and/or adjuvant therapy for lacunar stroke. These cells showed neuritogenic activity in vitro and a high potential for neural differentiation. Light and electron microscopy immunocytochemistry was used to characterize GFP-positive neurons derived from the transplants. 48 h after ET-1 injection, we characterized an area of selective degeneration of dopaminergic neurons within the nigrostriatal pathway characterized with tissue necrosis and glial scar formation, with subsequent behavioral signs of Parkinsonism. Light microscopy showed that grafted cells within the striatal infarction zone differentiated with a high yield into mature glial cells (GFAP-positive) and neuron types present in the normal striatum. Electron microscopy revealed that NSCs-derived neurons integrated into the host circuitry establishing synaptic contacts, mostly of the asymmetric type. Astrocytes were closely associated with normal small-sized blood vessels in the area of infarct, suggesting a possible role in the regulation of the blood brain barrier and angiogenesis. Our results encourage the use of NSCs as a cell-replacement therapy for the treatment of human vascular Parkinsonism.
Collapse
Affiliation(s)
- Vilma C Muñetón-Gómez
- Neurovascular Research Group, Department of Molecular, Cellular, and Developmental Neurobiology, Spanish Council for Scientific Research (CSIC), Instituto Cajal Madrid, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Wohlsein P, Deschl U, Baumgärtner W. Nonlesions, unusual cell types, and postmortem artifacts in the central nervous system of domestic animals. Vet Pathol 2012; 50:122-43. [PMID: 22692622 DOI: 10.1177/0300985812450719] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In the central nervous system (CNS) of domestic animals, numerous specialized normal structures, unusual cell types, findings of uncertain or no significance, artifacts, and various postmortem alterations can be observed. They may cause confusion for inexperienced pathologists and those not specialized in neuropathology, leading to misinterpretations and wrong diagnoses. Alternatively, changes may mask underlying neuropathological processes. "Specialized structures" comprising the hippocampus and the circumventricular organs, including the vascular organ of the lamina terminalis, subfornical organ, subcommissural organ, pineal gland, median eminence/neurohypophyseal complex, choroid plexus, and area postrema, are displayed. Unusual cell types, including cerebellar external germinal cells, CNS progenitor cells, and Kolmer cells, are presented. In addition, some newly recognized cell types as of yet incompletely understood significance and functionality, such as synantocytes and aldynoglia, are introduced and described. Unusual reactive astrocytes in cats, central chromatolysis, neuronal vacuolation, spheroids, spongiosis, satellitosis, melanosis, neuromelanin, lipofuscin, polyglucosan bodies, and psammoma bodies may represent incidental findings of uncertain or no significance and should not be confused with significant microscopic changes. Auto- and heterolysis as well as handling and histotechnological processing may cause postmortem morphological changes of the CNS, including vacuolization, cerebellar conglutination, dark neurons, Buscaino bodies, freezing, and shrinkage artifacts, all of which have to be differentiated from genuine lesions. Postmortem invasion of micro-organisms should not be confused with intravital infections. Awareness of these different changes and their recognition are a prerequisite for identifying genuine lesions and may help to formulate a professional morphological and etiological diagnosis.
Collapse
Affiliation(s)
- P Wohlsein
- Department of Pathology, University of Veterinary Medicine Hannover, Bünteweg 17, D-30559 Hannover, Germany.
| | | | | |
Collapse
|
33
|
Ponce-Regalado MD, Ortuño-Sahagún D, Zarate CB, Gudiño-Cabrera G. Ensheathing cell-conditioned medium directs the differentiation of human umbilical cord blood cells into aldynoglial phenotype cells. Hum Cell 2012; 25:51-60. [PMID: 22529032 DOI: 10.1007/s13577-012-0044-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Accepted: 02/24/2012] [Indexed: 10/28/2022]
Abstract
Despite their similarities to bone marrow precursor cells (PC), human umbilical cord blood (HUCB) PCs are more immature and, thus, they exhibit greater plasticity. This plasticity is evident by their ability to proliferate and spontaneously differentiate into almost any cell type, depending on their environment. Moreover, HUCB-PCs yield an accessible cell population that can be grown in culture and differentiated into glial, neuronal and other cell phenotypes. HUCB-PCs offer many potential therapeutic benefits, particularly in the area of neural replacement. We sought to induce the differentiation of HUCB-PCs into glial cells, known as aldynoglia. These cells can promote neuronal regeneration after lesion and they can be transplanted into areas affected by several pathologies, which represents an important therapeutic strategy to treat central nervous system damage. To induce differentiation to the aldynoglia phenotype, HUCB-PCs were exposed to different culture media. Mononuclear cells from HUCB were isolated and purified by identification of CD34 and CD133 antigens, and after 12 days in culture, differentiation of CD34+ HUCB-PCs to an aldynoglia phenotypic, but not that of CD133+ cells, was induced in ensheathing cell (EC)-conditioned medium. Thus, we demonstrate that the differentiation of HUCB-PCs into aldynoglia cells in EC-conditioned medium can provide a new source of aldynoglial cells for use in transplants to treat injuries or neurodegenerative diseases.
Collapse
Affiliation(s)
- María Dolores Ponce-Regalado
- Laboratorio de Desarrollo y Regeneración Neural, Departamento de Biología Celular y Molecular, Instituto de Neurobiología, C.U.C.B.A, Universidad de Guadalajara, Apdo. Postal 52-126, 45021, Guadalajara, Jalisco, Mexico
| | | | | | | |
Collapse
|
34
|
Imbschweiler I, Seehusen F, Peck CT, Omar M, Baumgärtner W, Wewetzer K. Increased p75 neurotrophin receptor expression in the canine distemper virus model of multiple sclerosis identifies aldynoglial Schwann cells that emerge in response to axonal damage. Glia 2011; 60:358-71. [PMID: 22072443 DOI: 10.1002/glia.22270] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Accepted: 10/24/2011] [Indexed: 12/15/2022]
Abstract
Gliogenesis under pathophysiological conditions is of particular clinical relevance since it may provide regeneration-promoting cells recruitable for therapeutic purposes. There is accumulating evidence that aldynoglial cells with Schwann cell-like growth-promoting properties emerge in the lesioned CNS. However, the characterization of these cells and the signals triggering their in situ generation have remained enigmatic. In the present study, we used the p75 neurotrophin receptor (p75(NTR) ) as a marker for Schwann cells to study gliogenesis in the well-defined canine distemper virus (CDV)-induced demyelination model. White matter lesions of CDV-infected dogs contained bi- to multipolar, p75(NTR) -expressing cells that neither expressed MBP, GFAP, BS-1, or P0 identifying oligodendroglia, astrocytes, microglia, and myelinating Schwann cells nor CDV antigen. Interestingly, p75(NTR) -expression became apparent prior to the onset of demyelination in parallel to the expression of β-amyloid precursor protein (β-APP), nonphosphorylated neurofilament (n-NF), BS-1, and CD3, and peaked in subacute lesions with inflammation. To study the role of infiltrating immune cells during differentiation of Schwann cell-like glia, organotypic slice cultures from the normal olfactory bulb were established. Despite the absence of infiltrating lymphocytes and macrophages, a massive appearance of p75(NTR) -positive Schwann-like cells and BS-1-positive microglia was noticed at 10 days in vitro. It is concluded that axonal damage as an early signal triggers the differentiation of tissue-resident precursor cells into p75(NTR) -expressing aldynoglial Schwann cells that retain an immature pre-myelin state. Further studies have to address the role of microglia during this process and the regenerative potential of aldynoglial cells in CDV infection and other demyelinating diseases.
Collapse
Affiliation(s)
- Ilka Imbschweiler
- Department of Pathology, University of Veterinary Medicine, Bünteweg 17, D-30559 Hannover, Germany
| | | | | | | | | | | |
Collapse
|
35
|
Yamaguchi T, Fujii H, Dziurzynski K, Delashaw JB, Watanabe E. Olfactory ensheathing cell tumor: case report. Skull Base 2011; 20:357-61. [PMID: 21359000 DOI: 10.1055/s-0030-1249572] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Subfrontal schwannomas, sometimes referred to as olfactory groove schwannomas, are rare tumors (34 cases reported to date). Despite the name and several theories proposed in the literature, there is no officially recognized description of the tumor's cell origin. Yasuda proposed the concept of an olfactory ensheathing cell (OEC) tumor in 2006. Olfactory ensheathing cells are glial cells that ensheath the axons of the first cranial nerve. Microscopically, both olfactory ensheathing cells and Schwann cells have similar morphological and immunohistochemical features. However, immunohistochemically olfactory ensheathing cells are negative for Leu7 and Schwann cells positive. A 30-year-old woman presented with a subfrontal, extraaxial, enhancing tumor, and underwent gross total resection. Immunohistochemical reactivity data suggested a schwannoma (positive for S-100 and negative for epithelial membrane antigen). However, the tumor was negative for Leu7. Accordingly, our final diagnosis was that of an OEC tumor. Subfrontal schwannoma immunohistochemical staining, if negative for Leu7, is indicative of an OEC tumor. It is possible that schwannoma-like extraaxial tumors at the anterior skull base are OEC tumors, which negative Leu7 staining can confirm.
Collapse
Affiliation(s)
- Takashi Yamaguchi
- Department of Neurosurgery, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | | | | | | | | |
Collapse
|
36
|
Franceschini I, Desroziers E, Caraty A, Duittoz A. The intimate relationship of gonadotropin-releasing hormone neurons with the polysialylated neural cell adhesion molecule revisited across development and adult plasticity. Eur J Neurosci 2010; 32:2031-41. [DOI: 10.1111/j.1460-9568.2010.07517.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
37
|
Zawadzka M, Rivers LE, Fancy SPJ, Zhao C, Tripathi R, Jamen F, Young K, Goncharevich A, Pohl H, Rizzi M, Rowitch DH, Kessaris N, Suter U, Richardson WD, Franklin RJM. CNS-resident glial progenitor/stem cells produce Schwann cells as well as oligodendrocytes during repair of CNS demyelination. Cell Stem Cell 2010; 6:578-90. [PMID: 20569695 DOI: 10.1016/j.stem.2010.04.002] [Citation(s) in RCA: 477] [Impact Index Per Article: 34.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Revised: 02/26/2010] [Accepted: 04/11/2010] [Indexed: 01/01/2023]
Abstract
After central nervous system (CNS) demyelination-such as occurs during multiple sclerosis-there is often spontaneous regeneration of myelin sheaths, mainly by oligodendrocytes but also by Schwann cells. The origins of the remyelinating cells have not previously been established. We have used Cre-lox fate mapping in transgenic mice to show that PDGFRA/NG2-expressing glia, a distributed population of stem/progenitor cells in the adult CNS, produce the remyelinating oligodendrocytes and almost all of the Schwann cells in chemically induced demyelinated lesions. In contrast, the great majority of reactive astrocytes in the vicinity of the lesions are derived from preexisting FGFR3-expressing cells, likely to be astrocytes. These data resolve a long-running debate about the origins of the main players in CNS remyelination and reveal a surprising capacity of CNS precursors to generate Schwann cells, which normally develop from the embryonic neural crest and are restricted to the peripheral nervous system.
Collapse
Affiliation(s)
- Malgorzata Zawadzka
- MRC Cambridge Centre for Stem Cell Biology and Regenerative Medicine, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Hale DM, Ray S, Leung JY, Holloway AF, Chung RS, West AK, Chuah MI. Olfactory ensheathing cells moderate nuclear factor kappaB translocation in astrocytes. Mol Cell Neurosci 2010; 46:213-21. [PMID: 20840869 DOI: 10.1016/j.mcn.2010.09.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2009] [Revised: 08/10/2010] [Accepted: 09/03/2010] [Indexed: 01/05/2023] Open
Abstract
Nuclear factor kappaB (NFκB) is a key transcriptional regulator of inflammatory genes. We investigated the modulatory effects of olfactory ensheathing cells (OECs), microglia and meningeal fibroblasts on translocation of NFκB to astrocyte nuclei. The percentage of activated astrocytes in co-cultures with OECs was significantly less than for co-cultures with microglia (p<0.001) and fibroblasts (p<0.05). Phorbol myristate acetate (PMA) and calcium ionophore stimulation of p65 NFκB translocation to nuclei provided an in vitro model of astrocyte inflammatory activation. Soluble factors released by OECs significantly moderated the astrocytic NFκB translocation induced by either PMA/calcium ionophore or microglia-derived factors (p<0.001). Insulin-like growth factor-1 may contribute to these effects, since it is expressed by OECs and also significantly moderated the astrocytic NFκB translocation (p<0.05), albeit insufficiently to fully account for the OEC-induced moderation (p<0.01). Olfactory ensheathing cells significantly moderated the increased transcription of the pro-inflammatory cytokine, granulocyte macrophage-colony stimulating factor in the activated astrocytes (p<0.01). These results suggest that transplanted OECs could improve neural repair after CNS injury by moderating astrocyte activation.
Collapse
Affiliation(s)
- David M Hale
- Menzies Research Institute, University of Tasmania, Hobart, Tasmania 7001, Australia
| | | | | | | | | | | | | |
Collapse
|
39
|
Doncel-Pérez E, Caballero-Chacón S, Nieto-Sampedro M. Neurosphere cell differentiation to aldynoglia promoted by olfactory ensheathing cell conditioned medium. Glia 2009; 57:1393-409. [DOI: 10.1002/glia.20858] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
40
|
Rojas-Mayorquín AE, Torres-Ruíz NM, Gudiño-Cabrera G, Ortuño-Sahagún D. Subtractive hybridization identifies genes differentially expressed by olfactory ensheathing cells and neural stem cells. Int J Dev Neurosci 2009; 28:75-82. [PMID: 19772911 DOI: 10.1016/j.ijdevneu.2009.08.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2008] [Revised: 08/16/2009] [Accepted: 08/17/2009] [Indexed: 01/22/2023] Open
Abstract
The in vitro differentiation of embryonic stem cells into glia has received relatively limited attention to date when compared with the interest in the generation of neurons. We are interested in a particular glial phenotype, the aldynoglia, and their differentiation from multipotential neural precursors (MNP), since this type of glia can promote neuronal regeneration. We constructed cDNA libraries from cultures of purified olfactory ensheathing cells (OEC), an aldynoglia cell type, and MNP to perform subtractive hybridization. As a result, we isolated four genes from the OEC: one tenascin C (Tn-C) isoform, Insulin-like growth factor binding protein 5 (Igfbp-5), cytochrome oxidase subunit I (COX1) and a phosphodiesterase for cyclic nucleotides (CNPase). With the exception of CNPase, these genes are expressed more strongly in the OEC than in the MNP and moreover, the expression of all four is induced when MNP were exposed to OEC conditioned media. The data suggest a role for these genes in MNP differentiation, and their products appear to represent characteristic proteins of the aldynoglia phenotype.
Collapse
Affiliation(s)
- Argelia Esperanza Rojas-Mayorquín
- Laboratorio de Desarrollo y Regeneración Neural, Instituto de Neurobiología, Departamento de Biología Celular y Molecular, C.U.C.B.A, Universidad de Guadalajara, 45020 Guadalajara, Jalisco, México
| | | | | | | |
Collapse
|
41
|
Chiu SC, Hung HS, Lin SZ, Chiang E, Liu DD. Therapeutic potential of olfactory ensheathing cells in neurodegenerative diseases. J Mol Med (Berl) 2009; 87:1179-89. [PMID: 19756447 DOI: 10.1007/s00109-009-0528-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Revised: 08/17/2009] [Accepted: 08/26/2009] [Indexed: 12/28/2022]
Abstract
The regenerative capacity of the olfactory system has generated interest in potential clinical application of cells from the olfactory epithelium in the treatment of neurodegenerative diseases. Experimental evidence from animal models and clinical studies suggest that transplantation of olfactory ensheathing cells (OEC), specialized glia in the olfactory system, may be therapeutically useful in neurodegenerative diseases such as spinal cord injury and stroke. This review article describes the different experimental approaches in OEC transplantation. We also discuss the possible effects of OEC implantation on the underlying pathophysiology in neurological disease, including neuroplasticity. Our recent study of this particular population of cells has disclosed some of the molecular basis of the regenerative mechanism of OECs. In summary OECs produce several neurotrophic factors such as stromal cell-derived factor 1alpha and brain-derived neurotrophic factor and enhance axonal regeneration to promote neuroplasticity in neurodegenerative diseases.
Collapse
Affiliation(s)
- Shao-Chih Chiu
- Graduate Institute of Immunology, China Medical University, Taichung, Taiwan
| | | | | | | | | |
Collapse
|
42
|
Chhabra HS, Lima C, Sachdeva S, Mittal A, Nigam V, Chaturvedi D, Arora M, Aggarwal A, Kapur R, Khan TAH. Autologous mucosal transplant in chronic spinal cord injury: an Indian Pilot Study. Spinal Cord 2009; 47:887-95. [DOI: 10.1038/sc.2009.54] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
43
|
Orlando EA, Imbschweiler I, Gerhauser I, Baumgärtner W, Wewetzer K. In vitro characterization and preferential infection by canine distemper virus of glial precursors with Schwann cell characteristics from adult canine brain. Neuropathol Appl Neurobiol 2009; 34:621-37. [PMID: 19076697 DOI: 10.1111/j.1365-2990.2008.00958.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
AIMS Canine distemper virus (CDV)-induced demyelinating leukoencephalomyelitis is a naturally occurring model for multiple sclerosis. The aim of this study was to establish primary glial cell cultures from adult canine brain for the analysis of CDV spread and cell tropism. METHODS Cultures were inoculated with the CDV-R252 and a CDV-Onderstepoort strain expressing the green fluorescent protein (CDV-OndeGFP). CDV antigen expression was studied using cell type-specific antibodies at different days post infection. Glial cells expressing p75(NTR) were purified using antibody-based techniques and characterized with regard to antigen expression and proliferation. RESULTS Three weeks after seeding, cultures contained spindle-shaped cells expressing p75(NTR), oligodendrocytic cells, astrocytes, microglia and fibroblasts. Both CDV strains induced a mild to moderate cytopathic effect that consisted of single necrotic and few syncytial giant cells, but displayed in part a differential cell tropism. Whereas CDV-OndeGFP expression in microglia and astrocytes did not exceed 1% and 50%, respectively, CDV-R252 infected 100% and 80% of both cell types, respectively. The cells most early infected by both CDV strains expressed p75(NTR) and may correlate to cells previously identified as aldynoglia. Treatment of p75(NTR+) cells with Schwann cell mitogens and serum deprivation increased proliferation and A2B5 expression, respectively, indicating common properties compared with Schwann cells and oligodendrocyte precursors. CONCLUSIONS Infection of adult canine astrocytes and microglia revealed CDV strain-specific cell tropism. Moreover, this is the first identification of a glial cell type with Schwann cell-like properties in adult canine brain and, more importantly, these cells displayed a high susceptibility to CDV infection.
Collapse
Affiliation(s)
- E A Orlando
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
| | | | | | | | | |
Collapse
|
44
|
Rojas-Mayorquín AE, Torres-Ruíz NM, Ortuño-Sahagún D, Gudiño-Cabrera G. Microarray analysis of striatal embryonic stem cells induced to differentiate by ensheathing cell conditioned media. Dev Dyn 2008; 237:979-94. [DOI: 10.1002/dvdy.21489] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
45
|
Su Z, Cao L, Zhu Y, Liu X, Huang Z, Huang A, He C. Nogo enhances the adhesion of olfactory ensheathing cells and inhibits their migration. J Cell Sci 2007; 120:1877-87. [PMID: 17488779 DOI: 10.1242/jcs.03448] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The migration of olfactory ensheathing cells (OECs) is essential for pioneering the olfactory nerve pathway during development and for promoting axonal regeneration when implanted into the injured central nervous system (CNS). In the present study, recombinant Nogo-66 enhanced the adhesion of OECs and inhibited their migration. Using immunocytochemistry and western blot, we showed that the Nogo-66 receptor (NgR) was expressed on OECs. When NgR was released from the cell surface with phosphatidylinositol-specific phospholipase C or neutralized by NgR antibody, the effect of Nogo-66 on OEC adhesion and migration was markedly attenuated. Nogo-66 was found to promote the formation of focal adhesion in OECs and inhibited their membrane protrusion through the activation of RhoA. Furthermore, the co-culture migration assay demonstrated that OEC motility was significantly restricted by Nogo-A expressed on Cos7 cell membranes or oligodendrocytes. Moreover, treatment with anti-NgR antibody facilitated migration of implanted OECs in a spinal cord hemisection injury model. Taken together, we demonstrate, for the first time, that Nogo, a myelin-associated inhibitor of axon regeneration in the CNS, enhances the adhesion and inhibits the migration of OECs via NgR regulation of RhoA.
Collapse
Affiliation(s)
- Zhida Su
- Department of Neurobiology, Second Military Medical University, Shanghai 200433, China
| | | | | | | | | | | | | |
Collapse
|
46
|
Samadikuchaksaraei A. An overview of tissue engineering approaches for management of spinal cord injuries. J Neuroeng Rehabil 2007; 4:15. [PMID: 17501987 PMCID: PMC1876804 DOI: 10.1186/1743-0003-4-15] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2006] [Accepted: 05/14/2007] [Indexed: 01/09/2023] Open
Abstract
Severe spinal cord injury (SCI) leads to devastating neurological deficits and disabilities, which necessitates spending a great deal of health budget for psychological and healthcare problems of these patients and their relatives. This justifies the cost of research into the new modalities for treatment of spinal cord injuries, even in developing countries. Apart from surgical management and nerve grafting, several other approaches have been adopted for management of this condition including pharmacologic and gene therapy, cell therapy, and use of different cell-free or cell-seeded bioscaffolds. In current paper, the recent developments for therapeutic delivery of stem and non-stem cells to the site of injury, and application of cell-free and cell-seeded natural and synthetic scaffolds have been reviewed.
Collapse
Affiliation(s)
- Ali Samadikuchaksaraei
- Department of Biotechnology, Faculty of Allied Medicine and Cellular and Molecular Research Center, Iran University of Medical Sciences, Iran.
| |
Collapse
|
47
|
López-Vales R, Forés J, Navarro X, Verdú E. Olfactory ensheathing glia graft in combination with FK506 administration promote repair after spinal cord injury. Neurobiol Dis 2006; 24:443-54. [PMID: 16987668 DOI: 10.1016/j.nbd.2006.08.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2006] [Revised: 07/12/2006] [Accepted: 08/02/2006] [Indexed: 12/25/2022] Open
Abstract
The aim of this study was to determine whether a combination of olfactory ensheathing cell (OEC) graft with the administration of FK506, two experimental approaches that have been previously reported to exert protective/regenerative effects after spinal cord injury, promotes synergic restorative effects after complete or partial spinal cord injuries. In partial spinal cord injury, combination of an OEC graft and FK506 reduced functional deficits evaluated by the BBB score, motor-evoked potentials (MEPs) and H reflex tests, diminished cavitation, astrogliosis and increased sparing/regeneration of raphespinal fibers compared to untreated and single-treatment groups of rats. After complete spinal cord transection, the combined treatment significantly improved functional outcomes, promoted axonal regeneration caudal to the lesion, and diminished astrogliosis compared only to non-transplanted animals. Slightly, but non-significant, better functional and histological results were found in OEC-grafted animals treated with FK506 than in those given saline after spinal cord transection. Nevertheless, the combined treatment increased the percentage of rats that recovered MEPs and promoted a significant reduction in astrogliosis. In conclusion, this study demonstrates that OEC grafts combined with FK506 promote additive repair of spinal cord injuries to those exerted by single treatments, the effect being more remarkable when the spinal cord is partially lesioned.
Collapse
Affiliation(s)
- Rubèn López-Vales
- Group of Neuroplasticity and Regeneration, Institute of Neuroscience and Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Spain
| | | | | | | |
Collapse
|
48
|
López-Vales R, Forés J, Navarro X, Verdú E. Chronic transplantation of olfactory ensheathing cells promotes partial recovery after complete spinal cord transection in the rat. Glia 2006; 55:303-11. [PMID: 17096411 DOI: 10.1002/glia.20457] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The goal of this study was to ascertain whether olfactory ensheathing cells (OECs) were able to promote axonal regeneration and functional recovery when transplanted 45 days after complete transection of the thoracic spinal cord in adult rats. OECs promoted partial restitution of supraspinal pathways evaluated by motor evoked potentials and modest recovery of hindlimb movements. In addition, OEC grafts reduced lumbar reflex hyperexcitability from the first month after transplantation. Histological results revealed that OECs facilitated corticospinal and raphespinal axons regrowth through the injury site and into the caudal spinal cord segments. Interestingly, raphespinal but not corticospinal fibers regenerated long distances through the gray matter and reached the lower lumbar segments (L5) of the spinal cord. However, delayed OEC grafts failed to reduce posttraumatic astrogliosis. In conclusion, the beneficial effects found in the present study further support the use of OECs for treating chronic spinal cord injuries.
Collapse
Affiliation(s)
- Rubèn López-Vales
- Group of Neuroplasticity and Regeneration, Institute of Neuroscience and Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | | | | | | |
Collapse
|
49
|
Li Y, Li D, Raisman G. Transplanted Schwann cells, not olfactory ensheathing cells, myelinate optic nerve fibres. Glia 2006; 55:312-6. [PMID: 17099888 DOI: 10.1002/glia.20458] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In a previous study we found that olfactory ensheathing cells transplanted into complete retrobulbar transections of the rat optic nerve mediated regeneration of severed retinal ganglion cell axons through the graft region. Although the regenerating axons were ensheathed by the transplanted cells, none of the regenerating axons became myelinated by either central or peripheral type myelin. In the present study we used the same operative procedure but transplanted Schwann cells instead of olfactory ensheathing cells. As with the olfactory ensheathing cell transplants the Schwann cells transplants also induced regeneration of the severed retinal ganglion cell axons into the graft region. In contrast to the situation with the olfactory ensheathing cell transplants, however, a considerable number of the regenerating axons became myelinated by peripheral type myelin produced by the transplanted Schwann cells. This observation identifies a further distinction between these two cell types which are phenotypically similar in many ways, but which have been shown to have major functional differences with regard to regeneration in spinal cord lesions.
Collapse
Affiliation(s)
- Ying Li
- Institute of Neurology, UCL, London, United Kingdom
| | | | | |
Collapse
|
50
|
Polentes J, Gauthier P. Transplantation de cellules gliales olfactives après traumatisme médullaire. Neurochirurgie 2005; 51:421-34. [PMID: 16327676 DOI: 10.1016/s0028-3770(05)83501-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Ensheathing olfactory glial cells (OEC) can be considered, with stem cells, as the other most important cell type for developing therapeutic cellular transplantation strategies following lesion of the central nervous system (CNS) and particularly in the case of spinal cord injury. OECs are macroglial cells whose precursors are located in the olfactory mucosa. OEC ensheath the axons of the sensory olfactory neurons, from the peripheral mucosa to the central olfactory bulbs. These glial cells constitute one of the rare macroglial cells which, after removal in the adult mammal, can survive in culture and multiply. After post-traumatic transplantation in the CNS, these cells have induced several instances of functional recovery after injury of different neural systems. The "OEC transplantation effect" consists in modifying the central inhibitory environment to make it more propitious for axonal regrowth and cell survival (reduction of the glial scar; releasing of numerous survival and neurotrophic factors, and of surface, extracellular matrix and adhesion molecules). In addition to the fact that OEC can ensheath and/or myelinate central axons, migrate in the CNS and accompany the growing axons over a relatively long distance, they also can be obtained from olfactory mucosa. OEC thus constitute a preferential candidate for autologous transplantation for the purposes of repair.
Collapse
Affiliation(s)
- J Polentes
- Physiologie Neurovégétative, UMR CNRS 6153 INRA 1147, Université Paul-Cézanne, Faculté des Sciences et Techniques de Saint-Jérôme (Aix-Marseille III), Case courrier 352, Avenue Escadrille-Normandie-Niémen, 13397 Marseille Cedex 20
| | | |
Collapse
|