1
|
Zhu J, Kemp AM, Chenna BC, Kumar V, Rademacher A, Yun S, Laganowsky A, Meek TD. Catalytic Mechanism of SARS-CoV-2 3-Chymotrypsin-Like Protease as Determined by Steady-State and Pre-Steady-State Kinetics. ACS Catal 2024; 14:18292-18309. [PMID: 39722883 PMCID: PMC11667672 DOI: 10.1021/acscatal.4c04695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/29/2024] [Accepted: 10/30/2024] [Indexed: 12/28/2024]
Abstract
The 3-chymotrypsin-like protease (3CL-PR; also known as Main protease) of SARS-CoV-2 is a cysteine protease that is the target of the COVID-19 drug, Paxlovid. Here, we report for 3CL-PR, the pH-rate profiles of a substrate, an inhibitor, affinity agents, and solvent kinetic isotope effects (sKIEs) obtained under both steady-state and pre-steady-state conditions. "Bell-shaped" plots of log(k cat/K a) vs pH for the substrate (Abz)SAVLQ*SGFRK(Dnp)-NH2 and pK i vs pH for a peptide aldehyde inhibitor demonstrated that essential acidic and basic groups of pK 2 = 8.2 ± 0.4 and pK 1 = 6.2 ± 0.3, respectively, are required for catalysis, and the pH-dependence of inactivation of 3CL-PR by iodoacetamide and diethylpyrocarbonate identified enzymatic groups of pK 2 = 7.8 ± 0.1 and pK 1 = 6.05 ± 0.07, which must be unprotonated for maximal inactivation. These data are most consistent with the presence of a neutral catalytic dyad (Cys-SH-His) in the 3CL-PR free enzyme, with respective pK values for the cysteine and histidine groups of pK 2 = 8.0 and pK 1 = 6.5. The steady-state sKIEs were D2O(k cat/K a) = 0.56 ± 0.05 and D2O k cat = 1.0 ± 0.1, and sKIEs indicated that the Cys-S--HisH+ tautomer was enriched in D2O. Presteady-state kinetic analysis of (Abz)SAVLQ*SGFRK(Dnp)-NH2 exhibited transient lags preceding steady-state rates, which were considerably faster in D2O than in H2O. The transient rates encompass steps that include substrate binding and acylation, and are faster in D2O wherein the more active Cys-S--HisH+ tautomer predominates. A full catalytic mechanism for 3CL-PR is proposed.
Collapse
Affiliation(s)
- Jiyun Zhu
- Departments
of Biochemistry and Biophysics, Texas A&M
University, College
Station, Texas 77843, United States
| | - Alexandria M. Kemp
- Departments
of Biochemistry and Biophysics, Texas A&M
University, College
Station, Texas 77843, United States
| | - Bala C. Chenna
- Departments
of Biochemistry and Biophysics, Texas A&M
University, College
Station, Texas 77843, United States
| | - Vivek Kumar
- Departments
of Biochemistry and Biophysics, Texas A&M
University, College
Station, Texas 77843, United States
| | - Andrew Rademacher
- Departments
of Biochemistry and Biophysics, Texas A&M
University, College
Station, Texas 77843, United States
| | - Sangho Yun
- Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Arthur Laganowsky
- Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Thomas D. Meek
- Departments
of Biochemistry and Biophysics, Texas A&M
University, College
Station, Texas 77843, United States
- Chemistry, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
2
|
Eche S, Kumar A, Sonela N, Gordon ML. Binding kinetics of highly mutated HIV-1 subtype C protease inhibition by Lopinavir and Darunavir in the face of altered conformational dynamics. J Biomol Struct Dyn 2024:1-16. [PMID: 39697065 DOI: 10.1080/07391102.2024.2426078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 04/27/2024] [Indexed: 12/20/2024]
Abstract
Highly mutated HIV-1 protease (PR) compromises the efficacy of lopinavir (LPV) and darunavir (DRV) used to formulate salvage regimens in HIV/AIDS management. Here, we report the kinetics of inhibition of lopinavir (LPV) and darunavir (DRV) on highly mutated South African HIV-1 subtype C PR obtained from clinical isolates. The wild-type and mutant South African HIV-1 subtype C PR were cloned and purified. Enzyme inhibition assays and fluorescence spectroscopy were utilized to determine the binding kinetics of LPV and DRV with the wild-type and mutant HIV-1 PR variants. Like DRV, the results of this study show that LPV has a mixed-type inhibition mechanism, which indicates the possibility of a second binding site on HIV-1 PR. Both LPV and DRV poorly inhibited the highly mutated HIV-1 PR variants and had a markedly increased dissociation rate cons bound to the mutant variants compared to the wild type. The fast dissociation of these inhibitors translated into a short residence time of the inhibitor bound to the mutant HIV-1 PR variants. Fluorescent spectroscopy showed that the changes in the tertiary structure of the mutant HIV-1 PR variants were associated with a more open conformation. This open conformation was associated with altered conformational dynamics, which may have resulted in the loss of tight binding of LPV and DRV. This study's findings provide insight into the mechanism of resistance to LPV and DRV by highly mutated HIV-1 PR and provide information supporting the use of binding kinetics measurement in understanding HIV-1 PR inhibitor drug resistance evolution.
Collapse
Affiliation(s)
- Simeon Eche
- Discipline of Virology, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Ajit Kumar
- Discipline of Microbiology, School of Life Sciences, University of KwaZulu-Natal (Westville Campus), Durban, South Africa
| | - Nelson Sonela
- Chantal Biya International Reference Center for Research on the Management and Prevention of HIV/AIDS (CIRCB), Yaoundé, Cameroon
| | - Michelle L Gordon
- Discipline of Virology, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
3
|
Toth M, Stewart NK, Maggiolo AO, Quan P, Khan MMK, Buynak JD, Smith CA, Vakulenko SB. Decarboxylation of the Catalytic Lysine Residue by the C5α-Methyl-Substituted Carbapenem NA-1-157 Leads to Potent Inhibition of the OXA-58 Carbapenemase. ACS Infect Dis 2024; 10:4347-4359. [PMID: 39601221 DOI: 10.1021/acsinfecdis.4c00671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Antibiotic resistance in bacteria is a major global health concern. The wide spread of carbapenemases, bacterial enzymes that degrade the last-resort carbapenem antibiotics, is responsible for multidrug resistance in bacterial pathogens and has further significantly exacerbated this problem. Acinetobacter baumannii is one of the leading nosocomial pathogens due to the acquisition and wide dissemination of carbapenem-hydrolyzing class D β-lactamases, which have dramatically diminished available therapeutic options. Thus, new antibiotics that are active against multidrug-resistantA. baumannii and carbapenemase inhibitors are urgently needed. Here we report characterization of the interaction of the C5α-methyl-substituted carbapenem NA-1-157 with one of the clinically important class D carbapenemases, OXA-58. Antibiotic susceptibility testing shows that the compound is more potent than commercial carbapenems against OXA-58-producingA. baumannii, with a clinically sensitive MIC value of 1 μg/mL. Kinetic studies demonstrate that NA-1-157 is a very poor substrate of the enzyme due mainly to a significantly reduced deacylation rate. Mass spectrometry analysis shows that inhibition of OXA-58 by NA-1-157 proceeds through both the classical acyl-enzyme intermediate and a reversible covalent species. Time-resolved X-ray crystallographic studies reveal that upon acylation of the enzyme, the compound causes progressive decarboxylation of the catalytic lysine residue, thus severely impairing deacylation. Overall, this study demonstrates that the carbapenem NA-1-157 is highly resistant to degradation by the OXA-58 carbapenemase.
Collapse
Affiliation(s)
- Marta Toth
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Nichole K Stewart
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Ailiena O Maggiolo
- Stanford Synchrotron Radiation Lightsource, Stanford University, Menlo Park, California 94025, United States
| | - Pojun Quan
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275, United States
| | - Md Mahbub Kabir Khan
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275, United States
| | - John D Buynak
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275, United States
| | - Clyde A Smith
- Stanford Synchrotron Radiation Lightsource, Stanford University, Menlo Park, California 94025, United States
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Sergei B Vakulenko
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
4
|
Raouf YS, Moreno-Yruela C. Slow-Binding and Covalent HDAC Inhibition: A New Paradigm? JACS AU 2024; 4:4148-4161. [PMID: 39610753 PMCID: PMC11600154 DOI: 10.1021/jacsau.4c00828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/21/2024] [Accepted: 10/23/2024] [Indexed: 11/30/2024]
Abstract
The dysregulated post-translational modification of proteins is an established hallmark of human disease. Through Zn2+-dependent hydrolysis of acyl-lysine modifications, histone deacetylases (HDACs) are key regulators of disease-implicated signaling pathways and tractable drug targets in the clinic. Early targeting of this family of 11 enzymes (HDAC1-11) afforded a first generation of broadly acting inhibitors with medicinal applications in oncology, specifically in cutaneous and peripheral T-cell lymphomas and in multiple myeloma. However, first-generation HDAC inhibitors are often associated with weak-to-modest patient benefits, dose-limited efficacies, pharmacokinetic liabilities, and recurring clinical toxicities. Alternative inhibitor design to target single enzymes and avoid toxic Zn2+-binding moieties have not overcome these limitations. Instead, recent literature has seen a shift toward noncanonical mechanistic approaches focused on slow-binding and covalent inhibition. Such compounds hold the potential of improving the pharmacokinetic and pharmacodynamic profiles of HDAC inhibitors through the extension of the drug-target residence time. This perspective aims to capture this emerging paradigm and discuss its potential to improve the preclinical/clinical outlook of HDAC inhibitors in the coming years.
Collapse
Affiliation(s)
- Yasir S. Raouf
- Department
of Chemistry, United Arab Emirates University, P.O. Box No. 15551 Al Ain, UAE
| | - Carlos Moreno-Yruela
- Laboratory
of Chemistry and Biophysics of Macromolecules (LCBM), Institute of
Chemical Sciences and Engineering (ISIC), School of Basic Sciences, École Polytechnique Fédérale
de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
5
|
Fagnani L, Bellio P, Di Giulio A, Nazzicone L, Iorio R, Petricca S, Franceschini N, Bertarini L, Tondi D, Celenza G. Mechanism of non-competitive inhibition of the SARS-CoV-2 3CL protease dimerization: Therapeutic and clinical promise of the lichen secondary metabolite perlatolinic acid. Heliyon 2024; 10:e38445. [PMID: 39397941 PMCID: PMC11471173 DOI: 10.1016/j.heliyon.2024.e38445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 09/20/2024] [Accepted: 09/24/2024] [Indexed: 10/15/2024] Open
Abstract
In response to the COVID-19 pandemic, identifying effective treatments against SARS-CoV-2 has become of utmost importance. This study elucidates the mechanism by which perlatolinic acid, a lichen-derived secondary metabolite, non-competitively inhibits the dimerization of the SARS-CoV-2 3CL protease, a pivotal enzyme in the virus lifecycle. Utilising a combination of kinetic parameter determination, inhibition assays, and molecular docking studies, we demonstrate that perlatolinic acid effectively disrupts the enzymatic function by binding at the dimer interface with a measured K i value of 0.67 μM, thereby impeding the protease catalytic activity essential for viral replication. Molecular docking studies further corroborate the binding specificity of perlatolinic acid to the dimer interface, which is attributed to the loss of key interactions essential for dimerization, consequently impairing catalytic activity, highlighting its potential as a scaffold for developing broad-spectrum antiviral drugs. Despite a dose-dependent cytotoxicity of perlatolinic acid, its TC 50 is approximately 43 times higher than the K i value. Our findings suggest that perlatolinic acid holds significant promise as a lead compound for the development of new therapeutics against COVID-19, warranting further investigation and clinical evaluation. In conclusion, the study sheds light on the therapeutic potential of natural compounds in combating SARS-CoV-2, paving the way for the exploration of lichen secondary metabolites as a reservoir of potential antiviral agents.
Collapse
Affiliation(s)
- Lorenza Fagnani
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, via Vetoio 1, 67100, L'Aquila, Italy
| | - Pierangelo Bellio
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, via Vetoio 1, 67100, L'Aquila, Italy
| | - Antonio Di Giulio
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, via Vetoio 1, 67100, L'Aquila, Italy
| | - Lisaurora Nazzicone
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, via Vetoio 1, 67100, L'Aquila, Italy
| | - Roberto Iorio
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, via Vetoio 1, 67100, L'Aquila, Italy
| | - Sabrina Petricca
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, via Vetoio 1, 67100, L'Aquila, Italy
| | - Nicola Franceschini
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, via Vetoio 1, 67100, L'Aquila, Italy
| | - Laura Bertarini
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 103, 41125, Modena, Italy
| | - Donatella Tondi
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 103, 41125, Modena, Italy
| | - Giuseppe Celenza
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, via Vetoio 1, 67100, L'Aquila, Italy
| |
Collapse
|
6
|
Coco L, Toci EM, Chen PYT, Drennan CL, Freel Meyers CL. Potent Inhibition of E. coli DXP Synthase by a gem-Diaryl Bisubstrate Analog. ACS Infect Dis 2024; 10:1312-1326. [PMID: 38513073 PMCID: PMC11019550 DOI: 10.1021/acsinfecdis.3c00734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/27/2024] [Accepted: 03/01/2024] [Indexed: 03/23/2024]
Abstract
New antimicrobial strategies are needed to address pathogen resistance to currently used antibiotics. Bacterial central metabolism is a promising target space for the development of agents that selectively target bacterial pathogens. 1-Deoxy-d-xylulose 5-phosphate synthase (DXPS) converts pyruvate and d-glyceraldehyde 3-phosphate (d-GAP) to DXP, which is required for synthesis of essential vitamins and isoprenoids in bacterial pathogens. Thus, DXPS is a promising antimicrobial target. Toward this goal, our lab has demonstrated selective inhibition of Escherichia coli DXPS by alkyl acetylphosphonate (alkylAP)-based bisubstrate analogs that exploit the requirement for ternary complex formation in the DXPS mechanism. Here, we present the first DXPS structure with a bisubstrate analog bound in the active site. Insights gained from this cocrystal structure guided structure-activity relationship studies of the bisubstrate scaffold. A low nanomolar inhibitor (compound 8) bearing a gem-dibenzyl glycine moiety conjugated to the acetylphosphonate pyruvate mimic via a triazole-based linker emerged from this study. Compound 8 was found to exhibit slow, tight-binding inhibition, with contacts to E. coli DXPS residues R99 and R478 demonstrated to be important for this behavior. This work has discovered the most potent DXPS inhibitor to date and highlights a new role of R99 that can be exploited in future inhibitor designs toward the development of a novel class of antimicrobial agents.
Collapse
Affiliation(s)
- Lauren
B. Coco
- Department
of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Eucolona M. Toci
- Department
of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Percival Yang-Ting Chen
- Department
of Chemistry, Massachusetts Institute of
Technology, Cambridge, Massachusetts 02139, United States
| | - Catherine L. Drennan
- Department
of Chemistry, Massachusetts Institute of
Technology, Cambridge, Massachusetts 02139, United States
- Howard
Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Caren L. Freel Meyers
- Department
of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| |
Collapse
|
7
|
Chen X, Huang X, Ma Q, Kuzmič P, Zhou B, Zhang S, Chen J, Xu J, Liu B, Jiang H, Zhang W, Yang C, Wu S, Huang J, Li H, Long C, Zhao X, Xu H, Sheng Y, Guo Y, Niu C, Xue L, Xu Y, Liu J, Zhang T, Spencer J, Zhu Z, Deng W, Chen X, Chen SH, Zhong N, Xiong X, Yang Z. Preclinical evaluation of the SARS-CoV-2 M pro inhibitor RAY1216 shows improved pharmacokinetics compared with nirmatrelvir. Nat Microbiol 2024; 9:1075-1088. [PMID: 38553607 PMCID: PMC10994847 DOI: 10.1038/s41564-024-01618-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 01/22/2024] [Indexed: 04/06/2024]
Abstract
Although vaccines are available for SARS-CoV-2, antiviral drugs such as nirmatrelvir are still needed, particularly for individuals in whom vaccines are less effective, such as the immunocompromised, to prevent severe COVID-19. Here we report an α-ketoamide-based peptidomimetic inhibitor of the SARS-CoV-2 main protease (Mpro), designated RAY1216. Enzyme inhibition kinetic analysis shows that RAY1216 has an inhibition constant of 8.4 nM and suggests that it dissociates about 12 times slower from Mpro compared with nirmatrelvir. The crystal structure of the SARS-CoV-2 Mpro:RAY1216 complex shows that RAY1216 covalently binds to the catalytic Cys145 through the α-ketoamide group. In vitro and using human ACE2 transgenic mouse models, RAY1216 shows antiviral activities against SARS-CoV-2 variants comparable to those of nirmatrelvir. It also shows improved pharmacokinetics in mice and rats, suggesting that RAY1216 could be used without ritonavir, which is co-administered with nirmatrelvir. RAY1216 has been approved as a single-component drug named 'leritrelvir' for COVID-19 treatment in China.
Collapse
Affiliation(s)
- Xiaoxin Chen
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China
- Guangdong Raynovent Biotech Co., Ltd, Guangzhou, China
| | - Xiaodong Huang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine; Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Qinhai Ma
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | | | - Biao Zhou
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine; Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangzhou National Laboratory, Guangzhou, China
| | - Sai Zhang
- Guangzhou National Laboratory, Guangzhou, China
| | | | - Jinxin Xu
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine; Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Bin Liu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Haiming Jiang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wenjie Zhang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Chunguang Yang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shiguan Wu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | | | - Haijun Li
- Guangdong Raynovent Biotech Co., Ltd, Guangzhou, China
| | - Chaofeng Long
- Guangdong Raynovent Biotech Co., Ltd, Guangzhou, China
| | - Xin Zhao
- Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center Guangzhou), Guangzhou, China
| | - Hongrui Xu
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine; Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yanan Sheng
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine; Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Yaoting Guo
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine; Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Chuanying Niu
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine; Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Lu Xue
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine; Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yong Xu
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine; Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Jinsong Liu
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine; Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Tianyu Zhang
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine; Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - James Spencer
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | | | - Wenbin Deng
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Xinwen Chen
- Guangzhou National Laboratory, Guangzhou, China
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | | | - Nanshan Zhong
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
- Guangzhou National Laboratory, Guangzhou, China.
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau (SAR), China.
| | - Xiaoli Xiong
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine; Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.
| | - Zifeng Yang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
- Guangzhou National Laboratory, Guangzhou, China.
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau (SAR), China.
| |
Collapse
|
8
|
Choi K. The Structure-property Relationships of Clinically Approved Protease Inhibitors. Curr Med Chem 2024; 31:1441-1463. [PMID: 37031455 DOI: 10.2174/0929867330666230409232655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 01/17/2023] [Accepted: 02/24/2023] [Indexed: 04/11/2023]
Abstract
BACKGROUND Proteases play important roles in the regulation of many physiological processes, and protease inhibitors have become one of the important drug classes. Especially because the development of protease inhibitors often starts from a substrate- based peptidomimetic strategy, many of the initial lead compounds suffer from pharmacokinetic liabilities. OBJECTIVE To reduce drug attrition rates, drug metabolism and pharmacokinetics studies are fully integrated into modern drug discovery research, and the structure-property relationship illustrates how the modification of the chemical structure influences the pharmacokinetic and toxicological properties of drug compounds. Understanding the structure- property relationships of clinically approved protease inhibitor drugs and their analogues could provide useful information on the lead-to-candidate optimization strategies. METHODS About 70 inhibitors against human or pathogenic viral proteases have been approved until the end of 2021. In this review, 17 inhibitors are chosen for the structure- property relationship analysis because detailed pharmacological and/or physicochemical data have been disclosed in the medicinal chemistry literature for these inhibitors and their close analogues. RESULTS The compiled data are analyzed primarily focusing on the pharmacokinetic or toxicological deficiencies found in lead compounds and the structural modification strategies used to generate candidate compounds. CONCLUSION The structure-property relationships hereby summarized how the overall druglike properties could be successfully improved by modifying the structure of protease inhibitors. These specific examples are expected to serve as useful references and guidance for developing new protease inhibitor drugs in the future.
Collapse
Affiliation(s)
- Kihang Choi
- Department of Chemistry, Korea University, Seoul, 02841, Korea (ROK)
| |
Collapse
|
9
|
Zhou Q, Catalán P, Bell H, Baumann P, Cooke R, Evans R, Yang J, Zhang Z, Zappalà D, Zhang Y, Blackburn GM, He Y, Jin Y. An Ion-Pair Induced Intermediate Complex Captured in Class D Carbapenemase Reveals Chloride Ion as a Janus Effector Modulating Activity. ACS CENTRAL SCIENCE 2023; 9:2339-2349. [PMID: 38161376 PMCID: PMC10755735 DOI: 10.1021/acscentsci.3c00609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 11/17/2023] [Accepted: 11/17/2023] [Indexed: 01/03/2024]
Abstract
Antibiotic-resistant Enterobacterales that produce oxacillinase (OXA)-48-like Class D β-lactamases are often linked to increased clinical mortality. Though the catalytic mechanism of OXA-48 is known, the molecular origin of its biphasic kinetics has been elusive. We here identify selective chloride binding rather than decarbamylation of the carbamylated lysine as the source of biphasic kinetics, utilizing isothermal titration calorimetry (ITC) to monitor the complete reaction course with the OXA-48 variant having a chemically stable N-acetyl lysine. Further structural investigation enables us to capture an unprecedented inactive acyl intermediate wedged in place by a halide ion paired with a conserved active site arginine. Supported by mutagenesis and mathematical simulation, we identify chloride as a "Janus effector" that operates by allosteric activation of the burst phase and by inhibition of the steady state in kinetic assays of β-lactams. We show that chloride-induced biphasic kinetics directly affects antibiotic efficacy and facilitates the differentiation of clinical isolates encoding Class D from Class A and B carbapenemases. As chloride is present in laboratory and clinical procedures, our discovery greatly expands the roles of chloride in modulating enzyme catalysis and highlights its potential impact on the pharmacokinetics and efficacy of antibiotics during in vivo treatment.
Collapse
Affiliation(s)
- Qi Zhou
- Key
Laboratory of Synthetic and Natural Functional Molecule, College of
Chemistry and Materials Science, Northwest
University, Xi’an 710127, P. R. China
| | - Pablo Catalán
- Grupo
Interdisciplinar de Sistemas Complejos, Departamento de Matemáticas, Universidad Carlos III de Madrid, 28911 Leganés, Spain
| | - Helen Bell
- School
of Chemistry, Cardiff University, Cardiff, CF10 3AT, United Kingdom
| | - Patrick Baumann
- School
of Chemistry, Cardiff University, Cardiff, CF10 3AT, United Kingdom
- Manchester
Institute of Biotechnology, University of
Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Rebekah Cooke
- School
of Chemistry, Cardiff University, Cardiff, CF10 3AT, United Kingdom
| | - Rhodri Evans
- School
of Chemistry, Cardiff University, Cardiff, CF10 3AT, United Kingdom
- Manchester
Institute of Biotechnology, University of
Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Jianhua Yang
- Key
Laboratory of Synthetic and Natural Functional Molecule, College of
Chemistry and Materials Science, Northwest
University, Xi’an 710127, P. R. China
| | - Zhen Zhang
- Key
Laboratory of Synthetic and Natural Functional Molecule, College of
Chemistry and Materials Science, Northwest
University, Xi’an 710127, P. R. China
- School
of Chemistry, Cardiff University, Cardiff, CF10 3AT, United Kingdom
| | - Davide Zappalà
- School
of Chemistry, Cardiff University, Cardiff, CF10 3AT, United Kingdom
| | - Ye Zhang
- Key
Laboratory of Synthetic and Natural Functional Molecule, College of
Chemistry and Materials Science, Northwest
University, Xi’an 710127, P. R. China
| | - George Michael Blackburn
- School
of Biosciences, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, United Kingdom
| | - Yuan He
- Key
Laboratory of Synthetic and Natural Functional Molecule, College of
Chemistry and Materials Science, Northwest
University, Xi’an 710127, P. R. China
| | - Yi Jin
- School
of Chemistry, Cardiff University, Cardiff, CF10 3AT, United Kingdom
- Manchester
Institute of Biotechnology, University of
Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| |
Collapse
|
10
|
Rami M, Shafique M, Sarma SP. Structural, Functional, and Mutational Studies of a Potent Subtilisin Inhibitor from Budgett's Frog, Lepidobatrachus laevis. Biochemistry 2023; 62:2952-2969. [PMID: 37796763 DOI: 10.1021/acs.biochem.3c00252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
Subtilases play a significant role in microbial pathogen infections by degrading the host proteins. Subtilisin inhibitors are crucial in fighting against these harmful microorganisms. LL-TIL, from skin secretions of Lepidobatrachus laevis, is a cysteine-rich peptide belonging to the I8 family of inhibitors. Protease inhibitory assays demonstrated that LL-TIL acts as a slow-tight binding inhibitor of subtilisin Carlsberg and proteinase K with inhibition constants of 91 pM and 2.4 nM, respectively. The solution structures of LL-TIL and a mutant peptide reveal that they adopt a typical TIL-type fold with a canonical conformation of a reactive site loop (RSL). The structure of the LL-TIL-subtilisin complex and molecular dynamics (MD) simulations provided an in-depth view of the structural basis of inhibition. NMR relaxation data and molecular dynamics simulations indicated a rigid conformation of RSL, which does not alter significantly upon subtilisin binding. The energy calculation for subtilisin inhibition predicted Ile31 as the highest contributor to the binding energy, which was confirmed experimentally by site-directed mutagenesis. A chimeric mutant of LL-TIL broadened the inhibitory profile and attenuated subtilisin inhibition by 2 orders of magnitude. These results provide a template to engineer more specific and potent TIL-type subtilisin inhibitors.
Collapse
Affiliation(s)
- Mihir Rami
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Mohd Shafique
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Siddhartha P Sarma
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka 560012, India
| |
Collapse
|
11
|
Brown M, Schramm VL. Decreased Transition-State Analogue Affinity in Isotopically Heavy MTAN with Increased Catalysis. Biochemistry 2023; 62:2928-2933. [PMID: 37788145 PMCID: PMC10636763 DOI: 10.1021/acs.biochem.3c00434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
5'-Methylthioadenosine/S-adenosylhomocysteine nucleosidase from Helicobacter pylori (HpMTAN) demonstrated faster chemistry when expressed as an isotopically heavy protein, with 2H, 13C, and 15N replacing the bulk of normal isotopes. The inverse heavy enzyme isotope effect has been attributed to improved enzyme-reactant interactions causing more frequent transition-state formation ( Proc. Natl. Acad. Sci. U.S.A. 2021, 118, e2109118118). Transition-state analogues stabilize the transient dynamic geometry of the transition state and inform on transition-state dynamics. Here, a slow-onset, tight-binding transition-state analogue of HpMTAN is characterized with heavy and light enzymes. Dissociation constants for the initial encounter complex (Ki) and for the tightly bound complex after slow-onset inhibition (Ki*) with hexylthio-DADMe-Immucillin-A (HTDIA) gave Ki values for light and heavy HpMTAN = 52 ± 10 and 85 ± 13 pM and Ki* values = 5.9 ± 0.3 and 10.0 ± 1.2 pM, respectively. HTDIA dissociates from heavy HpMTAN at 0.063 ± 0.002 min-1, faster than that from light HpMTAN at 0.032 ± 0.004 min-1. These values are consistent with transition-state formation by an improved catalytic site dynamic search and inconsistent with catalytic efficiency proportional to tight binding of the transition state.
Collapse
Affiliation(s)
- Morais Brown
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, United States
| | - Vern L Schramm
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, United States
| |
Collapse
|
12
|
Herold RA, Schofield CJ, Armstrong FA. Electrochemical Nanoreactor Provides a Comprehensive View of Isocitrate Dehydrogenase Cancer-drug Kinetics. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 135:e202309149. [PMID: 38529044 PMCID: PMC10962547 DOI: 10.1002/ange.202309149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Indexed: 03/27/2024]
Abstract
The ability to control enzyme cascades entrapped in a nanoporous electrode material (the "Electrochemical Leaf", e-Leaf) has been exploited to gain detailed kinetic insight into the mechanism of an anti-cancer drug. Ivosidenib, used to treat acute myeloid leukemia, acts on a common cancer-linked variant of isocitrate dehydrogenase 1 (IDH1 R132H) inhibiting its "gain-of-function" activity-the undesired reduction of 2-oxoglutarate (2OG) to the oncometabolite 2-hydroxyglutarate (2HG). The e-Leaf quantifies the kinetics of IDH1 R132H inhibition across a wide and continuous range of conditions, efficiently revealing factors underlying the inhibitor residence time. Selective inhibition of IDH1 R132H by Ivosidenib and another inhibitor, Novartis 224, is readily resolved as a two-stage process whereby initial rapid non-inhibitory binding is followed by a slower step to give the inhibitory complex. These kinetic features are likely present in other allosteric inhibitors of IDH1/2. Such details, essential for understanding inhibition mechanisms, are not readily resolved in conventional steady-state kinetics or by techniques that rely only on measuring binding. Extending the new method and analytical framework presented here to other enzyme systems will be straightforward and should rapidly reveal insight that is difficult or often impossible to obtain using other methods.
Collapse
Affiliation(s)
- Ryan A. Herold
- Inorganic Chemistry LaboratoryDepartment of ChemistryUniversity of OxfordSouth Parks RoadOxfordOX1 3QRUK
| | - Christopher J. Schofield
- Department of Chemistry and the Ineos Oxford Institute for Antimicrobial ResearchUniversity of OxfordMansfield RoadOxfordOX1 3QYUK
| | - Fraser A. Armstrong
- Inorganic Chemistry LaboratoryDepartment of ChemistryUniversity of OxfordSouth Parks RoadOxfordOX1 3QRUK
| |
Collapse
|
13
|
Ngo C, Fried W, Aliyari S, Feng J, Qin C, Zhang S, Yang H, Shanaa J, Feng P, Cheng G, Chen XS, Zhang C. Alkyne as a Latent Warhead to Covalently Target SARS-CoV-2 Main Protease. J Med Chem 2023; 66:12237-12248. [PMID: 37595260 PMCID: PMC10510381 DOI: 10.1021/acs.jmedchem.3c00810] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Indexed: 08/20/2023]
Abstract
There is an urgent need for improved therapy to better control the ongoing COVID-19 pandemic. The main protease Mpro plays a pivotal role in SARS-CoV-2 replications, thereby representing an attractive target for antiviral development. We seek to identify novel electrophilic warheads for efficient, covalent inhibition of Mpro. By comparing the efficacy of a panel of warheads installed on a common scaffold against Mpro, we discovered that the terminal alkyne could covalently modify Mpro as a latent warhead. Our biochemical and X-ray structural analyses revealed the irreversible formation of the vinyl-sulfide linkage between the alkyne and the catalytic cysteine of Mpro. Clickable probes based on the alkyne inhibitors were developed to measure target engagement, drug residence time, and off-target effects. The best alkyne-containing inhibitors potently inhibited SARS-CoV-2 infection in cell infection models. Our findings highlight great potentials of alkyne as a latent warhead to target cystine proteases in viruses and beyond.
Collapse
Affiliation(s)
- Chau Ngo
- Department
of Chemistry and Loker Hydrocarbon Research Institute, University of Southern California, Los Angeles, California 90089, United States
| | - William Fried
- Molecular
and Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles, California 90089, United States
| | - Saba Aliyari
- Department
of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, California 90095, United States
| | - Joshua Feng
- Department
of Chemistry and Loker Hydrocarbon Research Institute, University of Southern California, Los Angeles, California 90089, United States
| | - Chao Qin
- Section
of Infection and Immunity, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, California 90089, United States
| | - Shilei Zhang
- Department
of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, California 90095, United States
| | - Hanjing Yang
- Molecular
and Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles, California 90089, United States
| | - Jean Shanaa
- Department
of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, California 90095, United States
| | - Pinghui Feng
- Section
of Infection and Immunity, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, California 90089, United States
| | - Genhong Cheng
- Department
of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, California 90095, United States
| | - Xiaojiang S. Chen
- Molecular
and Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles, California 90089, United States
| | - Chao Zhang
- Department
of Chemistry and Loker Hydrocarbon Research Institute, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
14
|
Mukherjee A, Zamani F, Suzuki T. Evolution of Slow-Binding Inhibitors Targeting Histone Deacetylase Isoforms. J Med Chem 2023; 66:11672-11700. [PMID: 37651268 DOI: 10.1021/acs.jmedchem.3c01160] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Because the overexpression of histone deacetylase enzymes (HDACs) has been linked to numerous diseases, including various cancers and neurodegenerative disorders, HDAC inhibitors have emerged as promising therapeutic agents. However, most HDAC inhibitors lack both subclass and isoform selectivity, which leads to potential toxicity. Unlike classical hydroxamate HDAC inhibitors, slow-binding HDAC inhibitors form tight and prolonged bonds with HDAC enzymes. This distinct mechanism of action improves both selectivity and toxicity profiles, which makes slow-binding HDAC inhibitors a promising class of therapeutic agents for various diseases. Therefore, the development of slow-binding HDAC inhibitors that can effectively target a wide range of HDAC isoforms is crucial. This Perspective provides valuable insights into the potential and progress of slow-binding HDAC inhibitors as promising drug candidates for the treatment of various diseases.
Collapse
Affiliation(s)
| | - Farzad Zamani
- SANKEN, Osaka University, Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Takayoshi Suzuki
- SANKEN, Osaka University, Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| |
Collapse
|
15
|
Davoodi S, Daryaee F, Iuliano JN, Collado JT, He Y, Pollard AC, Gil AA, Aramini JM, Tonge PJ. Evaluating the Impact of the Tyr158 p Ka on the Mechanism and Inhibition of InhA, the Enoyl-ACP Reductase from Mycobacterium tuberculosis. Biochemistry 2023; 62:1943-1952. [PMID: 37270808 PMCID: PMC10329767 DOI: 10.1021/acs.biochem.2c00606] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
InhA, the Mycobacterium tuberculosis enoyl-ACP reductase, is a target for the tuberculosis (TB) drug isoniazid (INH). InhA inhibitors that do not require KatG activation avoid the most common mechanism of INH resistance, and there are continuing efforts to fully elucidate the enzyme mechanism to drive inhibitor discovery. InhA is a member of the short-chain dehydrogenase/reductase superfamily characterized by a conserved active site Tyr, Y158 in InhA. To explore the role of Y158 in the InhA mechanism, this residue has been replaced by fluoroTyr residues that increase the acidity of Y158 up to ∼3200-fold. Replacement of Y158 with 3-fluoroTyr (3-FY) and 3,5-difluoroTyr (3,5-F2Y) has no effect on kcatapp/KMapp nor on the binding of inhibitors to the open form of the enzyme (Kiapp), whereas both kcatapp/KMapp and Kiapp are altered by seven-fold for the 2,3,5-trifluoroTyr variant (2,3,5-F3Y158 InhA). 19F NMR spectroscopy suggests that 2,3,5-F3Y158 is ionized at neutral pH indicating that neither the acidity nor ionization state of residue 158 has a major impact on catalysis or on the binding of substrate-like inhibitors. In contrast, Ki*app is decreased 6- and 35-fold for the binding of the slow-onset inhibitor PT504 to 3,5-F2Y158 and 2,3,5-F3Y158 InhA, respectively, indicating that Y158 stabilizes the closed form of the enzyme adopted by EI*. The residence time of PT504 is reduced ∼four-fold for 2,3,5-F3Y158 InhA compared to wild-type, and thus, the hydrogen bonding interaction of the inhibitor with Y158 is an important factor in the design of InhA inhibitors with increased residence times on the enzyme.
Collapse
Affiliation(s)
- Shabnam Davoodi
- Center for Advanced Study of Drug Action, John S. Toll Drive, Stony Brook University, Stony Brook, NY 11794-3400, United States
- Department of Chemistry, John S. Toll Drive, Stony Brook University, Stony Brook, NY 11794-3400, United States
| | - Fereidoon Daryaee
- Center for Advanced Study of Drug Action, John S. Toll Drive, Stony Brook University, Stony Brook, NY 11794-3400, United States
- Department of Chemistry, John S. Toll Drive, Stony Brook University, Stony Brook, NY 11794-3400, United States
| | - James N. Iuliano
- Center for Advanced Study of Drug Action, John S. Toll Drive, Stony Brook University, Stony Brook, NY 11794-3400, United States
- Department of Chemistry, John S. Toll Drive, Stony Brook University, Stony Brook, NY 11794-3400, United States
| | - Jinnette Tolentino Collado
- Center for Advanced Study of Drug Action, John S. Toll Drive, Stony Brook University, Stony Brook, NY 11794-3400, United States
- Department of Chemistry, John S. Toll Drive, Stony Brook University, Stony Brook, NY 11794-3400, United States
| | - Yongle He
- Center for Advanced Study of Drug Action, John S. Toll Drive, Stony Brook University, Stony Brook, NY 11794-3400, United States
- Department of Chemistry, John S. Toll Drive, Stony Brook University, Stony Brook, NY 11794-3400, United States
| | - Alyssa C. Pollard
- Center for Advanced Study of Drug Action, John S. Toll Drive, Stony Brook University, Stony Brook, NY 11794-3400, United States
- Department of Chemistry, John S. Toll Drive, Stony Brook University, Stony Brook, NY 11794-3400, United States
| | - Agnieszka A. Gil
- Department of Chemistry, John S. Toll Drive, Stony Brook University, Stony Brook, NY 11794-3400, United States
| | - James M. Aramini
- Structural Biology Initiative, CUNY Advanced Science Research Center, New York, NY 10031, United States
| | - Peter J. Tonge
- Center for Advanced Study of Drug Action, John S. Toll Drive, Stony Brook University, Stony Brook, NY 11794-3400, United States
- Department of Chemistry, John S. Toll Drive, Stony Brook University, Stony Brook, NY 11794-3400, United States
- Department of Radiology, John S. Toll Drive, Stony Brook University, Stony Brook, NY 11794-3400, United States
| |
Collapse
|
16
|
Bakunova AK, Matyuta IO, Nikolaeva AY, Boyko KM, Popov VO, Bezsudnova EY. Mechanism of D-Cycloserine Inhibition of D-Amino Acid Transaminase from Haliscomenobacter hydrossis. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:687-697. [PMID: 37331714 DOI: 10.1134/s0006297923050115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 02/10/2023] [Accepted: 02/11/2023] [Indexed: 06/20/2023]
Abstract
D-cycloserine inhibits pyridoxal-5'-phosphate (PLP)-dependent enzymes. Inhibition effect depend on organization of the active site and mechanism of the catalyzed reaction. D-cycloserine interacts with the PLP form of the enzyme similarly to the substrate (amino acid), and this interaction is predominantly reversible. Several products of the interaction of PLP with D-cycloserine are known. For some enzymes formation of a stable aromatic product - hydroxyisoxazole-pyridoxamine-5'-phosphate at certain pH - leads to irreversible inhibition. The aim of this work was to study the mechanism of D-cycloserine inhibition of the PLP-dependent D-amino acid transaminase from Haliscomenobacter hydrossis. Spectral methods revealed several products of interaction of D-cycloserine with PLP in the active site of transaminase: oxime between PLP and β-aminooxy-D-alanine, ketimine between pyridoxamine-5'-phosphate and cyclic form of D-cycloserine, and pyridoxamine-5'-phosphate. Formation of hydroxyisoxazole-pyridoxamine-5'-phosphate was not observed. 3D structure of the complex with D-cycloserine was obtained using X-ray diffraction analysis. In the active site of transaminase, a ketimine adduct between pyridoxamine-5'-phosphate and D-cycloserine in the cyclic form was found. Ketimine occupied two positions interacting with different active site residues via hydrogen bonds. Using kinetic and spectral methods we have shown that D-cycloserine inhibition is reversible, and activity of the inhibited transaminase from H. hydrossis could be restored by adding excess of keto substrate or excess of cofactor. The obtained results confirm reversibility of the inhibition by D-cycloserine and interconversion of various adducts of D-cycloserine and PLP.
Collapse
Affiliation(s)
- Alina K Bakunova
- Bach Institute of Biochemistry, Research Centre of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia.
| | - Ilya O Matyuta
- Bach Institute of Biochemistry, Research Centre of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia
| | - Alena Yu Nikolaeva
- Bach Institute of Biochemistry, Research Centre of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia
- Kurchatov Complex of NBICS-Technologies, National Research Centre "Kurchatov Institute", Moscow, 123182, Russia
| | - Konstantin M Boyko
- Bach Institute of Biochemistry, Research Centre of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia
| | - Vladimir O Popov
- Bach Institute of Biochemistry, Research Centre of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Ekaterina Yu Bezsudnova
- Bach Institute of Biochemistry, Research Centre of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia.
| |
Collapse
|
17
|
Wiedemeyer SJA, Wu G, Pham TLP, Lang-Henkel H, Perez Urzua B, Whisstock JC, Law RHP, Steinmetzer T. Synthesis and Structural Characterization of Macrocyclic Plasmin Inhibitors. ChemMedChem 2023; 18:e202200632. [PMID: 36710259 DOI: 10.1002/cmdc.202200632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/25/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023]
Abstract
Two series of macrocyclic plasmin inhibitors with a C-terminal benzylamine group were synthesized. The substitution of the N-terminal phenylsulfonyl group of a previously described inhibitor provided two analogues with sub-nanomolar inhibition constants. Both compounds possess a high selectivity against all other tested trypsin-like serine proteases. Furthermore, a new approach was used to selectively introduce asymmetric linker segments. Two of these compounds inhibit plasmin with Ki values close to 2 nM. For the first time, four crystal structures of these macrocyclic inhibitors could be determined in complex with a Ser195Ala microplasmin mutant. The macrocyclic core segment of the inhibitors binds to the open active site of plasmin without any steric hindrance. This binding mode is incompatible with other trypsin-like serine proteases containing a sterically demanding 99-hairpin loop. The crystal structures obtained experimentally explain the excellent selectivity of this inhibitor type as previously hypothesized.
Collapse
Affiliation(s)
- Simon J A Wiedemeyer
- Department of Pharmacy Institute of Pharmaceutical Chemistry, Philipps University Marburg, Marbacher Weg 6, 35032, Marburg, Germany
| | - Guojie Wu
- Biomedicine Discovery Institute Department of Biochemistry and Molecular Biology, Monash University, Melbourne, 3800, Australia
| | - T L Phuong Pham
- Department of Pharmacy Institute of Pharmaceutical Chemistry, Philipps University Marburg, Marbacher Weg 6, 35032, Marburg, Germany
| | - Heike Lang-Henkel
- Department of Pharmacy Institute of Pharmaceutical Chemistry, Philipps University Marburg, Marbacher Weg 6, 35032, Marburg, Germany
| | - Benjamin Perez Urzua
- Department of Cellular and Molecular Biology Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, 8331150, Chile
| | - James C Whisstock
- Biomedicine Discovery Institute Department of Biochemistry and Molecular Biology, Monash University, Melbourne, 3800, Australia
| | - Ruby H P Law
- Biomedicine Discovery Institute Department of Biochemistry and Molecular Biology, Monash University, Melbourne, 3800, Australia
| | - Torsten Steinmetzer
- Department of Pharmacy Institute of Pharmaceutical Chemistry, Philipps University Marburg, Marbacher Weg 6, 35032, Marburg, Germany
| |
Collapse
|
18
|
Minnow YVT, Suthagar K, Clinch K, Ducati RG, Ghosh A, Buckler JN, Harijan RK, Cahill SM, Tyler PC, Schramm VL. Inhibition and Mechanism of Plasmodium falciparum Hypoxanthine-Guanine-Xanthine Phosphoribosyltransferase. ACS Chem Biol 2022; 17:3407-3419. [PMID: 36413975 PMCID: PMC9772100 DOI: 10.1021/acschembio.2c00546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Plasmodium falciparum hypoxanthine-guanine-xanthine phosphoribosyltransferase (PfHGXPRT) is essential for purine salvage of hypoxanthine into parasite purine nucleotides. Transition state analogue inhibitors of PfHGXPRT are characterized by kinetic analysis, thermodynamic parameters, and X-ray crystal structures. Compound 1, 9-deazaguanine linked to an acyclic ribocation phosphonate mimic, shows a kinetic Ki of 0.5 nM. Isothermal titration calorimetry (ITC) experiments of 1 binding to PfHGXPRT reveal enthalpically driven binding with negative cooperativity for the binding of two inhibitor molecules in the tetrameric enzyme. Crystal structures of 1 bound to PfHGXPRT define the hydrogen bond and ionic contacts to complement binding thermodynamics. Dynamics of ribosyl transfer from 5-phospho-α-d-ribosyl 1-pyrophosphate (PRPP) to hypoxanthine were examined by 18O isotope exchange at the bridging phosphoryl oxygen of PRPP pyrophosphate. Rotational constraints or short transition state lifetimes prevent torsional rotation and positional isotope exchange of bridging to nonbridging oxygen in the α-pyrophosphoryl group. Thermodynamic analysis of the transition state analogue and magnesium pyrophosphate binding reveal random and cooperative binding to PfHGXPRT, unlike the obligatory ordered reaction kinetics reported earlier for substrate kinetics.
Collapse
Affiliation(s)
- Yacoba V. T. Minnow
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| | - Kajitha Suthagar
- Ferrier Research Institute, Victoria University of Wellington, Lower Hutt 5010, New Zealand
| | - Keith Clinch
- Ferrier Research Institute, Victoria University of Wellington, Lower Hutt 5010, New Zealand
| | - Rodrigo G. Ducati
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| | - Agnidipta Ghosh
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| | - Joshua N. Buckler
- Ferrier Research Institute, Victoria University of Wellington, Lower Hutt 5010, New Zealand
| | - Rajesh K. Harijan
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| | - Sean M. Cahill
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| | - Peter C. Tyler
- Ferrier Research Institute, Victoria University of Wellington, Lower Hutt 5010, New Zealand
| | - Vern L. Schramm
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| |
Collapse
|
19
|
Zanki V, Bozic B, Mocibob M, Ban N, Gruic-Sovulj I. A pair of isoleucyl-tRNA synthetases in Bacilli fulfills complementary roles to keep fast translation and provide antibiotic resistance. Protein Sci 2022; 31:e4418. [PMID: 36757682 PMCID: PMC9909778 DOI: 10.1002/pro.4418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 07/05/2022] [Accepted: 07/31/2022] [Indexed: 11/06/2022]
Abstract
Isoleucyl-tRNA synthetase (IleRS) is an essential enzyme that covalently couples isoleucine to the corresponding tRNA. Bacterial IleRSs group in two clades, ileS1 and ileS2, the latter bringing resistance to the natural antibiotic mupirocin. Generally, bacteria rely on either ileS1 or ileS2 as a standalone housekeeping gene. However, we have found an exception by noticing that Bacillus species with genomic ileS2 consistently also keep ileS1, which appears mandatory in the family Bacillaceae. Taking Priestia (Bacillus) megaterium as a model organism, we showed that PmIleRS1 is constitutively expressed, while PmIleRS2 is stress-induced. Both enzymes share the same level of the aminoacylation accuracy. Yet, PmIleRS1 exhibited a two-fold faster aminoacylation turnover (kcat ) than PmIleRS2 and permitted a notably faster cell-free translation. At the same time, PmIleRS2 displayed a 104 -fold increase in its Ki for mupirocin, arguing that the aminoacylation turnover in IleRS2 could have been traded-off for antibiotic resistance. As expected, a P. megaterium strain deleted for ileS2 was mupirocin-sensitive. Interestingly, an attempt to construct a mupirocin-resistant strain lacking ileS1, a solution not found among species of the family Bacillaceae in nature, led to a viable but compromised strain. Our data suggest that PmIleRS1 is kept to promote fast translation, whereas PmIleRS2 is maintained to provide antibiotic resistance when needed. This is consistent with an emerging picture in which fast-growing organisms predominantly use IleRS1 for competitive survival.
Collapse
Affiliation(s)
- Vladimir Zanki
- Department of Chemistry, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Bartol Bozic
- Department of Chemistry, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Marko Mocibob
- Department of Chemistry, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Nenad Ban
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland
| | - Ita Gruic-Sovulj
- Department of Chemistry, Faculty of Science, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
20
|
Pharmacodynamic model of slow reversible binding and its applications in pharmacokinetic/pharmacodynamic modeling: review and tutorial. J Pharmacokinet Pharmacodyn 2022; 49:493-510. [PMID: 36040645 PMCID: PMC9578295 DOI: 10.1007/s10928-022-09822-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/12/2022] [Indexed: 10/14/2022]
Abstract
Therapeutic responses of most drugs are initiated by the rate and degree of binding to their receptors or targets. The law of mass action describes the rate of drug-receptor complex association (kon) and dissociation (koff) where the ratio koff/kon is the equilibrium dissociation constant (Kd). Drugs with slow reversible binding (SRB) often demonstrate delayed onset and prolonged pharmacodynamic effects. This report reviews evidence for drugs with SRB features, describes previous pharmacokinetic/pharmacodynamic (PK/PD) modeling efforts of several such drugs, provides a tutorial on the mathematics and properties of SRB models, demonstrates applications of SRB models to additional compounds, and compares PK/PD fittings of SRB with other mechanistic models. We identified and summarized 52 drugs with in vitro-confirmed SRB from a PubMed literature search. Simulations with a SRB model and observed PK/PD profiles showed delayed and prolonged responses and that increasing doses/kon or decreasing koff led to greater expected maximum effects and a longer duration of effects. Recession slopes for return of responses to baseline after single doses were nearly linear with an inflection point that approaches a limiting value at larger doses. The SRB model newly captured literature data for the antihypertensive effects of candesartan and antiallergic effects of noberastine. Their PD profiles could also be fitted with indirect response and biophase models with minimal differences. The applicability of SRB models is probably commonplace, but underappreciated, owing to the need for in vitro confirmation of binding kinetics and the similarity of PK/PD profiles to models with other mechanistic determinants.
Collapse
|
21
|
Fanti RC, Vasconcelos SNS, Catta-Preta CMC, Sullivan JR, Riboldi GP, Dos Reis CV, Ramos PZ, Edwards AM, Behr MA, Couñago RM. A Target Engagement Assay to Assess Uptake, Potency, and Retention of Antibiotics in Living Bacteria. ACS Infect Dis 2022; 8:1449-1467. [PMID: 35815896 DOI: 10.1021/acsinfecdis.2c00073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
New antibiotics are urgently needed to counter the emergence of antimicrobial-resistant pathogenic bacteria. A major challenge in antibiotic drug discovery is to turn potent biochemical inhibitors of essential bacterial components into effective antimicrobials. This difficulty is underpinned by a lack of methods to investigate the physicochemical properties needed for candidate antibiotics to permeate the bacterial cell envelope and avoid clearance by the action of bacterial efflux pumps. To address these issues, here we used a target engagement assay to measure the equilibrium and kinetic binding parameters of antibiotics targeting dihydrofolate reductase (DHFR) in live bacteria. We also used this assay to identify novel DHFR ligands having antimicrobial activity. We validated this approach using the Gram-negative bacteria Escherichia coli and the emerging human pathogen Mycobacterium abscessus. We expect the use of target engagement assays in bacteria to expedite the discovery and progression of novel, cell-permeable antibiotics with on-target activity.
Collapse
Affiliation(s)
- Rebeka C Fanti
- Centro de Química Medicinal (CQMED), Centro de Biologia Molecular e Engenharia Genética (CBMEG), Universidade Estadual de Campinas (UNICAMP), Campinas 13083-886, Brazil.,Post-Graduate Program in Genetics and Molecular Biology (PGBM), UNICAMP, Campinas 13083-970, Brazil
| | - Stanley N S Vasconcelos
- Centro de Química Medicinal (CQMED), Centro de Biologia Molecular e Engenharia Genética (CBMEG), Universidade Estadual de Campinas (UNICAMP), Campinas 13083-886, Brazil
| | - Carolina M C Catta-Preta
- Centro de Química Medicinal (CQMED), Centro de Biologia Molecular e Engenharia Genética (CBMEG), Universidade Estadual de Campinas (UNICAMP), Campinas 13083-886, Brazil
| | - Jaryd R Sullivan
- Department of Microbiology & Immunology, McGill University, Montréal H3A 2B4, Canada.,Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal H4A 3J1, Canada.,McGill International TB Centre, Montréal H4A 3S5, Canada
| | - Gustavo P Riboldi
- Centro de Química Medicinal (CQMED), Centro de Biologia Molecular e Engenharia Genética (CBMEG), Universidade Estadual de Campinas (UNICAMP), Campinas 13083-886, Brazil
| | - Caio V Dos Reis
- Centro de Química Medicinal (CQMED), Centro de Biologia Molecular e Engenharia Genética (CBMEG), Universidade Estadual de Campinas (UNICAMP), Campinas 13083-886, Brazil
| | - Priscila Z Ramos
- Centro de Química Medicinal (CQMED), Centro de Biologia Molecular e Engenharia Genética (CBMEG), Universidade Estadual de Campinas (UNICAMP), Campinas 13083-886, Brazil
| | - Aled M Edwards
- Structural Genomics Consortium, 101 College Street, Toronto M5G 1L7, Canada
| | - Marcel A Behr
- Department of Microbiology & Immunology, McGill University, Montréal H3A 2B4, Canada.,Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal H4A 3J1, Canada.,McGill International TB Centre, Montréal H4A 3S5, Canada.,Department of Medicine, McGill University Health Centre, Montréal H4A 3J1, Canada
| | - Rafael M Couñago
- Centro de Química Medicinal (CQMED), Centro de Biologia Molecular e Engenharia Genética (CBMEG), Universidade Estadual de Campinas (UNICAMP), Campinas 13083-886, Brazil.,Post-Graduate Program in Genetics and Molecular Biology (PGBM), UNICAMP, Campinas 13083-970, Brazil
| |
Collapse
|
22
|
From Repurposing to Redesign: Optimization of Boceprevir to Highly Potent Inhibitors of the SARS-CoV-2 Main Protease. Molecules 2022; 27:molecules27134292. [PMID: 35807537 PMCID: PMC9268446 DOI: 10.3390/molecules27134292] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/17/2022] [Accepted: 06/29/2022] [Indexed: 11/17/2022] Open
Abstract
The main protease (Mpro) of the betacoronavirus SARS-CoV-2 is an attractive target for the development of treatments for COVID-19. Structure-based design is a successful approach to discovering new inhibitors of the Mpro. Starting from crystal structures of the Mpro in complexes with the Hepatitis C virus NS3/4A protease inhibitors boceprevir and telaprevir, we optimized the potency of the alpha-ketoamide boceprevir against the Mpro by replacing its P1 cyclobutyl moiety by a γ-lactam as a glutamine surrogate. The resulting compound, MG-78, exhibited an IC50 of 13 nM versus the recombinant Mpro, and similar potency was observed for its P1′ N-methyl derivative MG-131. Crystal structures confirmed the validity of our design concept. In addition to SARS-CoV-2 Mpro inhibition, we also explored the activity of MG-78 against the Mpro of the alphacoronavirus HCoV NL63 and against enterovirus 3C proteases. The activities were good (0.33 µM, HCoV-NL63 Mpro), moderate (1.45 µM, Coxsackievirus 3Cpro), and relatively poor (6.7 µM, enterovirus A71 3Cpro), respectively. The structural basis for the differences in activities was revealed by X-ray crystallo-graphy. We conclude that the modified boceprevir scaffold is suitable for obtaining high-potency inhibitors of the coronavirus Mpros but further optimization would be needed to target enterovirus 3Cpros efficiently.
Collapse
|
23
|
Jo S, Signorile L, Kim S, Kim MS, Huertas O, Insa R, Reig N, Shin DH. A Study of Drug Repurposing to Identify SARS-CoV-2 Main Protease (3CLpro) Inhibitors. Int J Mol Sci 2022; 23:ijms23126468. [PMID: 35742913 PMCID: PMC9224295 DOI: 10.3390/ijms23126468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/08/2022] [Accepted: 06/08/2022] [Indexed: 11/16/2022] Open
Abstract
The outbreak of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) wreaked havoc all over the world. Although vaccines for the disease have recently become available and started to be administered to the population in various countries, there is still a strong and urgent need for treatments to cure COVID-19. One of the safest and fastest strategies is represented by drug repurposing (DRPx). In this study, thirty compounds with known safety profiles were identified from a chemical library of Phase II-and-up compounds through a combination of SOM Biotech's Artificial Intelligence (AI) technology, SOMAIPRO, and in silico docking calculations with third-party software. The selected compounds were then tested in vitro for inhibitory activity against SARS-CoV-2 main protease (3CLpro or Mpro). Of the thirty compounds, three (cynarine, eravacycline, and prexasertib) displayed strong inhibitory activity against SARS-CoV-2 3CLpro. VeroE6 cells infected with SARS-CoV-2 were used to find the cell protection capability of each candidate. Among the three compounds, only eravacycline showed potential antiviral activities with no significant cytotoxicity. A further study is planned for pre-clinical trials.
Collapse
Affiliation(s)
- Seri Jo
- College of Pharmacy and Graduates School of Pharmaceutical Sciences, Ewha W. University, Seoul 03760, Korea; (S.J.); (S.K.); (M.-S.K.)
| | - Luca Signorile
- SOM Innovation Biotech SA., Baldiri Reixac, 4, 08028 Barcelona, Spain; (L.S.); (O.H.); (R.I.)
| | - Suwon Kim
- College of Pharmacy and Graduates School of Pharmaceutical Sciences, Ewha W. University, Seoul 03760, Korea; (S.J.); (S.K.); (M.-S.K.)
| | - Mi-Sun Kim
- College of Pharmacy and Graduates School of Pharmaceutical Sciences, Ewha W. University, Seoul 03760, Korea; (S.J.); (S.K.); (M.-S.K.)
| | - Oscar Huertas
- SOM Innovation Biotech SA., Baldiri Reixac, 4, 08028 Barcelona, Spain; (L.S.); (O.H.); (R.I.)
| | - Raúl Insa
- SOM Innovation Biotech SA., Baldiri Reixac, 4, 08028 Barcelona, Spain; (L.S.); (O.H.); (R.I.)
| | - Núria Reig
- SOM Innovation Biotech SA., Baldiri Reixac, 4, 08028 Barcelona, Spain; (L.S.); (O.H.); (R.I.)
- Correspondence: (N.R.); (D.H.S.); Tel.: +34-93-402-0150 (N.R.); +82-2-3277-4502 (D.H.S.); Fax: +34-93-403-4510 (N.R.); +82-2-3277-2851 (D.H.S.)
| | - Dong Hae Shin
- College of Pharmacy and Graduates School of Pharmaceutical Sciences, Ewha W. University, Seoul 03760, Korea; (S.J.); (S.K.); (M.-S.K.)
- Correspondence: (N.R.); (D.H.S.); Tel.: +34-93-402-0150 (N.R.); +82-2-3277-4502 (D.H.S.); Fax: +34-93-403-4510 (N.R.); +82-2-3277-2851 (D.H.S.)
| |
Collapse
|
24
|
Fagnani L, Nazzicone L, Bellio P, Franceschini N, Tondi D, Verri A, Petricca S, Iorio R, Amicosante G, Perilli M, Celenza G. Protocetraric and Salazinic Acids as Potential Inhibitors of SARS-CoV-2 3CL Protease: Biochemical, Cytotoxic, and Computational Characterization of Depsidones as Slow-Binding Inactivators. Pharmaceuticals (Basel) 2022; 15:ph15060714. [PMID: 35745633 PMCID: PMC9227325 DOI: 10.3390/ph15060714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/01/2022] [Accepted: 06/02/2022] [Indexed: 11/25/2022] Open
Abstract
The study investigated the inhibitory activity of protocetraric and salazinic acids against SARS-CoV-2 3CLpro. The kinetic parameters were determined by microtiter plate-reading fluorimeter using a fluorogenic substrate. The cytotoxic activity was tested on murine Sertoli TM4 cells. In silico analysis was performed to ascertain the nature of the binding with the 3CLpro. The compounds are slow-binding inactivators of 3CLpro with a Ki of 3.95 μM and 3.77 μM for protocetraric and salazinic acid, respectively, and inhibitory efficiency kinact/Ki at about 3 × 10−5 s−1µM−1. The mechanism of inhibition shows that both compounds act as competitive inhibitors with the formation of a stable covalent adduct. The viability assay on epithelial cells revealed that none of them shows cytotoxicity up to 80 μM, which is well below the Ki values. By molecular modelling, we predicted that the catalytic Cys145 makes a nucleophilic attack on the carbonyl carbon of the cyclic ester common to both inhibitors, forming a stably acyl-enzyme complex. The computational and kinetic analyses confirm the formation of a stable acyl-enzyme complex with 3CLpro. The results obtained enrich the knowledge of the already numerous biological activities exhibited by lichen secondary metabolites, paving the way for developing promising scaffolds for the design of cysteine enzyme inhibitors.
Collapse
Affiliation(s)
- Lorenza Fagnani
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio 1, 67100 L’Aquila, Italy; (L.F.); (L.N.); (N.F.); (S.P.); (R.I.); (G.A.); (M.P.); (G.C.)
| | - Lisaurora Nazzicone
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio 1, 67100 L’Aquila, Italy; (L.F.); (L.N.); (N.F.); (S.P.); (R.I.); (G.A.); (M.P.); (G.C.)
| | - Pierangelo Bellio
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio 1, 67100 L’Aquila, Italy; (L.F.); (L.N.); (N.F.); (S.P.); (R.I.); (G.A.); (M.P.); (G.C.)
- Correspondence: (P.B.); (D.T.)
| | - Nicola Franceschini
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio 1, 67100 L’Aquila, Italy; (L.F.); (L.N.); (N.F.); (S.P.); (R.I.); (G.A.); (M.P.); (G.C.)
| | - Donatella Tondi
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 103, 41125 Modena, Italy;
- Correspondence: (P.B.); (D.T.)
| | - Andrea Verri
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 103, 41125 Modena, Italy;
| | - Sabrina Petricca
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio 1, 67100 L’Aquila, Italy; (L.F.); (L.N.); (N.F.); (S.P.); (R.I.); (G.A.); (M.P.); (G.C.)
| | - Roberto Iorio
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio 1, 67100 L’Aquila, Italy; (L.F.); (L.N.); (N.F.); (S.P.); (R.I.); (G.A.); (M.P.); (G.C.)
| | - Gianfranco Amicosante
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio 1, 67100 L’Aquila, Italy; (L.F.); (L.N.); (N.F.); (S.P.); (R.I.); (G.A.); (M.P.); (G.C.)
| | - Mariagrazia Perilli
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio 1, 67100 L’Aquila, Italy; (L.F.); (L.N.); (N.F.); (S.P.); (R.I.); (G.A.); (M.P.); (G.C.)
| | - Giuseppe Celenza
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio 1, 67100 L’Aquila, Italy; (L.F.); (L.N.); (N.F.); (S.P.); (R.I.); (G.A.); (M.P.); (G.C.)
| |
Collapse
|
25
|
Herrscher V, Witjaksono C, Buchotte M, Ferret C, Massicot F, Vasse J, Borel F, Behr J, Seemann M. Irreversible Inhibition of IspG, a Target for the Development of New Antimicrobials, by a 2‐Vinyl Analogue of its MEcPP Substrate. Chemistry 2022; 28:e202200241. [DOI: 10.1002/chem.202200241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Vivien Herrscher
- Univ. Reims Champagne-Ardenne ICMR, CNRS UMR 7312 51687 Reims Cedex 2 France
| | - Clea Witjaksono
- Equipe Chimie Biologique et Applications Thérapeutiques Institut de Chimie de Strasbourg UMR 7177 Université de Strasbourg/CNRS 4, rue Blaise Pascal 67070 Strasbourg France
| | - Marie Buchotte
- Univ. Reims Champagne-Ardenne ICMR, CNRS UMR 7312 51687 Reims Cedex 2 France
| | - Claire Ferret
- Equipe Chimie Biologique et Applications Thérapeutiques Institut de Chimie de Strasbourg UMR 7177 Université de Strasbourg/CNRS 4, rue Blaise Pascal 67070 Strasbourg France
| | - Fabien Massicot
- Univ. Reims Champagne-Ardenne ICMR, CNRS UMR 7312 51687 Reims Cedex 2 France
| | - Jean‐Luc Vasse
- Univ. Reims Champagne-Ardenne ICMR, CNRS UMR 7312 51687 Reims Cedex 2 France
| | - Franck Borel
- Univ. Grenoble Alpes, CEA, CNRS, IBS 38000 Grenoble France
| | - Jean‐Bernard Behr
- Univ. Reims Champagne-Ardenne ICMR, CNRS UMR 7312 51687 Reims Cedex 2 France
| | - Myriam Seemann
- Equipe Chimie Biologique et Applications Thérapeutiques Institut de Chimie de Strasbourg UMR 7177 Université de Strasbourg/CNRS 4, rue Blaise Pascal 67070 Strasbourg France
| |
Collapse
|
26
|
Moreno-Yruela C, Olsen CA. Determination of Slow-Binding HDAC Inhibitor Potency and Subclass Selectivity. ACS Med Chem Lett 2022; 13:779-785. [PMID: 35586419 PMCID: PMC9109163 DOI: 10.1021/acsmedchemlett.1c00702] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 03/10/2022] [Indexed: 12/27/2022] Open
Abstract
Histone deacetylases (HDACs) 1-3 regulate chromatin structure and gene expression. These three enzymes are targets for cancer chemotherapy and have been studied for the treatment of immune disorders and neurodegeneration, but there is a lack of selective pharmacological tool compounds to unravel their individual roles. Potent inhibitors of HDACs 1-3 often display slow-binding kinetics, which causes a delay in inhibitor-enzyme equilibration and may affect assay readout. Here we compare the potencies and selectivities of slow-binding inhibitors measured by discontinuous and continuous assays. We find that entinostat, a clinical candidate, inhibits HDACs 1-3 by a two-step slow-binding mechanism with lower potencies than previously reported. In addition, we show that RGFP966, commercialized as an HDAC3-selective probe, is a slow-binding inhibitor with inhibitor constants of 57, 31, and 13 nM against HDACs 1-3, respectively. These data highlight the need for thorough kinetic investigation in the development of selective HDAC probes.
Collapse
Affiliation(s)
- Carlos Moreno-Yruela
- Center for Biopharmaceuticals and Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Christian A. Olsen
- Center for Biopharmaceuticals and Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100 Copenhagen, Denmark
| |
Collapse
|
27
|
Kinetic Modeling of Time-Dependent Enzyme Inhibition by Pre-Steady-State Analysis of Progress Curves: The Case Study of the Anti-Alzheimer's Drug Galantamine. Int J Mol Sci 2022; 23:ijms23095072. [PMID: 35563466 PMCID: PMC9105972 DOI: 10.3390/ijms23095072] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 04/29/2022] [Accepted: 04/30/2022] [Indexed: 01/27/2023] Open
Abstract
The Michaelis–Menten model of enzyme kinetic assumes the free ligand approximation, the steady-state approximation and the rapid equilibrium approximation. Analytical methods to model slow-binding inhibitors by the analysis of initial velocities have been developed but, due to their inherent complexity, they are seldom employed. In order to circumvent the complications that arise from the violation of the rapid equilibrium assumption, inhibition is commonly evaluated by pre-incubating the enzyme and the inhibitors so that, even for slow inhibitors, the binding equilibrium is established before the reaction is started. Here, we show that for long drug-target residence time inhibitors, the conventional analysis of initial velocities by the linear regression of double-reciprocal plots fails to provide a correct description of the inhibition mechanism. As a case study, the inhibition of acetylcholinesterase by galantamine, a drug approved for the symptomatic treatment of Alzheimer’s disease, is reported. For over 50 years, analysis based on the conventional steady-state model has overlooked the time-dependent nature of galantamine inhibition, leading to an erroneous assessment of the drug potency and, hence, to discrepancies between biochemical data and the pharmacological evidence. Re-examination of acetylcholinesterase inhibition by pre-steady state analysis of the reaction progress curves showed that the potency of galantamine has indeed been underestimated by a factor of ~100.
Collapse
|
28
|
Bonde AC, Lund J, Hansen JJ, Winther JR, Nielsen PF, Zahn S, Tiainen P, Olsen OH, Petersen HH, Bjelke JR. The functional role of the autolysis loop in the regulation of factor X upon hemostatic response. J Thromb Haemost 2022; 20:589-599. [PMID: 34927362 DOI: 10.1111/jth.15624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/16/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND The regulation of factor X (FX) is critical to maintain the balance between blood coagulation and fluidity. OBJECTIVES To functionally characterize the role of the FX autolysis loop in the regulation of the zymogen and active form of FX. METHODS We introduced novel N-linked glycosylations on the surface-exposed loop spanning residues 143-150 (chymotrypsin numbering) of FX. The activity and inhibition of recombinant FX variants was quantified in pure component assays. The in vitro thrombin generation potential of the FX variants was evaluated in FX-depleted plasma. RESULTS The factor VIIa (FVIIa)-mediated activation and prothrombin activation was reduced, presumably through steric hinderance. Prothrombin activation was, however, recovered in presence of cofactor factor Va (FVa) despite a reduced prothrombinase assembly. The introduced N-glycans exhibited position-specific effects on the interaction with two FXa inhibitors: tissue factor pathway inhibitor (TFPI) and antithrombin (ATIII). Ki for the inhibition by full-length TFPI of these FXa variants was increased by 7- to 1150-fold, whereas ATIII inhibition in the presence of the heparin-analog Fondaparinux was modestly increased by 2- to 15-fold compared with wild-type. When supplemented in zymogen form, the FX variants exhibited reduced thrombin generation activity relative to wild-type FX, whereas enhanced procoagulant activity was measured for activated FXa variants. CONCLUSION The autolysis loop participates in all aspects of FX regulation. In plasma-based assays, a modest decrease in FX activation rate appeared to knock down the procoagulant response even when down regulation of FXa activity by inhibitors was reduced.
Collapse
Affiliation(s)
- Amalie Carnbring Bonde
- Global Research, Novo Nordisk A/S, Måløv, Denmark
- Section for Biomolecular Sciences, Department of Biology, University of Copenhagen, Copenhagen N, Denmark
| | - Jacob Lund
- Global Research, Novo Nordisk A/S, Måløv, Denmark
| | | | - Jakob Rahr Winther
- Section for Biomolecular Sciences, Department of Biology, University of Copenhagen, Copenhagen N, Denmark
| | | | - Stefan Zahn
- Global Research, Novo Nordisk A/S, Måløv, Denmark
| | | | - Ole Hvilsted Olsen
- Novo Nordisk Foundation Centre for Basic Metabolic Research, University of Copenhagen, Copenhagen N, Denmark
| | | | | |
Collapse
|
29
|
Lu Q, Tan D, Xu Y, Liu M, He Y, Li C. Inactivation of Jack Bean Urease by Nitidine Chloride from Zanthoxylum nitidum: Elucidation of Inhibitory Efficacy, Kinetics and Mechanism. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:13772-13779. [PMID: 34767340 DOI: 10.1021/acs.jafc.1c04801] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Urease is a metalloenzyme that catalyzes the hydrolysis of urea into ammonia and carbon dioxide, which has a negative impact on human health and agriculture. In this study, the inactivation of jack bean urease by nitidine chloride (NC) was investigated to elucidate the inhibitory effect, kinetics, and underlying mechanism of action. The results showed that NC acted as a concentration- and time-dependent inhibitor with an IC50 value of 33.2 ± 4.8 μM and exhibited a similar inhibitory effect to acetohydroxamic acid (IC50 = 31.7 ± 5.8 μM). Further kinetic analysis demonstrated that NC was a slow-binding and non-competitive inhibitor for urease. Thiol-blocking reagents (dithiothreitol, glutathione, and l-cysteine) significantly retarded urease inactivation, while Ni2+ competitive inhibitors (boric acid and sodium fluoride) synergetically suppressed urease with NC, suggesting that the active site sulfhydryl groups were possibly obligatory for NC blocking urease. Molecular docking simulation further argued its inhibition mechanism. Additionally, NC-induced deactivation of urease was verified to be reversible since the inactivated enzyme could be reactivated by glutathione. Taking together, NC was a non-competitive inhibitor targeting the thiol group at the active site of urease with characteristics of concentration dependence, reversibility, and slow binding, serving as a promising novel urease suppressant.
Collapse
Affiliation(s)
- Qiang Lu
- Department of Pharmaceutical Sciences, Zunyi Medical University, Zhuhai Campus, Zhuhai 519041, PR China
| | - Daopeng Tan
- College of Pharmacy, Zunyi Medical University, Zunyi 563000, PR China
| | - Yifei Xu
- Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen 518005, PR China
| | - Meigui Liu
- Department of Pharmaceutical Sciences, Zunyi Medical University, Zhuhai Campus, Zhuhai 519041, PR China
| | - Yuqi He
- College of Pharmacy, Zunyi Medical University, Zunyi 563000, PR China
| | - Cailan Li
- Department of Pharmacology, Zunyi Medical University, Zhuhai Campus, Zhuhai 519041, PR China
| |
Collapse
|
30
|
Li L, Chenna BC, Yang KS, Cole TR, Goodall ZT, Giardini M, Moghadamchargari Z, Hernandez EA, Gomez J, Calvet CM, Bernatchez JA, Mellott DM, Zhu J, Rademacher A, Thomas D, Blankenship LR, Drelich A, Laganowsky A, Tseng CTK, Liu WR, Wand AJ, Cruz-Reyes J, Siqueira-Neto JL, Meek TD. Self-Masked Aldehyde Inhibitors: A Novel Strategy for Inhibiting Cysteine Proteases. J Med Chem 2021; 64:11267-11287. [PMID: 34288674 PMCID: PMC10504874 DOI: 10.1021/acs.jmedchem.1c00628] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cysteine proteases comprise an important class of drug targets, especially for infectious diseases such as Chagas disease (cruzain) and COVID-19 (3CL protease, cathepsin L). Peptide aldehydes have proven to be potent inhibitors for all of these proteases. However, the intrinsic, high electrophilicity of the aldehyde group is associated with safety concerns and metabolic instability, limiting the use of aldehyde inhibitors as drugs. We have developed a novel class of self-masked aldehyde inhibitors (SMAIs) for cruzain, the major cysteine protease of the causative agent of Chagas disease-Trypanosoma cruzi. These SMAIs exerted potent, reversible inhibition of cruzain (Ki* = 18-350 nM) while apparently protecting the free aldehyde in cell-based assays. We synthesized prodrugs of the SMAIs that could potentially improve their pharmacokinetic properties. We also elucidated the kinetic and chemical mechanism of SMAIs and applied this strategy to the design of anti-SARS-CoV-2 inhibitors.
Collapse
Affiliation(s)
- Linfeng Li
- Department of Biochemistry and Biophysics, Texas A&M University, 300 Olsen Blvd, College Station, Texas 77843, United States
| | - Bala C Chenna
- Department of Biochemistry and Biophysics, Texas A&M University, 300 Olsen Blvd, College Station, Texas 77843, United States
| | - Kai S Yang
- Department of Chemistry, Texas A&M University, 580 Ross Street, College Station, Texas 77843, United States
| | - Taylor R Cole
- Department of Biochemistry and Biophysics, Texas A&M University, 300 Olsen Blvd, College Station, Texas 77843, United States
| | - Zachary T Goodall
- Department of Biochemistry and Biophysics, Texas A&M University, 300 Olsen Blvd, College Station, Texas 77843, United States
| | - Miriam Giardini
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Dr, La Jolla, California 92093, United States
| | - Zahra Moghadamchargari
- Department of Chemistry, Texas A&M University, 580 Ross Street, College Station, Texas 77843, United States
| | - Elizabeth A Hernandez
- Department of Biochemistry and Biophysics, Texas A&M University, 300 Olsen Blvd, College Station, Texas 77843, United States
| | - Jana Gomez
- Department of Biochemistry and Biophysics, Texas A&M University, 300 Olsen Blvd, College Station, Texas 77843, United States
| | - Claudia M Calvet
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Dr, La Jolla, California 92093, United States
| | - Jean A Bernatchez
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Dr, La Jolla, California 92093, United States
| | - Drake M Mellott
- Department of Biochemistry and Biophysics, Texas A&M University, 300 Olsen Blvd, College Station, Texas 77843, United States
| | - Jiyun Zhu
- Department of Biochemistry and Biophysics, Texas A&M University, 300 Olsen Blvd, College Station, Texas 77843, United States
| | - Andrew Rademacher
- Department of Biochemistry and Biophysics, Texas A&M University, 300 Olsen Blvd, College Station, Texas 77843, United States
| | - Diane Thomas
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Dr, La Jolla, California 92093, United States
| | - Lauren R Blankenship
- Department of Chemistry, Texas A&M University, 580 Ross Street, College Station, Texas 77843, United States
| | - Aleksandra Drelich
- Department of Microbiology and Immunology, University of Texas Medical Branch, 301 University Blvd, Galveston, Texas 77555, United States
| | - Arthur Laganowsky
- Department of Chemistry, Texas A&M University, 580 Ross Street, College Station, Texas 77843, United States
| | - Chien-Te K Tseng
- Department of Microbiology and Immunology, University of Texas Medical Branch, 301 University Blvd, Galveston, Texas 77555, United States
| | - Wenshe R Liu
- Department of Biochemistry and Biophysics, Texas A&M University, 300 Olsen Blvd, College Station, Texas 77843, United States
- Department of Chemistry, Texas A&M University, 580 Ross Street, College Station, Texas 77843, United States
| | - A Joshua Wand
- Department of Biochemistry and Biophysics, Texas A&M University, 300 Olsen Blvd, College Station, Texas 77843, United States
| | - Jorge Cruz-Reyes
- Department of Biochemistry and Biophysics, Texas A&M University, 300 Olsen Blvd, College Station, Texas 77843, United States
| | - Jair L Siqueira-Neto
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Dr, La Jolla, California 92093, United States
| | - Thomas D Meek
- Department of Biochemistry and Biophysics, Texas A&M University, 300 Olsen Blvd, College Station, Texas 77843, United States
| |
Collapse
|
31
|
Douglas CD, Grandinetti L, Easton NM, Kuehm OP, Hayden JA, Hamilton MC, St Maurice M, Bearne SL. Slow-Onset, Potent Inhibition of Mandelate Racemase by 2-Formylphenylboronic Acid. An Unexpected Adduct Clasps the Catalytic Machinery. Biochemistry 2021; 60:2508-2518. [PMID: 34339165 DOI: 10.1021/acs.biochem.1c00374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
o-Carbonyl arylboronic acids such as 2-formylphenylboronic acid (2-FPBA) are employed in biocompatible conjugation reactions with the resulting iminoboronate adduct stabilized by an intramolecular N-B interaction. However, few studies have utilized these reagents as active site-directed enzyme inhibitors. We show that 2-FPBA is a potent reversible, slow-onset inhibitor of mandelate racemase (MR), an enzyme that has served as a valuable paradigm for understanding enzyme-catalyzed abstraction of an α-proton from a carbon acid substrate with a high pKa. Kinetic analysis of the progress curves for the slow onset of inhibition of wild-type MR using a two-step kinetic mechanism gave Ki and Ki* values of 5.1 ± 1.8 and 0.26 ± 0.08 μM, respectively. Hence, wild-type MR binds 2-FPBA with an affinity that exceeds that for the substrate by ∼3000-fold. K164R MR was inhibited by 2-FPBA, while K166R MR was not inhibited, indicating that Lys 166 was essential for inhibition. Unexpectedly, mass spectrometric analysis of the NaCNBH3-treated enzyme-inhibitor complex did not yield evidence of an iminoboronate adduct. 11B nuclear magnetic resonance spectroscopy of the MR·2-FPBA complex indicated that the boron atom was sp3-hybridized (δ 6.0), consistent with dative bond formation. Surprisingly, X-ray crystallography revealed the formation of an Nζ-B dative bond between Lys 166 and 2-FPBA with intramolecular cyclization to form a benzoxaborole, rather than the expected iminoboronate. Thus, when o-carbonyl arylboronic acid reagents are employed to modify proteins, the structure of the resulting product depends on the protein architecture at the site of modification.
Collapse
Affiliation(s)
- Colin D Douglas
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Lia Grandinetti
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin 53201-1881, United States
| | - Nicole M Easton
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Oliver P Kuehm
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Joshua A Hayden
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Meghan C Hamilton
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Martin St Maurice
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin 53201-1881, United States
| | - Stephen L Bearne
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada
- Department of Chemistry, Dalhousie University, Halifax, NS B3H 4R2, Canada
| |
Collapse
|
32
|
Tian G, Suarez J, Zhang Z, Connolly P, Ahn K. Potent Phenylpyridine and Oxodihydrofuran Inhibitors of Cyclooxygenase-2: Optimization toward a Long Residence Time with Balanced Internal Energetics. Biochemistry 2021; 60:2407-2418. [PMID: 34293856 DOI: 10.1021/acs.biochem.1c00294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Long residence time enzyme inhibitors with a two-step binding mechanism are characterized by a high internal energy barrier for target association. This raises the question of whether optimizing residence time via further increasing this internal energy barrier would inevitably lead to insufficient target occupancy in vivo due to slow, time-dependent binding. We attempted to address this question during optimization of cyclooxygenase-2 (COX-2) inhibitors. Defining long residence time drugs with acceptable association and dissociation rate constants required for sufficient target occupancy and sustained efficacy, which we termed "balanced internal energetics", provides an important criterion for successful progression during lead optimization. Despite the advancement of several COX-2 inhibitors to marketed drugs, their detailed inhibition kinetics have been surprisingly limiting especially during the structure-activity relationship process mainly due to the lack of robust kinetic assays. Herein, we describe a reoptimized COX enzymatic assay and a novel MS-based assay enabling detailed mechanistic studies for identifying long residence time COX-2 inhibitors with balanced internal energetics. These efforts led to the discovery of promising leads possessing dissociation half-lives of ≤40 h, much greater than the values of 6 and 0.71 h for two marketed drugs, etoricoxib and celecoxib, respectively. Importantly, the inhibition rate constants remain comparable to those of the marketed drugs and above the lower limits set by the criteria of balanced internal energetics, predicting sufficient target occupancy required for efficacy. Taken together, this study demonstrates the feasibility of increasing the internal energy barrier as a viable approach for lead optimization toward discovering long residence time drug candidates.
Collapse
|
33
|
Mirzaie S, Abdi F, GhavamiNejad A, Lu B, Wu XY. Covalent Antiviral Agents. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1322:285-312. [PMID: 34258745 DOI: 10.1007/978-981-16-0267-2_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Nowadays, many viral infections have emerged and are taking a huge toll on human lives globally. Meanwhile, viral resistance to current drugs has drastically increased. Hence, there is a pressing need to design potent broad-spectrum antiviral agents to treat a variety of viral infections and overcome viral resistance. Covalent inhibitors have the potential to achieve both goals owing to their biochemical efficiency, prolonged duration of action, and the capability to inhibit shallow, solvent-exposed substrate-binding domains. In this chapter, we review the structures, activities, and inhibition mechanisms of covalent inhibitors against severe acute respiratory syndrome coronavirus 2, dengue virus, enterovirus, hepatitis C virus, human immunodeficiency virus, and influenza viruses. We also discuss the application of in silico study in covalent inhibitor design.
Collapse
Affiliation(s)
- Sako Mirzaie
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie L. Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada.
| | - Fatemeh Abdi
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie L. Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| | - Amin GhavamiNejad
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie L. Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| | - Brian Lu
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie L. Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| | - Xiao Yu Wu
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie L. Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
34
|
Copeland RA. Chance Favors the Perplexed Mind: The Critical Role of Mechanistic Biochemistry in Drug Discovery. Biochemistry 2021; 60:2275-2284. [PMID: 34259514 DOI: 10.1021/acs.biochem.1c00345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Scientific discoveries often start with an observation that does not quite make sense, within the framework of a well-established hypothesis. It is when researchers delve deeply to understand such perplexing data that established hypotheses are modified or replaced, and new and expanded knowledge of the system can be gained. This is often the case in the field of drug discovery. In this Perspective, case studies demonstrate how an understanding of perplexing data can lead to novel discoveries regarding the biological function of drug targets, or the mechanisms of compound-target interactions, that can ultimately result in new drugs entering the clinic. These case studies reinforce two interdependent themes: (1) that understanding the pathophysiological context in which drug targets function and the mechanistic details of drug-target interactions are critical to efficient and effective drug discovery and (2) that investing time and energy into following up on perplexing data can lead to novel discoveries that can drive the development of new and improved medicines.
Collapse
Affiliation(s)
- Robert A Copeland
- Accent Therapeutics, Inc., 65 Hayden Avenue, Lexington, Massachusetts 02421, United States
| |
Collapse
|
35
|
Feng M, Harijan RK, Harris LD, Tyler PC, Fröhlich RFG, Brown M, Schramm VL. Aminofutalosine Deaminase in the Menaquinone Pathway of Helicobacter pylori. Biochemistry 2021; 60:1933-1946. [PMID: 34077175 DOI: 10.1021/acs.biochem.1c00215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Helicobacter pylori is a Gram-negative bacterium that is responsible for gastric and duodenal ulcers. H. pylori uses the unusual mqn pathway with aminofutalosine (AFL) as an intermediate for menaquinone biosynthesis. Previous reports indicate that hydrolysis of AFL by 5'-methylthioadenosine nucleosidase (HpMTAN) is the direct path for producing downstream metabolites in the mqn pathway. However, genomic analysis indicates jhp0252 is a candidate for encoding AFL deaminase (AFLDA), an activity for deaminating aminofutolasine. The product, futalosine, is not a known substrate for bacterial MTANs. Recombinant jhp0252 was expressed and characterized as an AFL deaminase (HpAFLDA). Its catalytic specificity includes AFL, 5'-methylthioadenosine, 5'-deoxyadenosine, adenosine, and S-adenosylhomocysteine. The kcat/Km value for AFL is 6.8 × 104 M-1 s-1, 26-fold greater than that for adenosine. 5'-Methylthiocoformycin (MTCF) is a slow-onset inhibitor for HpAFLDA and demonstrated inhibitory effects on H. pylori growth. Supplementation with futalosine partially restored H. pylori growth under MTCF treatment, suggesting AFL deamination is significant for cell growth. The crystal structures of apo-HpAFLDA and with MTCF at the catalytic sites show a catalytic site Zn2+ or Fe2+ as the water-activating group. With bound MTCF, the metal ion is 2.0 Å from the sp3 hydroxyl group of the transition state analogue. Metabolomics analysis revealed that HpAFLDA has intracellular activity and is inhibited by MTCF. The mqn pathway in H. pylori bifurcates at aminofutalosine with HpMTAN producing adenine and depurinated futalosine and HpAFLDA producing futalosine. Inhibition of cellular HpMTAN or HpAFLDA decreased the cellular content of menaquinone-6, supporting roles for both enzymes in the pathway.
Collapse
Affiliation(s)
- Mu Feng
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| | - Rajesh K Harijan
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| | - Lawrence D Harris
- The Ferrier Research Institute, Victoria University of Wellington, Wellington 6140, New Zealand
| | - Peter C Tyler
- The Ferrier Research Institute, Victoria University of Wellington, Wellington 6140, New Zealand
| | - Richard F G Fröhlich
- The Ferrier Research Institute, Victoria University of Wellington, Wellington 6140, New Zealand
| | - Morais Brown
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| | - Vern L Schramm
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| |
Collapse
|
36
|
Lak P, O'Donnell H, Du X, Jacobson MP, Shoichet BK. A Crowding Barrier to Protein Inhibition in Colloidal Aggregates. J Med Chem 2021; 64:4109-4116. [PMID: 33761256 DOI: 10.1021/acs.jmedchem.0c02253] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Small molecule colloidal aggregates adsorb and partially denature proteins, inhibiting them artifactually. Oddly, this inhibition is typically time-dependent. Two mechanisms might explain this: low concentrations of the colloid and enzyme might mean low encounter rates, or colloid-based protein denaturation might impose a kinetic barrier. These two mechanisms should have different concentration dependencies. Perplexingly, when enzyme concentration was increased, incubation times actually lengthened, inconsistent with both models and with classical chemical kinetics of solution species. We therefore considered molecular crowding, where colloids with lower protein surface density demand a shorter incubation time than more crowded colloids. To test this, we grew and shrank colloid surface area. As the surface area shrank, the incubation time lengthened, while as it increased, the converse was true. These observations support a crowding effect on protein binding to colloidal aggregates. Implications for drug delivery and for detecting aggregation-based inhibition will be discussed.
Collapse
Affiliation(s)
- Parnian Lak
- Department of Pharmaceutical Chemistry, University of California, San Francisco, 1700 Fourth Street, San Francisco, California 94143-2550, United States
| | - Henry O'Donnell
- Department of Pharmaceutical Chemistry, University of California, San Francisco, 1700 Fourth Street, San Francisco, California 94143-2550, United States
| | - Xuewen Du
- Department of Pharmaceutical Chemistry, University of California, San Francisco, 1700 Fourth Street, San Francisco, California 94143-2550, United States
| | - Matthew P Jacobson
- Department of Pharmaceutical Chemistry, University of California, San Francisco, 1700 Fourth Street, San Francisco, California 94143-2550, United States
| | - Brian K Shoichet
- Department of Pharmaceutical Chemistry, University of California, San Francisco, 1700 Fourth Street, San Francisco, California 94143-2550, United States
| |
Collapse
|
37
|
Minnow YVT, Harijan RK, Schramm VL. A resistant mutant of Plasmodium falciparum purine nucleoside phosphorylase uses wild-type neighbors to maintain parasite survival. J Biol Chem 2021; 296:100342. [PMID: 33524395 PMCID: PMC7949152 DOI: 10.1016/j.jbc.2021.100342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/16/2021] [Accepted: 01/21/2021] [Indexed: 12/14/2022] Open
Abstract
Plasmodium falciparum purine nucleoside phosphorylase (PfPNP) catalyzes an essential step in purine salvage for parasite growth. 4′-Deaza-1′-Aza-2′-Deoxy-1′-(9-Methylene)-Immucillin-G (DADMe-ImmG) is a transition state analog inhibitor of this enzyme, and P. falciparum infections in an Aotus primate malaria model can be cleared by oral administration of DADMe-ImmG. P. falciparum cultured under increasing DADMe-ImmG drug pressure exhibited PfPNP gene amplification, increased protein expression, and point mutations involved in DADMe-ImmG binding. However, the weak catalytic properties of the M183L resistance mutation (∼17,000-fold decrease in catalytic efficiency) are inconsistent with the essential function of PfPNP. We hypothesized that M183L subunits may form mixed oligomers of native and mutant PfPNP monomers to give hybrid hexameric enzymes with properties conferring DADMe-ImmG resistance. To test this hypothesis, we designed PfPNP constructs that covalently linked native and the catalytically weak M183L mutant subunits. Engineered hybrid PfPNP yielded trimer-of-dimer hexameric protein with alternating native and catalytically weak M183L subunits. This hybrid PfPNP gave near-native Km values for substrate, but the affinity for DADMe-ImmG and catalytic efficiency were both reduced approximately ninefold relative to a similar construct of native subunits. Contact between the relatively inactive M183L and native subunits is responsible for altered properties of the hybrid protein. Thus, gene amplification of PfPNP provides adequate catalytic activity while resistance to DADMe-ImmG occurs in the hybrid oligomer to promote parasite survival. Coupled with the slow development of drug resistance, this resistance mechanism highlights the potential for DADMe-ImmG use in antimalarial combination therapies.
Collapse
Affiliation(s)
- Yacoba V T Minnow
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Rajesh K Harijan
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Vern L Schramm
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, USA.
| |
Collapse
|
38
|
Structural Investigations of the Inhibition of Escherichia coli AmpC β-Lactamase by Diazabicyclooctanes. Antimicrob Agents Chemother 2021; 65:AAC.02073-20. [PMID: 33199391 PMCID: PMC7849013 DOI: 10.1128/aac.02073-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 11/12/2020] [Indexed: 12/24/2022] Open
Abstract
β-Lactam antibiotics are presently the most important treatments for infections by pathogenic Escherichia coli, but their use is increasingly compromised by β-lactamases, including the chromosomally encoded class C AmpC serine-β-lactamases (SBLs). The diazabicyclooctane (DBO) avibactam is a potent AmpC inhibitor; the clinical success of avibactam combined with ceftazidime has stimulated efforts to optimize the DBO core. We report kinetic and structural studies, including four high-resolution crystal structures, concerning inhibition of the AmpC serine-β-lactamase from E. coli (AmpC EC ) by clinically relevant DBO-based inhibitors: avibactam, relebactam, nacubactam, and zidebactam. Kinetic analyses and mass spectrometry-based assays were used to study their mechanisms of AmpC EC inhibition. The results reveal that, under our assay conditions, zidebactam manifests increased potency (apparent inhibition constant [K iapp], 0.69 μM) against AmpC EC compared to that of the other DBOs (K iapp = 5.0 to 7.4 μM) due to an ∼10-fold accelerated carbamoylation rate. However, zidebactam also has an accelerated off-rate, and with sufficient preincubation time, all the DBOs manifest similar potencies. Crystallographic analyses indicate a greater conformational freedom of the AmpC EC -zidebactam carbamoyl complex compared to those for the other DBOs. The results suggest the carbamoyl complex lifetime should be a consideration in development of DBO-based SBL inhibitors for the clinically important class C SBLs.
Collapse
|
39
|
Vadivel K, Zaiss AK, Kumar Y, Fabian FM, Ismail AEA, Arbing MA, Buchholz WG, Velander WH, Bajaj SP. Enhanced Antifibrinolytic Efficacy of a Plasmin-Specific Kunitz-Inhibitor (60-Residue Y11T/L17R with C-Terminal IEK) of Human Tissue Factor Pathway Inhibitor Type-2 Domain1. J Clin Med 2020; 9:E3684. [PMID: 33212896 PMCID: PMC7698382 DOI: 10.3390/jcm9113684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 10/21/2020] [Indexed: 12/13/2022] Open
Abstract
Current antifibrinolytic agents reduce blood loss by inhibiting plasmin active sites (e.g., aprotinin) or by preventing plasminogen/tissue plasminogen activator (tPA) binding to fibrin clots (e.g., ε-aminocaproic acid and tranexamic acid); however, they have adverse side effects. Here, we expressed 60-residue (NH2NAE…IEKCOOH) Kunitz domain1 (KD1) mutants of human tissue factor pathway inhibitor type-2 that inhibit plasmin as well as plasminogen activation. A single (KD1-L17R-KCOOH) and a double mutant (KD1-Y11T/L17R- KCOOH) were expressed in Escherichia coli as His-tagged constructs, each with enterokinase cleavage sites. KD1-Y11T/L17R-KCOOH was also expressed in Pichia pastoris. KD1-Y11T/L17R-KCOOH inhibited plasmin comparably to aprotinin and bound to the kringle domains of plasminogen/plasmin and tPA with Kd of ~50 nM and ~35 nM, respectively. Importantly, compared to aprotinin, KD1-L17R-KCOOH and KD1-Y11T/L17R-KCOOH did not inhibit kallikrein. Moreover, the antifibrinolytic potential of KD1-Y11T/L17R-KCOOH was better than that of KD1-L17R-KCOOH and similar to that of aprotinin in plasma clot-lysis assays. In thromboelastography experiments, KD1-Y11T/L17R-KCOOH was shown to inhibit fibrinolysis in a dose dependent manner and was comparable to aprotinin at a higher concentration. Further, KD1-Y11T/L17R-KCOOH did not induce cytotoxicity in primary human endothelial cells or fibroblasts. We conclude that KD1-Y11T/L17R-KCOOH is comparable to aprotinin, the most potent known inhibitor of plasmin and can be produced in large amounts using Pichia.
Collapse
Affiliation(s)
- Kanagasabai Vadivel
- Department of Orthopedic Surgery, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (K.V.); (A.K.Z.); (Y.K.)
| | - Anne K. Zaiss
- Department of Orthopedic Surgery, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (K.V.); (A.K.Z.); (Y.K.)
| | - Yogesh Kumar
- Department of Orthopedic Surgery, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (K.V.); (A.K.Z.); (Y.K.)
| | - Frank M. Fabian
- Department of Chemical and Biomolecular Engineering, University of Nebraska, Lincoln, NE 68588, USA; (F.M.F.); (A.E.A.I.); (W.G.B.); (W.H.V.)
- Chemistry Department, Walla Walla University, College Place, WA 99324, USA
| | - Ayman E. A. Ismail
- Department of Chemical and Biomolecular Engineering, University of Nebraska, Lincoln, NE 68588, USA; (F.M.F.); (A.E.A.I.); (W.G.B.); (W.H.V.)
| | - Mark A. Arbing
- Protein Expression Technology Center, UCLA-DOE Institute, University of California, Los Angeles, CA 90095, USA;
| | - Wallace G. Buchholz
- Department of Chemical and Biomolecular Engineering, University of Nebraska, Lincoln, NE 68588, USA; (F.M.F.); (A.E.A.I.); (W.G.B.); (W.H.V.)
| | - William H. Velander
- Department of Chemical and Biomolecular Engineering, University of Nebraska, Lincoln, NE 68588, USA; (F.M.F.); (A.E.A.I.); (W.G.B.); (W.H.V.)
| | - S. Paul Bajaj
- Department of Orthopedic Surgery, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (K.V.); (A.K.Z.); (Y.K.)
- Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
40
|
Ma C, Sacco MD, Hurst B, Townsend JA, Hu Y, Szeto T, Zhang X, Tarbet B, Marty MT, Chen Y, Wang J. Boceprevir, GC-376, and calpain inhibitors II, XII inhibit SARS-CoV-2 viral replication by targeting the viral main protease. Cell Res 2020; 30:678-692. [PMID: 32541865 PMCID: PMC7294525 DOI: 10.1038/s41422-020-0356-z] [Citation(s) in RCA: 626] [Impact Index Per Article: 125.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 05/29/2020] [Indexed: 12/16/2022] Open
Abstract
A new coronavirus SARS-CoV-2, also called novel coronavirus 2019 (2019-nCoV), started to circulate among humans around December 2019, and it is now widespread as a global pandemic. The disease caused by SARS-CoV-2 virus is called COVID-19, which is highly contagious and has an overall mortality rate of 6.35% as of May 26, 2020. There is no vaccine or antiviral available for SARS-CoV-2. In this study, we report our discovery of inhibitors targeting the SARS-CoV-2 main protease (Mpro). Using the FRET-based enzymatic assay, several inhibitors including boceprevir, GC-376, and calpain inhibitors II, and XII were identified to have potent activity with single-digit to submicromolar IC50 values in the enzymatic assay. The mechanism of action of the hits was further characterized using enzyme kinetic studies, thermal shift binding assays, and native mass spectrometry. Significantly, four compounds (boceprevir, GC-376, calpain inhibitors II and XII) inhibit SARS-CoV-2 viral replication in cell culture with EC50 values ranging from 0.49 to 3.37 µM. Notably, boceprevir, calpain inhibitors II and XII represent novel chemotypes that are distinct from known substrate-based peptidomimetic Mpro inhibitors. A complex crystal structure of SARS-CoV-2 Mpro with GC-376, determined at 2.15 Å resolution with three protomers per asymmetric unit, revealed two unique binding configurations, shedding light on the molecular interactions and protein conformational flexibility underlying substrate and inhibitor binding by Mpro. Overall, the compounds identified herein provide promising starting points for the further development of SARS-CoV-2 therapeutics.
Collapse
Affiliation(s)
- Chunlong Ma
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ, 85721, USA
| | - Michael Dominic Sacco
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA
| | - Brett Hurst
- Institute for Antiviral Research, Utah State University, Logan, UT, 84322, USA
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT, 84322, USA
| | - Julia Alma Townsend
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, AZ, 85721, USA
| | - Yanmei Hu
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ, 85721, USA
| | - Tommy Szeto
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ, 85721, USA
| | - Xiujun Zhang
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA
| | - Bart Tarbet
- Institute for Antiviral Research, Utah State University, Logan, UT, 84322, USA
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT, 84322, USA
| | - Michael Thomas Marty
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, AZ, 85721, USA
| | - Yu Chen
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA.
| | - Jun Wang
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ, 85721, USA.
| |
Collapse
|
41
|
Wyatt JW, Korasick DA, Qureshi IA, Campbell AC, Gates KS, Tanner JJ. Inhibition, crystal structures, and in-solution oligomeric structure of aldehyde dehydrogenase 9A1. Arch Biochem Biophys 2020; 691:108477. [PMID: 32717224 DOI: 10.1016/j.abb.2020.108477] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 06/19/2020] [Accepted: 06/20/2020] [Indexed: 10/23/2022]
Abstract
Aldehyde dehydrogenase 9A1 (ALDH9A1) is a human enzyme that catalyzes the NAD+-dependent oxidation of the carnitine precursor 4-trimethylaminobutyraldehyde to 4-N-trimethylaminobutyrate. Here we show that the broad-spectrum ALDH inhibitor diethylaminobenzaldehyde (DEAB) reversibly inhibits ALDH9A1 in a time-dependent manner. Possible mechanisms of inhibition include covalent reversible inactivation involving the thiohemiacetal intermediate and slow, tight-binding inhibition. Two crystal structures of ALDH9A1 are reported, including the first of the enzyme complexed with NAD+. One of the structures reveals the active conformation of the enzyme, in which the Rossmann dinucleotide-binding domain is fully ordered and the inter-domain linker adopts the canonical β-hairpin observed in other ALDH structures. The oligomeric structure of ALDH9A1 was investigated using analytical ultracentrifugation, small-angle X-ray scattering, and negative stain electron microscopy. These data show that ALDH9A1 forms the classic ALDH superfamily dimer-of-dimers tetramer in solution. Our results suggest that the presence of an aldehyde substrate and NAD+ promotes isomerization of the enzyme into the active conformation.
Collapse
Affiliation(s)
- Jesse W Wyatt
- Department of Chemistry, University of Missouri, Columbia, MO, 65211, United States
| | - David A Korasick
- Department of Biochemistry, University of Missouri, Columbia, MO, 65211, United States
| | - Insaf A Qureshi
- Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Prof. C.R. Rao Road, Hyderabad, 500046, India
| | - Ashley C Campbell
- Department of Biochemistry, University of Missouri, Columbia, MO, 65211, United States
| | - Kent S Gates
- Department of Chemistry, University of Missouri, Columbia, MO, 65211, United States; Department of Biochemistry, University of Missouri, Columbia, MO, 65211, United States
| | - John J Tanner
- Department of Chemistry, University of Missouri, Columbia, MO, 65211, United States; Department of Biochemistry, University of Missouri, Columbia, MO, 65211, United States.
| |
Collapse
|
42
|
Cheong EJY, Nair PC, Neo RWY, Tu HT, Lin F, Chiong E, Esuvaranathan K, Fan H, Szmulewitz RZ, Peer CJ, Figg WD, Chai CLL, Miners JO, Chan ECY. Slow-, Tight-Binding Inhibition of CYP17A1 by Abiraterone Redefines Its Kinetic Selectivity and Dosing Regimen. J Pharmacol Exp Ther 2020; 374:438-451. [PMID: 32554434 DOI: 10.1124/jpet.120.265868] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 06/11/2020] [Indexed: 12/18/2022] Open
Abstract
Substantial evidence underscores the clinical efficacy of inhibiting CYP17A1-mediated androgen biosynthesis by abiraterone for treatment of prostate oncology. Previous structural analysis and in vitro assays revealed inconsistencies surrounding the nature and potency of CYP17A1 inhibition by abiraterone. Here, we establish that abiraterone is a slow-, tight-binding inhibitor of CYP17A1, with initial weak binding preceding the subsequent slow isomerization to a high-affinity CYP17A1-abiraterone complex. The in vitro inhibition constant of the final high-affinity CYP17A1-abiraterone complex ( ( K i * = 0.39 nM )yielded a binding free energy of -12.8 kcal/mol that was quantitatively consistent with the in silico prediction of -14.5 kcal/mol. Prolonged suppression of dehydroepiandrosterone (DHEA) concentrations observed in VCaP cells after abiraterone washout corroborated its protracted CYP17A1 engagement. Molecular dynamics simulations illuminated potential structural determinants underlying the rapid reversible binding characterizing the two-step induced-fit model. Given the extended residence time (42 hours) of abiraterone within the CYP17A1 active site, in silico simulations demonstrated sustained target engagement even when most abiraterone has been eliminated systemically. Subsequent pharmacokinetic-pharmacodynamic (PK-PD) modeling linking time-dependent CYP17A1 occupancy to in vitro steroidogenic dynamics predicted comparable suppression of downstream DHEA-sulfate at both 1000- and 500-mg doses of abiraterone acetate. This enabled mechanistic rationalization of a clinically reported PK-PD disconnect, in which equipotent reduction of downstream plasma DHEA-sulfate levels was achieved despite a lower systemic exposure of abiraterone. Our novel findings provide the impetus for re-evaluating the current dosing paradigm of abiraterone with the aim of preserving PD efficacy while mitigating its dose-dependent adverse effects and financial burden. SIGNIFICANCE STATEMENT: With the advent of novel molecularly targeted anticancer modalities, it is becoming increasingly evident that optimal dose selection must necessarily be predicated on mechanistic characterization of the relationships between target exposure, drug-target interactions, and pharmacodynamic endpoints. Nevertheless, efficacy has always been perceived as being exclusively synonymous with affinity-based measurements of drug-target binding. This work demonstrates how elucidating the slow-, tight-binding inhibition of CYP17A1 by abiraterone via in vitro and in silico analyses was pivotal in establishing the role of kinetic selectivity in mediating time-dependent CYP17A1 engagement and eventually downstream efficacy outcomes.
Collapse
Affiliation(s)
- Eleanor Jing Yi Cheong
- Department of Pharmacy, Faculty of Science (E.J.Y.C., R.W.Y.N., H.T.T., C.L.L.C., E.C.Y.C.) and Department of Biological Sciences (H.F.), National University of Singapore, Singapore, Singapore; Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, College of Medicine and Public Health, Flinders University, Adelaide, Australia (P.C.N., J.O.M.); Bioinformatics Institute, Biotransformation Innovation Platform (BioTrans) (F.L.) and Bioinformatics Institute (H.F.), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore; Department of Surgery, National University Health System, Singapore, Singapore (E.C., K.E.); Department of Urology, National University Hospital, Singapore, Singapore (E.C., K.E.); Centre for Computational Biology, DUKE-NUS Medical School, Singapore, Singapore (H.F.); The University of Chicago, Chicago, Illinois (R.Z.S.); National Cancer Institute, Rockville, Maryland (C.J.P., W.D.F.); and National University Cancer Institute, Singapore (NCIS), NUH Medical Centre (NUHMC), Singapore, Singapore (E.C.Y.C.)
| | - Pramod C Nair
- Department of Pharmacy, Faculty of Science (E.J.Y.C., R.W.Y.N., H.T.T., C.L.L.C., E.C.Y.C.) and Department of Biological Sciences (H.F.), National University of Singapore, Singapore, Singapore; Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, College of Medicine and Public Health, Flinders University, Adelaide, Australia (P.C.N., J.O.M.); Bioinformatics Institute, Biotransformation Innovation Platform (BioTrans) (F.L.) and Bioinformatics Institute (H.F.), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore; Department of Surgery, National University Health System, Singapore, Singapore (E.C., K.E.); Department of Urology, National University Hospital, Singapore, Singapore (E.C., K.E.); Centre for Computational Biology, DUKE-NUS Medical School, Singapore, Singapore (H.F.); The University of Chicago, Chicago, Illinois (R.Z.S.); National Cancer Institute, Rockville, Maryland (C.J.P., W.D.F.); and National University Cancer Institute, Singapore (NCIS), NUH Medical Centre (NUHMC), Singapore, Singapore (E.C.Y.C.)
| | - Rebecca Wan Yi Neo
- Department of Pharmacy, Faculty of Science (E.J.Y.C., R.W.Y.N., H.T.T., C.L.L.C., E.C.Y.C.) and Department of Biological Sciences (H.F.), National University of Singapore, Singapore, Singapore; Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, College of Medicine and Public Health, Flinders University, Adelaide, Australia (P.C.N., J.O.M.); Bioinformatics Institute, Biotransformation Innovation Platform (BioTrans) (F.L.) and Bioinformatics Institute (H.F.), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore; Department of Surgery, National University Health System, Singapore, Singapore (E.C., K.E.); Department of Urology, National University Hospital, Singapore, Singapore (E.C., K.E.); Centre for Computational Biology, DUKE-NUS Medical School, Singapore, Singapore (H.F.); The University of Chicago, Chicago, Illinois (R.Z.S.); National Cancer Institute, Rockville, Maryland (C.J.P., W.D.F.); and National University Cancer Institute, Singapore (NCIS), NUH Medical Centre (NUHMC), Singapore, Singapore (E.C.Y.C.)
| | - Ho Thanh Tu
- Department of Pharmacy, Faculty of Science (E.J.Y.C., R.W.Y.N., H.T.T., C.L.L.C., E.C.Y.C.) and Department of Biological Sciences (H.F.), National University of Singapore, Singapore, Singapore; Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, College of Medicine and Public Health, Flinders University, Adelaide, Australia (P.C.N., J.O.M.); Bioinformatics Institute, Biotransformation Innovation Platform (BioTrans) (F.L.) and Bioinformatics Institute (H.F.), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore; Department of Surgery, National University Health System, Singapore, Singapore (E.C., K.E.); Department of Urology, National University Hospital, Singapore, Singapore (E.C., K.E.); Centre for Computational Biology, DUKE-NUS Medical School, Singapore, Singapore (H.F.); The University of Chicago, Chicago, Illinois (R.Z.S.); National Cancer Institute, Rockville, Maryland (C.J.P., W.D.F.); and National University Cancer Institute, Singapore (NCIS), NUH Medical Centre (NUHMC), Singapore, Singapore (E.C.Y.C.)
| | - Fu Lin
- Department of Pharmacy, Faculty of Science (E.J.Y.C., R.W.Y.N., H.T.T., C.L.L.C., E.C.Y.C.) and Department of Biological Sciences (H.F.), National University of Singapore, Singapore, Singapore; Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, College of Medicine and Public Health, Flinders University, Adelaide, Australia (P.C.N., J.O.M.); Bioinformatics Institute, Biotransformation Innovation Platform (BioTrans) (F.L.) and Bioinformatics Institute (H.F.), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore; Department of Surgery, National University Health System, Singapore, Singapore (E.C., K.E.); Department of Urology, National University Hospital, Singapore, Singapore (E.C., K.E.); Centre for Computational Biology, DUKE-NUS Medical School, Singapore, Singapore (H.F.); The University of Chicago, Chicago, Illinois (R.Z.S.); National Cancer Institute, Rockville, Maryland (C.J.P., W.D.F.); and National University Cancer Institute, Singapore (NCIS), NUH Medical Centre (NUHMC), Singapore, Singapore (E.C.Y.C.)
| | - Edmund Chiong
- Department of Pharmacy, Faculty of Science (E.J.Y.C., R.W.Y.N., H.T.T., C.L.L.C., E.C.Y.C.) and Department of Biological Sciences (H.F.), National University of Singapore, Singapore, Singapore; Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, College of Medicine and Public Health, Flinders University, Adelaide, Australia (P.C.N., J.O.M.); Bioinformatics Institute, Biotransformation Innovation Platform (BioTrans) (F.L.) and Bioinformatics Institute (H.F.), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore; Department of Surgery, National University Health System, Singapore, Singapore (E.C., K.E.); Department of Urology, National University Hospital, Singapore, Singapore (E.C., K.E.); Centre for Computational Biology, DUKE-NUS Medical School, Singapore, Singapore (H.F.); The University of Chicago, Chicago, Illinois (R.Z.S.); National Cancer Institute, Rockville, Maryland (C.J.P., W.D.F.); and National University Cancer Institute, Singapore (NCIS), NUH Medical Centre (NUHMC), Singapore, Singapore (E.C.Y.C.)
| | - Kesavan Esuvaranathan
- Department of Pharmacy, Faculty of Science (E.J.Y.C., R.W.Y.N., H.T.T., C.L.L.C., E.C.Y.C.) and Department of Biological Sciences (H.F.), National University of Singapore, Singapore, Singapore; Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, College of Medicine and Public Health, Flinders University, Adelaide, Australia (P.C.N., J.O.M.); Bioinformatics Institute, Biotransformation Innovation Platform (BioTrans) (F.L.) and Bioinformatics Institute (H.F.), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore; Department of Surgery, National University Health System, Singapore, Singapore (E.C., K.E.); Department of Urology, National University Hospital, Singapore, Singapore (E.C., K.E.); Centre for Computational Biology, DUKE-NUS Medical School, Singapore, Singapore (H.F.); The University of Chicago, Chicago, Illinois (R.Z.S.); National Cancer Institute, Rockville, Maryland (C.J.P., W.D.F.); and National University Cancer Institute, Singapore (NCIS), NUH Medical Centre (NUHMC), Singapore, Singapore (E.C.Y.C.)
| | - Hao Fan
- Department of Pharmacy, Faculty of Science (E.J.Y.C., R.W.Y.N., H.T.T., C.L.L.C., E.C.Y.C.) and Department of Biological Sciences (H.F.), National University of Singapore, Singapore, Singapore; Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, College of Medicine and Public Health, Flinders University, Adelaide, Australia (P.C.N., J.O.M.); Bioinformatics Institute, Biotransformation Innovation Platform (BioTrans) (F.L.) and Bioinformatics Institute (H.F.), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore; Department of Surgery, National University Health System, Singapore, Singapore (E.C., K.E.); Department of Urology, National University Hospital, Singapore, Singapore (E.C., K.E.); Centre for Computational Biology, DUKE-NUS Medical School, Singapore, Singapore (H.F.); The University of Chicago, Chicago, Illinois (R.Z.S.); National Cancer Institute, Rockville, Maryland (C.J.P., W.D.F.); and National University Cancer Institute, Singapore (NCIS), NUH Medical Centre (NUHMC), Singapore, Singapore (E.C.Y.C.)
| | - Russell Z Szmulewitz
- Department of Pharmacy, Faculty of Science (E.J.Y.C., R.W.Y.N., H.T.T., C.L.L.C., E.C.Y.C.) and Department of Biological Sciences (H.F.), National University of Singapore, Singapore, Singapore; Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, College of Medicine and Public Health, Flinders University, Adelaide, Australia (P.C.N., J.O.M.); Bioinformatics Institute, Biotransformation Innovation Platform (BioTrans) (F.L.) and Bioinformatics Institute (H.F.), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore; Department of Surgery, National University Health System, Singapore, Singapore (E.C., K.E.); Department of Urology, National University Hospital, Singapore, Singapore (E.C., K.E.); Centre for Computational Biology, DUKE-NUS Medical School, Singapore, Singapore (H.F.); The University of Chicago, Chicago, Illinois (R.Z.S.); National Cancer Institute, Rockville, Maryland (C.J.P., W.D.F.); and National University Cancer Institute, Singapore (NCIS), NUH Medical Centre (NUHMC), Singapore, Singapore (E.C.Y.C.)
| | - Cody J Peer
- Department of Pharmacy, Faculty of Science (E.J.Y.C., R.W.Y.N., H.T.T., C.L.L.C., E.C.Y.C.) and Department of Biological Sciences (H.F.), National University of Singapore, Singapore, Singapore; Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, College of Medicine and Public Health, Flinders University, Adelaide, Australia (P.C.N., J.O.M.); Bioinformatics Institute, Biotransformation Innovation Platform (BioTrans) (F.L.) and Bioinformatics Institute (H.F.), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore; Department of Surgery, National University Health System, Singapore, Singapore (E.C., K.E.); Department of Urology, National University Hospital, Singapore, Singapore (E.C., K.E.); Centre for Computational Biology, DUKE-NUS Medical School, Singapore, Singapore (H.F.); The University of Chicago, Chicago, Illinois (R.Z.S.); National Cancer Institute, Rockville, Maryland (C.J.P., W.D.F.); and National University Cancer Institute, Singapore (NCIS), NUH Medical Centre (NUHMC), Singapore, Singapore (E.C.Y.C.)
| | - William D Figg
- Department of Pharmacy, Faculty of Science (E.J.Y.C., R.W.Y.N., H.T.T., C.L.L.C., E.C.Y.C.) and Department of Biological Sciences (H.F.), National University of Singapore, Singapore, Singapore; Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, College of Medicine and Public Health, Flinders University, Adelaide, Australia (P.C.N., J.O.M.); Bioinformatics Institute, Biotransformation Innovation Platform (BioTrans) (F.L.) and Bioinformatics Institute (H.F.), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore; Department of Surgery, National University Health System, Singapore, Singapore (E.C., K.E.); Department of Urology, National University Hospital, Singapore, Singapore (E.C., K.E.); Centre for Computational Biology, DUKE-NUS Medical School, Singapore, Singapore (H.F.); The University of Chicago, Chicago, Illinois (R.Z.S.); National Cancer Institute, Rockville, Maryland (C.J.P., W.D.F.); and National University Cancer Institute, Singapore (NCIS), NUH Medical Centre (NUHMC), Singapore, Singapore (E.C.Y.C.)
| | - Christina Li Lin Chai
- Department of Pharmacy, Faculty of Science (E.J.Y.C., R.W.Y.N., H.T.T., C.L.L.C., E.C.Y.C.) and Department of Biological Sciences (H.F.), National University of Singapore, Singapore, Singapore; Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, College of Medicine and Public Health, Flinders University, Adelaide, Australia (P.C.N., J.O.M.); Bioinformatics Institute, Biotransformation Innovation Platform (BioTrans) (F.L.) and Bioinformatics Institute (H.F.), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore; Department of Surgery, National University Health System, Singapore, Singapore (E.C., K.E.); Department of Urology, National University Hospital, Singapore, Singapore (E.C., K.E.); Centre for Computational Biology, DUKE-NUS Medical School, Singapore, Singapore (H.F.); The University of Chicago, Chicago, Illinois (R.Z.S.); National Cancer Institute, Rockville, Maryland (C.J.P., W.D.F.); and National University Cancer Institute, Singapore (NCIS), NUH Medical Centre (NUHMC), Singapore, Singapore (E.C.Y.C.)
| | - John O Miners
- Department of Pharmacy, Faculty of Science (E.J.Y.C., R.W.Y.N., H.T.T., C.L.L.C., E.C.Y.C.) and Department of Biological Sciences (H.F.), National University of Singapore, Singapore, Singapore; Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, College of Medicine and Public Health, Flinders University, Adelaide, Australia (P.C.N., J.O.M.); Bioinformatics Institute, Biotransformation Innovation Platform (BioTrans) (F.L.) and Bioinformatics Institute (H.F.), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore; Department of Surgery, National University Health System, Singapore, Singapore (E.C., K.E.); Department of Urology, National University Hospital, Singapore, Singapore (E.C., K.E.); Centre for Computational Biology, DUKE-NUS Medical School, Singapore, Singapore (H.F.); The University of Chicago, Chicago, Illinois (R.Z.S.); National Cancer Institute, Rockville, Maryland (C.J.P., W.D.F.); and National University Cancer Institute, Singapore (NCIS), NUH Medical Centre (NUHMC), Singapore, Singapore (E.C.Y.C.)
| | - Eric Chun Yong Chan
- Department of Pharmacy, Faculty of Science (E.J.Y.C., R.W.Y.N., H.T.T., C.L.L.C., E.C.Y.C.) and Department of Biological Sciences (H.F.), National University of Singapore, Singapore, Singapore; Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, College of Medicine and Public Health, Flinders University, Adelaide, Australia (P.C.N., J.O.M.); Bioinformatics Institute, Biotransformation Innovation Platform (BioTrans) (F.L.) and Bioinformatics Institute (H.F.), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore; Department of Surgery, National University Health System, Singapore, Singapore (E.C., K.E.); Department of Urology, National University Hospital, Singapore, Singapore (E.C., K.E.); Centre for Computational Biology, DUKE-NUS Medical School, Singapore, Singapore (H.F.); The University of Chicago, Chicago, Illinois (R.Z.S.); National Cancer Institute, Rockville, Maryland (C.J.P., W.D.F.); and National University Cancer Institute, Singapore (NCIS), NUH Medical Centre (NUHMC), Singapore, Singapore (E.C.Y.C.)
| |
Collapse
|
43
|
Lang PA, Parkova A, Leissing TM, Calvopiña K, Cain R, Krajnc A, Panduwawala TD, Philippe J, Fishwick CWG, Trapencieris P, Page MGP, Schofield CJ, Brem J. Bicyclic Boronates as Potent Inhibitors of AmpC, the Class C β-Lactamase from Escherichia coli. Biomolecules 2020; 10:E899. [PMID: 32545682 PMCID: PMC7356297 DOI: 10.3390/biom10060899] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/29/2020] [Accepted: 06/01/2020] [Indexed: 12/12/2022] Open
Abstract
Resistance to β-lactam antibacterials, importantly via production of β-lactamases, threatens their widespread use. Bicyclic boronates show promise as clinically useful, dual-action inhibitors of both serine- (SBL) and metallo- (MBL) β-lactamases. In combination with cefepime, the bicyclic boronate taniborbactam is in phase 3 clinical trials for treatment of complicated urinary tract infections. We report kinetic and crystallographic studies on the inhibition of AmpC, the class C β‑lactamase from Escherichia coli, by bicyclic boronates, including taniborbactam, with different C-3 side chains. The combined studies reveal that an acylamino side chain is not essential for potent AmpC inhibition by active site binding bicyclic boronates. The tricyclic form of taniborbactam was observed bound to the surface of crystalline AmpC, but not at the active site, where the bicyclic form was observed. Structural comparisons reveal insights into why active site binding of a tricyclic form has been observed with the NDM-1 MBL, but not with other studied β-lactamases. Together with reported studies on the structural basis of inhibition of class A, B and D β‑lactamases, our data support the proposal that bicyclic boronates are broad-spectrum β‑lactamase inhibitors that work by mimicking a high energy 'tetrahedral' intermediate. These results suggest further SAR guided development could improve the breadth of clinically useful β-lactamase inhibition.
Collapse
Affiliation(s)
- Pauline A. Lang
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Oxford OX1 3TA, UK; (P.A.L.); (T.M.L.); (K.C.); (A.K.); (T.D.P.)
| | - Anete Parkova
- Latvian Institute of Organic Synthesis, LV-1006 Riga, Latvia; (A.P.); (P.T.)
| | - Thomas M. Leissing
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Oxford OX1 3TA, UK; (P.A.L.); (T.M.L.); (K.C.); (A.K.); (T.D.P.)
| | - Karina Calvopiña
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Oxford OX1 3TA, UK; (P.A.L.); (T.M.L.); (K.C.); (A.K.); (T.D.P.)
| | - Ricky Cain
- School of Chemistry, University of Leeds, Leeds LS2 9JT, UK; (R.C.); (C.W.G.F.)
| | - Alen Krajnc
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Oxford OX1 3TA, UK; (P.A.L.); (T.M.L.); (K.C.); (A.K.); (T.D.P.)
| | - Tharindi D. Panduwawala
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Oxford OX1 3TA, UK; (P.A.L.); (T.M.L.); (K.C.); (A.K.); (T.D.P.)
| | - Jules Philippe
- Jacobs University Bremen gGmbH, 28759 Bremen, Germany; (J.P.); (M.G.P.P.)
| | | | | | - Malcolm G. P. Page
- Jacobs University Bremen gGmbH, 28759 Bremen, Germany; (J.P.); (M.G.P.P.)
| | - Christopher J. Schofield
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Oxford OX1 3TA, UK; (P.A.L.); (T.M.L.); (K.C.); (A.K.); (T.D.P.)
| | - Jürgen Brem
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Oxford OX1 3TA, UK; (P.A.L.); (T.M.L.); (K.C.); (A.K.); (T.D.P.)
| |
Collapse
|
44
|
Chen C, Sun LY, Gao H, Kang PW, Li JQ, Zhen JB, Yang KW. Identification of Cisplatin and Palladium(II) Complexes as Potent Metallo-β-lactamase Inhibitors for Targeting Carbapenem-Resistant Enterobacteriaceae. ACS Infect Dis 2020; 6:975-985. [PMID: 32119777 DOI: 10.1021/acsinfecdis.9b00385] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The emergence and prevalence of carbapenem-resistant bacterial infection have seriously threatened the clinical use of almost all β-lactam antibacterials. The development of effective metallo-β-lactamase (MβL) inhibitors to restore the existing antibiotics efficacy is an ideal alternative. Although several types of serine-β-lactamase inhibitors have been successfully developed and used in clinical settings, MβL inhibitors are not clinically available to date. Herein, we identified that cisplatin and Pd(II) complexes are potent broad-spectrum inhibitors of the B1 and B2 subclasses of MβLs and effectively revived Meropenem efficacy against MβL-expressing bacteria in vitro. Enzyme kinetics, thermodynamics, inductively coupled plasma atomic emission spectrometry (ICP-AES), matrix-assisted laser desorption/ionization-time of flight-mass spectrometry (MALDI-TOF-MS), and site-directed mutation assays revealed that these metal complexes irreversibly inhibited NDM-1 through a novel inhibition mode involving binding to Cys208 and displacing one Zn(II) ion of the enzyme with one Pt(II) containing two NH3's or one Pd(II) ion. Importantly, the combination therapy of Meropenem and metal complexes significantly suppressed the development of higher-level resistance in bacteria producing NDM-1, also effectively reduced the bacterial burden in liver and spleen of mice infected by carbapenem-resistant Enterobacteriaceae producing NDM-1. These findings will offer potential lead compounds for the further development of clinically useful inhibitors targeting MβLs.
Collapse
Affiliation(s)
- Cheng Chen
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, Chemical Biology Innovation Laboratory, College of Chemistry and Materials Science, Northwest University, 1 Xuefu Avenue, Xi’an, Shaanxi 710127, P. R. China
| | - Le-Yun Sun
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, Chemical Biology Innovation Laboratory, College of Chemistry and Materials Science, Northwest University, 1 Xuefu Avenue, Xi’an, Shaanxi 710127, P. R. China
| | - Han Gao
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, Chemical Biology Innovation Laboratory, College of Chemistry and Materials Science, Northwest University, 1 Xuefu Avenue, Xi’an, Shaanxi 710127, P. R. China
| | - Peng-Wei Kang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, Chemical Biology Innovation Laboratory, College of Chemistry and Materials Science, Northwest University, 1 Xuefu Avenue, Xi’an, Shaanxi 710127, P. R. China
| | - Jia-Qi Li
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, Chemical Biology Innovation Laboratory, College of Chemistry and Materials Science, Northwest University, 1 Xuefu Avenue, Xi’an, Shaanxi 710127, P. R. China
| | - Jian-Bin Zhen
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, Chemical Biology Innovation Laboratory, College of Chemistry and Materials Science, Northwest University, 1 Xuefu Avenue, Xi’an, Shaanxi 710127, P. R. China
| | - Ke-Wu Yang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, Chemical Biology Innovation Laboratory, College of Chemistry and Materials Science, Northwest University, 1 Xuefu Avenue, Xi’an, Shaanxi 710127, P. R. China
| |
Collapse
|
45
|
Sha Z, Chilakala S, Crabill G, Cheng I, Xu Y, Fishovitz J, Lee I. A Proteolytic Site-Directed Affinity Label to Inhibit the Human ATP-Dependent Protease Caseinolytic Complex XP. Chembiochem 2020; 21:2049-2059. [PMID: 32180302 DOI: 10.1002/cbic.202000031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/01/2020] [Indexed: 11/10/2022]
Abstract
Human caseinolytic protease component X and P (hClpXP) is a heterooligomeric ATP-dependent protease. The hClpX subunit catalyzes ATP hydrolysis whereas the hClpP subunit catalyzes peptide bond cleavage. In this study, we generated a peptidyl chloromethyl ketone (dansyl-FAPAL-CMK) that inhibited the hClpP subunit through alkylation of the catalytic His122, which was detected by LC-MS. This inhibitor is composed of a peptide sequence derived from a hydrolyzed peptide product of a substrate cleaved by hClpXP. Binding of FAPAL positions the electrophilic chloromethyl ketone moiety near His122 where alkylation occurs. Dansyl FAPAL-CMK exhibits selectivity for hClpXP over other ATP-dependent proteases such as hLon and the 26S proteasome and abolishes hClpXP activity in HeLa cell lysate. Using the fluorogenic peptide substrate FR-Cleptide as reporter, we detected biphasic inhibition time courses; this supports a slow-binding, time-dependent, covalent inhibition mechanism that is often found in active-site directed affinity labels. Because this inhibitor reacts only with hClpXP but not hLon or the proteasome, it has the potential to serve as a chemical tool to help validate endogenous protein substrates of hClpXP in cell lysate, thereby benefiting investigation of the physiological functions of hClpXP in different cell types or tissue samples.
Collapse
Affiliation(s)
- Zhou Sha
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio, 44106, USA
| | - Sujatha Chilakala
- Department of Chemistry, Cleveland State University, Cleveland, Ohio, 44115, USA.,Present address: Lawrence J. Ellison Institute for Transformative Medicine of USC, University of Southern California, Beverly Hills, CA, 90211, USA
| | - George Crabill
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio, 44106, USA.,Present address: University of Maryland School of Medicine, Baltimore, MD, 21202, USA
| | - Iteen Cheng
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio, 44106, USA.,Present address: Agilent Technologies, Cleveland, OH, 44106, USA
| | - Yan Xu
- Department of Chemistry, Cleveland State University, Cleveland, Ohio, 44115, USA
| | - Jennifer Fishovitz
- Department of Chemistry and Physics, Saint Mary's College, Notre Dame, Indiana, 46556, USA
| | - Irene Lee
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio, 44106, USA
| |
Collapse
|
46
|
Chenna BC, Li L, Mellott DM, Zhai X, Siqueira-Neto JL, Calvet Alvarez C, Bernatchez JA, Desormeaux E, Alvarez Hernandez E, Gomez J, McKerrow JH, Cruz-Reyes J, Meek TD. Peptidomimetic Vinyl Heterocyclic Inhibitors of Cruzain Effect Antitrypanosomal Activity. J Med Chem 2020; 63:3298-3316. [PMID: 32125159 DOI: 10.1021/acs.jmedchem.9b02078] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cruzain, an essential cysteine protease of the parasitic protozoan, Trypanosoma cruzi, is an important drug target for Chagas disease. We describe here a new series of reversible but time-dependent inhibitors of cruzain, composed of a dipeptide scaffold appended to vinyl heterocycles meant to provide replacements for the irreversible reactive "warheads" of vinyl sulfone inactivators of cruzain. Peptidomimetic vinyl heterocyclic inhibitors (PVHIs) containing Cbz-Phe-Phe/homoPhe scaffolds with vinyl-2-pyrimidine, vinyl-2-pyridine, and vinyl-2-(N-methyl)-pyridine groups conferred reversible, time-dependent inhibition of cruzain (Ki* = 0.1-0.4 μM). These cruzain inhibitors exhibited moderate to excellent selectivity versus human cathepsins B, L, and S and showed no apparent toxicity to human cells but were effective in cell cultures of Trypanosoma brucei brucei (EC50 = 1-15 μM) and eliminated T. cruzi in infected murine cardiomyoblasts (EC50 = 5-8 μM). PVHIs represent a new class of cruzain inhibitors that could progress to viable candidate compounds to treat Chagas disease and human sleeping sickness.
Collapse
Affiliation(s)
- Bala C Chenna
- Department of Biochemistry & Biophysics, Texas A&M University, 301 Old Main Drive, College Station, Texas 77843, United States
| | - Linfeng Li
- Department of Biochemistry & Biophysics, Texas A&M University, 301 Old Main Drive, College Station, Texas 77843, United States
| | - Drake M Mellott
- Department of Biochemistry & Biophysics, Texas A&M University, 301 Old Main Drive, College Station, Texas 77843, United States
| | - Xiang Zhai
- Department of Biochemistry & Biophysics, Texas A&M University, 301 Old Main Drive, College Station, Texas 77843, United States
| | - Jair L Siqueira-Neto
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California-San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Claudia Calvet Alvarez
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California-San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Jean A Bernatchez
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California-San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Emily Desormeaux
- Department of Biochemistry & Biophysics, Texas A&M University, 301 Old Main Drive, College Station, Texas 77843, United States
| | - Elizabeth Alvarez Hernandez
- Department of Biochemistry & Biophysics, Texas A&M University, 301 Old Main Drive, College Station, Texas 77843, United States
| | - Jana Gomez
- Department of Biochemistry & Biophysics, Texas A&M University, 301 Old Main Drive, College Station, Texas 77843, United States
| | - James H McKerrow
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California-San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Jorge Cruz-Reyes
- Department of Biochemistry & Biophysics, Texas A&M University, 301 Old Main Drive, College Station, Texas 77843, United States
| | - Thomas D Meek
- Department of Biochemistry & Biophysics, Texas A&M University, 301 Old Main Drive, College Station, Texas 77843, United States
| |
Collapse
|
47
|
Limongelli V. Ligand binding free energy and kinetics calculation in 2020. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2020. [DOI: 10.1002/wcms.1455] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Vittorio Limongelli
- Faculty of Biomedical Sciences, Institute of Computational Science – Center for Computational Medicine in Cardiology Università della Svizzera italiana (USI) Lugano Switzerland
- Department of Pharmacy University of Naples “Federico II” Naples Italy
| |
Collapse
|
48
|
Ma C, Sacco MD, Hurst B, Townsend JA, Hu Y, Szeto T, Zhang X, Tarbet B, Marty MT, Chen Y, Wang J. Boceprevir, GC-376, and calpain inhibitors II, XII inhibit SARS-CoV-2 viral replication by targeting the viral main protease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020. [PMID: 32511378 PMCID: PMC7263507 DOI: 10.1101/2020.04.20.051581] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A novel coronavirus SARS-CoV-2, also called novel coronavirus 2019 (nCoV-19), started to circulate among humans around December 2019, and it is now widespread as a global pandemic. The disease caused by SARS-CoV-2 virus is called COVID-19, which is highly contagious and has an overall mortality rate of 6.96% as of May 4, 2020. There is no vaccine or antiviral available for SARS-CoV-2. In this study, we report our discovery of inhibitors targeting the SARS-CoV-2 main protease (Mpro). Using the FRET-based enzymatic assay, several inhibitors including boceprevir, GC-376, and calpain inhibitors II, and XII were identified to have potent activity with single-digit to submicromolar IC50 values in the enzymatic assay. The mechanism of action of the hits was further characterized using enzyme kinetic studies, thermal shift binding assays, and native mass spectrometry. Significantly, four compounds (boceprevir, GC-376, calpain inhibitors II and XII) inhibit SARS-CoV-2 viral replication in cell culture with EC50 values ranging from 0.49 to 3.37 μM. Notably, boceprevir, calpain inhibitors II and XII represent novel chemotypes that are distinct from known Mpro inhibitors. A complex crystal structure of SARS-CoV-2 Mpro with GC-376, determined at 2.15 Å resolution with three monomers per asymmetric unit, revealed two unique binding configurations, shedding light on the molecular interactions and protein conformational flexibility underlying substrate and inhibitor binding by Mpro. Overall, the compounds identified herein provide promising starting points for the further development of SARS-CoV-2 therapeutics.
Collapse
Affiliation(s)
- Chunlong Ma
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ, 85721, United States
| | - Michael D Sacco
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, United States
| | - Brett Hurst
- Institute for Antiviral Research, Utah State University, Logan, UT, 84322, USA.,Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT, 84322, USA
| | - Julia A Townsend
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, AZ, 85721, United States
| | - Yanmei Hu
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ, 85721, United States
| | - Tommy Szeto
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ, 85721, United States
| | - Xiujun Zhang
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, United States
| | - Bart Tarbet
- Institute for Antiviral Research, Utah State University, Logan, UT, 84322, USA.,Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT, 84322, USA
| | - Michael T Marty
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, AZ, 85721, United States
| | - Yu Chen
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, United States
| | - Jun Wang
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ, 85721, United States
| |
Collapse
|
49
|
Metal-induced change in catalytic loop positioning in Helicobacter pylori arginase alters catalytic function. Biochem J 2019; 476:3595-3614. [DOI: 10.1042/bcj20190545] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 11/14/2019] [Accepted: 11/18/2019] [Indexed: 12/23/2022]
Abstract
Arginase is a bimetallic enzyme that utilizes mainly Mn2+ or Co2+ for catalytic function. In human homolog, the substitution of Mn2+ with Co2+ significantly reduces the Km value without affecting the kcat. However, in the Helicobacter pylori counterpart (important for pathogenesis), the kcat increases nearly 4-fold with Co2+ ions both in the recombinant holoenzyme and arginase isolated from H. pylori grown with Co2+ or Mn2+. This suggests that the active site of arginase in the two homologs is modulated differently by these two metal ions. To investigate the underlying mechanism for metal-induced difference in catalytic activity in the H. pylori enzyme, we used biochemical, biophysical and microsecond molecular dynamics simulations studies. The study shows that the difference in binding affinity of Co2+ and Mn2+ ions with the protein is linked to a different positioning of a loop (–122HTAYDSDSKHIHG134–) that contains a conserved catalytic His133. Consequently, the proximity of His133 and conserved Glu281 is varied. We found that the Glu281–His133 interaction is crucial for catalytic function and was previously unexplored in other homologs. We suggest that the proximity difference between these two residues in the Co2+- and Mn2+-proteins alters the proportion of protonated His133 via variation in its pKa. This affects the efficiency of proton transfer — an essential step of l-arginine hydrolysis reaction catalyzed by arginase and thus activity. Unlike in human arginase, the flexibility of the above segment observed in H. pylori homolog suggests that this region in the H. pylori enzyme may be explored to design its specific inhibitors.
Collapse
|
50
|
Tooke CL, Hinchliffe P, Lang PA, Mulholland AJ, Brem J, Schofield CJ, Spencer J. Molecular Basis of Class A β-Lactamase Inhibition by Relebactam. Antimicrob Agents Chemother 2019; 63:AAC.00564-19. [PMID: 31383664 PMCID: PMC6761529 DOI: 10.1128/aac.00564-19] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 07/04/2019] [Indexed: 12/23/2022] Open
Abstract
β-Lactamase production is the major β-lactam resistance mechanism in Gram-negative bacteria. β-Lactamase inhibitors (BLIs) efficacious against serine β-lactamase (SBL) producers, especially strains carrying the widely disseminated class A enzymes, are required. Relebactam, a diazabicyclooctane (DBO) BLI, is in phase 3 clinical trials in combination with imipenem for the treatment of infections by multidrug-resistant Enterobacteriaceae We show that relebactam inhibits five clinically important class A SBLs (despite their differing spectra of activity), representing both chromosomal and plasmid-borne enzymes, i.e., the extended-spectrum β-lactamases L2 (inhibition constant 3 μM) and CTX-M-15 (21 μM) and the carbapenemases KPC-2, -3, and -4 (1 to 5 μM). Against purified class A SBLs, relebactam is an inferior inhibitor compared with the clinically approved DBO avibactam (9- to 120-fold differences in half maximal inhibitory concentration [IC50]). MIC assays indicate relebactam potentiates β-lactam (imipenem) activity against KPC-producing Klebsiella pneumoniae, with similar potency to avibactam (with ceftazidime). Relebactam is less effective than avibactam in combination with aztreonam against Stenotrophomonas maltophilia K279a. X-ray crystal structures of relebactam bound to CTX-M-15, L2, KPC-2, KPC-3, and KPC-4 reveal its C2-linked piperidine ring can sterically clash with Asn104 (CTX-M-15) or His/Trp105 (L2 and KPCs), rationalizing its poorer inhibition activity than that of avibactam, which has a smaller C2 carboxyamide group. Mass spectrometry and crystallographic data show slow, pH-dependent relebactam desulfation by KPC-2, -3, and -4. This comprehensive comparison of relebactam binding across five clinically important class A SBLs will inform the design of future DBOs, with the aim of improving clinical efficacy of BLI-β-lactam combinations.
Collapse
Affiliation(s)
- Catherine L Tooke
- School of Cellular and Molecular Medicine, Biomedical Sciences Building, University of Bristol, Bristol, United Kingdom
| | - Philip Hinchliffe
- School of Cellular and Molecular Medicine, Biomedical Sciences Building, University of Bristol, Bristol, United Kingdom
| | - Pauline A Lang
- Department of Chemistry, University of Oxford, Oxford, United Kingdom
| | - Adrian J Mulholland
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol, United Kingdom
| | - Jürgen Brem
- Department of Chemistry, University of Oxford, Oxford, United Kingdom
| | | | - James Spencer
- School of Cellular and Molecular Medicine, Biomedical Sciences Building, University of Bristol, Bristol, United Kingdom
| |
Collapse
|