1
|
Fernández-Arévalo U, Fuchs J, Boll M, Díaz E. Transcriptional regulation of the anaerobic 3-hydroxybenzoate degradation pathway in Aromatoleum sp. CIB. Microbiol Res 2024; 288:127882. [PMID: 39216330 DOI: 10.1016/j.micres.2024.127882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/31/2024] [Accepted: 08/17/2024] [Indexed: 09/04/2024]
Abstract
Phenolic compounds are commonly found in anoxic environments, where they serve as both carbon and energy sources for certain anaerobic bacteria. The anaerobic breakdown of m-cresol, catechol, and certain lignin-derived compounds yields the central intermediate 3-hydroxybenzoate/3-hydroxybenzoyl-CoA. In this study, we have characterized the transcription and regulation of the hbd genes responsible for the anaerobic degradation of 3-hydroxybenzoate in the β-proteobacterium Aromatoleum sp. CIB. The hbd cluster is organized in three catabolic operons and a regulatory hbdR gene that encodes a dimeric transcriptional regulator belonging to the TetR family. HbdR suppresses the activity of the three catabolic promoters (PhbdN, PhbdE and PhbdH) by binding to a conserved palindromic operator box (ATGAATGAN4TCATTCAT). 3-Hydroxybenzoyl-CoA, the initial intermediate of the 3-hydroxybenzoate degradation pathway, along with benzoyl-CoA, serve as effector molecules that bind to HbdR inducing the expression of the hbd genes. Moreover, the hbd genes are subject to additional regulation influenced by the presence of non-aromatic carbon sources (carbon catabolite repression), and their expression is induced in oxygen-deprived conditions by the AcpR transcriptional activator. The prevalence of the hbd cluster among members of the Aromatoleum/Thauera bacterial group, coupled with its association with mobile genetic elements, suggests acquisition through horizontal gene transfer. These findings significantly enhance our understanding of the regulatory mechanisms governing the hbd gene cluster in bacteria, paving the way for further exploration into the anaerobic utilization/valorization of phenolic compounds derived from lignin.
Collapse
Affiliation(s)
- Unai Fernández-Arévalo
- Department of Microbial and Plant Biotechnology, Centro de Investigaciones Biológicas Margarita Salas-CSIC, Madrid, Spain
| | - Jonathan Fuchs
- Faculty of Biology-Microbiology, University of Freiburg, Freiburg, Germany
| | - Matthias Boll
- Faculty of Biology-Microbiology, University of Freiburg, Freiburg, Germany
| | - Eduardo Díaz
- Department of Microbial and Plant Biotechnology, Centro de Investigaciones Biológicas Margarita Salas-CSIC, Madrid, Spain.
| |
Collapse
|
2
|
Avasthi I, Lerner H, Grings J, Gräber C, Schleheck D, Cölfen H. Biodegradable Mineral Plastics. SMALL METHODS 2024; 8:e2300575. [PMID: 37466247 DOI: 10.1002/smtd.202300575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Indexed: 07/20/2023]
Abstract
Mineral plastics are a promising class of bio-inspired materials that offer exceptional properties, like self-heal ability, stretchability in the hydrogel state, and high hardness, toughness, transparency, and non-flammability in the dry state along with reversible transformation into the hydrogel by addition of water. This enables easy reshape-ability and recycling like the solubility in mild acids to subsequently form mineral plastics again by base addition. However, current mineral plastics rely on petrochemistry, are hardly biodegradable, and thus persistent in nature. This work presents the next generation of mineral plastics, which are bio-based and biodegradable, making them a promising, new class of polymers for the development of environmentally friendly materials. Physically cross-linked (poly)glutamic-acid (PGlu)-based mineral plastics are synthesized using various alcohol-water mixtures, metal ion ratios and molecular weights. The rheological properties are easily adjusted using these parameters. The general procedure involves addition of equimolar solution of CaCl2 to PGlu in equal volumes followed by addition of iPrOH (iPrOH:H2O = 1:1) under vigorous stirring conditions. The ready biodegradability of PGlu/CaFe mineral plastic is confirmed in this study where the elements N, Ca, and Fe present in it tend to act as additional nutrients, supporting the growth of microorganisms and consequently, promoting the biodegradation process.
Collapse
Affiliation(s)
- Ilesha Avasthi
- Physical Chemistry, Department of Chemistry, University of Konstanz, Universitätstr. 10, D-78457, Konstanz, Germany
| | - Harry Lerner
- Microbial Ecology and Limnic Microbiology, Department of Biology, Limnological Institute, University of Konstanz, Universitätstr. 10, D-78457, Konstanz, Germany
| | - Jonas Grings
- Physical Chemistry, Department of Chemistry, University of Konstanz, Universitätstr. 10, D-78457, Konstanz, Germany
| | - Carla Gräber
- Physical Chemistry, Department of Chemistry, University of Konstanz, Universitätstr. 10, D-78457, Konstanz, Germany
| | - David Schleheck
- Microbial Ecology and Limnic Microbiology, Department of Biology, Limnological Institute, University of Konstanz, Universitätstr. 10, D-78457, Konstanz, Germany
| | - Helmut Cölfen
- Physical Chemistry, Department of Chemistry, University of Konstanz, Universitätstr. 10, D-78457, Konstanz, Germany
| |
Collapse
|
3
|
Xie SC, Wang Y, Morton CJ, Metcalfe RD, Dogovski C, Pasaje CFA, Dunn E, Luth MR, Kumpornsin K, Istvan ES, Park JS, Fairhurst KJ, Ketprasit N, Yeo T, Yildirim O, Bhebhe MN, Klug DM, Rutledge PJ, Godoy LC, Dey S, De Souza ML, Siqueira-Neto JL, Du Y, Puhalovich T, Amini M, Shami G, Loesbanluechai D, Nie S, Williamson N, Jana GP, Maity BC, Thomson P, Foley T, Tan DS, Niles JC, Han BW, Goldberg DE, Burrows J, Fidock DA, Lee MCS, Winzeler EA, Griffin MDW, Todd MH, Tilley L. Reaction hijacking inhibition of Plasmodium falciparum asparagine tRNA synthetase. Nat Commun 2024; 15:937. [PMID: 38297033 PMCID: PMC10831071 DOI: 10.1038/s41467-024-45224-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 01/16/2024] [Indexed: 02/02/2024] Open
Abstract
Malaria poses an enormous threat to human health. With ever increasing resistance to currently deployed drugs, breakthrough compounds with novel mechanisms of action are urgently needed. Here, we explore pyrimidine-based sulfonamides as a new low molecular weight inhibitor class with drug-like physical parameters and a synthetically accessible scaffold. We show that the exemplar, OSM-S-106, has potent activity against parasite cultures, low mammalian cell toxicity and low propensity for resistance development. In vitro evolution of resistance using a slow ramp-up approach pointed to the Plasmodium falciparum cytoplasmic asparaginyl-tRNA synthetase (PfAsnRS) as the target, consistent with our finding that OSM-S-106 inhibits protein translation and activates the amino acid starvation response. Targeted mass spectrometry confirms that OSM-S-106 is a pro-inhibitor and that inhibition of PfAsnRS occurs via enzyme-mediated production of an Asn-OSM-S-106 adduct. Human AsnRS is much less susceptible to this reaction hijacking mechanism. X-ray crystallographic studies of human AsnRS in complex with inhibitor adducts and docking of pro-inhibitors into a model of Asn-tRNA-bound PfAsnRS provide insights into the structure-activity relationship and the selectivity mechanism.
Collapse
Affiliation(s)
- Stanley C Xie
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Yinuo Wang
- School of Pharmacy, University College London, London, WC1N 1AX, UK
| | - Craig J Morton
- Biomedical Manufacturing Program, CSIRO, Clayton South, VIC, Australia
| | - Riley D Metcalfe
- Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
| | - Con Dogovski
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Charisse Flerida A Pasaje
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Elyse Dunn
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Madeline R Luth
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Krittikorn Kumpornsin
- Parasites and Microbes Programme, Wellcome Sanger Institute, Hinxton, CB10 1SA, UK
- Calibr, Division of the Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Eva S Istvan
- Division of Infectious Diseases, Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Joon Sung Park
- Research Institute of Pharmaceutical Sciences and Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kate J Fairhurst
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Medical Center, New York, NY, 10032, USA
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Nutpakal Ketprasit
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Tomas Yeo
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Medical Center, New York, NY, 10032, USA
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Okan Yildirim
- Chemical Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | | | - Dana M Klug
- School of Pharmacy, University College London, London, WC1N 1AX, UK
| | - Peter J Rutledge
- School of Chemistry, University of Sydney, Camperdown, NSW, 2006, Australia
| | - Luiz C Godoy
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Sumanta Dey
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Mariana Laureano De Souza
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Jair L Siqueira-Neto
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Yawei Du
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Tanya Puhalovich
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Mona Amini
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Gerry Shami
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | | | - Shuai Nie
- Melbourne Mass Spectrometry and Proteomics Facility, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Nicholas Williamson
- Melbourne Mass Spectrometry and Proteomics Facility, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Gouranga P Jana
- TCG Lifesciences Private Limited, Salt-Lake Electronics Complex, Kolkata, India
| | - Bikash C Maity
- TCG Lifesciences Private Limited, Salt-Lake Electronics Complex, Kolkata, India
| | - Patrick Thomson
- School of Chemistry, The University of Edinburgh, Edinburgh, EH9 3JJ, UK
| | - Thomas Foley
- School of Chemistry, The University of Edinburgh, Edinburgh, EH9 3JJ, UK
| | - Derek S Tan
- Chemical Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Jacquin C Niles
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Byung Woo Han
- Research Institute of Pharmaceutical Sciences and Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Daniel E Goldberg
- Division of Infectious Diseases, Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Jeremy Burrows
- Medicines for Malaria Venture, 20, Route de Pré-Bois, 1215, Geneva 15, Switzerland
| | - David A Fidock
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Medical Center, New York, NY, 10032, USA
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, 10032, USA
- Division of Infectious Diseases, Department of Medicine, Columbia University Medical Center, New York, NY, 10032, USA
| | - Marcus C S Lee
- Parasites and Microbes Programme, Wellcome Sanger Institute, Hinxton, CB10 1SA, UK
- Wellcome Centre for Anti-Infectives Research, Biological Chemistry and Drug Discovery, University of Dundee, Dundee, DD1 4HN, UK
| | - Elizabeth A Winzeler
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA.
| | - Michael D W Griffin
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC, 3010, Australia.
| | - Matthew H Todd
- School of Pharmacy, University College London, London, WC1N 1AX, UK.
- Structural Genomics Consortium, University College London, London, WC1N 1AX, UK.
| | - Leann Tilley
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC, 3010, Australia.
| |
Collapse
|
4
|
Fedorov D, Roas-Escalona N, Tolmachev D, Harmat AL, Scacchi A, Sammalkorpi M, Aranko AS, Linder MB. Triblock Proteins with Weakly Dimerizing Terminal Blocks and an Intrinsically Disordered Region for Rational Design of Condensate Properties. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2306817. [PMID: 37964343 DOI: 10.1002/smll.202306817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/20/2023] [Indexed: 11/16/2023]
Abstract
Condensates are molecular assemblies that are formed through liquid-liquid phase separation and play important roles in many biological processes. The rational design of condensate formation and their properties is central to applications, such as biosynthetic materials, synthetic biology, and for understanding cell biology. Protein engineering is used to make a triblock structure with varying terminal blocks of folded proteins on both sides of an intrinsically disordered mid-region. Dissociation constants are determined in the range of micromolar to millimolar for a set of proteins suitable for use as terminal blocks. Varying the weak dimerization of terminal blocks leads to an adjustable tendency for condensate formation while keeping the intrinsically disordered region constant. The dissociation constants of the terminal domains correlate directly with the tendency to undergo liquid-liquid phase separation. Differences in physical properties, such as diffusion rate are not directly correlated with the strength of dimerization but can be understood from the properties and interplay of the constituent blocks. The work demonstrates the importance of weak interactions in condensate formation and shows a principle for protein design that will help in fabricating functional condensates in a predictable and rational way.
Collapse
Affiliation(s)
- Dmitrii Fedorov
- Department of Bioproducts and Biosystems, Aalto University, P.O. Box 16100, Aalto, FI-00076, Finland
- Center of Excellence in Life-Inspired Hybrid Materials (LIBER), Aalto University, P.O. Box 16100, Aalto, FI-00076, Finland
| | - Nelmary Roas-Escalona
- Department of Bioproducts and Biosystems, Aalto University, P.O. Box 16100, Aalto, FI-00076, Finland
- Center of Excellence in Life-Inspired Hybrid Materials (LIBER), Aalto University, P.O. Box 16100, Aalto, FI-00076, Finland
| | - Dmitry Tolmachev
- Center of Excellence in Life-Inspired Hybrid Materials (LIBER), Aalto University, P.O. Box 16100, Aalto, FI-00076, Finland
- Department of Chemistry and Materials Science, Aalto University, P.O. Box 16100, Aalto, FI-00076, Finland
| | - Adam L Harmat
- Center of Excellence in Life-Inspired Hybrid Materials (LIBER), Aalto University, P.O. Box 16100, Aalto, FI-00076, Finland
- Department of Chemistry and Materials Science, Aalto University, P.O. Box 16100, Aalto, FI-00076, Finland
| | - Alberto Scacchi
- Center of Excellence in Life-Inspired Hybrid Materials (LIBER), Aalto University, P.O. Box 16100, Aalto, FI-00076, Finland
- Department of Chemistry and Materials Science, Aalto University, P.O. Box 16100, Aalto, FI-00076, Finland
- Department of Applied Physics, Aalto University, P.O. Box 11000, Aalto, FI-00076, Finland
| | - Maria Sammalkorpi
- Department of Bioproducts and Biosystems, Aalto University, P.O. Box 16100, Aalto, FI-00076, Finland
- Center of Excellence in Life-Inspired Hybrid Materials (LIBER), Aalto University, P.O. Box 16100, Aalto, FI-00076, Finland
- Department of Chemistry and Materials Science, Aalto University, P.O. Box 16100, Aalto, FI-00076, Finland
| | - A Sesilja Aranko
- Department of Bioproducts and Biosystems, Aalto University, P.O. Box 16100, Aalto, FI-00076, Finland
- Center of Excellence in Life-Inspired Hybrid Materials (LIBER), Aalto University, P.O. Box 16100, Aalto, FI-00076, Finland
| | - Markus B Linder
- Department of Bioproducts and Biosystems, Aalto University, P.O. Box 16100, Aalto, FI-00076, Finland
- Center of Excellence in Life-Inspired Hybrid Materials (LIBER), Aalto University, P.O. Box 16100, Aalto, FI-00076, Finland
| |
Collapse
|
5
|
Lipsa D, Magrì D, Della Camera G, La Spina R, Cella C, Garmendia-Aguirre I, Mehn D, Ruiz-Moreno A, Fumagalli F, Calzolai L, Gioria S. Differences in Physico-Chemical Properties and Immunological Response in Nanosimilar Complex Drugs: The Case of Liposomal Doxorubicin. Int J Mol Sci 2023; 24:13612. [PMID: 37686418 PMCID: PMC10487543 DOI: 10.3390/ijms241713612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/28/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023] Open
Abstract
This study aims to highlight the impact of physicochemical properties on the behaviour of nanopharmaceuticals and how much carrier structure and physiochemical characteristics weigh on the effects of a formulation. For this purpose, two commercially available nanosimilar formulations of Doxil and their respective carriers were compared as a case study. Although the two formulations were "similar", we detected different toxicological effects (profiles) in terms of in vitro toxicity and immunological responses at the level of cytokines release and complement activation (iC3b fragment), that could be correlated with the differences in the physicochemical properties of the formulations. Shedding light on nanosimilar key quality attributes of liposome-based materials and the need for an accurate characterization, including investigation of the immunological effects, is of fundamental importance considering their great potential as delivery system for drugs, genes, or vaccines and the growing market demand.
Collapse
Affiliation(s)
- Dorelia Lipsa
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy; (D.L.); (D.M.); (G.D.C.); (R.L.S.); (C.C.); (I.G.-A.); (D.M.); (A.R.-M.); (F.F.); (L.C.)
| | - Davide Magrì
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy; (D.L.); (D.M.); (G.D.C.); (R.L.S.); (C.C.); (I.G.-A.); (D.M.); (A.R.-M.); (F.F.); (L.C.)
| | - Giacomo Della Camera
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy; (D.L.); (D.M.); (G.D.C.); (R.L.S.); (C.C.); (I.G.-A.); (D.M.); (A.R.-M.); (F.F.); (L.C.)
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), 80131 Naples, Italy
| | - Rita La Spina
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy; (D.L.); (D.M.); (G.D.C.); (R.L.S.); (C.C.); (I.G.-A.); (D.M.); (A.R.-M.); (F.F.); (L.C.)
| | - Claudia Cella
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy; (D.L.); (D.M.); (G.D.C.); (R.L.S.); (C.C.); (I.G.-A.); (D.M.); (A.R.-M.); (F.F.); (L.C.)
| | - Irantzu Garmendia-Aguirre
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy; (D.L.); (D.M.); (G.D.C.); (R.L.S.); (C.C.); (I.G.-A.); (D.M.); (A.R.-M.); (F.F.); (L.C.)
| | - Dora Mehn
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy; (D.L.); (D.M.); (G.D.C.); (R.L.S.); (C.C.); (I.G.-A.); (D.M.); (A.R.-M.); (F.F.); (L.C.)
| | - Ana Ruiz-Moreno
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy; (D.L.); (D.M.); (G.D.C.); (R.L.S.); (C.C.); (I.G.-A.); (D.M.); (A.R.-M.); (F.F.); (L.C.)
| | - Francesco Fumagalli
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy; (D.L.); (D.M.); (G.D.C.); (R.L.S.); (C.C.); (I.G.-A.); (D.M.); (A.R.-M.); (F.F.); (L.C.)
| | - Luigi Calzolai
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy; (D.L.); (D.M.); (G.D.C.); (R.L.S.); (C.C.); (I.G.-A.); (D.M.); (A.R.-M.); (F.F.); (L.C.)
| | - Sabrina Gioria
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy; (D.L.); (D.M.); (G.D.C.); (R.L.S.); (C.C.); (I.G.-A.); (D.M.); (A.R.-M.); (F.F.); (L.C.)
| |
Collapse
|
6
|
Schuck P, To SC, Zhao H. An automated interface for sedimentation velocity analysis in SEDFIT. PLoS Comput Biol 2023; 19:e1011454. [PMID: 37669309 PMCID: PMC10503714 DOI: 10.1371/journal.pcbi.1011454] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 09/15/2023] [Accepted: 08/22/2023] [Indexed: 09/07/2023] Open
Abstract
Sedimentation velocity analytical ultracentrifugation (SV-AUC) is an indispensable tool for the study of particle size distributions in biopharmaceutical industry, for example, to characterize protein therapeutics and vaccine products. In particular, the diffusion-deconvoluted sedimentation coefficient distribution analysis, in the software SEDFIT, has found widespread applications due to its relatively high resolution and sensitivity. However, a lack of suitable software compatible with Good Manufacturing Practices (GMP) has hampered the use of SV-AUC in this regulatory environment. To address this, we have created an interface for SEDFIT so that it can serve as an automatically spawned module with controlled data input through command line parameters and output of key results in files. The interface can be integrated in custom GMP compatible software, and in scripts that provide documentation and meta-analyses for replicate or related samples, for example, to streamline analysis of large families of experimental data, such as binding isotherm analyses in the study of protein interactions. To test and demonstrate this approach we provide a MATLAB script mlSEDFIT.
Collapse
Affiliation(s)
- Peter Schuck
- Laboratory of Dynamics of Macromolecular Assembly, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Samuel C. To
- Laboratory of Dynamics of Macromolecular Assembly, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Huaying Zhao
- Laboratory of Dynamics of Macromolecular Assembly, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
7
|
Synnatschke K, Moses Badlyan N, Wrzesińska A, Lozano Onrubia G, Hansen AL, Wolff S, Tornatzky H, Bensch W, Vaynzof Y, Maultzsch J, Backes C. Sonication-assisted liquid phase exfoliation of two-dimensional CrTe 3 under inert conditions. ULTRASONICS SONOCHEMISTRY 2023; 98:106528. [PMID: 37506508 PMCID: PMC10407284 DOI: 10.1016/j.ultsonch.2023.106528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/09/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023]
Abstract
Liquid phase exfoliation (LPE) has been used for the successful fabrication of nanosheets from a large number of van der Waals materials. While this allows to study fundamental changes of material properties' associated with reduced dimensions, it also changes the chemistry of many materials due to a significant increase of the effective surface area, often accompanied with enhanced reactivity and accelerated oxidation. To prevent material decomposition, LPE and processing in inert atmosphere have been developed, which enables the preparation of pristine nanomaterials, and to systematically study compositional changes over time for different storage conditions. Here, we demonstrate the inert exfoliation of the oxidation-sensitive van der Waals crystal, CrTe3. The pristine nanomaterial was purified and size-selected by centrifugation, nanosheet dimensions in the fractions quantified by atomic force microscopy and studied by Raman, X-ray photoelectron spectroscopy (XPS), energy-dispersive X-ray spectroscopy (EDX) and photo spectroscopic measurements. We find a dependence of the relative intensities of the CrTe3 Raman modes on the propagation direction of the incident light, which prevents a correlation of the Raman spectral profile to the nanosheet dimensions. XPS and EDX reveal that the contribution of surface oxides to the spectra is reduced after exfoliation compared to the bulk material. Further, the decomposition mechanism of the nanosheets was studied by time-dependent extinction measurements after water titration experiments to initially dry solvents, which suggest that water plays a significant role in the material decomposition.
Collapse
Affiliation(s)
- Kevin Synnatschke
- Institute of Physical Chemistry, Heidelberg University, Im Neuenheimer Feld 253, 69120 Heidelberg, Germany; School of Physics, University of Dublin, Trinity College, Dublin 2, Ireland
| | - Narine Moses Badlyan
- Institute for Solid-State Physics, Technische Universität Berlin, Hardenbergstraße 36, 10623 Berlin, Germany; Department of Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 7, 91058 Erlangen, Germany
| | - Angelika Wrzesińska
- Chair for Emerging Electronic Technologies, TU Dresden, Nöthnitzer Str. 61, Dresden, 01187 Sachsen, Germany; Leibniz-Institute for Solid State and Materials Research Dresden, Helmholtzstraße 20, Dresden 01069, Sachsen, Germany
| | - Guillermo Lozano Onrubia
- Institute of Physical Chemistry, Heidelberg University, Im Neuenheimer Feld 253, 69120 Heidelberg, Germany
| | - Anna-Lena Hansen
- Institute for Applied Materials-Energy Storage Systems (IAM-ESS), Karlsruhe Institute of Technology (KIT), 76344 Eggenstein, Germany; Institute of Inorganic Chemistry, University of Kiel, Max-Eyth-Straße 2, 24118 Kiel, Germany
| | - Stefan Wolff
- Department of Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 7, 91058 Erlangen, Germany
| | - Hans Tornatzky
- Institute for Solid-State Physics, Technische Universität Berlin, Hardenbergstraße 36, 10623 Berlin, Germany; Paul-Drude-Institut für Festkörperelektronik, Leibniz-Institut im Forschungsverbund Berlin e.V, Hausvogteiplatz 5-7, 10117 Berlin, Germany
| | - Wolfgang Bensch
- Institute of Inorganic Chemistry, University of Kiel, Max-Eyth-Straße 2, 24118 Kiel, Germany
| | - Yana Vaynzof
- Chair for Emerging Electronic Technologies, TU Dresden, Nöthnitzer Str. 61, Dresden, 01187 Sachsen, Germany; Leibniz-Institute for Solid State and Materials Research Dresden, Helmholtzstraße 20, Dresden 01069, Sachsen, Germany
| | - Janina Maultzsch
- Institute for Solid-State Physics, Technische Universität Berlin, Hardenbergstraße 36, 10623 Berlin, Germany; Department of Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 7, 91058 Erlangen, Germany
| | - Claudia Backes
- Chair of Physical Chemistry of Nanomaterials, University of Kassel, Heinrich-Plett-Straße 40, 34132 Kassel, Germany.
| |
Collapse
|
8
|
Anufriev I, Hoeppener S, Nischang I. PEG-Lipids: Quantitative Study of Unimers and Aggregates Thereof by the Methods of Molecular Hydrodynamics. Anal Chem 2023. [PMID: 37418577 DOI: 10.1021/acs.analchem.3c01999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2023]
Abstract
Understanding the polymorphism of lipids in solution is the key to the development of intracellular delivery systems. Here, we study the dynamics of poly(ethylene glycol)-lipid (PEG-Lipid) conjugates aiming at a better understanding of their molecular properties and aggregation behavior in solution. Those PEG-Lipids are used as components of lipid nanoparticles (LNPs). LNPs are gaining increased popularity, e.g., by their utilization in modern vaccination strategies against SARS-CoV-2. Characterization of the systems is conducted by the classical methods of hydrodynamics in different solvents, such as ethanol and water, which are also commonly used for LNP formulation. We were able to elucidate the structurally associated hydrodynamic properties of isolated PEG-Lipids in ethanol, revealing the typically expected values of the hydrodynamic invariant for random coil polymers. By virtue of the same experimental setting, the PEG-Lipids' behavior in water was as well studied, which is a less good solvent than ethanol for the PEG-Lipids. Our experiments demonstrate that PEG-Lipids dissolved in water form well-defined micelles that can quantitatively be characterized in terms of their degree of aggregation of PEG-Lipid polymer unimers, their hydrodynamic size, and solvation, i.e., the quantitative determination of water contained or associated to the identified micelles. Quantitative results obtained from classical hydrodynamic analyses are fully supported by studies with standard dynamic light scattering (DLS). The obtained diffusion coefficients and hydrodynamic sizes are in excellent agreement with numerical results derived from analytical ultracentrifugation (AUC) data. Cryo-transmission electron microscopy (cryo-TEM) supports the structural insight from hydrodynamic studies, particularly, in terms of the observed spherical structure of the formed micelles. We demonstrate experimentally that the micelle systems can be considered as solvent-permeable, hydrated spheres.
Collapse
Affiliation(s)
- Ilya Anufriev
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany
- Jena Center for Soft Matter, Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Stephanie Hoeppener
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany
- Jena Center for Soft Matter, Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Ivo Nischang
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany
- Jena Center for Soft Matter, Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| |
Collapse
|
9
|
Yarawsky AE, Zai-Rose V, Cunningham HM, Burgner JW, DeLion MT, Paul LN. AAV analysis by sedimentation velocity analytical ultracentrifugation: beyond empty and full capsids. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2023; 52:353-366. [PMID: 37037926 DOI: 10.1007/s00249-023-01646-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/13/2023] [Accepted: 03/22/2023] [Indexed: 04/12/2023]
Abstract
The recent surge of therapeutic interest in recombinant adeno-associated viral (AAV) vectors for targeted DNA delivery has brought analytical ultracentrifugation (AUC) into the spotlight. A major concern during formulation of AAV therapeutics is purity of the active species (DNA-containing capsid, or "filled capsids"). Insertion of DNA into AAV is not a highly efficient process; thus, a significant amount of empty and partial/intermediate AAV molecules may exist. Recent guidance from the FDA includes limiting the presence of empty AAV capsids and other impurities to reduce immunotoxicity. While chromatographic techniques (SEC, SEC-MALS, AEX) are often used for empty and full capsid quantitation due to the ease of accessibility and familiarity among most biochemists, the resolution and sensitivity attained by sedimentation velocity (SV-AUC) in the formulation buffer and purification buffers is unmatched. Approaches for using SV-AUC to determine the empty-to-full capsid ratio have already been discussed by others; however, in this report, we focus on the importance of characterizing other impurities, such as free DNA, partially filled capsids, and aggregates that are recognized as species of concern for immunotoxicity. We also demonstrate the usefulness of applying multiple analyses (e.g., c(s), g(s*), WDA) in confirming the presence of and determining the hydrodynamic parameters of these various species.
Collapse
Affiliation(s)
| | - Valeria Zai-Rose
- BioAnalysis, LLC, 3401 I Street Suite 206, Philadelphia, PA, 19134, USA
| | | | - John W Burgner
- BioAnalysis, LLC, 3401 I Street Suite 206, Philadelphia, PA, 19134, USA
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, 800 East Leigh Street, Richmond, VA, 23298, USA
| | - Michael T DeLion
- BioAnalysis, LLC, 3401 I Street Suite 206, Philadelphia, PA, 19134, USA
| | - Lake N Paul
- BioAnalysis, LLC, 3401 I Street Suite 206, Philadelphia, PA, 19134, USA.
| |
Collapse
|
10
|
Wawra S, Kessler S, Egel A, Solzin J, Burkert O, Hochdorfer D. Hydrodynamic characterization of a vesicular stomatitis virus-based oncolytic virus using analytical ultracentrifugation. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2023; 52:379-386. [PMID: 37133524 PMCID: PMC10444643 DOI: 10.1007/s00249-023-01649-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/23/2023] [Accepted: 03/29/2023] [Indexed: 05/04/2023]
Abstract
Determination of the size, density, and mass of viral particles can provide valuable information to support process and formulation studies in clinical development. Analytical ultracentrifugation (AUC), as a first principal method, has been shown to be a beneficial tool for the characterization of the non-enveloped adeno associated virus (AAV). Here, we demonstrate the suitability of AUC for the challenging characterization of a representative for enveloped viruses, which usually are expected to exhibit higher dispersity than non-enveloped viruses. Specifically, the vesicular stomatitis virus (VSV)-based oncolytic virus VSV-GP was used to evaluate potential occurrence of non-ideal sedimentation by testing different rotor speeds and loading concentrations. The partial specific volume was determined via density gradients and density contrast experiments. Additionally, nanoparticle tracking analysis (NTA) was used to determine the hydrodynamic diameter of VSV-GP particles to calculate their molecular weight via the Svedberg equation. Overall, this study demonstrates the applicability of AUC and NTA for the characterization of size, density, and molar mass of an enveloped virus, namely VSV-GP.
Collapse
Affiliation(s)
- Simon Wawra
- Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, Analytical Development Biologicals, Biberach, Germany.
| | - Sophia Kessler
- Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, Viral Therapeutics Center, Biberach, Germany
| | - Arina Egel
- Boehringer Ingelheim Therapeutics GmbH, Innovation Unit, Viral Therapeutics Center, Ochsenhausen, Germany
| | - Johannes Solzin
- Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, Viral Therapeutics Center, Biberach, Germany
| | - Oliver Burkert
- Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, Analytical Development Biologicals, Biberach, Germany
| | - Daniel Hochdorfer
- Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, Viral Therapeutics Center, Biberach, Germany
| |
Collapse
|
11
|
Schuck P, To SC, Zhao H. An automated interface for sedimentation velocity analysis in SEDFIT. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.14.540690. [PMID: 37425873 PMCID: PMC10327192 DOI: 10.1101/2023.05.14.540690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Sedimentation velocity analytical ultracentrifugation (SV-AUC) is an indispensable tool for the study of particle size distributions in biopharmaceutical industry, for example, to characterize protein therapeutics and vaccine products. In particular, the diffusion-deconvoluted sedimentation coefficient distribution analysis, in the software SEDFIT, has found widespread applications due to its relatively high resolution and sensitivity. However, a lack of available software compatible with Good Manufacturing Practices (GMP) has hampered the use of SV-AUC in this regulatory environment. To address this, we have created an interface for SEDFIT so that it can serve as an automatically spawned module with controlled data input through command line parameters and output of key results in files. The interface can be integrated in custom GMP compatible software, and in scripts that provide documentation and meta-analyses for replicate or related samples, for example, to streamline analysis of large families of experimental data, such as binding isotherm analyses in the study of protein interactions. To test and demonstrate this approach we provide a MATLAB script mlSEDFIT.
Collapse
Affiliation(s)
- Peter Schuck
- Laboratory of Dynamics of Macromolecular Assembly, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA
| | - Samuel C. To
- Laboratory of Dynamics of Macromolecular Assembly, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA
| | - Huaying Zhao
- Laboratory of Dynamics of Macromolecular Assembly, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
12
|
Nefedova VV, Yampolskaya DS, Kleymenov SY, Chebotareva NA, Matyushenko AM, Levitsky DI. Effect of Neurodegenerative Mutations in the NEFL Gene on Thermal Denaturation of the Neurofilament Light Chain Protein. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:610-620. [PMID: 37331707 DOI: 10.1134/s0006297923050048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/02/2023] [Accepted: 03/02/2023] [Indexed: 06/20/2023]
Abstract
Effects of E90K, N98S, and A149V mutations in the light chain of neurofilaments (NFL) on the structure and thermal denaturation of the NFL molecule were investigated. By using circular dichroism spectroscopy, it was shown that these mutations did not lead to the changes in α-helical structure of NFL, but they caused noticeable effects on the stability of the molecule. We also identified calorimetric domains in the NFL structure by using differential scanning calorimetry. It was shown that the E90K replacement leads to the disappearance of the low-temperature thermal transition (domain 1). The mutations cause changes in the enthalpy of NFL domains melting, as well as lead to the significant changes in the melting temperatures (Tm) of some calorimetric domains. Thus, despite the fact that all these mutations are associated with the development of Charcot-Marie-Tooth neuropathy, and two of them are even located very close to each other in the coil 1A, they affect differently structure and stability of the NFL molecule.
Collapse
Affiliation(s)
- Victoria V Nefedova
- Research Centre of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia.
| | - Daria S Yampolskaya
- Research Centre of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia
| | - Sergey Y Kleymenov
- Research Centre of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| | - Natalia A Chebotareva
- Research Centre of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia
| | | | - Dmitrii I Levitsky
- Research Centre of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia
| |
Collapse
|
13
|
González García MC, Radix C, Villard C, Breuzard G, Mansuelle P, Barbier P, Tsvetkov PO, De Pomyers H, Gigmes D, Devred F, Kovacic H, Mabrouk K, Luis J. Myotoxin-3 from the Pacific Rattlesnake Crotalus oreganus oreganus Venom Is a New Microtubule-Targeting Agent. Molecules 2022; 27:molecules27238241. [PMID: 36500334 PMCID: PMC9739105 DOI: 10.3390/molecules27238241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/19/2022] [Accepted: 11/19/2022] [Indexed: 11/29/2022] Open
Abstract
Microtubule targeting agents (MTA) are anti-cancer molecules that bind tubulin and interfere with the microtubule functions, eventually leading to cell death. In the present study, we used an in vitro microtubule polymerization assay to screen several venom families for the presence of anti-microtubule activity. We isolated myotoxin-3, a peptide of the crotamine family, and three isoforms from the venom of the Northern Pacific rattlesnake Crotalus oreganus oreganus, which was able to increase tubulin polymerization. Myotoxin-3 turned out to be a cell-penetrating peptide that slightly diminished the viability of U87 glioblastoma and MCF7 breast carcinoma cells. Myotoxin 3 also induced remodeling of the U87 microtubule network and decreased MCF-7 microtubule dynamic instability. These effects are likely due to direct interaction with tubulin. Indeed, we showed that myotoxin-3 binds to tubulin heterodimer with a Kd of 5.3 µM and stoichiometry of two molecules of peptide per tubulin dimer. Our results demonstrate that exogenous peptides are good candidates for developing new MTA and highlight the richness of venoms as a source of pharmacologically active molecules.
Collapse
Affiliation(s)
- María Cecilia González García
- Institut Neurophysiopathol, INP, Faculté des Sciences Médicales et Paramédicales, CNRS, Aix-Marseille Université, 13005 Marseille, France
| | - Caroline Radix
- Institut Neurophysiopathol, INP, Faculté des Sciences Médicales et Paramédicales, CNRS, Aix-Marseille Université, 13005 Marseille, France
| | - Claude Villard
- Institut Neurophysiopathol, INP, Faculté des Sciences Médicales et Paramédicales, CNRS, Aix-Marseille Université, 13005 Marseille, France
| | - Gilles Breuzard
- Institut Neurophysiopathol, INP, Faculté des Sciences Médicales et Paramédicales, CNRS, Aix-Marseille Université, 13005 Marseille, France
| | - Pascal Mansuelle
- Institut de Microbiologie de la Méditerranée (Marseille Protéomique), IMM (MaP), CNRS, Aix-Marseille Université, 31 Chemin Joseph Aiguier, 13009 Marseille, France
| | - Pascale Barbier
- Institut Neurophysiopathol, INP, Faculté des Sciences Médicales et Paramédicales, CNRS, Aix-Marseille Université, 13005 Marseille, France
| | - Philipp O. Tsvetkov
- Institut Neurophysiopathol, INP, Faculté des Sciences Médicales et Paramédicales, CNRS, Aix-Marseille Université, 13005 Marseille, France
| | - Harold De Pomyers
- Laboratoire LATOXAN SAS, 845 Avenue Pierre Brossolette, 26800 Portes-lès-Valence, France
| | - Didier Gigmes
- Institut de Chimie Radicalaire, ICR, Faculté des Sciences de Saint Jérôme, CNRS, Aix-Marseille Université, 13397 Marseille, France
| | - François Devred
- Institut Neurophysiopathol, INP, Faculté des Sciences Médicales et Paramédicales, CNRS, Aix-Marseille Université, 13005 Marseille, France
| | - Hervé Kovacic
- Institut Neurophysiopathol, INP, Faculté des Sciences Médicales et Paramédicales, CNRS, Aix-Marseille Université, 13005 Marseille, France
| | - Kamel Mabrouk
- Institut de Chimie Radicalaire, ICR, Faculté des Sciences de Saint Jérôme, CNRS, Aix-Marseille Université, 13397 Marseille, France
| | - José Luis
- Institut Neurophysiopathol, INP, Faculté des Sciences Médicales et Paramédicales, CNRS, Aix-Marseille Université, 13005 Marseille, France
- Correspondence: ; Tel.: +33-4-91-32-47-34
| |
Collapse
|
14
|
Cardenas Lopez P, Uttinger MJ, Traoré NE, Khan HA, Drobek D, Apeleo Zubiri B, Spiecker E, Pflug L, Peukert W, Walter J. Multidimensional characterization of noble metal alloy nanoparticles by multiwavelength analytical ultracentrifugation. NANOSCALE 2022; 14:12928-12939. [PMID: 36043498 DOI: 10.1039/d2nr02633c] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In this study, we introduce a method for the simultaneous retrieval of two-dimensional size-composition distributions of noble metal Ag-Au alloy nanoparticles utilizing an analytical ultracentrifuge equipped with a multiwavelength extinction detector (MWL-AUC). MWL-AUC is used to measure coupled optical and sedimentation properties of the particles. The optical response of the nanoparticles is calculated using Mie's theory, where the particles' complex refractive index is corrected due to the effect of reduced mean free path of electrons. Using a combined analysis of the hydrodynamic and spectral data captured by MWL-AUC, the size and composition of the alloy particles is retrieved. Our method is validated through the analysis of synthetic data and by the very good agreement between experimental scanning transmission electron microscopy and our AUC data. The presented comprehensive characterization approach contributes to improved synthesis, scale-up and production of particulate systems as it provides a simple, fast and direct method to determine noble metal alloy nanoparticle size and composition distributions simultaneously.
Collapse
Affiliation(s)
- P Cardenas Lopez
- Institute of Particle Technology (LFG), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Cauerstr. 4, 91058 Erlangen, Germany.
- Interdisciplinary Center for Functional Particle Systems (FPS), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Haberstr. 9a, 91058 Erlangen, Germany
| | - M J Uttinger
- Institute of Particle Technology (LFG), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Cauerstr. 4, 91058 Erlangen, Germany.
- Interdisciplinary Center for Functional Particle Systems (FPS), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Haberstr. 9a, 91058 Erlangen, Germany
| | - N E Traoré
- Institute of Particle Technology (LFG), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Cauerstr. 4, 91058 Erlangen, Germany.
- Interdisciplinary Center for Functional Particle Systems (FPS), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Haberstr. 9a, 91058 Erlangen, Germany
| | - H A Khan
- Competence Unit for Scientific Computing (CSC), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Martensstr. 5a, 91058 Erlangen, Germany
| | - D Drobek
- Institute of Micro- and Nanostructure Research (IMN) & Center for Nanoanalysis and Electron Microscopy (CENEM), Interdisciplinary Center for Nanostructured Films (IZNF), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Cauerstr. 3, 91058 Erlangen, Germany
| | - B Apeleo Zubiri
- Institute of Micro- and Nanostructure Research (IMN) & Center for Nanoanalysis and Electron Microscopy (CENEM), Interdisciplinary Center for Nanostructured Films (IZNF), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Cauerstr. 3, 91058 Erlangen, Germany
| | - E Spiecker
- Institute of Micro- and Nanostructure Research (IMN) & Center for Nanoanalysis and Electron Microscopy (CENEM), Interdisciplinary Center for Nanostructured Films (IZNF), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Cauerstr. 3, 91058 Erlangen, Germany
| | - L Pflug
- Competence Unit for Scientific Computing (CSC), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Martensstr. 5a, 91058 Erlangen, Germany
| | - W Peukert
- Institute of Particle Technology (LFG), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Cauerstr. 4, 91058 Erlangen, Germany.
- Interdisciplinary Center for Functional Particle Systems (FPS), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Haberstr. 9a, 91058 Erlangen, Germany
| | - J Walter
- Institute of Particle Technology (LFG), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Cauerstr. 4, 91058 Erlangen, Germany.
- Interdisciplinary Center for Functional Particle Systems (FPS), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Haberstr. 9a, 91058 Erlangen, Germany
| |
Collapse
|
15
|
Winkler M, Rhein F, Nirschl H, Gleiss M. Real-Time Modeling of Volume and Form Dependent Nanoparticle Fractionation in Tubular Centrifuges. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3161. [PMID: 36144949 PMCID: PMC9500975 DOI: 10.3390/nano12183161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/11/2022] [Accepted: 09/06/2022] [Indexed: 06/16/2023]
Abstract
A dynamic process model for the simulation of nanoparticle fractionation in tubular centrifuges is presented. Established state-of-the-art methods are further developed to incorporate multi-dimensional particle properties (traits). The separation outcome is quantified based on a discrete distribution of particle volume, elongation and flatness. The simulation algorithm solves a mass balance between interconnected compartments which represent the separation zone. Grade efficiencies are calculated by a short-cut model involving material functions and higher dimensional particle trait distributions. For the one dimensional classification of fumed silica nanoparticles, the numerical solution is validated experimentally. A creation and characterization of a virtual particle system provides an additional three dimensional input dataset. Following a three dimensional fractionation case study, the tubular centrifuge model underlines the fact that a precise fractionation according to particle form is extremely difficult. In light of this, the paper discusses particle elongation and flatness as impacting traits during fractionation in tubular centrifuges. Furthermore, communications on separation performance and outcome are possible and facilitated by the three dimensional visualization of grade efficiency data. Future research in nanoparticle characterization will further enhance the models use in real-time separation process simulation.
Collapse
|
16
|
Highly hydrated paramagnetic amorphous calcium carbonate nanoclusters as an MRI contrast agent. Nat Commun 2022; 13:5088. [PMID: 36038532 PMCID: PMC9424530 DOI: 10.1038/s41467-022-32615-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 08/08/2022] [Indexed: 11/08/2022] Open
Abstract
Amorphous calcium carbonate plays a key role as transient precursor in the early stages of biogenic calcium carbonate formation in nature. However, due to its instability in aqueous solution, there is still rare success to utilize amorphous calcium carbonate in biomedicine. Here, we report the mutual effect between paramagnetic gadolinium ions and amorphous calcium carbonate, resulting in ultrafine paramagnetic amorphous carbonate nanoclusters in the presence of both gadolinium occluded highly hydrated carbonate-like environment and poly(acrylic acid). Gadolinium is confirmed to enhance the water content in amorphous calcium carbonate, and the high water content of amorphous carbonate nanoclusters contributes to the much enhanced magnetic resonance imaging contrast efficiency compared with commercially available gadolinium-based contrast agents. Furthermore, the enhanced T1 weighted magnetic resonance imaging performance and biocompatibility of amorphous carbonate nanoclusters are further evaluated in various animals including rat, rabbit and beagle dog, in combination with promising safety in vivo. Overall, exceptionally facile mass-productive amorphous carbonate nanoclusters exhibit superb imaging performance and impressive stability, which provides a promising strategy to design magnetic resonance contrast agent. Sensitive, biocompatible and stable contrast agents for MRI are in demand. Here, the authors combine gadolinium ions with amorphous calcium carbonate to make stable paramagnetic amorphous carbonate nanoclusters with high MRI contrast and significantly improved biocompatibility over commercial gadolinium-based agents.
Collapse
|
17
|
Selig EE, Lynn RJ, Zlatic CO, Mok YF, Ecroyd H, Gooley PR, Griffin MDW. The Monomeric α-Crystallin Domain of the Small Heat-shock Proteins αB-crystallin and Hsp27 Binds Amyloid Fibril Ends. J Mol Biol 2022; 434:167711. [PMID: 35777462 DOI: 10.1016/j.jmb.2022.167711] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 06/05/2022] [Accepted: 06/25/2022] [Indexed: 11/25/2022]
Abstract
Small heat-shock proteins (sHSPs) are ubiquitously expressed molecular chaperones present in all kingdoms of life that inhibit protein misfolding and aggregation. Despite their importance in proteostasis, the structure-function relationships of sHSPs remain elusive. Human sHSPs are characterised by a central, highly conserved α-crystallin domain (ACD) and variable-length N- and C-terminal regions. The ACD forms antiparallel homodimers via an extended β-strand, creating a shared β-sheet at the dimer interface. The N- and C-terminal regions mediate formation of higher order oligomers that are thought to act as storage forms for chaperone-active dimers. We investigated the interactions of the ACD of two human sHSPs, αB-crystallin (αB-C) and Hsp27, with apolipoprotein C-II amyloid fibrils using analytical ultracentrifugation and nuclear magnetic resonance spectroscopy. The ACD was found to interact transiently with amyloid fibrils to inhibit fibril elongation and naturally occurring fibril end-to-end joining. This interaction was sensitive to the concentration of fibril ends indicating a 'fibril-capping' interaction. Furthermore, resonances arising from the ACD monomer were attenuated to a greater extent than those of the ACD dimer in the presence of fibrils, suggesting that the monomer may bind fibrils. This hypothesis was supported by mutagenesis studies in which disulfide cross-linked ACD dimers formed by both αB-C and Hsp27 were less effective at inhibiting amyloid fibril elongation and fibril end-to-end joining than ACD constructs lacking disulfide cross-linking. Our results indicate that sHSP monomers inhibit amyloid fibril elongation, highlighting the importance of the dynamic oligomeric nature of sHSPs for client binding.
Collapse
Affiliation(s)
- Emily E Selig
- Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, Victoria 3010, Australia; Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Roberta J Lynn
- Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, Victoria 3010, Australia; Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Courtney O Zlatic
- Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, Victoria 3010, Australia; Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Yee-Foong Mok
- Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, Victoria 3010, Australia; Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Heath Ecroyd
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia; Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia.
| | - Paul R Gooley
- Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, Victoria 3010, Australia; Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Michael D W Griffin
- Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, Victoria 3010, Australia; Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia.
| |
Collapse
|
18
|
Sjekloća L, Ferré-D’Amaré AR. Biochemical and structural characterization of the flavodoxin-like domain of the Schizosaccharomyces japonicus putative tRNA Phe 4-demethylwyosine synthase Tyw1 in complex with FMN. MICROPUBLICATION BIOLOGY 2022; 2022:10.17912/micropub.biology.000570. [PMID: 35693892 PMCID: PMC9186531 DOI: 10.17912/micropub.biology.000570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/27/2022] [Accepted: 06/01/2022] [Indexed: 11/24/2022]
Abstract
The S-adenosyl-L-methionine-dependent tRNA 4-demethylwyosine synthase TYW1 catalyzes biosynthesis of 4-demethylwyosine (imG-14), the precursor for wyosine, the hypermodified guanine-derived nucleotide present at position 37 of phenylalanine tRNAs of archaea and eukarya. Eukaryotic TYW1 enzymes contain N-terminal flavodoxin-like and C-terminal radical-SAM domains. We determined co-crystal structures of the flavodoxin-like domain of the putative Tyw1 from Schizosaccharomyces japonicus in complex with flavin mononucleotide (FMN), exploiting an unexpected anomalous scatterer present in the recombinant protein. Our results show how eukaryotic TYW1 enzymes bind the coenzyme FMN and will help further elucidation of the structural enzymology of 4-demethylwyosine synthesis.
Collapse
Affiliation(s)
- Ljiljana Sjekloća
- Biochemistry and Biophysics Center, National Heart, Lung and Blood Institute, 50 South Drive, Bethesda, Maryland, 20892-8012, United States
,
Current affiliation: Molecular Pathology, International Centre for Genetic Engineering and Biotechnology, Padriciano 99, Trieste 34149, Italy
,
Correspondence to: Ljiljana Sjekloća (
)
| | - Adrian R. Ferré-D’Amaré
- Biochemistry and Biophysics Center, National Heart, Lung and Blood Institute, 50 South Drive, Bethesda, Maryland, 20892-8012, United States
| |
Collapse
|
19
|
Nanoparticle sizing in the field of nanomedicine: Power of an analytical ultracentrifuge. Anal Chim Acta 2022; 1205:339741. [DOI: 10.1016/j.aca.2022.339741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 11/23/2022]
|
20
|
Structural Characterization of Two Short Unspecific Peroxygenases: Two Different Dimeric Arrangements. Antioxidants (Basel) 2022; 11:antiox11050891. [PMID: 35624755 PMCID: PMC9137552 DOI: 10.3390/antiox11050891] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/26/2022] [Accepted: 04/28/2022] [Indexed: 11/17/2022] Open
Abstract
Unspecific peroxygenases (UPOs) are extracellular fungal enzymes of biotechnological interest as self-sufficient (and more stable) counterparts of cytochrome P450 monooxygenases, the latter being present in most living cells. Expression hosts and structural information are crucial for exploiting UPO diversity (over eight thousand UPO-type genes were identified in sequenced genomes) in target reactions of industrial interest. However, while many thousands of entries in the Protein Data Bank include molecular coordinates of P450 enzymes, only 19 entries correspond to UPO enzymes, and UPO structures from only two species (Agrocybe aegerita and Hypoxylon sp.) have been published to date. In the present study, two UPOs from the basidiomycete Marasmius rotula (rMroUPO) and the ascomycete Collariella virescens (rCviUPO) were crystallized after sequence optimization and Escherichia coli expression as active soluble enzymes. Crystals of rMroUPO and rCviUPO were obtained at sufficiently high resolution (1.45 and 1.95 Å, respectively) and the corresponding structures were solved by molecular replacement. The crystal structures of the two enzymes (and two mutated variants) showed dimeric proteins. Complementary biophysical and molecular biology studies unveiled the diverse structural bases of the dimeric nature of the two enzymes. Intermolecular disulfide bridge and parallel association between two α-helices, among other interactions, were identified at the dimer interfaces. Interestingly, one of the rCviUPO variants incorporated the ability to produce fatty acid diepoxides—reactive compounds with valuable cross-linking capabilities—due to removal of the enzyme C-terminal tail located near the entrance of the heme access channel. In conclusion, different dimeric arrangements could be described in (short) UPO crystal structures.
Collapse
|
21
|
Kretzer C, Shkodra B, Klemm P, Jordan PM, Schröder D, Cinar G, Vollrath A, Schubert S, Nischang I, Hoeppener S, Stumpf S, Banoglu E, Gladigau F, Bilancia R, Rossi A, Eggeling C, Neugebauer U, Schubert US, Werz O. Ethoxy acetalated dextran-based nanocarriers accomplish efficient inhibition of leukotriene formation by a novel FLAP antagonist in human leukocytes and blood. Cell Mol Life Sci 2021; 79:40. [PMID: 34971430 PMCID: PMC8966466 DOI: 10.1007/s00018-021-04039-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/08/2021] [Accepted: 11/12/2021] [Indexed: 12/13/2022]
Abstract
Leukotrienes are pro-inflammatory lipid mediators generated by 5-lipoxygenase aided by the 5-lipoxygenase-activating protein (FLAP). BRP-201, a novel benzimidazole-based FLAP antagonist, inhibits leukotriene biosynthesis in isolated leukocytes. However, like other FLAP antagonists, BRP-201 fails to effectively suppress leukotriene formation in blood, which limits its therapeutic value. Here, we describe the encapsulation of BRP-201 into poly(lactide-co-glycolide) (PLGA) and ethoxy acetalated dextran (Ace-DEX) nanoparticles (NPs), aiming to overcome these detrimental pharmacokinetic limitations and to enhance the bioactivity of BRP-201. NPs loaded with BRP-201 were produced via nanoprecipitation and the physicochemical properties of the NPs were analyzed in-depth using dynamic light scattering (size, dispersity, degradation), electrophoretic light scattering (effective charge), NP tracking analysis (size, dispersity), scanning electron microscopy (size and morphology), UV-VIS spectroscopy (drug loading), an analytical ultracentrifuge (drug release, degradation kinetics), and Raman spectroscopy (chemical attributes). Biological assays were performed to study cytotoxicity, cellular uptake, and efficiency of BRP-201-loaded NPs versus free BRP-201 to suppress leukotriene formation in primary human leukocytes and whole blood. Both PLGA- and Ace-DEX-based NPs were significantly more efficient to inhibit leukotriene formation in neutrophils versus free drug. Whole blood experiments revealed that encapsulation of BRP-201 into Ace-DEX NPs strongly increases its potency, especially upon pro-longed (≥ 5 h) incubations and upon lipopolysaccharide-challenge of blood. Finally, intravenous injection of BRP-201-loaded NPs significantly suppressed leukotriene levels in blood of mice in vivo. These results reveal the feasibility of our pharmacological approach using a novel FLAP antagonist encapsulated into Ace-DEX-based NPs with improved efficiency in blood to suppress leukotriene biosynthesis.
Collapse
Affiliation(s)
- Christian Kretzer
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Philosophenweg 14, 07743, Jena, Germany
| | - Blerina Shkodra
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| | - Paul Klemm
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| | - Paul M Jordan
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Philosophenweg 14, 07743, Jena, Germany
| | - Daniel Schröder
- Institute of Applied Optics and Biophysics, Friedrich Schiller University Jena, Max-Wien Platz 1, 07743, Jena, Germany
| | - Gizem Cinar
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| | - Antje Vollrath
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| | - Stephanie Schubert
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
- Department of Pharmaceutical Technology and Biopharmacy, Institute of Pharmacy, Friedrich Schiller University Jena, Lessingstraße 8, 07743, Jena, Germany
| | - Ivo Nischang
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| | - Stephanie Hoeppener
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| | - Steffi Stumpf
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| | - Erden Banoglu
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, Etiler, Yenimahalle, Ankara, 06330, Turkey
| | - Frederike Gladigau
- Leibniz Institute of Photonic Technology, Albert-Einstein-Straße 9, 07745, Jena, Germany
- Center for Sepsis Control and Care, Jena University Hospital, 07747, Jena, Germany
- Institute of Physical Chemistry and Abbe Center of Photonics, Helmholtzweg 4, 07743, Jena, Germany
| | - Rossella Bilancia
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via D. Montesano 49, 80131, Naples, Italy
| | - Antonietta Rossi
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via D. Montesano 49, 80131, Naples, Italy
| | - Christian Eggeling
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
- Institute of Applied Optics and Biophysics, Friedrich Schiller University Jena, Max-Wien Platz 1, 07743, Jena, Germany
- Leibniz Institute of Photonic Technology, Albert-Einstein-Straße 9, 07745, Jena, Germany
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford, OX39DS, UK
| | - Ute Neugebauer
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
- Leibniz Institute of Photonic Technology, Albert-Einstein-Straße 9, 07745, Jena, Germany
- Center for Sepsis Control and Care, Jena University Hospital, 07747, Jena, Germany
- Institute of Physical Chemistry and Abbe Center of Photonics, Helmholtzweg 4, 07743, Jena, Germany
| | - Ulrich S Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743, Jena, Germany.
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany.
| | - Oliver Werz
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Philosophenweg 14, 07743, Jena, Germany.
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany.
| |
Collapse
|
22
|
Borchers PS, Elbert J, Anufriev I, Strumpf M, Nischang I, Hager MD, Schubert US. A Viologen Polymer and a Compact Ferrocene: Comparison of Solution Viscosities and Their Performance in a Redox Flow Battery with a Size Exclusion Membrane. MACROMOL CHEM PHYS 2021. [DOI: 10.1002/macp.202100373] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Philipp S. Borchers
- Laboratory of Organic and Macromolecular Chemistry (IOMC) Friedrich Schiller University Jena Humboldtstraße 10 07743 Jena Germany
- Center for Energy and Environmental Chemistry Jena (CEEC Jena) Friedrich Schiller University Jena Philosophenweg 7a 07743 Jena Germany
| | - Johannes Elbert
- Laboratory of Organic and Macromolecular Chemistry (IOMC) Friedrich Schiller University Jena Humboldtstraße 10 07743 Jena Germany
- Center for Energy and Environmental Chemistry Jena (CEEC Jena) Friedrich Schiller University Jena Philosophenweg 7a 07743 Jena Germany
| | - Ilya Anufriev
- Laboratory of Organic and Macromolecular Chemistry (IOMC) Friedrich Schiller University Jena Humboldtstraße 10 07743 Jena Germany
| | - Maria Strumpf
- Laboratory of Organic and Macromolecular Chemistry (IOMC) Friedrich Schiller University Jena Humboldtstraße 10 07743 Jena Germany
- Center for Energy and Environmental Chemistry Jena (CEEC Jena) Friedrich Schiller University Jena Philosophenweg 7a 07743 Jena Germany
| | - Ivo Nischang
- Laboratory of Organic and Macromolecular Chemistry (IOMC) Friedrich Schiller University Jena Humboldtstraße 10 07743 Jena Germany
- Jena Center for Soft Matter (JCSM) Friedrich Schiller University Jena Philosophenweg 7 07743 Jena Germany
| | - Martin D. Hager
- Laboratory of Organic and Macromolecular Chemistry (IOMC) Friedrich Schiller University Jena Humboldtstraße 10 07743 Jena Germany
- Center for Energy and Environmental Chemistry Jena (CEEC Jena) Friedrich Schiller University Jena Philosophenweg 7a 07743 Jena Germany
- Jena Center for Soft Matter (JCSM) Friedrich Schiller University Jena Philosophenweg 7 07743 Jena Germany
| | - Ulrich S. Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC) Friedrich Schiller University Jena Humboldtstraße 10 07743 Jena Germany
- Center for Energy and Environmental Chemistry Jena (CEEC Jena) Friedrich Schiller University Jena Philosophenweg 7a 07743 Jena Germany
- Jena Center for Soft Matter (JCSM) Friedrich Schiller University Jena Philosophenweg 7 07743 Jena Germany
| |
Collapse
|
23
|
Valderrama OJ, Nischang I. Reincarnation of the Analytical Ultracentrifuge: Emerging Opportunities for Nanomedicine. Anal Chem 2021; 93:15805-15815. [PMID: 34806364 DOI: 10.1021/acs.analchem.1c03116] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The analytical ultracentrifuge (AUC) and the modern field of analytical ultracentrifugation found its inception approximately a century ago. We highlight the scope of its major experimental opportunities as a transport-based method, contemporary and up-and-coming investigation potential for polymers, polymer-drug conjugates, polymer assemblies, as well as medical nanoparticles. Special focus lies on molar mass estimates of unimeric polymeric species, self-assemblies in solution, and (co)localization of multicomponent systems in solution alongside the material-biofluid interactions. We close with present challenges and incentives for future research.
Collapse
Affiliation(s)
- Olenka Jibaja Valderrama
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743 Jena, Germany.,Jena Center for Soft Matter, Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Ivo Nischang
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743 Jena, Germany.,Jena Center for Soft Matter, Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| |
Collapse
|
24
|
Leer K, Cinar G, Solomun JI, Martin L, Nischang I, Traeger A. Core-crosslinked, temperature- and pH-responsive micelles: design, physicochemical characterization, and gene delivery application. NANOSCALE 2021; 13:19412-19429. [PMID: 34591061 DOI: 10.1039/d1nr04223h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Stimuli-responsive block copolymer micelles can provide tailored properties for the efficient delivery of genetic material. In particular, temperature- and pH-responsive materials are of interest, since their physicochemical properties can be easily tailored to meet the requirements for successful gene delivery. Within this study, a stimuli-responsive micelle system for gene delivery was designed based on a diblock copolymer consisting of poly(N,N-diethylacrylamide) (PDEAm) as a temperature-responsive segment combined with poly(aminoethyl acrylamide) (PAEAm) as a pH-responsive, cationic segment. Upon temperature increase, the PDEAm block becomes hydrophobic due to its lower critical solution temperature (LCST), leading to micelle formation. Furthermore, the monomer 2-(pyridin-2-yldisulfanyl)ethyl acrylate (PDSAc) was incorporated into the temperature-responsive PDEAm building block enabling disulfide crosslinking of the formed micelle core to stabilize its structure regardless of temperature and dilution. The cloud points of the PDEAm block and the diblock copolymer were investigated by turbidimetry and fluorescence spectroscopy. The temperature-dependent formation of micelles was analyzed by dynamic light scattering (DLS) and elucidated in detail by an analytical ultracentrifuge (AUC), which provided detailed insights into the solution dynamics between polymers and assembled micelles as a function of temperature. Finally, the micelles were investigated for their applicability as gene delivery vectors by evaluation of cytotoxicity, pDNA binding, and transfection efficiency using HEK293T cells. The investigations showed that core-crosslinking resulted in a 13-fold increase in observed transfection efficiency. Our study presents a comprehensive investigation from polymer synthesis to an in-depth physicochemical characterization and biological application of a crosslinked micelle system including stimuli-responsive behavior.
Collapse
Affiliation(s)
- Katharina Leer
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743 Jena, Germany.
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Gizem Cinar
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743 Jena, Germany.
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Jana I Solomun
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743 Jena, Germany.
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Liam Martin
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743 Jena, Germany.
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Ivo Nischang
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743 Jena, Germany.
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Anja Traeger
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743 Jena, Germany.
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| |
Collapse
|
25
|
|
26
|
Press AT, Babic P, Hoffmann B, Müller T, Foo W, Hauswald W, Benecke J, Beretta M, Cseresnyés Z, Hoeppener S, Nischang I, Coldewey SM, Gräler MH, Bauer R, Gonnert F, Gaßler N, Wetzker R, Figge MT, Schubert US, Bauer M. Targeted delivery of a phosphoinositide 3-kinase γ inhibitor to restore organ function in sepsis. EMBO Mol Med 2021; 13:e14436. [PMID: 34472699 PMCID: PMC8495460 DOI: 10.15252/emmm.202114436] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 08/11/2021] [Accepted: 08/12/2021] [Indexed: 11/09/2022] Open
Abstract
Jaundice, the clinical hallmark of infection-associated liver dysfunction, reflects altered membrane organization of the canalicular pole of hepatocytes and portends poor outcomes. Mice lacking phosphoinositide 3-kinase-γ (PI3Kγ) are protected against membrane disintegration and hepatic excretory dysfunction. However, they exhibit a severe immune defect that hinders neutrophil recruitment to sites of infection. To exploit the therapeutic potential of PI3Kγ inhibition in sepsis, a targeted approach to deliver drugs to hepatic parenchymal cells without compromising other cells, in particular immune cells, seems warranted. Here, we demonstrate that nanocarriers functionalized through DY-635, a fluorescent polymethine dye, and a ligand of organic anion transporters can selectively deliver therapeutics to hepatic parenchymal cells. Applying this strategy to a murine model of sepsis, we observed the PI3Kγ-dependent restoration of biliary canalicular architecture, maintained excretory liver function, and improved survival without impairing host defense mechanisms. This strategy carries the potential to expand targeted nanomedicines to disease entities with systemic inflammation and concomitantly impaired barrier functionality.
Collapse
Affiliation(s)
- Adrian T Press
- Department of Anesthesiology and Intensive Care MedicineJena University HospitalJenaGermany
- Medical FacultyFriedrich Schiller University JenaJenaGermany
- Center for Sepsis Control and CareJena University HospitalJenaGermany
| | - Petra Babic
- Department of Anesthesiology and Intensive Care MedicineJena University HospitalJenaGermany
- Center for Sepsis Control and CareJena University HospitalJenaGermany
| | - Bianca Hoffmann
- Research Group Applied Systems BiologyLeibniz Institute for Natural Product Research and Infection Biology ‐ Hans Knoell InstituteJenaGermany
| | - Tina Müller
- Department of Anesthesiology and Intensive Care MedicineJena University HospitalJenaGermany
- Center for Sepsis Control and CareJena University HospitalJenaGermany
| | - Wanling Foo
- Department of Anesthesiology and Intensive Care MedicineJena University HospitalJenaGermany
| | | | - Jovana Benecke
- Department of Anesthesiology and Intensive Care MedicineJena University HospitalJenaGermany
- Center for Sepsis Control and CareJena University HospitalJenaGermany
| | - Martina Beretta
- Department of Anesthesiology and Intensive Care MedicineJena University HospitalJenaGermany
- Center for Sepsis Control and CareJena University HospitalJenaGermany
| | - Zoltán Cseresnyés
- Research Group Applied Systems BiologyLeibniz Institute for Natural Product Research and Infection Biology ‐ Hans Knoell InstituteJenaGermany
| | - Stephanie Hoeppener
- Jena Center for Soft Matter (JCSM)Friedrich Schiller University JenaJenaGermany
- Laboratory of Organic and Macromolecular Chemistry (IOMC)Friedrich Schiller University JenaJenaGermany
| | - Ivo Nischang
- Jena Center for Soft Matter (JCSM)Friedrich Schiller University JenaJenaGermany
- Laboratory of Organic and Macromolecular Chemistry (IOMC)Friedrich Schiller University JenaJenaGermany
| | - Sina M Coldewey
- Department of Anesthesiology and Intensive Care MedicineJena University HospitalJenaGermany
- Center for Sepsis Control and CareJena University HospitalJenaGermany
- Septomics Research CentreJena University HospitalJenaGermany
| | - Markus H Gräler
- Department of Anesthesiology and Intensive Care MedicineJena University HospitalJenaGermany
- Center for Sepsis Control and CareJena University HospitalJenaGermany
| | - Reinhard Bauer
- Institute of Molecular Cell BiologyJena University HospitalJenaGermany
| | - Falk Gonnert
- Department of Anesthesiology and Intensive Care MedicineJena University HospitalJenaGermany
- Center for Sepsis Control and CareJena University HospitalJenaGermany
| | - Nikolaus Gaßler
- Section of PathologyInstitute of Forensic MedicineJena University HospitalJenaGermany
| | - Reinhard Wetzker
- Department of Anesthesiology and Intensive Care MedicineJena University HospitalJenaGermany
- Center for Sepsis Control and CareJena University HospitalJenaGermany
| | - Marc Thilo Figge
- Center for Sepsis Control and CareJena University HospitalJenaGermany
- Research Group Applied Systems BiologyLeibniz Institute for Natural Product Research and Infection Biology ‐ Hans Knoell InstituteJenaGermany
- Institute of MicrobiologyFaculty of Biological SciencesFriedrich Schiller UniversityJenaGermany
| | - Ulrich S Schubert
- Center for Sepsis Control and CareJena University HospitalJenaGermany
- Jena Center for Soft Matter (JCSM)Friedrich Schiller University JenaJenaGermany
- Laboratory of Organic and Macromolecular Chemistry (IOMC)Friedrich Schiller University JenaJenaGermany
| | - Michael Bauer
- Department of Anesthesiology and Intensive Care MedicineJena University HospitalJenaGermany
- Center for Sepsis Control and CareJena University HospitalJenaGermany
- Jena Center for Soft Matter (JCSM)Friedrich Schiller University JenaJenaGermany
| |
Collapse
|
27
|
Meincke T, Walter J, Pflug L, Thajudeen T, Völkl A, Cardenas Lopez P, Uttinger MJ, Stingl M, Watanabe S, Peukert W, Klupp Taylor RN. Determination of the yield, mass and structure of silver patches on colloidal silica using multiwavelength analytical ultracentrifugation. J Colloid Interface Sci 2021; 607:698-710. [PMID: 34530190 DOI: 10.1016/j.jcis.2021.08.161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/04/2021] [Accepted: 08/24/2021] [Indexed: 11/15/2022]
Abstract
Anisotropic nanoparticles offer considerable promise for applications but also present significant challenges in terms of their characterization. Recent developments in the electroless deposition of silver patches directly onto colloidal silica particles have opened up a simple and scalable synthesis method for patchy particles with tunable optical properties. Due to the reliance on patch nucleation and growth, however, the resulting coatings are distributed in coverage and thickness and some core particles remain uncoated. To support process optimization, new methods are required to rapidly determine patch yield, thickness and coverage. Here we present a novel approach based on multiwavelength analytical ultracentrifugation (MWL-AUC) which permits simultaneous hydrodynamic and spectroscopic characterization. The patchy particle colloids are produced in a continuous flow mixing process that makes use of a KM-type micromixer. By varying the process flow rate or metal precursor concentration we show how the silver to silica mass ratio distribution derived from the AUC-measured sedimentation coefficient distribution can be influenced. Moreover, through reasoned assumptions we arrive at an estimation of the patch yield that is close to that determined by arduous analysis of scanning electron microscopy (SEM) images. Finally, combining MWL-AUC, electrodynamic simulations and SEM image analysis we establish a procedure to estimate the patch thickness and coverage.
Collapse
Affiliation(s)
- Thomas Meincke
- Institute of Particle Technology, Friedrich-Alexander University Erlangen-Nürnberg, Cauerstrasse 4, Erlangen 91058, Germany
| | - Johannes Walter
- Institute of Particle Technology, Friedrich-Alexander University Erlangen-Nürnberg, Cauerstrasse 4, Erlangen 91058, Germany
| | - Lukas Pflug
- Applied Mathematics 2, Friedrich-Alexander University Erlangen-Nürnberg, Cauerstrasse 11, Erlangen 91058, Germany
| | - Thaseem Thajudeen
- Mechanical Engineering Department, IIT Goa, Ponda, Goa, 403401, India
| | - Andreas Völkl
- Institute of Particle Technology, Friedrich-Alexander University Erlangen-Nürnberg, Cauerstrasse 4, Erlangen 91058, Germany
| | - Paola Cardenas Lopez
- Institute of Particle Technology, Friedrich-Alexander University Erlangen-Nürnberg, Cauerstrasse 4, Erlangen 91058, Germany
| | - Maximilian J Uttinger
- Institute of Particle Technology, Friedrich-Alexander University Erlangen-Nürnberg, Cauerstrasse 4, Erlangen 91058, Germany
| | - Michael Stingl
- Applied Mathematics 2, Friedrich-Alexander University Erlangen-Nürnberg, Cauerstrasse 11, Erlangen 91058, Germany
| | - Satoshi Watanabe
- Chemical Engineering Department, Kyoto University, Katsura, Nishikyo, Kyoto 615-8510 Japan
| | - Wolfgang Peukert
- Institute of Particle Technology, Friedrich-Alexander University Erlangen-Nürnberg, Cauerstrasse 4, Erlangen 91058, Germany
| | - Robin N Klupp Taylor
- Institute of Particle Technology, Friedrich-Alexander University Erlangen-Nürnberg, Cauerstrasse 4, Erlangen 91058, Germany
| |
Collapse
|
28
|
Jensen EL, Receveur-Brechot V, Hachemane M, Wils L, Barbier P, Parsiegla G, Gontero B, Launay H. Structural Contour Map of the Iota Carbonic Anhydrase from the Diatom Thalassiosira pseudonana Using a Multiprong Approach. Int J Mol Sci 2021; 22:ijms22168723. [PMID: 34445427 PMCID: PMC8395977 DOI: 10.3390/ijms22168723] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 02/07/2023] Open
Abstract
Carbonic anhydrases (CAs) are a family of ubiquitous enzymes that catalyze the interconversion of CO2 and HCO3−. The “iota” class (ι-CA) was first found in the marine diatom Thalassiosira pseudonana (tpι-CA) and is widespread among photosynthetic microalgae and prokaryotes. The ι-CA has a domain COG4875 (or COG4337) that can be repeated from one to several times and resembles a calcium–calmodulin protein kinase II association domain (CaMKII-AD). The crystal structure of this domain in the ι-CA from a cyanobacterium and a chlorarachniophyte has been recently determined. However, the three-dimensional organization of the four domain-containing tpι-CA is unknown. Using biophysical techniques and 3-D modeling, we show that the homotetrameric tpι-CA in solution has a flat “drone-like” shape with a core formed by the association of the first two domains of each monomer, and four protruding arms formed by domains 3 and 4. We also observe that the short linker between domains 3 and 4 in each monomer confers high flexibility, allowing for different conformations to be adopted. We propose the possible 3-D structure of a truncated tpι-CA containing fewer domain repeats using experimental data and discuss the implications of this atypical shape on the activity and metal coordination of the ι-CA.
Collapse
Affiliation(s)
- Erik L. Jensen
- Aix Marseille Univ, CNRS, BIP, UMR 7281, IMM, FR 3479, 31 Chemin J. Aiguier, CEDEX 20, 13 402 Marseille, France; (E.L.J.); (V.R.-B.); (M.H.); (L.W.); (G.P.)
| | - Véronique Receveur-Brechot
- Aix Marseille Univ, CNRS, BIP, UMR 7281, IMM, FR 3479, 31 Chemin J. Aiguier, CEDEX 20, 13 402 Marseille, France; (E.L.J.); (V.R.-B.); (M.H.); (L.W.); (G.P.)
| | - Mohand Hachemane
- Aix Marseille Univ, CNRS, BIP, UMR 7281, IMM, FR 3479, 31 Chemin J. Aiguier, CEDEX 20, 13 402 Marseille, France; (E.L.J.); (V.R.-B.); (M.H.); (L.W.); (G.P.)
| | - Laura Wils
- Aix Marseille Univ, CNRS, BIP, UMR 7281, IMM, FR 3479, 31 Chemin J. Aiguier, CEDEX 20, 13 402 Marseille, France; (E.L.J.); (V.R.-B.); (M.H.); (L.W.); (G.P.)
| | - Pascale Barbier
- Aix Marseille Univ, CNRS, INP, Inst Neurophysiopathol, 13 402 Marseille, France;
| | - Goetz Parsiegla
- Aix Marseille Univ, CNRS, BIP, UMR 7281, IMM, FR 3479, 31 Chemin J. Aiguier, CEDEX 20, 13 402 Marseille, France; (E.L.J.); (V.R.-B.); (M.H.); (L.W.); (G.P.)
| | - Brigitte Gontero
- Aix Marseille Univ, CNRS, BIP, UMR 7281, IMM, FR 3479, 31 Chemin J. Aiguier, CEDEX 20, 13 402 Marseille, France; (E.L.J.); (V.R.-B.); (M.H.); (L.W.); (G.P.)
- Correspondence: (B.G.); (H.L.)
| | - Hélène Launay
- Aix Marseille Univ, CNRS, BIP, UMR 7281, IMM, FR 3479, 31 Chemin J. Aiguier, CEDEX 20, 13 402 Marseille, France; (E.L.J.); (V.R.-B.); (M.H.); (L.W.); (G.P.)
- Correspondence: (B.G.); (H.L.)
| |
Collapse
|
29
|
Muljajew I, Huschke S, Ramoji A, Cseresnyés Z, Hoeppener S, Nischang I, Foo W, Popp J, Figge MT, Weber C, Bauer M, Schubert US, Press AT. Stealth Effect of Short Polyoxazolines in Graft Copolymers: Minor Changes of Backbone End Group Determine Liver Cell-Type Specificity. ACS NANO 2021; 15:12298-12313. [PMID: 34270899 DOI: 10.1021/acsnano.1c04213] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Dye-loaded micelles of 10 nm diameter formed from amphiphilic graft copolymers composed of a hydrophobic poly(methyl methacrylate) backbone and hydrophilic poly(2-ethyl-2-oxazoline) side chains with a degree of polymerization of 15 were investigated concerning their cellular interaction and uptake in vitro as well as their interaction with local and circulating cells of the reticuloendothelial system in the liver by intravital microscopy. Despite the high molar mass of the individual macromolecules (Mn ≈ 20 kg mol-1), backbone end group modification by attachment of a hydrophilic anionic fluorescent probe strongly affected the in vivo performance. To understand these effects, the end group was additionally modified by the attachment of four methacrylic acid repeating units. Although various micelles appeared similar in dynamic light scattering and cryo-transmission electron microscopy, changes in the micelles were evident from principal component analysis of the Raman spectra. Whereas an efficient stealth effect was found for micelles formed from polymers with anionically charged or thiol end groups, a hydrophobic end group altered the micelles' structure sufficiently to adapt cell-type specificity and stealth properties in the liver.
Collapse
Affiliation(s)
- Irina Muljajew
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Sophie Huschke
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany
| | - Anuradha Ramoji
- Institute for Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Friedrich Schiller University Jena, Helmholtzweg 4, 07745 Jena, Germany
- Leibniz Institute of Photonic Technology (IPHT) Jena, Member of the Leibniz Research Alliance - Leibniz Health Technologies, Albert-Einstein-Straße 9, 07745 Jena, Germany
| | - Zoltán Cseresnyés
- Research Group Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute Jena, Adolf-Reichwein-Strasse 23, 07745 Jena, Germany
| | - Stephanie Hoeppener
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Ivo Nischang
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Wanling Foo
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany
| | - Jürgen Popp
- Institute for Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Friedrich Schiller University Jena, Helmholtzweg 4, 07745 Jena, Germany
- Leibniz Institute of Photonic Technology (IPHT) Jena, Member of the Leibniz Research Alliance - Leibniz Health Technologies, Albert-Einstein-Straße 9, 07745 Jena, Germany
| | - Marc Thilo Figge
- Research Group Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute Jena, Adolf-Reichwein-Strasse 23, 07745 Jena, Germany
- Institute of Microbiology, Faculty of Biological Sciences, Friedrich Schiller University Jena, Neugasse 24, 07743 Jena, Germany
| | - Christine Weber
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Michael Bauer
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany
| | - Ulrich S Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Adrian T Press
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany
- Medical Faculty, Friedrich Schiller University Jena, Bachstraße 18, 07743 Jena, Germany
| |
Collapse
|
30
|
Chaturvedi SK, Parupudi A, Juul-Madsen K, Nguyen A, Vorup-Jensen T, Dragulin-Otto S, Zhao H, Esfandiary R, Schuck P. Measuring aggregates, self-association, and weak interactions in concentrated therapeutic antibody solutions. MAbs 2021; 12:1810488. [PMID: 32887536 PMCID: PMC7531506 DOI: 10.1080/19420862.2020.1810488] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Monoclonal antibodies are a class of biotherapeutics used for an increasing variety of disorders, including cancer, autoimmune, neurodegenerative, and viral diseases. Besides their antigen specificity, therapeutic use also mandates control of their solution interactions and colloidal properties in order to achieve a stable, efficacious, non-immunogenic, and low viscosity antibody solution at concentrations in the range of 50–150 mg/mL. This requires characterization of their reversible self-association, aggregation, and weak attractive and repulsive interactions governing macromolecular distance distributions in solution. Simultaneous measurement of these properties, however, has been hampered by solution nonideality. Based on a recently introduced sedimentation velocity method for measuring macromolecular size distributions in a mean-field approximation for hydrodynamic interactions, we demonstrate simultaneous measurement of polydispersity and weak and strong solution interactions in a panel of antibodies with concentrations up to 45 mg/mL. By allowing approximately an order of magnitude higher concentrations than previously possible in sedimentation velocity size distribution analysis, this approach can substantially improve efficiency and sensitivity for characterizing polydispersity and interactions of therapeutic antibodies at or close to formulation conditions.
Collapse
Affiliation(s)
- Sumit K Chaturvedi
- Dynamics of Macromolecular Assembly Section, Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health , Bethesda, MD, USA
| | - Arun Parupudi
- Department of Dosage Form Design and Development, Biopharmaceuticals R&D, AstraZeneca , Gaithersburg, MD, USA
| | - Kristian Juul-Madsen
- Dynamics of Macromolecular Assembly Section, Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health , Bethesda, MD, USA.,Biophysical Immunology Laboratory, Department of Biomedicine, Aarhus University , Aarhus, Denmark
| | - Ai Nguyen
- Dynamics of Macromolecular Assembly Section, Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health , Bethesda, MD, USA
| | - Thomas Vorup-Jensen
- Biophysical Immunology Laboratory, Department of Biomedicine, Aarhus University , Aarhus, Denmark
| | - Sonia Dragulin-Otto
- Department of Dosage Form Design and Development, Biopharmaceuticals R&D, AstraZeneca , Gaithersburg, MD, USA
| | - Huaying Zhao
- Dynamics of Macromolecular Assembly Section, Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health , Bethesda, MD, USA
| | - Reza Esfandiary
- Department of Dosage Form Design and Development, Biopharmaceuticals R&D, AstraZeneca , Gaithersburg, MD, USA
| | - Peter Schuck
- Dynamics of Macromolecular Assembly Section, Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health , Bethesda, MD, USA
| |
Collapse
|
31
|
Hanio S, Schlauersbach J, Lenz B, Spiegel F, Böckmann RA, Schweins R, Nischang I, Schubert US, Endres S, Pöppler AC, Brandl FP, Smit TM, Kolter K, Meinel L. Drug-Induced Dynamics of Bile Colloids. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:2543-2551. [PMID: 33587852 DOI: 10.1021/acs.langmuir.0c02282] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Bile colloids containing taurocholate and lecithin are essential for the solubilization of hydrophobic molecules including poorly water-soluble drugs such as Perphenazine. We detail the impact of Perphenazine concentrations on taurocholate/lecithin colloids using analytical ultracentrifugation, dynamic light scattering, small-angle neutron scattering, nuclear magnetic resonance spectroscopy, coarse-grained molecular dynamics simulations, and isothermal titration calorimetry. Perphenazine impacted colloidal molecular arrangement, structure, and binding thermodynamics in a concentration-dependent manner. At low concentration, Perphenazine was integrated into stable and large taurocholate/lecithin colloids and close to lecithin. Integration of Perphenazine into these colloids was exothermic. At higher Perphenazine concentration, the taurocholate/lecithin colloids had an approximately 5-fold reduction in apparent hydrodynamic size, heat release was less exothermic upon drug integration into the colloids, and Perphenazine interacted with both lecithin and taurocholate. In addition, Perphenazine induced a morphological transition from vesicles to wormlike micelles as indicated by neutron scattering. Despite these surprising colloidal dynamics, these natural colloids successfully ensured stable relative amounts of free Perphenazine throughout the entire drug concentration range tested here. Future studies are required to further detail these findings both on a molecular structural basis and in terms of in vivo relevance.
Collapse
Affiliation(s)
- Simon Hanio
- Institute for Pharmacy and Food Chemistry, University of Wuerzburg, Am Hubland, 97074 Wuerzburg, Germany
| | - Jonas Schlauersbach
- Institute for Pharmacy and Food Chemistry, University of Wuerzburg, Am Hubland, 97074 Wuerzburg, Germany
| | - Bettina Lenz
- Institute for Pharmacy and Food Chemistry, University of Wuerzburg, Am Hubland, 97074 Wuerzburg, Germany
| | - Franziska Spiegel
- Computational Biology, Friedrich Alexander-University Erlangen-Nürnberg, Staudtstrasse 5, 91057 Erlangen, Germany
| | - Rainer A Böckmann
- Computational Biology, Friedrich Alexander-University Erlangen-Nürnberg, Staudtstrasse 5, 91057 Erlangen, Germany
| | - Ralf Schweins
- Institut Laue-Langevin, DS/LSS, 71 Avenue des Martyrs, CS 20 156, 38042 Grenoble, CEDEX 9, France
| | - Ivo Nischang
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Ulrich S Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Sebastian Endres
- Institute of Organic Chemistry, University of Wuerzburg, Am Hubland, 97074 Wuerzburg Germany
| | - Ann-Christin Pöppler
- Institute of Organic Chemistry, University of Wuerzburg, Am Hubland, 97074 Wuerzburg Germany
| | | | - Theo M Smit
- BASF SE, R&D Pharma Ingredients, 67063 Ludwigshafen, Germany
| | - Karl Kolter
- BASF SE, R&D Pharma Ingredients, 67063 Ludwigshafen, Germany
| | - Lorenz Meinel
- Institute for Pharmacy and Food Chemistry, University of Wuerzburg, Am Hubland, 97074 Wuerzburg, Germany
- Helmholtz Institute for RNA-based Infection Research (HIRI), Josef-Schneider-Strasse 2, 97080 Wuerzburg, Germany
| |
Collapse
|
32
|
Solomun JI, Cinar G, Mapfumo P, Richter F, Moek E, Hausig F, Martin L, Hoeppener S, Nischang I, Traeger A. Solely aqueous formulation of hydrophobic cationic polymers for efficient gene delivery. Int J Pharm 2021; 593:120080. [PMID: 33246046 DOI: 10.1016/j.ijpharm.2020.120080] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 11/05/2020] [Accepted: 11/08/2020] [Indexed: 01/01/2023]
Abstract
Cationic polymers are promising gene delivery vectors due to their ability to bind and protect genetic material. The introduction of hydrophobic moieties into cationic polymers can further improve the vector efficiency, but common formulations of hydrophobic polymers involve harsh conditions such as organic solvents, impairing intactness and loading efficiency of the genetic material. In this study, a mild, aqueous formulation method for the encapsulation of high amounts of genetic material is presented. A well-defined pH-responsive hydrophobic copolymer, i.e. poly((n-butylmethacrylate)-co-(methylmethacrylate)-co-(2-(dimethylamino) ethylmethacrylate)), (PBMD) was synthesized by reversible addition fragmentation chain transfer (RAFT) polymerization. Exploiting the pH-dependent solubility behavior of the polymer, stable pDNA loaded nanoparticles were prepared and characterized using analytical ultracentrifugation (AUC), cryo-transmission electron microscopy (cryo-TEM) and dynamic light scattering (DLS). This novel formulation approach showed high transfection efficiencies in HEK293T cells, while requiring 5- to 10-fold less pDNA compared to linear polyethylenimine (LPEI), in particular at short incubation times and in serum-containing media. Furthermore, the formulation was successfully adopted for siRNA and mRNA encapsulation and the commercially approved polymer Eudragit® E(PO/100). Overall, the aqueous formulation approach, accompanied by a tailor-made hydrophobic polymer and detailed physicochemical and application studies, led to improved gene delivery vectors with high potential for further applications.
Collapse
Affiliation(s)
- Jana I Solomun
- Laboratory of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743 Jena, Germany
| | - Gizem Cinar
- Laboratory of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743 Jena, Germany
| | - Prosper Mapfumo
- Laboratory of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743 Jena, Germany
| | - Friederike Richter
- Laboratory of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743 Jena, Germany
| | - Elisabeth Moek
- Laboratory of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743 Jena, Germany
| | - Franziska Hausig
- Laboratory of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743 Jena, Germany
| | - Liam Martin
- Laboratory of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743 Jena, Germany
| | - Stephanie Hoeppener
- Laboratory of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743 Jena, Germany; Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Ivo Nischang
- Laboratory of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743 Jena, Germany; Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Anja Traeger
- Laboratory of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743 Jena, Germany; Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany.
| |
Collapse
|
33
|
Della Camera G, Lipsa D, Mehn D, Italiani P, Boraschi D, Gioria S. A Step-by-Step Approach to Improve Clinical Translation of Liposome-Based Nanomaterials, a Focus on Innate Immune and Inflammatory Responses. Int J Mol Sci 2021; 22:E820. [PMID: 33467541 PMCID: PMC7830677 DOI: 10.3390/ijms22020820] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 12/25/2022] Open
Abstract
This study aims to provide guidelines to design and perform a robust and reliable physical-chemical characterization of liposome-based nanomaterials, and to support method development with a specific focus on their inflammation-inducing potential. Out of eight differently functionalized liposomes selected as "case-studies", three passed the physical-chemical characterization ( in terms of size-distribution, homogeneity and stability) and the screening for bacterial contamination (sterility and apyrogenicity). Although all three were non-cytotoxic when tested in vitro, they showed a different capacity to activate human blood cells. HSPC/CHOL-coated liposomes elicited the production of several inflammation-related cytokines, while DPPC/CHOL- or DSPC/CHOL-functionalized liposomes did not. This work underlines the need for accurate characterization at multiple levels and the use of reliable in vitro methods, in order to obtain a realistic assessment of liposome-induced human inflammatory response, as a fundamental requirement of nanosafety regulations.
Collapse
Affiliation(s)
- Giacomo Della Camera
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy; (G.D.C.); (D.L.); (D.M.)
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), 80131 Naples, Italy; (P.I.); (D.B.)
| | - Dorelia Lipsa
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy; (G.D.C.); (D.L.); (D.M.)
| | - Dora Mehn
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy; (G.D.C.); (D.L.); (D.M.)
| | - Paola Italiani
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), 80131 Naples, Italy; (P.I.); (D.B.)
| | - Diana Boraschi
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), 80131 Naples, Italy; (P.I.); (D.B.)
| | - Sabrina Gioria
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy; (G.D.C.); (D.L.); (D.M.)
| |
Collapse
|
34
|
Klemm P, Huschke S, Rodewald M, Ehteshamzad N, Behnke M, Wang X, Cinar G, Nischang I, Hoeppener S, Weber C, Press AT, Höppener C, Meyer T, Deckert V, Schmitt M, Popp J, Bauer M, Schubert S. Characterization of a library of vitamin A-functionalized polymethacrylate-based nanoparticles for siRNA delivery. Polym Chem 2021. [DOI: 10.1039/d0py01626h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A 60-membered library of vitamin A-functionalized P(MMA-stat-DMAEMA)-b-PPEGMA block copolymers was synthesized by RAFT polymerization. From these, nanoparticles containing genetic material were formulated and fully characterized.
Collapse
|
35
|
Klein T, Ulrich HF, Gruschwitz FV, Kuchenbrod MT, Takahashi R, Hoeppener S, Nischang I, Sakurai K, Brendel JC. Overcoming the Necessity of a Lateral Aggregation in the Formation of Supramolecular Polymer Bottlebrushes in Water. Macromol Rapid Commun 2020; 42:e2000585. [PMID: 33274820 DOI: 10.1002/marc.202000585] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/12/2020] [Indexed: 12/31/2022]
Abstract
The assembly of supramolecular polymer bottlebrushes in aqueous systems is, in most cases, associated with a lateral aggregation of the supramolecular building blocks in addition to their axial stacking. Here, it is demonstrated that this limitation can be overcome by attaching three polymer chains to a central supramolecular unit that possesses a sufficiently high number of hydrogen bonding units to compensate for the increased steric strain. Therefore, a 1,3,5-benzenetrisurea-polyethylene oxide conjugate is modified with different peptide units located next to the urea groups which should facilitate self-assembly in water. For a single amino acid per arm, spherical micelles are obtained for all three tested amino acids (alanine, leucine, and phenylalanine) featuring different hydrophobicities. Only a slight increase in size and solution stability of spherical micelles is observed with increasing hydrophobicity of amino acid unit. In contrast, introducing two amino acid units per arm and thus increasing the number of hydrogen bonds per unimer molecule results in the formation of cylindrical structures, that is, supramolecular polymer bottlebrushes, despite a suppressed lateral aggregation. Consequently, it can be concluded that the number of hydrogen bonds has a more profound impact on the resulting solution morphology than the hydrophobicity of the amino acid unit.
Collapse
Affiliation(s)
- Tobias Klein
- T. Klein, H. F. Ulrich, F. V. Gruschwitz, M. T. Kuchenbrod, Dr. S. Hoeppener, Dr. I. Nischang, Dr. J. C. Brendel, Friedrich Schiller University Jena, Humboldtstraße 10, 07743, Jena, Germany.,T. Klein, H. F. Ulrich, F. V. Gruschwitz, M. T. Kuchenbrod, Dr. S. Hoeppener, Dr. I. Nischang, Dr. J. C. Brendel, Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| | - Hans F Ulrich
- T. Klein, H. F. Ulrich, F. V. Gruschwitz, M. T. Kuchenbrod, Dr. S. Hoeppener, Dr. I. Nischang, Dr. J. C. Brendel, Friedrich Schiller University Jena, Humboldtstraße 10, 07743, Jena, Germany.,T. Klein, H. F. Ulrich, F. V. Gruschwitz, M. T. Kuchenbrod, Dr. S. Hoeppener, Dr. I. Nischang, Dr. J. C. Brendel, Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| | - Franka V Gruschwitz
- T. Klein, H. F. Ulrich, F. V. Gruschwitz, M. T. Kuchenbrod, Dr. S. Hoeppener, Dr. I. Nischang, Dr. J. C. Brendel, Friedrich Schiller University Jena, Humboldtstraße 10, 07743, Jena, Germany.,T. Klein, H. F. Ulrich, F. V. Gruschwitz, M. T. Kuchenbrod, Dr. S. Hoeppener, Dr. I. Nischang, Dr. J. C. Brendel, Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| | - Maren T Kuchenbrod
- T. Klein, H. F. Ulrich, F. V. Gruschwitz, M. T. Kuchenbrod, Dr. S. Hoeppener, Dr. I. Nischang, Dr. J. C. Brendel, Friedrich Schiller University Jena, Humboldtstraße 10, 07743, Jena, Germany.,T. Klein, H. F. Ulrich, F. V. Gruschwitz, M. T. Kuchenbrod, Dr. S. Hoeppener, Dr. I. Nischang, Dr. J. C. Brendel, Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| | - Rintaro Takahashi
- Dr. R. Takahashi, Prof. K. Sakurai, University of Kitakyushu, 1-1 Hibikino, Wakamatsu-ku, Kitakyushu, Fukuoka, 808-0135, Japan
| | - Stephanie Hoeppener
- T. Klein, H. F. Ulrich, F. V. Gruschwitz, M. T. Kuchenbrod, Dr. S. Hoeppener, Dr. I. Nischang, Dr. J. C. Brendel, Friedrich Schiller University Jena, Humboldtstraße 10, 07743, Jena, Germany.,T. Klein, H. F. Ulrich, F. V. Gruschwitz, M. T. Kuchenbrod, Dr. S. Hoeppener, Dr. I. Nischang, Dr. J. C. Brendel, Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| | - Ivo Nischang
- T. Klein, H. F. Ulrich, F. V. Gruschwitz, M. T. Kuchenbrod, Dr. S. Hoeppener, Dr. I. Nischang, Dr. J. C. Brendel, Friedrich Schiller University Jena, Humboldtstraße 10, 07743, Jena, Germany.,T. Klein, H. F. Ulrich, F. V. Gruschwitz, M. T. Kuchenbrod, Dr. S. Hoeppener, Dr. I. Nischang, Dr. J. C. Brendel, Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| | - Kazuo Sakurai
- Dr. R. Takahashi, Prof. K. Sakurai, University of Kitakyushu, 1-1 Hibikino, Wakamatsu-ku, Kitakyushu, Fukuoka, 808-0135, Japan
| | - Johannes C Brendel
- T. Klein, H. F. Ulrich, F. V. Gruschwitz, M. T. Kuchenbrod, Dr. S. Hoeppener, Dr. I. Nischang, Dr. J. C. Brendel, Friedrich Schiller University Jena, Humboldtstraße 10, 07743, Jena, Germany.,T. Klein, H. F. Ulrich, F. V. Gruschwitz, M. T. Kuchenbrod, Dr. S. Hoeppener, Dr. I. Nischang, Dr. J. C. Brendel, Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| |
Collapse
|
36
|
Shkodra B, Press AT, Vollrath A, Nischang I, Schubert S, Hoeppener S, Haas D, Enzensperger C, Lehmann M, Babic P, Benecke KJ, Traeger A, Bauer M, Schubert US. Formulation of Liver-Specific PLGA-DY-635 Nanoparticles Loaded with the Protein Kinase C Inhibitor Bisindolylmaleimide I. Pharmaceutics 2020; 12:pharmaceutics12111110. [PMID: 33218172 PMCID: PMC7698893 DOI: 10.3390/pharmaceutics12111110] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 12/20/2022] Open
Abstract
Bisindolylmaleimide I (BIM-I) is a competitive pan protein kinase C inhibitor with anti-inflammatory and anti-metastatic properties, suggested to treat inflammatory diseases and various cancer entities. However, despite its therapeutic potential, BIM-I has two major drawbacks, i.e., it has a poor water solubility, and it binds the human ether-à-go-go-related gene (hERG) ion channels, potentially causing deadly arrhythmias. In this case, a targeted delivery of BIM-I is imperative to minimize peripheral side effects. To circumvent these drawbacks BIM-I was encapsulated into nanoparticles prepared from poly(lactic-co-glycolic acid) (PLGA) functionalized by the near-infrared dye DY-635. DY-635 served as an active targeting moiety since it selectively binds the OATP1B1 and OATP1B3 transporters that are highly expressed in liver and cancer cells. PLGA-DY-635 (BIM-I) nanoparticles were produced by nanoprecipitation and characterized using dynamic light scattering, analytical ultracentrifugation, and cryogenic transmission electron microscopy. Particle sizes were found to be in the range of 20 to 70 nm, while a difference in sizes between the drug-loaded and unloaded particles was observed by all analytical techniques. In vitro studies demonstrated that PLGA-DY-635 (BIM-I) NPs prevent the PKC activation efficiently, proving the efficacy of the inhibitor after its encapsulation, and suggesting that BIM-I is released from the PLGA-NPs. Ultimately, our results present a feasible formulation strategy that improved the cytotoxicity profile of BIM-I and showed a high cellular uptake in the liver as demonstrated in vivo by intravital microscopy investigations.
Collapse
Affiliation(s)
- Blerina Shkodra
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743 Jena, Germany; (B.S.); (A.V.); (I.N.); (S.H.); (D.H.); (A.T.)
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany; (S.S.); (M.B.)
| | - Adrian T. Press
- Department of Anesthesiology and Intensive Care Medicine, Nanophysiology Group, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany; (A.T.P.); (P.B.); (K.J.B.)
- Center for Sepsis Control and Care, Jena University Hospital, 07747 Jena, Germany
| | - Antje Vollrath
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743 Jena, Germany; (B.S.); (A.V.); (I.N.); (S.H.); (D.H.); (A.T.)
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany; (S.S.); (M.B.)
| | - Ivo Nischang
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743 Jena, Germany; (B.S.); (A.V.); (I.N.); (S.H.); (D.H.); (A.T.)
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany; (S.S.); (M.B.)
| | - Stephanie Schubert
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany; (S.S.); (M.B.)
- Institute of Pharmacy, Department of Pharmaceutical Technology and Biopharmacy, Friedrich Schiller University Jena, Lessingstrasse 8, 07743 Jena, Germany
| | - Stephanie Hoeppener
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743 Jena, Germany; (B.S.); (A.V.); (I.N.); (S.H.); (D.H.); (A.T.)
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany; (S.S.); (M.B.)
| | - Dorothee Haas
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743 Jena, Germany; (B.S.); (A.V.); (I.N.); (S.H.); (D.H.); (A.T.)
| | | | - Marc Lehmann
- SmartDyeLivery GmbH, Botzstrasse 5, 07743 Jena, Germany; (C.E.); (M.L.)
| | - Petra Babic
- Department of Anesthesiology and Intensive Care Medicine, Nanophysiology Group, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany; (A.T.P.); (P.B.); (K.J.B.)
- Center for Sepsis Control and Care, Jena University Hospital, 07747 Jena, Germany
| | - Kay Jovana Benecke
- Department of Anesthesiology and Intensive Care Medicine, Nanophysiology Group, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany; (A.T.P.); (P.B.); (K.J.B.)
- Center for Sepsis Control and Care, Jena University Hospital, 07747 Jena, Germany
| | - Anja Traeger
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743 Jena, Germany; (B.S.); (A.V.); (I.N.); (S.H.); (D.H.); (A.T.)
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany; (S.S.); (M.B.)
| | - Michael Bauer
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany; (S.S.); (M.B.)
- Department of Anesthesiology and Intensive Care Medicine, Nanophysiology Group, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany; (A.T.P.); (P.B.); (K.J.B.)
- Center for Sepsis Control and Care, Jena University Hospital, 07747 Jena, Germany
| | - Ulrich S. Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743 Jena, Germany; (B.S.); (A.V.); (I.N.); (S.H.); (D.H.); (A.T.)
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany; (S.S.); (M.B.)
- Correspondence: ; Tel.: +49-(0)-3641-9482-00
| |
Collapse
|
37
|
Grube M, Dinu V, Lindemann H, Pielenz F, Festag G, Schubert US, Heinze T, Harding S, Nischang I. Polysaccharide valproates: Structure - property relationships in solution. Carbohydr Polym 2020; 246:116652. [PMID: 32747284 DOI: 10.1016/j.carbpol.2020.116652] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 06/07/2020] [Accepted: 06/15/2020] [Indexed: 12/30/2022]
Abstract
Polysaccharides are promising macromolecular platforms for use in the life sciences. Here, bioactive cellulose, pullulan, and dextran valproates are characterized hydrodynamically by sedimentation velocity and thermodynamically by sedimentation equilibrium analytical ultracentrifugation. Using sedimentation-diffusion analysis of sedimentation velocity experiments by numerical solution of the Lamm equation enabled the calculation of sedimentation and diffusion coefficients, and consequently molar masses. Sedimentation equilibrium experiments were then also used to determine the average molar masses. The corresponding set of data, with independently performed self-diffusion measurements by nuclear magnetic resonance spectroscopy, and together with size exclusion chromatography molar masses by coupling to refractive index-, viscometric-, and multi-angle laser light scattering detection, were subsequently correlated to each other by the hydrodynamic invariant and sedimentation parameter. We assess statistically most relevant average values of the molar masses of these polysaccharide valproates with relevant macromolecular conformational characteristics.
Collapse
Affiliation(s)
- Mandy Grube
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany; Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Vlad Dinu
- National Centre for Macromolecular Hydrodynamics, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, United Kingdom
| | - Henry Lindemann
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany; Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Friederike Pielenz
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany
| | - Grit Festag
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany; Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Ulrich S Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany; Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Thomas Heinze
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany; Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Stephen Harding
- National Centre for Macromolecular Hydrodynamics, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, United Kingdom
| | - Ivo Nischang
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany; Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany.
| |
Collapse
|
38
|
Fedorov D, Batys P, Hayes DB, Sammalkorpi M, Linder MB. Analyzing the weak dimerization of a cellulose binding module by analytical ultracentrifugation. Int J Biol Macromol 2020; 163:1995-2004. [PMID: 32937156 DOI: 10.1016/j.ijbiomac.2020.09.054] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 09/01/2020] [Accepted: 09/08/2020] [Indexed: 12/22/2022]
Abstract
Cellulose binding modules (CBMs) are found widely in different proteins that act on cellulose. Because they allow a very easy way of binding recombinant proteins to cellulose, they have become widespread in many biotechnological applications involving cellulose. One commonly used variant is the CBMCipA from Clostridium thermocellum. Here we studied the oligomerization behavior of CBMCipA, as such solution association may have an impact on its use. As the principal approach, we used sedimentation velocity and sedimentation equilibrium analytical ultracentrifugation. To enhance our understanding of the possible interactions, we used molecular dynamics simulations. By analysis of the sedimentation velocity data by a discrete model genetic algorithm and by building a binding isotherm based on weight average sedimentation coefficient and by global fitting of sedimentation equilibrium data we found that the CBMCipA shows a weak dimerization interaction with a dissociation constant KD of 90 ± 30 μM. As the KD of CBMCipA binding to cellulose is below 1 μM, we conclude that the dimerization is unlikely to affect cellulose binding. However, at high concentrations used in some applications of the CBMCipA, its dimerization is likely to have a marked effect on its solution behavior.
Collapse
Affiliation(s)
- Dmitrii Fedorov
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Box 16100, 00076-Aalto Espoo, Finland
| | - Piotr Batys
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, PL-30239 Krakow, Poland
| | - David B Hayes
- International Solidarity of Scientists, LLC, Gorham, NH, USA
| | - Maria Sammalkorpi
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Box 16100, 00076-Aalto Espoo, Finland; Department of Chemistry and Materials Science, School of Chemical Engineering, Aalto University, Box 16100, 00076-Aalto Espoo, Finland
| | - Markus B Linder
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Box 16100, 00076-Aalto Espoo, Finland.
| |
Collapse
|
39
|
Gruschwitz FV, Fu MC, Klein T, Takahashi R, Higashihara T, Hoeppener S, Nischang I, Sakurai K, Brendel JC. Unraveling Decisive Structural Parameters for the Self-Assembly of Supramolecular Polymer Bottlebrushes Based on Benzene Trisureas. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01361] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Franka V. Gruschwitz
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Mao-Chun Fu
- Department of Organic Materials Science, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Tobias Klein
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Rintaro Takahashi
- Department of Chemistry and Biochemistry, University of Kitakyushu, 1-1 Hibikino, Kitakyushu, Fukuoka 808-0135, Japan
| | - Tomoya Higashihara
- Department of Organic Materials Science, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Stephanie Hoeppener
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Ivo Nischang
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Kazuo Sakurai
- Department of Chemistry and Biochemistry, University of Kitakyushu, 1-1 Hibikino, Kitakyushu, Fukuoka 808-0135, Japan
| | - Johannes C. Brendel
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| |
Collapse
|
40
|
Selig EE, Zlatic CO, Cox D, Mok YF, Gooley PR, Ecroyd H, Griffin MDW. N- and C-terminal regions of αB-crystallin and Hsp27 mediate inhibition of amyloid nucleation, fibril binding, and fibril disaggregation. J Biol Chem 2020; 295:9838-9854. [PMID: 32417755 DOI: 10.1074/jbc.ra120.012748] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 05/11/2020] [Indexed: 01/08/2023] Open
Abstract
Small heat-shock proteins (sHSPs) are ubiquitously expressed molecular chaperones that inhibit amyloid fibril formation; however, their mechanisms of action remain poorly understood. sHSPs comprise a conserved α-crystallin domain flanked by variable N- and C-terminal regions. To investigate the functional contributions of these three regions, we compared the chaperone activities of various constructs of human αB-crystallin (HSPB5) and heat-shock 27-kDa protein (Hsp27, HSPB1) during amyloid formation by α-synuclein and apolipoprotein C-II. Using an array of approaches, including thioflavin T fluorescence assays and sedimentation analysis, we found that the N-terminal region of Hsp27 and the terminal regions of αB-crystallin are important for delaying amyloid fibril nucleation and for disaggregating mature apolipoprotein C-II fibrils. We further show that the terminal regions are required for stable fibril binding by both sHSPs and for mediating lateral fibril-fibril association, which sequesters preformed fibrils into large aggregates and is believed to have a cytoprotective function. We conclude that although the isolated α-crystallin domain retains some chaperone activity against amyloid formation, the flanking domains contribute additional and important chaperone activities, both in delaying amyloid formation and in mediating interactions of sHSPs with amyloid aggregates. Both these chaperone activities have significant implications for the pathogenesis and progression of diseases associated with amyloid deposition, such as Parkinson's and Alzheimer's diseases.
Collapse
Affiliation(s)
- Emily E Selig
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria, Australia.,Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Courtney O Zlatic
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria, Australia.,Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Dezerae Cox
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria, Australia.,Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Yee-Foong Mok
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria, Australia.,Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Paul R Gooley
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria, Australia.,Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Heath Ecroyd
- Molecular Horizons and the School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales, Australia.,Illawarra Health and Medical Research Institute, Wollongong, New South Wales, Australia
| | - Michael D W Griffin
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria, Australia .,Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
41
|
Cinar G, Englert C, Lehmann M, Nischang I. In Situ, Quantitative Assessment of Multifunctional Nanoscale Drug Delivery Systems in Human Serum. Anal Chem 2020; 92:7932-7939. [DOI: 10.1021/acs.analchem.0c01323] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Gizem Cinar
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | | | - Marc Lehmann
- SmartDyeLivery GmbH, Botzstraße 5, 07743 Jena, Germany
| | - Ivo Nischang
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| |
Collapse
|
42
|
Feng AN, Huang CW, Lin CH, Chang YL, Ni MY, Lee HJ. Role of the N-terminus in human 4-hydroxyphenylpyruvate dioxygenase activity. J Biochem 2020; 167:315-322. [PMID: 31722428 DOI: 10.1093/jb/mvz092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 10/22/2019] [Indexed: 11/14/2022] Open
Abstract
4-Hydroxyphenylpyruvate dioxygenase (HPPD) is a key enzyme in tyrosine catabolism, catalysing the oxidation of 4-hydroxyphenylpyruvate to homogentisate. Genetic deficiency of this enzyme causes type III tyrosinaemia. The enzyme comprises two barrel-shaped domains formed by the N- and C-termini, with the active site located in the C-terminus. This study investigated the role of the N-terminus, located at the domain interface, in HPPD activity. We observed that the kcat/Km decreased ∼8-fold compared with wild type upon removal of the 12 N-terminal residues (ΔR13). Interestingly, the wild-type level of activity was retained in a mutant missing the 17 N-terminal residues, with a kcat/Km 11-fold higher than that of the ΔR13 mutant; however, the structural stability of this mutant was lower than that of wild type. A 2-fold decrease in catalytic efficiency was observed for the K10A and E12A mutants, indicating synergism between these residues in the enzyme catalytic function. A molecular dynamics simulation showed large RMS fluctuations in ΔR13 suggesting that conformational flexibility at the domain interface leads to lower activity in this mutant. These results demonstrate that the N-terminus maintains the stability of the domain interface to allow for catalysis at the active site of HPPD.
Collapse
Affiliation(s)
- An-Ning Feng
- Department of Cardiology, Cheng Hsin General Hospital, No. 45, Cheng Hsin St. Pai-Tou, Taipei 11220, Taiwan
| | - Chih-Wei Huang
- Department of Pharmacy Practice, Tri-Service General Hospital, No. 325, Sec. 2, Chenggong Rd., Neihu, Taipei 11490, Taiwan.,School of Pharmacy, National Defense Medical Center, No. 161, Sec. 6, Minchuan East Rd., Neihu, Taipei 11490, Taiwan
| | - Chi-Huei Lin
- Department of Biochemistry, National Defense Medical Center, No. 161, Sec. 6, Minchuan East Rd., Neihu, Taipei 11490, Taiwan
| | - Yung-Lung Chang
- Department of Biochemistry, National Defense Medical Center, No. 161, Sec. 6, Minchuan East Rd., Neihu, Taipei 11490, Taiwan
| | - Meng-Yuan Ni
- Department of Biochemistry, National Defense Medical Center, No. 161, Sec. 6, Minchuan East Rd., Neihu, Taipei 11490, Taiwan
| | - Hwei-Jen Lee
- Department of Biochemistry, National Defense Medical Center, No. 161, Sec. 6, Minchuan East Rd., Neihu, Taipei 11490, Taiwan
| |
Collapse
|
43
|
Uttinger MJ, Heyn TR, Jandt U, Wawra SE, Winzer B, Keppler JK, Peukert W. Measurement of length distribution of beta-lactoglobulin fibrils by multiwavelength analytical ultracentrifugation. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2020; 49:745-760. [PMID: 32006057 PMCID: PMC7701075 DOI: 10.1007/s00249-020-01421-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 12/19/2019] [Accepted: 01/03/2020] [Indexed: 11/24/2022]
Abstract
The whey protein beta-lactoglobulin is the building block of amyloid fibrils which exhibit a great potential in various applications. These include stabilization of gels or emulsions. During biotechnological processing, high shear forces lead to fragmentation of fibrils and therefore to smaller fibril lengths. To provide insight into such processes, pure straight amyloid fibril dispersions (prepared at pH 2) were produced and sheared using the rotor stator setup of an Ultra Turrax. In the first part of this work, the sedimentation properties of fragmented amyloid fibrils sheared at different stress levels were analyzed with mulitwavelength analytical ultracentrifugation (AUC). Sedimentation data analysis was carried out with the boundary condition that fragmented fibrils were of cylindrical shape, for which frictional properties are known. These results were compared with complementary atomic force microscopy (AFM) measurements. We demonstrate how the sedimentation coefficient distribution from AUC experiments is influenced by the underlying length and diameter distribution of amyloid fibrils. In the second part of this work, we show how to correlate the fibril size reduction kinetics with the applied rotor revolution and the resulting energy density, respectively, using modal values of the sedimentation coefficients obtained from AUC. Remarkably, the determined scaling laws for the size reduction are in agreement with the results for other material systems, such as emulsification processes or the size reduction of graphene oxide sheets.
Collapse
Affiliation(s)
- Maximilian J Uttinger
- Institute of Particle Technology, Interdisciplinary Center for Functional Particle Systems, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Timon R Heyn
- Institute of Human Nutrition and Food Science, Division of Food Technology, Kiel University, 24118, Kiel, Germany
| | - Uwe Jandt
- Institute of Bioprocess and Biosystems Engineering, Hamburg University of Technology, Hamburg, Germany
| | - Simon E Wawra
- Institute of Particle Technology, Interdisciplinary Center for Functional Particle Systems, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Bettina Winzer
- Institute of Particle Technology, Interdisciplinary Center for Functional Particle Systems, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Julia K Keppler
- Institute of Human Nutrition and Food Science, Division of Food Technology, Kiel University, 24118, Kiel, Germany.,Laboratory of Food Process Engineering, Wageningen University, Bornse Weilanden 9, 6708WG, Wageningen, P.O. Box 17, 6700 AA, Wageningen, The Netherlands
| | - Wolfgang Peukert
- Institute of Particle Technology, Interdisciplinary Center for Functional Particle Systems, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
44
|
Klein T, Ulrich HF, Gruschwitz FV, Kuchenbrod MT, Takahashi R, Fujii S, Hoeppener S, Nischang I, Sakurai K, Brendel JC. Impact of amino acids on the aqueous self-assembly of benzenetrispeptides into supramolecular polymer bottlebrushes. Polym Chem 2020. [DOI: 10.1039/d0py01185a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The choice of the amino acid unit in benzenetrispeptide-PEO conjugates allows to fine-tune the self-assembly strength and to control the resulting solution morphologies in water.
Collapse
|
45
|
Abstract
Peroxiredoxins are ubiquitous antioxidant proteins that exhibit a striking variety of quaternary structures, making them appealing building blocks with which nanoscale architectures are created for applications in nanotechnology. The solution environment of the protein, as well as protein sequence, influences the presentation of a particular structure, thereby enabling mesoscopic manipulations that affect arrangments at the nanoscale. This chapter will equip us with the knowledge necessary to not only produce and manipulate peroxiredoxin proteins into desired structures but also to characterize the different structures using dynamic light scattering, analytical centrifugation, and negative stain transmission electron microscopy, thereby setting the stage for us to use these proteins for applications in nanotechnology.
Collapse
Affiliation(s)
- Frankie Conroy
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - N Amy Yewdall
- Bio-Organic Chemistry, Eindhoven University of Technology, Eindhoven, The Netherlands.
| |
Collapse
|
46
|
Engineering protein assemblies with allosteric control via monomer fold-switching. Nat Commun 2019; 10:5703. [PMID: 31836707 PMCID: PMC6911049 DOI: 10.1038/s41467-019-13686-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 11/15/2019] [Indexed: 12/14/2022] Open
Abstract
The macromolecular machines of life use allosteric control to self-assemble, dissociate and change shape in response to signals. Despite enormous interest, the design of nanoscale allosteric assemblies has proven tremendously challenging. Here we present a proof of concept of allosteric assembly in which an engineered fold switch on the protein monomer triggers or blocks assembly. Our design is based on the hyper-stable, naturally monomeric protein CI2, a paradigm of simple two-state folding, and the toroidal arrangement with 6-fold symmetry that it only adopts in crystalline form. We engineer CI2 to enable a switch between the native and an alternate, latent fold that self-assembles onto hexagonal toroidal particles by exposing a favorable inter-monomer interface. The assembly is controlled on demand via the competing effects of temperature and a designed short peptide. These findings unveil a remarkable potential for structural metamorphosis in proteins and demonstrate key principles for engineering protein-based nanomachinery. The design of protein assemblies is a major thrust for biomolecular engineering and nanobiotechnology. Here the authors demonstrate a general mechanism for designing allosteric macromolecular assemblies and showcase a proof of concept for engineered allosteric protein assembly.
Collapse
|
47
|
Klein T, Gruschwitz FV, Rogers S, Hoeppener S, Nischang I, Brendel JC. The influence of directed hydrogen bonds on the self-assembly of amphiphilic polymers in water. J Colloid Interface Sci 2019; 557:488-497. [PMID: 31541918 DOI: 10.1016/j.jcis.2019.09.046] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 09/11/2019] [Accepted: 09/12/2019] [Indexed: 12/16/2022]
Abstract
HYPOTHESIS Molecules forming directed intermolecular hydrogen bonds, such as the well-known benzene-1,3,5-tricarboxamides (BTA) motif, are known to self-assemble into long fibrous structures. However, only a few of these systems have so far demonstrated the ability to form such anisotropic nanostructures, if they are combined with hydrophilic polymers to create an amphiphilic material. Here, we designed BTA-polymer conjugates to investigate whether the directionality of the hydrogen bonds or the ratio of hydrophobic to hydrophilic parts of the molecule, and thus the packing parameter, is decisive for obtaining anisotropic supramolecular structures in water. EXPERIMENTS Poly(ethylene glycol) was conjugated to BTA moieties with varying lengths of hydrophobic alkyl spacers ranging from two to twelve methylene units. The resulting amphiphilic materials were characterized in aqueous solution by light and small-angle neutron scattering, analytical ultracentrifugation, and cryo-transmission electron microscopy. FINDINGS While spherical micelles were observed for C6 and C10 alkyl spacers, anisotropic structures were only present in case of the C12 spacer. The comparison to an analogous material, which lacks the directed hydrogen bonds, revealed that the BTA motif cannot provide a sufficient driving force to induce anisotropic structures, but increases the packing density in the hydrophobic part. Therefore, the packing parameter governs the appearance of anisotropic aggregates.
Collapse
Affiliation(s)
- Tobias Klein
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany; Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Franka V Gruschwitz
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany; Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Sarah Rogers
- ISIS Neutron Facility, Rutherford Appleton Laboratory, Harwell Oxford, Didcot OX11 0QX, United Kingdom
| | - Stephanie Hoeppener
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany; Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Ivo Nischang
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany; Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Johannes C Brendel
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany; Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany.
| |
Collapse
|
48
|
Wawra SE, Onishchukov G, Maranska M, Eigler S, Walter J, Peukert W. A multiwavelength emission detector for analytical ultracentrifugation. NANOSCALE ADVANCES 2019; 1:4422-4432. [PMID: 36134402 PMCID: PMC9419176 DOI: 10.1039/c9na00487d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 10/03/2019] [Indexed: 06/16/2023]
Abstract
In this study, a new detector for multiwavelength emission analytical ultracentrifugation (MWE-AUC) is presented, which allows measuring size- or composition-dependent fluorescence properties of nanoparticle ensembles. Validation of the new setup is carried out via comparison to a benchtop photoluminescence spectrometer and the established extinction-based multiwavelength analytical ultracentrifuge (MWL-AUC). The results on fluorescent proteins and silica particles demonstrate that the new device not only correctly reproduces sedimentation and diffusion coefficients of the particles but provides also meaningful fluorescence spectra. As an application example for a sample exhibiting a broad particle size distribution, spectra and size of graphene oxide nanoplatelets are extracted simultaneously. Narrowly distributed CdSe/ZnS quantum dots showing size- and structure-dependent shifts of their fluorescence spectra are analyzed as well. The combination of MWE- and MWL-AUC provides a comprehensive framework for the optical characterization for nanoparticles and macromolecules in terms of their extinction and emission properties.
Collapse
Affiliation(s)
- Simon E Wawra
- Institute of Particle Technology (LFG), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) Cauerstrasse 4 91058 Erlangen Germany
| | - Georgy Onishchukov
- Institute of Particle Technology (LFG), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) Cauerstrasse 4 91058 Erlangen Germany
| | - Maria Maranska
- Institute for Chemistry and Biochemistry, Freie Universität Berlin Takustraße 3 14195 Berlin Germany
| | - Siegfried Eigler
- Institute for Chemistry and Biochemistry, Freie Universität Berlin Takustraße 3 14195 Berlin Germany
| | - Johannes Walter
- Institute of Particle Technology (LFG), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) Cauerstrasse 4 91058 Erlangen Germany
- Interdisciplinary Center for Functional Particle Systems (FPS), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) Haberstrasse 9a 91058 Erlangen Germany
| | - Wolfgang Peukert
- Institute of Particle Technology (LFG), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) Cauerstrasse 4 91058 Erlangen Germany
- Interdisciplinary Center for Functional Particle Systems (FPS), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) Haberstrasse 9a 91058 Erlangen Germany
| |
Collapse
|
49
|
Heyn TR, Garamus VM, Neumann HR, Uttinger MJ, Guckeisen T, Heuer M, Selhuber-Unkel C, Peukert W, Keppler JK. Influence of the polydispersity of pH 2 and pH 3.5 beta-lactoglobulin amyloid fibril solutions on analytical methods. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.08.038] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
50
|
Structural and functional characterization of a novel cold-active S-formylglutathione hydrolase (SfSFGH) homolog from Shewanella frigidimarina, a psychrophilic bacterium. Microb Cell Fact 2019; 18:140. [PMID: 31426813 PMCID: PMC6699074 DOI: 10.1186/s12934-019-1190-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 08/08/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND S-Formylglutathione is hydrolyzed to glutathione and formate by an S-formylglutathione hydrolase (SFGH) (3.1.2.12). This thiol esterase belongs to the esterase family and is also known as esterase D. SFGHs contain highly conserved active residues of Ser-Asp-His as a catalytic triad at the active site. Characterization and investigation of SFGH from Antarctic organisms at the molecular level is needed for industrial use through protein engineering. RESULTS A novel cold-active S-formylglutathione hydrolase (SfSFGH) from Shewanella frigidimarina, composed of 279 amino acids with a molecular mass of ~ 31.0 kDa, was characterized. Sequence analysis of SfSFGH revealed a conserved pentapeptide of G-X-S-X-G found in various lipolytic enzymes along with a putative catalytic triad of Ser148-Asp224-His257. Activity analysis showed that SfSFGH was active towards short-chain esters, such as p-nitrophenyl acetate, butyrate, hexanoate, and octanoate. The optimum pH for enzymatic activity was slightly alkaline (pH 8.0). To investigate the active site configuration of SfSFGH, we determined the crystal structure of SfSFGH at 2.32 Å resolution. Structural analysis shows that a Trp182 residue is located at the active site entrance, allowing it to act as a gatekeeper residue to control substrate binding to SfSFGH. Moreover, SfSFGH displayed more than 50% of its initial activity in the presence of various chemicals, including 30% EtOH, 1% Triton X-100, 1% SDS, and 5 M urea. CONCLUSIONS Mutation of Trp182 to Ala allowed SfSFGH to accommodate a longer chain of substrates. It is thought that the W182A mutation increases the substrate-binding pocket and decreases the steric effect for larger substrates in SfSFGH. Consequently, the W182A mutant has a broader substrate specificity compared to wild-type SfSFGH. Taken together, this study provides useful structure-function data of a SFGH family member and may inform protein engineering strategies for industrial applications of SfSFGH.
Collapse
|