1
|
Chaves LF, Meyers AC, Hodo CL, Sanders JP, Curtis-Robles R, Hamer GL, Hamer SA. Trypanosoma cruzi infection in dogs along the US-Mexico border: R 0 changes with vector species composition. Epidemics 2023; 45:100723. [PMID: 37935075 DOI: 10.1016/j.epidem.2023.100723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 07/05/2023] [Accepted: 10/26/2023] [Indexed: 11/09/2023] Open
Abstract
Infection with Trypanosoma cruzi, etiological agent of Chagas disease, is common in US government working dogs along the US-Mexico border. This 3145 km long border comprises four states: Texas (TX), New Mexico (NM), Arizona (AZ) and California (CA) with diverse ecosystems and several triatomine (a.k.a., kissing bug) species, primary vectors of T. cruzi in this region. The kissing bug (Heteroptera: Reduviidae) community ranging from CA to TX includes Triatoma protracta (Uhler), Triatoma recurva (Stål) and Triatoma rubida (Uhler) and becomes dominated by Triatoma gerstaeckeri Stål in TX. Here, we ask if T. cruzi infection dynamics in dogs varies along this border region, potentially reflecting changes in vector species and their vectorial capacity. Using reversible catalytic models of infection, where seropositivity can be lost, we estimated an R0 (Estimate ± S.E.) of 1.192 ± 0.084 for TX and NM. In contrast, seropositivity decayed to zero as dogs aged in AZ and CA. These results suggest that dogs are likely infected by T. cruzi during their training in western TX, with a force of infection large enough for keeping R0 above 1, i.e., the disease endemically established, in TX and NM. In AZ and CA, a lower force of infection, probably associated with different vector species communities and associated vectorial capacity and/or different lineages of T. cruzi, results in dogs decreasing their seropositivity with age.
Collapse
Affiliation(s)
- Luis Fernando Chaves
- Department of Environmental and Occupational Health, School of Public Health, Indiana University, Bloomington IN 47405, USA.
| | - Alyssa C Meyers
- Department of Veterinary Integrative Bioscienes, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA; Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Carolyn L Hodo
- Department of Veterinary Integrative Bioscienes, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA; Department of Comparative Medicine, Keeling Center for Comparative Medicine and Research, The University of Texas MD Anderson Cancer Center, Bastrop, TX 78602, USA
| | - John P Sanders
- Office of Health Security, US Department of Homeland Security, Washington, DC 20528, USA
| | - Rachel Curtis-Robles
- Department of Veterinary Integrative Bioscienes, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Gabriel L Hamer
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA
| | - Sarah A Hamer
- Department of Veterinary Integrative Bioscienes, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
2
|
Daltro RT, Santos EF, Silva ÂAO, Maron Freitas NE, Leony LM, Vasconcelos LCM, Luquetti AO, Celedon PAF, Zanchin NIT, Regis-Silva CG, Santos FLN. Western blot using Trypanosoma cruzi chimeric recombinant proteins for the serodiagnosis of chronic Chagas disease: A proof-of-concept study. PLoS Negl Trop Dis 2022; 16:e0010944. [PMID: 36441769 PMCID: PMC9731424 DOI: 10.1371/journal.pntd.0010944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/08/2022] [Accepted: 11/13/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Chagas disease (CD) is caused by Trypanosoma cruzi. The chronic phase of CD is characterized by the presence of IgG anti-T. cruzi antibodies; and diagnosis is performed by serological methods. Because there is no reliable test that can be used as a reference test, WHO recommends the parallel use of two different tests for CD serodiagnosis. If results are inconclusive, samples should be subjected to a confirmatory test, e.g., Western blot (WB) or PCR. PCR offers low sensitivity in the chronic phase, whereas few confirmatory tests based on the WB method are commercially available worldwide. Therefore, new diagnostic tools should be evaluated to fill the gap in CD confirmatory tests. In recent years, four chimeric recombinant antigens (IBMP-8.1, IBMP-8.2, IBMP-8.3 and IBMP-8.4) have been evaluated in phase I, II and III studies using ELISA, liquid microarray and immunochromatography with 95-100% accuracy. Given the high diagnostic performance of these antigens, the present study investigated the ability of these molecules to diagnose chronic CD using a WB testing platform. METHODOLOGY/PRINCIPAL FINDINGS In this study, we analyzed the diagnostic potential of four chimeric antigens using 40 T. cruzi-positive, 24-negative, and three additional positive samples for visceral leishmaniasis (i.e., potentially cross-reactive) using WB as the diagnostic platform. Checkerboard titration with different dilutions of antigens, conjugated antigens, and serum samples was performed to standardize all assays. All IBMP antigens achieved 100% sensitivity, specificity, and accuracy, with the exception of IBMP-8.3, which had 100% specificity despite lack of significance, but lower sensitivity (95%) and accuracy (96.9%). No cross-reactivity was observed in samples positive for leishmaniasis. CONCLUSIONS/SIGNIFICANCE The present phase I (proof-of-concept) study demonstrated the high diagnostic potential of these four IBMP antigens to discriminate between T. cruzi-positive and -negative samples, making them candidates for phase II and confirmatory testing with WB.
Collapse
Affiliation(s)
- Ramona Tavares Daltro
- Advanced Public Health Laboratory, Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Salvador, Brazil
| | - Emily Ferreira Santos
- Advanced Public Health Laboratory, Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Salvador, Brazil
| | | | | | - Leonardo Maia Leony
- Advanced Public Health Laboratory, Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Salvador, Brazil
| | | | | | - Paola Alejandra Fiorani Celedon
- Laboratory of Molecular and Systems Biology of Trypanosomatids, Carlos Chagas Institute, Oswaldo Cruz Foundation, Curitiba, Brazil
| | - Nilson Ivo Tonin Zanchin
- Structural Biology and Protein Engineering Laboratory, Carlos Chagas Institute, Oswaldo Cruz Foundation, Curitiba, Brazil
| | | | - Fred Luciano Neves Santos
- Advanced Public Health Laboratory, Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Salvador, Brazil
- Integrated Translational Program in Chagas disease from FIOCRUZ (Fio-Chagas), Oswaldo Cruz Foundation (FIOCRUZ-RJ), Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
3
|
Elucidating the 3D Structure of a Surface Membrane Antigen from Trypanosoma cruzi as a Serodiagnostic Biomarker of Chagas Disease. Vaccines (Basel) 2022; 10:vaccines10010071. [PMID: 35062732 PMCID: PMC8781870 DOI: 10.3390/vaccines10010071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/28/2021] [Accepted: 12/29/2021] [Indexed: 11/16/2022] Open
Abstract
Chagas disease (CD) is a vector-borne parasitosis, caused by the protozoan parasite Trypanosoma cruzi, that affects millions of people worldwide. Although endemic in South America, CD is emerging throughout the world due to climate change and increased immigratory flux of infected people to non-endemic regions. Containing of the diffusion of CD is challenged by the asymptomatic nature of the disease in early infection stages and by the lack of a rapid and effective diagnostic test. With the aim of designing new serodiagnostic molecules to be implemented in a microarray-based diagnostic set-up for early screening of CD, herein, we report the recombinant production of the extracellular domain of a surface membrane antigen from T. cruzi (TcSMP) and confirm its ability to detect plasma antibodies from infected patients. Moreover, we describe its high-resolution (1.62 Å) crystal structure, to which in silico epitope predictions were applied in order to locate the most immunoreactive regions of TcSMP in order to guide the design of epitopes that may be used as an alternative to the full-length antigen for CD diagnosis. Two putative, linear epitopes, belonging to the same immunogenic region, were synthesized as free peptides, and their immunological properties were tested in vitro. Although both peptides were shown to adopt a structural conformation that allowed their recognition by polyclonal antibodies raised against the recombinant protein, they were not serodiagnostic for T. cruzi infections. Nevertheless, they represent good starting points for further iterative structure-based (re)design cycles.
Collapse
|
4
|
Lidani KCF, Andrade FA, Bavia L, Damasceno FS, Beltrame MH, Messias-Reason IJ, Sandri TL. Chagas Disease: From Discovery to a Worldwide Health Problem. Front Public Health 2019; 7:166. [PMID: 31312626 PMCID: PMC6614205 DOI: 10.3389/fpubh.2019.00166] [Citation(s) in RCA: 288] [Impact Index Per Article: 57.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 06/05/2019] [Indexed: 12/23/2022] Open
Abstract
Carlos Chagas discovered American trypanosomiasis, also named Chagas disease (CD) in his honor, just over a century ago. He described the clinical aspects of the disease, characterized by its etiological agent (Trypanosoma cruzi) and identified its insect vector. Initially, CD occurred only in Latin America and was considered a silent and poorly visible disease. More recently, CD became a neglected worldwide disease with a high morbimortality rate and substantial social impact, emerging as a significant public health threat. In this context, it is crucial to better understand better the epidemiological scenarios of CD and its transmission dynamics, involving people infected and at risk of infection, diversity of the parasite, vector species, and T. cruzi reservoirs. Although efforts have been made by endemic and non-endemic countries to control, treat, and interrupt disease transmission, the cure or complete eradication of CD are still topics of great concern and require global attention. Considering the current scenario of CD, also affecting non-endemic places such as Canada, USA, Europe, Australia, and Japan, in this review we aim to describe the spread of CD cases worldwide since its discovery until it has become a global public health concern.
Collapse
Affiliation(s)
| | - Fabiana Antunes Andrade
- Laboratory of Molecular Immunopathology, Clinical Hospital, Federal University of Paraná, Curitiba, Brazil
| | - Lorena Bavia
- Laboratory of Molecular Immunopathology, Clinical Hospital, Federal University of Paraná, Curitiba, Brazil
| | - Flávia Silva Damasceno
- Laboratory of Biochemistry of Tryps-LaBTryps, Department of Parasitology, Institute for Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Marcia Holsbach Beltrame
- Laboratory of Human Molecular Genetics, Department of Genetics, Federal University of Paraná, Curitiba, Brazil
| | - Iara J. Messias-Reason
- Laboratory of Molecular Immunopathology, Clinical Hospital, Federal University of Paraná, Curitiba, Brazil
| | - Thaisa Lucas Sandri
- Laboratory of Molecular Immunopathology, Clinical Hospital, Federal University of Paraná, Curitiba, Brazil
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
| |
Collapse
|
5
|
Pathogens and Their Effect on Exosome Biogenesis and Composition. Biomedicines 2018; 6:biomedicines6030079. [PMID: 30041409 PMCID: PMC6164629 DOI: 10.3390/biomedicines6030079] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 07/17/2018] [Accepted: 07/17/2018] [Indexed: 12/12/2022] Open
Abstract
Exosomes are nanosized membrane microvesicles (30⁻100 nm) that have the capability to communicate intercellularly and transport cell components (i.e., miRNA, mRNA, proteins and DNA). Exosomes are found in nearly every cell type (i.e., mast cells, dendritic, tumor, and macrophages). There have been many studies that have shown the importance of exosome function as well as their unique packaging and targeting abilities. These characteristics make exosomes ideal candidates to act as biomarkers and therapeutics for disease. We will discuss the biogenesis, composition, and relationship of exosomes with non-viral microbial infections including gram-negative bacteria, gram-positive bacteria, Leishmania and Trypanosoma cruzi.
Collapse
|
6
|
Characterization and Diagnostic Application of Trypanosoma cruzi Trypomastigote Excreted-Secreted Antigens Shed in Extracellular Vesicles Released from Infected Mammalian Cells. J Clin Microbiol 2016; 55:744-758. [PMID: 27974541 DOI: 10.1128/jcm.01649-16] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 11/11/2016] [Indexed: 01/05/2023] Open
Abstract
Chagas disease, caused by Trypanosoma cruzi, although endemic in many parts of Central and South America, is emerging as a global health threat through the potential contamination of blood supplies. Consequently, in the absence of a gold standard assay for the diagnosis of Chagas disease, additional antigens or strategies are needed. A proteomic analysis of the trypomastigote excreted-secreted antigens (TESA) associated with exosomal vesicles shed by T. cruzi identified ∼80 parasite proteins, with the majority being trans-sialidases. Mass spectrometry analysis of immunoprecipitation products performed using Chagas immune sera showed a marked enrichment in a subset of TESA proteins. Of particular relevance for diagnostic applications were the retrotransposon hot spot (RHS) proteins, which are absent in Leishmania spp., parasites that often confound diagnosis of Chagas disease. Interestingly, serological screens using recombinant RHS showed a robust immunoreactivity with sera from patients with clinical stages of Chagas ranging from asymptomatic to advance cardiomyopathy and this immunoreactivity was comparable to that of crude TESA. More importantly, no cross-reactivity with RHS was detected with sera from patients with malaria, leishmaniasis, toxoplasmosis, or African sleeping sickness, making this protein an attractive reagent for diagnosis of Chagas disease.
Collapse
|
7
|
Balouz V, Agüero F, Buscaglia CA. Chagas Disease Diagnostic Applications: Present Knowledge and Future Steps. ADVANCES IN PARASITOLOGY 2016; 97:1-45. [PMID: 28325368 PMCID: PMC5363286 DOI: 10.1016/bs.apar.2016.10.001] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Chagas disease, caused by the protozoan Trypanosoma cruzi, is a lifelong and debilitating illness of major significance throughout Latin America and an emergent threat to global public health. Being a neglected disease, the vast majority of Chagasic patients have limited access to proper diagnosis and treatment, and there is only a marginal investment into R&D for drug and vaccine development. In this context, identification of novel biomarkers able to transcend the current limits of diagnostic methods surfaces as a main priority in Chagas disease applied research. The expectation is that these novel biomarkers will provide reliable, reproducible and accurate results irrespective of the genetic background, infecting parasite strain, stage of disease, and clinical-associated features of Chagasic populations. In addition, they should be able to address other still unmet diagnostic needs, including early detection of congenital T. cruzi transmission, rapid assessment of treatment efficiency or failure, indication/prediction of disease progression and direct parasite typification in clinical samples. The lack of access of poor and neglected populations to essential diagnostics also stresses the necessity of developing new methods operational in point-of-care settings. In summary, emergent diagnostic tests integrating these novel and tailored tools should provide a significant impact on the effectiveness of current intervention schemes and on the clinical management of Chagasic patients. In this chapter, we discuss the present knowledge and possible future steps in Chagas disease diagnostic applications, as well as the opportunity provided by recent advances in high-throughput methods for biomarker discovery.
Collapse
Affiliation(s)
- Virginia Balouz
- Instituto de Investigaciones Biotecnológicas - Instituto Tecnológico de Chascomús (IIB-INTECH), Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín, B 1650 HMP, Buenos Aires, Argentina
| | - Fernán Agüero
- Instituto de Investigaciones Biotecnológicas - Instituto Tecnológico de Chascomús (IIB-INTECH), Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín, B 1650 HMP, Buenos Aires, Argentina
| | - Carlos A. Buscaglia
- Instituto de Investigaciones Biotecnológicas - Instituto Tecnológico de Chascomús (IIB-INTECH), Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín, B 1650 HMP, Buenos Aires, Argentina
| |
Collapse
|
8
|
Watanabe Costa R, da Silveira JF, Bahia D. Interactions between Trypanosoma cruzi Secreted Proteins and Host Cell Signaling Pathways. Front Microbiol 2016; 7:388. [PMID: 27065960 PMCID: PMC4814445 DOI: 10.3389/fmicb.2016.00388] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 03/11/2016] [Indexed: 12/13/2022] Open
Abstract
Chagas disease is one of the prevalent neglected tropical diseases, affecting at least 6-7 million individuals in Latin America. It is caused by the protozoan parasite Trypanosoma cruzi, which is transmitted to vertebrate hosts by blood-sucking insects. After infection, the parasite invades and multiplies in the myocardium, leading to acute myocarditis that kills around 5% of untreated individuals. T. cruzi secretes proteins that manipulate multiple host cell signaling pathways to promote host cell invasion. The primary secreted lysosomal peptidase in T. cruzi is cruzipain, which has been shown to modulate the host immune response. Cruzipain hinders macrophage activation during the early stages of infection by interrupting the NF-kB P65 mediated signaling pathway. This allows the parasite to survive and replicate, and may contribute to the spread of infection in acute Chagas disease. Another secreted protein P21, which is expressed in all of the developmental stages of T. cruzi, has been shown to modulate host phagocytosis signaling pathways. The parasite also secretes soluble factors that exert effects on host extracellular matrix, such as proteolytic degradation of collagens. Finally, secreted phospholipase A from T. cruzi contributes to lipid modifications on host cells and concomitantly activates the PKC signaling pathway. Here, we present a brief review of the interaction between secreted proteins from T. cruzi and the host cells, emphasizing the manipulation of host signaling pathways during invasion.
Collapse
Affiliation(s)
- Renata Watanabe Costa
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo São Paulo, Brazil
| | - Jose F da Silveira
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo São Paulo, Brazil
| | - Diana Bahia
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São PauloSão Paulo, Brazil; Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas GeraisMinas Gerais, Brazil
| |
Collapse
|
9
|
Molecular characterization of Trypanosoma cruzi SAP proteins with host-cell lysosome exocytosis-inducing activity required for parasite invasion. PLoS One 2013; 8:e83864. [PMID: 24391838 PMCID: PMC3877114 DOI: 10.1371/journal.pone.0083864] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 11/08/2013] [Indexed: 12/30/2022] Open
Abstract
Background To invade target cells, Trypanosoma cruzi metacyclic forms engage distinct sets of surface and secreted molecules that interact with host components. Serine-, alanine-, and proline-rich proteins (SAP) comprise a multigene family constituted of molecules with a high serine, alanine and proline residue content. SAP proteins have a central domain (SAP-CD) responsible for interaction with and invasion of mammalian cells by metacyclic forms. Methods and Findings Using a 513 bp sequence from SAP-CD in blastn analysis, we identified 39 full-length SAP genes in the genome of T. cruzi. Although most of these genes were mapped in the T. cruzi in silico chromosome TcChr41, several SAP sequences were spread out across the genome. The level of SAP transcripts was twice as high in metacyclic forms as in epimastigotes. Monoclonal (MAb-SAP) and polyclonal (anti-SAP) antibodies produced against the recombinant protein SAP-CD were used to investigate the expression and localization of SAP proteins. MAb-SAP reacted with a 55 kDa SAP protein released by epimastigotes and metacyclic forms and with distinct sets of SAP variants expressed in amastigotes and tissue culture-derived trypomastigotes (TCTs). Anti-SAP antibodies reacted with components located in the anterior region of epimastigotes and between the nucleus and the kinetoplast in metacyclic trypomastigotes. In contrast, anti-SAP recognized surface components of amastigotes and TCTs, suggesting that SAP proteins are directed to different cellular compartments. Ten SAP peptides were identified by mass spectrometry in vesicle and soluble-protein fractions obtained from parasite conditioned medium. Using overlapping sequences from SAP-CD, we identified a 54-aa peptide (SAP-CE) that was able to induce host-cell lysosome exocytosis and inhibit parasite internalization by 52%. Conclusions This study provides novel information about the genomic organization, expression and cellular localization of SAP proteins and proposes a triggering role for extracellular SAP proteins in host-cell lysosome exocytosis during metacyclic internalization.
Collapse
|
10
|
Bayer-Santos E, Aguilar-Bonavides C, Rodrigues SP, Cordero EM, Marques AF, Varela-Ramirez A, Choi H, Yoshida N, da Silveira JF, Almeida IC. Proteomic Analysis of Trypanosoma cruzi Secretome: Characterization of Two Populations of Extracellular Vesicles and Soluble Proteins. J Proteome Res 2013; 12:883-97. [DOI: 10.1021/pr300947g] [Citation(s) in RCA: 181] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Ethel Bayer-Santos
- Departamento de Microbiologia,
Imunologia e Parasitologia, Universidade Federal de São Paulo, São Paulo, SP 04023-062, Brazil
| | - Clemente Aguilar-Bonavides
- The Border Biomedical Research
Center, Department of Biological Sciences, University of Texas at El Paso, El Paso, Texas 79968, United States
- Computational Science Program,
The Border Biomedical Research Center, University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Silas Pessini Rodrigues
- The Border Biomedical Research
Center, Department of Biological Sciences, University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Esteban Maurício Cordero
- The Border Biomedical Research
Center, Department of Biological Sciences, University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Alexandre Ferreira Marques
- The Border Biomedical Research
Center, Department of Biological Sciences, University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Armando Varela-Ramirez
- The Border Biomedical Research
Center, Department of Biological Sciences, University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Hyungwon Choi
- Saw Swee Hock School of Public
Health, National University of Singapore, Singapore
| | - Nobuko Yoshida
- Departamento de Microbiologia,
Imunologia e Parasitologia, Universidade Federal de São Paulo, São Paulo, SP 04023-062, Brazil
| | - José Franco da Silveira
- Departamento de Microbiologia,
Imunologia e Parasitologia, Universidade Federal de São Paulo, São Paulo, SP 04023-062, Brazil
| | - Igor C. Almeida
- The Border Biomedical Research
Center, Department of Biological Sciences, University of Texas at El Paso, El Paso, Texas 79968, United States
| |
Collapse
|
11
|
Afonso AM, Ebell MH, Tarleton RL. A systematic review of high quality diagnostic tests for Chagas disease. PLoS Negl Trop Dis 2012; 6:e1881. [PMID: 23145201 PMCID: PMC3493394 DOI: 10.1371/journal.pntd.0001881] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Accepted: 09/12/2012] [Indexed: 11/21/2022] Open
Abstract
Background There is significant heterogeneity in reported sensitivities and specificities of diagnostic serological assays for Chagas disease, as might be expected from studies that vary widely according to setting, research design, antigens employed, and reference standard. The purpose of this study is to summarize the reported accuracy of serological assays and to identify sources of heterogeneity including quality of research design. To avoid associated spectrum bias, our analysis was limited to cohort studies. Methods We completed a search of PubMed, a bibliographic review of potentially relevant articles, and a review of articles identified by a study author involved in this area of research. Studies were limited to prospective cohort studies of adults published since 1985. Measures of diagnostic accuracy were pooled using a Der Simonian Laird Random Effects Model. A subgroup analysis and meta regression were employed to identify sources of heterogeneity. The QUADAS tool was used to assess quality of included studies and Begg's funnel plot was used to assess publication bias. Results Eighteen studies and 61 assays were included in the final analysis. Significant heterogeneity was found in all pre-determined subgroups. Overall sensitivity was 90% (95% CI: 89%–91%) and overall specificity was 98% (95% CI: 98%–98%). Conclusion Sensitivity and specificity of serological assays for the diagnosis of Chagas disease appear less accurate than previously thought. Suggestions to improve the accuracy of reporting include the enrollment of patients in a prospective manner, double blinding, and providing an explicit method of addressing subjects that have an indeterminate diagnosis by either the reference standard or index test. Chagas disease, an infectious disease endemic to Latin America, is caused by the protozoan parasite Trypanosoma cruzi. T. cruzi can be transmitted through blood transfusions, organ transplants, or from mother to fetus, although it is most commonly transmitted through insect vectors. Infections can remain silent for many years before manifesting as potentially fatal damage to the cardiac and/or digestive system. Diagnosis of Chagas disease during its chronic asymptomatic phase is crucial to preventing future infections with T. cruzi and is often performed using serological tests that detect antibodies in the blood. Because there is currently no gold standard for serological diagnostic tests, multiple forms of serologic testing are often used in conjunction. The purpose of this study was to compare reports on the accuracy of serological tests. After limiting studies by certain criteria, the authors found a lower estimate of accuracy than has previously been reported in the literature and suggest quality improvements that can be made to standardize future reports.
Collapse
Affiliation(s)
- Anna M Afonso
- Department of Epidemiology and Biostatistics, University of Georgia, Athens, Georgia, United States of America.
| | | | | |
Collapse
|
12
|
Abstract
Chagas disease is now an active disease in the urban centers of countries of nonendemicity and endemicity because of congenital and blood and/or organ transplantation transmissions and the reactivation of the chronic disease in smaller scale than vectorial transmission, reported as controlled in countries of endemicity. Oral transmission of Chagas disease has emerged in unpredictable situations in the Amazon region and, more rarely, in areas of nonendemicity where the domiciliary triatomine cycle was under control because of exposition of the food to infected triatomine and contaminated secretions of reservoir hosts. Oral transmission of Chagas disease is considered when >1 acute case of febrile disease without other causes is linked to a suspected food and should be confirmed by the presence of the parasite after direct microscopic examination of the blood or other biological fluid sample from the patient.
Collapse
|
13
|
Vasconcelos RH, Azevedo EA, Cavalcanti MG, Silva ED, Ferreira AG, Morais CN, Gomes YM. Immunoglobulin M antibodies against CRA and FRA recombinant antigens of Trypanosoma cruzi in chronic chagasic patients. Hum Immunol 2011; 72:402-5. [DOI: 10.1016/j.humimm.2011.02.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Revised: 02/03/2011] [Accepted: 02/22/2011] [Indexed: 11/29/2022]
|
14
|
Frade AF, Luquetti AO, Prata A, Ferreira AW. Western blotting method (TESAcruzi) as a supplemental test for confirming the presence of anti-Trypanosoma cruzi antibodies in finger prick blood samples from children aged 0-5 years in Brazil. Acta Trop 2011; 117:10-3. [PMID: 20858452 DOI: 10.1016/j.actatropica.2010.08.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2009] [Revised: 08/23/2010] [Accepted: 08/25/2010] [Indexed: 10/19/2022]
Abstract
Some Latin American countries have plans for total control and/or eradication of Chagas disease by the main vector (Triatoma infestans) and by blood transfusion. To achieve this, patients with Chagas disease must be identified. A Western blotting test, TESAcruzi, is described as a supplemental test for diagnosis of Chagas disease using samples collected from children <5 years living in different states of Brazil. Blood samples collected by finger prick on filter paper were sent to the test laboratory by a central laboratory to confirm results obtained previously. Ten percent of negative samples, all doubtful and all positive samples were received. Commercial reagents, IgG indirect immunofluorescence, enzyme immunoassay, and a recently introduced TESAcruzi test were used. From 8788 samples, 163 (1.85%) were reactive by IgG-ELISA and 312 (3.55%) by IgG IIF. From these, 77 (0.87%) were reactive in the TESAcruzi test. The results had high clinical value to identify those truly infected.
Collapse
|
15
|
Souza AI, Oliveira TM, Machado RZ, Camacho AA. Soroprevalência da infecção por Trypanosoma cruzi em cães de uma área rural do Estado de Mato Grosso do Sul. PESQUISA VETERINARIA BRASILEIRA 2009. [DOI: 10.1590/s0100-736x2009000200011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Doença de Chagas é uma antropozoonose causada por Trypanosoma cruzi que tem os cães como importante reservatório da doença na América do Sul. Este trabalho teve como objetivo avaliar a ocorrência da infecção natural pelo T. cruzi em cães de uma área rural do estado de Mato Grosso do Sul, Brasil. Foram utilizados os testes de imunofluorescência indireta (IFI) e ensaio imunossorvente ligado a enzima (ELISA) em 75 cães residentes na área. Foram detectados anticorpos em 45,3% (n=34) e 24,0% (n=18) nos testes de IFI e ELISA, respectivamente. A real prevalência da infecção foi confirmada como 22,7% (n=17) pelo critério de positividade em ambos os testes. Os resultados obtidos confirmam a infecção chagásica nos cães dessa região.
Collapse
Affiliation(s)
- Alda I. Souza
- Universidade para o Desenvolvimento do Estado e da Região do Pantanal, Brasil
| | | | | | | |
Collapse
|
16
|
Coura-Vital W, Carneiro CM, Martins HR, de Lana M, Veloso VM, Teixeira-Carvalho A, Bahia MT, Corrêa-Oliveira R, Martins-Filho OA, Tafuri WL, Reis AB. Trypanosoma cruzi: immunoglobulin isotype profiles during the acute phase of canine experimental infection with metacyclic or blood trypomastigotes. Exp Parasitol 2008; 120:269-74. [PMID: 18786531 DOI: 10.1016/j.exppara.2008.08.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2007] [Revised: 08/01/2008] [Accepted: 08/18/2008] [Indexed: 01/12/2023]
Abstract
A detailed investigation has been carried out about the serological profiles of groups of dogs experimentally infected with metacyclic (MT) or blood (BT) trypomastigotes of Berenice-78 Trypanosoma cruzi strain. Peripheral blood was collected from infected dogs and uninfected controls, weekly during 35 days following the acute phase of infection, and immunoglobulin profiles were determined by ELISA. Dogs infected with BT exhibited unaltered levels of IgG2, increases in IgM, IgE, IgA, IgG and IgG1. In contrast, dogs infected with MT presented unaltered levels of IgE and IgG1 and an increase in IgM, IgA, IgG and IgG2 levels. Compared with the MT group, animals infected with BT showed significant increases in IgM on days 7, 14 and 28, in IgA on days 7, 14 and 21, in IgE on days 7 and 14, in IgG on days 14 and 28, and in IgG1 on days 7, 14 and 21. Parasitemia levels of the infected animals were measured over the same time period. No correlations were found between the immunoglobulin profiles and the parasitemia levels. The results demonstrated that the inoculum source (BT or MT) influence the immunoglobulin isotype profile that may drive distinct outcome of acute canine Chagas disease.
Collapse
Affiliation(s)
- W Coura-Vital
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas/NUPEB, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, MG, CEP 35400-000, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
de Moraes MH, Guarneri AA, Girardi FP, Rodrigues JB, Eger I, Tyler KM, Steindel M, Grisard EC. Different serological cross-reactivity of Trypanosoma rangeli forms in Trypanosoma cruzi-infected patients sera. Parasit Vectors 2008; 1:20. [PMID: 18611261 PMCID: PMC2475519 DOI: 10.1186/1756-3305-1-20] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2008] [Accepted: 07/08/2008] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED BACKGROUND American Trypanosomiasis or Chagas disease is caused by Trypanosoma cruzi which currently infects approximately 16 million people in the Americas causing high morbidity and mortality. Diagnosis of American trypanosomiasis relies on serology, primarily using indirect immunofluorescence assay (IFA) with T. cruzi epimastigote forms. The closely related but nonpathogenic Trypanosoma rangeli has a sympatric distribution with T. cruzi and is carried by the same vectors. As a result false positives are frequently generated. This confounding factor leads to increased diagnostic test costs and where false positives are not caught, endangers human health due to the toxicity of the drugs used to treat Chagas disease. RESULTS In the present study, serologic cross-reactivity between the two species was compared for the currently used epimastigote form and the more pathologically relevant trypomastigote form, using IFA and immunoblotting (IB) assays. Our results reveal an important decrease in cross reactivity when T. rangeli culture-derived trypomastigotes are used in IFA based diagnosis of Chagas disease. Western blot results using sera from both acute and chronic chagasic patients presenting with cardiac, indeterminate or digestive disease revealed similar, but not identical, antigenic profiles. CONCLUSION This is the first study addressing the serological cross-reactivity between distinct forms and strains of T. rangeli and T. cruzi using sera from distinct phases of the Chagasic infection. Several T. rangeli-specific proteins were detected, which may have potential as diagnostic tools.
Collapse
Affiliation(s)
- Milene H de Moraes
- Departamento de Microbiologia e Parasitologia, Universidade Federal de Santa Catarina, 88040-900, Florianópolis, Santa Catarina, Brazil
| | - Alessandra A Guarneri
- Departamento de Microbiologia e Parasitologia, Universidade Federal de Santa Catarina, 88040-900, Florianópolis, Santa Catarina, Brazil
- Instituto René Rachou, Fiocruz, Belo Horizonte, Minas Gerais, Brazil
| | - Fabiana P Girardi
- Departamento de Microbiologia e Parasitologia, Universidade Federal de Santa Catarina, 88040-900, Florianópolis, Santa Catarina, Brazil
| | - Juliana B Rodrigues
- Departamento de Microbiologia e Parasitologia, Universidade Federal de Santa Catarina, 88040-900, Florianópolis, Santa Catarina, Brazil
| | - Iriane Eger
- Departamento de Microbiologia e Parasitologia, Universidade Federal de Santa Catarina, 88040-900, Florianópolis, Santa Catarina, Brazil
- Universidade do Vale do Itajaí, Itajaí, Santa Catarina, Brazil
| | - Kevin M Tyler
- Biomedical Research Centre, School of Medicine, Health Policy and Practice, University of East Anglia, Norwich, Norfolk, UK
| | - Mário Steindel
- Departamento de Microbiologia e Parasitologia, Universidade Federal de Santa Catarina, 88040-900, Florianópolis, Santa Catarina, Brazil
| | - Edmundo C Grisard
- Departamento de Microbiologia e Parasitologia, Universidade Federal de Santa Catarina, 88040-900, Florianópolis, Santa Catarina, Brazil
- Biomedical Research Centre, School of Medicine, Health Policy and Practice, University of East Anglia, Norwich, Norfolk, UK
| |
Collapse
|
18
|
Garg N, Bhatia V. Current status and future prospects for a vaccine against American trypanosomiasis. Expert Rev Vaccines 2007; 4:867-80. [PMID: 16372882 DOI: 10.1586/14760584.4.6.867] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The clinically relevant pathognomonic consequences of human infection by Trypanosoma cruzi are dilation and hypertrophy of the left ventricle walls and thinning of the apex. The major complications and debilitating evolutionary outcomes of chronic infection include ventricular fibrillation, thromboembolism and congestive heart failure. American trypanosomiasis (Chagas disease) poses serious public healthcare and budgetary concerns. The currently available drugs, although effective against acute infection, are highly toxic and ineffective in arresting or attenuating clinical disease symptoms in chronic patients. The development of an efficacious prophylactic vaccine faces many challenges, and progress is slow, despite several years of effort. Studies in animal models and human patients have revealed the pathogenic mechanisms during disease progression, pathology of disease and features of protective immunity. Accordingly, several antigens, antigen-delivery vehicles and adjuvants have been tested in animal models, and some efforts have been successful in controlling infection and disease. This review will summarize the accumulated knowledge about the parasite and disease, as well as pathogenesis and protective immunity. The authors will discuss the efforts to date, and the challenges faced in achieving an efficient prophylactic vaccine against human American trypanosomiasis, and present the future perspectives.
Collapse
Affiliation(s)
- Nisha Garg
- Sealy Center for Vaccine Development, Department of Microbiology, Immunology and Pathology, University of Texas Medical Branch, Galveston TX 77555, USA.
| | | |
Collapse
|
19
|
Coelho JS, Soares IS, Lemos EA, Jimenez MCS, Kudó ME, Moraes SL, Ferreira AW, Sanchez MCA. A multianalyte Dot-ELISA for simultaneous detection of malaria, Chagas disease, and syphilis-specific IgG antibodies. Diagn Microbiol Infect Dis 2007; 58:223-30. [PMID: 17300910 DOI: 10.1016/j.diagmicrobio.2006.12.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2006] [Revised: 11/18/2006] [Accepted: 12/12/2006] [Indexed: 11/16/2022]
Abstract
A multianalyte Dot-enzyme-linked immunosorbent assay (Dot-ELISA-Multi) with Trypanosoma cruzi epimastigote alkaline extract (EAE), trypomastigote excreted-secreted antigen (TESA), recombinant protein derived from 19-kDa C-terminal region of the Plasmodium vivax merozoite surface protein 1 (PvMSP1(19)), Plasmodium falciparum Zwittergent extract (Pf-Zw), and Treponema pallidum Zwittergent extract (Tp-Zw) was standardized and evaluated as a method for surveying IgG-specific antibodies in Chagas disease, malaria, and syphilis in a single test. The study was carried out on serum samples from 52 patients with chronic Chagas disease, 103 individuals with current (parasitemic) or past malaria (aparasitemic), 43 patients with syphilis, 21 individuals with heterologous antibodies, and 100 blood donors. Dot-ELISA-Multi yielded 99% specificity for Chagas disease and 100% for malaria and syphilis. The test sensitivity was 100% for chronic Chagas disease, 88% for syphilis, 90% for P. vivax, and 47% for P. falciparum. In past malaria individuals, positivity was 92%. Therefore, Dot-ELISA-Multi can be useful under field conditions where laboratory facilities and resources are scarce, for small-scale epidemiologic studies.
Collapse
Affiliation(s)
- Juliana Santos Coelho
- Laboratório de Soroepidemiologia e Immunobiologia, Instituto de Medicina Tropical da Universidad de São Paulo, São Paulo, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Estrada-Franco JG, Bhatia V, Diaz-Albiter H, Ochoa-Garcia L, Barbabosa A, Vazquez-Chagoyan JC, Martinez-Perez MA, Guzman-Bracho C, Garg N. Human Trypanosoma cruzi infection and seropositivity in dogs, Mexico. Emerg Infect Dis 2006; 12:624-30. [PMID: 16704811 PMCID: PMC3294681 DOI: 10.3201/eid1204.050450] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Seroanalysis of parasite circulation in dogs can help identify T. cruzi infection in humans. We used 5 diagnostic tests in a cross-sectional investigation of the prevalence of Trypanosoma cruzi in Tejupilco municipality, State of Mexico, Mexico. Our findings showed a substantial prevalence of immunoglobulin G (IgG) and IgM antibodies to T. cruzi in human (n = 293, IgG 2.05%, IgM 5.5%, both 7.1%) and dog (n = 114, IgG 15.8%, IgM 11.4%, both 21%) populations. We also found antibodies to T. cruzi (n = 80, IgG 10%, IgM 15%, both 17.5%) in dogs from Toluca, an area previously considered free of T. cruzi. Our data demonstrate the need for active epidemiologic surveillance programs in these regions. A direct correlation (r2 = 0.955) of seropositivity between humans and dogs suggests that seroanalysis in dogs may help identify the human prevalence of T. cruzi infection in these areas.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Carmen Guzman-Bracho
- Instituto de Diagnostico y Referencia Epidemiologicos Secretaría de Salud, Mexico City, Mexico
| | - Nisha Garg
- University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
21
|
Berrizbeitia M, Ndao M, Bubis J, Gottschalk M, Aché A, Lacouture S, Medina M, Ward BJ. Purified excreted-secreted antigens from Trypanosoma cruzi trypomastigotes as tools for diagnosis of Chagas' disease. J Clin Microbiol 2006; 44:291-6. [PMID: 16455872 PMCID: PMC1392643 DOI: 10.1128/jcm.44.2.291-296.2006] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
There is currently no "gold standard" test for the diagnosis of late-stage Chagas' disease. As a result, protection of the blood supply in areas where Chagas' disease is endemic remains problematic. A panel of 709 serum samples from subjects with confirmed Chagas' disease (n = 195), healthy controls (n = 400), and patients with other parasitic diseases (n = 114) was used to assess enzyme-linked immunosorbent assays (ELISAs) based on a concentrated extract of excretory-secretory antigens from either Brazil or Tulahuen strain Trypanosoma cruzi trypomastigotes (total trypomastigote excretory-secretory antigens [TESAs]). The total TESA-based assays had excellent overall sensitivity (100%) and specificity (>94%), except for cross-reactivity with Leishmania-infected sera. In an attempt to increase the specificity of the assay, immunoaffinity chromatography was used to purify the TESA proteins (TESA(IA) proteins). By Western blotting, a series of polypeptide bands with molecular masses ranging from 60 to 220 kDa were recognized by pooled sera positive for Chagas' disease. An ELISA based on TESA(IA) proteins had a slightly lower sensitivity (98.6%) but an improved specificity (100%) compared to the sensitivity and specificity of the total TESA protein-based ELISAs. A 60-kDa polypeptide was identified as a major contributor to the cross-reactivity with Leishmania. These data suggest the need for field validation studies of TESA- and TESA(IA)-based assays in regions where Chagas' disease is endemic.
Collapse
Affiliation(s)
- Mariolga Berrizbeitia
- McGill Center for Tropical Diseases, Montreal General Hospital, Room D7-153, Montreal, Quebec, H3G IA4 Canada
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Malan AK, Avelar E, Litwin SE, Hill HR, Litwin CM. Serological diagnosis of Trypanosoma cruzi: evaluation of three enzyme immunoassays and an indirect immunofluorescent assay. J Med Microbiol 2006; 55:171-178. [PMID: 16434709 DOI: 10.1099/jmm.0.46149-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Chagas' disease is an important cause of heart failure in Latin America, but is rare in the United States. The immigration of persons from endemic countries increases the potential of encountering patients with the disease. Concerns have also been raised about the introduction of Trypanosoma cruzi, the parasite that causes the disease, into the blood supply and during organ transplantation. To compare Chagas' antibody tests that are available in the United States, we evaluated three IgG ELISAs, CeLLabs T. cruzi ELISA, Hemagen Chagas' kit and IVD Research Chagas' Serum Microwell ELISA, and MarDx indirect immunofluorescent assays. The CeLLabs and Hemagen IgG ELISAs had 100 % agreement, sensitivity and specificity. The IVD Research IgG ELISA had 94·6 % agreement, 100 % sensitivity and 93 % specificity.
Collapse
Affiliation(s)
- Annette K Malan
- University of Utah, Associated Regional and University Pathologists (ARUP) Institute for Clinical and Experimental Pathology, Salt Lake City, Utah, USA
| | | | | | - Harry R Hill
- University of Utah, Associated Regional and University Pathologists (ARUP) Institute for Clinical and Experimental Pathology, Salt Lake City, Utah, USA
| | - Christine M Litwin
- University of Utah, Associated Regional and University Pathologists (ARUP) Institute for Clinical and Experimental Pathology, Salt Lake City, Utah, USA
| |
Collapse
|
23
|
Silva AG, Silveira-Lacerda EP, Cunha-Júnior JP, de Souza MA, Favoreto Junior S. Immunoblotting analyses using two-dimensional gel electrophoresis of Trypanosoma cruzi excreted-secreted antigens. Rev Soc Bras Med Trop 2005; 37:454-9. [PMID: 15765593 DOI: 10.1590/s0037-86822004000600005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Trypanosoma cruzi trypomastigotes excrete-secrete a complex mixture of antigenic molecules. This antigenic mixture denominated trypomastigote excreted-secreted antigens contains a 150-160 kDa band that shows excellent performance in Chagas' disease diagnosis by immunoblotting. The present study partially characterized by two-dimensional gel electrophoresis the immunoreactivity against the 150-160 kDa protein using sera samples from chagasic patients in different phases of the disease. Trypomastigote excreted-secreted antigen preparations were subjected to high-resolution two-dimensional (2D) gel electrophoresis followed by immunoblotting with sera from chagasic and non-chagasic patients. The 150-160 kDa protein presented four isoforms with isoelectric focusing ranging from 6.2 to 6.7. The four isoforms were recognized by IgM from acute phase and IgG from chronic phase sera of chagasic patients. The 150-160 kDa isoform with IF of approximately 6.4 became the immunodominant spot with the progression of the disease. No cross-reactivity was observed with non-chagasic or patients infected with Leishmania sp. In this study we provide basic knowledge that supports the validation of trypomastigote excreted-secreted antigens for serological diagnosis of Chagas' disease.
Collapse
Affiliation(s)
- Adriano Gomes Silva
- Laboratório de Imunologia do Instituto de Ciências Biomédicas da Universidade Federal de Uberlândia, Uberlândia, MG, Brasil
| | | | | | | | | |
Collapse
|
24
|
Jones C, Todeschini AR, Agrellos OA, Previato JO, Mendonça-Previato L. Heterogeneity in the biosynthesis of mucin O-glycans from Trypanosoma cruzi tulahuen strain with the expression of novel galactofuranosyl-containing oligosaccharides. Biochemistry 2004; 43:11889-97. [PMID: 15362875 DOI: 10.1021/bi048942u] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Sialoglycoprotein from Trypanosoma cruzi strains participates in important biological functions in which the O-linked glycans play a pivotal role, and their structural diversity may be related to the parasite's virulence pattern. To provide supporting evidence for this idea, we have determined the structure of novel linear and branched alpha-O-GlcNAc-linked oligosaccharides present on the mucins of the T. cruzi Tulahuen strain. The O-glycans were isolated as oligosaccharide alditols by reductive beta-elimination, purified, and characterized by nuclear magnetic resonance spectroscopy and methylation analysis. Two core families were synthesized by the parasite: the Galfbeta1-->4GlcNAc and Galpbeta1-->4GlcNAc. The Galfbeta1-->4GlcNAc core yields three series of O-chain structures. In the first, the Galf residue is nonsubstituted, while in the other series it is elongated by the activity of galactopyranosyl or galactofuranosyl transferases giving rise to Galp-beta-(1-->2)-Galf-beta-(1-->4) or Galf-beta-(1-->2)-Galf-beta-(1-->4) substructures not previously observed. The three series can arise by further galactopyranosylation of the GlcNAc O-6 arm. Sialylation was the only observed elaboration of the Galpbeta1-->4GlcNAc core family. Thus the determination of the structures of the O-glycans from T. cruzi Tulahuen mucins confirms the strain specificity of the glycosylation and predicts a relationship between it and parasite pathogenicity and the epidemiology of Chagas' disease.
Collapse
Affiliation(s)
- Christopher Jones
- National Institute for Biological Standards and Control, Potters Bar, Hertfordshire EN6 3QG, UK
| | | | | | | | | |
Collapse
|
25
|
Sosa-Jurado F, Mazariego-Aranda M, Hernández-Becerril N, Garza- Murillo V, Cárdenas M, Reyes PA, Hirayama K, Monteón VM. Electrocardiographic findings in Mexican chagasic subjects living in high and low endemic regions of Trypanosoma cruzi infection. Mem Inst Oswaldo Cruz 2003; 98:605-10. [PMID: 12973525 DOI: 10.1590/s0074-02762003000500004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In México the first human chronic chagasic case was recognized in 1940. In spite of an increasing number of cases detected since that time, Chagas disease in México has been poorly documented. In the present work we studied 617 volunteers subjects living in high and low endemic regions of Trypanosoma cruzi infection with seroprevalence of 22% and 4% respectively. Hemoculture performed in those seropositive subjects failed to demonstrate circulating parasites, however polymerase chain reaction identified up to 60% of them as positives. A higher level of anti-T. cruzi antibodies was observed in seropositive residents in high endemic region, in spite of similar parasite persistence (p < 0.05). On standard 12 leads electrocardiogram (ECG) 20% to 22% seropositive individuals from either region showed right bundle branch block or ventricular extrasystoles which were more prevalent in seropositive than in seronegative individuals (p < 0.05). In conclusion, the frequency or type of ECG abnormality was influenced by serologic status but not by endemicity or parasite persistence. Furthermore, Mexican indeterminate patients have a similar ECG pattern to those reported in South America.
Collapse
Affiliation(s)
- Francisca Sosa-Jurado
- Hospital de Especialidades Centro Médico Nacional Manuel Avila Camacho, Puebla, México
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Nakazawa M, Rosa DS, Pereira VR, Moura MO, Furtado VC, Souza WV, Barros MN, Abath FG, Gomes YM. Excretory-secretory antigens of Trypanosoma cruzi are potentially useful for serodiagnosis of chronic Chagas' disease. CLINICAL AND DIAGNOSTIC LABORATORY IMMUNOLOGY 2001; 8:1024-7. [PMID: 11527823 PMCID: PMC96191 DOI: 10.1128/cdli.8.5.1024-1027.2001] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The reactivities of sera from chronic chagasic patients against the trypomastigote excreted-secreted antigens (TESA) of Trypanosoma cruzi strains with different biodemes were analyzed by TESA-blot and TESA-enzyme-linked immunosorbent assay (ELISA). Although both tests presented high sensitivity and specificity, TESA-ELISA is more appropriate for screening a larger number of samples.
Collapse
Affiliation(s)
- M Nakazawa
- Departamento de Imunologia, Centro de Pesquisas Aggeu Magalhães/FIOCRUZ, Hospital Universitário Oswaldo Cruz/UPE, CEP 50670-420 Recife-PE, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Umezawa ES, Nascimento MS, Stolf AM. Enzyme-linked immunosorbent assay with Trypanosoma cruzi excreted-secreted antigens (TESA-ELISA) for serodiagnosis of acute and chronic Chagas' disease. Diagn Microbiol Infect Dis 2001; 39:169-76. [PMID: 11337184 DOI: 10.1016/s0732-8893(01)00216-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In the present report we describe the use of Trypomastigote Excreted-Secreted Antigens (TESA) as antigen in ELISA for Chagas' disease serodiagnosis. The study was carried out on 284 patients, 164 of whom were nonchagasic subjects including individuals with leishmaniasis or other pathologies, and 120 chagasic patients, being 53 in the acute (with positive IgA and IgM antibodies to T. cruzi) and 67 in the chronic phase. TESA-ELISA showed 100% positivity in the survey of IgG antibodies in chagasic patients (acute and chronic) and 100% positivity for IgM antibodies in acute phase sera. TESA preparation does not require biochemical purification procedures and does not present the cross-reactivity of leishmaniasis sera observed when ELISA with epimastigote alkaline extract (EAE) is performed. ELISA competition assays showed that anti-T. cruzi antibodies of sera from chagasic patients that react with TESA are different from those that react with EAE. Besides, partial characterization of TESA showed that several epitopes present in this fraction are absent in EAE.
Collapse
Affiliation(s)
- E S Umezawa
- Instituto de Medicina Tropical de São Paulo da Faculdade de Medicina da Universidade de São Paulo, laboratório de Protozoologia Av. Dr. Enéas de Carvalho Aguiar 470, CEP 05403-000, São Paulo, Brazil.
| | | | | |
Collapse
|
28
|
Umezawa ES, Silveira JF. Serological diagnosis of Chagas disease with purified and defined Trypanosoma cruzi antigens. Mem Inst Oswaldo Cruz 2000; 94 Suppl 1:285-8. [PMID: 10677737 DOI: 10.1590/s0074-02761999000700051] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- E S Umezawa
- Instituto de Medicina Tropical de São Paulo, FMUSP, Universidade de São Paulo, Brasil.
| | | |
Collapse
|
29
|
Kesper N, de Almeida KA, Stolf AM, Umezawa ES. Immunoblot analysis of trypomastigote excreted-secreted antigens as a tool for the characterization of Trypanosoma cruzi strains and isolates. J Parasitol 2000; 86:862-7. [PMID: 10958475 DOI: 10.1645/0022-3395(2000)086[0862:iaotes]2.0.co;2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
An analysis of antibody recognition of Trypanosoma cruzi exoantigens by immunoblotting revealed a unique banding pattern that seems to be characteristic of each strain or isolate. Trypomastigote excreted-secreted antigens (TESA) present in supernatants of LLC-MK2 cells infected with 5 strains and 10 isolates of T. cruzi produced 13 different immunoblotting patterns. The same bands were observed when probed with acute-phase Chagas' disease serum or with serum from a rabbit immunized with the repetitive domain of T. cruzi transialidase recombinant protein (anti-shed acute-phase antigens). Three similar patterns were observed with TESA from 3 human isolates that probably belong to the same T. cruzi strain. When clone CL Brener, clone CL-14, and CL parental strain were analyzed, the same bands were observed, although they presented different biological behavior. These results suggest that immunoblotting analysis of TESA may be a useful tool for characterization of T. cruzi strains and isolates.
Collapse
Affiliation(s)
- N Kesper
- Instituto de Medicina Tropical de São Paulo, Faculdade de Medicina da Universidade de São Paulo, Laboratório de Protozoologia, Brazil
| | | | | | | |
Collapse
|
30
|
Zúñiga E, Montes C, Barbieri G, Gruppi A. Antibodies against Trypanosoma cruzi alkaline antigens are elicited in sera from acute but not chronic human chagasic patients. Clin Immunol 1999; 93:81-9. [PMID: 10497014 DOI: 10.1006/clim.1999.4744] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The aim of this work was to study the antibody response of acute and chronic chagasic patients against a Trypanosoma cruzi alkaline fraction (FI) in comparison with the reactivity against a T. cruzi acidic antigen, the main cystein proteinase of the parasite named cruzipain, and "natural" antigens. FI-specific antibodies were detected only during the acute phase of the infection and IgM was the main isotype produced, whereas cruzipain-specific antibodies were detected during all phases of the infection. By means of immunoblot and sequencing analysis we identified a 47-kDa FI proteic band recognized by IgM from acute chagasic patients as the T. cruzi glutamate dehydrogenase (GluDH). Furthermore, the antibody response against isolated GluDH showed similar characteristics as the one against FI. We also observed a strict association between the reactivity of IgM against FI and GluDH and IgM natural antibodies. However, reactivity against these alkaline antigens was not modified after absorption of natural antibodies in sera from acute chagasic patients, indicating that these parasite antigens are not recognized by the polyspecific natural antibodies. The most important goal of this report is that for the first time the T. cruzi antigen isoelectric point has been associated with its ability to trigger immunological memory, raising a novel antigen property that should be considered in the selection of antigens used in Chagas' disease diagnostic test and in the design of a vaccine against T. cruzi infection.
Collapse
Affiliation(s)
- E Zúñiga
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas (UNC), Cordoba, 5000, Argentina
| | | | | | | |
Collapse
|
31
|
Knobel M, Umezawa ES, Cardia MS, Martins MJ, Correa ML, Gianella-Neto D, Caulier C, Medeiros-Neto G. Elevated anti-galactosyl antibody titers in endemic goiter. Thyroid 1999; 9:493-8. [PMID: 10365681 DOI: 10.1089/thy.1999.9.493] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Anti-Gal is a human polyclonal antibody that constitutes approximately 1% of the circulating immunoglobulin G (IgG), interacts specifically with the mammalian carbohydrate alpha-galactosyl epitope. Furthermore, it was found to mimic in vitro thyrotropin (TSH) effects regarding stimulation for cyclic adenosine monophosphate (cAMP) synthesis, 125I uptake, and cellular proliferation on cultured porcine thyrocytes and on Graves' disease thyrocytes, but not on normal human thyrocytes. As immune activation in sporadic and endemic goiters might play a secondary role in regulating thyrocyte proliferation and function, we evaluated anti-Gal titers in endemic goiter. Serum was obtained from 109 Chagas'-negative patients living in an endemic goiter area of Brazil (Grao Mogol, MG) and 160 controls. The patients were divided into 3 groups, according to their goiter size (World Health Organization [WHO] classification): grade 0 (group 1, n = 24), grade I-II (group 2, n = 41), and grade III-IV (group 3, n = 44). Anti-Gal was assessed by a radioimmunological procedure (results expressed as the percentage of bound radioactivity/total activity [%B/T]). The antibody titer was significantly more elevated in group 1 (mean +/- SEM: 9.27%+/-0.80%), in group 2 (mean +/- SEM: 16.17%+/-0.97%), and in group 3 (20.97%+/-1.30%) than in normal controls (6.46%+/-0.33%). Analysis of the male and female data separately for anti-Gal titer did not substantially alter these results. We concluded that the anti-Gal titer is higher in patients with endemic goiter and presented a possible relationship with the size of goiter. Whether these antibodies contribute to the pathogenesis of the disease needs further clarification.
Collapse
Affiliation(s)
- M Knobel
- Department of Medicine, University of São Paulo Medical School, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Yokoyama-Yasunaka JKU, Piazza RMF, Umezawa ES, Stolf AMS. Reactivity of chagasic antigal antibodies with noninfected cells treated withTrypanosoma cruzi secreted/excreted antigens. J Clin Lab Anal 1998. [DOI: 10.1002/(sici)1098-2825(1998)12:2<108::aid-jcla6>3.0.co;2-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
33
|
Monteón VM, Guzmán-Rojas L, Negrete-García C, Rosales-Encina JL, Lopez PA. Serodiagnosis of American trypanosomosis by using nonpathogenic trypanosomatid antigen. J Clin Microbiol 1997; 35:3316-9. [PMID: 9399545 PMCID: PMC230173 DOI: 10.1128/jcm.35.12.3316-3319.1997] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Crithidia luciliae, a nonpathogenic trypanosomatid, could provide a good alternative source of antigen for serodiagnosis of Chagas' disease. An enzyme-linked immunosorbent assay showed 100% sensitivity and 83% specificity when 91 human serum samples from Chagas' disease patients and 127 human serum samples from people suffering from toxoplasmosis (21 samples), leishmaniasis (32 samples), systemic rheumatic diseases (33 samples), and heart diseases (41 samples) were tested simultaneously with Trypanosoma cruzi and C. luciliae crude extracts. By Western blotting, an immunodominant band (30 kDa) was recognized by chagasic sera on the C. luciliae crude extract; specificity reached 97% with respect to this protein band. The carbohydrate moieties were not antigenic.
Collapse
Affiliation(s)
- V M Monteón
- División Auxiliar de Diagnóstico y Tratamiento, Instituto Nacional de Cardiología Ignacio Chávez, Mexico D.F. , Mexico
| | | | | | | | | |
Collapse
|