1
|
Nandi I, Ji L, Smith HW, Avizonis D, Papavasiliou V, Lavoie C, Pacis A, Attalla S, Sanguin-Gendreau V, Muller WJ. Targeting fatty acid oxidation enhances response to HER2-targeted therapy. Nat Commun 2024; 15:6587. [PMID: 39097623 PMCID: PMC11297952 DOI: 10.1038/s41467-024-50998-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 07/23/2024] [Indexed: 08/05/2024] Open
Abstract
Metabolic reprogramming, a hallmark of tumorigenesis, involves alterations in glucose and fatty acid metabolism. Here, we investigate the role of Carnitine palmitoyl transferase 1a (Cpt1a), a key enzyme in long-chain fatty acid (LCFA) oxidation, in ErbB2-driven breast cancers. In ErbB2+ breast cancer models, ablation of Cpt1a delays tumor onset, growth, and metastasis. However, Cpt1a-deficient cells exhibit increased glucose dependency that enables survival and eventual tumor progression. Consequently, these cells exhibit heightened oxidative stress and upregulated nuclear factor erythroid 2-related factor 2 (Nrf2) activity. Inhibiting Nrf2 or silencing its expression reduces proliferation and glucose consumption in Cpt1a-deficient cells. Combining the ketogenic diet, composed of LCFAs, or an anti-ErbB2 monoclonal antibody (mAb) with Cpt1a deficiency significantly perturbs tumor growth, enhances apoptosis, and reduces lung metastasis. Using an immunocompetent model, we show that Cpt1a inhibition promotes an antitumor immune microenvironment, thereby enhancing the efficacy of anti-ErbB2 mAbs. Our findings underscore the importance of targeting fatty acid oxidation alongside HER2-targeted therapies to combat resistance in HER2+ breast cancer patients.
Collapse
Affiliation(s)
- Ipshita Nandi
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC, Canada
- Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - Linjia Ji
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC, Canada
| | - Harvey W Smith
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC, Canada
| | - Daina Avizonis
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC, Canada
| | - Vasilios Papavasiliou
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC, Canada
- Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - Cynthia Lavoie
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC, Canada
| | - Alain Pacis
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC, Canada
- Canadian Centre for Computational Genomics, McGill University, Montreal, QC, Canada
| | - Sherif Attalla
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC, Canada
- Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - Virginie Sanguin-Gendreau
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC, Canada
- Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - William J Muller
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC, Canada.
- Department of Biochemistry, McGill University, Montreal, QC, Canada.
| |
Collapse
|
2
|
Nakamura H, Matsui T, Shinozawa T. Triclocarban induces lipid droplet accumulation and oxidative stress responses by inhibiting mitochondrial fatty acid oxidation in HepaRG cells. Toxicol Lett 2024; 396:11-18. [PMID: 38631510 DOI: 10.1016/j.toxlet.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 03/05/2024] [Accepted: 04/12/2024] [Indexed: 04/19/2024]
Abstract
Mitochondrial fatty acid oxidation (mtFAO) plays an important role in hepatic energy metabolism. Severe mtFAO injury leads to nonalcoholic fatty liver disease (NAFLD) and liver failure. Several drugs have been withdrawn owing to safety issues, such as induction of fatty liver disease through mtFAO disruption. For instance, the antimicrobial triclocarban (TCC), an environmental contaminant that was removed from the market due to its unknown safety in humans, induces NAFLD in rats and promotes hepatic FAO in mice. Therefore, there are no consistent conclusions regarding the effects of TCC on FAO and lipid droplet accumulation. We hypothesized that TCC induces lipid droplet accumulation by inhibiting mtFAO in human hepatocytes. Here, we evaluated mitochondrial respiration in HepaRG cells to investigate the effects of TCC on fatty acid-driven oxidation in cells, electron transport chain parameters, lipid droplet accumulation, and antioxidant genes. The results suggest that TCC increases oxidative stress gene expression (GCLM, p62, HO-1, and NRF2) through lipid droplet accumulation via mtFAO inhibition in HepaRG cells. The results of the present study provide further insights into the effect of TCC on human NAFLD through mtFAO inhibition, and further in vivo studies could be used to validate the mechanisms.
Collapse
Affiliation(s)
- Hitoshi Nakamura
- Global Drug Safety Research and Evaluation, Research, Takeda Pharmaceutical Company Limited
| | - Toshikatsu Matsui
- Global Drug Safety Research and Evaluation, Research, Takeda Pharmaceutical Company Limited
| | - Tadahiro Shinozawa
- Global Drug Safety Research and Evaluation, Research, Takeda Pharmaceutical Company Limited.
| |
Collapse
|
3
|
Zhang H, Muhetarijiang M, Chen RJ, Hu X, Han J, Zheng L, Chen T. Mitochondrial Dysfunction: A Roadmap for Understanding and Tackling Cardiovascular Aging. Aging Dis 2024:AD.2024.0058. [PMID: 38739929 DOI: 10.14336/ad.2024.0058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 05/08/2024] [Indexed: 05/16/2024] Open
Abstract
Cardiovascular aging is a progressive remodeling process constituting a variety of cellular and molecular alterations that are closely linked to mitochondrial dysfunction. Therefore, gaining a deeper understanding of the changes in mitochondrial function during cardiovascular aging is crucial for preventing cardiovascular diseases. Cardiac aging is accompanied by fibrosis, cardiomyocyte hypertrophy, metabolic changes, and infiltration of immune cells, collectively contributing to the overall remodeling of the heart. Similarly, during vascular aging, there is a profound remodeling of blood vessel structure. These remodeling present damage to endothelial cells, increased vascular stiffness, impaired formation of new blood vessels (angiogenesis), the development of arteriosclerosis, and chronic vascular inflammation. This review underscores the role of mitochondrial dysfunction in cardiac aging, exploring its impact on fibrosis and myocardial alterations, metabolic remodeling, immune response remodeling, as well as in vascular aging in the heart. Additionally, we emphasize the significance of mitochondria-targeted therapies in preventing cardiovascular diseases in the elderly.
Collapse
Affiliation(s)
- Han Zhang
- Department of Cardiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Mairedan Muhetarijiang
- Department of Cardiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Ryan J Chen
- School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaosheng Hu
- Department of Cardiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jie Han
- Department of Cardiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Liangrong Zheng
- Department of Cardiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Ting Chen
- Department of Cardiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Affiliated First Hospital of Ningbo University, Ningbo, China
| |
Collapse
|
4
|
Li XD, Jiang GF, Li R, Bai Y, Zhang GS, Xu SJ, Deng WA. Molecular strategies of the pygmy grasshopper Eucriotettix oculatus adapting to long-term heavy metal pollution. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 276:116301. [PMID: 38599159 DOI: 10.1016/j.ecoenv.2024.116301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 03/31/2024] [Accepted: 04/03/2024] [Indexed: 04/12/2024]
Abstract
To study the heavy metal accumulation and its impact on insect exterior and chromosome morphology, and reveal the molecular mechanism of insects adapting to long-term heavy metal compound pollution habitats, this study, in the Diaojiang river basin, which has been polluted by heavy metals(HMs) for nearly a thousand years, two Eucriotettix oculatus populations was collected from mining and non-mining areas. It was found that the contents of 7 heavy metals (As, Cd, Pb, Zn, Cu, Sn, Sb) in E. oculatus of the mining area were higher than that in the non-mining 1-11 times. The analysis of morphology shows that the external morphology, the hind wing type and the chromosomal morphology of E. oculatus are significant differences between the two populations. Based on the heavy metal accumulation,morphological change, and stable population density, it is inferred that the mining area population has been affected by heavy metals and has adapted to the environment of heavy metals pollution. Then, by analyzing the transcriptome of the two populations, it was found that the digestion, immunity, excretion, endocrine, nerve, circulation, reproductive and other systems and lysosomes, endoplasmic reticulum and other cell structure-related gene expression were suppressed. This shows that the functions of the above-mentioned related systems of E. oculatus are inhibited by heavy metal stress. However, it has also been found that through the significant up-regulation of genes related to the above system, such as ATP2B, pepsin A, ubiquitin, AQP1, ACOX, ATPeV0A, SEC61A, CANX, ALDH7A1, DLD, aceE, Hsp40, and catalase, etc., and the down-regulation of MAPK signalling pathway genes, can enhanced nutrient absorption, improve energy metabolism, repair damaged cells and degrade abnormal proteins, maintain the stability of cells and systems, and resist heavy metal damage so that E. oculatus can adapt to the environment of heavy metal pollution for a long time.
Collapse
Affiliation(s)
- Xiao-Dong Li
- Guangxi Key Laboratory of Sericulture Ecology and Applied Intelligent Technology, School of Chemistry and Bioengineering, Hechi University Yizhou 546300, China; Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210000, China
| | - Guo-Fang Jiang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210000, China; College of Oceanology and Food Sciences, Quanzhou Normal University, Quanzhou 362000, China.
| | - Ran Li
- School of Life Sciences, Qufu Normal University, Qufu 273165, China
| | - Yi Bai
- School of Life Science, Taizhou University, Taizhou 317000, China
| | - Guo-Song Zhang
- School of Agriculture and Bioengineering, Heze University, Heze 274000, China
| | - Shu-Juan Xu
- College of Life Science and Technology, Longdong University, Qingyang 745000, China
| | - Wei-An Deng
- Guangxi Key Laboratory of Sericulture Ecology and Applied Intelligent Technology, School of Chemistry and Bioengineering, Hechi University Yizhou 546300, China; College of Life Science, Guangxi Normal University, Guilin 541004, China.
| |
Collapse
|
5
|
Martínez-Robles S, González-Ballesteros E, Reyes-Esparza J, Trejo-Teniente I, Jaramillo-Loranca BE, Téllez-Jurado A, Vázquez-Valadez VH, Angeles E, Vargas Hernández G. Effect of β - hydroxy - γ -aminophosphonate (β - HPC) on the hydrolytic activity of Nocardia brasiliensis as determined by FT-IR spectrometry. Front Microbiol 2023; 14:1089156. [PMID: 36778890 PMCID: PMC9909415 DOI: 10.3389/fmicb.2023.1089156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 01/09/2023] [Indexed: 01/27/2023] Open
Abstract
The use of immunomodulatory and metabolic modulating drugs has been considered a better strategy to improve the efficacy of conventional treatments against pathogens and metabolic diseases. L-carnitine is relevant in fatty acid metabolism and energy production by β-oxidation, but it also has a beneficial therapeutic immunomodulatory effect. The β-hydroxy-γ-aminophosphonate (β-HPC) was developed, synthesized and studied in different pathologies as a more soluble and stable analog than L-carnitine, which has been studied in bacterial physiology and metabolism; therefore, we set out to investigate the direct effect of β-HPC on the metabolism of N. brasiliensis, which causes actinomycetoma in Mexico and is underdiagnosed. To analyze the effect of β-HPC on the metabolic capacity of the bacterium for the hydrolysis of substrate casein, L-tyrosine, egg yolk, and tween 80, Fourier transform infrared spectroscopy (FT-IR) was employed. It was found that β-HPC increases the metabolic activity of N. brasiliensis associated with increased growth and increased hydrolysis of the substrates tested. By the effect of β-HPC, it was observed that, in the hydrolysis of L-tyrosine, the aromatic ring and functional groups were degraded. At 1515 cm-1, any distinctive signal or peak for this amino acid was missing, almost disappearing at 839, 720, 647, and 550 cm-1. In casein, hydrolysis is enhanced in the substrate, which is evident by the presence of NH, OH, amide, and CO. In casein, hydrolysis is enhanced in the substrate, which is evident by the presence of NH, OH, amide, COO, and P = O signals, characteristic of amino acids, in addition to the increase of the amide I and II bands. In Tween 80 the H-C = and C = C signals disappear and the ether signals are concentrated, it was distinguished by the intense band at 1100 cm-1. Egg yolk showed a large accumulation of phosphate groups at 1071 cm-1, where phosvitin is located. FT-IR has served to demonstrate that β-HPC is a hydrolysis enhancer. Furthermore, by obtaining the spectrum of N. brasiliensis, we intend to use it as a quick comparison tool with other spectra related to actinobacteria. Eventually, FT-IR may serve as a species identification option.
Collapse
Affiliation(s)
- Sandra Martínez-Robles
- Departamento de Ciencias Biológicas, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlán Izcalli, Mexico,Programa Educativo del Posgrado en Biotecnología, Universidad Politécnica de Pachuca, Zempoala, Mexico,*Correspondence: Sandra Martínez-Robles,
| | - Erik González-Ballesteros
- Departamento de Ciencias Biológicas, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlán Izcalli, Mexico
| | - Jorge Reyes-Esparza
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| | - Isaí Trejo-Teniente
- Programa Educativo del Posgrado en Biotecnología, Universidad Politécnica de Pachuca, Zempoala, Mexico
| | | | - Alejandro Téllez-Jurado
- Programa Educativo del Posgrado en Biotecnología, Universidad Politécnica de Pachuca, Zempoala, Mexico
| | - Víctor H. Vázquez-Valadez
- Departamento de Ciencias Biológicas, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlán Izcalli, Mexico
| | - Enrique Angeles
- Departamento de Ciencias Biológicas, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlán Izcalli, Mexico
| | - Genaro Vargas Hernández
- Programa Educativo del Posgrado en Biotecnología, Universidad Politécnica de Pachuca, Zempoala, Mexico,Genaro Vargas Hernández,
| |
Collapse
|
6
|
Xiong W, Ge H, Shen C, Li C, Zhang X, Tang L, Shen Y, Lu S, Zhang H, Wang Z. PRSS37 deficiency leads to impaired energy metabolism in testis and sperm revealed by DIA-based quantitative proteomic analysis. Reprod Sci 2023; 30:145-168. [PMID: 35471551 DOI: 10.1007/s43032-022-00918-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 03/12/2022] [Indexed: 01/11/2023]
Abstract
Our previous studies have reported that a putative trypsin-like serine protease, PRSS37, is exclusively expressed in testicular germ cells during late spermatogenesis and essential for sperm migration from the uterus into the oviduct and sperm-egg recognition via mediating the interaction between PDILT and ADAM3. In the present study, the global proteome profiles of wild-type (wt) and Prss37-/- mice in testis and sperm were compared employing data independent acquisition (DIA) technology. Overall, 2506 and 459 differentially expressed proteins (DEPs) were identified in Prss37-null testis and sperm, respectively, when compared to control groups. Bioinformatic analyses revealed that most of DEPs were related to energy metabolism. Of note, the DEPs associated with pathways for the catabolism such as glucose via glycolysis, fatty acids via β-oxidation, and amino acids via oxidative deamination were significantly down-regulated. Meanwhile, the DEPs involved in the tricarboxylic acid cycle (TCA cycle) and oxidative phosphorylation (OXPHOS) were remarkably decreased. The DIA data were further confirmed by a markedly reduction of intermediate metabolites (citrate and fumarate) in TCA cycle and terminal metabolite (ATP) in OXPHOS system after disruption of PRSS37. These outcomes not only provide a more comprehensive understanding of the male fertility of energy metabolism modulated by PRSS37 but also furnish a dynamic proteomic resource for further reproductive biology studies.
Collapse
Affiliation(s)
- Wenfeng Xiong
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital Affiliated To Shanghai Jiao Tong University School of Medicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Haoyang Ge
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital Affiliated To Shanghai Jiao Tong University School of Medicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Chunling Shen
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital Affiliated To Shanghai Jiao Tong University School of Medicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200025, China.
| | - Chaojie Li
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital Affiliated To Shanghai Jiao Tong University School of Medicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Xiaohong Zhang
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital Affiliated To Shanghai Jiao Tong University School of Medicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Lingyun Tang
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital Affiliated To Shanghai Jiao Tong University School of Medicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Yan Shen
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital Affiliated To Shanghai Jiao Tong University School of Medicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Shunyuan Lu
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital Affiliated To Shanghai Jiao Tong University School of Medicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Hongxin Zhang
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital Affiliated To Shanghai Jiao Tong University School of Medicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Zhugang Wang
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital Affiliated To Shanghai Jiao Tong University School of Medicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200025, China.
| |
Collapse
|
7
|
Divakaruni AS, Jastroch M. A practical guide for the analysis, standardization and interpretation of oxygen consumption measurements. Nat Metab 2022; 4:978-994. [PMID: 35971004 PMCID: PMC9618452 DOI: 10.1038/s42255-022-00619-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 06/17/2022] [Indexed: 12/14/2022]
Abstract
Measurement of oxygen consumption is a powerful and uniquely informative experimental technique. It can help identify mitochondrial mechanisms of action following pharmacologic and genetic interventions, and characterize energy metabolism in physiology and disease. The conceptual and practical benefits of respirometry have made it a frontline technique to understand how mitochondrial function can interface with-and in some cases control-cell physiology. Nonetheless, an appreciation of the complexity and challenges involved with such measurements is required to avoid common experimental and analytical pitfalls. Here we provide a practical guide to oxygen consumption measurements covering the selection of experimental models and instrumentation, as well as recommendations for the collection, interpretation and normalization of data. These guidelines are provided with the intention of aiding experimental design and enhancing the overall reputability, transparency and reliability of oxygen consumption measurements.
Collapse
Affiliation(s)
- Ajit S Divakaruni
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
| | - Martin Jastroch
- Department of Molecular Biosciences, The Wenner-Gren Institute, The Arrhenius Laboratories F3, Stockholm University, Stockholm, Sweden
| |
Collapse
|
8
|
Fatty acid oxidation enzyme Δ3, Δ2-enoyl-CoA isomerase 1 (ECI1) drives aggressive tumor phenotype and predicts poor clinical outcome in prostate cancer patients. Oncogene 2022; 41:2798-2810. [DOI: 10.1038/s41388-022-02276-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 02/14/2022] [Accepted: 03/11/2022] [Indexed: 11/08/2022]
|
9
|
Tabernilla A, dos Santos Rodrigues B, Pieters A, Caufriez A, Leroy K, Van Campenhout R, Cooreman A, Gomes AR, Arnesdotter E, Gijbels E, Vinken M. In Vitro Liver Toxicity Testing of Chemicals: A Pragmatic Approach. Int J Mol Sci 2021; 22:5038. [PMID: 34068678 PMCID: PMC8126138 DOI: 10.3390/ijms22095038] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/04/2021] [Accepted: 05/05/2021] [Indexed: 02/07/2023] Open
Abstract
The liver is among the most frequently targeted organs by noxious chemicals of diverse nature. Liver toxicity testing using laboratory animals not only raises serious ethical questions, but is also rather poorly predictive of human safety towards chemicals. Increasing attention is, therefore, being paid to the development of non-animal and human-based testing schemes, which rely to a great extent on in vitro methodology. The present paper proposes a rationalized tiered in vitro testing strategy to detect liver toxicity triggered by chemicals, in which the first tier is focused on assessing general cytotoxicity, while the second tier is aimed at identifying liver-specific toxicity as such. A state-of-the-art overview is provided of the most commonly used in vitro assays that can be used in both tiers. Advantages and disadvantages of each assay as well as overall practical considerations are discussed.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Mathieu Vinken
- Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium; (A.T.); (B.d.S.R.); (A.P.); (A.C.); (K.L.); (R.V.C.); (A.C.); (A.R.G.); (E.A.); (E.G.)
| |
Collapse
|
10
|
Ji L, Zhao Y, He L, Zhao J, Gao T, Liu F, Qi B, Kang F, Wang G, Zhao Y, Guo H, He Y, Li F, Huang Q, Xing J. AKAP1 Deficiency Attenuates Diet-Induced Obesity and Insulin Resistance by Promoting Fatty Acid Oxidation and Thermogenesis in Brown Adipocytes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2002794. [PMID: 33747723 PMCID: PMC7967052 DOI: 10.1002/advs.202002794] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 11/20/2020] [Indexed: 05/06/2023]
Abstract
Altering the balance between energy intake and expenditure is a major strategy for treating obesity. Nonetheless, despite the progression in antiobesity drugs on appetite suppression, therapies aimed at increasing energy expenditure are limited. Here, knockout ofAKAP1, a signaling hub on outer mitochondrial membrane, renders mice resistant to diet-induced obesity.AKAP1 knockout significantly enhances energy expenditure and thermogenesis in brown adipose tissues (BATs) of obese mice. Restoring AKAP1 expression in BAT clearly reverses the beneficial antiobesity effect in AKAP1-/- mice. Mechanistically, AKAP1 remarkably decreases fatty acid β-oxidation (FAO) by phosphorylating ACSL1 to inhibit its activity in a protein-kinase-A-dependent manner and thus inhibits thermogenesis in brown adipocytes. Importantly, AKAP1 peptide inhibitor effectively alleviates diet-induced obesity and insulin resistance. Altogether, the findings demonstrate that AKAP1 functions as a brake of FAO to promote diet-induced obesity, which may be used as a potential therapeutic target for obesity.
Collapse
Affiliation(s)
- Lele Ji
- State Key Laboratory of Cancer Biology and Department of Physiology and PathophysiologyFourth Military Medical UniversityXi'anShaanxi710032China
- National Demonstration Center for Experimental Preclinical Medicine EducationFourth Military Medical UniversityXi'anShaanxi710032China
| | - Ya Zhao
- State Key Laboratory of Cancer Biology and Department of Physiology and PathophysiologyFourth Military Medical UniversityXi'anShaanxi710032China
- Laboratory Animal CenterFourth Military Medical UniversityXi'anShaanxi710032China
| | - Linjie He
- State Key Laboratory of Cancer Biology and Department of Physiology and PathophysiologyFourth Military Medical UniversityXi'anShaanxi710032China
| | - Jing Zhao
- State Key Laboratory of Cancer Biology and Department of Physiology and PathophysiologyFourth Military Medical UniversityXi'anShaanxi710032China
| | - Tian Gao
- State Key Laboratory of Cancer Biology and Department of Physiology and PathophysiologyFourth Military Medical UniversityXi'anShaanxi710032China
| | - Fengzhou Liu
- Department of CardiologyXijing HospitalFourth Military Medical UniversityXi'anShaanxi710032China
| | - Bingchao Qi
- Department of CardiologyXijing HospitalFourth Military Medical UniversityXi'anShaanxi710032China
| | - Fei Kang
- Department of Nuclear MedicineXijing HospitalFourth Military Medical UniversityXi'anShaanxi710032China
| | - Gang Wang
- State Key Laboratory of Cancer Biology and Department of Physiology and PathophysiologyFourth Military Medical UniversityXi'anShaanxi710032China
| | - Yilin Zhao
- State Key Laboratory of Cancer Biology and Department of Physiology and PathophysiologyFourth Military Medical UniversityXi'anShaanxi710032China
| | - Haitao Guo
- State Key Laboratory of Cancer Biology and Department of Physiology and PathophysiologyFourth Military Medical UniversityXi'anShaanxi710032China
| | - Yuanfang He
- State Key Laboratory of Cancer Biology and Department of Physiology and PathophysiologyFourth Military Medical UniversityXi'anShaanxi710032China
| | - Fei Li
- Department of CardiologyXijing HospitalFourth Military Medical UniversityXi'anShaanxi710032China
| | - Qichao Huang
- State Key Laboratory of Cancer Biology and Department of Physiology and PathophysiologyFourth Military Medical UniversityXi'anShaanxi710032China
| | - Jinliang Xing
- State Key Laboratory of Cancer Biology and Department of Physiology and PathophysiologyFourth Military Medical UniversityXi'anShaanxi710032China
| |
Collapse
|
11
|
Cho SY, Lim S, Ahn KS, Kwak HJ, Park J, Um JY. Farnesol induces mitochondrial/peroxisomal biogenesis and thermogenesis by enhancing the AMPK signaling pathway in vivo and in vitro. Pharmacol Res 2021; 163:105312. [PMID: 33246168 DOI: 10.1016/j.phrs.2020.105312] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/30/2020] [Accepted: 11/16/2020] [Indexed: 12/25/2022]
Abstract
Thermogenic activation of brown adipose tissue has been considered as an obesity treatment strategy that consumes energy. In this study, we investigated whether farnesol in vivoandin vitro models induces thermogenesis and affect the activation of the mitochondria and peroxisomes, which are key organelles in activated brown adipocytes. Farnesol induced the expression of thermogenic factors such as uncoupling protein 1 (UCP1), peroxisome proliferator-activated receptor γ coactivator 1 alpha (PGC1α), and PR domain zinc-finger protein 16 (PRDM16) together with the phosphorylation of AMP-activated protein kinase alpha (AMPKα) in brown adipose tissue and primary cultured brown adipocytes. Farnesol promoted lipolytic enzymes: hormone sensitive lipase (HSL) and adipose triglyceride lipase (ATGL). We confirmed that these inductions of lipolysis by farnesol were the underlying causes of β-oxidation activation. Farnesol also increased the expression of oxidative phosphorylation (OXPHOS) complexes and the oxygen consumption rate (OCR) and the expansion of peroxisomes. Moreover, we proved that the thermogenic activity of farnesol was dependent on AMPKα activation using Compound C inhibitor or siRNA-AMPKα knockdown. These results suggest that farnesol may be a potential agent for the treatment of obesity by inducing energy consumption through heat generation.
Collapse
Affiliation(s)
- Seon Yeon Cho
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea; Basic Research Laboratory for Comorbidity Research and Department of Comorbidity Research, KyungHee Institute of Convergence Korean Medicine, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Seona Lim
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea; Basic Research Laboratory for Comorbidity Research and Department of Comorbidity Research, KyungHee Institute of Convergence Korean Medicine, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Kwang Seok Ahn
- Basic Research Laboratory for Comorbidity Research and Department of Comorbidity Research, KyungHee Institute of Convergence Korean Medicine, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Hyun Jeong Kwak
- Department of Life Science, College of Natural Sciences, Kyonggi University, Suwon, Republic of Korea
| | - Jinbong Park
- Department of Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea; Basic Research Laboratory for Comorbidity Research and Department of Comorbidity Research, KyungHee Institute of Convergence Korean Medicine, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea.
| | - Jae-Young Um
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea.
| |
Collapse
|
12
|
Sabir S, Rehman K, Fiayyaz F, Kamal S, Akash MSH. Role of Aflatoxins as EDCs in Metabolic Disorders. EMERGING CONTAMINANTS AND ASSOCIATED TREATMENT TECHNOLOGIES 2021. [DOI: 10.1007/978-3-030-45923-9_23] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
13
|
Sedley L. Advances in Nutritional Epigenetics-A Fresh Perspective for an Old Idea. Lessons Learned, Limitations, and Future Directions. Epigenet Insights 2020; 13:2516865720981924. [PMID: 33415317 PMCID: PMC7750768 DOI: 10.1177/2516865720981924] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 11/25/2020] [Indexed: 12/11/2022] Open
Abstract
Nutritional epigenetics is a rapidly expanding field of research, and the natural modulation of the genome is a non-invasive, sustainable, and personalized alternative to gene-editing for chronic disease management. Genetic differences and epigenetic inflexibility resulting in abnormal gene expression, differential or aberrant methylation patterns account for the vast majority of diseases. The expanding understanding of biological evolution and the environmental influence on epigenetics and natural selection requires relearning of once thought to be well-understood concepts. This research explores the potential for natural modulation by the less understood epigenetic modifications such as ubiquitination, nitrosylation, glycosylation, phosphorylation, and serotonylation concluding that the under-appreciated acetylation and mitochondrial dependant downstream epigenetic post-translational modifications may be the pinnacle of the epigenomic hierarchy, essential for optimal health, including sustainable cellular energy production. With an emphasis on lessons learned, this conceptional exploration provides a fresh perspective on methylation, demonstrating how increases in environmental methane drive an evolutionary down regulation of endogenous methyl groups synthesis and demonstrates how epigenetic mechanisms are cell-specific, making supplementation with methyl cofactors throughout differentiation unpredictable. Interference with the epigenomic hierarchy may result in epigenetic inflexibility, symptom relief and disease concomitantly and may be responsible for the increased incidence of neurological disease such as autism spectrum disorder.
Collapse
Affiliation(s)
- Lynda Sedley
- Bachelor of Health Science (Nutritional Medicine),
GC Biomedical Science (Genomics), The Research and Educational Institute of
Environmental and Nutritional Epigenetics, Queensland, Australia
| |
Collapse
|
14
|
Louwagie EJ, Larsen TD, Wachal AL, Gandy TCT, Eclov JA, Rideout TC, Kern KA, Cain JT, Anderson RH, Mdaki KS, Baack ML. Age and Sex Influence Mitochondria and Cardiac Health in Offspring Exposed to Maternal Glucolipotoxicity. iScience 2020; 23:101746. [PMID: 33225249 PMCID: PMC7666357 DOI: 10.1016/j.isci.2020.101746] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/29/2020] [Accepted: 10/24/2020] [Indexed: 02/07/2023] Open
Abstract
Infants of diabetic mothers are at risk of cardiomyopathy at birth and myocardial infarction in adulthood, but prevention is hindered because mechanisms remain unknown. We previously showed that maternal glucolipotoxicity increases the risk of cardiomyopathy and mortality in newborn rats through fuel-mediated mitochondrial dysfunction. Here we demonstrate ongoing cardiometabolic consequences by cross-fostering and following echocardiography, cardiomyocyte bioenergetics, mitochondria-mediated turnover, and cell death following metabolic stress in aged adults. Like humans, cardiac function improves by weaning with no apparent differences in early adulthood but declines again in aged diabetes-exposed offspring. This is preceded by impaired oxidative phosphorylation, exaggerated age-related increase in mitochondrial number, and higher oxygen consumption. Prenatally exposed male cardiomyocytes have more mitolysosomes indicating high baseline turnover; when exposed to metabolic stress, mitophagy cannot increase and cardiomyocytes have faster mitochondrial membrane potential loss and mitochondria-mediated cell death. Details highlight age- and sex-specific roles of mitochondria in developmentally programmed adult heart disease. Fetal exposures disrupt mitochondria, bioenergetics, & cardiac function at birth First, bioenergetics & function improve until greater reliance on OXPHOS with age At 6MO, poor respiration incites biogenesis & mitophagy, and then functional decline Fetal exposures cause faster mitochondria-mediated cell death in aged adult hearts
Collapse
Affiliation(s)
- Eli J Louwagie
- University of South Dakota Sanford School of Medicine, Sioux Falls, SD 57105, USA.,Environmental Influences on Health and Disease Group, Sanford Research, Sioux Falls, SD 57104, USA
| | - Tricia D Larsen
- Environmental Influences on Health and Disease Group, Sanford Research, Sioux Falls, SD 57104, USA
| | - Angela L Wachal
- Environmental Influences on Health and Disease Group, Sanford Research, Sioux Falls, SD 57104, USA
| | - Tyler C T Gandy
- Environmental Influences on Health and Disease Group, Sanford Research, Sioux Falls, SD 57104, USA
| | - Julie A Eclov
- Environmental Influences on Health and Disease Group, Sanford Research, Sioux Falls, SD 57104, USA
| | - Todd C Rideout
- Department of Exercise and Nutrition Sciences, State University of New York, Buffalo, NY 14214, USA
| | - Katherine A Kern
- Department of Exercise and Nutrition Sciences, State University of New York, Buffalo, NY 14214, USA
| | - Jacob T Cain
- Environmental Influences on Health and Disease Group, Sanford Research, Sioux Falls, SD 57104, USA
| | - Ruthellen H Anderson
- University of South Dakota Sanford School of Medicine, Sioux Falls, SD 57105, USA.,Environmental Influences on Health and Disease Group, Sanford Research, Sioux Falls, SD 57104, USA
| | - Kennedy S Mdaki
- Environmental Influences on Health and Disease Group, Sanford Research, Sioux Falls, SD 57104, USA
| | - Michelle L Baack
- University of South Dakota Sanford School of Medicine, Sioux Falls, SD 57105, USA.,Environmental Influences on Health and Disease Group, Sanford Research, Sioux Falls, SD 57104, USA.,Boekelheide Neonatal Intensive Care Unit, Sanford Children's Hospital, Sioux Falls, SD 57117, USA
| |
Collapse
|
15
|
Flavin adenine dinucleotide ameliorates hypertensive vascular remodeling via activating short chain acyl-CoA dehydrogenase. Life Sci 2020; 258:118156. [PMID: 32735886 DOI: 10.1016/j.lfs.2020.118156] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/07/2020] [Accepted: 07/23/2020] [Indexed: 11/23/2022]
Abstract
AIMS Flavin adenine dinucleotide (FAD), participates in fatty acid β oxidation as a cofactor, which has been confirmed to enhance SCAD activity and expression. However, the role of FAD on hypertensive vascular remodeling is unclear. In this study, we investigated the underlying mechanisms of FAD on vascular remodeling and endothelial homeostasis. MAIN METHODS Morphological examination of vascular remodeling were analyzed with hematoxylin and eosin (HE) staining, Verhoeff's Van Gieson (EVG) staing, Dihydroethidium (DHE) staining and Sirius red staining. HUVECs apoptotic rate was detected by flow cytometry and HUVECs reactive oxygen species (ROS) was detected by DHE-probe. Enzymatic reactions were used to detect SCAD enzyme activity. The protein level was detected by Western Blots, the mRNA level was detected by quantitative real-time PCR. KEY FINDINGS In vivo experiments, FAD significantly decreased blood pressure and ameliorated vascular remodeling by increasing SCAD expression, Nitric Oxide (NO) production and reducing ROS production. In vitro experiments, FAD protected against the tBHP induced injury in HUVEC, by increasing the activity of SCAD, increasing the elimination of free fatty acid (FFA), scavenging ROS, reducing apoptotic rate, thereby improving endothelial cell function. SIGNIFICANCE FAD has a new possibility for preventing and treating hypertensive vascular remodeling.
Collapse
|
16
|
Singh K, Singh IN, Diggins E, Connors SL, Karim MA, Lee D, Zimmerman AW, Frye RE. Developmental regression and mitochondrial function in children with autism. Ann Clin Transl Neurol 2020; 7:683-694. [PMID: 32343046 PMCID: PMC7261756 DOI: 10.1002/acn3.51034] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 03/11/2020] [Accepted: 03/12/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Developmental regression (DR) occurs in about one-third of children with Autism Spectrum Disorder (ASD) yet it is poorly understood. Current evidence suggests that mitochondrial function in not normal in many children with ASD. However, the relationship between mitochondrial function and DR has not been well-studied in ASD. METHODS This cross-sectional study of 32 children, 2 to 8 years old with ASD, with (n = 11) and without (n = 12) DR, and non-ASD controls (n = 9) compared mitochondrial respiration and mtDNA damage and copy number between groups and their relation to standardized measures of ASD severity. RESULTS Individuals with ASD demonstrated lower ND1, ND4, and CYTB copy number (Ps < 0.01) as compared to controls. Children with ASD and DR had higher maximal oxygen consumption rate (Ps < 0.02), maximal respiratory capacity (P < 0.05), and reserve capacity (P = 0.01) than those with ASD without DR. Coupling Efficiency and Maximal Respiratory Capacity were associated with disruptive behaviors but these relationships were different for those with and without DR. Higher ND1 copy number was associated with better behavior. CONCLUSIONS This study suggests that individuals with ASD and DR may represent a unique metabolic endophenotype with distinct abnormalities in respiratory function that may put their mitochondria in a state of vulnerability. This may allow physiological stress to trigger mitochondrial decompensation as is seen clinically as DR. Since mitochondrial function was found to be related to ASD symptoms, the mitochondria could be a potential target for novel therapeutics. Additionally, identifying those with vulnerable mitochondrial before DR could result in prevention of ASD.
Collapse
Affiliation(s)
- Kanwaljit Singh
- Department of PediatricsUniversity of Massachusetts Medical SchoolWorcesterMassachusettsUnited States
| | - Indrapal N. Singh
- Division of NeurologySection on Neurodevelopmental DisordersBarrow Neurologic Institute at Phoenix Children’s HospitalPhoenixArizonaUnited States
- Department of Child HealthUniversity of Arizona College of MedicinePhoenixArizonaUnited States
| | - Eileen Diggins
- Department of PediatricsUniversity of Massachusetts Medical SchoolWorcesterMassachusettsUnited States
| | - Susan L. Connors
- Department of PediatricsUniversity of Massachusetts Medical SchoolWorcesterMassachusettsUnited States
| | - Mohammad A. Karim
- Division of NeurologySection on Neurodevelopmental DisordersBarrow Neurologic Institute at Phoenix Children’s HospitalPhoenixArizonaUnited States
- Department of Child HealthUniversity of Arizona College of MedicinePhoenixArizonaUnited States
| | - David Lee
- Division of NeurologySection on Neurodevelopmental DisordersBarrow Neurologic Institute at Phoenix Children’s HospitalPhoenixArizonaUnited States
- Department of Child HealthUniversity of Arizona College of MedicinePhoenixArizonaUnited States
| | - Andrew W. Zimmerman
- Department of PediatricsUniversity of Massachusetts Medical SchoolWorcesterMassachusettsUnited States
| | - Richard E. Frye
- Division of NeurologySection on Neurodevelopmental DisordersBarrow Neurologic Institute at Phoenix Children’s HospitalPhoenixArizonaUnited States
- Department of Child HealthUniversity of Arizona College of MedicinePhoenixArizonaUnited States
| |
Collapse
|
17
|
Ma Y, Wang W, Devarakonda T, Zhou H, Wang XY, Salloum FN, Spiegel S, Fang X. Functional analysis of molecular and pharmacological modulators of mitochondrial fatty acid oxidation. Sci Rep 2020; 10:1450. [PMID: 31996743 PMCID: PMC6989517 DOI: 10.1038/s41598-020-58334-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 01/13/2020] [Indexed: 01/02/2023] Open
Abstract
Fatty acid oxidation (FAO) is a key bioenergetic pathway often dysregulated in diseases. The current knowledge on FAO regulators in mammalian cells is limited and sometimes controversial. Previous FAO analyses involve nonphysiological culture conditions or lack adequate quantification. We herein described a convenient and quantitative assay to monitor dynamic FAO activities of mammalian cells in physiologically relevant settings. The method enabled us to assess various molecular and pharmacological modulators of the FAO pathway in established cell lines, primary cells and mice. Surprisingly, many previously proposed FAO inhibitors such as ranolazine and trimetazidine lacked FAO-interfering activity. In comparison, etomoxir at low micromolar concentrations was sufficient to saturate its target proteins and to block cellular FAO function. Oxfenicine, on the other hand, acted as a partial inhibitor of FAO. As another class of FAO inhibitors that transcriptionally repress FAO genes, antagonists of peroxisome proliferator-activated receptors (PPARs), particularly that of PPARα, significantly decreased cellular FAO activity. Our assay also had sufficient sensitivity to monitor upregulation of FAO in response to environmental glucose depletion and other energy-demanding cues. Altogether this study provided a reliable FAO assay and a clear picture of biological properties of potential FAO modulators in the mammalian system.
Collapse
Affiliation(s)
- Yibao Ma
- Departments of Biochemistry & Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, 23298, USA
| | - Wei Wang
- Departments of Biochemistry & Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, 23298, USA
| | - Teja Devarakonda
- Internal Medicine/Cardiology Pauley Heart Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia, 23298, USA
| | - Huiping Zhou
- Microbiology & Immunology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, 23298, USA
| | - Xiang-Yang Wang
- Human & Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, Virginia, 23298, USA
| | - Fadi N Salloum
- Internal Medicine/Cardiology Pauley Heart Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia, 23298, USA
| | - Sarah Spiegel
- Departments of Biochemistry & Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, 23298, USA
| | - Xianjun Fang
- Departments of Biochemistry & Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, 23298, USA.
| |
Collapse
|
18
|
Marquez J, Flores J, Kim AH, Nyamaa B, Nguyen ATT, Park N, Han J. Rescue of TCA Cycle Dysfunction for Cancer Therapy. J Clin Med 2019; 8:jcm8122161. [PMID: 31817761 PMCID: PMC6947145 DOI: 10.3390/jcm8122161] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 11/30/2019] [Accepted: 12/04/2019] [Indexed: 02/07/2023] Open
Abstract
Mitochondrion, a maternally hereditary, subcellular organelle, is the site of the tricarboxylic acid (TCA) cycle, electron transport chain (ETC), and oxidative phosphorylation (OXPHOS)—the basic processes of ATP production. Mitochondrial function plays a pivotal role in the development and pathology of different cancers. Disruption in its activity, like mutations in its TCA cycle enzymes, leads to physiological imbalances and metabolic shifts of the cell, which contributes to the progression of cancer. In this review, we explored the different significant mutations in the mitochondrial enzymes participating in the TCA cycle and the diseases, especially cancer types, that these malfunctions are closely associated with. In addition, this paper also discussed the different therapeutic approaches which are currently being developed to address these diseases caused by mitochondrial enzyme malfunction.
Collapse
Affiliation(s)
- Jubert Marquez
- Department of Health Science and Technology, College of Medicine, Inje University, Busan 47392, Korea; (J.M.); (A.H.K.)
| | - Jessa Flores
- Department of Physiology, College of Medicine, Inje University, Busan 47392, Korea; (J.F.); (B.N.); (A.T.T.N.)
| | - Amy Hyein Kim
- Department of Health Science and Technology, College of Medicine, Inje University, Busan 47392, Korea; (J.M.); (A.H.K.)
| | - Bayalagmaa Nyamaa
- Department of Physiology, College of Medicine, Inje University, Busan 47392, Korea; (J.F.); (B.N.); (A.T.T.N.)
- Department of Hematology, Mongolian National University of Medical Sciences, Ulaanbaatar 14210, Mongolia
| | - Anh Thi Tuyet Nguyen
- Department of Physiology, College of Medicine, Inje University, Busan 47392, Korea; (J.F.); (B.N.); (A.T.T.N.)
| | - Nammi Park
- Cardiovascular and Metabolic Disease Center, Paik Hospital, Inje University, Busan 47392, Korea;
| | - Jin Han
- Department of Health Science and Technology, College of Medicine, Inje University, Busan 47392, Korea; (J.M.); (A.H.K.)
- Department of Physiology, College of Medicine, Inje University, Busan 47392, Korea; (J.F.); (B.N.); (A.T.T.N.)
- Cardiovascular and Metabolic Disease Center, Paik Hospital, Inje University, Busan 47392, Korea;
- Correspondence: ; Tel.: +8251-890-8748
| |
Collapse
|
19
|
Delp J, Funke M, Rudolf F, Cediel A, Bennekou SH, van der Stel W, Carta G, Jennings P, Toma C, Gardner I, van de Water B, Forsby A, Leist M. Development of a neurotoxicity assay that is tuned to detect mitochondrial toxicants. Arch Toxicol 2019; 93:1585-1608. [PMID: 31190196 DOI: 10.1007/s00204-019-02473-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 05/07/2019] [Indexed: 12/18/2022]
Abstract
Many neurotoxicants affect energy metabolism in man, but currently available test methods may still fail to predict mito- and neurotoxicity. We addressed this issue using LUHMES cells, i.e., human neuronal precursors that easily differentiate into mature neurons. Within the NeuriTox assay, they have been used to screen for neurotoxicants. Our new approach is based on culturing the cells in either glucose or galactose (Glc-Gal-NeuriTox) as the main carbohydrate source during toxicity testing. Using this Glc-Gal-NeuriTox assay, 52 mitochondrial and non-mitochondrial toxicants were tested. The panel of chemicals comprised 11 inhibitors of mitochondrial respiratory chain complex I (cI), 4 inhibitors of cII, 8 of cIII, and 2 of cIV; 8 toxicants were included as they are assumed to be mitochondrial uncouplers. In galactose, cells became more dependent on mitochondrial function, which made them 2-3 orders of magnitude more sensitive to various mitotoxicants. Moreover, galactose enhanced the specific neurotoxicity (destruction of neurites) compared to a general cytotoxicity (plasma membrane lysis) of the toxicants. The Glc-Gal-NeuriTox assay worked particularly well for inhibitors of cI and cIII, while the toxicity of uncouplers and non-mitochondrial toxicants did not differ significantly upon glucose ↔ galactose exchange. As a secondary assay, we developed a method to quantify the inhibition of all mitochondrial respiratory chain functions/complexes in LUHMES cells. The combination of the Glc-Gal-NeuriTox neurotoxicity screening assay with the mechanistic follow up of target site identification allowed both, a more sensitive detection of neurotoxicants and a sharper definition of the mode of action of mitochondrial toxicants.
Collapse
Affiliation(s)
- Johannes Delp
- Chair for In Vitro Toxicology and Biomedicine, Department of Inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, Universitaetsstr. 10, 78457, Constance, Germany
- Cooperative Doctorate College InViTe, University of Konstanz, Constance, Germany
| | - Melina Funke
- Chair for In Vitro Toxicology and Biomedicine, Department of Inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, Universitaetsstr. 10, 78457, Constance, Germany
| | - Franziska Rudolf
- Chair for In Vitro Toxicology and Biomedicine, Department of Inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, Universitaetsstr. 10, 78457, Constance, Germany
| | - Andrea Cediel
- Swetox Unit for Toxicological Sciences, Karolinska Institutet, Stockholm, Sweden
| | | | - Wanda van der Stel
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Giada Carta
- Division of Molecular and Computational Toxicology, Amsterdam Institute for Molecules, Medicines and Systems, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Paul Jennings
- Division of Molecular and Computational Toxicology, Amsterdam Institute for Molecules, Medicines and Systems, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Cosimo Toma
- Laboratory of Environmental Chemistry and Toxicology, Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via la Masa 19, 20156, Milan, Italy
| | | | - Bob van de Water
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Anna Forsby
- Swetox Unit for Toxicological Sciences, Karolinska Institutet, Stockholm, Sweden
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Marcel Leist
- Chair for In Vitro Toxicology and Biomedicine, Department of Inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, Universitaetsstr. 10, 78457, Constance, Germany.
| |
Collapse
|
20
|
Mwangi SM, Li G, Ye L, Liu Y, Reichardt F, Yeligar SM, Hart CM, Czaja MJ, Srinivasan S. Glial Cell Line-Derived Neurotrophic Factor Enhances Autophagic Flux in Mouse and Rat Hepatocytes and Protects Against Palmitate Lipotoxicity. Hepatology 2019; 69:2455-2470. [PMID: 30715741 PMCID: PMC6541506 DOI: 10.1002/hep.30541] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 01/25/2019] [Indexed: 12/16/2022]
Abstract
Glial cell line-derived neurotrophic factor (GDNF) is a protein that is required for the development and survival of enteric, sympathetic, and catecholaminergic neurons. We previously reported that GDNF is protective against high fat diet (HFD)-induced hepatic steatosis in mice through suppression of hepatic expression of peroxisome proliferator activated receptor-γ and genes encoding enzymes involved in de novo lipogenesis. We also reported that transgenic overexpression of GDNF in mice prevented the HFD-induced liver accumulation of the autophagy cargo-associated protein p62/sequestosome 1 characteristic of impaired autophagy. Here we investigated the effects of GDNF on hepatic autophagy in response to increased fat load, and on hepatocyte mitochondrial fatty acid β-oxidation and cell survival. GDNF not only prevented the reductions in the liver levels of some key autophagy-related proteins, including Atg5, Atg7, Beclin-1 and LC3A/B-II, seen in HFD-fed control mice, but enhanced their levels after 12 weeks of HFD feeding. In vitro, GDNF accelerated autophagic cargo clearance in primary mouse hepatocytes and a rat hepatocyte cell line, and reduced the phosphorylation of the mechanistic target of rapamycin complex downstream-target p70S6 kinase similar to the autophagy activator rapamycin. GDNF also enhanced mitochondrial fatty acid β-oxidation in primary mouse and rat hepatocytes, and protected against palmitate-induced lipotoxicity. Conclusion: We demonstrate a role for GDNF in enhancing hepatic autophagy and in potentiating mitochondrial function and fatty acid oxidation. Our studies show that GDNF and its receptor agonists could be useful for enhancing hepatocyte survival and protecting against fatty acid-induced hepatic lipotoxicity.
Collapse
Affiliation(s)
- Simon Musyoka Mwangi
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA
- Research-Gastroenterology, Atlanta VA Health Care System, Decatur, GA, United States
| | - Ge Li
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA
- Research-Gastroenterology, Atlanta VA Health Care System, Decatur, GA, United States
| | - Lan Ye
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA
- Research-Gastroenterology, Atlanta VA Health Care System, Decatur, GA, United States
| | - Yunshan Liu
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA
| | - Francois Reichardt
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA
- Research-Gastroenterology, Atlanta VA Health Care System, Decatur, GA, United States
| | - Samantha M. Yeligar
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA
- Research-Pulmonary, Atlanta VA Health Care System, Decatur, GA
| | - C. Michael Hart
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA
- Research-Pulmonary, Atlanta VA Health Care System, Decatur, GA
| | - Mark J. Czaja
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA
| | - Shanthi Srinivasan
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA
- Research-Gastroenterology, Atlanta VA Health Care System, Decatur, GA, United States
| |
Collapse
|
21
|
Coleman DN, Alharthi A, Lopreiato V, Trevisi E, Miura M, Pan YX, Loor JJ. Choline supply during negative nutrient balance alters hepatic cystathionine β-synthase, intermediates of the methionine cycle and transsulfuration pathway, and liver function in Holstein cows. J Dairy Sci 2019; 102:8319-8331. [PMID: 31056334 DOI: 10.3168/jds.2019-16406] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 03/18/2019] [Indexed: 12/14/2022]
Abstract
Although choline requirements for cows are unknown, enhanced postruminal supply may decrease liver triacylglycerol and increase flux through the Met cycle to improve immunometabolic status during a negative nutrient balance (NNB). Our objectives were to investigate the effects of postruminal choline supply during a feed restriction-induced NNB on (1) hepatic activity cystathionine β-synthase and transcription of enzymes in the transsulfuration pathway and Met cycle; (2) hepatic metabolites in the Met cycle and the transsulfuration pathway, bile acids, and energy metabolism; and 3) plasma biomarkers of liver function, inflammation, and oxidative stress. Ten primiparous rumen-cannulated Holstein cows (158 ± 24 d postpartum) were used in a replicated 5 × 5 Latin square design with 4-d treatment periods and 10 d of recovery (14 d/period). Treatments were unrestricted intake with abomasal infusion of water, restricted intake (R; 60% of net energy for lactation requirements) with abomasal infusion of water, or R plus abomasal infusion of 6.25, 12.5, or 25 g/d choline ion. Liver tissue was collected on d 5 after infusions ended, and blood was collected on d 1, 3, and 5. Statistical contrasts were A0 versus R0 (CONT1), R versus the average of choline doses (CONT2), and tests of linear and quadratic effects of choline dose. Activity of cystathionine β-synthase was lower with R (CONT1) and decreased linearly with choline. Hepatic glutathione was not different with R or choline, but taurine tended to be greater with choline (CONT2). Betaine and carnitine were greater with R (CONT1) and further increased with choline (CONT2). Concentrations of NAD+ were greater with choline (CONT2). Cholic and glycol-chenodeoxycholic acids were decreased by R and choline, while taurocholic and tauro-chenodeoxycholic acids were not altered. Plasma aspartate aminotransferase and bilirubin were greater with R (CONT1) but decreased with choline (CONT2). Paraoxonase was lower with R and increased with choline (CONT2). Data suggest that enhanced supply of choline during NNB decreases entry of homocysteine to the transsulfuration pathway, potentially favoring remethylation to Met by acquiring a methyl group from betaine. As such, Met may provide methyl groups for synthesis of carnitine. Along with production data indicating that 12.5 g/d choline ion improved milk yield and liver fatty acid metabolism during NNB, the changes in blood biomarkers also suggest a beneficial effect of choline supply on liver function and oxidative stress.
Collapse
Affiliation(s)
- D N Coleman
- Department of Animal Sciences, University of Illinois, Urbana 61801
| | - A Alharthi
- Department of Animal Sciences, University of Illinois, Urbana 61801
| | - V Lopreiato
- Department of Health Science, Interdepartmental Services Centre of Veterinary for Human and Animal Health, Magna Græcia University of Catanzaro, 88100 Catanzaro, Italy
| | - E Trevisi
- Istituto di Zootecnica, Facoltà di Agraria, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - M Miura
- Ajinomoto Co. Inc., 210-8681 Tokyo, Japan
| | - Y-X Pan
- Department of Food Science and Human Nutrition, University of Illinois, Urbana 61801; Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - J J Loor
- Department of Animal Sciences, University of Illinois, Urbana 61801; Division of Nutritional Sciences, University of Illinois, Urbana 61801.
| |
Collapse
|
22
|
Aleo MD, Aubrecht J, D Bonin P, Burt DA, Colangelo J, Luo L, Schomaker S, Swiss R, Kirby S, C Rigdon G, Dua P. Phase I study of PF‐04895162, a Kv7 channel opener, reveals unexpected hepatotoxicity in healthy subjects, but not rats or monkeys: clinical evidence of disrupted bile acid homeostasis. Pharmacol Res Perspect 2019; 7:e00467. [PMID: 30784208 PMCID: PMC6370995 DOI: 10.1002/prp2.467] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 01/11/2019] [Accepted: 01/13/2019] [Indexed: 12/28/2022] Open
Abstract
During a randomized Phase 1 clinical trial the drug candidate, PF‐04895162 (ICA‐105665), caused transaminase elevations (≥grade 1) in six of eight healthy subjects treated at 300 mg twice daily for 2‐weeks (NCT01691274). This was unexpected since studies in rats (<6 months) and cynomolgus monkeys (<9 months) treated up to 100 mg/kg/day did not identify the liver as a target organ. Mechanistic studies showed PF‐04895162 had low cytotoxic potential in human hepatocytes, but inhibited liver mitochondrial function and bile salt export protein (BSEP) transport. Clinical relevance of these postulated mechanisms of liver injury was explored in three treated subjects that consented to analysis of residual pharmacokinetic plasma samples. Compared to a nonresponder, two subjects with transaminase elevations displayed higher levels of miRNA122 and total/conjugated bile acid species, whereas one demonstrated impaired postprandial clearance of systemic bile acids. Elevated taurine and glycine conjugated to unconjugated bile acid ratios were observed in two subjects, one before the onset of elevated transaminases. Based on the affinity of conjugated bile acid species for transport by BSEP, the profile of plasma conjugated/unconjugated bile acid species was consistent with inhibition of BSEP. These data collectively suggest that the human liver injury by PF‐04895162 was due to alterations in bile acid handling driven by dual BSEP/mitochondrial inhibition, two important risk factors associated with drug‐induced liver injury in humans. Alterations in systemic bile acid composition were more important than total bile acids in the manifestation of clinical liver injury and may be a very early biomarker of BSEP inhibition.
Collapse
Affiliation(s)
- Michael D Aleo
- Investigative Toxicology, Drug Safety Research and Development, Pfizer Inc., Groton, Connecticut
| | - Jiri Aubrecht
- Safety Biomarkers, Drug Safety Research and Development, Pfizer Inc., Groton, Connecticut
| | - Paul D Bonin
- Medicine Design, Primary Pharmacology Group, Pfizer Inc., Groton, Connecticut
| | - Deborah A Burt
- Safety Biomarkers, Drug Safety Research and Development, Pfizer Inc., Groton, Connecticut
| | - Jennifer Colangelo
- Safety Biomarkers, Drug Safety Research and Development, Pfizer Inc., Groton, Connecticut
| | - Lina Luo
- Safety Biomarkers, Drug Safety Research and Development, Pfizer Inc., Groton, Connecticut
| | - Shelli Schomaker
- Safety Biomarkers, Drug Safety Research and Development, Pfizer Inc., Groton, Connecticut
| | - Rachel Swiss
- Compound Safety Prediction, Worldwide Medicinal Chemistry, Pfizer Inc., Groton, Connecticut
| | - Simon Kirby
- Global Biometrics and Data Management, Pfizer Inc., Cambridge, UK
| | - Greg C Rigdon
- Neusentis Research Unit, Pfizer Inc., Durham, North Carolina
| | - Pinky Dua
- Clinical Pharmacology, Early Clinical Development, Pfizer Inc., Cambridge, UK
| |
Collapse
|
23
|
Rose S, Niyazov DM, Rossignol DA, Goldenthal M, Kahler SG, Frye RE. Clinical and Molecular Characteristics of Mitochondrial Dysfunction in Autism Spectrum Disorder. Mol Diagn Ther 2018; 22:571-593. [PMID: 30039193 PMCID: PMC6132446 DOI: 10.1007/s40291-018-0352-x] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Autism spectrum disorder (ASD) affects ~ 2% of children in the United States. The etiology of ASD likely involves environmental factors triggering physiological abnormalities in genetically sensitive individuals. One of these major physiological abnormalities is mitochondrial dysfunction, which may affect a significant subset of children with ASD. Here we systematically review the literature on human studies of mitochondrial dysfunction related to ASD. Clinical aspects of mitochondrial dysfunction in ASD include unusual neurodevelopmental regression, especially if triggered by an inflammatory event, gastrointestinal symptoms, seizures, motor delays, fatigue and lethargy. Traditional biomarkers of mitochondrial disease are widely reported to be abnormal in ASD, but appear non-specific. Newer biomarkers include buccal cell enzymology, biomarkers of fatty acid metabolism, non-mitochondrial enzyme function, apoptosis markers and mitochondrial antibodies. Many genetic abnormalities are associated with mitochondrial dysfunction in ASD, including chromosomal abnormalities, mitochondrial DNA mutations and large-scale deletions, and mutations in both mitochondrial and non-mitochondrial nuclear genes. Mitochondrial dysfunction has been described in immune and buccal cells, fibroblasts, muscle and gastrointestinal tissue and the brains of individuals with ASD. Several environmental factors, including toxicants, microbiome metabolites and an oxidized microenvironment are shown to modulate mitochondrial function in ASD tissues. Investigations of treatments for mitochondrial dysfunction in ASD are promising but preliminary. The etiology of mitochondrial dysfunction and how to define it in ASD is currently unclear. However, preliminary evidence suggests that the mitochondria may be a fruitful target for treatment and prevention of ASD. Further research is needed to better understand the role of mitochondrial dysfunction in the pathophysiology of ASD.
Collapse
Affiliation(s)
- Shannon Rose
- Department of Pediatrics, University of Arkansas for Medical Sciences and Arkansas Children's Research Institute, Little Rock, AR, USA
| | - Dmitriy M Niyazov
- Section of Medical Genetics, Ochsner Health System, New Orleans, LA, USA
| | | | - Michael Goldenthal
- Department of Pediatrics, Neurology Section, St. Christopher's Hospital for Children, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Stephen G Kahler
- Department of Pediatrics, University of Arkansas for Medical Sciences and Arkansas Children's Research Institute, Little Rock, AR, USA
| | - Richard E Frye
- Division of Neurodevelopmental Disorders, Department of Neurology, Barrow Neurological Institute, Phoenix Children's Hospital, 1919 E Thomas St, Phoenix, AZ, USA.
- Department of Child Health, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA.
| |
Collapse
|
24
|
Divakaruni AS, Hsieh WY, Minarrieta L, Duong TN, Kim KKO, Desousa BR, Andreyev AY, Bowman CE, Caradonna K, Dranka BP, Ferrick DA, Liesa M, Stiles L, Rogers GW, Braas D, Ciaraldi TP, Wolfgang MJ, Sparwasser T, Berod L, Bensinger SJ, Murphy AN. Etomoxir Inhibits Macrophage Polarization by Disrupting CoA Homeostasis. Cell Metab 2018; 28:490-503.e7. [PMID: 30043752 PMCID: PMC6125190 DOI: 10.1016/j.cmet.2018.06.001] [Citation(s) in RCA: 223] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 04/20/2018] [Accepted: 06/02/2018] [Indexed: 12/12/2022]
Abstract
Long-chain fatty acid (LCFA) oxidation has been shown to play an important role in interleukin-4 (IL-4)-mediated macrophage polarization (M(IL-4)). However, many of these conclusions are based on the inhibition of carnitine palmitoyltransferase-1 with high concentrations of etomoxir that far exceed what is required to inhibit enzyme activity (EC90 < 3 μM). We employ genetic and pharmacologic models to demonstrate that LCFA oxidation is largely dispensable for IL-4-driven polarization. Unexpectedly, high concentrations of etomoxir retained the ability to disrupt M(IL-4) polarization in the absence of Cpt1a or Cpt2 expression. Although excess etomoxir inhibits the adenine nucleotide translocase, oxidative phosphorylation is surprisingly dispensable for M(IL-4). Instead, the block in polarization was traced to depletion of intracellular free coenzyme A (CoA), likely resulting from conversion of the pro-drug etomoxir into active etomoxiryl CoA. These studies help explain the effect(s) of excess etomoxir on immune cells and reveal an unappreciated role for CoA metabolism in macrophage polarization.
Collapse
Affiliation(s)
- Ajit S Divakaruni
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Wei Yuan Hsieh
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Lucía Minarrieta
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture Between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| | - Tin N Duong
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Kristen K O Kim
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Brandon R Desousa
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Alexander Y Andreyev
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Caitlyn E Bowman
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Kacey Caradonna
- Agilent Technologies, 5301 Stevens Creek Boulevard, Santa Clara, CA 95051, USA
| | - Brian P Dranka
- Agilent Technologies, 5301 Stevens Creek Boulevard, Santa Clara, CA 95051, USA
| | - David A Ferrick
- Agilent Technologies, 5301 Stevens Creek Boulevard, Santa Clara, CA 95051, USA
| | - Marc Liesa
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Linsey Stiles
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - George W Rogers
- Agilent Technologies, 5301 Stevens Creek Boulevard, Santa Clara, CA 95051, USA
| | - Daniel Braas
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA 90095, USA; UCLA Metabolomics Center and Crump Institute for Molecular Imaging, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Theodore P Ciaraldi
- Veterans Affairs San Diego Healthcare System, La Jolla, CA 92161, USA; Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Michael J Wolfgang
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Tim Sparwasser
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture Between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| | - Luciana Berod
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture Between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| | - Steven J Bensinger
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Anne N Murphy
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
25
|
Functional characterization of the Ucp1-associated oxidative phenotype of human epicardial adipose tissue. Sci Rep 2017; 7:15566. [PMID: 29138472 PMCID: PMC5686183 DOI: 10.1038/s41598-017-15501-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 10/11/2017] [Indexed: 02/08/2023] Open
Abstract
Brown fat presence and metabolic activity has been associated with lower body mass index, higher insulin sensitivity and better cardiometabolic profile in humans. We, and others, have previously reported the presence of Ucp1, a marker of brown adipocytes, in human epicardial adipose tissue (eAT). Characterization of the metabolic activity and associated physiological relevance of Ucp1 within eAT, however, is still awaited. Here, we validate the presence of Ucp1 within human eAT and its ‘beige’ nature. Using in-vitro analytical approaches, we further characterize its thermogenic potential and demonstrate that human eAT is capable of undergoing enhanced uncoupling respiration upon stimulation. Direct biopsy gene expression analysis reveals a negative association between thermogenic markers and oxidative stress-related genes in this depot. Consistently, isoproterenol (Iso) stimulation of eAT leads to a downregulation of secreted proteins included in the GO terms ‘cell redox homeostasis’ and ‘protein folding’. In addition, cardiac endothelial cells exhibit a downregulation in the expression of adhesion markers upon treatment with Iso-stimulated eAT derived conditioned media. Overall, these observations suggest that Ucp1- associated metabolic activity plays a significant role in local tissue homeostasis within eAT and can plausibly alter its communication with neighboring cells of the cardiovascular system.
Collapse
|
26
|
Manley SJ, Liu W, Welch DR. The KISS1 metastasis suppressor appears to reverse the Warburg effect by shifting from glycolysis to mitochondrial beta-oxidation. J Mol Med (Berl) 2017; 95:951-963. [PMID: 28597070 DOI: 10.1007/s00109-017-1552-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 05/15/2017] [Accepted: 05/23/2017] [Indexed: 12/18/2022]
Abstract
The shift by cancer cells toward aerobic glycolysis (Warburg effect) confers selective advantages by utilizing nutrients (e.g., lipids, amino acids, and nucleotides) to build biomass. Lipogenesis is generally enhanced, and its inhibition diminishes proliferation and survival. Re-expression of the metastasis suppressor KISS1 in human melanoma cells results in greater mitochondrial biogenesis, inhibition of glycolysis, utilization of beta-oxidation to provide energy, elevated oxidation of exogenous fatty acids, and increased expression of early-phase lipogenesis genes at both mRNA and protein levels. Correspondingly, the energy sensor AMPKβ is phosphorylated, resulting in inhibitory phosphorylation of acetyl-CoA carboxylase (ACC), which is linked to enhanced beta-oxidation. Furthermore, PGC1α is required for KISS1-mediated phosphorylation of ACC and metastasis suppression. Collectively, these data further support the linkages between macromolecular metabolism and metastasis. KEY MESSAGES • KISS1 alters fatty acid metabolism. • There may be connections between metastasis and metabolism. • PGC1alpha appears to be downstream mediator of KISS1 metastasis suppression.
Collapse
Affiliation(s)
- Sharon J Manley
- Department of Cancer Biology, The University of Kansas Medical Center, 3901 Rainbow Blvd, Mail Stop 1071, Kansas City, KS, 66160, USA
| | - Wen Liu
- Department of Cancer Biology, The University of Kansas Medical Center, 3901 Rainbow Blvd, Mail Stop 1071, Kansas City, KS, 66160, USA
- Department of Cancer Biology, Duke University Cancer Center, Durham, NC, USA
| | - Danny R Welch
- Department of Cancer Biology, The University of Kansas Medical Center, 3901 Rainbow Blvd, Mail Stop 1071, Kansas City, KS, 66160, USA.
- The University of Kansas Cancer Center, Lawrence, KS, USA.
| |
Collapse
|
27
|
Burger BJ, Rose S, Bennuri SC, Gill PS, Tippett ML, Delhey L, Melnyk S, Frye RE. Autistic Siblings with Novel Mutations in Two Different Genes: Insight for Genetic Workups of Autistic Siblings and Connection to Mitochondrial Dysfunction. Front Pediatr 2017; 5:219. [PMID: 29075622 PMCID: PMC5643424 DOI: 10.3389/fped.2017.00219] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 09/27/2017] [Indexed: 12/12/2022] Open
Abstract
The prevalence of autism spectrum disorder (ASD) is high, yet the etiology of this disorder is still uncertain. Advancements in genetic analysis have provided the ability to identify potential genetic changes that may contribute to ASD. Interestingly, several genetic syndromes have been linked to metabolic dysfunction, suggesting an avenue for treatment. In this case study, we report siblings with ASD who had similar initial phenotypic presentations. Whole exome sequencing (WES) revealed a novel c.795delT mutation in the WDR45 gene affecting the girl, which was consistent with her eventual progression to a Rett-like syndrome phenotype including seizures along with a stereotypical cyclic breathing pattern. Interestingly, WES identified that the brother harbored a novel heterozygous Y1546H variant in the DEP domain-containing protein 5 (DEPDC5) gene, consistent with his presentation. Both siblings underwent a metabolic workup that demonstrated different patterns of mitochondrial dysfunction. The girl demonstrated statistically significant elevations in mitochondrial activity of complex I + III in both muscle and fibroblasts and increased respiration in peripheral blood mononuclear cells (PBMCs) on Seahorse Extracellular Flux analysis. The boy demonstrates a statistically significant decrease in complex IV activity in buccal epithelium and decreased respiration in PBMCs. These cases highlight the differences in genetic abnormalities even in siblings with ASD phenotypes as well as highlights the individual role of novel mutations in the WDR45 and DEPDC5 genes. These cases demonstrate the importance of advanced genetic testing combined with metabolic evaluations in the workup of children with ASD.
Collapse
Affiliation(s)
- Barrett J Burger
- University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Shannon Rose
- University of Arkansas for Medical Sciences, Little Rock, AR, United States.,Autism Research Program, Arkansas Children's Research Institute, Little Rock, AR, United States
| | - Sirish C Bennuri
- University of Arkansas for Medical Sciences, Little Rock, AR, United States.,Autism Research Program, Arkansas Children's Research Institute, Little Rock, AR, United States
| | | | - Marie L Tippett
- University of Arkansas for Medical Sciences, Little Rock, AR, United States.,Autism Research Program, Arkansas Children's Research Institute, Little Rock, AR, United States
| | - Leanna Delhey
- University of Arkansas for Medical Sciences, Little Rock, AR, United States.,Autism Research Program, Arkansas Children's Research Institute, Little Rock, AR, United States
| | - Stepan Melnyk
- University of Arkansas for Medical Sciences, Little Rock, AR, United States.,Autism Research Program, Arkansas Children's Research Institute, Little Rock, AR, United States
| | - Richard E Frye
- University of Arkansas for Medical Sciences, Little Rock, AR, United States.,Autism Research Program, Arkansas Children's Research Institute, Little Rock, AR, United States
| |
Collapse
|
28
|
Abstract
Attrition due to nonclinical safety represents a major issue for the productivity of pharmaceutical research and development (R&D) organizations, especially during the compound optimization stages of drug discovery and the early stages of clinical development. Focusing on decreasing nonclinical safety-related attrition is not a new concept, and various approaches have been experimented with over the last two decades. Front-loading testing funnels in Discovery with in vitro toxicity assays designed to rapidly identify unfavorable molecules was the approach adopted by most pharmaceutical R&D organizations a few years ago. However, this approach has also a non-negligible opportunity cost. Hence, significant refinements to the "fail early, fail often" paradigm have been proposed recently to reflect the complexity of accurately categorizing compounds with early data points without taking into account other important contextual aspects, in particular efficacious systemic and tissue exposures. This review provides an overview of toxicology approaches and models that can be used in pharmaceutical Discovery at the series/lead identification and lead optimization stages to guide and inform chemistry efforts, as well as a personal view on how to best use them to meet nonclinical safety-related attrition objectives consistent with a sustainable pharmaceutical R&D model. The scope of this review is limited to small molecules, as large molecules are associated with challenges that are quite different. Finally, a perspective on how several emerging technologies may impact toxicity evaluation is also provided.
Collapse
Affiliation(s)
- Eric A G Blomme
- Global Preclinical Safety, AbbVie Inc. , 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Yvonne Will
- Drug Safety Research and Development, Pfizer , Eastern Point Road, Groton, Connecticut 06340, United States
| |
Collapse
|