1
|
Sharma MK, Weinert HM, Wölper C, Schulz S. Gallaphosphene L(Cl)GaPGaL: A novel phosphinidene transfer reagent. Chemistry 2024:e202400110. [PMID: 38235843 DOI: 10.1002/chem.202400110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 01/19/2024]
Abstract
Gallaphosphene L(Cl)GaPGaL 1 (L=HC[C(Me)N(Ar)]2 ; Ar=2,6-iPr2 C6 H3 ) reacts with N-heterocyclic carbenes R NHC (R NHC=[CMeN(R)]2 C; R=Me, iPr) to R NHC-coordinated phosphinidenes R NHC→PGa(Cl)L (R=Me 2 a, iPr 2 b) and with isonitriles RNC (R=iPr, Cy) to 1,3-phosphaazaallenes L(Cl)GaP=C=N-R (R=iPr 3 a, Cy 3 b), respectively. Quantum chemical calculations reveal that 2 a/2 b possess two localized lone pair of electrons, whereas 3 a/3 b only show one localized lone pair as was reported for gallaphosphene 1. 2 b reacts with 2.5 equivalents of a borane (THF ⋅ BH3 ) to the NHC-stabilized phosphinidene-borane complex [iPr NHC→P(BH2 )]2 (BH3 )3 4 with concomitant formation of LGa(H)Cl 5. 2-5 are characterized by heteronuclear (1 H, 13 C{1 H}, 31 P{1 H}) NMR and IR spectroscopy, elemental analysis, and single crystal X-ray diffraction (sc-XRD).
Collapse
Affiliation(s)
- Mahendra K Sharma
- Institute of Inorganic Chemistry, University of Duisburg-Essen, Universitätsstraße 5-7, D-45141, Essen
| | - Hanns M Weinert
- Institute of Inorganic Chemistry, University of Duisburg-Essen, Universitätsstraße 5-7, D-45141, Essen
| | - Christoph Wölper
- Institute of Inorganic Chemistry, University of Duisburg-Essen, Universitätsstraße 5-7, D-45141, Essen
| | - Stephan Schulz
- Institute of Inorganic Chemistry, University of Duisburg-Essen, Universitätsstraße 5-7, D-45141, Essen
- Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Carl-Benz-Straße 199, D-47057, Duisburg
| |
Collapse
|
2
|
Siewert JE, Schumann A, Wellnitz T, Dankert F, Hering-Junghans C. Triphosphiranes as phosphinidene-transfer agents - synthesis of regular and chelating NHC phosphinidene adducts. Dalton Trans 2023; 52:15747-15756. [PMID: 37846491 DOI: 10.1039/d3dt02690f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
In this contribution we describe the general use of aryl-substituted triphosphiranes (Ar3P3; Ar = Mes, Dip, Tip) as phosphinidene transfer reagents towards N-heterocyclic carbenes (NHCs) to give a library of twelve N-heterocyclic carbene phosphinidene adducts of the type ArPNHC (NHCPs), in which the NHCs have varying steric profiles, allowing a systematic evaluation of their structural and NMR-spectroscopic properties. In the next series of experiments we utilized 1,3- and 1,4-phenylene bridged bis-NHCs to access a new class of chelating bis(NHCP)s, of which three derivatives could be structurally characterized. The 1,4-phenylene derivatives were shown to be susceptible to P-CNHC bond cleavage when irradiated with an LED (396 nm), providing a rare example of phosphinidene release from NHCPs. The coordination chemistry of 1,3-phenylene bridged bis(NHCP)s towards GeCl2(dioxane) and GaI3 was investigated and revealed the formation of ion-separated cationic complexes, with significant charge transfer from the ligand to the metal center according to NBO analyses.
Collapse
Affiliation(s)
- Jan-Erik Siewert
- Leibniz Institut für Katalyse e.V. (LIKAT), A.-Einstein-Str. 29a, 18059 Rostock, Germany.
| | - André Schumann
- Leibniz Institut für Katalyse e.V. (LIKAT), A.-Einstein-Str. 29a, 18059 Rostock, Germany.
| | - Tim Wellnitz
- Leibniz Institut für Katalyse e.V. (LIKAT), A.-Einstein-Str. 29a, 18059 Rostock, Germany.
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg Am Hubland, 97074 Würzburg, Germany
| | - Fabian Dankert
- Leibniz Institut für Katalyse e.V. (LIKAT), A.-Einstein-Str. 29a, 18059 Rostock, Germany.
- Departement für Chemie, Biochemie und Pharmazie, Universität Bern Freiestrasse 3, 3012 Bern, Switzerland
| | | |
Collapse
|
3
|
Siewert JE, Puerta Lombardi BM, Jannsen N, Roesler R, Hering-Junghans C. Synthesis and Ligand Properties of Chelating Bis( N-heterocyclic carbene)-Stabilized Bis(phosphinidenes). Inorg Chem 2023; 62:16832-16841. [PMID: 37782848 DOI: 10.1021/acs.inorgchem.3c02264] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
NHC-phosphinidene (NHCP) adducts are an emerging class of ligands with proven binding ability for main group and transition metal elements. They possess electron-rich P atoms with two lone pairs (LPs) of electrons, making them interesting platforms for the formation of multimetallic complexes. We describe herein a modular, high-yielding synthesis of bis(NHCP)s, starting from alkylidene-bridged bis(NHC)s ((IMe)2CnH2n; n = 1,3) and triphosphirane (PDip)3 (Dip = 2,6-iPr2C6H3) as phosphinidene transfer reagent. The coordination chemistry of [{DipP(IMe)}2CH2], 1, was studied in detail, and complexes [1·FeBr2] and [1·Rh(cod)]Cl were prepared, showing that the ligand has a flexible bite angle. The dicarbonyl complex [1·Rh(CO)2]Cl, with an average value for the CO stretching frequency of 2029 cm-1, indicates a strongly donating ligand when compared to related complexes. The binding ability of the remaining two phosphorus LPs was demonstrated with AuCl(SMe2), giving the heterotrimetallic complex [1·(AuCl)2·Rh(cod)]Cl. Moreover, [1·Rh(cod)]X (X- = Cl, B(3,5-(CF3)2-C6H3)4) was tested in the catalytic hydrogenation of methyl-Z-α-acetamidocinnamate (MAC) and dimethyl itaconate (ItMe2), revealing that the chloride complex was inactive, while the BArF complex demonstrated moderate activity. Additionally, [1·Rh(cod)]Cl was shown to be moderately air- and moisture-stable, slowly decomposing to the corresponding NHC-stabilized bis-dioxophosphorane, which was independently synthesized by treating the free ligand with dry O2.
Collapse
Affiliation(s)
- Jan-Erik Siewert
- Leibniz-Institut für Katalyse (LIKAT), Albert-Einstein-Straße 29a, 18059 Rostock, Germany
| | - Braulio M Puerta Lombardi
- Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
| | - Nora Jannsen
- Leibniz-Institut für Katalyse (LIKAT), Albert-Einstein-Straße 29a, 18059 Rostock, Germany
| | - Roland Roesler
- Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
| | | |
Collapse
|
4
|
Hoidn CM, Trabitsch K, Schwedtmann K, Taube C, Weigand JJ, Wolf R. Formation of a Hexaphosphido Cobalt Complex through P-P Condensation. Chemistry 2023; 29:e202301930. [PMID: 37489883 DOI: 10.1002/chem.202301930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/24/2023] [Accepted: 07/24/2023] [Indexed: 07/26/2023]
Abstract
The reaction between diphosphorus derivatives [(Cl ImDipp )P2 (Dipp)]OTf (1[OTf]) and [(Cl ImDipp )P2 (Dipp)Cl] (1[Cl]) with the cyclotetraphosphido cobalt complex [K(18c-6)][(PHDI)Co(η4 -cyclo-P4 )] (2) leads to the formation of complex [(PHDI)Co{η4 -cyclo-P6 (Dipp)(Cl ImDipp )}] (3), which features an unusual hexaphosphido ligand [Cl ImDipp =4,5-dichloro-1,3-bis(2,6-diisopropylphenyl)imidazol-2-yl, Dipp=2,6-diisopropylphenyl, 18c-6=18-crown-6, PHDI=bis(2,6-diisopropylphenyl)phenanthrene-9,10-diimine]. Complex 3 was obtained as a crystalline material with a moderate yield at low temperature. Upon exposure to ambient temperature, compound 3 slowly transforms into two other compounds, [K(18c-6)][(PHDI)Co(η4 -P7 Dipp)] (4) and [(PHDI)Co{cyclo-P5 (Cl ImDipp )}] (5). The novel complexes 3-5 were characterized using multinuclear NMR spectroscopy and single-crystal X-ray diffraction. To shed light on the formation of these compounds, a proposed mechanism based on 31 P NMR monitoring studies is presented.
Collapse
Affiliation(s)
- Christian M Hoidn
- University of Regensburg, Institute of Inorganic Chemistry, 93040, Regensburg, Germany
| | - Karolina Trabitsch
- University of Regensburg, Institute of Inorganic Chemistry, 93040, Regensburg, Germany
| | - Kai Schwedtmann
- TU Dresden, Department of Chemistry and Food Chemistry, 01062, Dresden, Germany
| | - Clemens Taube
- TU Dresden, Department of Chemistry and Food Chemistry, 01062, Dresden, Germany
| | - Jan J Weigand
- TU Dresden, Department of Chemistry and Food Chemistry, 01062, Dresden, Germany
| | - Robert Wolf
- University of Regensburg, Institute of Inorganic Chemistry, 93040, Regensburg, Germany
| |
Collapse
|
5
|
Royla P, Schwedtmann K, Han Z, Fidelius J, Gates DP, Gomila RM, Frontera A, Weigand JJ. Cationic Phosphinidene as a Versatile P 1 Building Block: [L C-P] + Transfer from Phosphonio-Phosphanides [L C-P-PR 3] + and Subsequent L C Replacement Reactions (L C = N-Heterocyclic Carbene). J Am Chem Soc 2023; 145:10364-10375. [PMID: 37105536 PMCID: PMC10177976 DOI: 10.1021/jacs.3c02256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Indexed: 04/29/2023]
Abstract
Cationic imidazoliumyl(phosphonio)-phosphanides [LC-P-PR3]+ (1a-e+, LC = 4,5-dimethyl-1,3-diisopropylimidazolium-2-yl; R = alkyl, aryl) are obtained via the nucleophilic fragmentation of tetracationic tetraphosphetane [(LC-P)4][OTf]4 (2[OTf]4) with tertiary phosphanes. They act as [LC-P]+ transfer reagents in phospha-Wittig-type reactions, when converted with various thiocarbonyls, giving unprecedented cationic phosphaalkenes [LC-P═CR2]+ (5a-f[OTf]) or phosphanides [LC-P-CR(NR2')]+ (6a-d[OTf]). Theoretical calculations suggest that three-membered cyclic thiophosphiranes are crucial intermediates of this reaction. To test this hypothesis, treatment of [LC-P-PPh3]+ with phosphaalkenes, that are isolobal to thioketones, permits the isolation of diphosphirane salts 11a,b[OTf]. Furthermore, preliminary studies suggest that the cationic phosphaalkene [LC-P═CPh2]+ may be employed to access rare examples of η2-P═C π-complexes with Pd0 and Pt0 when treated with [Pd(PPh3)4] and [Pt(PPh3)3] for which analogous complexes of neutral phosphaalkenes are scarce. The versatility of [LC-P]+ as a valuable P1 building block was showcased in substitution reactions of the transferred LC-substituent using nucleophiles. This is demonstrated through the reactions of 5a[OTf] and 6c[OTf] with Grignard reagents and KNPh2, providing a convenient, high-yielding access to MesP═CPh2 (16) and otherwise difficult-to-synthesize 1,3-diphosphetane 17 and P-aminophosphaalkenes.
Collapse
Affiliation(s)
- Philipp Royla
- Chair
of Inorganic Molecular Chemistry, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01069 Dresden, Germany
| | - Kai Schwedtmann
- Chair
of Inorganic Molecular Chemistry, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01069 Dresden, Germany
| | - Zeyu Han
- Department
of Chemistry, University of British Columbia, 2036 Main Mall, V6T 1Z1 Vancouver, Canada
| | - Jannis Fidelius
- Chair
of Inorganic Molecular Chemistry, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01069 Dresden, Germany
| | - Derek P. Gates
- Department
of Chemistry, University of British Columbia, 2036 Main Mall, V6T 1Z1 Vancouver, Canada
| | - Rosa M. Gomila
- Department
of Chemistry, Universitat de Illes Balears, 07122 Palma de
Mallorca, Spain
| | - Antonio Frontera
- Department
of Chemistry, Universitat de Illes Balears, 07122 Palma de
Mallorca, Spain
| | - Jan J. Weigand
- Chair
of Inorganic Molecular Chemistry, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01069 Dresden, Germany
| |
Collapse
|
6
|
Ziółkowska A, Doroszuk J, Ponikiewski Ł. Overview of the Synthesis and Catalytic Reactivity of Transition Metal Complexes Based on C═P Bond Systems. Organometallics 2023. [DOI: 10.1021/acs.organomet.2c00379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
7
|
Wang Y, Robinson GH. Counterintuitive Chemistry: Carbene Stabilization of Zero-Oxidation State Main Group Species. J Am Chem Soc 2023; 145:5592-5612. [PMID: 36876997 DOI: 10.1021/jacs.2c13574] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
Carbenes have evolved from transient laboratory curiosities to a robust, diverse, and surprisingly impactful ligand class. A variety of different carbenes have significantly contributed to the development of low-oxidation state main group chemistry. This Perspective focuses upon advances in the chemistry of carbene complexes containing main group element cores in the formal oxidation state of zero, including their diverse synthetic strategies, unusual bonding and structural motifs, and utility in transition metal coordination chemistry and activation of small molecules.
Collapse
Affiliation(s)
- Yuzhong Wang
- Department of Chemistry, The University of Georgia, Athens, Georgia 30602-2556, United States
| | - Gregory H Robinson
- Department of Chemistry, The University of Georgia, Athens, Georgia 30602-2556, United States
| |
Collapse
|
8
|
Franz R, Szathmári B, Bruhn C, Kelemen Z, Pietschnig R. Gradual Donor Stabilization of a Transient Ferrocene Bridged Bisphosphanyl Phosphenium Cation. Inorg Chem 2023; 62:4341-4350. [PMID: 36827512 PMCID: PMC10015459 DOI: 10.1021/acs.inorgchem.3c00100] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
Abstract
A transient phosphenium cation embedded into a [3]ferrocenophane scaffold was formed via chloride abstraction. The cation has been trapped with phosphane, carbene, and silylene donors resulting in stable adducts or bond activation of the ferrocenophane bridge. In the absence of donors, dimerization of the phosphenium cation to the corresponding dication is observed or P-C bond activation with migration of a substituent leading to a putative phosphoniodiphosphene. Using 1,3-di-tert-butylimidazol-2-silylene as the donor, further reaction of the initially formed chlorosilane leads to activation of a P-P bond of the ferrocenophane scaffold with ring expansion of the ansa-bridge. The donor formation and bonding situation are investigated by density functional theory calculations as well as experimental methods (e.g., NMR spectroscopy and X-ray crystallography).
Collapse
Affiliation(s)
- Roman Franz
- Institute for Chemistry and CINSaT, University of Kassel, Heinrich-Plett-Straße 40, 34132 Kassel, Germany
| | - Balázs Szathmári
- Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Műegyetem Rkp 3, 1111 Budapest, Hungary
| | - Clemens Bruhn
- Institute for Chemistry and CINSaT, University of Kassel, Heinrich-Plett-Straße 40, 34132 Kassel, Germany
| | - Zsolt Kelemen
- Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Műegyetem Rkp 3, 1111 Budapest, Hungary
| | - Rudolf Pietschnig
- Institute for Chemistry and CINSaT, University of Kassel, Heinrich-Plett-Straße 40, 34132 Kassel, Germany
| |
Collapse
|
9
|
Francis M, Roy S. Stabilisation and reactivity studies of donor-base ligand-supported gallium-phosphides with stronger binding energy: a theoretical approach. RSC Adv 2023; 13:7738-7751. [PMID: 36909773 PMCID: PMC9993238 DOI: 10.1039/d2ra06001a] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 02/17/2023] [Indexed: 03/14/2023] Open
Abstract
Gallium phosphide is a three-dimensional polymeric material of the hetero-diatomic GaP unit, which has a wurtzite type structure, and captivating application as a light emitting diode (LED). As a result, there is a constant search for suitable precursors to synthesise GaP-based materials. However, the corresponding monomeric species is exotic in nature due to the expected Ga[triple bond, length as m-dash]P multiple bond. Herein, we report on the theoretical studies of stability, chemical bonding, and reactivity of the monomeric gallium phosphides with two donor base ligands having tuneable binding energies. We have performed detailed investigations using density functional theory at three different levels (BP86/def2-TZVPP, B3LYP/def2-TZVPP, M06-2X/def2-TZVPP), QTAIM and EDA-NOCV (BP86-D3(BJ)/TZ2P, M06-2X/TZ2P) to analyse various ligand-stabilised GaP monomers, which revealed the synthetic viability of such species in the presence of stable singlet carbenes, e.g., cAAC, and NHC as ligands [cAAC = cyclic alkyl(amino) carbene, NHC = N-heterocyclic carbene] due to the larger bond dissociation energy compared to a phosphine ligand (PMe3). The calculated bond dissociation energies between a pair of ligands and the monomeric GaP unit are found to be in the range of 87 to 137 kcal mol-1, predicting their possible syntheses in the laboratory. Further, the reactivity of such species with metal carbonyls [Fe(CO)4, and Ni(CO)3] have been theoretically investigated.
Collapse
Affiliation(s)
- Maria Francis
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati Tirupati 517507 India
| | - Sudipta Roy
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati Tirupati 517507 India
| |
Collapse
|
10
|
Steffenfauseweh H, Rottschäfer D, Vishnevskiy YV, Neumann B, Stammler HG, Szczepanik DW, Ghadwal RS. Isolation of an Annulated 1,4-Distibabenzene Diradicaloid. Angew Chem Int Ed Engl 2023; 62:e202216003. [PMID: 36598396 DOI: 10.1002/anie.202216003] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/23/2022] [Accepted: 01/04/2023] [Indexed: 01/05/2023]
Abstract
The first 1,4-distibabenzene-1,4-diide compound [(ADC)Sb]2 (5) based on an anionic dicarbene (ADC) (ADC=PhC{N(Dipp)C}2 , Dipp=2,6-iPr2 C6 H3 ) is reported as a bordeaux-red solid. Compound 5, featuring a central six-membered C4 Sb2 ring with formally SbI atoms may be regarded as a base-stabilized cyclic bis-stibinidene in which each of the Sb atoms bears two lone-pairs of electrons. 5 undergoes 2 e-oxidation with Ph3 C[B(C6 F5 )4 ] to afford [(ADC)Sb]2 [B(C6 F5 )4 ]2 (6) as a brick-red solid. Each of the Sb atoms of 6 has an unpaired electron and a lone-pair. The broken-symmetry open-shell singlet diradical solution for (6)2+ is calculated to be 2.13 kcal mol-1 more stable than the closed-shell singlet. The diradical character of (6)2+ according to SS-CASSCF (state-specific complete active space self-consistent field) and UHF (unrestricted Hartree-Fock) methods amounts to 36 % and 39 %, respectively. Treatments of 6 with (PhE)2 yield [(ADC)Sb(EPh)]2 [B(C6 F5 )4 ]2 (7-E) (E=S or Se). Reaction of 5 with (cod)Mo(CO)4 affords [(ADC)Sb]2 Mo(CO)4 (8).
Collapse
Affiliation(s)
- Henric Steffenfauseweh
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry, Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld, Universitätsstrasse 25, 33615, Bielefeld, Germany
| | - Dennis Rottschäfer
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry, Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld, Universitätsstrasse 25, 33615, Bielefeld, Germany.,Current address: Department of Chemistry, Philipps-University Marburg, Hans-Meerwein-Str. 4, Marburg, Germany
| | - Yury V Vishnevskiy
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry, Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld, Universitätsstrasse 25, 33615, Bielefeld, Germany
| | - Beate Neumann
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry, Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld, Universitätsstrasse 25, 33615, Bielefeld, Germany
| | - Hans-Georg Stammler
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry, Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld, Universitätsstrasse 25, 33615, Bielefeld, Germany
| | - Dariusz W Szczepanik
- Department of Theoretical Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Kraków, Poland
| | - Rajendra S Ghadwal
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry, Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld, Universitätsstrasse 25, 33615, Bielefeld, Germany
| |
Collapse
|
11
|
Nag E, Battuluri S, Sinu BB, Roy S. Carbene-Anchored Boryl- and Stibanyl-Phosphaalkenes as Precursors for Bis-Phosphaalkenyl Dichlorogermane and Mixed-Valence Ag I/Ag II Phosphinidenide. Inorg Chem 2022; 61:13007-13014. [PMID: 35939532 DOI: 10.1021/acs.inorgchem.2c01132] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cyclic alkyl(amino) carbene (cAAC)-anchored boryl- and stibanyl-phosphaalkenes with general formula cAAC = P-ER2 [E = B, R = (NiPr2)2 (3a-c); E = Sb, R = 2,4,6-triisopropylphenyl (5a-b)] have been synthesized and utilized as precursors for the bis-phosphaalkenyl dichlorogermane [(cAAC = P)2GeCl2] (6) and the first molecular example of a neutral polymeric mixed-valence AgI/AgII phosphinidenide complex [(cAACP)2Ag4IAgIICl4]n (7). All compounds have been characterized by single-crystal X-ray diffraction and further investigated by nuclear magnetic resonance (NMR), mass spectrometric analysis, and UV-vis/fluorescence measurements. The paramagnetic complex 7 has been characterized by ESR spectroscopy. Cyclic voltammetry studies of compounds 3/5 have suggested possible one-electron quasi-reversible reductions, indicating their redox noninnocent behavior in solution. Quantum chemical studies revealed the electron-sharing nature of the P-B and P-Sb σ bonds in compounds 3 and 5, and the polar CcAAC = P bonds in compounds 3, 5, and 6 prevailing their phosphaalkene structures over phosphinidenes.
Collapse
Affiliation(s)
- Ekta Nag
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517507, India
| | - Sridhar Battuluri
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517507, India
| | - Bhavya Bini Sinu
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517507, India
| | - Sudipta Roy
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517507, India
| |
Collapse
|
12
|
Koner A, Morgenstern B, Andrada DM. Metathesis Reactions of a NHC-Stabilized Phosphaborene. Angew Chem Int Ed Engl 2022; 61:e202203345. [PMID: 35583052 PMCID: PMC9401048 DOI: 10.1002/anie.202203345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Indexed: 11/25/2022]
Abstract
The BP unsaturated unit is a very attractive functional group as it provides novel reactivity and unique physical properties. Nonetheless, applications remain limited so far due to the bulky nature of B/P-protecting groups, required to prevent oligomerization. Herein, we report the synthesis and isolation of a N-heterocyclic carbene (NHC)-stabilized phosphaborene, bearing a trimethylsilyl (TMS) functionality at the P-terminal, as a room-temperature-stable crystalline solid accessible via facile NHC-induced trimethylsilyl chloride (TMSCl) elimination from its phosphinoborane precursor. This phosphaborene compound, bearing a genuine B=P bond, exhibits a remarkable ability for undergoing P-centre metathesis reactions, which allows the isolation of a series of unprecedented phosphaborenes. X-ray crystallographic analysis, UV/Vis spectroscopy, and DFT calculations provide insights into the B=P bonding situation.
Collapse
Affiliation(s)
- Abhishek Koner
- Faculty of Natural Sciences and TechnologyDepartment of ChemistrySaarland UniversityCampus C4.166123SaarbrückenGermany
| | - Bernd Morgenstern
- Faculty of Natural Sciences and TechnologyDepartment of ChemistrySaarland UniversityCampus C4.166123SaarbrückenGermany
| | - Diego M. Andrada
- Faculty of Natural Sciences and TechnologyDepartment of ChemistrySaarland UniversityCampus C4.166123SaarbrückenGermany
| |
Collapse
|
13
|
Gupta P, Taeufer T, Siewert JE, Reiß F, Drexler HJ, Pospech J, Beweries T, Hering-Junghans C. Synthesis, Coordination Chemistry, and Mechanistic Studies of P,N-Type Phosphaalkene-Based Rh(I) Complexes. Inorg Chem 2022; 61:11639-11650. [PMID: 35856631 DOI: 10.1021/acs.inorgchem.2c01158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The synthesis of P,N-phosphaalkene ligands, py-CH═PMes* (1, py = 2-pyridyl, Mes* = 2,4,6-tBu-C6H2) and the novel quin-CH═PMes* (2, quin = 2-quinolinyl) is described. The reaction with [Rh(μ-Cl)cod]2 produces Rh(I) bis(phosphaalkene) chlorido complexes 3 and 4 with distorted trigonal bipyramidal coordination environments. Complexes 3 and 4 show a pronounced metal-to-ligand charge transfer (MLCT) from Rh into the ligand P═C π* orbitals. Upon heating, quinoline-based complex 4 undergoes twofold C-H bond activation at the o-tBu groups of the Mes* substituents to yield the cationic bis(phosphaindane) Rh(I) complex 5, which could not be observed for the pyridine-based analogue 3. Using sub- or superstoichiometric amounts of AgOTf the C-H bond activation at an o-tBu group of one or at both Mes* was detected, respectively. Density functional theory (DFT) studies suggest an oxidative proton shift pathway as an alternative to a previously reported high-barrier oxidative addition at Rh(I). The Rh(I) mono- and bis(phosphaindane) triflate complexes 6 and 7, respectively, undergo deprotonation at the benzylic CH2 group of the phosphaindane unit in the presence of KOtBu to furnish neutral, distorted square-planar Rh(I) complexes 8 and 9, respectively, with one of the P,N ligands being dearomatized. All complexes were fully characterized, including multinuclear NMR, vibrational, and ultraviolet-visible (UV-vis) spectroscopy, as well as single-crystal X-ray and elemental analysis.
Collapse
Affiliation(s)
- Priyanka Gupta
- Leibniz-Institut für Katalyse e.V. (LIKAT), Albert-Einstein-Str. 29a, 18059 Rostock, Germany
| | - Tobias Taeufer
- Leibniz-Institut für Katalyse e.V. (LIKAT), Albert-Einstein-Str. 29a, 18059 Rostock, Germany
| | - Jan-Erik Siewert
- Leibniz-Institut für Katalyse e.V. (LIKAT), Albert-Einstein-Str. 29a, 18059 Rostock, Germany
| | - Fabian Reiß
- Leibniz-Institut für Katalyse e.V. (LIKAT), Albert-Einstein-Str. 29a, 18059 Rostock, Germany
| | - Hans-Joachim Drexler
- Leibniz-Institut für Katalyse e.V. (LIKAT), Albert-Einstein-Str. 29a, 18059 Rostock, Germany
| | - Jola Pospech
- Leibniz-Institut für Katalyse e.V. (LIKAT), Albert-Einstein-Str. 29a, 18059 Rostock, Germany
| | - Torsten Beweries
- Leibniz-Institut für Katalyse e.V. (LIKAT), Albert-Einstein-Str. 29a, 18059 Rostock, Germany
| | | |
Collapse
|
14
|
Koner A, Morgenstern B, Andrada DM. Metathese Reaktionen eines NHC‐stabilisierten Phosphaborens. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Abhishek Koner
- Faculty of Natural Sciences and Technology Department of Chemistry Saarland University Campus C4.1 66123 Saarbrücken Deutschland
| | - Bernd Morgenstern
- Faculty of Natural Sciences and Technology Department of Chemistry Saarland University Campus C4.1 66123 Saarbrücken Deutschland
| | - Diego M. Andrada
- Faculty of Natural Sciences and Technology Department of Chemistry Saarland University Campus C4.1 66123 Saarbrücken Deutschland
| |
Collapse
|
15
|
|
16
|
Kumar Sarkar S, Kundu S, Nazish M, Kretsch J, Herbst‐Irmer R, Stalke D, Parvathy P, Parameswaran P, Roesky HW. A Carbene-Stabilized Boryl-Phosphinidene. Chemistry 2022; 28:e202200913. [PMID: 35357049 PMCID: PMC9322276 DOI: 10.1002/chem.202200913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Indexed: 11/23/2022]
Abstract
Herein, the synthesis and characterization of the carbene-stabilized boryl phosphinidenes 1-3 are reported. Compounds 1-3 are obtained by reacting Me-cAAC=PK (Me2 -cAAC=dimethyl cyclic(alkyl)(amino)carbene) and dihaloaryl borane in toluene. All three compounds were characterized by X-ray crystallography. Quantum mechanical studies indicated that these compounds have two lone pairs on the P center viz., an σ-type lone pair and a "hidden" π-type lone pair. Hence, these compounds can act as double Lewis bases, and the basicity of the π-type lone pair is higher than the σ-type lone pair.
Collapse
Affiliation(s)
- Samir Kumar Sarkar
- Institut für Anorganische ChemieUniversität GöttingenTammannstrasse 437077GöttingenGermany
| | - Subrata Kundu
- Department of ChemistryIndian Institute of Technology Delhi Hauz KhasNew Delhi110016India
| | - Mohd Nazish
- Institut für Anorganische ChemieUniversität GöttingenTammannstrasse 437077GöttingenGermany
| | - Johannes Kretsch
- Institut für Anorganische ChemieUniversität GöttingenTammannstrasse 437077GöttingenGermany
| | - Regine Herbst‐Irmer
- Institut für Anorganische ChemieUniversität GöttingenTammannstrasse 437077GöttingenGermany
| | - Dietmar Stalke
- Institut für Anorganische ChemieUniversität GöttingenTammannstrasse 437077GöttingenGermany
| | - Parameswaran Parvathy
- Department of ChemistryNational Institute of Technology CalicutKozhikodeKerala673601India
| | - Pattiyil Parameswaran
- Department of ChemistryNational Institute of Technology CalicutKozhikodeKerala673601India
| | - Herbert W. Roesky
- Institut für Anorganische ChemieUniversität GöttingenTammannstrasse 437077GöttingenGermany
| |
Collapse
|
17
|
Affiliation(s)
| | - Brian R. James
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
18
|
Peters M, Bockfeld D, Tamm M. Cationic Iridium(I) NHC‐Phosphinidene Complexes and Their Application in Hydrogen Isotope Exchange Reactions. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202200148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Marius Peters
- Technische Universität Braunschweig: Technische Universitat Braunschweig Institut für Anorganische und Analytische Chemie GERMANY
| | - Dirk Bockfeld
- Technische Universität Braunschweig: Technische Universitat Braunschweig Institut für Anorganische und Analytische Chemie GERMANY
| | - Matthias Tamm
- Technische Universität Braunschweig Institut für Anorganische und Analytische Chemie Hagenring 30 38106 Braunschweig GERMANY
| |
Collapse
|
19
|
Bhattacharjee J, Bockfeld D, Tamm M. N-Heterocyclic Carbene-Phosphinidenide Complexes as Hydroboration Catalysts. J Org Chem 2022; 87:1098-1109. [PMID: 35007063 DOI: 10.1021/acs.joc.1c02377] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The reactions of the N-heterocyclic carbene-phosphinidene adducts (NHC)PSiMe3 and (NHC)PH with the dinuclear ruthenium and osmium complexes [(η6-p-cymene)MCl2]2 (M = Ru, Os) afforded the half-sandwich complexes [(η6-p-cymene){(NHC)P}MCl] and [(η6-p-cymene){(NHC)PH}MCl2] with two- and three-legged piano-stool geometries, respectively (NHC = IDipp, IMes; IDipp = 1,3-bis(2,6-diisopropylphenyl)imidazolin-2-ylidene; IMes = 1,3-bis(2,4,6-trimethylphenyl)imidazolin-2-ylidene). The complexes were initially tested as precatalysts for the hydroboration of benzonitrile, and the most active species, the ruthenium complex [(η6-p-cymene){(IMes)P}RuCl], was further used for the efficient hydroboration of a wide range (ca. 50 substrates) of nitriles, carboxylic esters, and carboxamides in neat pinacolborane (HBpin) under comparatively mild reaction conditions (60-80 °C, 3-5 mol % catalyst loading). Preliminary mechanistic and kinetic studies are reported, and stoichiometric reactions with HBpin indicate the initial formation of the monohydride complex [(η6-p-cymene){(IMes)P}RuH] as the putative catalytically active species.
Collapse
Affiliation(s)
- Jayeeta Bhattacharjee
- Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, 38106 Braunschweig, Germany
| | - Dirk Bockfeld
- Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, 38106 Braunschweig, Germany
| | - Matthias Tamm
- Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, 38106 Braunschweig, Germany
| |
Collapse
|
20
|
Weller R, Gonzalez A, Gottschling H, Hänisch C, Werncke CG. NHC‐Stabilized Parent Phosphinidene Adducts of Metal(II) Hexamethyldisilazanides of Manganese – Cobalt and Their Lability in Solution. Z Anorg Allg Chem 2022. [DOI: 10.1002/zaac.202100338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ruth Weller
- Department of Chemistry Philipps-Universität Marburg Hans-Meerwein-Straße 4 D-35032 Marburg Germany
| | - Andres Gonzalez
- Department of Chemistry Philipps-Universität Marburg Hans-Meerwein-Straße 4 D-35032 Marburg Germany
| | - Hannah Gottschling
- Department of Chemistry Philipps-Universität Marburg Hans-Meerwein-Straße 4 D-35032 Marburg Germany
| | - Carsten Hänisch
- Department of Chemistry Philipps-Universität Marburg Hans-Meerwein-Straße 4 D-35032 Marburg Germany
| | - C. Gunnar Werncke
- Department of Chemistry Philipps-Universität Marburg Hans-Meerwein-Straße 4 D-35032 Marburg Germany
| |
Collapse
|
21
|
Goerigk F, Birchall N, Feil CM, Nieger M, Gudat D. Reactions of Imidazolio‐Phosphides with Organotin Chlorides: Surprisingly Diverse. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202101026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Florian Goerigk
- Institut für Anorganische Chemie Universität Stuttgart Pfaffenwaldring 55 70550 Stuttgart Germany
| | - Nicholas Birchall
- Institut für Anorganische Chemie Universität Stuttgart Pfaffenwaldring 55 70550 Stuttgart Germany
| | - Christoph M. Feil
- Institut für Anorganische Chemie Universität Stuttgart Pfaffenwaldring 55 70550 Stuttgart Germany
| | - Martin Nieger
- Department of Chemistry University of Helsinki P.O Box 55 00014 University of Helsinki Finland
| | - Dietrich Gudat
- Institut für Anorganische Chemie Universität Stuttgart Pfaffenwaldring 55 70550 Stuttgart Germany
| |
Collapse
|
22
|
Cicač-Hudi M, Feil CM, Birchall N, Nieger M, Gudat D. A PH-functionalized dicationic bis(imidazolio)diphosphine. Dalton Trans 2021; 51:998-1007. [PMID: 34933323 DOI: 10.1039/d1dt03978d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Reaction of the iodide salt of a secondary imidazolio-iodophosphine [(L)PHI]I (L+ = 1,3-diarylimidazolium-yl) with an imidazolio-phosphide (L)PH in the presence of GaI3 afforded the isolable salt of a dicationic, bis(imidazolio)-substituted dihydro-diphosphine [(L)2P2H2][GaI4]2. Non-preparative formation of the cationic diphosphines was also observed upon spontaneous "dehalo-coupling" of [(L)PHI]+, or in reactions of [(L)PHI]I and (L)PH in the absence of GaI3. Further reaction of [(L)2P2H2]2+ with (L)PH produced an iodide salt of a known (bis)imidazolio-diphosphide monocation [(L)2P2H]+. The identity of cationic diphosphines and diphosphides was established by single-crystal X-ray diffraction studies. NMR spectroscopy revealed that dications [(L)2P2H2]2+ exist as a mixture of meso- and rac-diastereomers in solution. Computational studies confirmed the stereochemical assignment of the isomers observed, and gave insight into the bonding situation of the diphosphine dications.
Collapse
Affiliation(s)
- Mario Cicač-Hudi
- Institute of Inorganic Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70550 Stuttgart, Germany.
| | - Christoph M Feil
- Institute of Inorganic Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70550 Stuttgart, Germany.
| | - Nicholas Birchall
- Institute of Inorganic Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70550 Stuttgart, Germany.
| | - Martin Nieger
- Department of Chemistry, University of Helsinki, P.O. Box 55, 00014 University of Helsinki, Finland
| | - Dietrich Gudat
- Institute of Inorganic Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70550 Stuttgart, Germany.
| |
Collapse
|
23
|
Bhattacharjee J, Peters M, Bockfeld D, Tamm M. Isoselective Polymerization of rac-Lactide by Aluminum Complexes of N-Heterocyclic Carbene-Phosphinidene Adducts. Chemistry 2021; 27:5913-5918. [PMID: 33555047 PMCID: PMC8048956 DOI: 10.1002/chem.202100482] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Indexed: 11/18/2022]
Abstract
The N-heterocyclic carbene-phosphinidene adducts (NHC)PH were reacted with AlMe3 in toluene to afford the monoaluminum complexes [{(IDipp)PH}AlMe3 ] and [{(IMes)PH}AlMe3 ] (IDipp=1,3-bis(2,6-diisopropylphenyl)imidazolin-2-ylidene, IMes=1,3-bis(2,4,6-trimethylphenyl)imidazolin-2-ylidene). In contrast, the dialuminum complex [{(Me IMes)PH}(AlMe3 )2 ] was obtained for Me IMes=1,3-bis(2,4,6-trimethylphenyl)-4,5-dimethylimidazolin-2-ylidene. These complexes served as initiators for the efficient ring-opening polymerization of rac-lactide in toluene at 60 °C. High degrees of isoselectivity were found for the poly(rac-lactide) obtained in the presence of the monoaluminum complexes (Pm up to 0.92, Tm up to 191 °C), whereas almost atactic polymers were produced by the dialuminum complex. Detailed mechanistic studies reveal that the polymerization proceeds via a coordination-insertion mechanism with the carbene-phosphinidene ligands acting as stereodirecting groups.
Collapse
Affiliation(s)
- Jayeeta Bhattacharjee
- Institut für Anorganische und Analytische ChemieTechnische Universität BraunschweigHagenring 3038106BraunschweigGermany
| | - Marius Peters
- Institut für Anorganische und Analytische ChemieTechnische Universität BraunschweigHagenring 3038106BraunschweigGermany
| | - Dirk Bockfeld
- Institut für Anorganische und Analytische ChemieTechnische Universität BraunschweigHagenring 3038106BraunschweigGermany
| | - Matthias Tamm
- Institut für Anorganische und Analytische ChemieTechnische Universität BraunschweigHagenring 3038106BraunschweigGermany
| |
Collapse
|
24
|
Sharma MK, Rottschäfer D, Neumann B, Stammler HG, Danés S, Andrada DM, van Gastel M, Hinz A, Ghadwal RS. Metalloradical Cations and Dications Based on Divinyldiphosphene and Divinyldiarsene Ligands. Chemistry 2021; 27:5803-5809. [PMID: 33470468 PMCID: PMC8048781 DOI: 10.1002/chem.202100213] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Indexed: 01/09/2023]
Abstract
Metalloradicals are key species in synthesis, catalysis, and bioinorganic chemistry. Herein, two iron radical cation complexes (3‐E)GaCl4 [(3‐E).+ = [{(IPr)C(Ph)E}2Fe(CO)3].+, E = P or As; IPr = C{(NDipp)CH}2, Dipp = 2,6‐iPr2C6H3] are reported as crystalline solids. Treatment of the divinyldipnictenes {(IPr)C(Ph)E}2 (1‐E) with Fe2(CO)9 affords [{(IPr)C(Ph)E}2Fe(CO)3] (2‐E), in which 1‐E binds to the Fe atom in an allylic (η3‐EECvinyl) fashion and functions as a 4e donor ligand. Complexes 2‐E undergo 1e oxidation with GaCl3 to yield (3‐E)GaCl4. Spin density analysis revealed that the unpaired electron in (3‐E).+ is mainly located on the Fe (52–64 %) and vinylic C (30–36 %) atoms. Further 1e oxidation of (3‐E)GaCl4 leads to unprecedented η3‐EECvinyl to η3‐ECvinylCPh coordination shuttling to form the dications (4‐E)(GaCl4)2.
Collapse
Affiliation(s)
- Mahendra K Sharma
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry, Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld, Universitätsstrasse 25, 33615, Bielefeld, Germany
| | - Dennis Rottschäfer
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry, Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld, Universitätsstrasse 25, 33615, Bielefeld, Germany
| | - Beate Neumann
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry, Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld, Universitätsstrasse 25, 33615, Bielefeld, Germany
| | - Hans-Georg Stammler
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry, Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld, Universitätsstrasse 25, 33615, Bielefeld, Germany
| | - Sergi Danés
- Allgemeine und Anorganische Chemie, Universität des Saarlandes, Campus C4.1, 66123, Saarbrücken, Germany
| | - Diego M Andrada
- Allgemeine und Anorganische Chemie, Universität des Saarlandes, Campus C4.1, 66123, Saarbrücken, Germany
| | - Maurice van Gastel
- Max-Planck-Institut für Kohlenforschung Molecular Theory and Spectroscopy, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr, 45470, Germany
| | - Alexander Hinz
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstrasse 15, 76131, Karlsruhe, Germany
| | - Rajendra S Ghadwal
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry, Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld, Universitätsstrasse 25, 33615, Bielefeld, Germany
| |
Collapse
|
25
|
Hierlmeier G, Uttendorfer MK, Wolf R. Di- tert-butyldiphosphatetrahedrane as a building block for phosphaalkenes and phosphirenes. Chem Commun (Camb) 2021; 57:2356-2359. [PMID: 33576360 DOI: 10.1039/d0cc07103j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The remarkable 'mixed' diphosphatetrahedrane (tBuCP)2 (1) - which is both the elusive dimeric form of the phosphaalkyne tBuCP and an isolobal analogue of the important industrial feedstock P4 - was recently isolated for the first time; however, its chemistry remains unexplored. Herein we report that treatment of 1 with various N-heterocyclic carbenes readily yields unusual, unsaturated organophosphorus motifs. These results demonstrate the significant potential of 1 as a building block for the synthesis of previously unknown organophosphorus compounds.
Collapse
Affiliation(s)
- Gabriele Hierlmeier
- Universität Regensburg, Institut für Anorganische Chemie, Regensburg 93040, Germany.
| | - Maria K Uttendorfer
- Universität Regensburg, Institut für Anorganische Chemie, Regensburg 93040, Germany.
| | - Robert Wolf
- Universität Regensburg, Institut für Anorganische Chemie, Regensburg 93040, Germany.
| |
Collapse
|
26
|
Giese S, Klimov K, Mikeházi A, Kelemen Z, Frost DS, Steinhauer S, Müller P, Nyulászi L, Müller C. 2‐(Dimethylamino)phosphinin: Ein phosphorhaltiges Anilinderivat. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202014423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Steven Giese
- Freie Universität Berlin Institut für Chemie und Biochemie Fabeckstraße 34/36 14195 Berlin Deutschland
| | - Katrin Klimov
- Freie Universität Berlin Institut für Chemie und Biochemie Fabeckstraße 34/36 14195 Berlin Deutschland
| | - Antal Mikeházi
- Department of Inorganic and Analytical Chemistry Budapest University of Technology and Economics and MTA-BME Computation Driven Chemistry Research Group Szt. Gellért tér 4 1111 Budapest Ungarn
| | - Zsolt Kelemen
- Department of Inorganic and Analytical Chemistry Budapest University of Technology and Economics and MTA-BME Computation Driven Chemistry Research Group Szt. Gellért tér 4 1111 Budapest Ungarn
| | - Daniel S. Frost
- Freie Universität Berlin Institut für Chemie und Biochemie Fabeckstraße 34/36 14195 Berlin Deutschland
| | - Simon Steinhauer
- Freie Universität Berlin Institut für Chemie und Biochemie Fabeckstraße 34/36 14195 Berlin Deutschland
| | - Peter Müller
- Department of Chemistry Massachusetts Institute of Technology 77 Massachusetts Avenue, 2-325 Cambridge MA 02139-4307 USA
| | - László Nyulászi
- Department of Inorganic and Analytical Chemistry Budapest University of Technology and Economics and MTA-BME Computation Driven Chemistry Research Group Szt. Gellért tér 4 1111 Budapest Ungarn
| | - Christian Müller
- Freie Universität Berlin Institut für Chemie und Biochemie Fabeckstraße 34/36 14195 Berlin Deutschland
| |
Collapse
|
27
|
Giese S, Klimov K, Mikeházi A, Kelemen Z, Frost DS, Steinhauer S, Müller P, Nyulászi L, Müller C. 2-(Dimethylamino)phosphinine: A Phosphorus-Containing Aniline Derivative. Angew Chem Int Ed Engl 2021; 60:3581-3586. [PMID: 33146935 DOI: 10.1002/anie.202014423] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Indexed: 11/09/2022]
Abstract
The yet unknown 2-amino-substituted λ3 ,σ2 -phosphinines are phosphorus-containing aniline derivatives. Calculations show that the strong interaction of the π-donating NR2 group with the aromatic system results in a high π-density at the phosphorus atom. We could now synthesize 2-N(CH3 )2 -functionalized phosphinines, starting from a 3-N(CH3 )2 -substituted 2-pyrone and (CH3 )3 Si-C≡P. Their reaction with CuBr⋅S(CH3 )2 affords CuI complexes with the first example of a neutral phosphinine acting as a rare bridging μ2 -P-4e donor-ligand between two CuI centers. Our experimental and theoretical investigations show that 2-aminophosphinines are missing links in the series of known 2-donor-functionalized phosphinines.
Collapse
Affiliation(s)
- Steven Giese
- Freie Universität Berlin, Institut für Chemie und Biochemie, Fabeckstrasse 34/36, 14195, Berlin, Germany
| | - Katrin Klimov
- Freie Universität Berlin, Institut für Chemie und Biochemie, Fabeckstrasse 34/36, 14195, Berlin, Germany
| | - Antal Mikeházi
- Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics and MTA-BME Computation Driven Chemistry Research Group, Szt. Gellért tér 4, 1111, Budapest, Hungary
| | - Zsolt Kelemen
- Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics and MTA-BME Computation Driven Chemistry Research Group, Szt. Gellért tér 4, 1111, Budapest, Hungary
| | - Daniel S Frost
- Freie Universität Berlin, Institut für Chemie und Biochemie, Fabeckstrasse 34/36, 14195, Berlin, Germany
| | - Simon Steinhauer
- Freie Universität Berlin, Institut für Chemie und Biochemie, Fabeckstrasse 34/36, 14195, Berlin, Germany
| | - Peter Müller
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, 2-325, Cambridge, MA, 02139-4307, USA
| | - László Nyulászi
- Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics and MTA-BME Computation Driven Chemistry Research Group, Szt. Gellért tér 4, 1111, Budapest, Hungary
| | - Christian Müller
- Freie Universität Berlin, Institut für Chemie und Biochemie, Fabeckstrasse 34/36, 14195, Berlin, Germany
| |
Collapse
|
28
|
Hadlington TJ, Kostenko A, Driess M. Synthesis and Coordination Ability of a Donor-Stabilised Bis-Phosphinidene. Chemistry 2021; 27:2476-2482. [PMID: 33105041 PMCID: PMC7898926 DOI: 10.1002/chem.202004300] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/23/2020] [Indexed: 11/21/2022]
Abstract
Chelating phosphines have long been a mainstay as efficient directing ligands in transition-metal catalysis. Low-valent derivatives, namely chelating phosphinidenes, are to date unknown, and could lead to chelating complexes containing more than one metal centre due to the intrisic capacity of phosphinidenes to bind two metal fragments at one P-centre. Here we describe the synthesis of the first such chelating bis-phosphinidene ligand, XantP2 (2), generated by the reduction of a diphosphino xanthene derivative, Xant(PH2 )2 (1) with iPr NHC (iPr NHC=[:C{N(iPr)C(H)}2 ]). Initial studies have shown that this novel chelating ligand can act as a bidentate ligand towards element dihalides (i.e. FeCl2 , ZnI2 , GeCl2 , SnBr2 ), forming cationic complexes with the tetryl elements. In contrast, XantP2 demonstrates an ability to bind multiple metal centres in the reaction with CuCl, leading to a cationic Cu3 P3 ring complex, with Cu centres bridged by phosphinidene arms. Density Functional Theory calculations show that 2 indeed holds 4 lone pairs of electrons, shedding further light on the coordination capacity for this novel ligand class through observation of directionality and hybridisation of these electron pairs.
Collapse
Affiliation(s)
- Terrance J. Hadlington
- Department of Chemistry, Metalorganics and Inorganic MaterialsTechniche Universität BerlinStrasse des 17. Juni 135, Sekr. C210623BerlinGermany
- Department of ChemistryTechnische Universität MünchenLichtenbergstraße 485748GarchingGermany
| | - Arseni Kostenko
- Department of Chemistry, Metalorganics and Inorganic MaterialsTechniche Universität BerlinStrasse des 17. Juni 135, Sekr. C210623BerlinGermany
| | - Matthias Driess
- Department of Chemistry, Metalorganics and Inorganic MaterialsTechniche Universität BerlinStrasse des 17. Juni 135, Sekr. C210623BerlinGermany
| |
Collapse
|
29
|
Ziółkowska A, Szynkiewicz N, Ponikiewski Ł. Two complementary approaches for the synthesis and isolation of stable phosphanylphosphaalkenes. Inorg Chem Front 2021. [DOI: 10.1039/d1qi00550b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A new series of compounds formed in a one-step reaction (Phospha–Wittig or phospha–Peterson), containing the CP–P moiety was synthesized and characterized. These species are stable under atmospheric conditions and are resistant to hydrolysis.
Collapse
Affiliation(s)
- Aleksandra Ziółkowska
- Gdansk University of Technology
- Faculty of Chemistry
- Department of Inorganic Chemistry
- 80-233 Gdansk
- Poland
| | - Natalia Szynkiewicz
- Gdansk University of Technology
- Faculty of Chemistry
- Department of Inorganic Chemistry
- 80-233 Gdansk
- Poland
| | - Łukasz Ponikiewski
- Gdansk University of Technology
- Faculty of Chemistry
- Department of Inorganic Chemistry
- 80-233 Gdansk
- Poland
| |
Collapse
|
30
|
Bani-Fwaz MZ. Main Group and Transition Metal-Mediated Phosphaalkene Insertion Reactions Initiated by Phosphines Containing Si–P Bond. COMMENT INORG CHEM 2020. [DOI: 10.1080/02603594.2020.1837783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Mutasem Z. Bani-Fwaz
- Department of Chemistry, Faculty of Science, King Khalid University, Abha, Saudi Arabia
- Research Centre for Advanced Materials Science (RCAMS), King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
31
|
Rodriguez Villanueva JE, Wiebe MA, Lavoie GG. Coordination and Reactivity Studies of Titanium Complexes of Monoanionic Inversely Polarized Phosphaalkene–Ethenolate Ligands. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00476] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
| | - Matthew A. Wiebe
- Department of Chemistry, York University, 4700 Keele Street, Toronto, Ontario, Canada M3J 1P3
| | - Gino G. Lavoie
- Department of Chemistry, York University, 4700 Keele Street, Toronto, Ontario, Canada M3J 1P3
| |
Collapse
|
32
|
Rottschäfer D, Neumann B, Stammler HG, Andrada DM, Ghadwal RS. Isolation of Elusive Electrophilic Phosphinidene Complexes with π-Donor N-Heterocyclic Vinyl Substituents. J Org Chem 2020; 85:14351-14359. [PMID: 32297512 DOI: 10.1021/acs.joc.0c00176] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Phosphinidene complexes of the general formula RPM(CO)n (R = an alkyl or aryl group; M = a transition metal) are electrophilic and thermally unstable. Thus, the isolation of these elusive species for structural elucidations remains a challenge. Herein, we report the first terminal phosphinidene complexes [{(NHC)C(Ph)}P]Fe(CO)4 [NHC = IPr = C{(NDipp)CH}2 for 3; Me-IPr = C{(NDipp)CMe}2 for 4; Dipp = 2,6-iPr2C6H3; NHC = N-heterocyclic carbene] as red crystalline solids containing a π-donor N-heterocyclic vinyl (NHV) substituent at the phosphorus atom. Calculations reveal donor-acceptor type bonding between phosphorus and iron atoms in 3 and 4. The P → Fe donation represents ∼70% of the orbital interaction, whereas the Fe → P π-back-donation corresponds to ∼15% of the orbital interaction. The phosphorus atoms in 3 and 4 carry charges of +0.65e and +0.64e, respectively, indicating the electrophilic character of the phosphinidene {(NHC)C(Ph)}P moiety. Accordingly, 3 reacts with an NHC nucleophile (IMe4) to yield the Lewis adduct [{(NHC)C(Ph)}P(IMe4)]Fe(CO)4 (5) [IMe4 = C(NMeCMe)2]. The coordination of an electron-rich NHC (IMe4) to the phosphorus atom in 5 precludes the π-electron density transfer from the NHV to the phosphorus atom. Thus, the CIPr-Cvinyl and Cvinyl-P bonds of 5 become shorter and longer, respectively, compared to those of 3.
Collapse
Affiliation(s)
- Dennis Rottschäfer
- Anorganische Molekülchemie und Katalyse, Lehrstuhl für Anorganische Chemie und Strukturchemie, Centrum für Molekulare Materialien, Fakultät für Chemie, Universität Bielefeld, Universitätsstraße 25, D-33615 Bielefeld, Germany
| | - Beate Neumann
- Anorganische Molekülchemie und Katalyse, Lehrstuhl für Anorganische Chemie und Strukturchemie, Centrum für Molekulare Materialien, Fakultät für Chemie, Universität Bielefeld, Universitätsstraße 25, D-33615 Bielefeld, Germany
| | - Hans-Georg Stammler
- Anorganische Molekülchemie und Katalyse, Lehrstuhl für Anorganische Chemie und Strukturchemie, Centrum für Molekulare Materialien, Fakultät für Chemie, Universität Bielefeld, Universitätsstraße 25, D-33615 Bielefeld, Germany
| | - Diego M Andrada
- Allgemeine und Anorganische Chemie, Universität des Saarlandes, Campus C4.1, D-66123 Saarbrücken, Germany
| | - Rajendra S Ghadwal
- Anorganische Molekülchemie und Katalyse, Lehrstuhl für Anorganische Chemie und Strukturchemie, Centrum für Molekulare Materialien, Fakultät für Chemie, Universität Bielefeld, Universitätsstraße 25, D-33615 Bielefeld, Germany
| |
Collapse
|
33
|
Buzsáki D, Kelemen Z, Nyulászi L. Stretching the P-C Bond. Variations on Carbenes and Phosphanes. J Phys Chem A 2020; 124:2660-2671. [PMID: 32159965 PMCID: PMC7307921 DOI: 10.1021/acs.jpca.0c00641] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 03/10/2020] [Indexed: 11/28/2022]
Abstract
The stability and the structure of adducts formed between four substituted phosphanes (PX3, X:H, F, Cl, and NMe2) and 11 different carbenes have been investigated by DFT calculations. In most cases, the structure of the adducts depends strongly on the stability of the carbene itself, exhibiting a linear correlation with the increasing dissociation energy of the adduct. Carbenes of low stability form phosphorus ylides (F), which can be described as phosphane → carbene adducts supported with some back-bonding. The most stable carbenes, which have high energy lone pair, do not form stable F-type structures but carbene → phosphane adducts (E-type structure), utilizing the low-lying lowest unoccupied molecular orbital (LUMO) of the phosphane (with electronegative substituents), benefiting also from the carbene-pnictogen interaction. Especially noteworthy is the case of PCl3, which has an extremely low energy LUMO in its T-shaped form. Although this PCl3 structure is a transition state of rather high energy, the large stabilization energy of the complex makes this carbene-phosphane adduct stable. Most interestingly, in case of carbenes with medium stability both F- and E-type structures could be optimized, giving rise to bond-stretch isomerism. Likewise, for phosphorus ylides (F), the stability of the adducts G formed from carbenes with hypovalent phosphorus (PX-phosphinidene) is in a linear relationship with the stabilization of the carbene. Adducts of carbenes with hypervalent phosphorus (PX5) are the most stable when X is electronegative, and the carbene is highly nucleophilic.
Collapse
Affiliation(s)
- Dániel Buzsáki
- Department
of Inorganic and Analytical Chemistry, Budapest
University of Technology and Economics, Szent Gellért tér 4, H-1111 Budapest, Hungary
| | - Zsolt Kelemen
- Department
of Inorganic and Analytical Chemistry, Budapest
University of Technology and Economics, Szent Gellért tér 4, H-1111 Budapest, Hungary
| | - László Nyulászi
- Department
of Inorganic and Analytical Chemistry, Budapest
University of Technology and Economics, Szent Gellért tér 4, H-1111 Budapest, Hungary
- MTA-BME
Computation Driven Chemistry Research Group, Szent Gellért tér 4, H-1111 Budapest, Hungary
| |
Collapse
|
34
|
A. C. A. Bayrakdar T, Scattolin T, Ma X, Nolan SP. Dinuclear gold(i) complexes: from bonding to applications. Chem Soc Rev 2020; 49:7044-7100. [DOI: 10.1039/d0cs00438c] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The last two decades have seen a veritable explosion in the use of gold(i) complexes bearing N-heterocyclic carbene (NHC) and phosphine (PR3) ligands.
Collapse
Affiliation(s)
| | - Thomas Scattolin
- Department of Chemistry and Center for Sustainable Chemistry
- Ghent University
- Ghent
- Belgium
| | - Xinyuan Ma
- Department of Chemistry and Center for Sustainable Chemistry
- Ghent University
- Ghent
- Belgium
| | - Steven P. Nolan
- Department of Chemistry and Center for Sustainable Chemistry
- Ghent University
- Ghent
- Belgium
| |
Collapse
|
35
|
Doddi A, Peters M, Tamm M. N-Heterocyclic Carbene Adducts of Main Group Elements and Their Use as Ligands in Transition Metal Chemistry. Chem Rev 2019; 119:6994-7112. [PMID: 30983327 DOI: 10.1021/acs.chemrev.8b00791] [Citation(s) in RCA: 309] [Impact Index Per Article: 61.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
N-Heterocyclic carbenes (NHC) are nowadays ubiquitous and indispensable in many research fields, and it is not possible to imagine modern transition metal and main group element chemistry without the plethora of available NHCs with tailor-made electronic and steric properties. While their suitability to act as strong ligands toward transition metals has led to numerous applications of NHC complexes in homogeneous catalysis, their strong σ-donating and adaptable π-accepting abilities have also contributed to an impressive vitalization of main group chemistry with the isolation and characterization of NHC adducts of almost any element. Formally, NHC coordination to Lewis acids affords a transfer of nucleophilicity from the carbene carbon atom to the attached exocyclic moiety, and low-valent and low-coordinate adducts of the p-block elements with available lone pairs and/or polarized carbon-element π-bonds are able to act themselves as Lewis basic donor ligands toward transition metals. Accordingly, the availability of a large number of novel NHC adducts has not only produced new varieties of already existing ligand classes but has also allowed establishment of numerous complexes with unusual and often unprecedented element-metal bonds. This review aims at summarizing this development comprehensively and covers the usage of N-heterocyclic carbene adducts of the p-block elements as ligands in transition metal chemistry.
Collapse
Affiliation(s)
- Adinarayana Doddi
- Technische Universität Braunschweig, Institut für Anorganische und Analytische Chemie, Hagenring 30, 38106 Braunschweig, Germany
| | - Marius Peters
- Technische Universität Braunschweig, Institut für Anorganische und Analytische Chemie, Hagenring 30, 38106 Braunschweig, Germany
| | - Matthias Tamm
- Technische Universität Braunschweig, Institut für Anorganische und Analytische Chemie, Hagenring 30, 38106 Braunschweig, Germany
| |
Collapse
|
36
|
Wang G, Freeman LA, Dickie DA, Mokrai R, Benkő Z, Gilliard RJ. Isolation of Cyclic(Alkyl)(Amino) Carbene-Bismuthinidene Mediated by a Beryllium(0) Complex. Chemistry 2019; 25:4335-4339. [PMID: 30706565 PMCID: PMC6593863 DOI: 10.1002/chem.201900458] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Indexed: 11/25/2022]
Abstract
The long-sought carbene-bismuthinidene, (CAAC)Bi(Ph), has been synthesized. Notably, this represents both the first example of a carbene-stabilized subvalent bismuth complex and the extension of the carbene-pnictinidene concept to a non-toxic metallic element (Bi). The bonding has been investigated by single-crystal X-ray diffraction studies and DFT calculations. This report also highlights the hitherto unknown reducing and ligand transfer capability of a beryllium(0) complex.
Collapse
Affiliation(s)
- Guocang Wang
- Department of ChemistryUniversity of Virginia409 McCormick Rd./ PO Box 400319CharlottesvilleVA22904USA
| | - Lucas A. Freeman
- Department of ChemistryUniversity of Virginia409 McCormick Rd./ PO Box 400319CharlottesvilleVA22904USA
| | - Diane A. Dickie
- Department of ChemistryUniversity of Virginia409 McCormick Rd./ PO Box 400319CharlottesvilleVA22904USA
| | - Réka Mokrai
- Department of Inorganic and Analytical ChemistryBudapest University of Technology and EconomicsSzent Gellért tér 4Budapest1111Hungary
| | - Zoltán Benkő
- Department of Inorganic and Analytical ChemistryBudapest University of Technology and EconomicsSzent Gellért tér 4Budapest1111Hungary
| | - Robert J. Gilliard
- Department of ChemistryUniversity of Virginia409 McCormick Rd./ PO Box 400319CharlottesvilleVA22904USA
| |
Collapse
|
37
|
Binder JF, Swidan A, Macdonald CLB. Synthesis of Heteroleptic Phosphorus(I) Cations by P + Transfer. Inorg Chem 2018; 57:11717-11725. [PMID: 30191717 DOI: 10.1021/acs.inorgchem.8b01822] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Reported are general synthetic approaches for the syntheses of asymmetrically substituted phosphorus(I) cations by P+ transfer from [dppeP]+ (dppe = 1,2-bis(diphenylphosphino)ethane). The first method grants access to acyclic derivatives and is accomplished by the sequential substitution of dppe using first a sterically encumbered ligand which cannot form a stable homoleptic complex, followed by a second equivalent of a less sterically demanding ligand. The second method grants access to cyclic derivatives and utilizes asymmetric hybrid phosphine/N-heterocyclic carbene ligands. Interplay between the different ligand types and their stoichiometries relative to those of [dppeP]+ also allows for the isolation of symmetrical derivatives with pendant phosphines.
Collapse
Affiliation(s)
- Justin F Binder
- Department of Chemistry and Biochemistry , University of Windsor , 401 Sunset Avenue , Windsor , Ontario N9B 3P4 , Canada
| | - Ala'aeddeen Swidan
- Department of Chemistry and Biochemistry , University of Windsor , 401 Sunset Avenue , Windsor , Ontario N9B 3P4 , Canada
| | - Charles L B Macdonald
- Department of Chemistry and Biochemistry , University of Windsor , 401 Sunset Avenue , Windsor , Ontario N9B 3P4 , Canada
| |
Collapse
|
38
|
Nesterov V, Reiter D, Bag P, Frisch P, Holzner R, Porzelt A, Inoue S. NHCs in Main Group Chemistry. Chem Rev 2018; 118:9678-9842. [PMID: 29969239 DOI: 10.1021/acs.chemrev.8b00079] [Citation(s) in RCA: 532] [Impact Index Per Article: 88.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Since the discovery of the first stable N-heterocyclic carbene (NHC) in the beginning of the 1990s, these divalent carbon species have become a common and available class of compounds, which have found numerous applications in academic and industrial research. Their important role as two-electron donor ligands, especially in transition metal chemistry and catalysis, is difficult to overestimate. In the past decade, there has been tremendous research attention given to the chemistry of low-coordinate main group element compounds. Significant progress has been achieved in stabilization and isolation of such species as Lewis acid/base adducts with highly tunable NHC ligands. This has allowed investigation of numerous novel types of compounds with unique electronic structures and opened new opportunities in the rational design of novel organic catalysts and materials. This Review gives a general overview of this research, basic synthetic approaches, key features of NHC-main group element adducts, and might be useful for the broad research community.
Collapse
Affiliation(s)
- Vitaly Nesterov
- Department of Chemistry, WACKER-Institute of Silicon Chemistry and Catalysis Research Center , Technische Universität München , Lichtenbergstrasse 4 , Garching bei München 85748 , Germany
| | - Dominik Reiter
- Department of Chemistry, WACKER-Institute of Silicon Chemistry and Catalysis Research Center , Technische Universität München , Lichtenbergstrasse 4 , Garching bei München 85748 , Germany
| | - Prasenjit Bag
- Department of Chemistry, WACKER-Institute of Silicon Chemistry and Catalysis Research Center , Technische Universität München , Lichtenbergstrasse 4 , Garching bei München 85748 , Germany
| | - Philipp Frisch
- Department of Chemistry, WACKER-Institute of Silicon Chemistry and Catalysis Research Center , Technische Universität München , Lichtenbergstrasse 4 , Garching bei München 85748 , Germany
| | - Richard Holzner
- Department of Chemistry, WACKER-Institute of Silicon Chemistry and Catalysis Research Center , Technische Universität München , Lichtenbergstrasse 4 , Garching bei München 85748 , Germany
| | - Amelie Porzelt
- Department of Chemistry, WACKER-Institute of Silicon Chemistry and Catalysis Research Center , Technische Universität München , Lichtenbergstrasse 4 , Garching bei München 85748 , Germany
| | - Shigeyoshi Inoue
- Department of Chemistry, WACKER-Institute of Silicon Chemistry and Catalysis Research Center , Technische Universität München , Lichtenbergstrasse 4 , Garching bei München 85748 , Germany
| |
Collapse
|
39
|
Krachko T, Slootweg JC. N-Heterocyclic Carbene-Phosphinidene Adducts: Synthesis, Properties, and Applications. Eur J Inorg Chem 2018. [DOI: 10.1002/ejic.201800459] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Tetiana Krachko
- Van ‘t Hoff Institute for Molecular Sciences; University of Amsterdam; Science Park 904, PO Box 94157 1090 GD Amsterdam The Netherlands
| | - J. Chris Slootweg
- Van ‘t Hoff Institute for Molecular Sciences; University of Amsterdam; Science Park 904, PO Box 94157 1090 GD Amsterdam The Netherlands
| |
Collapse
|
40
|
Schwedtmann K, Zanoni G, Weigand JJ. Recent Advances in Imidazoliumyl-Substituted Phosphorus Compounds. Chem Asian J 2018; 13:1388-1405. [PMID: 29573181 DOI: 10.1002/asia.201800199] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 03/17/2018] [Indexed: 12/31/2022]
Abstract
This review aims to highlight the recent developments in the chemistry of selected imidazoliumyl-substituted phosphorus compounds. The synthetic approaches for their preparation with phosphorus in various oxidation states and coordination environments are discussed. Their intriguing properties and versatile chemistry strongly depends on the bonding motif at the P atoms, which is given special focus.
Collapse
Affiliation(s)
- Kai Schwedtmann
- Faculty of Chemistry and Food Chemistry, TU Dresden, Chair of Inorganic Molecular Chemistry, 01062, Dresden, Germany
| | - Giuseppe Zanoni
- Department of Chemistry, University of Pavia, Viale Taramelli 10, 27100, Pavia, Italy
| | - Jan J Weigand
- Faculty of Chemistry and Food Chemistry, TU Dresden, Chair of Inorganic Molecular Chemistry, 01062, Dresden, Germany.,Department of Chemistry, University of Pavia, Viale Taramelli 10, 27100, Pavia, Italy
| |
Collapse
|
41
|
Weber L. 2-Phospha- and 2-Arsaethynolates - Versatile Building Blocks in Modern Synthetic Chemistry. Eur J Inorg Chem 2018. [DOI: 10.1002/ejic.201800179] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Lothar Weber
- Centrum für Molekulare Materialien; Fakultät für Chemie; Universität Bielefeld; Universitätsstraße 25 33615 Bielefeld Germany
| |
Collapse
|
42
|
Adhikari AK, Grell T, Lönnecke P, Hey-Hawkins E. Versatile Coordination Modes of Triphospha-1,4-pentadiene-2,4-diamine. Inorg Chem 2018; 57:3297-3304. [PMID: 29509417 DOI: 10.1021/acs.inorgchem.8b00067] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
1,3,5-Triphospha-1,4-pentadiene-2,4-diamine reacts with [M(CO)4L] (M = Mo, L = nbd (norbornadiene); M = W, L = 2 CH3CN) to give the chelate complexes [M(CO)4(PMes{C(NHCy)PMes}2-κ P1 ,P3)]. In contrast, an unusual intramolecular rearrangement occurred with [Cu(CH3CN)4]PF6 leading to the dimeric copper(I) complex [Cu(CNCy){PHMesPMesC(NHCy)PMes-κ P1 ,P3}]2(PF6)2. The mechanism of the rearrangement was supported by quantum-mechanical calculations. The transition-metal complexes were characterized by multinuclear NMR spectroscopy, mass spectrometry, infrared spectroscopy, and X-ray crystallography.
Collapse
Affiliation(s)
- Anup K Adhikari
- Faculty of Chemistry and Mineralogy , Institute of Inorganic Chemistry , Johannisallee 29 , D-04103 Leipzig , Germany
| | - Toni Grell
- Faculty of Chemistry and Mineralogy , Institute of Inorganic Chemistry , Johannisallee 29 , D-04103 Leipzig , Germany
| | - Peter Lönnecke
- Faculty of Chemistry and Mineralogy , Institute of Inorganic Chemistry , Johannisallee 29 , D-04103 Leipzig , Germany
| | - Evamarie Hey-Hawkins
- Faculty of Chemistry and Mineralogy , Institute of Inorganic Chemistry , Johannisallee 29 , D-04103 Leipzig , Germany
| |
Collapse
|
43
|
Dutta S, Maity B, Thirumalai D, Koley D. Computational Investigation of Carbene–Phosphinidenes: Correlation between 31P Chemical Shifts and Bonding Features to Estimate the π-Backdonation of Carbenes. Inorg Chem 2018. [DOI: 10.1021/acs.inorgchem.8b00174] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sayan Dutta
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741 246, India
| | - Bholanath Maity
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741 246, India
| | - D. Thirumalai
- Department of Chemistry, Thiruvalluvar University, Serkkadu, Vellore 632 115, India
| | - Debasis Koley
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741 246, India
| |
Collapse
|
44
|
Binder JF, Kosnik SC, Macdonald CLB. Assessing the Ligand Properties of NHC-Stabilised Phosphorus(I) Cations. Chemistry 2018; 24:3556-3565. [DOI: 10.1002/chem.201705224] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Indexed: 12/23/2022]
Affiliation(s)
- Justin F. Binder
- Department of Chemistry and Biochemistry; University of Windsor; 401 Sunset Ave. Windsor N9B 3P4 Ontario Canada
| | - Stephanie C. Kosnik
- Department of Chemistry and Biochemistry; University of Windsor; 401 Sunset Ave. Windsor N9B 3P4 Ontario Canada
| | - Charles L. B. Macdonald
- Department of Chemistry and Biochemistry; University of Windsor; 401 Sunset Ave. Windsor N9B 3P4 Ontario Canada
| |
Collapse
|
45
|
Morales Salazar D, Gupta AK, Orthaber A. Reactivity studies of an imine-functionalised phosphaalkene; unusual electrostatic and supramolecular stabilisation of a σ2λ3-phosphorus motif via hydrogen bonding. Dalton Trans 2018; 47:10404-10409. [DOI: 10.1039/c8dt01607k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Protonation with strong acids at an imine over addition to a phosphaalkene; resulting adducts display hydrogen bonding.
Collapse
Affiliation(s)
- Daniel Morales Salazar
- Molecular Inorganic Chemistry
- Department of Chemistry - Ångström Laboratories
- Uppsala University
- Sweden
| | - Arvind Kumar Gupta
- Molecular Inorganic Chemistry
- Department of Chemistry - Ångström Laboratories
- Uppsala University
- Sweden
| | - Andreas Orthaber
- Molecular Inorganic Chemistry
- Department of Chemistry - Ångström Laboratories
- Uppsala University
- Sweden
| |
Collapse
|
46
|
Kosnik SC, Nascimento MC, Binder JF, Macdonald CLB. Accessing multimetallic complexes with a phosphorus(i) zwitterion. Dalton Trans 2017; 46:17080-17092. [PMID: 29188249 DOI: 10.1039/c7dt03844e] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We present the synthesis of a zwitterionic triphosphenium molecule, tBu(C5H2)(PPh2)2PI (L), which can act as a single- or multidentate ligand with group 6, 7, 8 and 9 metal carbonyl complexes. Group 6, [M(CO)5L] complexes are formed under photolytic conditions, where the metal is bound at the P(i) center. In the case of Mo(CO)6, the bimetallic complex [M(CO)5LMo(CO)3] is generated, which features bonds to both the phosphorus(i) center and the cyclopentadienyl moiety of the molecule. Interestingly, group 7 and 9 metal carbonyl dimers generate bimetallic complexes in the form [M2(CO)nL], where both metal centers are bound at the phosphorus(i) center. A detailed analysis of these molecules is provided, including X-ray diffraction, multinuclear NMR, infrared spectroscopy and computational investigations.
Collapse
Affiliation(s)
- Stephanie C Kosnik
- Department of Chemistry and Biochemistry, The University of Windsor, 401 Sunset Avenue, Windsor, ON N9B 3P4, Canada.
| | - Maxemilian C Nascimento
- Department of Chemistry and Biochemistry, The University of Windsor, 401 Sunset Avenue, Windsor, ON N9B 3P4, Canada.
| | - Justin F Binder
- Department of Chemistry and Biochemistry, The University of Windsor, 401 Sunset Avenue, Windsor, ON N9B 3P4, Canada.
| | - Charles L B Macdonald
- Department of Chemistry and Biochemistry, The University of Windsor, 401 Sunset Avenue, Windsor, ON N9B 3P4, Canada.
| |
Collapse
|
47
|
Dostál L. Quest for stable or masked pnictinidenes: Emerging and exciting class of group 15 compounds. Coord Chem Rev 2017. [DOI: 10.1016/j.ccr.2017.10.009] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
48
|
Đorđević N, Ganguly R, Petković M, Vidović D. E–H (E = B, Si, C) Bond Activation by Tuning Structural and Electronic Properties of Phosphenium Cations. Inorg Chem 2017; 56:14671-14681. [DOI: 10.1021/acs.inorgchem.7b02579] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Nemanja Đorđević
- SPMS-CBC, Nanyang Technological University, 21 Nanyang Link, Singapore 638737
| | - Rakesh Ganguly
- SPMS-CBC, Nanyang Technological University, 21 Nanyang Link, Singapore 638737
| | - Milena Petković
- Faculty
of Physical Chemistry, University of Belgrade, 11000 Belgrade, Republic of Serbia
| | - Dragoslav Vidović
- SPMS-CBC, Nanyang Technological University, 21 Nanyang Link, Singapore 638737
| |
Collapse
|
49
|
Bockfeld D, Bannenberg T, Jones PG, Tamm M. N-Heterocyclic Carbene Adducts of Phenyldioxophosphorane and Its Heavier Sulfur and Selenium Analogues. Eur J Inorg Chem 2017. [DOI: 10.1002/ejic.201700494] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Dirk Bockfeld
- Institut für Anorganische und Analytische Chemie; Technische Universität Braunschweig; Hagenring 30 38106 Braunschweig Germany
| | - Thomas Bannenberg
- Institut für Anorganische und Analytische Chemie; Technische Universität Braunschweig; Hagenring 30 38106 Braunschweig Germany
| | - Peter G. Jones
- Institut für Anorganische und Analytische Chemie; Technische Universität Braunschweig; Hagenring 30 38106 Braunschweig Germany
| | - Matthias Tamm
- Institut für Anorganische und Analytische Chemie; Technische Universität Braunschweig; Hagenring 30 38106 Braunschweig Germany
| |
Collapse
|
50
|
Roy S, Mondal KC, Kundu S, Li B, Schürmann CJ, Dutta S, Koley D, Herbst-Irmer R, Stalke D, Roesky HW. Two Structurally Characterized Conformational Isomers with Different C−P Bonds. Chemistry 2017. [DOI: 10.1002/chem.201702870] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Sudipta Roy
- Institut für Anorganische Chemie; Universität Göttingen; Tammannstrasse 4 37077 Göttingen Germany
- Dept. of Chemistry; IISER Tirupati; Karakambadi Road 517507 Tirupati, Andhra Pradesh India
| | - Kartik Chandra Mondal
- Institut für Anorganische Chemie; Universität Göttingen; Tammannstrasse 4 37077 Göttingen Germany
- IIT Madras; Chennai India
| | - Subrata Kundu
- Institut für Anorganische Chemie; Universität Göttingen; Tammannstrasse 4 37077 Göttingen Germany
| | - Bin Li
- Institut für Anorganische Chemie; Universität Göttingen; Tammannstrasse 4 37077 Göttingen Germany
| | - Christian J. Schürmann
- Institut für Anorganische Chemie; Universität Göttingen; Tammannstrasse 4 37077 Göttingen Germany
| | - Sayan Dutta
- Dept. of Chemical Sciences; IISER Kolkata; Mohanpur 741246 India
| | - Debasis Koley
- Dept. of Chemical Sciences; IISER Kolkata; Mohanpur 741246 India
| | - Regine Herbst-Irmer
- Institut für Anorganische Chemie; Universität Göttingen; Tammannstrasse 4 37077 Göttingen Germany
| | - Dietmar Stalke
- Institut für Anorganische Chemie; Universität Göttingen; Tammannstrasse 4 37077 Göttingen Germany
| | - Herbert W. Roesky
- Institut für Anorganische Chemie; Universität Göttingen; Tammannstrasse 4 37077 Göttingen Germany
| |
Collapse
|