1
|
Pan L, Xie Y, Yang H, Bao X, Chen J, Zou M, Li RW. Omnidirectionally Stretchable Spin-Valve Sensor Array with Stable Giant Magnetoresistance Performance. ACS NANO 2025. [PMID: 39883044 DOI: 10.1021/acsnano.4c15964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Flexible magnetic sensors, which have advantages such as deformability, vector field sensing, and noncontact detection, are an important branch of flexible electronics and have significant applications in fields such as magnetosensitive electronic skin. Human skin surfaces have complicated deformations, which pose a demand for magnetic sensors that can withstand omnidirectional strain while maintaining stable performance. However, existing flexible magnetic sensor arrays can only withstand stretching along specific directions and are prone to failure under complicated deformations. Here, we demonstrate an omnidirectionally stretchable spin-valve sensor array with high stretchability and excellent performance. By integrating the modulus-distributed structure with liquid metal, the sensor can maintain its performance under complex deformations, enabling the overall system with omnidirectional stretchability. The fabricated spin-valve sensor exhibits a nearly unchanged giant magnetoresistance ratio of 8% and a maximum sensitivity of 0.93%/Oe upon omnidirectional strain up to 86% and can maintain stable performance without fatigue for over 1000 stretching cycles. Furthermore, this spin-valve sensor array is characterized by stable sensing performance for magnetic fields under complicated deformations and can be applied as a magnetosensitive electronic skin. Our results provide insights into the development of next-generation stretchable and wearable magnetoelectronics.
Collapse
Affiliation(s)
- Lili Pan
- CAS Key Laboratory of Magnetic Materials and Devices & Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yali Xie
- CAS Key Laboratory of Magnetic Materials and Devices & Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China
| | - Huali Yang
- CAS Key Laboratory of Magnetic Materials and Devices & Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China
| | - Xilai Bao
- CAS Key Laboratory of Magnetic Materials and Devices & Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jinxia Chen
- CAS Key Laboratory of Magnetic Materials and Devices & Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China
| | - Mengting Zou
- CAS Key Laboratory of Magnetic Materials and Devices & Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China
| | - Run-Wei Li
- CAS Key Laboratory of Magnetic Materials and Devices & Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Center of Materials and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
2
|
Wang K, Du S, Kong J, Zheng M, Li S, Liang E, Zhu X. Self-Powered, Flexible, Transparent Tactile Sensor Integrating Sliding and Proximity Sensing. MATERIALS (BASEL, SWITZERLAND) 2025; 18:322. [PMID: 39859793 PMCID: PMC11767135 DOI: 10.3390/ma18020322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/07/2025] [Accepted: 01/09/2025] [Indexed: 01/27/2025]
Abstract
Tactile sensing is currently a research hotspot in the fields of intelligent perception and robotics. The method of converting external stimuli into electrical signals for sensing is a very effective strategy. Herein, we proposed a self-powered, flexible, transparent tactile sensor integrating sliding and proximity sensing (SFTTS). The principle of electrostatic induction and contact electrification is used to achieve tactile response when external objects approach and slide. Experiments show that the material type, speed, and pressure of the perceived object can cause the changes of the electrical signal. In addition, fluorinated ethylene propylene (FEP) is used as the contact electrification layer, and indium tin oxide (ITO) is used as the electrostatic induction electrode to achieve transparency and flexibility of the entire device. By utilizing the transparency characteristics of this sensor to integrate with optical cameras, it is possible to achieve integrated perception of tactile and visual senses. This has great advantages for applications in the field of intelligent perception and is expected to be integrated with different types of optical sensors in the future to achieve multimodal intelligent perception and sensing technology, which will contribute to the intelligence and integration of robot sensing.
Collapse
Affiliation(s)
- Kesheng Wang
- School of Mechanical Engineering, Shandong Huayu University of Technology, Dezhou 253034, China
| | - Shouxin Du
- Department of Equipment Maintenance and Remanufacturing Engineering, Academy of Army Armored Forces, Beijing 100072, China
| | - Jiali Kong
- School of Mechanical Engineering, Shandong Huayu University of Technology, Dezhou 253034, China
| | - Minghui Zheng
- School of Mechanical Engineering, Shandong Huayu University of Technology, Dezhou 253034, China
| | - Shengtao Li
- School of Mechanical Engineering, Shandong Huayu University of Technology, Dezhou 253034, China
| | - Enqiang Liang
- School of Mechanical Engineering, Shandong Huayu University of Technology, Dezhou 253034, China
| | - Xiaoying Zhu
- Department of Equipment Maintenance and Remanufacturing Engineering, Academy of Army Armored Forces, Beijing 100072, China
| |
Collapse
|
3
|
Khan WU, Alissa M, Allemailem KS, Alrumaihi F, Alharbi HO, Almansour NM, Aldaiji LA, Albalawi MJ, Abouzied AS, Almousa S, Alasmari O, Sullivan M. Navigating sensor-skin coupling challenges in magnetic-based blood pressure monitoring: Innovations and clinical implications for hypertension and aortovascular disease management. Curr Probl Cardiol 2024; 50:102964. [PMID: 39701402 DOI: 10.1016/j.cpcardiol.2024.102964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/02/2024] [Accepted: 12/06/2024] [Indexed: 12/21/2024]
Abstract
Non-invasive blood pressure monitoring has emerged as a critical frontier in cardiovascular healthcare, with magnetic sensors playing an increasingly pivotal role in wearable health technologies. This comprehensive review critically examines the complex challenges of sensor-skin coupling and its profound impact on the accuracy of blood pressure measurements in patients with hypertension and aortovascular disease. Despite the growing demand for precise, real-time health monitoring, significant limitations persist in current magnetic sensor technologies. Our analysis reveals how intricate interactions between sensor devices and skin characteristics including pigmentation, texture, and elasticity can substantially compromise measurement reliability. We systematically explore innovative approaches to mitigate these challenges, presenting cutting-edge strategies in advanced material development, adaptive calibration techniques, and sophisticated signal processing algorithms. The review synthesizes current research to demonstrate the multidisciplinary approaches necessary for enhancing magnetic sensor performance. By critically analyzing the nuanced interactions between sensor technologies and individual patient physiological profiles, we provide insights into developing more robust, personalized health monitoring systems. Our findings underscore the urgent need for continued innovation in non-invasive blood pressure monitoring, with direct implications for improved clinical assessment and patient outcomes in cardiovascular care.
Collapse
Affiliation(s)
- Wasim Ullah Khan
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering (COCHE), Hong Kong, China; School of Automation and Electrical Engineering, Lanzhou Jiaotong University, China
| | - Mohammed Alissa
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia.
| | - Khaled S Allemailem
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, 51452, Saudi Arabia
| | - Faris Alrumaihi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, 51452, Saudi Arabia
| | - Hajed Obaid Alharbi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, 51452, Saudi Arabia
| | - Nahlah Makki Almansour
- Department of Biology, College of Science, University of Hafr Al Batin, Hafr Al Batin, 31991, Saudi Arabia
| | - Leen A Aldaiji
- Department of Laboratory & Blood Bank, Dr. Sulaiman Al Habib Medical Group, Qassim, 51431, Saudi Arabia
| | - Marwh Jamal Albalawi
- Department of Laboratory and Blood Bank, King Fahd Specialist Hospital, Tabuk, 47717, Saudi Arabia
| | - Amr S Abouzied
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Hail, Hail, 81442, Saudi Arabia
| | - Saad Almousa
- Department of Medical Laboratory, Al Kharj Military Industries Corporation Hospital, Al-kharj, Saudi Arabia
| | - Omar Alasmari
- Department of Medical Laboratory, Al Kharj Military Industries Corporation Hospital, Al-kharj, Saudi Arabia
| | | |
Collapse
|
4
|
Yang H, Li S, Wu Y, Bao X, Xiang Z, Xie Y, Pan L, Chen J, Liu Y, Li RW. Advances in Flexible Magnetosensitive Materials and Devices for Wearable Electronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311996. [PMID: 38776537 DOI: 10.1002/adma.202311996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 05/14/2024] [Indexed: 05/25/2024]
Abstract
Emerging fields, such as wearable electronics, digital healthcare, the Internet of Things, and humanoid robots, highlight the need for flexible devices capable of recording signals on curved surfaces and soft objects. In particular, flexible magnetosensitive devices garner significant attention owing to their ability to combine the advantages of flexible electronics and magnetoelectronic devices, such as reshaping capability, conformability, contactless sensing, and navigation capability. Several key challenges must be addressed to develop well-functional flexible magnetic devices. These include determining how to make magnetic materials flexible and even elastic, understanding how the physical properties of magnetic films change under external strain and stress, and designing and constructing flexible magnetosensitive devices. In recent years, significant progress is made in addressing these challenges. This study aims to provide a timely and comprehensive overview of the most recent developments in flexible magnetosensitive devices. This includes discussions on the fabrications and mechanical regulations of flexible magnetic materials, the principles and performances of flexible magnetic sensors, and their applications for wearable electronics. In addition, future development trends and challenges in this field are discussed.
Collapse
Affiliation(s)
- Huali Yang
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Shengbin Li
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Yuanzhao Wu
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Xilai Bao
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- College of Materials Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Ziyin Xiang
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Yali Xie
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Lili Pan
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- College of Materials Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jinxia Chen
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- College of Materials Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yiwei Liu
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- College of Materials Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Run-Wei Li
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- College of Materials Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
5
|
Zhang J, Jin Z, Chen G, Chen J. An ultrathin, rapidly fabricated, flexible giant magnetoresistive electronic skin. MICROSYSTEMS & NANOENGINEERING 2024; 10:109. [PMID: 39139649 PMCID: PMC11319584 DOI: 10.1038/s41378-024-00716-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/28/2024] [Accepted: 04/16/2024] [Indexed: 08/15/2024]
Abstract
In recent years, there has been a significant increase in the prevalence of electronic wearables, among which flexible magnetoelectronic skin has emerged as a key component. This technology is part of the rapidly progressing field of flexible wearable electronics, which has facilitated a new human perceptual development known as the magnetic sense. However, the magnetoelectronic skin is limited due to its low sensitivity and substantial field limitations as a wearable electronic device for sensing minor magnetic fields. Additionally, achieving efficient and non-destructive delamination in flexible magnetic sensors remains a significant challenge, hindering their development. In this study, we demonstrate a novel magnetoelectronic touchless interactive device that utilizes a flexible giant magnetoresistive sensor array. The flexible magnetic sensor array was developed through an electrochemical delamination process, and the resultant ultra-thin flexible electronic system possessed both ultra-thin and non-destructive characteristics. The flexible magnetic sensor is capable of achieving a bending angle of up to 90 degrees, maintaining its performance integrity even after multiple repetitive bending cycles. Our study also provides demonstrations of non-contact interaction and pressure sensing. This research is anticipated to significantly contribute to the advancement of high-performance flexible magnetic sensors and catalyze the development of more sophisticated magnetic electronic skins.
Collapse
Affiliation(s)
- Junjie Zhang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100190 China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Zhenhu Jin
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100190 China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Guangyuan Chen
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100190 China
| | - Jiamin Chen
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100190 China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, 100049 China
- College of Materials Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049 China
| |
Collapse
|
6
|
Liu F, Zhang K, Lu B, Wang X, Dong Q, Xue T, Tan Y, Wang X, Du J. Oxygen-Vacancy-Rich Monolayer BiO 2- X Nanosheets for Bacterial Sepsis Management via Dual Physically Antibacterial and Chemically Anti-inflammatory Functions. Adv Healthc Mater 2024; 13:e2304002. [PMID: 38427842 DOI: 10.1002/adhm.202304002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/27/2024] [Indexed: 03/03/2024]
Abstract
Sepsis is defined as a life-threatening organ dysfunction caused by a dysregulated host response to infection. Effective treatment of bacterial sepsis remains challenging due to the rapid progression of infection and the systemic inflammatory response. In this study, monolayer BiO2- X nanosheets (BiO2- X NSs) with oxygen-rich vacancies through sonication-assisted liquid-phase exfoliation are successfully synthesized. Herein, the BiO2- X NSs exhibit a novel nanozyme-enabled intervention strategy for the management of bacterial sepsis, based on its pH dependent dual antibacterial and anti-inflammatory functions. BiO2- X NSs exhibit effective antibacterial by utilizing oxidase (OXD)-like activity. Additionally, BiO2- X NSs can scavenge multiple reactive oxygen species (ROS) and mitigate systemic hyperinflammation by mimicking superoxide dismutase (SOD) and catalase (CAT). These dual capabilities of BiO2- X NSs allow them to address bacterial infection, proinflammatory cytokines secretion and ROS burst collaboratively, effectively reversing the progression of bacterial sepsis. In vivo experiments have demonstrated that BiO2- X NSs significantly reduce bacterial burden, attenuate systemic hyperinflammation, and rapidly rescued organ damage. Importantly, no obvious adverse effects are observed at the administered dose of BiO2- X NSs. This study presents a novel defect engineering strategy for the rational design of high-performance nanozymes and development of new nanomedicines for managing bacterial sepsis.
Collapse
Affiliation(s)
- Fang Liu
- College of Pharmacy, Shanxi Provincial Key Laboratory of Drug Synthesis and Novel Pharmaceutical Preparation Technology, Shanxi Medical University, Taiyuan, Shanxi Province, 030001, China
| | - Kun Zhang
- College of Pharmacy, Shanxi Provincial Key Laboratory of Drug Synthesis and Novel Pharmaceutical Preparation Technology, Shanxi Medical University, Taiyuan, Shanxi Province, 030001, China
| | - Bin Lu
- Department of Medical Imaging, Shanxi Key Laboratory of Intelligent Imaging and Nanomedicine, First Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, 030001, China
| | - Xiaochun Wang
- Department of Medical Imaging, Shanxi Key Laboratory of Intelligent Imaging and Nanomedicine, First Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, 030001, China
| | - Qingrong Dong
- Department of Medical Imaging, Shanxi Key Laboratory of Intelligent Imaging and Nanomedicine, First Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, 030001, China
| | - Tingyu Xue
- Department of Medical Imaging, Shanxi Key Laboratory of Intelligent Imaging and Nanomedicine, First Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, 030001, China
| | - Yan Tan
- Department of Medical Imaging, Shanxi Key Laboratory of Intelligent Imaging and Nanomedicine, First Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, 030001, China
| | - Xing Wang
- College and Hospital of Stomatology, Shanxi Medical University, Taiyuan, Shanxi Province, 030001, China
| | - Jiangfeng Du
- Department of Medical Imaging, Shanxi Key Laboratory of Intelligent Imaging and Nanomedicine, First Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, 030001, China
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, Shanxi Province, 030001, China
| |
Collapse
|
7
|
Kwon H, Yang Y, Kim G, Gim D, Ha M. Anisotropy in magnetic materials for sensors and actuators in soft robotic systems. NANOSCALE 2024; 16:6778-6819. [PMID: 38502047 DOI: 10.1039/d3nr05737b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
The field of soft intelligent robots has rapidly developed, revealing extensive potential of these robots for real-world applications. By mimicking the dexterities of organisms, robots can handle delicate objects, access remote areas, and provide valuable feedback on their interactions with different environments. For autonomous manipulation of soft robots, which exhibit nonlinear behaviors and infinite degrees of freedom in transformation, innovative control systems integrating flexible and highly compliant sensors should be developed. Accordingly, sensor-actuator feedback systems are a key strategy for precisely controlling robotic motions. The introduction of material magnetism into soft robotics offers significant advantages in the remote manipulation of robotic operations, including touch or touchless detection of dynamically changing shapes and positions resulting from the actuations of robots. Notably, the anisotropies in the magnetic nanomaterials facilitate the perception and response with highly selective, directional, and efficient ways used for both sensors and actuators. Accordingly, this review provides a comprehensive understanding of the origins of magnetic anisotropy from both intrinsic and extrinsic factors and summarizes diverse magnetic materials with enhanced anisotropy. Recent developments in the design of flexible sensors and soft actuators based on the principle of magnetic anisotropy are outlined, specifically focusing on their applicabilities in soft robotic systems. Finally, this review addresses current challenges in the integration of sensors and actuators into soft robots and offers promising solutions that will enable the advancement of intelligent soft robots capable of efficiently executing complex tasks relevant to our daily lives.
Collapse
Affiliation(s)
- Hyeokju Kwon
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea.
| | - Yeonhee Yang
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea.
| | - Geonsu Kim
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea.
| | - Dongyeong Gim
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea.
| | - Minjeong Ha
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea.
| |
Collapse
|
8
|
Wang HL, Wang Y. Touchless Artificial Perception beyond Fingertip Probing. ACS NANO 2023; 17:20723-20733. [PMID: 37901955 DOI: 10.1021/acsnano.3c05760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
Touchless perception technology allows us to acquire information beyond the contact interfaces, making it ideal for scenarios where physical engagements are not possible. Unlike tactile devices, which have so far achieved impressive results, touchless strategies are fascinating yet underdeveloped. We envisage that touchless technologies could be powerful supplements to current haptics. In this Perspective, we include emerging touchless electronics, aiming to provide a broader and comprehensive picture toward artificial perceptual realm. We overview popular touchless protocols, sketch what could be detected by touchless probing, and summarize their latest spectacular achievements. In addition, we present the promises and challenges posed by touchless technologies and discuss possible directions for their future deployments.
Collapse
Affiliation(s)
- Hai Lu Wang
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Yifan Wang
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
- CINTRA CNRS/NTU/THALES, UMI 3288, Research Techno Plaza, Singapore 637553, Singapore
| |
Collapse
|
9
|
Liu Y, Zhang L, Ren S, Chen H. A Magnetic Field Sensor Based on Directional Coupling in a Magnetic Fluid-Filled Photonic Crystal Fiber. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5805. [PMID: 37687496 PMCID: PMC10488763 DOI: 10.3390/ma16175805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/14/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023]
Abstract
In this paper, a dual-core photonic crystal fiber (DC-PCF) sensitivity sensor filled with magnetic liquid is introduced and investigated with the finite element method (FEM). To regulate the energy coupling involving the two cores, the magnetic fluid is filled into the pore between the two cores. To adjust the coupling between the supermodes in the DC-PCF, the refractive index (RI) of the air hole filled magnetic fluid may change due to the external magnetic field. This specifically created a magnetic fluid-filled DC-PCF; the magnetic fluid-filled hole is not used as the core for energy transmission, thus avoiding transmission loss. The dip wavelength and the magnetic field displayed an excellent linear connection between 80 and 260 Oe, depending on the numerical data. The detection sensitivity of the magnetic field reached 515.75 pm/Oe at a short fiber length of 482 µm. The designed magnetic fluid-filled DC-PCF has high sensitivity and small volume and has great application prospects in magnetic field detection in the medical and industrial fields.
Collapse
Affiliation(s)
- Yingchao Liu
- Key Laboratory of Industrial Intelligent Perception, School of Artificial Intelligence, North China University of Science and Technology, Tangshan 063210, China; (Y.L.); (L.Z.); (S.R.)
| | - Lijun Zhang
- Key Laboratory of Industrial Intelligent Perception, School of Artificial Intelligence, North China University of Science and Technology, Tangshan 063210, China; (Y.L.); (L.Z.); (S.R.)
| | - Shuang Ren
- Key Laboratory of Industrial Intelligent Perception, School of Artificial Intelligence, North China University of Science and Technology, Tangshan 063210, China; (Y.L.); (L.Z.); (S.R.)
| | - Hailiang Chen
- State Key Laboratory of Metastable Materials Science & Technology, School of Science, Yanshan University, Qinhuangdao 066004, China
- Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China
| |
Collapse
|
10
|
Yang K, Bai C, Liu B, Liu Z, Cui X. Self-Powered, Non-Toxic, Recyclable Thermogalvanic Hydrogel Sensor for Temperature Monitoring of Edibles. MICROMACHINES 2023; 14:1327. [PMID: 37512638 PMCID: PMC10385118 DOI: 10.3390/mi14071327] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/20/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023]
Abstract
Thermogalvanic hydrogel, an environmentally friendly power source, enable the conversion of low-grade thermal energy to electrical energy and powers microelectronic devices in a variety of scenarios without the need for additional batteries. Its toxicity, mechanical fragility and low output performance are a hindrance to its wide application. Here, we demonstrate thermoelectric gels with safe non-toxic, recyclable, highly transparent and flexible stretchable properties by introducing gelatin as a polymer network and SO3/42- as a redox electric pair. When the temperature difference is 10 K, the gel-based thermogalvanic cell achieves an open-circuit voltage of about 16.2 mV with a maximum short-circuit current of 39 μA. Furthermore, we extended the application of the Gel-SO3/42- gel to monitor the temperature of hot or cold food, enabling self-powered sensing for food temperature detection. This research provides a novel concept for harvesting low-grade thermal energy and achieving safe and harmless self-driven temperature monitoring.
Collapse
Affiliation(s)
- Kun Yang
- College of Electronic Information and Optical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Chenhui Bai
- College of Electronic Information and Optical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Boyuan Liu
- College of Electronic Information and Optical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Zhoutong Liu
- College of Electronic Information and Optical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Xiaojing Cui
- Shanxi Transportation Technology Research & Development Co., Ltd., Taiyuan 030032, China
- School of Physics and Information Engineering, Shanxi Normal University, Taiyuan 030031, China
| |
Collapse
|
11
|
Pan L, Xie Y, Yang H, Li M, Bao X, Shang J, Li RW. Flexible Magnetic Sensors. SENSORS (BASEL, SWITZERLAND) 2023; 23:4083. [PMID: 37112422 PMCID: PMC10141728 DOI: 10.3390/s23084083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/03/2023] [Accepted: 04/13/2023] [Indexed: 06/19/2023]
Abstract
With the merits of high sensitivity, high stability, high flexibility, low cost, and simple manufacturing, flexible magnetic field sensors have potential applications in various fields such as geomagnetosensitive E-Skins, magnetoelectric compass, and non-contact interactive platforms. Based on the principles of various magnetic field sensors, this paper introduces the research progress of flexible magnetic field sensors, including the preparation, performance, related applications, etc. In addition, the prospects of flexible magnetic field sensors and their challenges are presented.
Collapse
Affiliation(s)
- Lili Pan
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Yali Xie
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Huali Yang
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Mengchao Li
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Xilai Bao
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Jie Shang
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Run-Wei Li
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| |
Collapse
|
12
|
Luo Y, Abidian MR, Ahn JH, Akinwande D, Andrews AM, Antonietti M, Bao Z, Berggren M, Berkey CA, Bettinger CJ, Chen J, Chen P, Cheng W, Cheng X, Choi SJ, Chortos A, Dagdeviren C, Dauskardt RH, Di CA, Dickey MD, Duan X, Facchetti A, Fan Z, Fang Y, Feng J, Feng X, Gao H, Gao W, Gong X, Guo CF, Guo X, Hartel MC, He Z, Ho JS, Hu Y, Huang Q, Huang Y, Huo F, Hussain MM, Javey A, Jeong U, Jiang C, Jiang X, Kang J, Karnaushenko D, Khademhosseini A, Kim DH, Kim ID, Kireev D, Kong L, Lee C, Lee NE, Lee PS, Lee TW, Li F, Li J, Liang C, Lim CT, Lin Y, Lipomi DJ, Liu J, Liu K, Liu N, Liu R, Liu Y, Liu Y, Liu Z, Liu Z, Loh XJ, Lu N, Lv Z, Magdassi S, Malliaras GG, Matsuhisa N, Nathan A, Niu S, Pan J, Pang C, Pei Q, Peng H, Qi D, Ren H, Rogers JA, Rowe A, Schmidt OG, Sekitani T, Seo DG, Shen G, Sheng X, Shi Q, Someya T, Song Y, Stavrinidou E, Su M, Sun X, Takei K, Tao XM, Tee BCK, Thean AVY, Trung TQ, Wan C, Wang H, Wang J, Wang M, Wang S, Wang T, Wang ZL, Weiss PS, Wen H, Xu S, Xu T, Yan H, Yan X, Yang H, Yang L, Yang S, Yin L, Yu C, Yu G, Yu J, Yu SH, Yu X, Zamburg E, Zhang H, Zhang X, Zhang X, Zhang X, Zhang Y, Zhang Y, Zhao S, Zhao X, Zheng Y, Zheng YQ, Zheng Z, Zhou T, Zhu B, Zhu M, Zhu R, Zhu Y, Zhu Y, Zou G, Chen X. Technology Roadmap for Flexible Sensors. ACS NANO 2023; 17:5211-5295. [PMID: 36892156 PMCID: PMC11223676 DOI: 10.1021/acsnano.2c12606] [Citation(s) in RCA: 249] [Impact Index Per Article: 124.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Humans rely increasingly on sensors to address grand challenges and to improve quality of life in the era of digitalization and big data. For ubiquitous sensing, flexible sensors are developed to overcome the limitations of conventional rigid counterparts. Despite rapid advancement in bench-side research over the last decade, the market adoption of flexible sensors remains limited. To ease and to expedite their deployment, here, we identify bottlenecks hindering the maturation of flexible sensors and propose promising solutions. We first analyze challenges in achieving satisfactory sensing performance for real-world applications and then summarize issues in compatible sensor-biology interfaces, followed by brief discussions on powering and connecting sensor networks. Issues en route to commercialization and for sustainable growth of the sector are also analyzed, highlighting environmental concerns and emphasizing nontechnical issues such as business, regulatory, and ethical considerations. Additionally, we look at future intelligent flexible sensors. In proposing a comprehensive roadmap, we hope to steer research efforts towards common goals and to guide coordinated development strategies from disparate communities. Through such collaborative efforts, scientific breakthroughs can be made sooner and capitalized for the betterment of humanity.
Collapse
Affiliation(s)
- Yifei Luo
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Republic of Singapore
- Innovative Centre for Flexible Devices (iFLEX), School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Mohammad Reza Abidian
- Department of Biomedical Engineering, University of Houston, Houston, Texas 77024, United States
| | - Jong-Hyun Ahn
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Deji Akinwande
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Microelectronics Research Center, The University of Texas at Austin, Austin, Texas 78758, United States
| | - Anne M Andrews
- Department of Chemistry and Biochemistry, California NanoSystems Institute, and Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, and Hatos Center for Neuropharmacology, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Markus Antonietti
- Colloid Chemistry Department, Max Planck Institute of Colloids and Interfaces, 14476 Potsdam, Germany
| | - Zhenan Bao
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Magnus Berggren
- Laboratory of Organic Electronics, Department of Science and Technology, Campus Norrköping, Linköping University, 83 Linköping, Sweden
- Wallenberg Initiative Materials Science for Sustainability (WISE) and Wallenberg Wood Science Center (WWSC), SE-100 44 Stockholm, Sweden
| | - Christopher A Berkey
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94301, United States
| | - Christopher John Bettinger
- Department of Biomedical Engineering and Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Jun Chen
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Peng Chen
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637457, Singapore
| | - Wenlong Cheng
- Nanobionics Group, Department of Chemical and Biological Engineering, Monash University, Clayton, Australia, 3800
- Monash Institute of Medical Engineering, Monash University, Clayton, Australia3800
| | - Xu Cheng
- Applied Mechanics Laboratory, Department of Engineering Mechanics, Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, PR China
| | - Seon-Jin Choi
- Division of Materials of Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Alex Chortos
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47906, United States
| | - Canan Dagdeviren
- Media Lab, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Reinhold H Dauskardt
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94301, United States
| | - Chong-An Di
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Michael D Dickey
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27606, United States
| | - Xiangfeng Duan
- Department of Chemistry and Biochemistry, California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Antonio Facchetti
- Department of Chemistry and the Materials Research Center, Northwestern University, Evanston, Illinois 60208, United States
| | - Zhiyong Fan
- Department of Electronic and Computer Engineering and Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Yin Fang
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637457, Singapore
| | - Jianyou Feng
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai 200438, PR China
| | - Xue Feng
- Laboratory of Flexible Electronics Technology, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Huajian Gao
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Singapore
- Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), 1 Fusionopolis Way, #16-16 Connexis, Singapore 138632, Republic of Singapore
| | - Wei Gao
- Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, California, 91125, United States
| | - Xiwen Gong
- Department of Chemical Engineering, Department of Materials Science and Engineering, Department of Electrical Engineering and Computer Science, Applied Physics Program, and Macromolecular Science and Engineering Program, University of Michigan, Ann Arbor, Michigan, 48109 United States
| | - Chuan Fei Guo
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xiaojun Guo
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Martin C Hartel
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Zihan He
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - John S Ho
- Institute for Health Innovation and Technology, National University of Singapore, Singapore 117599, Singapore
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- The N.1 Institute for Health, National University of Singapore, Singapore 117456, Singapore
| | - Youfan Hu
- School of Electronics and Center for Carbon-Based Electronics, Peking University, Beijing 100871, China
| | - Qiyao Huang
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Yu Huang
- Department of Materials Science and Engineering, California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Fengwei Huo
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, PR China
| | - Muhammad M Hussain
- mmh Labs, Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47906, United States
| | - Ali Javey
- Electrical Engineering and Computer Sciences, University of California, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Unyong Jeong
- Department of Materials Science and Engineering, Pohang University of Science and Engineering (POSTECH), Pohang, Gyeong-buk 37673, Korea
| | - Chen Jiang
- Department of Electronic Engineering, Tsinghua University, Beijing 100084, China
| | - Xingyu Jiang
- Department of Biomedical Engineering, Southern University of Science and Technology, No 1088, Xueyuan Road, Xili, Nanshan District, Shenzhen, Guangdong 518055, PR China
| | - Jiheong Kang
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Daniil Karnaushenko
- Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, Chemnitz 09126, Germany
| | | | - Dae-Hyeong Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Il-Doo Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Dmitry Kireev
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Microelectronics Research Center, The University of Texas at Austin, Austin, Texas 78758, United States
| | - Lingxuan Kong
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637457, Singapore
| | - Chengkuo Lee
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117608, Singapore
- National University of Singapore Suzhou Research Institute (NUSRI), Suzhou Industrial Park, Suzhou 215123, China
- NUS Graduate School-Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, Singapore 119077, Singapore
| | - Nae-Eung Lee
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, Kyunggi-do 16419, Republic of Korea
| | - Pooi See Lee
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
- Singapore-HUJ Alliance for Research and Enterprise (SHARE), Campus for Research Excellence and Technological Enterprise (CREATE), Singapore 138602, Singapore
| | - Tae-Woo Lee
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
- Institute of Engineering Research, Research Institute of Advanced Materials, Seoul National University, Soft Foundry, Seoul 08826, Republic of Korea
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Fengyu Li
- College of Chemistry and Materials Science, Jinan University, Guangzhou, Guangdong 510632, China
| | - Jinxing Li
- Department of Biomedical Engineering, Department of Electrical and Computer Engineering, Neuroscience Program, BioMolecular Science Program, and Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan 48823, United States
| | - Cuiyuan Liang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Chwee Teck Lim
- Department of Biomedical Engineering, National University of Singapore, Singapore 117583, Singapore
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore
- Institute for Health Innovation and Technology, National University of Singapore, Singapore 119276, Singapore
| | - Yuanjing Lin
- School of Microelectronics, Southern University of Science and Technology, Shenzhen 518055, China
| | - Darren J Lipomi
- Department of Nano and Chemical Engineering, University of California, San Diego, La Jolla, California 92093-0448, United States
| | - Jia Liu
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, Massachusetts, 02134, United States
| | - Kai Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Nan Liu
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, PR China
| | - Ren Liu
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, Massachusetts, 02134, United States
| | - Yuxin Liu
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Republic of Singapore
- Department of Biomedical Engineering, N.1 Institute for Health, Institute for Health Innovation and Technology (iHealthtech), National University of Singapore, Singapore 119077, Singapore
| | - Yuxuan Liu
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Zhiyuan Liu
- Neural Engineering Centre, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China 518055
| | - Zhuangjian Liu
- Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), 1 Fusionopolis Way, #16-16 Connexis, Singapore 138632, Republic of Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Republic of Singapore
| | - Nanshu Lu
- Department of Aerospace Engineering and Engineering Mechanics, Department of Electrical and Computer Engineering, Department of Mechanical Engineering, Department of Biomedical Engineering, Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Zhisheng Lv
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Republic of Singapore
| | - Shlomo Magdassi
- Institute of Chemistry and the Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - George G Malliaras
- Electrical Engineering Division, Department of Engineering, University of Cambridge CB3 0FA, Cambridge United Kingdom
| | - Naoji Matsuhisa
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Arokia Nathan
- Darwin College, University of Cambridge, Cambridge CB3 9EU, United Kingdom
| | - Simiao Niu
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Jieming Pan
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Changhyun Pang
- School of Chemical Engineering and Samsung Advanced Institute for Health Science and Technology, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Qibing Pei
- Department of Materials Science and Engineering, Department of Mechanical and Aerospace Engineering, California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Huisheng Peng
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai 200438, PR China
| | - Dianpeng Qi
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Huaying Ren
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California, 90095, United States
| | - John A Rogers
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, Illinois 60208, United States
- Department of Materials Science and Engineering, Department of Mechanical Engineering, Department of Biomedical Engineering, Departments of Electrical and Computer Engineering and Chemistry, and Department of Neurological Surgery, Northwestern University, Evanston, Illinois 60208, United States
| | - Aaron Rowe
- Becton, Dickinson and Company, 1268 N. Lakeview Avenue, Anaheim, California 92807, United States
- Ready, Set, Food! 15821 Ventura Blvd #450, Encino, California 91436, United States
| | - Oliver G Schmidt
- Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, Chemnitz 09126, Germany
- Material Systems for Nanoelectronics, Chemnitz University of Technology, Chemnitz 09107, Germany
- Nanophysics, Faculty of Physics, TU Dresden, Dresden 01062, Germany
| | - Tsuyoshi Sekitani
- The Institute of Scientific and Industrial Research (SANKEN), Osaka University, Osaka, Japan 5670047
| | - Dae-Gyo Seo
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Guozhen Shen
- School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing 100081, China
| | - Xing Sheng
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Institute for Precision Medicine, Center for Flexible Electronics Technology, and IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, 100084, China
| | - Qiongfeng Shi
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117608, Singapore
- National University of Singapore Suzhou Research Institute (NUSRI), Suzhou Industrial Park, Suzhou 215123, China
| | - Takao Someya
- Department of Electrical Engineering and Information Systems, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Yanlin Song
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing, Beijing 100190, China
| | - Eleni Stavrinidou
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, SE-601 74 Norrkoping, Sweden
| | - Meng Su
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing, Beijing 100190, China
| | - Xuemei Sun
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai 200438, PR China
| | - Kuniharu Takei
- Department of Physics and Electronics, Osaka Metropolitan University, Sakai, Osaka 599-8531, Japan
| | - Xiao-Ming Tao
- Research Institute for Intelligent Wearable Systems, School of Fashion and Textiles, Hong Kong Polytechnic University, Hong Kong, China
| | - Benjamin C K Tee
- Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore
- iHealthtech, National University of Singapore, Singapore 119276, Singapore
| | - Aaron Voon-Yew Thean
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- Singapore Hybrid-Integrated Next-Generation μ-Electronics Centre (SHINE), Singapore 117583, Singapore
| | - Tran Quang Trung
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, Kyunggi-do 16419, Republic of Korea
| | - Changjin Wan
- School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, China
| | - Huiliang Wang
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Joseph Wang
- Department of Nanoengineering, University of California, San Diego, California 92093, United States
| | - Ming Wang
- Frontier Institute of Chip and System, State Key Laboratory of Integrated Chip and Systems, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai, 200433, China
- the Shanghai Qi Zhi Institute, 41th Floor, AI Tower, No.701 Yunjin Road, Xuhui District, Shanghai 200232, China
| | - Sihong Wang
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois, 60637, United States
| | - Ting Wang
- State Key Laboratory of Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Zhong Lin Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China
- Georgia Institute of Technology, Atlanta, Georgia 30332-0245, United States
| | - Paul S Weiss
- California NanoSystems Institute, Department of Chemistry and Biochemistry, Department of Bioengineering, and Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Hanqi Wen
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637457, Singapore
- Institute of Flexible Electronics Technology of THU, Jiaxing, Zhejiang, China 314000
| | - Sheng Xu
- Department of Nanoengineering, Department of Electrical and Computer Engineering, Materials Science and Engineering Program, and Department of Bioengineering, University of California San Diego, La Jolla, California, 92093, United States
| | - Tailin Xu
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong, 518060, PR China
| | - Hongping Yan
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Xuzhou Yan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Hui Yang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, China, 300072
| | - Le Yang
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Republic of Singapore
- Department of Materials Science and Engineering, National University of Singapore (NUS), 9 Engineering Drive 1, #03-09 EA, Singapore 117575, Singapore
| | - Shuaijian Yang
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Lan Yin
- School of Materials Science and Engineering, The Key Laboratory of Advanced Materials of Ministry of Education, State Key Laboratory of New Ceramics and Fine Processing, and Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084, China
| | - Cunjiang Yu
- Department of Engineering Science and Mechanics, Department of Biomedical Engineering, Department of Material Science and Engineering, Materials Research Institute, Pennsylvania State University, University Park, Pennsylvania, 16802, United States
| | - Guihua Yu
- Materials Science and Engineering Program and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas, 78712, United States
| | - Jing Yu
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Shu-Hong Yu
- Department of Chemistry, Institute of Biomimetic Materials and Chemistry, Hefei National Research Center for Physical Science at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Xinge Yu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Evgeny Zamburg
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- Singapore Hybrid-Integrated Next-Generation μ-Electronics Centre (SHINE), Singapore 117583, Singapore
| | - Haixia Zhang
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication; Beijing Advanced Innovation Center for Integrated Circuits, School of Integrated Circuits, Peking University, Beijing 100871, China
| | - Xiangyu Zhang
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- Singapore Hybrid-Integrated Next-Generation μ-Electronics Centre (SHINE), Singapore 117583, Singapore
| | - Xiaosheng Zhang
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Xueji Zhang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518060, PR China
| | - Yihui Zhang
- Applied Mechanics Laboratory, Department of Engineering Mechanics; Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, PR China
| | - Yu Zhang
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- Singapore Hybrid-Integrated Next-Generation μ-Electronics Centre (SHINE), Singapore 117583, Singapore
| | - Siyuan Zhao
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, Massachusetts, 02134, United States
| | - Xuanhe Zhao
- Department of Mechanical Engineering, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, United States
| | - Yuanjin Zheng
- Center for Integrated Circuits and Systems, School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Yu-Qing Zheng
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication; School of Integrated Circuits, Peking University, Beijing 100871, China
| | - Zijian Zheng
- Department of Applied Biology and Chemical Technology, Faculty of Science, Research Institute for Intelligent Wearable Systems, Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Tao Zhou
- Center for Neural Engineering, Department of Engineering Science and Mechanics, The Huck Institutes of the Life Sciences, Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Bowen Zhu
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310024, China
| | - Ming Zhu
- Institute for Digital Molecular Analytics and Science (IDMxS), Nanyang Technological University, 59 Nanyang Drive, Singapore 636921, Singapore
| | - Rong Zhu
- Department of Precision Instrument, Tsinghua University, Beijing 100084, China
| | - Yangzhi Zhu
- Terasaki Institute for Biomedical Innovation, Los Angeles, California, 90064, United States
| | - Yong Zhu
- Department of Mechanical and Aerospace Engineering, Department of Materials Science and Engineering, and Department of Biomedical Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Guijin Zou
- Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), 1 Fusionopolis Way, #16-16 Connexis, Singapore 138632, Republic of Singapore
| | - Xiaodong Chen
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Republic of Singapore
- Innovative Center for Flexible Devices (iFLEX), Max Planck-NTU Joint Laboratory for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| |
Collapse
|
13
|
Dong Z, He Q, Shen D, Gong Z, Zhang D, Zhang W, Ono T, Jiang Y. Microfabrication of functional polyimide films and microstructures for flexible MEMS applications. MICROSYSTEMS & NANOENGINEERING 2023; 9:31. [PMID: 36969964 PMCID: PMC10030833 DOI: 10.1038/s41378-023-00503-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 11/27/2022] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
Polyimides are widely used in the MEMS and flexible electronics fields due to their combined physicochemical properties, including high thermal stability, mechanical strength, and chemical resistance values. In the past decade, rapid progress has been made in the microfabrication of polyimides. However, enabling technologies, such as laser-induced graphene on polyimide, photosensitive polyimide micropatterning, and 3D polyimide microstructure assembly, have not been reviewed from the perspective of polyimide microfabrication. The aims of this review are to systematically discuss polyimide microfabrication techniques, which cover film formation, material conversion, micropatterning, 3D microfabrication, and their applications. With an emphasis on polyimide-based flexible MEMS devices, we discuss the remaining technological challenges in polyimide fabrication and possible technological innovations in this field.
Collapse
Affiliation(s)
- Zihao Dong
- Institute of Bionic and Micronano Systems, School of Mechanical Engineering and Automation, Beihang University, Beijing, 100191 China
| | - Qipei He
- Institute of Bionic and Micronano Systems, School of Mechanical Engineering and Automation, Beihang University, Beijing, 100191 China
| | - Dawei Shen
- Institute of Bionic and Micronano Systems, School of Mechanical Engineering and Automation, Beihang University, Beijing, 100191 China
| | - Zheng Gong
- Institute of Bionic and Micronano Systems, School of Mechanical Engineering and Automation, Beihang University, Beijing, 100191 China
| | - Deyuan Zhang
- Institute of Bionic and Micronano Systems, School of Mechanical Engineering and Automation, Beihang University, Beijing, 100191 China
| | - Wenqiang Zhang
- College of Engineering, China Agricultural University, Beijing, 100083 China
| | - Takahito Ono
- Graduate School of Engineering, Tohoku University, 6-6-01 Aramaki-Aza-Aoba, Aoba-ku, Sendai, 980-8579 Japan
| | - Yonggang Jiang
- Institute of Bionic and Micronano Systems, School of Mechanical Engineering and Automation, Beihang University, Beijing, 100191 China
| |
Collapse
|
14
|
Lin Y, Chen S, Xu C, Fan Z, Zou T, Sun D, Yang J. Femtosecond laser upgrading the quality of bismuth films to enhance ultra-broadband photodetection. OPTICS EXPRESS 2023; 31:9515-9525. [PMID: 37157520 DOI: 10.1364/oe.482018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Topological insulator bismuth has attracted considerable attention for the fabrication of room-temperature, wide bandwidth, and high-performance photodetectors due to the gapless edge state and insulating bulk state properties. However, both the photoelectric conversion and carrier transportation of the bismuth films are extremely affected by the surface morphology and grain boundaries to limit optoelectronic properties further. Here, we demonstrate a strategy of femtosecond laser treatment for upgrading the quality of bismuth films. After the treatment with proper laser parameters, the measurement of average surface roughness can be reduced from Ra = 44 nm to 6.9 nm, especially with accompany of the evident grain boundary elimination. Consequently, the photoresponsivity of the bismuth films increases approximately 2 times within an ultra-broad spectrum range from the visible to mid-infrared. This investigation suggests that the femtosecond laser treatment can help to benefit the performance of topological insulator ultra-broadband photodetectors.
Collapse
|
15
|
Bhattacharya D, Chen Z, Jensen CJ, Liu C, Burks EC, Gilbert DA, Zhang X, Yin G, Liu K. 3D Interconnected Magnetic Nanowire Networks as Potential Integrated Multistate Memristors. NANO LETTERS 2022; 22:10010-10017. [PMID: 36480011 DOI: 10.1021/acs.nanolett.2c03616] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Interconnected magnetic nanowire (NW) networks offer a promising platform for three-dimensional (3D) information storage and integrated neuromorphic computing. Here we report discrete propagation of magnetic states in interconnected Co nanowire networks driven by magnetic field and current, manifested in distinct magnetoresistance (MR) features. In these networks, when only a few interconnected NWs were measured, multiple MR kinks and local minima were observed, including a significant minimum at a positive field during the descending field sweep. Micromagnetic simulations showed that this unusual feature was due to domain wall (DW) pinning at the NW intersections, which was confirmed by off-axis electron holography imaging. In a complex network with many intersections, sequential switching of nanowire sections separated by interconnects was observed, along with stochastic characteristics. The pinning/depinning of the DWs can be further controlled by the driving current density. These results illustrate the promise of such interconnected networks as integrated multistate memristors.
Collapse
Affiliation(s)
| | - Zhijie Chen
- Physics Department, Georgetown University, Washington, D.C.20057, United States
| | | | - Chen Liu
- Physical Science and Engineering Division, King Abdullah University of Science & Technology, Thuwal23955-6900, Saudi Arabia
| | - Edward C Burks
- Physics Department, University of California, Davis, California95618, United States
| | - Dustin A Gilbert
- Department of Materials Science and Engineering, and Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee37996, United States
| | - Xixiang Zhang
- Physical Science and Engineering Division, King Abdullah University of Science & Technology, Thuwal23955-6900, Saudi Arabia
| | - Gen Yin
- Physics Department, Georgetown University, Washington, D.C.20057, United States
| | - Kai Liu
- Physics Department, Georgetown University, Washington, D.C.20057, United States
| |
Collapse
|
16
|
Nhalil H, Schultz M, Amrusi S, Grosz A, Klein L. High Sensitivity Planar Hall Effect Magnetic Field Gradiometer for Measurements in Millimeter Scale Environments. MICROMACHINES 2022; 13:1898. [PMID: 36363918 PMCID: PMC9694209 DOI: 10.3390/mi13111898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/20/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
We report a specially designed magnetic field gradiometer based on a single elliptical planar Hall effect (PHE) sensor, which allows measuring magnetic field at nine different positions in a 4 mm length scale. The gradiometer detects magnetic field gradients with equivalent gradient magnetic noises of ∼958, ∼192, ∼51, and ∼26 nT/m√ Hz (pT/mm√Hz) at 0.1, 1, 10, and 50 Hz, respectively. The performance of the gradiometer is tested in ambient conditions by measuring the field gradient induced by electric currents driven in a long straight wire. This gradiometer is expected to be highly useful for the measurement of magnetic field gradients in confined areas for its small footprint, low noise, scalability, simple design, and low costs.
Collapse
Affiliation(s)
- Hariharan Nhalil
- Department of Physics, Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Moty Schultz
- Department of Physics, Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Shai Amrusi
- Department of Electrical and Computer Engineering, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel
| | - Asaf Grosz
- Department of Electrical and Computer Engineering, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel
| | - Lior Klein
- Department of Physics, Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel
| |
Collapse
|
17
|
Zhao X, Xuan J, Li Q, Gao F, Xun X, Liao Q, Zhang Y. Roles of Low-Dimensional Nanomaterials in Pursuing Human-Machine-Thing Natural Interaction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022:e2207437. [PMID: 36284476 DOI: 10.1002/adma.202207437] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/12/2022] [Indexed: 06/16/2023]
Abstract
A wide variety of low-dimensional nanomaterials with excellent properties can meet almost all the requirements of functional materials for information sensing, processing, and feedback devices. Low-dimensional nanomaterials are becoming the star of hope on the road to pursuing human-machine-thing natural interactions, benefiting from the breakthroughs in precise preparation, performance regulation, structural design, and device construction in recent years. This review summarizes several types of low-dimensional nanomaterials commonly used in human-machine-thing natural interactions and outlines the differences in properties and application areas of different materials. According to the sequence of information flow in the human-machine-thing interaction process, the representative research progress of low-dimensional nanomaterials-based information sensing, processing, and feedback devices is reviewed and the key roles played by low-dimensional nanomaterials are discussed. Finally, the development trends and existing challenges of low-dimensional nanomaterials in the field of human-machine-thing natural interaction technology are discussed.
Collapse
Affiliation(s)
- Xuan Zhao
- Academy for Advanced Interdisciplinary Science and Technology, Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
- Beijing Key Laboratory for Advanced Energy Materials and Technologies, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Jingyue Xuan
- Academy for Advanced Interdisciplinary Science and Technology, Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
- Beijing Key Laboratory for Advanced Energy Materials and Technologies, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Qi Li
- Academy for Advanced Interdisciplinary Science and Technology, Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
- Beijing Key Laboratory for Advanced Energy Materials and Technologies, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Fangfang Gao
- Academy for Advanced Interdisciplinary Science and Technology, Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
- Beijing Key Laboratory for Advanced Energy Materials and Technologies, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Xiaochen Xun
- Academy for Advanced Interdisciplinary Science and Technology, Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
- Beijing Key Laboratory for Advanced Energy Materials and Technologies, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Qingliang Liao
- Academy for Advanced Interdisciplinary Science and Technology, Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
- Beijing Key Laboratory for Advanced Energy Materials and Technologies, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Yue Zhang
- Academy for Advanced Interdisciplinary Science and Technology, Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
- Beijing Key Laboratory for Advanced Energy Materials and Technologies, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| |
Collapse
|
18
|
Magnetic properties of FeGa/Kapton for flexible electronics. Sci Rep 2022; 12:17503. [PMID: 36261483 PMCID: PMC9582224 DOI: 10.1038/s41598-022-21589-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 09/29/2022] [Indexed: 11/30/2022] Open
Abstract
Flexible materials have brought up a new era of application-based research in stretchable electronics and wearable devices in the last decade. Tuning of magnetic properties by changing the curvature of devices has significant impact in the new generation of sensor-based technologies. In this work, magnetostrictive FeGa thin films have been deposited on a flexible Kapton sheet to exploit the magneto-elastic coupling effect and modify the magnetic properties of the sample. The FeGa alloy has high magnetostriction constant and high tensile strength making its properties susceptible to external stress. Tensile or compressive strain generated by the convex or concave states influence the uniaxial magnetic anisotropy of the system. Low temperature measurements show a hard magnetic behavior and the presence of exchange-bias effect after field cooling to 2 K. The results obtained in this study prove essential for the development of flexible electronics.
Collapse
|
19
|
Chang P, Mei H, Zhao Y, Pan L, Zhang M, Wang X, Cheng L, Zhang L. Nature-Inspired 3D Spiral Grass Structured Graphene Quantum Dots/MXene Nanohybrids with Exceptional Photothermal-Driven Pseudo-Capacitance Improvement. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2204086. [PMID: 36026560 PMCID: PMC9596846 DOI: 10.1002/advs.202204086] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Indexed: 05/31/2023]
Abstract
Solar-thermal conversion is considered as a green and simple means to improve the performance of energy storage materials, but often limited by the intrinsic photothermal properties of materials and crude structure design. Herein, inspired by the unique light trapping effect of wide leaf spiral grass during photosynthesis, a biomimetic structural photothermal energy storage system is developed, to further promote the solar thermal-driven pseudo capacitance improvement. In this system, three-dimensional printed tortional Kelvin cell arrays structure with interesting light trapping property functions as "spiral leaf blades" to improve the efficiency of light absorption, while graphene quantum dots/MXene nanohybrids with wide photothermal response range and strong electrochemical activity serve as "chloroplast" for photothermal conversion and energy storage. As expected, the biomimetic structure-enhanced photothermal supercapacitor achieves an ideal solar thermal-driven pseudo capacitance enhancement (up to 304%), an ultrahigh areal capacitance of 10.47 F cm-2 , remarkable photothermal response (surface temperature change of 50.1 °C), excellent energy density (1.18 mWh cm-2 ) and cycling stability (10000 cycles). This work not only offers a novel enhancement strategy for photothermal applications, but also inspires new structure designs for multifunctional energy storage and conversion devices.
Collapse
Affiliation(s)
- Peng Chang
- Science and Technology on Thermostructural Composite Materials LaboratorySchool of Materials Science and EngineeringNorthwestern Polytechnical UniversityXi'an710072China
| | - Hui Mei
- Science and Technology on Thermostructural Composite Materials LaboratorySchool of Materials Science and EngineeringNorthwestern Polytechnical UniversityXi'an710072China
| | - Yu Zhao
- Science and Technology on Thermostructural Composite Materials LaboratorySchool of Materials Science and EngineeringNorthwestern Polytechnical UniversityXi'an710072China
| | - Longkai Pan
- Science and Technology on Thermostructural Composite Materials LaboratorySchool of Materials Science and EngineeringNorthwestern Polytechnical UniversityXi'an710072China
| | - Minggang Zhang
- Science and Technology on Thermostructural Composite Materials LaboratorySchool of Materials Science and EngineeringNorthwestern Polytechnical UniversityXi'an710072China
| | - Xiao Wang
- Science and Technology on Thermostructural Composite Materials LaboratorySchool of Materials Science and EngineeringNorthwestern Polytechnical UniversityXi'an710072China
| | - Laifei Cheng
- Science and Technology on Thermostructural Composite Materials LaboratorySchool of Materials Science and EngineeringNorthwestern Polytechnical UniversityXi'an710072China
| | - Litong Zhang
- Science and Technology on Thermostructural Composite Materials LaboratorySchool of Materials Science and EngineeringNorthwestern Polytechnical UniversityXi'an710072China
| |
Collapse
|
20
|
Zhang J, Wang C, Chen Y, Xiang Y, Huang T, Shum PP, Wu Z. Fiber structures and material science in optical fiber magnetic field sensors. FRONTIERS OF OPTOELECTRONICS 2022; 15:34. [PMID: 36637692 PMCID: PMC9756235 DOI: 10.1007/s12200-022-00037-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 06/12/2022] [Indexed: 06/17/2023]
Abstract
Magnetic field sensing plays an important role in many fields of scientific research and engineering applications. Benefiting from the advantages of optical fibers, the optical fiber-based magnetic field sensors demonstrate characteristics of light weight, small size, remote controllability, reliable security, and wide dynamic ranges. This paper provides an overview of the basic principles, development, and applications of optical fiber magnetic field sensors. The sensing mechanisms of fiber grating, interferometric and evanescent field fiber are discussed in detail. Magnetic fluid materials, magneto-strictive materials, and magneto-optical materials used in optical fiber sensing systems are also introduced. The applications of optical fiber magnetic field sensors as current sensors, geomagnetic monitoring, and quasi-distributed magnetic sensors are presented. In addition, challenges and future development directions are analyzed.
Collapse
Affiliation(s)
- Jing Zhang
- School of Mechanical Engineering and Electronic Information, China University of Geosciences (Wuhan), Wuhan, 430074, China.
| | - Chen Wang
- School of Mechanical Engineering and Electronic Information, China University of Geosciences (Wuhan), Wuhan, 430074, China
| | - Yunkang Chen
- School of Mechanical Engineering and Electronic Information, China University of Geosciences (Wuhan), Wuhan, 430074, China
| | - Yudiao Xiang
- School of Mechanical Engineering and Electronic Information, China University of Geosciences (Wuhan), Wuhan, 430074, China
| | - Tianye Huang
- School of Mechanical Engineering and Electronic Information, China University of Geosciences (Wuhan), Wuhan, 430074, China
| | - Perry Ping Shum
- School of Mechanical Engineering and Electronic Information, China University of Geosciences (Wuhan), Wuhan, 430074, China
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Zhichao Wu
- School of Mechanical Engineering and Electronic Information, China University of Geosciences (Wuhan), Wuhan, 430074, China.
| |
Collapse
|
21
|
Xin Y, Wang Z, Yao C, Shen H, Miao Y. Bismuth, a Previously Less‐studied Element, Is Bursting into New Hotspots. ChemistrySelect 2022. [DOI: 10.1002/slct.202201220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yanmei Xin
- Institute of Bismuth Science School of Materials and Chemistry University of Shanghai for Science and Technology Jungong Rd 334# Shanghai 200093 China
| | - Zhuo Wang
- Institute of Bismuth Science School of Materials and Chemistry University of Shanghai for Science and Technology Jungong Rd 334# Shanghai 200093 China
| | - Congfei Yao
- Institute of Bismuth Science School of Materials and Chemistry University of Shanghai for Science and Technology Jungong Rd 334# Shanghai 200093 China
| | - Haocheng Shen
- Institute of Bismuth Science School of Materials and Chemistry University of Shanghai for Science and Technology Jungong Rd 334# Shanghai 200093 China
| | - Yuqing Miao
- Institute of Bismuth Science School of Materials and Chemistry University of Shanghai for Science and Technology Jungong Rd 334# Shanghai 200093 China
| |
Collapse
|
22
|
Chang YL, Lai IC, Lu LC, Chang SW, Sun AY, Wan D, Chen HL. Wafer-scale nanocracks enable single-molecule detection and on-site analysis. Biosens Bioelectron 2022; 200:113920. [PMID: 34973566 DOI: 10.1016/j.bios.2021.113920] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/14/2021] [Accepted: 12/23/2021] [Indexed: 11/02/2022]
Abstract
Large-area surface-enhanced Raman spectroscopy (SERS) sensing platforms displaying ultrahigh sensitivity and signal uniformity have potentially enormous sensing applicability, but they are still challenging to prepare in a scalable manner. In this study, silver nanopaste (AgNPA) was employed to prepare a wafer-scale, ultrasensitive SERS substrate. The self-generated, high-density Ag nanocracks (NCKs) with small gaps could be created on Si wafers via a spin-coating process, and provided extremely abundant hotspots for SERS analyses with ultrahigh sensitivity-down to the level of single molecules (enhancement factor: ca. 1010; detection limit: ca. 10-18 M)-and great signal reproducibility (variation: ca. 3.6%). Moreover, the Ag NCK arrays demonstrated broad applicability and practicability for on-site detection when combined with a portable 785 Raman spectrometer. This method allowed the highly sensitive detection of a diverse range of analytes (benzo[a]pyrene, di-2-ethylhexyl phthalate, aflatoxins B1, zearalenone, ractopamine, salbutamol, sildenafil, thiram, dimethoate, and methamidophos). In particular, pesticides are used extensively in agricultural production. Unfortunately, they can affect the environment and human health as a result of acute toxicity. Therefore, the simultaneous label-free detection of three different pesticides was demonstrated. Finally, the SERS substrates are fabricated through a simple, efficient, and scalable process that offers new opportunities for mass production.
Collapse
Affiliation(s)
- Yu-Ling Chang
- Institute of Biomedical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, Taiwan
| | - I-Chun Lai
- Department of Materials Science and Engineering, National Taiwan University, Taipei, Taiwan; Center of Atomic Initiative for New Materials (AI-MAT), National Taiwan University, Taipei, Taiwan
| | - Li-Chia Lu
- Institute of Biomedical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, Taiwan
| | - Sih-Wei Chang
- Department of Materials Science and Engineering, National Taiwan University, Taipei, Taiwan; Center of Atomic Initiative for New Materials (AI-MAT), National Taiwan University, Taipei, Taiwan
| | - Aileen Y Sun
- Institute of Biomedical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, Taiwan
| | - Dehui Wan
- Institute of Biomedical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, Taiwan.
| | - Hsuen-Li Chen
- Department of Materials Science and Engineering, National Taiwan University, Taipei, Taiwan; Center of Atomic Initiative for New Materials (AI-MAT), National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
23
|
Liu Z, Zhu T, Wang J, Zheng Z, Li Y, Li J, Lai Y. Functionalized Fiber-Based Strain Sensors: Pathway to Next-Generation Wearable Electronics. NANO-MICRO LETTERS 2022; 14:61. [PMID: 35165824 PMCID: PMC8844338 DOI: 10.1007/s40820-022-00806-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/07/2022] [Indexed: 05/09/2023]
Abstract
Wearable strain sensors are arousing increasing research interests in recent years on account of their potentials in motion detection, personal and public healthcare, future entertainment, man-machine interaction, artificial intelligence, and so forth. Much research has focused on fiber-based sensors due to the appealing performance of fibers, including processing flexibility, wearing comfortability, outstanding lifetime and serviceability, low-cost and large-scale capacity. Herein, we review the latest advances in functionalization and device fabrication of fiber materials toward applications in fiber-based wearable strain sensors. We describe the approaches for preparing conductive fibers such as spinning, surface modification, and structural transformation. We also introduce the fabrication and sensing mechanisms of state-of-the-art sensors and analyze their merits and demerits. The applications toward motion detection, healthcare, man-machine interaction, future entertainment, and multifunctional sensing are summarized with typical examples. We finally critically analyze tough challenges and future remarks of fiber-based strain sensors, aiming to implement them in real applications.
Collapse
Affiliation(s)
- Zekun Liu
- Department of Materials, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Tianxue Zhu
- College of Chemical Engineering, Fuzhou University, Fuzhou, 350116, China
| | - Junru Wang
- Department of Materials, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Zijian Zheng
- Institute of Textiles and Clothing, Research Institute for Intelligent Wearable Systems, Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, SAR, China
| | - Yi Li
- Department of Materials, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
| | - Jiashen Li
- Department of Materials, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
| | - Yuekun Lai
- College of Chemical Engineering, Fuzhou University, Fuzhou, 350116, China.
| |
Collapse
|
24
|
Robust Piezoelectric Coefficient Recovery by Nano-Inclusions Dispersion in Un-Poled PVDF–Ni0.5Zn0.5Fe2O4 Ultra-Thin Films. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12031589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
This work aimed to study the influence of the hybrid interface in polyvinylidene fluoride (PVDF)-based composite thin films on the local piezoelectric response. Our results provide evidence of a surprising contradiction: the optimization process of the β-phase content using nano-inclusions did not correspond to the expected nanoscale piezoelectric optimization. A large piezoelectric loss was observed at the nanoscale level, which contrasts with the macroscopic polarization measurement observations. Our main goal was to show that the dispersion of metallic ferromagnetic nano-inclusions inside the PVDF films allows for the partial recovery of the local piezoelectric properties. From a dielectric point of view, it is not trivial to expect that keeping the same amount of the metallic volume inside the dielectric PVDF matrix would bring a better piezoelectric response by simply dispersing this phase. On the local resonance measured by PFM, this should be the worst due to the homogeneous distribution of the nano-inclusions. Both neat PVDF films and hybrid ones (0.5% in wt of nanoparticles included into the polymer matrix) showed, as-deposited (un-poled), a similar β-phase content. Although the piezoelectric coefficient in the case of the hybrid films was one order of magnitude lower than that for the neat PVDF films, the robustness of the polarized areas was reported 24 h after the polarization process and after several images scanning. We thus succeeded in demonstrating that un-poled polymer thin films can show the same piezoelectric coefficient as the poled one (i.e., 10 pm/V). In addition, low electric field switching (50 MV/m) was used here compared to the typical values reported in the literature (100–150 MV/m).
Collapse
|
25
|
Makarov D, Volkov OM, Kákay A, Pylypovskyi OV, Budinská B, Dobrovolskiy OV. New Dimension in Magnetism and Superconductivity: 3D and Curvilinear Nanoarchitectures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2101758. [PMID: 34705309 PMCID: PMC11469131 DOI: 10.1002/adma.202101758] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/16/2021] [Indexed: 06/13/2023]
Abstract
Traditionally, the primary field, where curvature has been at the heart of research, is the theory of general relativity. In recent studies, however, the impact of curvilinear geometry enters various disciplines, ranging from solid-state physics over soft-matter physics, chemistry, and biology to mathematics, giving rise to a plethora of emerging domains such as curvilinear nematics, curvilinear studies of cell biology, curvilinear semiconductors, superfluidity, optics, 2D van der Waals materials, plasmonics, magnetism, and superconductivity. Here, the state of the art is summarized and prospects for future research in curvilinear solid-state systems exhibiting such fundamental cooperative phenomena as ferromagnetism, antiferromagnetism, and superconductivity are outlined. Highlighting the recent developments and current challenges in theory, fabrication, and characterization of curvilinear micro- and nanostructures, special attention is paid to perspective research directions entailing new physics and to their strong application potential. Overall, the perspective is aimed at crossing the boundaries between the magnetism and superconductivity communities and drawing attention to the conceptual aspects of how extension of structures into the third dimension and curvilinear geometry can modify existing and aid launching novel functionalities. In addition, the perspective should stimulate the development and dissemination of research and development oriented techniques to facilitate rapid transitions from laboratory demonstrations to industry-ready prototypes and eventual products.
Collapse
Affiliation(s)
- Denys Makarov
- Helmholtz‐Zentrum Dresden ‐ Rossendorf e.V.Institute of Ion Beam Physics and Materials Research01328DresdenGermany
| | - Oleksii M. Volkov
- Helmholtz‐Zentrum Dresden ‐ Rossendorf e.V.Institute of Ion Beam Physics and Materials Research01328DresdenGermany
| | - Attila Kákay
- Helmholtz‐Zentrum Dresden ‐ Rossendorf e.V.Institute of Ion Beam Physics and Materials Research01328DresdenGermany
| | - Oleksandr V. Pylypovskyi
- Helmholtz‐Zentrum Dresden ‐ Rossendorf e.V.Institute of Ion Beam Physics and Materials Research01328DresdenGermany
- Kyiv Academic UniversityKyiv03142Ukraine
| | - Barbora Budinská
- Superconductivity and Spintronics LaboratoryNanomagnetism and MagnonicsFaculty of PhysicsUniversity of ViennaVienna1090Austria
| | - Oleksandr V. Dobrovolskiy
- Superconductivity and Spintronics LaboratoryNanomagnetism and MagnonicsFaculty of PhysicsUniversity of ViennaVienna1090Austria
| |
Collapse
|
26
|
Kim Y, Lee K, Lee J, Jang S, Kim H, Lee H, Lee SW, Wang G, Park C. Bird-Inspired Self-Navigating Artificial Synaptic Compass. ACS NANO 2021; 15:20116-20126. [PMID: 34793113 DOI: 10.1021/acsnano.1c08005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Extrasensory neuromorphic devices that can recognize, memorize, and learn stimuli imperceptible to human beings are of considerable interest in interactive intelligent electronics research. This study presents an artificially intelligent magnetoreceptive synapse inspired by the magnetocognitive ability used by birds for navigation and orientation. The proposed synaptic platform is based on arrays of ferroelectric field-effect transistors with air-suspended magneto-interactive top-gates. A suspended gate of an elastomeric composite with superparamagnetic particles laminated with an electrically conductive polymer is mechanically deformed under a magnetic field, facilitating control of the magnetic-field-dependent contact area of the suspended gate with an underlying ferroelectric layer. The remanent polarization of the ferroelectric layer is electrically programmed with the deformed suspended gate, resulting in analog conductance modulation as a function of the magnitude, number, and time interval of the input magnetic pulses. The proposed extrasensory magnetoreceptive synapse may be used as an artificially intelligent synaptic compass that facilitates barrier-adaptable navigation and mapping of a moving object.
Collapse
Affiliation(s)
- Youngwoo Kim
- Department of Materials Science and Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Kyuho Lee
- Department of Materials Science and Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Junseok Lee
- Department of Materials Science and Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Seonghoon Jang
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
| | - HoYeon Kim
- Department of Materials Science and Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Hyunhaeng Lee
- Department of Materials Science and Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Seung Won Lee
- Department of Materials Science and Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Gunuk Wang
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
| | - Cheolmin Park
- Department of Materials Science and Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul, 03722, Republic of Korea
| |
Collapse
|
27
|
Jin C, Zhu Y, Li X, An F, Han W, Liu Q, Hu S, Ji Y, Xu Z, Hu S, Ye M, Zhong G, Gu M, Chen L. Super-Flexible Freestanding BiMnO 3 Membranes with Stable Ferroelectricity and Ferromagnetism. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2102178. [PMID: 34713629 PMCID: PMC8693045 DOI: 10.1002/advs.202102178] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/19/2021] [Indexed: 06/13/2023]
Abstract
Multiferroic materials with flexibility are expected to make great contributions to flexible electronic applications, such as sensors, memories, and wearable devices. In this work, super-flexible freestanding BiMnO3 membranes with simultaneous ferroelectricity and ferromagnetism are synthesized using water-soluble Sr3 Al2 O6 as the sacrificial buffer layer. The super-flexibility of BiMnO3 membranes is demonstrated by undergoing an ≈180° folding during an in situ bending test, which is consistent with the results of first-principles calculations. The piezoelectric signal under a bending radius of ≈500 µm confirms the stable existence of electric polarization in freestanding BiMnO3 membranes. Moreover, the stable ferromagnetism of freestanding BiMnO3 membranes is demonstrated after 100 times bending cycles with a bending radius of ≈2 mm. 5.1% uniaxial tensile strain is achieved in freestanding BiMnO3 membranes, and the piezoresponse force microscopy (PFM) phase retention behaviors confirm that the ferroelectricity of membranes can survive stably up to the strain of 1.7%. These super-flexible membranes with stable ferroelectricity and ferromagnetism pave ways to the realizations of multifunctional flexible electronics.
Collapse
Affiliation(s)
- Cai Jin
- Department of PhysicsSouthern University of Science and TechnologyShenzhen518055China
- School of PhysicsHarbin Institute of TechnologyHarbin150081China
| | - Yuanmin Zhu
- Academy for Advanced Interdisciplinary StudiesSouthern University of Science and TechnologyShenzhen518055China
- Department of Materials Science and EngineeringSouthern University of Science and TechnologyShenzhen518055China
| | - Xiaowen Li
- Department of PhysicsSouthern University of Science and TechnologyShenzhen518055China
| | - Feng An
- Shenzhen Key Laboratory of NanobiomechanicsShenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhen518055China
| | - Wenqiao Han
- Department of PhysicsSouthern University of Science and TechnologyShenzhen518055China
| | - Qi Liu
- Department of PhysicsSouthern University of Science and TechnologyShenzhen518055China
| | - Sixia Hu
- Materials Characterization and Preparation CenterSouthern University of Science and TechnologyShenzhen518055China
| | - Yanjiang Ji
- Department of PhysicsSouthern University of Science and TechnologyShenzhen518055China
| | - Zedong Xu
- Department of PhysicsSouthern University of Science and TechnologyShenzhen518055China
| | - Songbai Hu
- Department of PhysicsSouthern University of Science and TechnologyShenzhen518055China
| | - Mao Ye
- Department of PhysicsSouthern University of Science and TechnologyShenzhen518055China
| | - Gaokuo Zhong
- Shenzhen Key Laboratory of NanobiomechanicsShenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhen518055China
| | - Meng Gu
- Department of Materials Science and EngineeringSouthern University of Science and TechnologyShenzhen518055China
| | - Lang Chen
- Department of PhysicsSouthern University of Science and TechnologyShenzhen518055China
- Materials Characterization and Preparation CenterSouthern University of Science and TechnologyShenzhen518055China
| |
Collapse
|
28
|
Gao HL, Wang ZY, Cui C, Bao JZ, Zhu YB, Xia J, Wen SM, Wu HA, Yu SH. A Highly Compressible and Stretchable Carbon Spring for Smart Vibration and Magnetism Sensors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2102724. [PMID: 34387379 DOI: 10.1002/adma.202102724] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/14/2021] [Indexed: 06/13/2023]
Abstract
Porous carbon materials demonstrate extensive applications for their attractive characteristics. Mechanical flexibility is an essential property guaranteeing their durability. After decades of research efforts, compressive brittleness of porous carbon materials is well resolved. However, reversible stretchability remains challenging to achieve due to the intrinsically weak connections and fragile joints of the porous carbon networks. Herein, it is presented that a porous all-carbon material achieving both elastic compressibility and stretchability at large strain from -80% to 80% can be obtained when a unique long-range lamellar multi-arch microstructure is introduced. Impressively, the porous all-carbon material can maintain reliable structural robustness and durability under loading condition of cyclic compressing-stretching process, similar to a real metallic spring. The unique performance renders it as a promising platform for making smart vibration and magnetism sensors, even capable of operating at extreme temperatures. Furthermore, this study provides valuable insights for creating highly stretchable and compressible porous materials from other neat inorganic components for diverse applications in future.
Collapse
Affiliation(s)
- Huai-Ling Gao
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Institute of Energy, Hefei Comprehensive National Science Center, CAS Center for Excellence in Nanoscience, Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, University of Science and Technology of China, Hefei, 230026, China
| | - Ze-Yu Wang
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Institute of Energy, Hefei Comprehensive National Science Center, CAS Center for Excellence in Nanoscience, Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, University of Science and Technology of China, Hefei, 230026, China
| | - Chen Cui
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Institute of Energy, Hefei Comprehensive National Science Center, CAS Center for Excellence in Nanoscience, Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, University of Science and Technology of China, Hefei, 230026, China
| | - Jia-Zheng Bao
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Institute of Energy, Hefei Comprehensive National Science Center, CAS Center for Excellence in Nanoscience, Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, University of Science and Technology of China, Hefei, 230026, China
| | - Yin-Bo Zhu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Jun Xia
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Shao-Meng Wen
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Institute of Energy, Hefei Comprehensive National Science Center, CAS Center for Excellence in Nanoscience, Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, University of Science and Technology of China, Hefei, 230026, China
| | - Heng-An Wu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Shu-Hong Yu
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Institute of Energy, Hefei Comprehensive National Science Center, CAS Center for Excellence in Nanoscience, Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
29
|
Zhou Q, Ji B, Hu F, Luo J, Zhou B. Magnetized Micropillar-Enabled Wearable Sensors for Touchless and Intelligent Information Communication. NANO-MICRO LETTERS 2021; 13:197. [PMID: 34523060 PMCID: PMC8440750 DOI: 10.1007/s40820-021-00720-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/16/2021] [Indexed: 05/10/2023]
Abstract
The wearable sensors have recently attracted considerable attentions as communication interfaces through the information perception, decoding, and conveying process. However, it is still challenging to obtain a sensor that can convert detectable signals into multiple outputs for convenient, efficient, cryptic, and high-capacity information transmission. Herein, we present a capacitive sensor of magnetic field based on a tilted flexible micromagnet array (t-FMA) as the proposed interaction interface. With the bidirectional bending capability of t-FMA actuated by magnetic torque, the sensor can recognize both the magnitude and orientation of magnetic field in real time with non-overlapping capacitance signals. The optimized sensor exhibits the high sensitivity of over 1.3 T-1 and detection limit down to 1 mT with excellent durability. As a proof of concept, the sensor has been successfully demonstrated for convenient, efficient, and programmable interaction systems, e.g., touchless Morse code and Braille communication. The distinguishable recognition of the magnetic field orientation and magnitude further enables the sensor unit as a high-capacity transmitter for cryptic information interaction (e.g., encoded ID recognition) and multi-control instruction outputting. We believe that the proposed magnetic field sensor can open up a potential avenue for future applications including information communication, virtual reality device, and interactive robotics.
Collapse
Affiliation(s)
- Qian Zhou
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau, 999078, P. R. China
| | - Bing Ji
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau, 999078, P. R. China
| | - Fengming Hu
- School of Applied Physics and Materials, Research Center of Flexible Sensing Materials and Devices, Wuyi University, Jiangmen, 529020, P. R. China
| | - Jianyi Luo
- School of Applied Physics and Materials, Research Center of Flexible Sensing Materials and Devices, Wuyi University, Jiangmen, 529020, P. R. China
| | - Bingpu Zhou
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau, 999078, P. R. China.
| |
Collapse
|
30
|
Pal S, Mukhopadhyay S, Suryadevara N. Development and Progress in Sensors and Technologies for Human Emotion Recognition. SENSORS 2021; 21:s21165554. [PMID: 34451002 PMCID: PMC8402266 DOI: 10.3390/s21165554] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 08/08/2021] [Accepted: 08/13/2021] [Indexed: 11/25/2022]
Abstract
With the advancement of human-computer interaction, robotics, and especially humanoid robots, there is an increasing trend for human-to-human communications over online platforms (e.g., zoom). This has become more significant in recent years due to the Covid-19 pandemic situation. The increased use of online platforms for communication signifies the need to build efficient and more interactive human emotion recognition systems. In a human emotion recognition system, the physiological signals of human beings are collected, analyzed, and processed with the help of dedicated learning techniques and algorithms. With the proliferation of emerging technologies, e.g., the Internet of Things (IoT), future Internet, and artificial intelligence, there is a high demand for building scalable, robust, efficient, and trustworthy human recognition systems. In this paper, we present the development and progress in sensors and technologies to detect human emotions. We review the state-of-the-art sensors used for human emotion recognition and different types of activity monitoring. We present the design challenges and provide practical references of such human emotion recognition systems in the real world. Finally, we discuss the current trends in applications and explore the future research directions to address issues, e.g., scalability, security, trust, privacy, transparency, and decentralization.
Collapse
Affiliation(s)
- Shantanu Pal
- School of Computer Science, Faculty of Science, Queensland University of Technology, Brisbane, QLD 4000, Australia;
| | - Subhas Mukhopadhyay
- School of Engineering, Faculty of Science and Engineering, Macquarie University, Sydney, NSW 2109, Australia
- Correspondence: ; Tel.: +61-2-9850-6510
| | - Nagender Suryadevara
- School of Computer and Information Sciences, University of Hyderabad, Hyderabad, Telangana 500046, India;
| |
Collapse
|
31
|
Zhang HY, Chen XG, Tang YY, Liao WQ, Di FF, Mu X, Peng H, Xiong RG. PFM (piezoresponse force microscopy)-aided design for molecular ferroelectrics. Chem Soc Rev 2021; 50:8248-8278. [PMID: 34081064 DOI: 10.1039/c9cs00504h] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
With prosperity, decay, and another spring, molecular ferroelectrics have passed a hundred years since Valasek first discovered ferroelectricity in the molecular compound Rochelle salt. Recently, the proposal of ferroelectrochemistry has injected new vigor into this century-old research field. It should be highlighted that piezoresponse force microscopy (PFM) technique, as a non-destructive imaging and manipulation method for ferroelectric domains at the nanoscale, can significantly speed up the design rate of molecular ferroelectrics as well as enhance the ferroelectric and piezoelectric performances relying on domain engineering. Herein, we provide a brief review of the contribution of the PFM technique toward assisting the design and performance optimization of molecular ferroelectrics. Relying on the relationship between ferroelectric domains and crystallography, together with other physical characteristics such as domain switching and piezoelectricity, we believe that the PFM technique can be effectively applied to assist the design of high-performance molecular ferroelectrics equipped with multifunctionality, and thereby facilitate their practical utilization in optics, electronics, magnetics, thermotics, and mechanics among others.
Collapse
Affiliation(s)
- Han-Yue Zhang
- Ordered Matter Science Research Center, Nanchang University, Nanchang 330031, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Xu J, Pang H, Gong X, Pei L, Xuan S. A shape-deformable liquid-metal-filled magnetorheological plastomer sensor with a magnetic field "on-off" switch. iScience 2021; 24:102549. [PMID: 34142054 PMCID: PMC8184518 DOI: 10.1016/j.isci.2021.102549] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 03/24/2021] [Accepted: 05/14/2021] [Indexed: 12/01/2022] Open
Abstract
Flexible viscoelastic sensors have gained significant attention in wearable devices owing to their exceptional strain-dependent electrical resistance. Most of the strain sensors are elastic composites, thus the internal stress is often preserved during the deformation when they are attached to the uneven target. Therefore, there is a pressing need for viscoelastic composites with highly self-adapted electromechanical properties sensitive to multiexternal circumstances. This work reports a liquid-metal-filled magnetorheological plastomer (LMMRP) that shows a high response behavior to the external stimulus such as magnetic field, temperature, and force. The shape-deformable LMMRP can transform from an insulator to a conductor under applying a magnetic field, thus the further viscoelastic sensor possesses a magnetic field “on-off” switch effect. The microstructure-dependent magnetic/thermal/mechanical-electrical coupling characteristics are investigated, and several proof-of-concept sensor applications, such as magnetic control, environment recognition, and motion monitoring, are demonstrated. These LMMRP composites show a broad potential in flexible sensors and soft electronics. A shape-deformable liquid-metal-filled magnetorheological plastomer was created. The plastomer is sensitive to magnetic field, temperature, and force. The evolution of the particle microstructure in the plastomer was simulated. The plastomer has great potential in flexible electronics with magnetic control.
Collapse
Affiliation(s)
- Jiaqi Xu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, Hefei 230027, PR China
| | - Haoming Pang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, Hefei 230027, PR China
| | - Xinglong Gong
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, Hefei 230027, PR China.,State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei 230027, PR China
| | - Lei Pei
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, Hefei 230027, PR China
| | - Shouhu Xuan
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, Hefei 230027, PR China.,State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei 230027, PR China
| |
Collapse
|
33
|
Collomb D, Li P, Bending S. Frontiers of graphene-based Hall-effect sensors. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:243002. [PMID: 33853045 DOI: 10.1088/1361-648x/abf7e2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 04/14/2021] [Indexed: 06/12/2023]
Abstract
Hall sensors have become one of the most used magnetic sensors in recent decades, performing the vital function of providing a magnetic sense that is naturally absent in humans. Various electronic applications have evolved from circuit-integrated Hall sensors due to their low cost, simple linear magnetic field response, ability to operate in a large magnetic field range, high magnetic sensitivity and low electronic noise, in addition to many other advantages. Recent developments in the fabrication and performance of graphene Hall devices promise to open up the realm of Hall sensor applications by not only widening the horizon of current uses through performance improvements, but also driving Hall sensor electronics into entirely new areas. In this review paper we describe the evolution from the traditional selection of Hall device materials to graphene Hall devices, and explore the various applications enabled by them. This includes a summary of the selection of materials and architectures for contemporary micro-to nanoscale Hall sensors. We then turn our attention to introducing graphene and its remarkable physical properties and explore how this impacts the magnetic sensitivity and electronic noise of graphene-based Hall sensors. We summarise the current state-of-the art of research into graphene Hall probes, demonstrating their record-breaking performance. Building on this, we explore the various new application areas graphene Hall sensors are pioneering such as magnetic imaging and non-destructive testing. Finally, we look at recent encouraging results showing that graphene Hall sensors have plenty of room to improve, before then discussing future prospects for industry-level scalable fabrication.
Collapse
Affiliation(s)
- David Collomb
- Department of Physics, University of Bath, Bath, United Kingdom
| | - Penglei Li
- Department of Physics, University of Bath, Bath, United Kingdom
| | - Simon Bending
- Department of Physics, University of Bath, Bath, United Kingdom
| |
Collapse
|
34
|
Zighem F, Faurie D. A review on nanostructured thin films on flexible substrates: links between strains and magnetic properties. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:233002. [PMID: 33973532 DOI: 10.1088/1361-648x/abe96c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/24/2021] [Indexed: 06/12/2023]
Abstract
This paper provides a topical review of work on systems based on magnetic nanostructured thin films on polymer substrates. This topic has indeed experienced a significant growth in the last ten years. Several studies show a strong potential of these systems for a number of applications requiring functionalities on non-planar surfaces. However, the deformations necessary for this type of applications are likely to modify their magnetic properties, and the relationships between strain fields, potential damages and functional properties must be well understood. This review focuses both on the development of techniques dedicated to this research, on the synthesis of the experimental results obtained over the last ten years and on the perspectives related to stretchable or flexible magnetoelectric systems. In particular, the article focuses on the links between magnetic behavior and the strain field developing during the whole history of these systems (elaboration, reversible and irreversible loading).
Collapse
Affiliation(s)
- F Zighem
- LSPM-CNRS, UPR3407, Université Sorbonne Paris Nord, 93430, Villetaneuse, France
| | - D Faurie
- LSPM-CNRS, UPR3407, Université Sorbonne Paris Nord, 93430, Villetaneuse, France
| |
Collapse
|
35
|
So S, Khalaf A, Yi X, Herring C, Zhang Y, Simon MA, Akcakaya M, Lee S, Yun M. Induced bioresistance via BNP detection for machine learning-based risk assessment. Biosens Bioelectron 2021; 175:112903. [PMID: 33370705 DOI: 10.1016/j.bios.2020.112903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 11/25/2020] [Accepted: 12/13/2020] [Indexed: 10/22/2022]
Abstract
Machine Learning (ML) is a powerful tool for big data analysis that shows substantial potential in the field of healthcare. Individual patient data can be inundative, but its value can be extracted by ML's predictive power and ability to find trends. A great area of interest is early diagnosis and disease management strategies for cardiovascular disease (CVD), the leading cause of death in the world. Treatment is often inhibited by analysis delays, but rapid testing and determination can help improve frequency for real time monitoring. In this research, an ML algorithm was developed in conjunction with a flexible BNP sensor to create a quick diagnostic tool. The sensor was fabricated as an ion-selective field effect transistor (ISFET) in order to be able to quickly gather large amounts of electrical data from a sample. Artifical samples were tested to characterize the sensors using linear sweep voltammetry, and the resulting data was utilized as the initial training set for the ML algorithm, an implementation of quadratic discriminant analysis (QDA) written in MATLAB. Human blood serum samples from 30 University of Pittsburgh Medical Center (UPMC) patients were tested to evaluate the effective sorting power of the algorithm, yielding 95% power in addition to ultra fast data collection and determination.
Collapse
Affiliation(s)
- Seth So
- Department of Electrical and Computer Engineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, 15261, USA.
| | - Aya Khalaf
- Department of Electrical and Computer Engineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Xinruo Yi
- Department of Electrical and Computer Engineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Connor Herring
- Department of Chemical Engineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Yingze Zhang
- Departments of Medicine and Human Genetics, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Marc A Simon
- Departments of Medicine (Division of Cardiology), Bioengineering, and Clinical & Translational Science, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Murat Akcakaya
- Department of Electrical and Computer Engineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - SeungHee Lee
- Department of Nanoconvergence Engineering and Department of Polymer-Nano Science and Technology, Jeonbuk National University, Jeonju, Jeonbuk, 54896, Republic of Korea
| | - Minhee Yun
- Department of Electrical and Computer Engineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, 15261, USA.
| |
Collapse
|
36
|
Cao W, Yin S, Plank M, Chumakov A, Opel M, Chen W, Kreuzer LP, Heger JE, Gallei M, Brett CJ, Schwartzkopf M, Eliseev AA, Anokhin EO, Trusov LA, Roth SV, Müller-Buschbaum P. Spray-Deposited Anisotropic Ferromagnetic Hybrid Polymer Films of PS- b-PMMA and Strontium Hexaferrite Magnetic Nanoplatelets. ACS APPLIED MATERIALS & INTERFACES 2021; 13:1592-1602. [PMID: 33355441 DOI: 10.1021/acsami.0c19595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Spray deposition is a scalable and cost-effective technique for the fabrication of magnetic hybrid films containing diblock copolymers (DBCs) and magnetic nanoparticles. However, it is challenging to obtain spray-deposited anisotropic magnetic hybrid films without using external magnetic fields. In the present work, spray deposition is applied to prepare perpendicular anisotropic magnetic hybrid films by controlling the orientation of strontium hexaferrite nanoplatelets inside ultra-high-molecular-weight DBC polystyrene-block-poly(methyl methacrylate) (PS-b-PMMA) films. During spray deposition, the evolution of DBC morphology and the orientation of magnetic nanoplatelets are monitored with in situ grazing-incidence small-angle X-ray scattering (GISAXS). For reference, a pure DBC film without nanoplatelets is deposited with the same conditions. Solvent-controlled magnetic properties of the hybrid film are proven with solvent vapor annealing (SVA) applied to the final deposited magnetic films. Obvious changes in the DBC morphology and nanoplatelet localization are observed during SVA. The superconducting quantum interference device data show that ferromagnetic hybrid polymer films with high coercivity can be achieved via spray deposition. The hybrid films show a perpendicular magnetic anisotropy before SVA, which is strongly weakened after SVA. The spray-deposited hybrid films appear highly promising for potential applications in magnetic data storage and sensors.
Collapse
Affiliation(s)
- Wei Cao
- Physik-Department, Lehrstuhl für Funktionelle Materialien, Technische Universität München, James-Franck-Straße 1, 85748 Garching, Germany
| | - Shanshan Yin
- Physik-Department, Lehrstuhl für Funktionelle Materialien, Technische Universität München, James-Franck-Straße 1, 85748 Garching, Germany
| | - Martina Plank
- Ernst-Berl-Institute for Technical and Macromolecular Chemistry, Technische Universität Darmstadt, Alarich-Weiss-Straße 4, 64287 Darmstadt, Germany
| | - Andrei Chumakov
- Deutsches Elektronen-Synchrotron (DESY), Notkestraße 85, 22607 Hamburg, Germany
| | - Matthias Opel
- Bayerische Akademie der Wissenschaften, Walther-Meissner-Institut, Walther-Meissner-Straße 8, 85748 Garching, Germany
| | - Wei Chen
- Physik-Department, Lehrstuhl für Funktionelle Materialien, Technische Universität München, James-Franck-Straße 1, 85748 Garching, Germany
| | - Lucas P Kreuzer
- Physik-Department, Lehrstuhl für Funktionelle Materialien, Technische Universität München, James-Franck-Straße 1, 85748 Garching, Germany
| | - Julian E Heger
- Physik-Department, Lehrstuhl für Funktionelle Materialien, Technische Universität München, James-Franck-Straße 1, 85748 Garching, Germany
| | - Markus Gallei
- Chair in Polymer Chemistry, Saarland University, Campus C4 2, 66123 Saarbrücken, Germany
| | - Calvin J Brett
- Deutsches Elektronen-Synchrotron (DESY), Notkestraße 85, 22607 Hamburg, Germany
- Department of Engineering Mechanics, KTH Royal Institute of Technology, Teknikringen 8, SE-100 44 Stockholm, Sweden
- Wallenberg Wood Science Center, KTH Royal Institute of Technology, Teknikringen 56-58, SE-100 44 Stockholm, Sweden
| | | | - Artem A Eliseev
- Department of Chemistry, Moscow State University, 119991 Moscow, Russia
| | - Evgeny O Anokhin
- Department of Materials Science, Moscow State University, 119991 Moscow, Russia
| | - Lev A Trusov
- Department of Chemistry, Moscow State University, 119991 Moscow, Russia
| | - Stephan V Roth
- Deutsches Elektronen-Synchrotron (DESY), Notkestraße 85, 22607 Hamburg, Germany
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 56-58, SE-100 44 Stockholm, Sweden
| | - Peter Müller-Buschbaum
- Physik-Department, Lehrstuhl für Funktionelle Materialien, Technische Universität München, James-Franck-Straße 1, 85748 Garching, Germany
- Heinz Maier-Leibnitz Zentrum (MLZ), Technische Universität München, Lichtenbergstraße 1, 85748 Garching, Germany
| |
Collapse
|
37
|
Amrillah T, Hermawan A, Yin S, Juang JY. Formation and physical properties of the self-assembled BFO–CFO vertically aligned nanocomposite on a CFO-buffered two-dimensional flexible mica substrate. RSC Adv 2021; 11:15539-15545. [PMID: 35481182 PMCID: PMC9029151 DOI: 10.1039/d1ra01158h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 04/17/2021] [Indexed: 11/26/2022] Open
Abstract
Engineering the interfaces between materials of different structures and bonding nature in a well-controlled fashion has been playing a key role in developing new devices with unprecedented functionalities. In particular, direct growth of nanostructures on van der Waals substrates not only is essential for fully exploiting the potential of a wide variety of self-assembled nano-sized heterostructures but also can expand the horizons for electronic and photonic applications that involve nanostructures of specific composition and geometry. In the present work, we demonstrate the epitaxial growth of a self-assembled vertically aligned nanocomposite of magnetoelectric oxides on a flexible substrate via van der Waals epitaxy, which evidently adds an additional dimension of flexibility to similar thin-film heteroepitaxy architectures that have been mostly realized on rigid lattice-matched substrates. It is noted that the utilization of buffer layers is essential for obtaining high-quality flexible thin films with vertically aligned nanocomposite architecture. We believe that this route can provide alternative options for developing flexible thin-film devices with heteroepitaxy architectures of other functional materials. BiFeO3–CoFe2O4 vertically aligned nanocomposites, which mainly discovered in thin-films deposited on rigid substrates, have been successfully transformed into a flexible thin-film using a mica substrate.![]()
Collapse
Affiliation(s)
- Tahta Amrillah
- Department of Nanotechnology
- Faculty of Advanced Technology and Multidiscipline
- Universitas Airlangga
- Surabaya 60115
- Indonesia
| | - Angga Hermawan
- Institute of Multidisciplinary Research for Advanced Material (IMRAM)
- Tohoku University
- Sendai
- Japan
| | - Shu Yin
- Institute of Multidisciplinary Research for Advanced Material (IMRAM)
- Tohoku University
- Sendai
- Japan
| | - Jenh-Yih Juang
- Department of Electrophysics
- National Chiao Tung University
- Hsinchu 30010
- Taiwan
| |
Collapse
|
38
|
Lee SW, Baek S, Park SW, Koo M, Kim EH, Lee S, Jin W, Kang H, Park C, Kim G, Shin H, Shim W, Yang S, Ahn JH, Park C. 3D motion tracking display enabled by magneto-interactive electroluminescence. Nat Commun 2020; 11:6072. [PMID: 33247086 PMCID: PMC7695719 DOI: 10.1038/s41467-020-19523-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 10/07/2020] [Indexed: 12/17/2022] Open
Abstract
Development of a human-interactive display enabling the simultaneous sensing, visualisation, and memorisation of a magnetic field remains a challenge. Here we report a skin-patchable magneto-interactive electroluminescent display, which is capable of sensing, visualising, and storing magnetic field information, thereby enabling 3D motion tracking. A magnetic field-dependent conductive gate is employed in an alternating current electroluminescent display, which is used to produce non-volatile and rewritable magnetic field-dependent display. By constructing mechanically flexible arrays of magneto-interactive displays, a spin-patchable and pixelated platform is realised. The magnetic field varying along the z-axis enables the 3D motion tracking (monitoring and memorisation) on 2D pixelated display. This 3D motion tracking display is successfully used as a non-destructive surgery-path guiding, wherein a pathway for a surgical robotic arm with a magnetic probe is visualised and recorded on a display patched on the abdominal skin of a rat, thereby helping the robotic arm to find an optimal pathway. Designing human-interactive displays enabling the simultaneous sensing, visualization, and memorization of a magnetic field remains a challenge. Here, the authors present a skin-patchable magneto-interactive electroluminescent display by employing a magnetic field-dependent conductive gate, thereby enabling 3D motion tracking.
Collapse
Affiliation(s)
- Seung Won Lee
- Department of Materials Science and Engineering, Yonsei University, Seoul, 120-749, Korea
| | - Soyeon Baek
- Department of Materials Science and Engineering, Yonsei University, Seoul, 120-749, Korea
| | - Sung-Won Park
- Department of Electrical and Electronic Engineering, Yonsei University, Seoul, 120-749, Korea
| | - Min Koo
- Department of Materials Science and Engineering, Yonsei University, Seoul, 120-749, Korea
| | - Eui Hyuk Kim
- Department of Materials Science and Engineering, Yonsei University, Seoul, 120-749, Korea
| | - Seokyeong Lee
- Department of Materials Science and Engineering, Yonsei University, Seoul, 120-749, Korea
| | - Wookyeong Jin
- Department of Materials Science and Engineering, Yonsei University, Seoul, 120-749, Korea
| | - Hansol Kang
- Department of Materials Science and Engineering, Yonsei University, Seoul, 120-749, Korea
| | - Chanho Park
- Department of Materials Science and Engineering, Yonsei University, Seoul, 120-749, Korea
| | - Gwangmook Kim
- Department of Materials Science and Engineering, Yonsei University, Seoul, 120-749, Korea
| | - Heechang Shin
- Department of Electrical and Electronic Engineering, Yonsei University, Seoul, 120-749, Korea
| | - Wooyoung Shim
- Department of Materials Science and Engineering, Yonsei University, Seoul, 120-749, Korea
| | - Sunggu Yang
- Department of Nano-Bioengineering, Incheon National University, Incheon, 22012, Korea
| | - Jong-Hyun Ahn
- Department of Electrical and Electronic Engineering, Yonsei University, Seoul, 120-749, Korea
| | - Cheolmin Park
- Department of Materials Science and Engineering, Yonsei University, Seoul, 120-749, Korea.
| |
Collapse
|
39
|
Li M, He B, Zhao X, Xie J, Yao W, Xu G. A wearable fiber-optic sensor for monitoring human elbow and wrist joint motion. Adv Robot 2020. [DOI: 10.1080/01691864.2020.1837671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Min Li
- Department of Mechanical Engineering, Xi’an Jiaotong University, Xi’an, People’s Republic of China
- State key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Liaoning, People’s Republic of China
| | - Bo He
- Department of Mechanical Engineering, Xi’an Jiaotong University, Xi’an, People’s Republic of China
| | - Xingang Zhao
- State key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Liaoning, People’s Republic of China
| | - Jun Xie
- Department of Mechanical Engineering, Xi’an Jiaotong University, Xi’an, People’s Republic of China
| | - Wei Yao
- Department of Biomedical Engineering, University of Strathclyde, Glasgow, UK
| | - Guanghua Xu
- Department of Mechanical Engineering, Xi’an Jiaotong University, Xi’an, People’s Republic of China
| |
Collapse
|
40
|
A Glance at Processing-Microstructure-Property Relationships for Magnetoelectric Particulate PZT-CFO Composites. MATERIALS 2020; 13:ma13112592. [PMID: 32517198 PMCID: PMC7321595 DOI: 10.3390/ma13112592] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/18/2020] [Accepted: 06/03/2020] [Indexed: 11/17/2022]
Abstract
In this work, we investigated the processing-microstructure-property relationships for magnetoelectric (ME) particulate composites consisting of hard ferromagnetic CoFe2O4 (CFO) particles dispersed in a Nb-doped PbZrxTi1-xO3 (PZT) soft ferroelectric matrix. Several preparation steps, namely PZT powder calcination, PZT-CFO mixture milling and composite sintering were tailored and a range of microstructures was obtained. These included open and closed porosities up to full densification, PZT matrices with decreasing grain size across the submicron range down to the nanoscale and well dispersed CFO particles with bimodal size distributions consisting of submicron and micron sized components with varying weights. All samples could be poled under a fixed DC electric field of 4 kV/mm and the dielectric, piezoelectric and elastic coefficients were obtained and are discussed in relation to the microstructure. Remarkably, materials with nanostructured PZT matrices and open porosity showed piezoelectric charge coefficients comparable with fully dense composites with coarsened microstructure and larger voltage coefficients. Besides, the piezoelectric response of dense materials increased with the size of the CFO particles. This suggests a role of the conductive magnetic inclusions in promoting poling. Magnetoelectric coefficients were obtained and are discussed in relation to densification, piezoelectric matrix microstructure and particle size of the magnetic component. The largest magnetoelectric coefficient α33 of 1.37 mV cm-1 Oe-1 was obtained for submicron sized CFO particles, when closed porosity was reached, even if PZT grain size remained in the nanoscale.
Collapse
|
41
|
Fina I, Dix N, Menéndez E, Crespi A, Foerster M, Aballe L, Sánchez F, Fontcuberta J. Flexible Antiferromagnetic FeRh Tapes as Memory Elements. ACS APPLIED MATERIALS & INTERFACES 2020; 12:15389-15395. [PMID: 32149498 DOI: 10.1021/acsami.0c00704] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The antiferromagnetic to ferromagnetic transition occurring above room temperature in FeRh is attracting interest for applications in spintronics, with perspectives for robust and untraceable data storage. Here, we show that FeRh films can be grown on a flexible metallic substrate (tape shaped), coated with a textured rock-salt MgO layer, suitable for large-scale applications. The FeRh tape displays a sharp antiferromagnetic to ferromagnetic transition at about 90 °C. Its magnetic properties are preserved by bending (radii of 300 mm), and their anisotropic magnetoresistance (up to 0.05%) is used to illustrate data writing/reading capability.
Collapse
Affiliation(s)
- Ignasi Fina
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, E-08193 Bellaterra, Catalonia, Spain
| | - Nico Dix
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, E-08193 Bellaterra, Catalonia, Spain
| | - Enric Menéndez
- Departament de Física, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, E-08193, Spain
| | - Anna Crespi
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, E-08193 Bellaterra, Catalonia, Spain
| | - Michael Foerster
- ALBA Synchrotron Light Facility, Carrer de la Llum 2-26, Cerdanyola del Vallès, Barcelona 08290, Spain
| | - Lucia Aballe
- ALBA Synchrotron Light Facility, Carrer de la Llum 2-26, Cerdanyola del Vallès, Barcelona 08290, Spain
| | - Florencio Sánchez
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, E-08193 Bellaterra, Catalonia, Spain
| | - Josep Fontcuberta
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, E-08193 Bellaterra, Catalonia, Spain
| |
Collapse
|
42
|
Karnaushenko D, Kang T, Bandari VK, Zhu F, Schmidt OG. 3D Self-Assembled Microelectronic Devices: Concepts, Materials, Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1902994. [PMID: 31512308 DOI: 10.1002/adma.201902994] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 06/17/2019] [Indexed: 06/10/2023]
Abstract
Modern microelectronic systems and their components are essentially 3D devices that have become smaller and lighter in order to improve performance and reduce costs. To maintain this trend, novel materials and technologies are required that provide more structural freedom in 3D over conventional microelectronics, as well as easier parallel fabrication routes while maintaining compatability with existing manufacturing methods. Self-assembly of initially planar membranes into complex 3D architectures offers a wealth of opportunities to accommodate thin-film microelectronic functionalities in devices and systems possessing improved performance and higher integration density. Existing work in this field, with a focus on components constructed from 3D self-assembly, is reviewed, and an outlook on their application potential in tomorrow's microelectronics world is provided.
Collapse
Affiliation(s)
- Daniil Karnaushenko
- Institute for Integrative Nanosciences, Leibniz IFW Dresden, Dresden, 01069, Germany
| | - Tong Kang
- Institute for Integrative Nanosciences, Leibniz IFW Dresden, Dresden, 01069, Germany
| | - Vineeth K Bandari
- Institute for Integrative Nanosciences, Leibniz IFW Dresden, Dresden, 01069, Germany
- Material Systems for Nanoelectronics, Chemnitz University of Technology, Chemnitz, 09107, Germany
- Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Rosenbergstraße 6, TU Chemnitz, Chemnitz, 09126, Germany
| | - Feng Zhu
- Institute for Integrative Nanosciences, Leibniz IFW Dresden, Dresden, 01069, Germany
- Material Systems for Nanoelectronics, Chemnitz University of Technology, Chemnitz, 09107, Germany
- Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Rosenbergstraße 6, TU Chemnitz, Chemnitz, 09126, Germany
| | - Oliver G Schmidt
- Institute for Integrative Nanosciences, Leibniz IFW Dresden, Dresden, 01069, Germany
- Material Systems for Nanoelectronics, Chemnitz University of Technology, Chemnitz, 09107, Germany
- Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Rosenbergstraße 6, TU Chemnitz, Chemnitz, 09126, Germany
- School of Science, TU Dresden, Dresden, 01062, Germany
| |
Collapse
|
43
|
Murzin D, Mapps DJ, Levada K, Belyaev V, Omelyanchik A, Panina L, Rodionova V. Ultrasensitive Magnetic Field Sensors for Biomedical Applications. SENSORS (BASEL, SWITZERLAND) 2020; 20:E1569. [PMID: 32168981 PMCID: PMC7146409 DOI: 10.3390/s20061569] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 03/02/2020] [Accepted: 03/06/2020] [Indexed: 12/27/2022]
Abstract
The development of magnetic field sensors for biomedical applications primarily focuses on equivalent magnetic noise reduction or overall design improvement in order to make them smaller and cheaper while keeping the required values of a limit of detection. One of the cutting-edge topics today is the use of magnetic field sensors for applications such as magnetocardiography, magnetotomography, magnetomyography, magnetoneurography, or their application in point-of-care devices. This introductory review focuses on modern magnetic field sensors suitable for biomedicine applications from a physical point of view and provides an overview of recent studies in this field. Types of magnetic field sensors include direct current superconducting quantum interference devices, search coil, fluxgate, magnetoelectric, giant magneto-impedance, anisotropic/giant/tunneling magnetoresistance, optically pumped, cavity optomechanical, Hall effect, magnetoelastic, spin wave interferometry, and those based on the behavior of nitrogen-vacancy centers in the atomic lattice of diamond.
Collapse
Affiliation(s)
- Dmitry Murzin
- Institute of Physics, Mathematics and Information Technology, Immanuel Kant Baltic Federal University, 236041 Kaliningrad, Russia; (K.L.); (V.B.); (A.O.); (L.P.); (V.R.)
| | - Desmond J. Mapps
- Faculty of Science and Engineering, University of Plymouth, Plymouth PL4 8AA, UK;
| | - Kateryna Levada
- Institute of Physics, Mathematics and Information Technology, Immanuel Kant Baltic Federal University, 236041 Kaliningrad, Russia; (K.L.); (V.B.); (A.O.); (L.P.); (V.R.)
| | - Victor Belyaev
- Institute of Physics, Mathematics and Information Technology, Immanuel Kant Baltic Federal University, 236041 Kaliningrad, Russia; (K.L.); (V.B.); (A.O.); (L.P.); (V.R.)
| | - Alexander Omelyanchik
- Institute of Physics, Mathematics and Information Technology, Immanuel Kant Baltic Federal University, 236041 Kaliningrad, Russia; (K.L.); (V.B.); (A.O.); (L.P.); (V.R.)
| | - Larissa Panina
- Institute of Physics, Mathematics and Information Technology, Immanuel Kant Baltic Federal University, 236041 Kaliningrad, Russia; (K.L.); (V.B.); (A.O.); (L.P.); (V.R.)
- National University of Science and Technology, MISiS, 119049 Moscow, Russia
| | - Valeria Rodionova
- Institute of Physics, Mathematics and Information Technology, Immanuel Kant Baltic Federal University, 236041 Kaliningrad, Russia; (K.L.); (V.B.); (A.O.); (L.P.); (V.R.)
| |
Collapse
|
44
|
Chen YH, Lai YH, Wu PH, Chen LS, Lin YS, Chen CM. Mutual intercropping-inspired co-silanization to graft well-oriented organosilane as adhesion promotion nanolayer for flexible conductors. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2019.11.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
45
|
Preparation of Nano Silver Paste and Applications in Transparent Electrodes via Electric-Field Driven Micro-Scale 3D Printing. NANOMATERIALS 2020; 10:nano10010107. [PMID: 31948105 PMCID: PMC7022831 DOI: 10.3390/nano10010107] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 01/01/2020] [Accepted: 01/02/2020] [Indexed: 12/27/2022]
Abstract
Nano-silver paste, as an important basic material for manufacturing thick film components, ultra-fine circuits, and transparent conductive films, has been widely used in various fields of electronics. Here, aiming at the shortcomings of the existing nano-silver paste in printing technology and the problem that the existing printing technology cannot achieve the printing of high viscosity, high solid content nano-silver paste, a nano-silver paste suitable for electric-field-driven (EFD) micro-scale 3D printing is developed. The result shows that there is no oxidation and settlement agglomeration of nano-silver paste with a storage time of over six months, which indicates that it has good dispersibility. We focus on the printing process parameters, sintering process, and electrical conductivity of nano-silver paste. The properties of the nano-silver paste were analyzed and the feasibility and practicability of the prepared nano-silver paste in EFD micro-scale 3D printing technology were verified. The experiment results indicate that the printed silver mesh which can act as transparent electrodes shows high conductivity (1.48 Ω/sq) and excellent transmittance (82.88%). The practical viability of the prepared nano-silver paste is successfully demonstrated with a deicing test. Additionally, the experimental results show that the prepared silver mesh has excellent heating properties, which can be used as transparent heaters.
Collapse
|
46
|
Kondo M, Melzer M, Karnaushenko D, Uemura T, Yoshimoto S, Akiyama M, Noda Y, Araki T, Schmidt OG, Sekitani T. Imperceptible magnetic sensor matrix system integrated with organic driver and amplifier circuits. SCIENCE ADVANCES 2020; 6:eaay6094. [PMID: 32010789 PMCID: PMC6976294 DOI: 10.1126/sciadv.aay6094] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 11/25/2019] [Indexed: 05/02/2023]
Abstract
Artificial electronic skins (e-skins) comprise an integrated matrix of flexible devices arranged on a soft, reconfigurable surface. These sensors must perceive physical interaction spaces between external objects and robots or humans. Among various types of sensors, flexible magnetic sensors and the matrix configuration are preferable for such position sensing. However, sensor matrices must efficiently map the magnetic field with real-time encoding of the positions and motions of magnetic objects. This paper reports an ultrathin magnetic sensor matrix system comprising a 2 × 4 array of magnetoresistance sensors, a bootstrap organic shift register driving the sensor matrix, and organic signal amplifiers integrated within a single imperceptible platform. The system demonstrates high magnetic sensitivity owing to the use of organic amplifiers. Moreover, the shift register enabled real-time mapping of 2D magnetic field distribution.
Collapse
Affiliation(s)
- M. Kondo
- The Institute of Scientific and Industrial Research (ISIR), Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- National Institute of Advanced Industrial Science and Technology (AIST)–Osaka University Advanced Photonics and Biosensing Open Innovation Laboratory (PhotoBIO-OIL), 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - M. Melzer
- Institute for Integrative Nanosciences, Leibniz Institute for Solid State and Materials Research Dresden (IFW Dresden), Helmholtzstraße 20, D-01069 Dresden, Germany
| | - D. Karnaushenko
- Institute for Integrative Nanosciences, Leibniz Institute for Solid State and Materials Research Dresden (IFW Dresden), Helmholtzstraße 20, D-01069 Dresden, Germany
| | - T. Uemura
- The Institute of Scientific and Industrial Research (ISIR), Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan
- National Institute of Advanced Industrial Science and Technology (AIST)–Osaka University Advanced Photonics and Biosensing Open Innovation Laboratory (PhotoBIO-OIL), 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - S. Yoshimoto
- The Institute of Scientific and Industrial Research (ISIR), Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan
| | - M. Akiyama
- The Institute of Scientific and Industrial Research (ISIR), Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan
| | - Y. Noda
- The Institute of Scientific and Industrial Research (ISIR), Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan
| | - T. Araki
- The Institute of Scientific and Industrial Research (ISIR), Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- National Institute of Advanced Industrial Science and Technology (AIST)–Osaka University Advanced Photonics and Biosensing Open Innovation Laboratory (PhotoBIO-OIL), 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - O. G. Schmidt
- Institute for Integrative Nanosciences, Leibniz Institute for Solid State and Materials Research Dresden (IFW Dresden), Helmholtzstraße 20, D-01069 Dresden, Germany
- Material Systems for Nanoelectronics, Chemnitz University of Technology, Reichenhainer Str. 70, D-09107 Chemnitz, Germany
- Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, Rosenbergstr. 6, D-09126 Chemnitz, Germany
- Corresponding author. (O.G.S.); (T.S.)
| | - T. Sekitani
- The Institute of Scientific and Industrial Research (ISIR), Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- National Institute of Advanced Industrial Science and Technology (AIST)–Osaka University Advanced Photonics and Biosensing Open Innovation Laboratory (PhotoBIO-OIL), 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Corresponding author. (O.G.S.); (T.S.)
| |
Collapse
|
47
|
Gate-tunable graphene-based Hall sensors on flexible substrates with increased sensitivity. Sci Rep 2019; 9:18059. [PMID: 31792254 PMCID: PMC6889504 DOI: 10.1038/s41598-019-54489-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 11/01/2019] [Indexed: 11/29/2022] Open
Abstract
We demonstrate a novel concept for operating graphene-based Hall sensors using an alternating current (AC) modulated gate voltage, which provides three important advantages compared to Hall sensors under static operation: (1) The sensor sensitivity can be doubled by utilizing both n- and p-type conductance. (2) A static magnetic field can be read out at frequencies in the kHz range, where the 1/f noise is lower compared to the static case. (3) The off-set voltage in the Hall signal can be reduced. This significantly increases the signal-to-noise ratio compared to Hall sensors without a gate electrode. A minimal detectable magnetic field Bmin down to \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$290\,{\rm{nT}}/\surd {\rm{Hz}}$$\end{document}290nT/√Hz and sensitivity up to 0.55 V/VT was found for Hall sensors working on flexible polyimide (PI) substrates. This clearly outperforms state-of-the-art flexible Hall sensors and is comparable to the values obtained by the best rigid III/V semiconductor Hall sensors.
Collapse
|
48
|
Ge J, Wang X, Drack M, Volkov O, Liang M, Cañón Bermúdez GS, Illing R, Wang C, Zhou S, Fassbender J, Kaltenbrunner M, Makarov D. A bimodal soft electronic skin for tactile and touchless interaction in real time. Nat Commun 2019; 10:4405. [PMID: 31562319 PMCID: PMC6764954 DOI: 10.1038/s41467-019-12303-5] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Accepted: 09/03/2019] [Indexed: 01/15/2023] Open
Abstract
The emergence of smart electronics, human friendly robotics and supplemented or virtual reality demands electronic skins with both tactile and touchless perceptions for the manipulation of real and virtual objects. Here, we realize bifunctional electronic skins equipped with a compliant magnetic microelectromechanical system able to transduce both tactile—via mechanical pressure—and touchless—via magnetic fields—stimulations simultaneously. The magnetic microelectromechanical system separates electric signals from tactile and touchless interactions into two different regions, allowing the electronic skins to unambiguously distinguish the two modes in real time. Besides, its inherent magnetic specificity overcomes the interference from non-relevant objects and enables signal-programmable interactions. Ultimately, the magnetic microelectromechanical system enables complex interplay with physical objects enhanced with virtual content data in augmented reality, robotics, and medical applications. To realize electronic skins for emerging technologies that require multifunctional sensing capability, intelligent design strategies are needed. Here, the authors report electronic skins with a single sensory unit that simultaneously transduces both tactile and touchless stimulations.
Collapse
Affiliation(s)
- Jin Ge
- Helmholtz-Zentrum Dresden-Rossendorf e.V., Institute of Ion Beam Physics and Materials Research, Bautzner Landstrasse 400, 01328, Dresden, Germany.
| | - Xu Wang
- Helmholtz-Zentrum Dresden-Rossendorf e.V., Institute of Ion Beam Physics and Materials Research, Bautzner Landstrasse 400, 01328, Dresden, Germany
| | - Michael Drack
- Soft Materials Lab, Linz Institute of Technology, Johannes Kepler University Linz, Altenberger Strasse 69, 4040, Linz, Austria
| | - Oleksii Volkov
- Helmholtz-Zentrum Dresden-Rossendorf e.V., Institute of Ion Beam Physics and Materials Research, Bautzner Landstrasse 400, 01328, Dresden, Germany
| | - Mo Liang
- Helmholtz-Zentrum Dresden-Rossendorf e.V., Institute of Ion Beam Physics and Materials Research, Bautzner Landstrasse 400, 01328, Dresden, Germany
| | - Gilbert Santiago Cañón Bermúdez
- Helmholtz-Zentrum Dresden-Rossendorf e.V., Institute of Ion Beam Physics and Materials Research, Bautzner Landstrasse 400, 01328, Dresden, Germany
| | - Rico Illing
- Helmholtz-Zentrum Dresden-Rossendorf e.V., Institute of Ion Beam Physics and Materials Research, Bautzner Landstrasse 400, 01328, Dresden, Germany
| | - Changan Wang
- Helmholtz-Zentrum Dresden-Rossendorf e.V., Institute of Ion Beam Physics and Materials Research, Bautzner Landstrasse 400, 01328, Dresden, Germany
| | - Shengqiang Zhou
- Helmholtz-Zentrum Dresden-Rossendorf e.V., Institute of Ion Beam Physics and Materials Research, Bautzner Landstrasse 400, 01328, Dresden, Germany
| | - Jürgen Fassbender
- Helmholtz-Zentrum Dresden-Rossendorf e.V., Institute of Ion Beam Physics and Materials Research, Bautzner Landstrasse 400, 01328, Dresden, Germany
| | - Martin Kaltenbrunner
- Soft Materials Lab, Linz Institute of Technology, Johannes Kepler University Linz, Altenberger Strasse 69, 4040, Linz, Austria. .,Soft Matter Physics, Johannes Kepler University Linz, Altenberger Strasse 69, 4040, Linz, Austria.
| | - Denys Makarov
- Helmholtz-Zentrum Dresden-Rossendorf e.V., Institute of Ion Beam Physics and Materials Research, Bautzner Landstrasse 400, 01328, Dresden, Germany.
| |
Collapse
|
49
|
Luo ZD, Peters JJP, Sanchez AM, Alexe M. Flexible Memristors Based on Single-Crystalline Ferroelectric Tunnel Junctions. ACS APPLIED MATERIALS & INTERFACES 2019; 11:23313-23319. [PMID: 31181153 DOI: 10.1021/acsami.9b04738] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Ferroelectric tunnel junction (FTJ) based memristors exhibiting continuous electric field controllable resistance states have been considered promising candidates for future high-density memories and advanced neuromorphic computational architectures. However, the use of rigid single crystal substrate and high temperature growth of the epitaxial FTJ thin films constitutes the main obstacles to using this kind of heterostructure in flexible computing devices. Here, we report the integration of centimeter-scale single crystalline FTJs on flexible plastic substrates, by water-etching based epitaxial oxide membrane lift-off and the following transfer. The resulting highly flexible FTJ membranes retain the single-crystalline structure along with stable and switchable ferroelectric polarization as the grown-on single crystal substrate state. We show that the obtained flexible memristors, i.e., FTJs on plastic substrates, present high speed and low voltage mediated memristive behaviors with resistance changes over 500% and are stable against shape change. This work is an essential step toward the realization of epitaxial ultrathin ferroelectric oxide film-based electronics on large-area, flexible, and affordable substrates.
Collapse
Affiliation(s)
- Zheng-Dong Luo
- Department of Physics , University of Warwick , CV4 7AL , Coventry , United Kingdom
| | - Jonathan J P Peters
- Department of Physics , University of Warwick , CV4 7AL , Coventry , United Kingdom
| | - Ana M Sanchez
- Department of Physics , University of Warwick , CV4 7AL , Coventry , United Kingdom
| | - Marin Alexe
- Department of Physics , University of Warwick , CV4 7AL , Coventry , United Kingdom
| |
Collapse
|
50
|
Abstract
Flexible sensors have the potential to be seamlessly applied to soft and irregularly shaped surfaces such as the human skin or textile fabrics. This benefits conformability dependant applications including smart tattoos, artificial skins and soft robotics. Consequently, materials and structures for innovative flexible sensors, as well as their integration into systems, continue to be in the spotlight of research. This review outlines the current state of flexible sensor technologies and the impact of material developments on this field. Special attention is given to strain, temperature, chemical, light and electropotential sensors, as well as their respective applications.
Collapse
|