1
|
Soliman BG, Nguyen AK, Gooding JJ, Kilian KA. Advancing Synthetic Hydrogels through Nature-Inspired Materials Chemistry. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404235. [PMID: 38896849 PMCID: PMC11486603 DOI: 10.1002/adma.202404235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/25/2024] [Indexed: 06/21/2024]
Abstract
Synthetic extracellular matrix (ECM) mimics that can recapitulate the complex biochemical and mechanical nature of native tissues are needed for advanced models of development and disease. Biomedical research has heavily relied on the use of animal-derived biomaterials, which is now impeding their translational potential and convoluting the biological insights gleaned from in vitro tissue models. Natural hydrogels have long served as a convenient and effective cell culture tool, but advances in materials chemistry and fabrication techniques now present promising new avenues for creating xenogenic-free ECM substitutes appropriate for organotypic models and microphysiological systems. However, significant challenges remain in creating synthetic matrices that can approximate the structural sophistication, biochemical complexity, and dynamic functionality of native tissues. This review summarizes key properties of the native ECM, and discusses recent approaches used to systematically decouple and tune these properties in synthetic matrices. The importance of dynamic ECM mechanics, such as viscoelasticity and matrix plasticity, is also discussed, particularly within the context of organoid and engineered tissue matrices. Emerging design strategies to mimic these dynamic mechanical properties are reviewed, such as multi-network hydrogels, supramolecular chemistry, and hydrogels assembled from biological monomers.
Collapse
Affiliation(s)
- Bram G Soliman
- School of Chemistry, University of New South Wales, Sydney, NSW, 2052, Australia
- Australian Centre for NanoMedicine, University of New South Wales Sydney, Sydney, NSW, 2052, Australia
| | - Ashley K Nguyen
- School of Chemistry, University of New South Wales, Sydney, NSW, 2052, Australia
- Australian Centre for NanoMedicine, University of New South Wales Sydney, Sydney, NSW, 2052, Australia
| | - J Justin Gooding
- School of Chemistry, University of New South Wales, Sydney, NSW, 2052, Australia
- Australian Centre for NanoMedicine, University of New South Wales Sydney, Sydney, NSW, 2052, Australia
| | - Kristopher A Kilian
- School of Chemistry, University of New South Wales, Sydney, NSW, 2052, Australia
- Australian Centre for NanoMedicine, University of New South Wales Sydney, Sydney, NSW, 2052, Australia
- School of Materials Science and Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
2
|
Fu Y, Simeth NA, Szymanski W, Feringa BL. Visible and near-infrared light-induced photoclick reactions. Nat Rev Chem 2024; 8:665-685. [PMID: 39112717 DOI: 10.1038/s41570-024-00633-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2024] [Indexed: 09/11/2024]
Abstract
Photoclick reactions combine the advantages offered by light-driven processes, that is, non-invasive and high spatiotemporal control, with classical click chemistry and have found applications ranging from surface functionalization, polymer conjugation, photocrosslinking, protein labelling and bioimaging. Despite these advances, most photoclick reactions typically require near-ultraviolet (UV) and mid-UV light to proceed. UV light can trigger undesirable responses, including cellular apoptosis, and therefore, visible and near-infrared light-induced photoclick reaction systems are highly desirable. Shifting to a longer wavelength can also reduce degradation of the photoclick reagents and products. Several strategies have been used to induce a bathochromic shift in the wavelength of irradiation-initiating photoclick reactions. For instance, the extension of the conjugated π-system, triplet-triplet energy transfer, multi-photon excitation, upconversion technology, photocatalytic and photoinitiation approaches, and designs involving photocages have all been used to achieve this goal. Current design strategies, recent advances and the outlook for long wavelength-driven photoclick reactions are presented.
Collapse
Affiliation(s)
- Youxin Fu
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen, Groningen, The Netherlands
| | - Nadja A Simeth
- Institute for Organic and Biomolecular Chemistry, Georg-August-University Göttingen, Göttingen, Germany.
| | - Wiktor Szymanski
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen, Groningen, The Netherlands.
- Department of Radiology, Medical Imaging Center, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands.
- Department of Medicinal Chemistry, Photopharmacology and Imaging, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands.
| | - Ben L Feringa
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
3
|
Gharios R, Francis RM, DeForest CA. Chemical and Biological Engineering Strategies to Make and Modify Next-Generation Hydrogel Biomaterials. MATTER 2023; 6:4195-4244. [PMID: 38313360 PMCID: PMC10836217 DOI: 10.1016/j.matt.2023.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
Abstract
There is a growing interest in the development of technologies to probe and direct in vitro cellular function for fundamental organoid and stem cell biology, functional tissue and metabolic engineering, and biotherapeutic formulation. Recapitulating many critical aspects of the native cellular niche, hydrogel biomaterials have proven to be a defining platform technology in this space, catapulting biological investigation from traditional two-dimensional (2D) culture into the 3D world. Seeking to better emulate the dynamic heterogeneity characteristic of all living tissues, global efforts over the last several years have centered around upgrading hydrogel design from relatively simple and static architectures into stimuli-responsive and spatiotemporally evolvable niches. Towards this end, advances from traditionally disparate fields including bioorthogonal click chemistry, chemoenzymatic synthesis, and DNA nanotechnology have been co-opted and integrated to construct 4D-tunable systems that undergo preprogrammed functional changes in response to user-defined inputs. In this Review, we highlight how advances in synthetic, semisynthetic, and bio-based chemistries have played a critical role in the triggered creation and customization of next-generation hydrogel biomaterials. We also chart how these advances stand to energize the translational pipeline of hydrogels from bench to market and close with an outlook on outstanding opportunities and challenges that lay ahead.
Collapse
Affiliation(s)
- Ryan Gharios
- Department of Chemical Engineering, University of Washington, Seattle WA 98105, USA
| | - Ryan M. Francis
- Department of Chemical Engineering, University of Washington, Seattle WA 98105, USA
| | - Cole A. DeForest
- Department of Chemical Engineering, University of Washington, Seattle WA 98105, USA
- Department of Bioengineering, University of Washington, Seattle WA 98105, USA
- Department of Chemistry, University of Washington, Seattle WA 98105, USA
- Institute of Stem Cell & Regenerative Medicine, University of Washington, Seattle WA 98109, USA
- Molecular Engineering & Sciences Institute, University of Washington, Seattle WA 98105, USA
- Institute for Protein Design, University of Washington, Seattle WA 98105, USA
| |
Collapse
|
4
|
Wu X, Barner-Kowollik C. Fluorescence-readout as a powerful macromolecular characterisation tool. Chem Sci 2023; 14:12815-12849. [PMID: 38023522 PMCID: PMC10664555 DOI: 10.1039/d3sc04052f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/10/2023] [Indexed: 12/01/2023] Open
Abstract
The last few decades have witnessed significant progress in synthetic macromolecular chemistry, which can provide access to diverse macromolecules with varying structural complexities, topology and functionalities, bringing us closer to the aim of controlling soft matter material properties with molecular precision. To reach this goal, the development of advanced analytical techniques, allowing for micro-, molecular level and real-time investigation, is essential. Due to their appealing features, including high sensitivity, large contrast, fast and real-time response, as well as non-invasive characteristics, fluorescence-based techniques have emerged as a powerful tool for macromolecular characterisation to provide detailed information and give new and deep insights beyond those offered by commonly applied analytical methods. Herein, we critically examine how fluorescence phenomena, principles and techniques can be effectively exploited to characterise macromolecules and soft matter materials and to further unravel their constitution, by highlighting representative examples of recent advances across major areas of polymer and materials science, ranging from polymer molecular weight and conversion, architecture, conformation to polymer self-assembly to surfaces, gels and 3D printing. Finally, we discuss the opportunities for fluorescence-readout to further advance the development of macromolecules, leading to the design of polymers and soft matter materials with pre-determined and adaptable properties.
Collapse
Affiliation(s)
- Xingyu Wu
- School of Chemistry and Physics, Centre for Materials Science, Queensland University of Technology (QUT) 2 George Street Brisbane QLD 4000 Australia
| | - Christopher Barner-Kowollik
- School of Chemistry and Physics, Centre for Materials Science, Queensland University of Technology (QUT) 2 George Street Brisbane QLD 4000 Australia
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| |
Collapse
|
5
|
Neumann M, di Marco G, Iudin D, Viola M, van Nostrum CF, van Ravensteijn BGP, Vermonden T. Stimuli-Responsive Hydrogels: The Dynamic Smart Biomaterials of Tomorrow. Macromolecules 2023; 56:8377-8392. [PMID: 38024154 PMCID: PMC10653276 DOI: 10.1021/acs.macromol.3c00967] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 09/21/2023] [Indexed: 12/01/2023]
Abstract
In the past decade, stimuli-responsive hydrogels are increasingly studied as biomaterials for tissue engineering and regenerative medicine purposes. Smart hydrogels can not only replicate the physicochemical properties of the extracellular matrix but also mimic dynamic processes that are crucial for the regulation of cell behavior. Dynamic changes can be influenced by the hydrogel itself (isotropic vs anisotropic) or guided by applying localized triggers. The resulting swelling-shrinking, shape-morphing, as well as patterns have been shown to influence cell function in a spatiotemporally controlled manner. Furthermore, the use of stimuli-responsive hydrogels as bioinks in 4D bioprinting is very promising as they allow the biofabrication of complex microstructures. This perspective discusses recent cutting-edge advances as well as current challenges in the field of smart biomaterials for tissue engineering. Additionally, emerging trends and potential future directions are addressed.
Collapse
Affiliation(s)
- Myriam Neumann
- Department of Pharmaceutics,
Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht 3508 TB, The Netherlands
| | - Greta di Marco
- Department of Pharmaceutics,
Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht 3508 TB, The Netherlands
| | - Dmitrii Iudin
- Department of Pharmaceutics,
Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht 3508 TB, The Netherlands
| | - Martina Viola
- Department of Pharmaceutics,
Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht 3508 TB, The Netherlands
| | - Cornelus F. van Nostrum
- Department of Pharmaceutics,
Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht 3508 TB, The Netherlands
| | - Bas G. P. van Ravensteijn
- Department of Pharmaceutics,
Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht 3508 TB, The Netherlands
| | - Tina Vermonden
- Department of Pharmaceutics,
Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht 3508 TB, The Netherlands
| |
Collapse
|
6
|
Feng W, Wang Z. Tailoring the Swelling-Shrinkable Behavior of Hydrogels for Biomedical Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303326. [PMID: 37544909 PMCID: PMC10558674 DOI: 10.1002/advs.202303326] [Citation(s) in RCA: 37] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/15/2023] [Indexed: 08/08/2023]
Abstract
Hydrogels with tailor-made swelling-shrinkable properties have aroused considerable interest in numerous biomedical domains. For example, as swelling is a key issue for blood and wound extrudates absorption, the transference of nutrients and metabolites, as well as drug diffusion and release, hydrogels with high swelling capacity have been widely applicated in full-thickness skin wound healing and tissue regeneration, and drug delivery. Nevertheless, in the fields of tissue adhesives and internal soft-tissue wound healing, and bioelectronics, non-swelling hydrogels play very important functions owing to their stable macroscopic dimension and physical performance in physiological environment. Moreover, the negative swelling behavior (i.e., shrinkage) of hydrogels can be exploited to drive noninvasive wound closure, and achieve resolution enhancement of hydrogel scaffolds. In addition, it can help push out the entrapped drugs, thus promote drug release. However, there still has not been a general review of the constructions and biomedical applications of hydrogels from the viewpoint of swelling-shrinkable properties. Therefore, this review summarizes the tactics employed so far in tailoring the swelling-shrinkable properties of hydrogels and their biomedical applications. And a relatively comprehensive understanding of the current progress and future challenge of the hydrogels with different swelling-shrinkable features is provided for potential clinical translations.
Collapse
Affiliation(s)
- Wenjun Feng
- MOE Key Laboratory of Macromolecular Synthesis and FunctionalizationDepartment of Polymer Science and EngineeringZhejiang UniversityHangzhou310058China
| | - Zhengke Wang
- MOE Key Laboratory of Macromolecular Synthesis and FunctionalizationDepartment of Polymer Science and EngineeringZhejiang UniversityHangzhou310058China
| |
Collapse
|
7
|
Amirthalingam S, Rajendran AK, Moon YG, Hwang NS. Stimuli-responsive dynamic hydrogels: design, properties and tissue engineering applications. MATERIALS HORIZONS 2023; 10:3325-3350. [PMID: 37387121 DOI: 10.1039/d3mh00399j] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
The field of tissue engineering and regenerative medicine has been evolving at a rapid pace with numerous novel and interesting biomaterials being reported. Hydrogels have come a long way in this regard and have been proven to be an excellent choice for tissue regeneration. This could be due to their innate properties such as water retention, and ability to carry and deliver a multitude of therapeutic and regenerative elements to aid in better outcomes. Over the past few decades, hydrogels have been developed into an active and attractive system that can respond to various stimuli, thereby presenting a wider control over the delivery of the therapeutic agents to the intended site in a spatiotemporal manner. Researchers have developed hydrogels that respond dynamically to a multitude of external as well as internal stimuli such as mechanics, thermal energy, light, electric field, ultrasonics, tissue pH, and enzyme levels, to name a few. This review gives a brief overview of the recent developments in such hydrogel systems which respond dynamically to various stimuli, some of the interesting fabrication strategies, and their application in cardiac, bone, and neural tissue engineering.
Collapse
Affiliation(s)
- Sivashanmugam Amirthalingam
- Institute of Engineering Research, Seoul National University, Seoul, 08826, Republic of Korea.
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Arun Kumar Rajendran
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Young Gi Moon
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Nathaniel S Hwang
- Institute of Engineering Research, Seoul National University, Seoul, 08826, Republic of Korea.
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, 08826, Republic of Korea
- Bio-MAX/N-Bio Institute, Institute of Bio-Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
8
|
Kamperman T, Willemen NGA, Kelder C, Koerselman M, Becker M, Lins L, Johnbosco C, Karperien M, Leijten J. Steering Stem Cell Fate within 3D Living Composite Tissues Using Stimuli-Responsive Cell-Adhesive Micromaterials. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205487. [PMID: 36599686 PMCID: PMC10074101 DOI: 10.1002/advs.202205487] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/28/2022] [Indexed: 06/12/2023]
Abstract
Engineered living microtissues such as cellular spheroids and organoids have enormous potential for the study and regeneration of tissues and organs. Microtissues are typically engineered via self-assembly of adherent cells into cellular spheroids, which are characterized by little to no cell-material interactions. Consequently, 3D microtissue models currently lack structural biomechanical and biochemical control over their internal microenvironment resulting in suboptimal functional performance such as limited stem cell differentiation potential. Here, this work report on stimuli-responsive cell-adhesive micromaterials (SCMs) that can self-assemble with cells into 3D living composite microtissues through integrin binding, even under serum-free conditions. It is demonstrated that SCMs homogeneously distribute within engineered microtissues and act as biomechanically and biochemically tunable designer materials that can alter the composite tissue microenvironment on demand. Specifically, cell behavior is controlled based on the size, stiffness, number ratio, and biofunctionalization of SCMs in a temporal manner via orthogonal secondary crosslinking strategies. Photo-based mechanical tuning of SCMs reveals early onset stiffness-controlled lineage commitment of differentiating stem cell spheroids. In contrast to conventional encapsulation of stem cell spheroids within bulk hydrogel, incorporating cell-sized SCMs within stem cell spheroids uniquely provides biomechanical cues throughout the composite microtissues' volume, which is demonstrated to be essential for osteogenic differentiation.
Collapse
Affiliation(s)
- Tom Kamperman
- Department of Developmental BioEngineeringFaculty of Science and TechnologyTechnical Medical CentreUniversity of TwenteDrienerlolaan 5Enschede7522NBThe Netherlands
| | - Niels G. A. Willemen
- Department of Developmental BioEngineeringFaculty of Science and TechnologyTechnical Medical CentreUniversity of TwenteDrienerlolaan 5Enschede7522NBThe Netherlands
| | - Cindy Kelder
- Department of Developmental BioEngineeringFaculty of Science and TechnologyTechnical Medical CentreUniversity of TwenteDrienerlolaan 5Enschede7522NBThe Netherlands
| | - Michelle Koerselman
- Department of Developmental BioEngineeringFaculty of Science and TechnologyTechnical Medical CentreUniversity of TwenteDrienerlolaan 5Enschede7522NBThe Netherlands
| | - Malin Becker
- Department of Developmental BioEngineeringFaculty of Science and TechnologyTechnical Medical CentreUniversity of TwenteDrienerlolaan 5Enschede7522NBThe Netherlands
| | - Luanda Lins
- Department of Developmental BioEngineeringFaculty of Science and TechnologyTechnical Medical CentreUniversity of TwenteDrienerlolaan 5Enschede7522NBThe Netherlands
| | - Castro Johnbosco
- Department of Developmental BioEngineeringFaculty of Science and TechnologyTechnical Medical CentreUniversity of TwenteDrienerlolaan 5Enschede7522NBThe Netherlands
| | - Marcel Karperien
- Department of Developmental BioEngineeringFaculty of Science and TechnologyTechnical Medical CentreUniversity of TwenteDrienerlolaan 5Enschede7522NBThe Netherlands
| | - Jeroen Leijten
- Department of Developmental BioEngineeringFaculty of Science and TechnologyTechnical Medical CentreUniversity of TwenteDrienerlolaan 5Enschede7522NBThe Netherlands
| |
Collapse
|
9
|
Blatchley MR, Anseth KS. Middle-out methods for spatiotemporal tissue engineering of organoids. NATURE REVIEWS BIOENGINEERING 2023; 1:329-345. [PMID: 37168734 PMCID: PMC10010248 DOI: 10.1038/s44222-023-00039-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 02/03/2023] [Indexed: 05/13/2023]
Abstract
Organoids recapitulate many aspects of the complex three-dimensional (3D) organization found within native tissues and even display tissue and organ-level functionality. Traditional approaches to organoid culture have largely employed a top-down tissue engineering strategy, whereby cells are encapsulated in a 3D matrix, such as Matrigel, alongside well-defined biochemical cues that direct morphogenesis. However, the lack of spatiotemporal control over niche properties renders cellular processes largely stochastic. Therefore, bottom-up tissue engineering approaches have evolved to address some of these limitations and focus on strategies to assemble tissue building blocks with defined multi-scale spatial organization. However, bottom-up design reduces the capacity for self-organization that underpins organoid morphogenesis. Here, we introduce an emerging framework, which we term middle-out strategies, that relies on existing design principles and combines top-down design of defined synthetic matrices that support proliferation and self-organization with bottom-up modular engineered intervention to limit the degrees of freedom in the dynamic process of organoid morphogenesis. We posit that this strategy will provide key advances to guide the growth of organoids with precise geometries, structures and function, thereby facilitating an unprecedented level of biomimicry to accelerate the utility of organoids to more translationally relevant applications.
Collapse
Affiliation(s)
- Michael R. Blatchley
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO USA
- The BioFrontiers Institute, University of Colorado Boulder, Boulder, CO USA
| | - Kristi S. Anseth
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO USA
- The BioFrontiers Institute, University of Colorado Boulder, Boulder, CO USA
| |
Collapse
|
10
|
Gao Q, Lee JS, Kim BS, Gao G. Three-dimensional printing of smart constructs using stimuli-responsive biomaterials: A future direction of precision medicine. Int J Bioprint 2022; 9:638. [PMID: 36636137 PMCID: PMC9830998 DOI: 10.18063/ijb.v9i1.638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 09/10/2022] [Indexed: 11/10/2022] Open
Abstract
Three-dimensional (3D) printing, which is a valuable technique for the fabrication of tissue-engineered constructs and biomedical devices with complex architectures, has brought about considerable progress in regenerative medicine, drug delivery, and diagnosis of diseases. However, because of the static and inanimate properties of conventional 3D-printed structures, it is difficult to use them in therapies for active and precise medicine, such as improved tissue regeneration, targeted or controlled drug delivery, and advanced pathophysiological monitoring. The integration of stimuli-responsive biomaterials into 3D printing provides a potential strategy for designing and building smart constructs that exhibit programmed functions and controllable changes in properties in response to exogenous and autogenous stimuli. These features make 3D-printed smart constructs the next generation of tissue-engineered products. In this review, we introduce the prevalent 3D printing techniques (with an emphasis on the differences between 3D printing and bioprinting, and biomaterials and bioink), the working principle of each technique, and the advantages of using 3D printing for the fabrication of smart constructs. Stimuli-responsive biomaterials that are widely used for 3D printing of smart constructs are categorized, followed by a summary of their applications in tissue regeneration, drug delivery, and biosensors. Finally, the challenges and future perspectives of 3D-printed smart constructs are discussed.
Collapse
Affiliation(s)
- Qiqi Gao
- School of Medical Engineering, Beijing Institute of Technology, Beijing 100081, China
- Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, China
| | - Jae-Seong Lee
- Department of Information Convergence Engineering, Pusan National University, Yangsan 50612, South Korea
| | - Byoung Soo Kim
- Department of Information Convergence Engineering, Pusan National University, Yangsan 50612, South Korea
- School of Biomedical Convergence Engineering, Pusan National University, Yangsan 50612, South Korea
| | - Ge Gao
- School of Medical Engineering, Beijing Institute of Technology, Beijing 100081, China
- Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
11
|
Rana D, Kandar A, Salehi-Nik N, Inci I, Koopman B, Rouwkema J. Spatiotemporally controlled, aptamers-mediated growth factor release locally manipulates microvasculature formation within engineered tissues. Bioact Mater 2022; 12:71-84. [PMID: 35087964 PMCID: PMC8777207 DOI: 10.1016/j.bioactmat.2021.10.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 10/17/2021] [Accepted: 10/18/2021] [Indexed: 12/14/2022] Open
Affiliation(s)
- Deepti Rana
- Department of Biomechanical Engineering, Technical Medical Centre, Faculty of Engineering Technology, University of Twente, 7500, AE, Enschede, the Netherlands
| | - Ajoy Kandar
- Department of Biomechanical Engineering, Technical Medical Centre, Faculty of Engineering Technology, University of Twente, 7500, AE, Enschede, the Netherlands
| | - Nasim Salehi-Nik
- Department of Biomechanical Engineering, Technical Medical Centre, Faculty of Engineering Technology, University of Twente, 7500, AE, Enschede, the Netherlands
| | - Ilyas Inci
- Izmir Democracy University, Vocational School of Health Services, Department of Dentistry Services, Dental Prosthetics Technology, Izmir, 35140, Turkey
| | - Bart Koopman
- Department of Biomechanical Engineering, Technical Medical Centre, Faculty of Engineering Technology, University of Twente, 7500, AE, Enschede, the Netherlands
| | - Jeroen Rouwkema
- Department of Biomechanical Engineering, Technical Medical Centre, Faculty of Engineering Technology, University of Twente, 7500, AE, Enschede, the Netherlands
- Corresponding author.
| |
Collapse
|
12
|
Strasser P, Monkowius U, Teasdale I. Main group element and metal-containing polymers as photoresponsive soft materials. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
13
|
Pätzold F, Stamm N, Kamps D, Specht M, Bolduan P, Dehmelt L, Weberskirch R. Synthesis and Characterization of Cationic Hydrogels from Thiolated Copolymers for Independent Manipulation of Mechanical and Chemical Properties of Cell Substrates. Macromol Biosci 2022; 22:e2100453. [DOI: 10.1002/mabi.202100453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/17/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Florian Pätzold
- Faculty of Chemistry and Chemical Biology Otto‐Hahn‐Str. 6 TU Dortmund University Dortmund D‐44227 Germany
| | - Nils Stamm
- Faculty of Chemistry and Chemical Biology Otto‐Hahn‐Str. 6 TU Dortmund University Dortmund D‐44227 Germany
| | - Dominic Kamps
- Max‐Planck‐Institute of Molecular Physiology Otto‐Hahn‐Str. 11 Dortmund D‐44227 Germany
| | - Maria Specht
- Faculty of Chemistry and Chemical Biology Otto‐Hahn‐Str. 6 TU Dortmund University Dortmund D‐44227 Germany
| | - Patrick Bolduan
- Faculty of Chemistry and Chemical Biology Otto‐Hahn‐Str. 6 TU Dortmund University Dortmund D‐44227 Germany
| | - Leif Dehmelt
- Max‐Planck‐Institute of Molecular Physiology Otto‐Hahn‐Str. 11 Dortmund D‐44227 Germany
| | - Ralf Weberskirch
- Faculty of Chemistry and Chemical Biology Otto‐Hahn‐Str. 6 TU Dortmund University Dortmund D‐44227 Germany
| |
Collapse
|
14
|
Stephen S, Gorain B, Choudhury H, Chatterjee B. Exploring the role of mesoporous silica nanoparticle in the development of novel drug delivery systems. Drug Deliv Transl Res 2022; 12:105-123. [PMID: 33604837 DOI: 10.1007/s13346-021-00935-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2021] [Indexed: 10/22/2022]
Abstract
The biocompatible nature of mesoporous silica nanoparticles (MSN) attracted researchers' attention to deliver therapeutic agents in the treatment of various diseases, where their porous nature, high drug loading efficiency, and suitability to functionalize with a specific ligand of MSN helped to obtain the desired outcome. The application of MSN has been extended to deliver small chemicals to large-sized peptides or proteins to fight against complex diseases. Recently, formulation researches with MSN have been progressed for various non-conventional drug delivery systems, including liposome, microsphere, oro-dispersible film, 3D-printed formulation, and microneedle. Low bulk density, retaining mesoporous structure during downstream processing, and lack of sufficient in vivo studies are some of the important issues towards the success of mesoporous silica-based advanced drug delivery systems. The present review has aimed to evaluate the application of MSN in advanced drug delivery systems to critically analyze the role of MSN in the respective formulation over other functionalized polymers. Finally, an outlook on the future direction of MSN-based advanced drug delivery systems has been drawn against the existing challenges with this platform.
Collapse
Affiliation(s)
- Senitta Stephen
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, V.L Mehta Road, Vile Parle(W), Mumbai, India
| | - Bapi Gorain
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, 47500, Subang Jaya, Selangor, Malaysia
- Centre for Drug Delivery and Molecular Pharmacology, Faculty of Health and Medical Sciences, Taylor's University, 47500, Subang Jaya, Selangor, Malaysia
| | - Hira Choudhury
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Bukit Jalil , 57000, Kuala Lumpur, Malaysia
- Centre for Bioactive Molecules and Drug Delivery, Institute for Research, Development and Innovation, International Medical University, 57000, Kuala Lumpur, Malaysia
| | - Bappaditya Chatterjee
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, V.L Mehta Road, Vile Parle(W), Mumbai, India.
| |
Collapse
|
15
|
Fugolin AP, Pfeifer CS. Engineering a new generation of thermoset self-healing polymers based on intrinsic approaches. JADA FOUNDATIONAL SCIENCE 2022; 1:100014. [PMID: 36721425 PMCID: PMC9885846 DOI: 10.1016/j.jfscie.2022.100014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Objectives The development of thermosetting polymers with autonomic reparability has become an important research topic since it has the potential to benefit several fields such as biomaterials, tissue engineering, paint and coating technologies, electronics, and soft robotics. In dentistry, the development of restorative materials capable of inhibiting the propagation of microcracks caused by masticatory forces and thermal stress may represent a crucial expansion of the limited clinical lifespan of dental restorations, which is a pressing challenge. Biological systems have inspired the underlying concepts and designs of synthetic polymeric self-healing systems, and different strategies have been used to impart autonomous repair capability in polymers. In this review, the most relevant intrinsic strategies are categorized based on the reaction mechanisms. In general, these strategies rely on the incorporation of latent functionalities capable of undergoing reversible chemical bonds within the polymeric structure (chemically or compositionally tuned). Search Strategy The searches were conducted in the databases Scopus, PubMed, and Google Scholar and limited to articles that were written in English and published during the last ten years. A few additional articles were included by complementing the database searches with manual review of the reference lists. Overall Conclusions Although intrinsic approaches remain underexplored in dentistry, a wide variety of elegant chemistries with tremendous translational potential employed in other fields to promote autonomic repair are highlighted in this review.
Collapse
Affiliation(s)
- Ana P. Fugolin
- Division of Biomaterials and Biomechanics, Restorative Dentistry Department, Oregon Health & Science University, Portland, OR
| | - Carmem S. Pfeifer
- Division of Biomaterials and Biomechanics, Restorative Dentistry Department, Oregon Health & Science University, Portland, OR
| |
Collapse
|
16
|
Peng K, Zheng L, Zhou T, Zhang C, Li H. Light manipulation for fabrication of hydrogels and their biological applications. Acta Biomater 2022; 137:20-43. [PMID: 34637933 DOI: 10.1016/j.actbio.2021.10.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/11/2021] [Accepted: 10/04/2021] [Indexed: 12/17/2022]
Abstract
The development of biocompatible materials with desired functions is essential for tissue engineering and biomedical applications. Hydrogels prepared from these materials represent an important class of soft matter for mimicking extracellular environments. In particular, dynamic hydrogels with responsiveness to environments are quite appealing because they can match the dynamics of biological processes. Among the external stimuli that can trigger responsive hydrogels, light is considered as a clean stimulus with high spatiotemporal resolution, complete bioorthogonality, and fine tunability regarding its wavelength and intensity. Therefore, photoresponsiveness has been broadly encoded in hydrogels for biological applications. Moreover, light can be used to initiate gelation during the fabrication of biocompatible hydrogels. Here, we present a critical review of light manipulation tools for the fabrication of hydrogels and for the regulation of physicochemical properties and functions of photoresponsive hydrogels. The materials, photo-initiated chemical reactions, and new prospects for light-induced gelation are introduced in the former part, while mechanisms to render hydrogels photoresponsive and their biological applications are discussed in the latter part. Subsequently, the challenges and potential research directions in this area are discussed, followed by a brief conclusion. STATEMENT OF SIGNIFICANCE: Hydrogels play a vital role in the field of biomaterials owing to their water retention ability and biocompatibility. However, static hydrogels cannot meet the dynamic requirements of the biomedical field. As a stimulus with high spatiotemporal resolution, light is an ideal tool for both the fabrication and operation of hydrogels. In this review, light-induced hydrogelation and photoresponsive hydrogels are discussed in detail, and new prospects and emerging biological applications are described. To inspire more research studies in this promising area, the challenges and possible solutions are also presented.
Collapse
|
17
|
Khan F, Atif M, Haseen M, Kamal S, Khan MS, Shahid S, Nami SAA. Synthesis, classification and properties of hydrogels: their applications in drug delivery and agriculture. J Mater Chem B 2021; 10:170-203. [PMID: 34889937 DOI: 10.1039/d1tb01345a] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Absorbent polymers or hydrogel polymer materials have an enhanced water retention capacity and are widely used in agriculture and medicine. The controlled release of bioactive molecules (especially drug proteins) by hydrogels and the encapsulation of living cells are some of the active areas of drug discovery research. Hydrogel-based delivery systems may result in a therapeutically advantageous outcome for drug delivery. They can provide various sequential therapeutic agents including macromolecular drugs, small molecule drugs, and cells to control the release of molecules. Due to their controllable degradability, ability to protect unstable drugs from degradation and flexible physical properties, hydrogels can be used as a platform in which various chemical and physical interactions with encapsulated drugs for controlled release in the system can be studied. Practically, hydrogels that possess biodegradable properties have aroused greater interest in drug delivery systems. The original three-dimensional structure gets broken down into non-toxic substances, thus confirming the excellent biocompatibility of the gel. Chemical crosslinking is a resource-rich method for forming hydrogels with excellent mechanical strength. But in some cases the crosslinker used in the synthesis of the hydrogels may cause some toxicity. However, the physically cross-linked hydrogel preparative method is an alternative solution to overcome the toxicity of cross-linkers. Hydrogels that are responsive to stimuli formed from various natural and synthetic polymers can show significant changes in their properties under external stimuli such as temperature, pH, light, ion changes, and redox potential. Stimulus-responsive hydrogels have a wider range of applications in biomedicine including drug delivery, gene delivery and tissue regeneration. Stimulus-responsive hydrogels loaded with multiple drugs show controlled and sustained drug release and can act as drug carriers. By integrating stimulus-responsive hydrogels, such as those with improved thermal responsiveness, pH responsiveness and dual responsiveness, into textile materials, advanced functions can be imparted to the textile materials, thereby improving the moisture and water retention performance, environmental responsiveness, aesthetic appeal, display and comfort of textiles. This review explores the stimuli-responsive hydrogels in drug delivery systems and examines super adsorbent hydrogels and their application in the field of agriculture.
Collapse
Affiliation(s)
- Faisal Khan
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India.
| | - Mohd Atif
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India.
| | - Mohd Haseen
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India.
| | - Shahid Kamal
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India.
| | - Mohd Shoeb Khan
- Interdisciplinary Nanotechnology Centre, Aligarh Muslim University, Aligarh 202002, India
| | - Shumaila Shahid
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Shahab A A Nami
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India.
| |
Collapse
|
18
|
Hafezi M, Nouri Khorasani S, Zare M, Esmaeely Neisiany R, Davoodi P. Advanced Hydrogels for Cartilage Tissue Engineering: Recent Progress and Future Directions. Polymers (Basel) 2021; 13:4199. [PMID: 34883702 PMCID: PMC8659862 DOI: 10.3390/polym13234199] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 12/18/2022] Open
Abstract
Cartilage is a tension- and load-bearing tissue and has a limited capacity for intrinsic self-healing. While microfracture and arthroplasty are the conventional methods for cartilage repair, these methods are unable to completely heal the damaged tissue. The need to overcome the restrictions of these therapies for cartilage regeneration has expanded the field of cartilage tissue engineering (CTE), in which novel engineering and biological approaches are introduced to accelerate the development of new biomimetic cartilage to replace the injured tissue. Until now, a wide range of hydrogels and cell sources have been employed for CTE to either recapitulate microenvironmental cues during a new tissue growth or to compel the recovery of cartilaginous structures via manipulating biochemical and biomechanical properties of the original tissue. Towards modifying current cartilage treatments, advanced hydrogels have been designed and synthesized in recent years to improve network crosslinking and self-recovery of implanted scaffolds after damage in vivo. This review focused on the recent advances in CTE, especially self-healing hydrogels. The article firstly presents the cartilage tissue, its defects, and treatments. Subsequently, introduces CTE and summarizes the polymeric hydrogels and their advances. Furthermore, characterizations, the advantages, and disadvantages of advanced hydrogels such as multi-materials, IPNs, nanomaterials, and supramolecular are discussed. Afterward, the self-healing hydrogels in CTE, mechanisms, and the physical and chemical methods for the synthesis of such hydrogels for improving the reformation of CTE are introduced. The article then briefly describes the fabrication methods in CTE. Finally, this review presents a conclusion of prevalent challenges and future outlooks for self-healing hydrogels in CTE applications.
Collapse
Affiliation(s)
- Mahshid Hafezi
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran;
| | - Saied Nouri Khorasani
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran;
| | - Mohadeseh Zare
- School of Metallurgy and Materials, University of Birmingham, Birmingham B15 2TT, UK;
| | - Rasoul Esmaeely Neisiany
- Department of Materials and Polymer Engineering, Faculty of Engineering, Hakim Sabzevari University, Sabzevar 96179-76487, Iran;
| | - Pooya Davoodi
- School of Pharmacy and Bioengineering, Hornbeam Building, Keele University, Staffordshire ST5 5BG, UK
- Guy Hilton Research Centre, Institute of Science and Technology in Medicine, Keele University, Staffordshire ST4 7QB, UK
| |
Collapse
|
19
|
Wu HY, Yang L, Tu JS, Wang J, Li JG, Lv HY, Yang XN. Hydrogels with Dynamically Controllable Mechanics and Biochemistry for 3D Cell Culture Platforms. CHINESE JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1007/s10118-021-2639-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
20
|
Luo P, Xiang S, Li C, Zhu M. Photomechanical polymer hydrogels based on molecular photoswitches. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210567] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Peng‐Fei Luo
- Wuhan National Laboratory for Optoelectronics (WNLO), School of Optics and Electronic Information Huazhong University of Science and Technology Wuhan China
| | - Shi‐Li Xiang
- Wuhan National Laboratory for Optoelectronics (WNLO), School of Optics and Electronic Information Huazhong University of Science and Technology Wuhan China
| | - Chong Li
- Wuhan National Laboratory for Optoelectronics (WNLO), School of Optics and Electronic Information Huazhong University of Science and Technology Wuhan China
| | - Ming‐Qiang Zhu
- Wuhan National Laboratory for Optoelectronics (WNLO), School of Optics and Electronic Information Huazhong University of Science and Technology Wuhan China
| |
Collapse
|
21
|
Duan T, Bian Q, Li H. Light-Responsive Dynamic Protein Hydrogels Based on LOVTRAP. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:10214-10222. [PMID: 34396769 DOI: 10.1021/acs.langmuir.1c01699] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Protein-based hydrogels can mimic many aspects of native extracellular matrices (ECMs) and are promising biomedical materials that find various applications in cell proliferation, drug/cell delivery, and tissue engineering. To be adapted for different tasks, it is important that the mechanical and/or biochemical properties of protein-based hydrogels can be regulated by external stimuli. Light as a regulation stimulus is of advantage because it can be easily applied in demanded spatiotemporal manners. The noncovalent binding between the light-oxygen-voltage-sensing domain 2 (LOV2) and its binding partner ZDark1 (zdk1), named as LOVTRAP, is a light-responsive interaction. The binding affinity of LOVTRAP is much higher in dark than that under blue light irradiation. Taking advantage of these light-responsive interactions, herein we endeavored to use LOVTRAP as a crosslinking mechanism to engineer light-responsive protein hydrogels. Using LOV2-containing and zdk1-containing multifunctional protein building blocks, we successfully engineered a light-responsive protein hydrogel whose viscoelastic properties can change in response to light: in the dark, the hydrogel showed higher storage modulus; under blue light irradiation, the storage modulus decreased. Due to the noncovalent nature of the LOVTRAP, the engineered LOVTRAP protein hydrogels displayed shear-thinning and self-healing properties and served as an excellent injectable protein hydrogel. We anticipated that this new class of light-responsive protein hydrogels will broaden the scope of dynamic protein hydrogels and help develop other light-responsive protein hydrogels for biomedical applications.
Collapse
Affiliation(s)
- Tianyu Duan
- Department of Chemistry, University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| | - Qingyuan Bian
- Department of Chemistry, University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| | - Hongbin Li
- Department of Chemistry, University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| |
Collapse
|
22
|
Khalil NN, McCain ML. Engineering the Cellular Microenvironment of Post-infarct Myocardium on a Chip. Front Cardiovasc Med 2021; 8:709871. [PMID: 34336962 PMCID: PMC8316619 DOI: 10.3389/fcvm.2021.709871] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 06/14/2021] [Indexed: 01/02/2023] Open
Abstract
Myocardial infarctions are one of the most common forms of cardiac injury and death worldwide. Infarctions cause immediate necrosis in a localized region of the myocardium, which is followed by a repair process with inflammatory, proliferative, and maturation phases. This repair process culminates in the formation of scar tissue, which often leads to heart failure in the months or years after the initial injury. In each reparative phase, the infarct microenvironment is characterized by distinct biochemical, physical, and mechanical features, such as inflammatory cytokine production, localized hypoxia, and tissue stiffening, which likely each contribute to physiological and pathological tissue remodeling by mechanisms that are incompletely understood. Traditionally, simplified two-dimensional cell culture systems or animal models have been implemented to elucidate basic pathophysiological mechanisms or predict drug responses following myocardial infarction. However, these conventional approaches offer limited spatiotemporal control over relevant features of the post-infarct cellular microenvironment. To address these gaps, Organ on a Chip models of post-infarct myocardium have recently emerged as new paradigms for dissecting the highly complex, heterogeneous, and dynamic post-infarct microenvironment. In this review, we describe recent Organ on a Chip models of post-infarct myocardium, including their limitations and future opportunities in disease modeling and drug screening.
Collapse
Affiliation(s)
- Natalie N Khalil
- Laboratory for Living Systems Engineering, Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, CA, United States
| | - Megan L McCain
- Laboratory for Living Systems Engineering, Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, CA, United States.,Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
23
|
Li Y, Li S, Du X, Gu Z. Disulfide-yne reaction: controlling the reactivity of a surface by light. RSC Adv 2021; 11:21023-21028. [PMID: 35479365 PMCID: PMC9034046 DOI: 10.1039/d1ra02262h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 06/04/2021] [Indexed: 12/20/2022] Open
Abstract
In this paper we provide new insight into the disulfide-yne photo reaction, which is similar but different from the well-known thiol-yne photoclick reaction. We show that, unlike the stable product generated from thiol-yne chemistry, the vinyl dithioether structure obtained from disulfide-yne reaction exhibits unique reactivity with thiols and disulfides, which can be used for surface photochemistry to fabricate reactive and dynamic surfaces. The possible mechanism for the unique reactivity of vinyl dithioether structure was discussed. We demonstrated that disulfide-yne reactions are highly compatible with thiol-yne chemistry, but offer the flexibility and dynamic nature that is lacking in thiol-yne chemistry, thus could be a good replenishment for the existing thiol-yne toolbox.
Collapse
Affiliation(s)
- Yuwen Li
- State Key Laboratory of Bioelectronics, Southeast University Nanjing 210096 China
- School of Biological Science and Medical Engineering, Southeast University Nanjing 210096 China
| | - Sen Li
- State Key Laboratory of Bioelectronics, Southeast University Nanjing 210096 China
- School of Biological Science and Medical Engineering, Southeast University Nanjing 210096 China
| | - Xin Du
- State Key Laboratory of Bioelectronics, Southeast University Nanjing 210096 China
- School of Biological Science and Medical Engineering, Southeast University Nanjing 210096 China
| | - Zhongze Gu
- State Key Laboratory of Bioelectronics, Southeast University Nanjing 210096 China
- School of Biological Science and Medical Engineering, Southeast University Nanjing 210096 China
| |
Collapse
|
24
|
Stowers RS. Advances in Extracellular Matrix-Mimetic Hydrogels to Guide Stem Cell Fate. Cells Tissues Organs 2021; 211:703-720. [PMID: 34082418 DOI: 10.1159/000514851] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/11/2021] [Indexed: 01/25/2023] Open
Abstract
In the fields of regenerative medicine and tissue engineering, stem cells offer vast potential for treating or replacing diseased and damaged tissue. Much progress has been made in understanding stem cell biology, yielding protocols for directing stem cell differentiation toward the cell type of interest for a specific application. One particularly interesting and powerful signaling cue is the extracellular matrix (ECM) surrounding stem cells, a network of biopolymers that, along with cells, makes up what we define as a tissue. The composition, structure, biochemical features, and mechanical properties of the ECM are varied in different tissues and developmental stages, and serve to instruct stem cells toward a specific lineage. By understanding and recapitulating some of these ECM signaling cues through engineered ECM-mimicking hydrogels, stem cell fate can be directed in vitro. In this review, we will summarize recent advances in material systems to guide stem cell fate, highlighting innovative methods to capture ECM functionalities and how these material systems can be used to provide basic insight into stem cell biology or make progress toward therapeutic objectives.
Collapse
Affiliation(s)
- Ryan S Stowers
- Department of Mechanical Engineering, University of California, Santa Barbara, Santa Barbara, California, USA
| |
Collapse
|
25
|
Sim XM, Chen C, Goto A. Polymer Coupling via Hetero-Disulfide Exchange and Its Applications to Rewritable Polymer Brushes. ACS APPLIED MATERIALS & INTERFACES 2021; 13:24183-24193. [PMID: 33982564 DOI: 10.1021/acsami.1c07195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
An iodide-terminated polymer (Polymer-I) is converted to a thiol-terminated polymer (Polymer-SH) using HSCH2CH2SH in a remarkably short time (10 min). Polymer-SH is further converted to a pyridyl disulfide-terminated polymer (Polymer-SS-Py). The hetero-coupling of Polymer-SH and Polymer-SS-Py is successfully achieved to quantitatively generate a polymer disulfide (Polymer-SS-Polymer). Exploiting this efficient hetero-coupling technique, Polymer-SH is attached (grafted) on a Py-SS-immobilized surface to generate a polymer brush via a disulfide (-SS-) linkage (writing process). The -SS- linkage is cleaved by the treatment with dithiothreitol (DTT) to detach the polymer from the surface (erasing process). Subsequently, another Polymer-SH is attached on the surface to generate another polymer brush (rewriting process). Thus, a writable, erasable, and rewritable polymer brush surface is achieved. Hydrophilic, hydrophobic, and super-hydrophobic polymers (Polymer-SH) are attached on the surface, tailoring the surface wettability in the writing-erasing-rewriting cycles. Polymer-SH is also attached on a chain-end Py-SS-functionalized polymer brush surface, generating a rewritable block copolymer brush surface. A patterned block copolymer brush surface is also obtained using photo-irradiation and a photo-mask in the erasing process. The metal-free synthetic procedure, accessibility to patterned brushes, and switchable surface properties via the writing-erasing-rewriting process are attractive features of the present approach.
Collapse
Affiliation(s)
- Xuan Ming Sim
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore
| | - Chen Chen
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore
| | - Atsushi Goto
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore
| |
Collapse
|
26
|
Gelmi A, Schutt CE. Stimuli-Responsive Biomaterials: Scaffolds for Stem Cell Control. Adv Healthc Mater 2021; 10:e2001125. [PMID: 32996270 PMCID: PMC11468740 DOI: 10.1002/adhm.202001125] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/18/2020] [Indexed: 12/28/2022]
Abstract
Stem cell fate is closely intertwined with microenvironmental and endogenous cues within the body. Recapitulating this dynamic environment ex vivo can be achieved through engineered biomaterials which can respond to exogenous stimulation (including light, electrical stimulation, ultrasound, and magnetic fields) to deliver temporal and spatial cues to stem cells. These stimuli-responsive biomaterials can be integrated into scaffolds to investigate stem cell response in vitro and in vivo, and offer many pathways of cellular manipulation: biochemical cues, scaffold property changes, drug release, mechanical stress, and electrical signaling. The aim of this review is to assess and discuss the current state of exogenous stimuli-responsive biomaterials, and their application in multipotent stem cell control. Future perspectives in utilizing these biomaterials for personalized tissue engineering and directing organoid models are also discussed.
Collapse
Affiliation(s)
- Amy Gelmi
- School of ScienceCollege of Science, Engineering and HealthRMIT UniversityMelbourneVIC3001Australia
| | - Carolyn E. Schutt
- Department of Biomedical EngineeringKnight Cancer Institute Cancer Early Detection Advanced Research Center (CEDAR)Oregon Health and Science UniversityPortlandOR97201USA
| |
Collapse
|
27
|
Porras Hernández AM, Pohlit H, Sjögren F, Shi L, Ossipov D, Antfolk M, Tenje M. A simplified approach to control cell adherence on biologically derived in vitro cell culture scaffolds by direct UV-mediated RGD linkage. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2020; 31:89. [PMID: 33057798 PMCID: PMC7560931 DOI: 10.1007/s10856-020-06446-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 09/30/2020] [Indexed: 05/11/2023]
Abstract
In this work, we present a method to fabricate a hyaluronic acid (HA) hydrogel with spatially controlled cell-adhesion properties based on photo-polymerisation cross-linking and functionalization. The approach utilises the same reaction pathway for both steps meaning that it is user-friendly and allows for adaptation at any stage during the fabrication process. Moreover, the process does not require any additional cross-linkers. The hydrogel is formed by UV-initiated radical addition reaction between acrylamide (Am) groups on the HA backbone. Cell adhesion is modulated by functionalising the adhesion peptide sequence arginine-glycine-aspartate onto the hydrogel surface via radical mediated thiol-ene reaction using the non-reacted Am groups. We show that 10 × 10 µm2 squares could be patterned with sharp features and a good resolution. The smallest area that could be patterned resulting in good cell adhesion was 25 × 25 µm2 squares, showing single-cell adhesion. Mouse brain endothelial cells adhered and remained in culture for up to 7 days on 100 × 100 µm2 square patterns. We see potential for this material combination for future use in novel organ-on-chip models and tissue engineering where the location of the cells is of importance and to further study endothelial cell biology.
Collapse
Affiliation(s)
- A M Porras Hernández
- Science for Life Laboratory, Department of Materials Science and Engineering, Uppsala University, Uppsala, Sweden
| | - H Pohlit
- Science for Life Laboratory, Department of Materials Science and Engineering, Uppsala University, Uppsala, Sweden
| | - F Sjögren
- Science for Life Laboratory, Department of Materials Science and Engineering, Uppsala University, Uppsala, Sweden
| | - L Shi
- Department of Chemistry-Ångström, Uppsala University, Uppsala, Sweden
| | - D Ossipov
- Department of Chemistry-Ångström, Uppsala University, Uppsala, Sweden
- Department of Biosciences and Nutrition (BioNut), Karolinska Institutet, Huddinge, Sweden
| | - M Antfolk
- BRIC-Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Stem Cell Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - M Tenje
- Science for Life Laboratory, Department of Materials Science and Engineering, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
28
|
Arkenberg MR, Nguyen HD, Lin CC. Recent advances in bio-orthogonal and dynamic crosslinking of biomimetic hydrogels. J Mater Chem B 2020; 8:7835-7855. [PMID: 32692329 PMCID: PMC7574327 DOI: 10.1039/d0tb01429j] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In recent years, dynamic, 'click' hydrogels have been applied in numerous biomedical applications. Owing to the mild, cytocompatible, and highly specific reaction kinetics, a multitude of orthogonal handles have been developed for fabricating dynamic hydrogels to facilitate '4D' cell culture. The high degree of tunability in crosslinking reactions of orthogonal 'click' chemistry has enabled a bottom-up approach to install specific biomimicry in an artificial extracellular matrix. In addition to click chemistry, highly specific enzymatic reactions are also increasingly used for network crosslinking and for spatiotemporal control of hydrogel properties. On the other hand, covalent adaptable chemistry has been used to recapitulate the viscoelastic component of biological tissues and for formulating self-healing and shear-thinning hydrogels. The common feature of these three classes of chemistry (i.e., orthogonal click chemistry, enzymatic reactions, and covalent adaptable chemistry) is that they can be carried out under ambient and aqueous conditions, a prerequisite for maintaining cell viability for in situ cell encapsulation and post-gelation modification of network properties. Due to their orthogonality, different chemistries can also be applied sequentially to provide additional biochemical and mechanical control to guide cell behavior. Herein, we review recent advances in the use of orthogonal click chemistry, enzymatic reactions, and covalent adaptable chemistry for the development of dynamically tunable and biomimetic hydrogels.
Collapse
Affiliation(s)
- Matthew R Arkenberg
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA.
| | | | | |
Collapse
|
29
|
Uto K, Arakawa CK, DeForest CA. Next-Generation Biomaterials for Culture and Manipulation of Stem Cells. Cold Spring Harb Perspect Biol 2020; 12:a035691. [PMID: 31843993 PMCID: PMC7461762 DOI: 10.1101/cshperspect.a035691] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Stem cell fate decisions are informed by physical and chemical cues presented within and by the extracellular matrix. Despite the generally attributed importance of extracellular cues in governing self-renewal, differentiation, and collective behavior, knowledge gaps persist with regard to the individual, synergistic, and competing effects that specific physiochemical signals have on cell function. To better understand basic stem cell biology, as well as to expand opportunities in regenerative medicine and tissue engineering, a growing suite of customizable biomaterials has been developed. These next-generation cell culture materials offer user-defined biochemical and biomechanical properties, increasingly in a manner that can be controlled in time and 3D space. This review highlights recent innovations in this regard, focusing on advances to culture and maintain stemness, direct fate, and to detect stem cell function using biomaterial-based strategies.
Collapse
Affiliation(s)
- Koichiro Uto
- International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Tsukuba, Ibaraki 305-0044, Japan
- PRIME, Japan Agency for Medical Research and Development, Tokyo 100-0044, Japan
| | - Christopher K Arakawa
- International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Tsukuba, Ibaraki 305-0044, Japan
- Department of Bioengineering, University of Washington, Seattle, Washington 98105, USA
| | - Cole A DeForest
- Department of Bioengineering, University of Washington, Seattle, Washington 98105, USA
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, USA
- Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, Washington 98109, USA
- Molecular Engineering & Sciences Institute, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
30
|
Lee M, Rizzo R, Surman F, Zenobi-Wong M. Guiding Lights: Tissue Bioprinting Using Photoactivated Materials. Chem Rev 2020; 120:10950-11027. [DOI: 10.1021/acs.chemrev.0c00077] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Mihyun Lee
- Tissue Engineering + Biofabrication HPL J22, ETH Zürich, Otto-Stern-Weg 7, 8093 Zürich, Switzerland
| | - Riccardo Rizzo
- Tissue Engineering + Biofabrication HPL J22, ETH Zürich, Otto-Stern-Weg 7, 8093 Zürich, Switzerland
| | - František Surman
- Tissue Engineering + Biofabrication HPL J22, ETH Zürich, Otto-Stern-Weg 7, 8093 Zürich, Switzerland
| | - Marcy Zenobi-Wong
- Tissue Engineering + Biofabrication HPL J22, ETH Zürich, Otto-Stern-Weg 7, 8093 Zürich, Switzerland
| |
Collapse
|
31
|
Magli S, Rossi GB, Risi G, Bertini S, Cosentino C, Crippa L, Ballarini E, Cavaletti G, Piazza L, Masseroni E, Nicotra F, Russo L. Design and Synthesis of Chitosan-Gelatin Hybrid Hydrogels for 3D Printable in vitro Models. Front Chem 2020; 8:524. [PMID: 32760695 PMCID: PMC7373092 DOI: 10.3389/fchem.2020.00524] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 05/22/2020] [Indexed: 12/23/2022] Open
Abstract
The development of 3D printable hydrogels based on the crosslinking between chitosan and gelatin is proposed. Chitosan and gelatin were both functionalized with methyl furan groups. Chemical modification was performed by reductive amination with methyl furfural involving the lysine residues of gelatin and the amino groups of chitosan to generate hydrogels with tailored properties. The methyl furan residues present in both polymers were exploited for efficient crosslinking via Diels-Alder ligation with PEG-Star-maleimide under cell-compatible conditions. The obtained chitosan-gelatin hybrid was employed to formulate hydrogels and 3D printable biopolymers and its processability and biocompatibility were preliminarily investigated.
Collapse
Affiliation(s)
- Sofia Magli
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Giulia Beatrice Rossi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Giulia Risi
- G. Ronzoni Institute for Chemical and Biochemical Research, Milan, Italy
| | - Sabrina Bertini
- G. Ronzoni Institute for Chemical and Biochemical Research, Milan, Italy
| | - Cesare Cosentino
- G. Ronzoni Institute for Chemical and Biochemical Research, Milan, Italy
| | - Luca Crippa
- Department of Medical and Surgical Science, University of Milano-Bicocca, Milan, Italy
| | - Elisa Ballarini
- Department of Medical and Surgical Science, University of Milano-Bicocca, Milan, Italy
| | - Guido Cavaletti
- Department of Medical and Surgical Science, University of Milano-Bicocca, Milan, Italy
| | - Laura Piazza
- Department of Environmental Science and Policy (ESP), University of Milan, Milan, Italy
| | - Elisa Masseroni
- Department of Environmental Science and Policy (ESP), University of Milan, Milan, Italy
| | - Francesco Nicotra
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Laura Russo
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| |
Collapse
|
32
|
Fumasi FM, Stephanopoulos N, Holloway JL. Reversible control of biomaterial properties for dynamically tuning cell behavior. J Appl Polym Sci 2020; 137:49058. [PMID: 34054139 PMCID: PMC8159151 DOI: 10.1002/app.49058] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Accepted: 11/25/2019] [Indexed: 12/13/2022]
Abstract
In the past decade, significant advances in chemistry and manufacturing have enabled the development of increasingly complex and controllable biomaterials. A key innovation is the design of dynamic biomaterials that allow for user-specified, reversible, temporal control over material properties. In this review, we provide an overview of recent advancements in reversible biomaterials, including control of stiffness, chemistry, ligand presentation, and topography. These systems have wide-ranging applications within biomedical engineering, including in vitro disease models and tissue-engineered scaffolds to guide multistep biological processes.
Collapse
Affiliation(s)
- Fallon M. Fumasi
- Chemical Engineering, School for Engineering of Matter Transport and Energy, Arizona State University, Tempe, Arizona
| | - Nicholas Stephanopoulos
- Biodesign Center for Molecular Design and Biomimetics, Arizona State University, Tempe, Arizona
- School of Molecular Sciences, Arizona State University, Tempe, Arizona
| | - Julianne L. Holloway
- Chemical Engineering, School for Engineering of Matter Transport and Energy, Arizona State University, Tempe, Arizona
- Biodesign Center for Molecular Design and Biomimetics, Arizona State University, Tempe, Arizona
| |
Collapse
|
33
|
Yavitt FM, Brown TE, Hushka EA, Brown ME, Gjorevski N, Dempsey PJ, Lutolf MP, Anseth KS. The Effect of Thiol Structure on Allyl Sulfide Photodegradable Hydrogels and their Application as a Degradable Scaffold for Organoid Passaging. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1905366. [PMID: 32548863 PMCID: PMC7669673 DOI: 10.1002/adma.201905366] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 04/19/2020] [Indexed: 05/17/2023]
Abstract
Intestinal organoids are useful in vitro models for basic and translational studies aimed at understanding and treating disease. However, their routine culture relies on animal-derived matrices that limit translation to clinical applications. In fact, there are few fully defined, synthetic hydrogel systems that allow for the expansion of intestinal organoids. Here, an allyl sulfide photodegradable hydrogel is presented, achieving rapid degradation through radical addition-fragmentation chain transfer (AFCT) reactions, to support routine passaging of intestinal organoids. Shear rheology to first characterize the effect of thiol and allyl sulfide crosslink structures on degradation kinetics is used. Irradiation with 365 nm light (5 mW cm-2 ) in the presence of a soluble thiol (glutathione at 15 × 10-3 m), and a photoinitiator (lithium phenyl-2,4,6-trimethylbenzoylphosphinate at 1 × 10-3 m), leads to complete hydrogel degradation in less than 15 s. Allyl sulfide hydrogels are used to support the formation of epithelial colonies from single intestinal stem cells, and rapid photodegradation is used to achieve repetitive passaging of stem cell colonies without loss in morphology or organoid formation potential. This platform could support long-term culture of intestinal organoids, potentially replacing the need for animal-derived matrices, while also allowing systematic variations to the hydrogel properties tailored for the organoid of interest.
Collapse
Affiliation(s)
- F. Max Yavitt
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80309, USA
- The BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Tobin E. Brown
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80309, USA
- The BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA
- Current address: Material Measurement Laboratory, National Institute of Standards and Technology, Boulder, CO 80305, USA
| | - Ella A. Hushka
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80309, USA
- The BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Monica E. Brown
- Section of Developmental Biology, Department of Pediatrics, University of Colorado, Denver, CO 80204, USA
| | - Nikolche Gjorevski
- Laboratory of Stem Cell Bioengineering, Institute of Bioengineering, School of Life Sciences (SV) and School of Engineering (STI), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Peter J. Dempsey
- Section of Developmental Biology, Department of Pediatrics, University of Colorado, Denver, CO 80204, USA
| | - Matthias P. Lutolf
- Laboratory of Stem Cell Bioengineering, Institute of Bioengineering, School of Life Sciences (SV) and School of Engineering (STI), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Institute of Chemical Sciences and Engineering, School of Basic Science (SB), EPFL
| | - Kristi S. Anseth
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80309, USA
- The BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA
| |
Collapse
|
34
|
Podgórski M, Fairbanks BD, Kirkpatrick BE, McBride M, Martinez A, Dobson A, Bongiardina NJ, Bowman CN. Toward Stimuli-Responsive Dynamic Thermosets through Continuous Development and Improvements in Covalent Adaptable Networks (CANs). ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1906876. [PMID: 32057157 DOI: 10.1002/adma.201906876] [Citation(s) in RCA: 148] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 11/18/2019] [Indexed: 05/15/2023]
Abstract
Covalent adaptable networks (CANs), unlike typical thermosets or other covalently crosslinked networks, possess a unique, often dormant ability to activate one or more forms of stimuli-responsive, dynamic covalent chemistries as a means to transition their behavior from that of a viscoelastic solid to a material with fluid-like plastic flow. Upon application of a stimulus, such as light or other irradiation, temperature, or even a distinct chemical signal, the CAN responds by transforming to a state of temporal plasticity through activation of either reversible addition or reversible bond exchange, either of which allows the material to essentially re-equilibrate to an altered set of conditions that are distinct from those in which the original covalently crosslinked network is formed, often simultaneously enabling a new and distinct shape, function, and characteristics. As such, CANs span the divide between thermosets and thermoplastics, thus offering unprecedented possibilities for innovation in polymer and materials science. Without attempting to comprehensively review the literature, recent developments in CANs are discussed here with an emphasis on the most effective dynamic chemistries that render these materials to be stimuli responsive, enabling features that make CANs more broadly applicable.
Collapse
Affiliation(s)
- Maciej Podgórski
- Department of Chemical and Biological Engineering, University of Colorado, UCB 596, Boulder, CO, 80309, USA
- Department of Polymer Chemistry, Faculty of Chemistry, Maria Curia-Sklodowska University, pl. Marii Curie-Sklodowskiej 5, Lublin, 20-031, Poland
| | - Benjamin D Fairbanks
- Department of Chemical and Biological Engineering, University of Colorado, UCB 596, Boulder, CO, 80309, USA
| | - Bruce E Kirkpatrick
- Medical Scientist Training Program, School of Medicine, University of Colorado, Aurora, CO, 80045, USA
| | - Matthew McBride
- Department of Chemical and Biological Engineering, University of Colorado, UCB 596, Boulder, CO, 80309, USA
| | - Alina Martinez
- Materials Science and Engineering Program, University of Colorado, Boulder, CO, 80309, USA
| | - Adam Dobson
- Department of Chemical and Biological Engineering, University of Colorado, UCB 596, Boulder, CO, 80309, USA
| | - Nicholas J Bongiardina
- Materials Science and Engineering Program, University of Colorado, Boulder, CO, 80309, USA
| | - Christopher N Bowman
- Department of Chemical and Biological Engineering, University of Colorado, UCB 596, Boulder, CO, 80309, USA
| |
Collapse
|
35
|
Hou W, Wang Y, Bian Y, Zhang J, Li S, Zeng Y, Du X, Gu Z. Reconfigurable Surface with Photodefinable Physicochemical Properties for User-Designable Cell Scaffolds. ACS APPLIED BIO MATERIALS 2020; 3:2230-2238. [PMID: 35025275 DOI: 10.1021/acsabm.0c00052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Surfaces with specific topography and chemical composition are quite useful in many applications ranging from functional interfaces to cell incubation scaffolds. Although these surfaces can be easily fabricated by combining topography-construction methods and surface-functionalization strategies, their properties are often static after fabrication or merely switchable between "on" and "off" states. Developing surfaces that can be on-demand regulated are quite important for the generation of smart surfaces for future applications. In this paper, we present a reconfigurable surface with adjustable topography and chemical functionality utilizing the photodynamic feature of the disulfide bond. Structured surfaces, composed of disulfide-cross-linked polymer networks, were prepared by using disulfide-containing methacrylate as the monomer. We show that the topography and chemical functionality of the surface can be on-demand regulated after its fabrication, with 254 and 365 nm UV light, respectively, allowing to "define" the physicochemical properties of the surface using light before the usage. We also demonstrate the application of such surface as a user-designable cell scaffold, that different cell scaffolds can be generated from one original surface with a simple exposure process, to define the desired bioactivity onto every point of the surface and therefore exactly control cell behaviors on the scaffold.
Collapse
Affiliation(s)
- Wei Hou
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China.,State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China
| | - Yuli Wang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, China.,Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, China
| | - Yifeng Bian
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, China.,Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, China
| | - Junning Zhang
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China.,School of Biological Sciences & Medical Engineering, Southeast University, Nanjing 210096, China
| | - Sen Li
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China.,School of Biological Sciences & Medical Engineering, Southeast University, Nanjing 210096, China
| | - Yi Zeng
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China.,School of Biological Sciences & Medical Engineering, Southeast University, Nanjing 210096, China
| | - Xin Du
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China.,School of Biological Sciences & Medical Engineering, Southeast University, Nanjing 210096, China
| | - Zhongze Gu
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China.,School of Biological Sciences & Medical Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|
36
|
Nicolas J, Magli S, Rabbachin L, Sampaolesi S, Nicotra F, Russo L. 3D Extracellular Matrix Mimics: Fundamental Concepts and Role of Materials Chemistry to Influence Stem Cell Fate. Biomacromolecules 2020; 21:1968-1994. [PMID: 32227919 DOI: 10.1021/acs.biomac.0c00045] [Citation(s) in RCA: 272] [Impact Index Per Article: 68.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Synthetic 3D extracellular matrices (ECMs) find application in cell studies, regenerative medicine, and drug discovery. While cells cultured in a monolayer may exhibit unnatural behavior and develop very different phenotypes and genotypes than in vivo, great efforts in materials chemistry have been devoted to reproducing in vitro behavior in in vivo cell microenvironments. This requires fine-tuning the biochemical and structural actors in synthetic ECMs. This review will present the fundamentals of the ECM, cover the chemical and structural features of the scaffolds used to generate ECM mimics, discuss the nature of the signaling biomolecules required and exploited to generate bioresponsive cell microenvironments able to induce a specific cell fate, and highlight the synthetic strategies involved in creating functional 3D ECM mimics.
Collapse
Affiliation(s)
- Julien Nicolas
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, , 92296 Châtenay-Malabry, France
| | - Sofia Magli
- University of Milano-Bicocca, Department of Biotechnology and Biosciences, Piazza della Scienza 2, 20126 Milan, Italy
| | - Linda Rabbachin
- University of Milano-Bicocca, Department of Biotechnology and Biosciences, Piazza della Scienza 2, 20126 Milan, Italy
| | - Susanna Sampaolesi
- University of Milano-Bicocca, Department of Biotechnology and Biosciences, Piazza della Scienza 2, 20126 Milan, Italy
| | - Francesco Nicotra
- University of Milano-Bicocca, Department of Biotechnology and Biosciences, Piazza della Scienza 2, 20126 Milan, Italy
| | - Laura Russo
- University of Milano-Bicocca, Department of Biotechnology and Biosciences, Piazza della Scienza 2, 20126 Milan, Italy
| |
Collapse
|
37
|
Cheng Q, Cao Z, Hao A, Zhao Y, Xing P. Fluorescent Imprintable Hydrogels via Organic/Inorganic Supramolecular Coassembly. ACS APPLIED MATERIALS & INTERFACES 2020; 12:15491-15499. [PMID: 32156108 DOI: 10.1021/acsami.0c04418] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Photoresponsive hydrogels with on/off luminescence show a promising application potential in writable information recording and display materials. However, it still remains a tremendous challenge to fabricate such hydrogels on account of the intrinsic fluorescence quenching effect and the lack of suitable responsive groups. Herein, we present fluorescent imprintable hydrogels constructed via organic/inorganic supramolecular coassembly. A photoisomeric cyanostilbene conjugated cationic surfactant exhibited an aggregation-induced emission behavior upon clay (laponite) complexation, along with excellent thixotropism brought by laponite. Macrocyclic cucurbituril[7] and β-cyclodextrin rings capable of forming host-guest complexes with the surfactant were utilized to give ternary hybrid hydrogels with luminescence and photoresponsive properties. On the account of trans-cis photoisomerization of the cyanostilbene unit, the fluorescence of the multicomponent hydrogels could undergo rapid quenching within a short irradiation period under UV light and be recovered when subjected to an annealing process. According to these properties, the imprinted fluorescent patterns using the hybrid hydrogels were erasable and rewritable. Thus, this research successfully integrates host-guest complexation and supramolecular coassembly into the fabrication of fluorescent imprintable hydrogels.
Collapse
Affiliation(s)
- Qiuhong Cheng
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education and School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
| | - Zhaozhen Cao
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education and School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
| | - Aiyou Hao
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education and School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
| | - Yanli Zhao
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
| | - Pengyao Xing
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education and School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
| |
Collapse
|
38
|
Jiang S, Wu X, Liu H, Deng J, Zhang X, Yao Z, Zheng Y, Li B, Yu Z. Ring‐Strain‐Promoted Ultrafast Diaryltetrazole–Alkyne Photoclick Reactions Triggered by Visible Light. CHEMPHOTOCHEM 2020. [DOI: 10.1002/cptc.201900290] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Shichao Jiang
- Key Laboratory of Green Chemistry and Technology of Ministry of EducationSichuan University 29 Wangjiang Road Chengdu 610064 China
| | - Xueting Wu
- Key Laboratory of Green Chemistry and Technology of Ministry of EducationSichuan University 29 Wangjiang Road Chengdu 610064 China
| | - Hui Liu
- Key Laboratory of Green Chemistry and Technology of Ministry of EducationSichuan University 29 Wangjiang Road Chengdu 610064 China
| | - Jiajie Deng
- Key Laboratory of Green Chemistry and Technology of Ministry of EducationSichuan University 29 Wangjiang Road Chengdu 610064 China
| | - Xiaocui Zhang
- Key Laboratory of Green Chemistry and Technology of Ministry of EducationSichuan University 29 Wangjiang Road Chengdu 610064 China
| | - Zhuojun Yao
- Key Laboratory of Green Chemistry and Technology of Ministry of EducationSichuan University 29 Wangjiang Road Chengdu 610064 China
| | - Yuanqin Zheng
- Key Laboratory of Green Chemistry and Technology of Ministry of EducationSichuan University 29 Wangjiang Road Chengdu 610064 China
| | - Bo Li
- Key Laboratory of Green Chemistry and Technology of Ministry of EducationSichuan University 29 Wangjiang Road Chengdu 610064 China
| | - Zhipeng Yu
- Key Laboratory of Green Chemistry and Technology of Ministry of EducationSichuan University 29 Wangjiang Road Chengdu 610064 China
| |
Collapse
|
39
|
Mohamed MA, Fallahi A, El-Sokkary AM, Salehi S, Akl MA, Jafari A, Tamayol A, Fenniri H, Khademhosseini A, Andreadis ST, Cheng C. Stimuli-responsive hydrogels for manipulation of cell microenvironment: From chemistry to biofabrication technology. Prog Polym Sci 2019; 98. [DOI: 10.1016/j.progpolymsci.2019.101147] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
40
|
Hespel L, Dupré de Baubigny J, Lalanne P, de Beco S, Coppey M, Villard C, Humblot V, Marie E, Tribet C. Redox-Triggered Control of Cell Adhesion and Deadhesion on Poly(lysine)- g-poly(ethylene oxide) Adlayers. ACS APPLIED BIO MATERIALS 2019; 2:4367-4376. [DOI: 10.1021/acsabm.9b00601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Louise Hespel
- PASTEUR, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Julien Dupré de Baubigny
- PASTEUR, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Pierre Lalanne
- PASTEUR, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Simon de Beco
- Laboratoire Physico Chimie, Institut Curie, PSL Université, Sorbonne Université, CNRS UMR168, F-75005 Paris, France
| | - Mathieu Coppey
- Laboratoire Physico Chimie, Institut Curie, PSL Université, Sorbonne Université, CNRS UMR168, F-75005 Paris, France
| | - Catherine Villard
- Laboratoire Physico Chimie, Institut Curie, PSL Université, Sorbonne Université, CNRS UMR168, F-75005 Paris, France
| | - Vincent Humblot
- Laboratoire Réactivité de Surface, Sorbonne Université, CNRS UMR 7197, 4 Place Jussieu, F-75005 Paris, France
| | - Emmanuelle Marie
- PASTEUR, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Christophe Tribet
- PASTEUR, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| |
Collapse
|
41
|
Goldmann AS, Boase NRB, Michalek L, Blinco JP, Welle A, Barner-Kowollik C. Adaptable and Reprogrammable Surfaces. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1902665. [PMID: 31414512 DOI: 10.1002/adma.201902665] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 06/06/2019] [Indexed: 06/10/2023]
Abstract
Establishing control over chemical reactions on interfaces is a key challenge in contemporary surface and materials science, in particular when introducing well-defined functionalities in a reversible fashion. Reprogrammable, adaptable and functional interfaces require sophisticated chemistries to precisely equip them with specific functionalities having tailored properties. In the last decade, reversible chemistries-both covalent and noncovalent-have paved the way to precision functionalize 2 or 3D structures that provide both spatial and temporal control. A critical literature assessment reveals that methodologies for writing and erasing substrates exist, yet are still far from reaching their full potential. It is thus critical to assess the current status and to identify avenues to overcome the existing limitations. Herein, the current state-of-the-art in the field of reversible chemistry on surfaces is surveyed, while concomitantly identifying the challenges-not only synthetic but also in current surface characterization methods. The potential within reversible chemistry on surfaces to function as true writeable memories devices is identified, and the latest developments in readout technologies are discussed. Finally, we explore how spatial and temporal control over reversible, light-induced chemistries has the potential to drive the future of functional interface design, especially when combined with powerful laser lithographic applications.
Collapse
Affiliation(s)
- Anja S Goldmann
- School of Chemistry, Physics, and Mechanical Engineering, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD, 4000, Australia
| | - Nathan R B Boase
- School of Chemistry, Physics, and Mechanical Engineering, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD, 4000, Australia
| | - Lukas Michalek
- School of Chemistry, Physics, and Mechanical Engineering, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD, 4000, Australia
| | - James P Blinco
- School of Chemistry, Physics, and Mechanical Engineering, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD, 4000, Australia
| | - Alexander Welle
- Institute of Functional Interfaces, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Christopher Barner-Kowollik
- School of Chemistry, Physics, and Mechanical Engineering, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD, 4000, Australia
- Macromolecular Architectures, Institut für Technische Chemie und Polymerchemie, Karlsruhe Institute of Technology (KIT), Engesserstr. 18, 76131, Karlsruhe, Germany
| |
Collapse
|
42
|
Kamperman T, Koerselman M, Kelder C, Hendriks J, Crispim JF, de Peuter X, Dijkstra PJ, Karperien M, Leijten J. Spatiotemporal material functionalization via competitive supramolecular complexation of avidin and biotin analogs. Nat Commun 2019; 10:4347. [PMID: 31554812 PMCID: PMC6761202 DOI: 10.1038/s41467-019-12390-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 09/05/2019] [Indexed: 12/21/2022] Open
Abstract
Spatiotemporal control over engineered tissues is highly desirable for various biomedical applications as it emulates the dynamic behavior of natural tissues. Current spatiotemporal biomaterial functionalization approaches are based on cytotoxic, technically challenging, or non-scalable chemistries, which has hampered their widespread usage. Here we report a strategy to spatiotemporally functionalize (bio)materials based on competitive supramolecular complexation of avidin and biotin analogs. Specifically, an injectable hydrogel is orthogonally post-functionalized with desthiobiotinylated moieties using multivalent neutravidin. In situ exchange of desthiobiotin by biotin enables spatiotemporal material functionalization as demonstrated by the formation of long-range, conformal, and contra-directional biochemical gradients within complex-shaped 3D hydrogels. Temporal control over engineered tissue biochemistry is further demonstrated by timed presentation and sequestration of growth factors using desthiobiotinylated antibodies. The method's universality is confirmed by modifying hydrogels with biotinylated fluorophores, peptides, nanoparticles, enzymes, and antibodies. Overall, this work provides a facile, cytocompatible, and universal strategy to spatiotemporally functionalize materials.
Collapse
Affiliation(s)
- Tom Kamperman
- Faculty of Science and Technology, Technical Medical Centre, Department of Developmental BioEngineering, University of Twente, Drienerlolaan 5, 7522 NB, Enschede, The Netherlands.
| | - Michelle Koerselman
- Faculty of Science and Technology, Technical Medical Centre, Department of Developmental BioEngineering, University of Twente, Drienerlolaan 5, 7522 NB, Enschede, The Netherlands
| | - Cindy Kelder
- Faculty of Science and Technology, Technical Medical Centre, Department of Developmental BioEngineering, University of Twente, Drienerlolaan 5, 7522 NB, Enschede, The Netherlands
| | - Jan Hendriks
- Faculty of Science and Technology, Technical Medical Centre, Department of Developmental BioEngineering, University of Twente, Drienerlolaan 5, 7522 NB, Enschede, The Netherlands
| | - João F Crispim
- Faculty of Science and Technology, Technical Medical Centre, Department of Developmental BioEngineering, University of Twente, Drienerlolaan 5, 7522 NB, Enschede, The Netherlands
| | - Xandra de Peuter
- Faculty of Science and Technology, Technical Medical Centre, Department of Developmental BioEngineering, University of Twente, Drienerlolaan 5, 7522 NB, Enschede, The Netherlands
| | - Pieter J Dijkstra
- Faculty of Science and Technology, Technical Medical Centre, Department of Developmental BioEngineering, University of Twente, Drienerlolaan 5, 7522 NB, Enschede, The Netherlands
| | - Marcel Karperien
- Faculty of Science and Technology, Technical Medical Centre, Department of Developmental BioEngineering, University of Twente, Drienerlolaan 5, 7522 NB, Enschede, The Netherlands
| | - Jeroen Leijten
- Faculty of Science and Technology, Technical Medical Centre, Department of Developmental BioEngineering, University of Twente, Drienerlolaan 5, 7522 NB, Enschede, The Netherlands.
| |
Collapse
|
43
|
McBride MK, Worrell BT, Brown T, Cox LM, Sowan N, Wang C, Podgorski M, Martinez AM, Bowman CN. Enabling Applications of Covalent Adaptable Networks. Annu Rev Chem Biomol Eng 2019; 10:175-198. [DOI: 10.1146/annurev-chembioeng-060718-030217] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The ability to behave in a fluidlike manner fundamentally separates thermoset and thermoplastic polymers. Bridging this divide, covalent adaptable networks (CANs) structurally resemble thermosets with permanent covalent crosslinks but are able to flow in a manner that resembles thermoplastic behavior only when a dynamic chemical reaction is active. As a consequence, the rheological behavior of CANs becomes intrinsically tied to the dynamic reaction kinetics and the stimuli that are used to trigger those, including temperature, light, and chemical stimuli, providing unprecedented control over viscoelastic properties. CANs represent a highly capable material that serves as a powerful tool to improve mechanical properties and processing in a wide variety of polymer applications, including composites, hydrogels, and shape-memory polymers. This review aims to highlight the enabling material properties of CANs and the applied fields where the CAN concept has been embraced.
Collapse
Affiliation(s)
- Matthew K. McBride
- Department of Chemical Engineering, University of Colorado Boulder, Boulder, Colorado 80309, USA;, , , ,
| | - Brady T. Worrell
- Department of Chemical Engineering, University of Colorado Boulder, Boulder, Colorado 80309, USA;, , , ,
| | - Tobin Brown
- Department of Chemical Engineering, University of Colorado Boulder, Boulder, Colorado 80309, USA;, , , ,
| | - Lewis M. Cox
- Applied Chemicals and Materials Division, Material Measurement Laboratory, National Institute of Standards and Technology, Boulder, Colorado 80305, USA
| | - Nancy Sowan
- Materials Science and Engineering, University of Colorado Boulder, Boulder, Colorado 80309, USA;,
| | - Chen Wang
- Formlabs Inc., Somerville, Massachusetts 02143, USA
| | - Maciej Podgorski
- Department of Chemical Engineering, University of Colorado Boulder, Boulder, Colorado 80309, USA;, , , ,
- Department of Polymer Chemistry, Faculty of Chemistry, Maria Curie-Sklodowska University, 20-614 Lublin, Poland
| | - Alina M. Martinez
- Materials Science and Engineering, University of Colorado Boulder, Boulder, Colorado 80309, USA;,
| | - Christopher N. Bowman
- Department of Chemical Engineering, University of Colorado Boulder, Boulder, Colorado 80309, USA;, , , ,
| |
Collapse
|
44
|
Li L, Scheiger JM, Levkin PA. Design and Applications of Photoresponsive Hydrogels. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1807333. [PMID: 30848524 PMCID: PMC9285504 DOI: 10.1002/adma.201807333] [Citation(s) in RCA: 282] [Impact Index Per Article: 56.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 01/18/2019] [Indexed: 05/16/2023]
Abstract
Hydrogels are the most relevant biochemical scaffold due to their tunable properties, inherent biocompatibility, and similarity with tissue and cell environments. Over the past decade, hydrogels have developed from static materials to "smart" responsive materials adapting to various stimuli, such as pH, temperature, chemical, electrical, or light. Light stimulation is particularly interesting for many applications because of the capability of contact-free remote manipulation of biomaterial properties and inherent spatial and temporal control. Moreover, light can be finely adjusted in its intrinsic properties, such as wavelength and intensity (i.e., the energy of an individual photon as well as the number of photons over time). Water is almost transparent for light in the photochemically relevant range (NIR-UV), thus hydrogels are well-suited scaffolds for light-responsive functionality. Hydrogels' chemical and physical variety combined with light responsiveness makes photoresponsive hydrogels ideal candidates for applications in several fields, ranging from biomaterials, medicine to soft robotics. Herein, the progress and new developments in the field of light-responsive hydrogels are elaborated by first introducing the relevant photochemistries before discussing selected applications in detail.
Collapse
Affiliation(s)
- Lei Li
- Institute of Toxicology and Genetics (ITG)Karlsruhe Institute of Technology (KIT)Hermann‐von‐Helmholtz Pl. 176344Eggenstein‐LeopoldshafenGermany
- Key Laboratory of Special Functional Aggregated MaterialsMinistry of EducationSchool of Chemistry and Chemical EngineeringShandong UniversityJinan250100P. R. China
| | - Johannes M. Scheiger
- Institute of Toxicology and Genetics (ITG)Karlsruhe Institute of Technology (KIT)Hermann‐von‐Helmholtz Pl. 176344Eggenstein‐LeopoldshafenGermany
- Institute of Technical Chemistry and Polymer Chemistry (ITCP)Karlsruhe Institute of Technology (KIT)76131KarlsruheGermany
| | - Pavel A. Levkin
- Institute of Toxicology and Genetics (ITG)Karlsruhe Institute of Technology (KIT)Hermann‐von‐Helmholtz Pl. 176344Eggenstein‐LeopoldshafenGermany
- Institute of Organic Chemistry (IOC)Karlsruhe Institute of Technology (KIT)76131KarlsruheGermany
| |
Collapse
|
45
|
Oki Y, Kirita K, Ohta S, Ohba S, Horiguchi I, Sakai Y, Ito T. Switching of Cell Proliferation/Differentiation in Thiol–Maleimide Clickable Microcapsules Triggered by in Situ Conjugation of Biomimetic Peptides. Biomacromolecules 2019; 20:2350-2359. [DOI: 10.1021/acs.biomac.9b00333] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Yuichiro Oki
- Department of Chemical System Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Katsuhisa Kirita
- Department of Bioengineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Seiichi Ohta
- Center for
Disease
Biology and Integrative Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Shinsuke Ohba
- Department of Bioengineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Center for
Disease
Biology and Integrative Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Ikki Horiguchi
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Yasuyuki Sakai
- Department of Chemical System Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Department of Bioengineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Taichi Ito
- Department of Chemical System Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Department of Bioengineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Center for
Disease
Biology and Integrative Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
46
|
Wu Y, Guo G, Zheng J, Xing D, Zhang T. Fluorogenic "Photoclick" Labeling and Imaging of DNA with Coumarin-Fused Tetrazole in Vivo. ACS Sens 2019; 4:44-51. [PMID: 30540170 DOI: 10.1021/acssensors.8b00565] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Photoclickable fluorogenic probes will enable visualization of specific biomolecules with precise spatiotemporal control in their native environment. However, the fluorogenic tagging of DNA with current photocontrolled clickable probes is still challenging. Herein, we demonstrated the fast (19.5 ± 2.5 M-1 s-1) fluorogenic labeling and imaging of DNA in vitro and in vivo with rationally designed coumarin-fused tetrazoles under UV LED photoirradiation. With a water-soluble, nuclear-specific coumarin-fused tetrazole (CTz-SO3), the metabolically synthesized DNA in cultured cells was effectively labeled and visualized, without fixation, via "photoclick" reaction. Moreover, the photoclickable CTz-SO3 enabled real-time, spatially controlled imaging of DNA in live zebrafish.
Collapse
Affiliation(s)
- Yunxia Wu
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, P. R. China
| | - Guanlun Guo
- Hubei Key Laboratory of Advanced Technology for Automotive Components & Hubei Collaborative Innovation Center for Automotive Components Technology, Wuhan University of Technology, Wuhan 430070, P. R. China
| | - Judun Zheng
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, P. R. China
| | - Da Xing
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, P. R. China
| | - Tao Zhang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, P. R. China
| |
Collapse
|
47
|
Garcia Garcia C, Kiick KL. Methods for producing microstructured hydrogels for targeted applications in biology. Acta Biomater 2019; 84:34-48. [PMID: 30465923 PMCID: PMC6326863 DOI: 10.1016/j.actbio.2018.11.028] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 11/12/2018] [Accepted: 11/19/2018] [Indexed: 12/29/2022]
Abstract
Hydrogels have been broadly studied for applications in clinically motivated fields such as tissue regeneration, drug delivery, and wound healing, as well as in a wide variety of consumer and industry uses. While the control of mechanical properties and network structures are important in all of these applications, for regenerative medicine applications in particular, matching the chemical, topographical and mechanical properties for the target use/tissue is critical. There have been multiple alternatives developed for fabricating materials with microstructures with goals of controlling the spatial location, phenotypic evolution, and signaling of cells. The commonly employed polymers such as poly(ethylene glycol) (PEG), polypeptides, and polysaccharides (as well as others) can be processed by various methods in order to control material heterogeneity and microscale structures. We review here the more commonly used polymers, chemistries, and methods for generating microstructures in biomaterials, highlighting the range of possible morphologies that can be produced, and the limitations of each method. With a focus in liquid-liquid phase separation, methods and chemistries well suited for stabilizing the interface and arresting the phase separation are covered. As the microstructures can affect cell behavior, examples of such effects are reviewed as well. STATEMENT OF SIGNIFICANCE: Heterogeneous hydrogels with enhanced matrix complexity have been studied for a variety of biomimetic materials. A range of materials based on poly(ethylene glycol), polypeptides, proteins, and/or polysaccharides, have been employed in the studies of materials that by virtue of their microstructure, can control the behaviors of cells. Methods including microfluidics, photolithography, gelation in the presence of porogens, and liquid-liquid phase separation, are presented as possible strategies for producing materials, and their relative advantages and disadvantages are discussed. We also describe in more detail the various processes involved in LLPS, and how they can be manipulated to alter the kinetics of phase separation and to yield different microstructured materials.
Collapse
Affiliation(s)
- Cristobal Garcia Garcia
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA
| | - Kristi L Kiick
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA; Biomedical Engineering, University of Delaware, Newark, DE 19176, USA; Delaware Biotechnology Institute, Newark, DE 19716, USA
| |
Collapse
|
48
|
LeValley PJ, Kloxin AM. Chemical Approaches to Dynamically Modulate the Properties of Synthetic Matrices. ACS Macro Lett 2019; 8:7-16. [PMID: 32405440 PMCID: PMC7220201 DOI: 10.1021/acsmacrolett.8b00808] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
As knowledge about the dynamic nature of tissues within the human body has increased, the need for cell culture models that mimic the properties of these dynamic microenvironments has grown. Hydrogels are useful platforms for investigating cellular responses to microenvironment cues in disease and regeneration processes and recently have been designed to contain dynamic bonds to regulate the mechanical and biochemical properties of the matrix in three-dimensional cell culture applications. In this Viewpoint, we highlight recent advances in developing hydrogels with dynamic properties for modeling aspects of human tissues, providing control over the properties of the synthetic matrix on multiple length and time scales, and their application for understanding or directing cell response. We conclude by discussing how orthogonal chemistries can be utilized to design dynamic hydrogel platforms for controlling both the mechanical and biochemical environment, affording opportunities to investigate more complex questions associated with disease progression and tissue regeneration.
Collapse
Affiliation(s)
- Paige J. LeValley
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, United States
| | - April M. Kloxin
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, United States
- Material Science and Engineering, University of Delaware, Newark, DE 19716, United States
| |
Collapse
|
49
|
Sun S, Oliveira BL, Jiménez‐Osés G, Bernardes GJL. Radical-Mediated Thiol-Ene Strategy: Photoactivation of Thiol-Containing Drugs in Cancer Cells. Angew Chem Int Ed Engl 2018; 57:15832-15835. [PMID: 30300959 PMCID: PMC6391964 DOI: 10.1002/anie.201811338] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Indexed: 12/28/2022]
Abstract
Photoactivated drugs provide an opportunity to improve efficacy alongside reducing side-effects in the treatment of severe diseases such as cancer. Described herein is a photoactivation decaging method of isobutylene-caged thiols through a UV-initiated thiol-ene reaction. The method was demonstrated with an isobutylene-caged cysteine, cyclic disulfide-peptide, and thiol-containing drug, all of which were rapidly and efficiently released under mild UV irradiation in the presence of thiol sources and a photoinitiator. Importantly, it is shown that the activity of histone deacetylase inhibitor largazole can be switched off when stapled, but selectively switched on within cancer cells when irradiated with non-phototoxic light.
Collapse
Affiliation(s)
- Shuang Sun
- Department of ChemistryUniversity of CambridgeLensfield RoadCB2 1EWCambridgeUK
| | - Bruno L. Oliveira
- Department of ChemistryUniversity of CambridgeLensfield RoadCB2 1EWCambridgeUK
| | - Gonzalo Jiménez‐Osés
- Departamento de Química.Centro de Investigación en Síntesis Química.Universidad de La Rioja26006LogroñoSpain
| | - Gonçalo J. L. Bernardes
- Department of ChemistryUniversity of CambridgeLensfield RoadCB2 1EWCambridgeUK
- Instituto de Medicina MolecularFaculdade de MedicinaUniversidade de LisboaAvenida Professor Egas Moniz1649-028LisboaPortugal
| |
Collapse
|
50
|
Sun S, Oliveira BL, Jiménez-Osés G, Bernardes GJL. Radical-Mediated Thiol-Ene Strategy: Photoactivation of Thiol-Containing Drugs in Cancer Cells. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201811338] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Shuang Sun
- Department of Chemistry; University of Cambridge; Lensfield Road CB2 1EW Cambridge UK
| | - Bruno L. Oliveira
- Department of Chemistry; University of Cambridge; Lensfield Road CB2 1EW Cambridge UK
| | - Gonzalo Jiménez-Osés
- Departamento de Química.; Centro de Investigación en Síntesis Química.; Universidad de La Rioja; 26006 Logroño Spain
| | - Gonçalo J. L. Bernardes
- Department of Chemistry; University of Cambridge; Lensfield Road CB2 1EW Cambridge UK
- Instituto de Medicina Molecular; Faculdade de Medicina; Universidade de Lisboa; Avenida Professor Egas Moniz 1649-028 Lisboa Portugal
| |
Collapse
|